
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Decoding visual stimuli from cortical activity using neural

networks

Jan Sobotka

Mgr. Ján Antolík, Ph.D.

Informatics

Artificial Intelligence 2021

Department of Applied Mathematics

until the end of summer semester 2025/2026

Instructions

Recent years have witnessed a major breakthrough in deep neural network (DNN)

models' ability to predict neural population activity in the primary visual cortex (V1)

evoked by novel visual stimuli [1,2]. However, the inverse problem of predicting the

natural image based on the activity it elicits in a population of V1 neurons remains much

less studied and consequently mastered. In this project, the student will implement and

test a range of different DNN architectures, including variations of CNN models,

generative approaches, and, optionally, other methods if time and space permit.

Additionally, the student will quantify the impact of synthetically generated data used to

train the models. The best-performing methods will be tested on large datasets acquired

from a detailed biologically realistic model of the primary visual cortex developed in our

group [3] and on recordings from mice or macaque V1.

[1] Dan A. Butts (2019). Data-driven approaches to understanding visual neuron activity.

Annual Review of Vision Science, 5:451-457.

[2] Antolík, J., Hofer, S. B., Bednar, J. A., & Mrsic-Flogel, T. D. (2016). Model Constrained by

Visual Hierarchy Improves Prediction of Neural Responses to Natural Scenes. PLoS

Computational Biology, 12(6). https://doi.org/10.1371/journal.pcbi.1004927

[3] Ján Antolík, Cyril Monier, Yves Frégnac, and Andrew P. Davison (2019). A

comprehensive data-driven model of cat primary visual cortex. BiorXiv.

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 4 April 2024 in Prague.

Bachelor’s thesis

DECODING VISUAL
STIMULI FROM
CORTICAL ACTIVITY
USING NEURAL
NETWORKS

Jan Sobotka

Faculty of Information Technology
Department of Applied Mathematics
Supervisor: Mgr. Ján Antoĺık, Ph.D.
May 15, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Jan Sobotka. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Sobotka Jan. Decoding visual stimuli from cortical activity using neural networks.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Information Technology, 2024.

Contents

Acknowledgments vi

Declaration vii

Abstract viii

List of abbreviations ix

Introduction 1

1 Modeling of neural activity 3
1.1 Neuroscience behind visual processing . 3
1.2 Encoding neural activity . 4

1.2.1 Core . 4
1.2.2 Readout . 5
1.2.3 Most exciting inputs . 6

1.3 Decoding neural activity . 7
1.3.1 Encoder inversion . 8

1.4 Applications . 8

2 Generative adversarial networks 10
2.1 Generator . 10
2.2 Discriminator . 10
2.3 Training . 11
2.4 Applications . 11

3 Synthetic data 12
3.1 Approaches . 12

3.1.1 Simulation-based generation . 12
3.1.2 Generative AI . 13
3.1.3 Input space data augmentation . 13

4 Metrics 14
4.1 Mean squared error . 14
4.2 Structural similarity index measure . 14
4.3 Perceptual loss . 15

5 Datasets 16
5.1 SENSORIUM 2022 dataset . 16

5.1.1 Synthetic dataset from CNN-based encoding model 17
5.2 Dataset from biologically realistic encoding model 17

ii

Contents iii

6 Methods 19
6.1 CNN . 19

6.1.1 Core . 19
6.1.2 Fully connected readin . 19
6.1.3 Convolutional readin . 20
6.1.4 MEI readin . 20
6.1.5 Training . 21

6.2 Generative adversarial network . 22
6.2.1 Discriminator . 22
6.2.2 Generator . 23

6.3 Encoder matching . 23

7 Experiments 25
7.1 Biologically realistic encoding model dataset . 25
7.2 SENSORIUM 2022 dataset . 27

7.2.1 Impact of synthetic data . 29
7.3 Transfer learning . 31
7.4 Summary of key results . 33

Conclusions 35

A Qualitative results on the SENSORIUM 2022 dataset 36

B Quantitative results after training on synthetic data 42

List of attachments 53

List of Figures

1.1 Encoder architecture. n denotes the number of neurons, and C, H, and W are the
dimensions of the image. 6

1.2 Most exciting input images of randomly sampled neurons. 6
1.3 Encoder inversion. ŷt denotes the reconstructed image at timestep t, x̂, x refer to

predicted and target neural responses, respectively, η is the step size, and MSE
stands for mean squared error. Gaussian blur of the image gradient is omitted for
clarity. 8

6.1 CNN-Conv decoder with sizes of intermediate representations corresponding to the
SENSORIUM 2022 dataset. n denotes the number of neurons, and the left-most
block represents the neural responses concatenated with the coordinates. 20

7.1 Decoded samples from the C dataset. 27
7.2 Decoded samples from the M-1 dataset by the best-performing methods and the

baseline. Dataset names in brackets refer to the datasets on which the methods
were trained. 29

7.3 Performance impact of using additional synthetic data S-1 during training on the
base dataset M-1. Evaluations done on the M-1 dataset. 30

7.4 Performance impact of using additional synthetic data S-All during training on
the base dataset M-All. Evaluations done on the M-All dataset. 30

7.5 Performance impact of using additional synthetic data S-All during training on
the base dataset M-All. Evaluations done on the M-1 dataset. 31

7.6 Decoded samples from the M-1 dataset by the baseline and the best-performing
methods from the synthetic data section 7.2.1. 32

7.7 Decoded samples from the M-1 dataset by the best-performing methods. 34

A.1 Decoded samples from the M-1 dataset by methods trained on M-1. 36
A.2 Decoded samples from the M-1 dataset by methods trained on M-All. 37
A.3 Decoded samples from the M-1 dataset by CNN-based methods trained on M-1

and S-1. 37
A.4 Decoded samples from the M-1 dataset by GAN-based methods trained on M-1

and S-1. 38
A.5 Decoded samples from the M-1 dataset by CNN-based methods trained on M-All

and S-All. 38
A.6 Decoded samples from the M-1 dataset by GAN-based methods trained on M-All

and S-All. 39
A.7 Decoded samples from the M-1 dataset by CNN-based methods pretrained on C

and fine-tuned on M-1 or M-All. 40
A.8 Decoded samples from the M-1 dataset by methods pretrained on M-All + S-All

and fine-tuned on M-1. 41

iv

List of Tables

5.1 Details of the mice datasets from SENSORIUM 2022. 17

6.1 Hyperparameters used for the CNN decoder. 21
6.2 Hyperparameters used for the GAN decoder. 24

7.1 Quantitative comparison of different decoding methods on the C dataset. Bold
values signify the lowest (best) results. 26

7.2 Quantitative comparison of decoding methods and training setups. Columns M-
1 and M-All refer to evaluation datasets. Bold values signify the lowest (best)
results in each of the evaluation settings. 28

7.3 Evaluation of transfer learning performance on the M-1 dataset. The pretraining
dataset S-All is accompanied by M-All. Bold values signify the lowest (best)
results. 33

B.1 Performance after training on synthetic data. Columns M-1 and M-All refer to
evaluation datasets. Bold measurement values signify the lowest (best) results in
each of the evaluation settings. 43

List of code listings

v

I would like to thank my family for their support throughout my
studies, allowing me to devote full attention to my interests and
education. I am also profoundly grateful to my supervisor, Mgr. Ján
Antoĺık, Ph.D., for his guidance and expertise provided throughout
my exploration of computational neuroscience and the thesis project.
Last but not least, a big thank you to Luca Baroni, M.Sc., for his
ideas, advice, and readiness to help with every issue.

vi

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular that the Czech Technical
University in Prague has the right to conclude a license agreement on the utilization of this
thesis as a school work under the provisions of Article 60 (1) of the Act.

In Prague on May 15, 2024

vii

Abstract

This thesis explores the application of deep learning techniques for reconstructing visual stimuli
from neural activity in the primary visual cortex (V1). The focus is placed on overcoming the
scarcity of biological data by developing data-efficient architectures, analyzing the impact of syn-
thetic training data, employing adversarial and transfer learning, and introducing novel auxiliary
optimization objectives. A series of experiments is conducted using data from in silico simula-
tions of cat V1 and in vivo recordings from mouse V1, highlighting the best-performing decoding
approach and offering suggestions for future research. Notably, the methods developed in this
thesis outperform some existing state-of-the-art decoding techniques according to several widely
used evaluation measures. Overall, the results underscore the potential of machine learning in
neural activity decoding and pave the way for future advancements in brain-computer interfaces
and neuroscientific research.

Keywords neural activity decoding, neural data analysis, primary visual cortex, applied ma-
chine learning, image reconstruction, synthetic data, deep neural networks

Abstrakt

Tato práce zkoumá použit́ı technik hlubokého učeńı pro rekonstrukci vizuálńıch podnět̊u z neu-
ronálńı aktivity v primárńı zrakové oblasti (V1). Zaměřuje se na překonáńı nedostatku bio-
logických dat vývojem úsporných architektur, analýzou dopadu syntetických trénovaćıch dat,
využit́ım adversariálńıho a transferového učeńı a zavedeńım nových pomocných optimalizačńıch
ćıl̊u. Je provedena řada experiment̊u s daty z in silico simulaćı V1 u koček a in vivo záznamů
z V1 u myš́ı, přičemž je poukázáno na nejlepš́ı př́ıstup k dekódováńı a jsou navrženy kroky pro
budoućı výzkum. Metody vyvinuté v této práci překonávaj́ı některé stávaj́ıćı state-of-the-art
techniky podle několika široce použ́ıvaných hodnot́ıćıch kritéríı. Celkově výsledky zd̊urazňuj́ı
potenciál strojového učeńı pro dekódováńı neuronálńı aktivity a otev́ıraj́ı cestu k budoućımu
pokroku v oblasti technologíı propojuj́ıćı mozek s poč́ıtačem a v neurovědeckém výzkumu.

Kĺıčová slova dekódováńı neuronálńı aktivity, analýza neurálńıch dat, primárńı zraková oblast,
aplikované strojové učeńı, rekonstrukce obrazu, syntetická data, hluboké neuronové śıtě

viii

List of abbreviations

AI Artificial intelligence
ANN Artificial neural network
BCI Brain-computer interface

CNN Convolutional neural network
DL Deep learning

DNN Deep neural network
EM Encoder matching

fMRI Functional magnetic resonance imaging
GAN Generative adversarial network
MEG Magnetoencephalography
MEI Most exciting input
ML Machine learning

MSE Mean squared error
LGN Lateral geniculate nucleus

PL Perceptual loss
SSIM Structural similarity index measure

SSIML Structural similarity index measure loss
V1 Primary visual cortex

ix

Introduction

Computational neuroscience has a long-standing goal of deciphering how the brain processes and
stores information. Although decades of work have gone into this endeavor, the precise mapping
from brain activity to thoughts and perceptions remains a mystery.

To address these unresolved challenges, this thesis tackles the task of reconstructing visual
percepts from the population activity of neurons in the early visual system. The motivation for
solving this problem is twofold. First, it would shed light on the algorithms that the brain uses
to compress the high-dimensional external world. Second, it would advance the development of
brain-machine interfaces for restoring vision in blind people.

More specifically, visual prostheses, the technology behind vision restoration, require pro-
tocols to artificially stimulate neurons in order to induce the desired percepts. However, the
experimental validation and refinement of these protocols is currently limited to subjective hu-
man reports in the form of language descriptions and drawings, or to other behavioral responses
in the case of animals. A method capable of decoding brain activity into visual stimuli would
bypass these limitations, enabling more precise testing and enhancing the reliability of vision
restoration technology.

From a scientific perspective, the computational reconstruction of visual stimuli would offer
a lower-bound estimate of the information content within specific brain regions. Additionally,
such decoding systems could assess the accuracy and credibility of biologically detailed models
widely used in computational neuroscience.

Despite these promising applications, significant challenges in the interpretation of cortical
population activity still persist, and our limited understanding of the highly complex and non-
linear brain processing calls for innovative approaches.

Drawing on recent advances in machine learning (ML), particularly in computer vision and
image generation, this thesis aims to leverage learning-based techniques to decode image stimuli
from neural activity in the primary visual cortex (V1). Given the inherent challenge of acquir-
ing large biological datasets, the focus is directed towards data-efficient methods and training
paradigms.

Specifically, the first objective of this thesis is to implement and test a range of different deep
neural network (DNN) architectures in which data efficiency is introduced by additional learning
signals, such as adversarial losses, and by parameter-efficient designs. To further alleviate the
limited amounts of biological data, the second objective is to introduce synthetically generated
datasets during DNN training and quantify their impact on performance.

Together, these two overarching goals will culminate in selecting the best-performing com-
bination of model architecture and training paradigm. Evaluations will be conducted on data
acquired from a detailed biologically plausible model of cat V1, as well as on experimental data
from mouse V1 recordings.

1

Introduction 2

The first four chapters start by providing background on the modeling of neural activity, gen-
erative adversarial networks, synthetic data, and image reconstruction metrics. The fifth chapter
describes the datasets used by the methods introduced in chapter 6 during the experiments in
chapter 7. Finally, the thesis concludes with a summary of key findings and directions for future
work.

Chapter 1

Modeling of neural activity

Neural activity encompasses the electrical and chemical dynamic processes that occur in the
brain. In computational neuroscience, researchers investigate both its underlying causal mech-
anisms and the higher-level statistical patterns through computational modeling. This in silico
modeling is employed at multiple levels of abstraction, from precise biologically realistic models
of ion channels and neurons to predictions of whole-brain imaging results. While one approach
usually prioritizes depth over breadth, capturing intricate details, the other focuses more on
large-scale regularities, sacrificing low-level specifics.

In the rest of this work, the term neural activity will refer exclusively to the firing rates of
individual neurons. That is, to the (average) number of spikes of single neurons in a prespecified
time window.

When external stimuli, such as visual, auditory, or tactile, are explicitly considered, two
directions of investigation emerge. One is the forward process of modeling the neural activity in
response to known stimuli, and the other is the backward (inverse) process of reconstructing the
stimuli knowing the neural activity. Both can provide useful findings and applications and will
be further introduced in the following sections, together with a brief review of the neuroscience
behind vision, the main focus of the thesis.

1.1 Neuroscience behind visual processing
Vision begins in the retina, where light stimulates photoreceptors called rods and cones. The
rods provide night vision and are generally good at detecting light, while cones are responsible
for color vision and high spatial acuity. This first light detection step creates the visual field
in which researchers pay special attention to the receptive fields of neurons along the visual
hierarchy. That is, to the areas where visual stimuli influence the activity of specific neurons.

The light information encoded in the stimulated photoreceptors is then sent to bipolar and
ganglion cells, which aggregate the local signals and perform initial processing. For example,
some ganglion cells are activated when the center of their circular receptive fields detects a
higher luminance than the surrounding, while other cells are activated in the opposite case.

From the retina, visual signals travel through the optic nerve to the lateral geniculate nucleus
(LGN), which lies deep in the middle of the brain. This evolutionarily old brain structure not
only relays but also modulates the passing visual information, influenced by additional non-visual
factors such as attention and the task currently performed [1].

The visual information then proceeds to the primary visual cortex (V1), one of the first cor-
tical areas reached by the external stimulus. Neurons in this area need more sophisticated visual
patterns to activate compared to the simplicity of patterns detectable in the retina and LGN.

3

Encoding neural activity 4

More specifically, it was found that V1 neurons respond most strongly to bars of light moving
through their receptive fields and that the responses are selective to the bar’s orientation [2].

In addition, V1 is notable for its retinotopic organization, where neighboring neurons in the
retina connect to adjacent neurons in the LGN as well as in V1. Retinotopy is particularly im-
portant and interesting because, to some degree, it preserves the locality and spatial organization
of the visual field in V1.

Subsequently, in addition to numerous other outputs of V1, the information travels through
two main streams for further processing: the dorsal stream, often referred to as the “where”
pathway, and the ventral stream, often referred to as the “what” pathway. In the ventral stream,
the signals from V1 travel down to the inferior temporal lobe, which, among other tasks, is
capable of recognizing objects. An example area on this pathway is called V4 and is activated
by specific shapes and colors. In the dorsal stream, on the other hand, the information from V1
goes up through the parietal lobe, where motion detection and spatial components of vision take
place. For example, neurons in area V5 are preferentially activated by left-to-right or up-to-down
movements of objects. As one can see, the further in the visual pathway, the more complex the
detected patterns can be, which is also a side-product of increasingly larger receptive fields. [3]

For further details and a broader neuroscientific context, interested readers can refer to [4].

1.2 Encoding neural activity
Models that predict neural activity in response to external stimuli are called encoding models.
They learn or simulate the forward process of neural information encoding. The difficulty of their
task varies depending on the level of abstraction and the brain region under consideration. For
example, due to the complexity of the visual pathway and the differences in encoded information,
predicting the average firing rates of individual neurons in the visual area V4 in response to
natural images has been shown to be more difficult than predicting responses in V1 [5].

Despite the inherent challenges of this task, extensive research efforts have produced signifi-
cant successes over the years, particularly in encoding neural activity within the primary visual
area V1. The progress started with simple linear-nonlinear and multi-layer models [6, 7, 8]
that were heavily based on neurophysiological data and known neuronal properties. Subsequent
breakthroughs followed with the advent of deep learning (DL), which has since become dominant
in the field [9, 10, 11, 12].

Artificial neural networks (ANNs) [13, 14], the workhorse behind DL, are known for their abil-
ity, under mild conditions, to approximate any continuous function with arbitrary precision [15,
16]. This makes them a particularly useful tool for capturing the nonlinear stimulus-activity
mappings of neurons. In general, they consist of a series of layers that interleave linear matrix
multiplications with nonlinear functions, transforming the input into the output in a nontrivial
way. Importantly, the matrices inside the networks are learnable parameters that can be tuned
to fit the data. For an extensive background on ANNs and DL, we refer the reader to [17].

The state-of-the-art approaches for encoding neural activity using ANNs consist of two
parts [11, 18, 19]. The first is the core, which learns a latent representation of images that
is common to all neurons and shared between potentially different animals and multiple record-
ings. The second are recording-specific readout modules that predict neural responses given the
latent features from the core. This split allows for more efficient reuse of data, which in turn
enables more powerful models to be used.

1.2.1 Core
The core is usually implemented as a convolutional neural network (CNN) [20], a variant of
neural networks that is highly effective, computationally efficient, and particularly well suited
for processing data with a grid-like topology, such as images [17]. CNNs consist of a specialized

Encoding neural activity 5

architecture inspired by the organization of the visual cortex, where neurons in successive layers
respond to increasingly complex patterns.

The key components of a typical CNN include convolutional layers, nonlinear activation
functions, pooling layers, and fully connected layers. The convolutional layers perform feature
extraction by convolving input data with learnable filters, capturing spatial patterns at different
scales. The activation functions transform these outputted feature maps which are then down-
sampled by the pooling layers, reducing the spatial dimensions and extracting dominant features.
Finally, fully connected layers integrate the extracted features into a single vector that represents
the final prediction of the network. The pooling and fully connected layers are sometimes omit-
ted, and other modules, such as batch normalization [21] and dropout [22], are added, depending
on the particular task.

One of the main advantages of CNNs is their ability to automatically learn hierarchical rep-
resentations of features directly from the data, without the need for manual feature engineering.
This makes them highly adaptable to various tasks, including image classification, object detec-
tion, and, in the context of neuroscience, encoding (and decoding) neural activity patterns.

The design and architecture of the CNN core can vary depending on the specific requirements
of the task and the characteristics of the input data. For example, for neural activity encoding,
the authors of [11] use four depth-separable convolutional layers with 64 filters each [23], where
each 2D convolution is followed by a batch normalization and an ELU nonlinearity [24].

1.2.2 Readout
Complementary to the core, the readout modules are responsible for mapping the learned la-
tent features to neural responses specific to individual animals and recordings. These modules
typically have fewer learnable parameters than the core, which allows them to be trained from
smaller recording datasets. They are trained in conjunction with the core CNN, taking advantage
of its feature extraction to learn recording-specific mappings between visual stimuli and neural
activity. The use of recording-specific readout modules enables the model to adapt to variations
in neural response characteristics across different animals, improving the overall performance and
robustness of the encoding model. Additionally, by separating the core CNN from the readout
modules, the model architecture remains flexible and scalable, allowing easier adaptation to new
datasets and experimental conditions.

One proposed implementation of the readout is called a Gaussian readout [11]. It significantly
reduces the number of parameters compared to previous approaches by learning per-neuron
spatial coordinates within the feature representation of the core. Given these positions at which
neurons attend, the predicted responses are then linear combinations of feature map channels at
their learned locations followed by an ELU + 1 activation function. The name of this readout
stems from the fact that during training, the learned location serves as the mean of a multivariate
Gaussian distribution with a learned covariance matrix. Its purpose is to facilitate gradient flow
during training by sampling and applying the reparametrization trick from [25]. Furthermore,
instead of learning the per-neuron positions directly, the Gaussian readout utilizes the neural
positions along the cortical surface available from experiments. More specifically, it trains a single
fully connected network that transforms the neural positions in the cortex into the positions in
the feature representation predicted by the CNN core.

The authors of [19] build on the model architecture of [11], and extend the Gaussian readout
by adding a shifter network, a fully connected network with three layers of hidden dimension of
5 followed by a Tanh nonlinearity. Its goal is to incorporate also the pupil position of animals
into the predicted locations of neurons by predicting their shift. The reason is that the authors
employed a free-viewing paradigm for the recorded animals, which resulted in varying receptive
field positions after eye movements. This version of the CNN-based encoder, which has been
open-sourced1, is shown in Figure 1.1 and will be used in this work.

1https://github.com/sinzlab/sensorium

https://github.com/sinzlab/sensorium

Encoding neural activity 6

learnable parameters

fully connected + Tanh

n

depth-separable convolutional
+ BN + ELU

C x H x W

n x 2 n x 2

Core

Readout

Shifter

Figure 1.1 Encoder architecture. n denotes the number of neurons, and C, H, and W are the
dimensions of the image.

1.2.3 Most exciting inputs
In certain applications, it is desirable to synthesize inputs (images) that maximize the response
of a given neuron in the visual system. Such generated image stimuli are in the literature called
most exciting inputs (MEIs). As with other tasks in computational neuroscience, ANNs have
been successfully applied to this task using a range of different approaches [26, 27, 28]. The
most common is through direct pixel optimization, a well-established technique in the field of
interpretable machine learning for visualizing features learned by a neural network [29, 30].

It works by first training a CNN-based encoder model, randomly initializing a MEI, and
then iteratively adding the gradient of the encoder’s prediction for the target neuron w.r.t. this
image. This gradient ascent is often interleaved with a Gaussian filter applied to the generated
image or to its gradient in order to suppress high-frequency noise. The resulting MEIs from this
method have been successfully validated in vivo [26], pointing at the promising application of
deep learning models as digital twins of the biological brain.

Example MEIs corresponding to randomly sampled neurons from mouse V1 are shown in
Figure 1.2.

Neuron #7380 Neuron #7840 Neuron #8357

Figure 1.2 Most exciting input images of randomly sampled neurons.

Decoding neural activity 7

1.3 Decoding neural activity
The reverse process of reconstructing some external variable, for example, the stimulus, from the
elicited neural activity is known as decoding. Despite progress in encoding neural activity and
in decoding a few variables, such as stimulus classes, decoding of entire image stimuli has seen
fewer developments, particularly from responses of neurons in the visual cortex.

However, if one extends the term neural activity to also encompass other more indirect brain
signal measurements, such as functional magnetic resonance imaging (fMRI), one can find many
attempts at decoding full image stimuli in recent years. For example, [31] used pretrained
image embeddings to perform real-time decoding of magnetoencephalography (MEG) signals,
while others [32, 33, 34, 35] focused on fMRI data and employed recent advances in generative
artificial intelligence (generative AI), such as diffusion models [36, 37]. Most of the works in
this area aimed at reconstructing the semantic information in the visual stimuli, such as the
categories of objects, but not at capturing low-level features of the images. One reason is that
these brain signal modalities do not provide the necessary temporal and spatial resolution for
decoding such fine image structures, which also makes them unsuitable for studying the tuning
properties of individual neurons or for fine-grained evaluations of stimulation protocols of visual
prostheses.

Returning to neural responses, a series of works investigated image reconstruction from the
activity of retinal ganglion cells [38, 39, 40], which form one of the first processing stages of the
visual system. At this early stage of processing, even linear projections were able to reconstruct
natural images from neural responses [38]. The use of nonlinear techniques, such as deep neural
networks, further refined the structures in the reconstructed visual stimuli and also led to the
ability to reconstruct dynamic videos [40].

One of the first studies investigating decoding from the visual cortex leveraged known retino-
topy2 that allowed them to reconstruct simple visual stimuli and mental imagery [41]. Later, us-
ing generative adversarial networks [42] and other deep learning approaches, a series of works [43,
44, 45, 46, 47, 48] showed promising results in decoding more complex stimuli from higher-order
areas of the visual system, such as V1 and the inferior temporal cortex.

For example, [47] incorporated known biological properties of neurons in the visual system into
their brain-inspired architecture to successfully reconstruct images from sequences of individual
spikes, so-called spike trains. This work demonstrated the usefulness of injecting prior knowledge
into machine learning models not only by outperforming other methods but also by validating
neuroscience theories.

Similarly as for the fMRI data, [48] leveraged a pretrained diffusion model to decode neu-
ral responses predicted by an encoder model that was trained on data from the visual area
V4. More specifically, their method, Energy Guided Diffusion, modified the so-called encoder
inversion approach, explained below, by guiding the iterative inversion process using a frozen gen-
erative image model pretrained on a large image dataset. The diffusion model enabled sharper
reconstructions but, in some cases, did not accurately capture the structure and layout of the
ground-truth images. As the authors also pointed out, the reconstructions by this method are
constrained by the manifold of the pretrained diffusion model.

Overall, given new V1 recordings, there is still no simple, data-efficient method capable of
reliably providing structurally accurate and detailed reconstructions. For example, [47] captures
contrast but lacks fidelity, whereas [48] produces detailed but sometimes structurally inaccurate
reconstructions and is constrained to predicted neural responses. Additionally, the encoder
inversion approach [45], when used alone without modifications by [48], relies on a relatively
computationally expensive process that fails to fully capture natural-looking stimuli. Another
drawback of this class of encoder inversion methods is that multiple different images can invoke
the same neural responses, thereby reducing the decoding reliability. This thesis aims to address
some of these limitations by providing an extensive comparison of relatively simple-to-implement

2Retinotopy refers to the arrangement of neurons corresponding to the spatial layout of the retina.

Applications 8

approaches. Furthermore, previous work has not explored the applicability of synthetic data in
this specific setting, which is also the focus of this thesis.

1.3.1 Encoder inversion
Just as a pretrained encoder can be used to synthesize MEIs, it can also serve as a powerful
tool for decoding neural responses into full image stimuli by inverting its mapping from images
to neural activity. More specifically, rather than maximizing the predicted response for a single
target neuron, as in MEI generation, this method optimizes the pixel values of the decoded image
to minimize the difference between all the predicted and target neural responses [45]. As can be
seen, one of the motivations for this method is to reconstruct images that are neurally equivalent
to the original visual stimuli and are sometimes called metamers.

The specific setup of [45] involved a 3-layer CNN with a linear projection readout serving
as an encoding model. During reconstructions, they initialized an image with zero-valued pixels
and iteratively optimized it through gradient descent to minimize the mean squared error (4.1)
between the predicted and recorded neural responses. To avoid high-frequency noise in the
reconstructions, they applied Gaussian blur with a standard deviation of 2.5 px to the gradient
at each iteration and ran the optimization for 1,000 steps.

An illustration of this method, which will be referred to as encoder inversion in the following
chapters, is shown in Figure 1.3.

Figure 1.3 Encoder inversion. ŷt denotes the reconstructed image at timestep t, x̂, x refer to predicted
and target neural responses, respectively, η is the step size, and MSE stands for mean squared error.
Gaussian blur of the image gradient is omitted for clarity.

1.4 Applications
Relatively recently, [49] showed a successful modulation of neural activity in the V1 and V4 re-
gions of the visual cortex in monkeys through invasive brain-computer interfaces (BCIs). Specif-
ically, they encoded a range of visual patterns into a targeted stimulation of neurons, leading
to the immediate recognition of various shapes and letters by the monkeys. In another study, a
human patient with complete blindness was implanted with a stimulation device for 6 months.
During this time, targeted stimulation provided by neural encoding enabled the patient to iden-
tify the boundaries of objects as well as some written letters [50].

Applications 9

Various invasive BCIs have also been developed to control robotic arms by decoding the neural
activity of the primary motor cortex [51]. By decoding activity in this area, monkeys were able
to control cursor movement in real time without any preliminary training [52]. Remarkable
results were also achieved in a human patient with paralysis of the upper body who successfully
drank coffee using a robotic arm controlled by an invasive BCI [53]. Others used invasive BCI
technology and neural decoding to synthesize correct artificial speech when subjects only silently
imitated sentences [54]. Instead of synthesizing speech, [55] decoded neural activity from the
patient’s motor cortex into text, giving their mind a typing speed of 90 characters per minute
with around 94% accuracy.

In addition to decoding from the motor cortex, leveraging decoding techniques from visual
and other sensory cortices holds promise for restoring various senses, including vision and tactile
perception. Of particular interest for this thesis is the potential application in visual prostheses
aiming at restoring vision. Currently, these devices rely on subjective human reports or animal
behavioral responses for the experimental validation and refinement of stimulation protocols.
The development of a robust decoding method could improve this process by reconstructing
visual percepts directly, thereby enabling more precise testing and refinement of visual prosthesis
stimulation strategies.

As can be seen, modeling of neural activity has many engineering applications, especially in
BCIs. However, other applications can also be found in science, where neural modeling can help
to understand how certain brain regions relate to the external world. Specifically, researchers have
been developing hypothesis-based decoders to test specific structures and functional properties of
neural coding. In addition, decoders can also be applied to artificially generated neural activity,
testing the validity of in silico models of the brain.

Chapter 2

Generative adversarial networks

Generative adversarial networks (GANs), one of the decoding methods explored in this thesis,
belong to major advances in machine learning, revolutionizing the generation of realistic and high-
fidelity synthetic images. Proposed by [42] in 2014, GANs have since attracted the attention of
many researchers in the field and have sparked a series of developments and extensions to data
modalities other than images [56, 57, 58, 59].

More broadly, GANs are a class of artificial neural networks comprising two key components: a
generator and a discriminator. The generator aims to generate synthetic (fake) data samples that
are indistinguishable from the reference (real) ones, while the discriminator tries to differentiate
between the two. This setup leads to a dynamic adversarial process in which the generator and
the discriminator engage in a two-player minimax game.

2.1 Generator
The generator, denoted as G, is a neural network that takes a random noise or a latent space
vector z as input and produces synthetic data samples x̂ = G(z) as output. It aims to generate
data samples that closely resemble the real data distribution. Mathematically, the generator is
trained to minimize the following value function:

min
G

max
D

V
(
D, G

)
= Ex∼pdata(x)

[
log D

(
x

)]
+ Ez∼pz(z)

[
log

(
1 − D

(
G(z)

))]
(2.1)

where pdata(x) is the distribution of reference data samples, pz(z) is the distribution of latent
space vectors, and D is the discriminator.

Extending the original GAN formulation, GANs have also been used as conditional models
in which both the discriminator and the generator are conditioned on some extra information.
This class of models, called conditional GANs, was successfully adopted to generate examples
conditioned on class labels [57], text [60], images [61], and many other types of information.

2.2 Discriminator
The discriminator, denoted as D, is another neural network that takes data samples as input and
produces a score that indicates the probability that the sample is real. Its goal in the GAN setup
is to distinguish between reference and synthetic data samples. More specifically, it is trained to
maximize the inner part of 2.1, i.e.

max
D

V
(
D, G

)
= Ex∼pdata(x)

[
log D

(
x

)]
+ Ez∼pz(z)

[
log

(
1 − D

(
G(z)

))]
(2.2)

10

Training 11

The discriminator’s loss is minimized when it correctly classifies real data as real and synthetic
data as synthetic.

2.3 Training
Training a GAN involves iteratively updating the parameters of the generator and discriminator
networks as they try to compete with each other. The process can be summarized as follows:

1. Initialize the parameters of the generator G and the discriminator D.

2. Sample a batch of reference data samples from the training dataset and generate correspond-
ing synthetic samples using the current generator.

3. Update the discriminator by maximizing its objective function with respect to its parameters
while keeping the generator parameters fixed.

4. Update the generator by minimizing the discriminator’s objective function with respect to
its parameters while keeping the discriminator parameters fixed.

5. Repeat steps 2-4 until convergence.

The generator usually performs poorly during the early learning phase, and the generated
samples differ substantially from the reference data. Therefore, the task of the discriminator is
relatively easy as it can reject these early generated examples with high confidence. This results
in one of the well-known problems related to the difficulties in training GANs, where even
minor changes in the selected hyperparameters, initializations, or other settings can completely
destabilize the training process, leading to very poor performance [62]. For an extensive review
of the challenges and remedies proposed in the literature, we refer the reader to an in-depth
recent review of GANs by Gui et al. [63].

2.4 Applications
The versatility and effectiveness of GANs have led to a wide range of applications in various
domains. However, their most successful applications are in image processing and computer
vision, which were also the first [42]. More specifically, in image generation, GANs have been
shown to be able to generate highly realistic images of human faces [64, 65], natural scenes [66,
42], and artistic designs [67]. Since the generator can synthesize images from random noise or
latent space vectors, which can lead to diverse outputs, GANs have also been used for synthetic
data generation [68]. That is, to augment training datasets by generating additional synthetic
samples on which other machine learning approaches can be trained. Further applications can
be found in style transfer [69, 70], super-resolution [71, 72], as well as drug discovery, electronic
health record generation, and molecular design [59, 73, 74], where the adversarial framework of
GANs is extended to different data modalities.

Considering the specific task of neural activity decoding, [75] pretrained a GAN on a large
image dataset of natural scenes and then separately learned how to map fMRI signals to the
latent space of the generator. As can be seen in the article, the imbalance of pretraining and
separate training on a small dataset with neural signals resulted in structurally inconsistent but
semantically rich reconstructions. In contrast, this thesis uses the formulation of conditional
GANs to learn the response-stimulus mapping directly with the goal of higher consistency.

Chapter 3

Synthetic data

Given this thesis’ aim to overcome the limited availability of paired neural and image data, this
chapter introduces the notion of synthetic data. This type of data refers to artificially generated
information that is not obtained by direct measurements but is instead created algorithmically
through computational means. In this thesis and in ML in general, synthetic data is used to
augment or completely replace real datasets for testing or training data-driven methods.

One of the primary motivations for using synthetic data is the scarcity of data obtained
from biological or other real-world experiments and concerns related to privacy, fairness, and
regulations. Given the nature of ML approaches and the increasing availability of computing
power for large-scale training, issues surrounding data have become even more pronounced and
important. In this regard, synthetic data poses a promising direction, as it is generally easier and
less expensive to generate, is inexhaustible, and does not directly come from real-world entities,
thereby also alleviating some privacy concerns. Notably, the authors of [76] view artificially
generated data as a key enabler for the next generation of deep learning models that have a
deeper understanding of the world and can continually learn in many different modalities.

Nevertheless, in addition to the challenges mentioned in the section below, [77] pointed out
that a major problem with synthetic data, especially in medicine and healthcare, is currently
ensuring that the generated data meets all the required quality standards and minimizes potential
safety risks. Further challenges mentioned by the authors include the inability of data generation
methods to account for corner cases in the real data and potential inherent biases in the generation
methods, which in turn translate to the synthetic data and the downstream applications.

3.1 Approaches
Several techniques exist for generating synthetic data, each suitable for different types of data and
use cases. Some of the most popular methods include simulation-based generation, generative
AI, and (input space) data augmentation.

3.1.1 Simulation-based generation
This method assumes an accurate model of some real-world process, which it then simulates
to create new data. It is widely used in domains such as robotics, autonomous vehicles, and
medical imaging, where real data can be scarce or expensive to obtain. In robotics, for example,
one of the best-known simulation engines is called MuJoCo (multi-joint dynamics with contact),
developed by Todorov [78]. It is a physics engine well suited for developing contact-rich behaviors
and has become an industry standard for robotics research. In the domain of robotics and

12

Approaches 13

deep reinforcement learning, synthetic environments such as MuJoCo are often used even more
frequently than the real ones.

The challenge of simulation-based techniques is obtaining the computational model or engine
that achieves high levels of realism and accuracy [76]. It can be costly and the complexity of
real-world processes can pose significant barriers. In the literature, the difference between real
and simulated is often referred to as a sim-to-real domain gap [79, 80].

3.1.2 Generative AI
Another notable data-generation technique is generative AI, which has attracted a great deal
of attention in recent years. Methods such as GANs, variational autoencoders [25], diffusion
models [36], and transformers [81] have been effective in generating realistic images [65, 66, 82],
videos [82], and language data [83]. These techniques have been applied to medical imaging
tasks [84, 85], pose estimation, fraud detection [86], and many other areas [68, 87].

While not strictly classified as a generative AI technique, this thesis’ approach to data gen-
eration also uses ML models to create new data. As detailed in 5.1.1, the idea is to learn a
neural activity encoding model that can then estimate the ground-truth neural responses for
new images, which are much easier to obtain than neural signals. Since most ML tasks can be
cast into function approximation with inputs and outputs, this method is widely applicable, as
it relies on learning the output-to-input mapping to subsequently generate synthetic data for the
original problem.

One of the challenges with generative AI and ML-based approaches is, however, the control-
lability of the generated data. Unlike physical simulators, DL techniques are black-box models
of the data, and precise conditioning remains difficult. Furthermore, it is not clear how much
these models can extend the base datasets on which they were initially trained.

3.1.3 Input space data augmentation
Last mentioned here, input space data augmentation is a class of techniques that directly modify
the input data to create additional data points. The main advantage of these methods is that
they are more intuitive and can be designed specifically to generate the desired variations in
new data. Common manipulation techniques include rotating, scaling, cropping, or changing the
color properties of images.

Input space data augmentation methods have a relatively long history and have even been
incorporated into popular deep learning libraries such as PyTorch [88] as plug-and-play modules.
For a detailed review of the various input transformations as well as applications, we refer the
reader to [89].

Chapter 4

Metrics

In the domain of image generation and image restoration, evaluating the quality of images is
crucial for assessing and comparing the proposed methods. Various metrics have been developed
to quantitatively measure different aspects of image quality, and some commonly used ones will
be described in this chapter. It should be noted that the term metrics is used in a broad sense in
this work, and some of the evaluation functions introduced do not strictly adhere to the rigorous
mathematical definition of a metric.

4.1 Mean squared error
Mean squared error (MSE) is one of the simplest and most widely used metrics to evaluate image
quality. It measures the average squared difference between the pixels of the generated image
and the reference image. More formally,

MSE(x, y) = 1
d

·
d∑

i=1

(
xi − yi

)2
, (4.1)

where d ∈ N and x, y ∈ Rd are the flattened reference and generated images, respectively.
Despite its simplicity, MSE has limitations, especially in evaluating perceptual quality, as it

does not take into account human perception factors (see 4.3 for an example).

4.2 Structural similarity index measure
Unlike MSE, the structural similarity index measure (SSIM) considers multiple factors of images
with more emphasis placed on perceptual quality. More specifically, SSIM [90] computes the
similarity between two images x, y ∈ Rh,w, h, w ∈ N based on three factors: luminance similarity,
contrast similarity, and structural similarity. It ranges between −1 and 1, where 1 indicates
perfect similarity, and with a particular weighting of the three factors as proposed by the authors,
the SSIM index can be expressed as:

SSIM
(
x, y

)
= (2µx + µy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2) , (4.2)

where µx and µy are the pixel sample means of x and y, σx, σy their standard deviations, and
σxy the covariance between the images. c1 and c2 are constants to avoid division by zero and, for
images with pixel values between 0 and 1, they are typically set to c1 = 0.0001 and c2 = 0.0009.

14

Perceptual loss 15

Since statistical features of images usually spatially vary, the original authors recommended
applying the measure above regionally and combining the individual results afterward. Fur-
thermore, they proposed using 11 × 11 circular-symmetric Gaussian weighting w ∈ R11,11,∑11

i=1
∑11

j=1 wij = 1 with a standard deviation of 1.5 to calculate the local statistics. The specific
calculation can be expressed as:

µ(k)
x =

11∑
i=1

11∑
j=1

wijx(k)
ij (4.3)

σ(k)
x =

(11∑
i=1

11∑
j=1

wij

(
x(k)

ij − µ(k)
x

)2
) 1

2

(4.4)

σ(k)
xy =

11∑
i=1

11∑
j=1

wij

(
x(k)

ij − µ(k)
x

)(
y(k)

ij − µ(k)
y

)
, (4.5)

where the superscript (k) indexes local windows. The final (mean) SSIM index is obtained by
averaging SSIM

(
x(k), y(k)) over all K local windows.

4.3 Perceptual loss
Rather than measuring the differences between the pixels of two images directly, perceptual
loss functions consider the differences between high-level image feature representations extracted
from pretrained neural networks. A motivating example behind these perceptual loss functions
was given in [91]: Consider two identical images, one of which is offset from the other by one
pixel. Traditional per-pixel losses, such as MSE, might report a large error, even though the
images are almost indistinguishable to the human eye.

The procedure for calculating the perceptual loss (PL) typically involves the following steps.
Both the reference image and the generated image are fed through a pretrained neural network,
and as the images progress through the network, the intermediate feature maps of both images
are extracted and compared using standard pixel-level measures such as MSE. This approach
allows for the capture of low-level differences when comparing image representations at earlier
layers, while comparisons at later layers capture higher-level perceptual dissimilarities.

More formally, given a function f : Rd × Rd → R, d ∈ N for comparing k ∈ N intermediate
feature maps (x(1), . . . , x(k)) and (y(1), . . . , y(k)) corresponding to two images x ∈ Rh,w and
y ∈ Rh,w, the perceptual loss can be formulated as follows:

PL(x, y) =
k∑

i=1
wi · f(x(i), y(i)). (4.6)

Above, {wi ∈ R}k
i=1 are arbitrary weights for individual feature maps. In this thesis for instance,

f is the L1 loss function, all wi are set to (4 ·k)−1, and the features are extracted from a 16-layer
VGG CNN [92] pretrained for classification on the ImageNet dataset [93].

An example application of perceptual loss can be found in [91], where the authors used the
same 16-layer VGG CNN as in this thesis and used MSE as the feature reconstruction loss
function. After training with perceptual loss on a style transfer task, the authors observed
that the semantic content of the generated images was significantly improved. This enhance-
ment was interpreted as an inherent property of the pretrained network, which has learned a
feature-extraction mechanism selective for recognizing features relevant to people and animals.
Altogether, perceptual losses have shown great promise over the last few years as more human-
aligned comparison functions for images.

Chapter 5

Datasets

In this chapter, we describe the two datasets used to train and evaluate the models implemented
in this thesis. For the first dataset (5.1), we also introduce an additional synthetic set of samples
and describe its generation procedure.

When combining multiple datasets for training or evaluation, we mix the data points sampled
independently from each of them within individual mini-batches. Subsequently, we report the
percentage of the mini-batch that the data points from a particular dataset comprise (i.e. 25%
of synthetic data would correspond to a mini-batch of 5 synthetic and 15 original data points).
When the sizes of the combined datasets differ, we truncate the datasets to the size of the
smallest one. The motivation behind the truncation is to balance the number of samples from
each dataset in the combined one such that the trained decoder performs well on all of them
instead of overfocusing on a single one that has more data samples available.

Unless stated otherwise, the image stimuli are normalized to have zero mean and unit variance,
and the neural responses are rescaled by the inverse of the standard deviation. More specifically,
given the substantial variability in activity levels among different neurons, responses are divided
by the standard deviations of individual neuron activity. The neuron coordinates are rescaled to
lie between −1 and 1.

5.1 SENSORIUM 2022 dataset
Introduced in 2022, the SENSORIUM competition [19] aimed to benchmark artificial neural
networks in predicting neural activity in mouse V1. The organizers of this competition provided
participants with a large-scale data corpus of recordings that contained responses from more
than 28,000 neurons from seven mice. Data from five of these mice were intended as training
recordings and we will use them for our decoding task.

The image stimuli were sampled from the ImageNet dataset [93], converted to grayscale, and
downsampled to a width and height of 64 and 36 px, respectively. Upon presentation of the
stimuli to awake and head-fixed mice, the authors recorded the neural responses of excitatory
neurons in layer 2/3 of the mice right V1 using calcium imaging. More specifically, neural activity
was accumulated during the 50 and 550 ms time window after each stimulus onset using a boxcar
window. To reduce noise during evaluation, neural activity in the test datasets was obtained by
averaging over 10 repetitions of stimulus presentation.

During our experiments, we observed that neither the inverted encoder nor our decoding
models were able to capture the surroundings of the central 22×36 px image patch. We attribute
this to the extensive overlap of receptive fields of the recorded neurons, which results in limited
coverage of the visual field. Hence, we consider only this image window in training and evaluation.

16

Dataset from biologically realistic encoding model 17

Mouse ID Number of neurons
Number of samples

Training Validation Testing

1 8,372 4,473 523 100
2 7,344 4,498 500 100
3 7,334 4,466 496 100
4 8,107 4,477 496 100
5 8,098 4,490 499 100

Table 5.1 Details of the mice datasets from SENSORIUM 2022.

The number of neurons and the sizes of the datasets from the five selected mice are given in
Table 5.1. Note that our numbering of mice aligns with the original done by the authors after
adding two to our mouse IDs. For instance, their mouse ID 3 corresponds to our mouse ID 1.
In chapter 7, we will use a shorthand notation in which M-1 refers to the dataset of the mouse
with an ID of 1, and M-All corresponds to datasets from all mice combined.

In addition to pairs of responses and image stimuli, which are key to our work, the original
data samples contained other variables such as, for example, mouse eye movements and running
speeds. To increase generality and reduce the complexity of our developed models, we limit
ourselves to incorporating only the neuron x and y coordinates as additional information.

5.1.1 Synthetic dataset from CNN-based encoding model
We employed the CNN-based encoding model introduced in section 1.2 to generate additional
synthetic samples for the SENSORIUM 2022 dataset. The primary motivation was to train
decoding models with improved generalization capability compared to methods trained solely on
the relatively small biological dataset.

The specific procedure for generating this synthetic data corpus was as follows. First, we sam-
pled images from ImageNet, converted them to grayscale, and cropped patches of size 36 × 64 px.
We then presented these previously unseen images to the CNN-based encoder to obtain the pre-
dicted neural responses. The image stimuli, predicted responses, and the x and y coordinates of
the neurons then formed the data samples in our synthetic dataset.

By applying the above steps and acquiring predicted responses for each mouse, we generated
five datasets, each containing 50,000 data points. Since the purpose of the synthetic data lies
only in training of the decoding models, we did not leave any of the data points for validation
or testing.

Analogously to the base SENSORIUM 2022 dataset, we will use S-1 and S-All to refer to
mouse 1 and all mice synthetic datasets, respectively.

Additionally, as mentioned in the previous section 5.1, we used only the central image patch
of size 22 × 36 px to train the decoding methods due to the limited coverage of the visual field.

5.2 Dataset from biologically realistic encoding model
The second base dataset was generated using the spiking model of a cat V1 introduced in [94].
This biologically realistic model represents cortical layers 4 and 2/3, corresponding to a 5×5 mm
patch of V1. It contains a total of 108,150 excitatory and inhibitory neurons that are modeled as
single-compartment exponential integrate-and-fire units [95]. For further details and validation
results of this in silico model, we refer the reader to the original work [94].

Dataset from biologically realistic encoding model 18

When generating the samples, we first presented this encoding model with an image stimulus
and then measured the evoked mean firing rates of neurons over the following 560 ms time
window. For this thesis, we used only responses from 46,875 neurons in layer 2/3 and their
corresponding x and y coordinates, which this spiking model provides.

Similarly to the previous dataset (5.1), the image stimuli were sampled from ImageNet,
converted to grayscale, downsampled, and then cropped to a size of 50×50 px. Importantly, when
we subsequently used the data to train and evaluate the decoding models, we only considered
the central 20×20 px patch of the images. The reason is that the neurons in the encoding model
have overlapping receptive fields that do not cover the whole visual field; therefore, their induced
responses contain information only about the central patch of the presented images.

Finally, we split the generated 50,250 data points into training, validation, and testing
datasets of size 45,000, 5,000, and 250, respectively. To reduce the impact of noise on the
evaluation, the image stimuli of the test set were presented 100 times and the corresponding
neural responses were averaged to obtain the final neural activity. In the chapter where we
present the experiments and results (7), we will refer to this dataset as the C dataset.

Chapter 6

Methods

In this chapter, we will describe our approach to tackling the problem of decoding visual stimuli
from neural activity. We will start by introducing the building blocks and training objective of
our CNN-based decoding method and then provide details of how we use GANs for this task.
Finally, we will explain our novel auxiliary training signal called encoder matching.

All our implementation was done in the Python programming language which is widely used
in the machine learning community. Of similar prevalence in this field is our chosen deep learning
library called PyTorch [88].

6.1 CNN
Our first approach to decoding is inspired by neural network encoders that have been studied
and improved over the past few years. Analogously to the encoder architecture divided into a
core and a readout, we build our decoder from a core and a readin. While the task of the core
is to learn a single general mapping from a latent representation onto images, the readins are
trained for each recording dataset separately and act as embedding functions from the neural
activity into the shared latent space of the core. The purpose is to reuse as much information
and a learning signal across different animal recordings even when their number of neurons and
response-stimulus mapping differ.

In the following sections, we will introduce our implementation of the core, detail three readin
variants, and describe the training procedure. We will refer to this decoding method as CNN-FC
(6.1.2), CNN-Conv (6.1.3), or CNN-MEI (6.1.4) depending on the particular readin used.

The hyperparameters of these building blocks that we used in our experiments (7) are provided
in Table 6.1. The specific values were found by manual search.

6.1.1 Core
We model the core as a CNN with five layers of transposed convolution [96], batch normalization,
ReLU activation function, and dropout. With the MEI readin described below, we use the
standard convolutional layer instead of its transposed version. Lastly, we apply a convolutional
layer with a single filter to turn the feature map into an image with one channel.

6.1.2 Fully connected readin
The fully connected readin (FC readin) is composed of a linear layer, batch normalization, Leaky
ReLU activation function, and dropout. It transforms the vector of neural responses into a latent

19

CNN 20

representation that is then unflattened into a three-dimensional tensor of size [number of channels
× height × width] suitable for the core to operate on.

As can be seen, this readin takes as input only the neural activity, not the coordinates of the
neurons. It serves as a simple-to-implement baseline upon which we can build with additional
structure and input information.

6.1.3 Convolutional readin
The convolutional readin (Conv readin) has two building blocks. The first is a grid network
that transforms individual neuron activity together with its x and y coordinates into a latent 2D
map. It is implemented as a fully connected three-layer neural network with the Leaky ReLU
activation function and dropout, followed by an unflattening operation. By applying the grid
network for each neuron independently, we get a 3D tensor of size [number of neurons × height
× width], where the last two dimensions correspond to the sizes of the neuron maps.

During our experiments, we observed that a nonlinear transformation of the neural responses
speed up training of this readin. Specifically, we preprocess the grid network’s input by applying
a logarithm with base 10 to the neuron activity.

The second part of the convolutional readin is a pointwise convolutional layer. It takes the
3D tensor from the grid network and applies a set of learned 1 × 1 kernels to produce a feature
map for the core. The purpose of this second part is to linearly combine the individual neuron
maps and lower the channel dimension using a small number of parameters.

The architecture of this readin is depicted in Figure 6.1. Note that when the dimensions of
the output of the model do not match the target sizes, we crop only the middle patch with the
right size from the predicted image.

pointwise convolutional +
BN + dropout

fully connected + Leaky
ReLU + dropout + unflatten

n x 3

n x 10 x 18 480 x 10 x 18

transposed convolutional +
BN + ReLU + dropout

480 x 19 x 35

256 x 19 x 35

128 x 20 x 36

64 x 20 x 36

1 x 22 x 38

Figure 6.1 CNN-Conv decoder with sizes of intermediate representations corresponding to the SEN-
SORIUM 2022 dataset. n denotes the number of neurons, and the left-most block represents the neural
responses concatenated with the coordinates.

6.1.4 MEI readin
To combat the relatively small amount of available data that may not contain enough information
for models to learn from, we introduce an additional prior in the form of MEIs. Since MEIs

CNN 21

Mouse V1 datasets Cat V1 dataset

Core
Channels [480, 256, 256, 128, 64] Channels [480, 256, 256, 128, 64]

Kernel sizes [7, 5, 4, 3, 3] Kernel sizes [7, 5, 5, 4, 3]
Strides [2, 1, 1, 1, 1] Strides [2, 1, 1, 1, 1]

Paddings [3, 2, 2, 1, 1] Paddings [3, 2, 2, 1, 1]
Dropout prob. 0.35 Dropout prob. 0.35

FC readin
Latent dimension 432 Latent dimension 512

Unflattened size [3, 9, 16] Unflattened size [8, 8, 8]
Dropout prob. 0.15 Dropout prob. 0.15

Conv readin
Grid net layer sizes [32, 86, 180] Grid net layer sizes [64, 128, 100]
Neuron map shape 10 × 18 Neuron map shape 10 × 10

Channels 480 Channels 480
Dropout prob. 0.1 Dropout prob. 0.15

MEI readin
Grid net layer sizes [32, 128, 792] Grid net layer sizes [64, 128, 400]
Neuron map shape 22 × 36 Neuron map shape 20 × 20

Channels 480 Channels 480
Dropout prob. 0.1 Dropout prob. 0.15

Table 6.1 Hyperparameters used for the CNN decoder.

encode the receptive fields of neurons and the shapes that most stimulate them, one can easily
imagine an effective decoding algorithm that overlays the MEIs of all neurons, weighted by their
corresponding neural responses, onto each other. This approach intuitively suggests that MEIs
could provide valuable guidance to the decoding models, informing them about what features to
include and where to place them in the reconstructed image.

In particular, we implement this readin by precomputing and concatenating the MEIs of all
neurons, arriving at a 3D tensor of shape [number of neurons × height × width]. Note that the
generation of MEIs needs to be done only once, thus incurring only a one-time cost. These MEIs
then form the initial feature maps of the MEI readin, which is an extension of the convolutional
readin described above.

More specifically, we apply the grid network as previously (6.1.3) but pointwise multiple its
outputted 3D tensor onto the precomputed MEIs as a form of contextualization. The second
part of this readin, which contains pointwise convolution, batch normalization, and dropout, is
the same as in the convolutional readin.

6.1.5 Training
Since our aim is to closely capture the structure of the restored images while taking into account
human perception factors, we modified the standard SSIM to act as the training loss. That is,
let d ∈ N and y, ŷ ∈ Rd be the flattened target and restored images, respectively, and SSIM(·, ·)
the structural similarity index measure described in 4.2, then the training reconstruction loss is

Generative adversarial network 22

given by:

LREC
(
y, ŷ

)
= − log

(
SSIM(y, ŷ) + 1

2 + ϵ

)
, (6.1)

where ϵ is introduced for numerical stability and set to 10−6. Based on the first term inside the
logarithm in 6.1, we also define the SSIM loss (SSIML) for evaluation purposes as follows:

SSIML
(
y, ŷ

)
= 1 − SSIM(y, ŷ) + 1

2 . (6.2)

Furthermore, in the case of the convolutional readin (6.1.3), we add an L1 regularization loss
to combat overfitting of the grid network. More specifically, if λREG ∈ R is the regularization
factor and z ∈ Rn,h,w, n, h, w ∈ N are the neuron maps produced by the grid network, then the
regularization loss becomes:

LREG
(
z
)

= λREG · 1
n

n∑
k=1

h∑
i=1

w∑
j=1

|zkij |. (6.3)

Training proceeds using the AdamW optimizer [97] with a learning rate 3−4, weight decay
3−2, and other hyperparameters set as the optimizer’s default in PyTorch [88]. Similarly to early
stopping [98], we pick the best model found during training based on the sum of the perceptual
loss (4.3) and the SSIM loss measured on the validation dataset.

6.2 Generative adversarial network
To address the problem of data scarcity, we explore different strategies to incorporate additional
prior information into our models, as discussed in the MEI readin above. Another approach
we hypothesize might help is to leverage additional learning signals, such as the adversarial loss
commonly found in GANs. Our reasoning stems from the fact that, while the limited amount
of data might provide enough coverage of the space of neural responses, it might not suffice
for pushing the models onto a manifold of natural-looking images that reside in much higher-
dimensional space.

It is important to note that, while we draw inspiration from the literature on GANs, our
formulation deviates from the standard implementation. We adapt ideas from GANs that we
find effective for our specific task. For instance, we inject label noise into discriminator training,
remove logarithms from the value function formulation (2.1), and generate synthetic images
from neural responses rather than generating them from random noise or latent space vectors
not corresponding to the data. Furthermore, we consider the adversarial loss only as an auxiliary
task to reconstructing the image stimuli, weighing it less in the combined loss of the generator.

In the following sections, we provide a detailed description of the training objectives for both
the discriminator and the generator, and describe their architecture. Specific hyperparameters
can be found in Table 6.2. Identically to the CNN decoder implementation, we use the AdamW
optimizer with a learning rate 3−4 and weight decay 3−2, and perform a model selection based
on the same criterion. Additionally, during training, we clip the gradients of the losses w.r.t. the
parameters to a range [−1, 1]. This adjustment helped us mitigate early training instabilities
and ensure smoother convergence.

6.2.1 Discriminator
The discriminator D is implemented as a CNN with five layers of convolution, batch normal-
ization, ReLU activation function, and dropout. The output of the last layer is flattened into
a one-dimensional vector and transformed by a linear layer followed by the sigmoid activation

Encoder matching 23

function. The result is a predicted probability that the given input is a reference image from the
dataset (i.e. not generated by the generator).

Let λR, λG ∈ R+ be the loss weighting factors, ϵR ∈ [0, ξR ∈ R+], ϵG ∈ [0, ξG ∈ R+] be the
target noising components, and y and ŷ denote the reference and generator image, respectively.
Then, our implementation of the disciminator loss LD is as follows:

LD
(
y, ŷ

)
= λR ·

(
D(y) − 1 − ϵR

)2 + λG ·
(
D(ŷ) − ϵG

)2
. (6.4)

The target noising component ϵR for the reference image part is sampled from a uniform dis-
tribution between 0 and ξR, while the noising component ϵG comes from a uniform distribution
between 0 and ξG. We found that by introducing noise into the discriminator training, we
were able to better balance the generator and discriminator, and thereby stabilize the training.
We note that this is reminiscent of one-sided label smoothing as introduced in [62], where the
discriminator’s positive targets are smoothed from 1 to 0.9, making its task harder.

6.2.2 Generator
The generator follows the exact architecture of the CNN-based decoding approach, including the
separation into a core and a readin. The only difference comes in the loss.

Specifically, the generator training loss LG consists of two parts. The first is an image
reconstruction loss LREC derived from the standard SSIM as described for the CNN decoder
(6.1). The second part LD comes from the discriminator being able to discern the generated
image ŷ from the reference image y. Therefore, the final loss is:

LG
(
y, ŷ

)
= λREC · LREC

(
y, ŷ

)
+ λD · LD

(
ŷ

)
, (6.5)

where λREC, λD ∈ R+ are the weighting factors, y and ŷ are as in the previous section, and the
loss from the discriminator is given by

LD
(
ŷ

)
=

(
D(ŷ) − 1

)2
. (6.6)

6.3 Encoder matching
Analogously to the previous section, we introduce another auxiliary training loss to address the
overly weak constraints on the decoding models imposed by the scarcity of data. The name
of this loss, encoder matching (EM), stems from the use of a pretrained CNN-based encoder.
The reason for its use is to minimize the effects of noisy neural responses in the data and make
the set of response-stimulus mappings learned by the decoder more densely sampled. More
specifically, we penalize the decoder for differences between its image reconstructions from the
neural responses in the data and its reconstructions from the neural responses predicted by the
encoder. Intuitively, the encoder predicts neural responses with less heavy-tailed noise than
observed in the data, resulting in a more compact and smooth manifold of neural responses
seen by the decoder. We hypothesize that this might, in turn, lead to the decoder learning
smoother response-stimulus mappings, which could be more robust to noisy measurements of
neural responses in the data.

More formally, let M(·) be the decoding model, x ∈ Rn and q ∈ Rn,2 denote the refer-
ence neural responses and neuron coordinates, respectively, and x̂ ∈ Rn refer to the predicted
responses from the reference stimulus by the encoder. Then, we formulate the EM loss LEM as:

LEM
(
x, x̂, q

)
= λEM · LREC

(
M

(
x, q

)
, M

(
x̂, q

))
, (6.7)

where λEM ∈ R is the multiplication factor for the EM loss, and LREC is the same as in 6.1. This
auxiliary loss is added in each training iteration of the decoder to its base loss. Unless stated
otherwise, all of our experiments with EM use λEM = 1.

Encoder matching 24

Mouse V1 datasets Cat V1 dataset

Training
λREC 0.9 λREC 0.9

λD 0.1 λD 0.1
λR 0.5 λR 0.5
λG 0.5 λG 0.5
ξR 0.05 ξR 0.05
ξG 0.05 ξG 0.05

CNN (Discriminator)
Channels [256, 256, 128, 64, 64] Channels [256, 256, 128, 64, 64]

Kernel sizes [7, 5, 3, 3, 3] Kernel sizes [7, 5, 3, 3, 3]
Strides [2, 1, 1, 1, 1] Strides [2, 1, 1, 1, 1]

Paddings [2, 2, 1, 1, 1] Paddings [2, 2, 1, 1, 1]
Dropout prob. 0.3 Dropout prob. 0.3

Core (Generator)
Channels [480, 256, 256, 128, 64] Channels [480, 256, 256, 128, 64]

Kernel sizes [7, 5, 5, 4, 3] Kernel sizes [7, 5, 5, 4, 3]
Strides [2, 1, 1, 1, 1] Strides [2, 1, 1, 1, 1]

Paddings [3, 2, 2, 1, 1] Paddings [3, 2, 1, 1, 1]
Dropout prob. 0.35 Dropout prob. 0.35

FC readin
Latent dimension 432 Latent dimension 512

Unflattened size [3, 9, 16] Unflattened size [8, 8, 8]
Dropout prob. 0.15 Dropout prob. 0.15

Conv readin
Grid net layer sizes [32, 86, 180] Grid net layer sizes [64, 128, 64]
Neuron map shape 10 × 18 Neuron map shape 8 × 8

Channels 480 Channels 480
Dropout prob. 0.1 Dropout prob. 0.15

MEI readin
Grid net layer sizes [32, 128, 792] Grid net layer sizes [64, 128, 400]
Neuron map shape 22 × 36 Neuron map shape 20 × 20

Channels 480 Channels 480
Dropout prob. 0.1 Dropout prob. 0.15

Table 6.2 Hyperparameters used for the GAN decoder.

Chapter 7

Experiments

Here, we describe our conducted experiments and discuss the obtained results. This chapter
is divided according to the datasets introduced in chapter 5 and concludes with a section on
transfer learning and a summary of key results.

Our goal for the experimental work was to come up with the best-performing combination
of model design and training paradigm for decoding visual percepts. Additionally, we aimed to
better understand the impact of synthetic data in this otherwise data-constrained setting.

As mentioned in the encoder readout section 1.2.2, we used the implementation of the CNN-
based encoder model provided by [19] and generated MEIs using the code from the featurevis
repository1. The inverted encoder, as explained in 1.3.1, is, to the best of our knowledge, the
state-of-the-art decoding approach and served as a baseline for our methods. Its hyperparameters
were selected from a grid search based on the same model selection criterion as used for the other
decoding methods evaluated on the validation dataset.

For the quantitative evaluation of the reconstructed visual stimuli, we chose the mean squared
error, the loss based on the structural similarity index measure2, and the perceptual loss3. Our
selection was based on the popularity of these evaluation measures with the exception of SSIML,
which is, nonetheless, also very closely related to the widely used SSIM (see 6.2). We prefer to
report SSIML instead of SSIM since its lower values indicate better results as for the remaining
two measures. The reference images shown in the qualitative comparisons were sampled from
the test datasets.

Lastly, for reporting purposes, we adopt the following naming convention for our methods:
All names begin with [core]-[readin] where [core] is either “CNN” or “GAN” and [readin] is
“FC”, “Conv”, or “MEI”. When using the auxiliary encoder matching objective during training,
we append “w/ EM” to the name. When necessary, we also add a specification of the training
setup in round brackets. For example, “(87.5% S-All)” corresponds to training on a combined
dataset of 87.5% S-All and 12.5% M-All data, and “(M-1)” refers to training only on M-1.

7.1 Biologically realistic encoding model dataset
For an initial evaluation of the decoding approaches, we leveraged the dataset generated from
the in silico model of cat V1. It provided us with a less data-constrained setting compared to
the SENSORIUM 2022 dataset, allowing us to inspect the performance in a more ideal setting.

1https://github.com/ecobost/featurevis.git
2Implementation from the TorchMetrics library: https://lightning.ai/torchmetrics
3Implementation based on https://gist.github.com/alper111/8233cdb0414b4cb5853f2f730ab95a49

25

https://github.com/ecobost/featurevis.git
https://lightning.ai/torchmetrics
https://gist.github.com/alper111/8233cdb0414b4cb5853f2f730ab95a49

Biologically realistic encoding model dataset 26

For the encoder inversion hyperparameter search, we used only 1,280 samples from the val-
idation dataset instead of all 4,500 due to the computational burden of the method. The best-
performing hyperparameter values were as follows:

100 optimization steps (tested 100, 200, 500, and 1,000);

learning rate (step size) of 10 (tested 10, 20, 50);

standard deviation of 1.5 for the Gaussian blur of the image gradient (tested 1, 1.5, 2, 2.5).

Interestingly, only for this dataset, we found that the encoder inversion approach works better
when we do not rescale the neural responses but initialize the bias parameters in the encoder’s
readout with the average neural responses.

From the methods introduced in the last chapter, we compared all combinations of the core
and the readin, with and without the encoder matching auxiliary objective.

From the quantitative results reported in Table 7.1, we can observe that some of the CNN and
GAN decoders outperform the baseline inverted encoder in terms of SSIML, but are generally
worse measured by MSE and PL. The difference between GANs and plain CNNs appears to be
more nuanced. Nevertheless, if we consider only the cases with the convolutional readin, GAN
achieves better performance than the CNN and is one of the best overall.

Interestingly, the encoder matching objective clearly degrades the methods when used in
combination with the FC or MEI readins, but provides a significant improvement with the Conv
readin. Although EM produces the best of our methods in terms of quantitative measures, it
leads to fewer details in the reconstructions, as can be seen in Figure 7.1. A reasonable initial
explanation arises from our earlier hypothesis that EM could mitigate the effects of noise in the
neural responses present in the data. Namely, since the C dataset has been generated artificially,
there might not be much of this assumed neural noise and therefore the inaccuracies in the
trained encoder used for EM might outweigh the EM benefits.

Lastly, comparing the best-performing methods, GAN-Conv with and without EM generates
more contrast in the reconstructions than the inverted encoder but at the expense of lower fidelity.

Method SSIML MSE PL

Inverted encoder [45] 0.125 0.032 0.238
CNN

CNN-FC 0.103 0.040 0.287
CNN-FC w/ EM 0.340 0.070 0.370
CNN-Conv 0.137 0.040 0.291
CNN-Conv w/ EM 0.105 0.033 0.288
CNN-MEI 0.112 0.041 0.265
CNN-MEI w/ EM 0.166 0.063 0.314

GAN
GAN-FC 0.114 0.039 0.278
GAN-FC w/ EM 0.294 0.111 0.404
GAN-Conv 0.126 0.042 0.289
GAN-Conv w/ EM 0.097 0.032 0.267
GAN-MEI 0.114 0.038 0.269
GAN-MEI w/ EM 0.182 0.045 0.305

Table 7.1 Quantitative comparison of different decoding methods on the C dataset. Bold values
signify the lowest (best) results.

SENSORIUM 2022 dataset 27

Ta
rg

et

In
ve

rte
d

En
co

de
r

CN
N-

FC

CN
N-

FC
 w

/ E
M

CN
N-

Co
nv

CN
N-

Co
nv

 w
/ E

M

CN
N-

M
EI

CN
N-

M
EI

 w
/ E

M

GA
N-

FC

GA
N-

FC
 w

/ E
M

GA
N-

Co
nv

GA
N-

Co
nv

 w
/ E

M

GA
N-

M
EI

GA
N-

M
EI

 w
/ E

M

Figure 7.1 Decoded samples from the C dataset.

In summary, for this comparison alone, the convolutional readin in combination with EM and
a GAN produces the best results. It outperforms the baseline from the literature in terms of the
evaluation measure based on the SSIM, is on par with it in MSE, and performs worse from the
perspective of PL. The advantages of EM are not completely clear-cut from the current results,
and it is up to the experiments on biological data in the next section to validate or invalidate
our initial hypothesis about its benefits.

7.2 SENSORIUM 2022 dataset
Next, we turned to the biological dataset recorded in the mouse V1 and made similar compar-
isons as in the previous section with an extension to synthetic data and transfer learning. It is
important to note that some of the datasets here are an order of magnitude smaller than the
previous dataset from the biologically realistic encoding model. On the one hand, it is a more
challenging setting, and, on the other hand, it does not require as much computational resources
for training, allowing for more experiments.

As a baseline decoding approach, we used the inverted encoder trained on M-All. The
subsequent hyperparameter search performed on the validation dataset of M-1 as well as M-All
resulted in the same best-performing hyperparameter values, namely:

200 optimization steps (tested 100, 200, 500, and 1,000);

learning rate (step size) of 150 (tested 50, 150, 500, and 1,000);

standard deviation of 2 for the Gaussian blur of the image gradient (tested 1, 1.5, 2, 2.5).

The quantitative and qualitative results are shown in Table 7.2 and Figure 7.2, respectively.
Here, we provide visual comparison only for the best-performing methods and the baseline for

SENSORIUM 2022 dataset 28

clarity of presentation; the decoded samples from the other decoders can be found in the appendix
(A.1 and A.2). GAN-FC is omitted due to its poor performance and frequent training divergence.

From the M-1 evaluation column of the table, the first observation is that training on all
mouse datasets (M-All) degrades the performance compared to training on single mouse data
(M-1) in terms of PL. The comparison measured by SSIML and MSE is less clear, but the
decoders with the overall best results on M-1 are achieved by training on M-All (bold values
in the table).

The second observation arises from the fact that, with the exception of CNN-Conv trained
and evaluated on M-All, the best results are obtained from methods incorporating the auxiliary
EM objective. Moreover, in all but one case, EM results in lower SSIML and MSE, but usually
produces worse PL. From the visual comparison in Figure 7.2, we can see that low SSIML
correlates with less sharp but structurally similar reconstructions with a well-matching contrast,
while PL favors higher-frequency details.

The third observation that we can make here is that, from our three introduced readin
modules, the convolutional and MEI types are significantly better than the fully connected
one. It is important to note here that since the FC readin does not incorporate the neural
coordinates, it also has slightly fewer parameters (3,618,000) than the MEI (4,126,360) and the
Conv (4,038,146) readins.

Method
M-1 M-All

SSIML MSE PL SSIML MSE PL

Inverted encoder [45] 0.335 0.057 0.358 0.336 0.057 0.357
Trained on M-1

CNN-FC 0.355 0.080 0.387 – – –
CNN-FC w/ EM 0.356 0.077 0.388 – – –
CNN-Conv 0.327 0.058 0.339 – – –
CNN-Conv w/ EM 0.291 0.047 0.350 – – –
CNN-MEI 0.324 0.056 0.341 – – –
CNN-MEI w/ EM 0.304 0.047 0.337 – – –
GAN-Conv 0.326 0.058 0.342 – – –
GAN-Conv w/ EM 0.296 0.047 0.350 – – –
GAN-MEI 0.321 0.056 0.338 – – –
GAN-MEI w/ EM 0.287 0.052 0.357 – – –

Trained on M-All
CNN-FC 0.357 0.082 0.392 0.355 0.080 0.390
CNN-FC w/ EM 0.326 0.069 0.400 0.325 0.068 0.398
CNN-Conv 0.329 0.057 0.355 0.326 0.056 0.349
CNN-Conv w/ EM 0.288 0.043 0.353 0.288 0.044 0.359
CNN-MEI 0.312 0.064 0.378 0.323 0.055 0.355
CNN-MEI w/ EM 0.284 0.050 0.374 0.285 0.049 0.372
GAN-Conv 0.328 0.064 0.354 0.329 0.063 0.350
GAN-Conv w/ EM 0.284 0.048 0.369 0.283 0.047 0.364
GAN-MEI 0.334 0.064 0.358 0.329 0.062 0.354
GAN-MEI w/ EM 0.280 0.047 0.362 0.286 0.048 0.362

Table 7.2 Quantitative comparison of decoding methods and training setups. Columns M-1 and
M-All refer to evaluation datasets. Bold values signify the lowest (best) results in each of the evaluation
settings.

SENSORIUM 2022 dataset 29

Ta
rg

et

In
ve

rte
d

En
co

de
r

CN
N-

Co
nv

 (M
-A

ll)

CN
N-

Co
nv

 w
/ E

M
 (M

-A
ll)

CN
N-

M
EI

 w
/ E

M
 (M

-1
)

GA
N-

Co
nv

 w
/ E

M
 (M

-A
ll)

GA
N-

M
EI

 w
/ E

M
 (M

-A
ll)

Figure 7.2 Decoded samples from the M-1 dataset by the best-performing methods and the baseline.
Dataset names in brackets refer to the datasets on which the methods were trained.

Lastly, there seem to be only minor differences between the M-1 and M-All performance of
methods trained on M-All. It tells us that the methods did not overfocus on a single mouse
data but can perform well across all mice. This would be a particularly important observation
in visual prosthesis applications because there, the methods need to be accurate enough for
all patients instead of placing all of their expressive power on datasets with stimulus-activity
mappings that are easier to learn.

7.2.1 Impact of synthetic data
To combat the scarcity of real biological data, we experimented with synthetic data generated
by a pretrained encoder as described in 5.1.1. Since the overarching goal was to improve the
performance on the biological data, we used the artificially generated datasets S-1 and S-All
only for training. The specific aim was to understand the impact of synthetic training data for
neural decoding and to shed light on the right balance between artificial and biological data.

For this purpose, we chose the two best readins, Conv and MEI, from the initial results, and
trained CNNs and GANs with different ratios of synthetic and biological data. More specifically,
for training on M-1 + S-1, we fixed the batch size at 16 or 20 and altered the portion of
synthetic data S-1 within a batch to be 0% (no synthetic data), 25%, 50%, 87.5%, or 100% (no
biological data). Similarly, for training on M-All + S-All, each batch contained 7 or 8 samples

SENSORIUM 2022 dataset 30

from each of the 5 mice, and we only modified the contribution of synthetic samples from S-All.
Importantly, for all, except for the case with 100% synthetic data, the models leveraged the
entire biological datasets, only the amount of additional synthetic data changed. Note that the
readin modules for individual mice were shared between the real and synthetic data.

To have an easier time interpreting and comprehending the results, we opt for a graphical
depiction of the impact coming from the synthetic data. Interested readers can refer to Table
B.1 in the appendix for specific values achieved by all the considered methods. Lastly, given
the range of possible combinations of model design and training setups, together with limited
computational resources, we report results only from single training runs. We believe that it
is an important first step to start answering some of the questions we posed and leave a more
rigorous and large-scale study for future work.

From Figures 7.3, 7.4, and 7.5, we can see that the average SSIML across the four decoding
methods decreases with more synthetic data up to and including the 87.5% mark. For this
evaluation metric and the range of percentage values considered, 87.5% of the synthetic data
appears to be the right spot. Similar characteristics hold for MSE with the exception of training
on M-1 + S-1 followed by M-1 evaluation. Notably, CNN with the convolutional readin performs
the best of all the methods considered in this section, and the 87.5% of synthetic data is clearly
its perfect spot in terms of SSIML and MSE.

0 50 100

% of synthetic data

0.30

0.33

0.36

0.39

SS
IM

L

0 50 100

% of synthetic data

0.048

0.056

0.064

0.072

M
SE

0 50 100

% of synthetic data

0.34

0.35

0.36

0.37

PL

CNN-Conv CNN-MEI GAN-Conv GAN-MEI Mean

Figure 7.3 Performance impact of using additional synthetic data S-1 during training on the base
dataset M-1. Evaluations done on the M-1 dataset.

0 50 100

% of synthetic data

0.30

0.33

0.36

0.39

SS
IM

L

0 50 100

% of synthetic data

0.04

0.05

0.06

0.07

M
SE

0 50 100

% of synthetic data

0.34

0.35

0.36

0.37

0.38

PL

CNN-Conv CNN-MEI GAN-Conv GAN-MEI Mean

Figure 7.4 Performance impact of using additional synthetic data S-All during training on the base
dataset M-All. Evaluations done on the M-All dataset.

Transfer learning 31

0 50 100

% of synthetic data

0.28

0.32

0.36

0.40

SS
IM

L

0 50 100

% of synthetic data

0.04

0.05

0.06

0.07

M
SE

0 50 100

% of synthetic data

0.34

0.35

0.36

0.37

0.38

PL

CNN-Conv CNN-MEI GAN-Conv GAN-MEI Mean

Figure 7.5 Performance impact of using additional synthetic data S-All during training on the base
dataset M-All. Evaluations done on the M-1 dataset.

However, from the perspective of perceptual loss alone, synthetic data degrades performance
in two out of three evaluation settings (7.3 and 7.4). But in this case, it is important to disentangle
the averaged results (the red lines). Namely, while CNN-MEI performs poorly with synthetic
data, GAN-MEI always benefits from it, and its optimal amount is 50% or 87.5%. This points
to the importance of carefully designing the right combination of architecture and training data.

The visual comparison between the best-performing methods is available in Figure 7.6 and the
reconstructions of all the remaining methods can be found in the appendix. Note that although
not specified in full in the method names, the S-1 and S-All datasets are always implicitly
accompanied by M-1 and M-All, respectively, filling the rest of the combined dataset to 100%.

One can notice that the plain CNN decoders do not capture the fine-grained structure of
images but are relatively noise-free, while GANs decode very detailed reconstructions but some-
times produce hallucinated content. Subjectively speaking, the latter is preferred by us. Hence,
we think that perceptual loss, according to which GANs perform the best, is more suitable than
SSIML and MSE. Future work could incorporate PL as a substitute for the SSIM-based training
loss function, as the only criterion for model selection, or both.

In conclusion, if SSIML or MSE are metrics that one cares about the most, they should opt for
around 87.5% of synthetic training data. That is, for each data point in the base (real) dataset,
they should add 7 additional synthetic samples. Since the best methods, according to PL, are with
25% and 50% of synthetic data (see B.1), it is the range that should be aimed at if one focuses
more on detailed reconstructions with occasional unmatched contrast or noise. Nevertheless,
considering the variation in the method performance from the three figures, especially in terms
of PL, the amount of synthetic data should be tuned to the specific decoding architecture.

7.3 Transfer learning
Lastly, we studied whether pretraining on a larger dataset followed by separate training, so-called
fine-tuning, only on the target dataset could improve the results. For the pretraining datasets,
we considered all available data we had, including data from the biologically realistic encoding
model (C), SENSORIUM 2022 data (M-1 and M-All), and synthetic datasets obtained from
the CNN-based encoder (S-1 and S-All). M-1 then served as the target (fine-tuning) dataset.

In the fine-tuning process, we used the pretrained core of the decoder architecture, dis-
carded the readin modules, and freshly initialized a single readin. Subsequently, we trained the
pretrained core in combination with the new readin end-to-end on the M-1 dataset. For the
method naming convention, we specify transfer learning by writing the pretraining dataset to
the left of a right-arrow symbol (→), followed by the fine-tuning dataset.

Transfer learning 32

Ta
rg

et

In
ve

rte
d

En
co

de
r

CN
N-

Co
nv

 (2
5%

 S
-1

)

CN
N-

Co
nv

 (8
7.

5%
 S

-A
ll)

GA
N-

Co
nv

 (2
5%

 S
-A

ll)

GA
N-

M
EI

 (5
0%

 S
-A

ll)

Figure 7.6 Decoded samples from the M-1 dataset by the baseline and the best-performing methods
from the synthetic data section 7.2.1.

The baselines included the inverted encoder, as in previous sections, as well as methods trained
solely on the target dataset M-1. Since the aim was to evaluate the benefits of transfer learning
compared to standard training, and given the limited time and computational resources available
for the thesis, we omitted experiments with GANs and focused only on the CNN architecture.

From the quantitative results reported in Table 7.3, it is clear that fine-tuning after M-
All + S-All pretraining provides significant improvements. In particular, for the CNN-Conv
architecture, all considered amounts of pretraining data S-All results in lower SSIML, MSE,
and PL. For CNN-MEI, the benefits are less pronounced but still demonstrate that transfer
learning is a desirable training paradigm. The ideal amount of synthetic data S-All appears to
be architecture-dependent. Specifically, CNN-Conv achieves the best performance with around
87.5% of synthetic data, while CNN-MEI does not have an optimal amount that works best
across all measures. A visual comparison can be found in the appendix (A.7 and A.8).

Pretraining on the C dataset alone provides similar improvements as pretraining on M-
All + S-All for CNN-MEI, but significantly degrades the performance of CNN-Conv. One
plausible explanation for this is that the MEI readin forces the core network to work with inputs
that encode the receptive fields of individual neurons. This may result in the pretrained core
being more adaptable to novel response-to-stimulus mappings during fine-tuning because it has
been trained to just map contextualized receptive fields of individual neurons to natural-looking

Summary of key results 33

Method SSIML MSE PL

Inverted encoder [45] 0.335 0.057 0.358
CNN-Conv (M-1) 0.327 0.058 0.339
CNN-Conv (0% S-All → M-1) 0.306 0.049 0.336
CNN-Conv (50% S-All → M-1) 0.306 0.044 0.328
CNN-Conv (87.5% S-All → M-1) 0.301 0.042 0.328
CNN-Conv (100% S-All → M-1) 0.300 0.048 0.337
CNN-Conv (C → M-1) 0.337 0.062 0.347
CNN-MEI (M-1) 0.324 0.056 0.341
CNN-MEI (0% S-All → M-1) 0.323 0.050 0.338
CNN-MEI (50% S-All → M-1) 0.321 0.053 0.343
CNN-MEI (87.5% S-All → M-1) 0.321 0.054 0.340
CNN-MEI (100% S-All → M-1) 0.323 0.054 0.342
CNN-MEI (C → M-1) 0.323 0.052 0.336

Table 7.3 Evaluation of transfer learning performance on the M-1 dataset. The pretraining dataset
S-All is accompanied by M-All. Bold values signify the lowest (best) results.

images. In contrast, the convolutional readin is not restricted to MEIs and receptive fields,
allowing more freedom in encoding the individual neuron responses. This could make the core
network much harder to transfer because the representations coming from the pretraining readin
and the new fine-tuning readin can vary more significantly and arbitrarily.

Intuitively, the core network has learned a specific neural language during pretraining and,
in the case of CNN-Conv, is forced to learn a completely new language with different words
and meanings, akin to mastering a foreign language from scratch. Meanwhile, in CNN-MEI, the
core is merely tasked with understanding a novel ordering of the same words as in the original
language, somewhat akin to transitioning from infix to prefix notation in mathematics, where
the fundamental elements remain the same but their arrangement changes.

7.4 Summary of key results
Based on the results presented in this chapter, the best-performing model designs and training
paradigms are as follows:

For the biologically realistic encoding model dataset (5.2), the GAN-Conv with our novel
auxiliary encoder matching objective (6.3) performs the best in terms of SSIM and MSE.
A similar MSE is also achieved by one of the state-of-the-art baseline approaches from the
literature, called the inverted encoder. Moreover, none of our methods is able to achieve a
lower perceptual loss than this baseline.

For the biological dataset M-1 (5.1), CNN core with the convolutional readin pretrained on
M-All + S-All and subsequently fine-tuned on M-1 achieves the best MSE and PL as well as
very competitive SSIM. The optimal amount of the synthetic data S-All during pretraining
is around 87.5% of the combined dataset size. In terms of SSIM alone, the best results are
obtained by GAN with our novel MEI readin and encoder matching objective.

For the entire biological dataset M-All (5.1), CNN-Conv and GAN-Conv with EM perform
best from the perspective of SSIM and MSE, respectively, while GAN-Conv with 25% of
synthetic data S-All achieves the lowest PL. Notably, CNN-Conv with 87.5% of synthetic
data achieves SSIM and MSE close to the models that incorporate EM but not synthetic data.

Summary of key results 34

However, given the benefits of transfer learning observed for M-1, we expect even better
results for M-All after M-All + S-All pretraining. Due to limited time and resources, we
leave this for future work.

Based on the findings presented above and our extensive experimentation, we would approach
the neural activity decoding task on a new recording dataset with CNN-Conv and transfer
learning. More specifically, we would pretrain a CNN-Conv on a dataset consisting of 12.5% real
and 87.5% synthetic data generated by a CNN-based encoder, and subsequently fine-tune on the
available biological data.

In Figure 7.7, columns 3 to 5 show the reconstructions generated by the methods with the
lowest SSIML, MSE, and PL obtained on the dataset M-1. Specifically, from left to right:

GAN-MEI with EM trained on M-1 achieved the lowest SSIML of 0.280;

CNN-Conv pretrained on a combined dataset 50% M-All + 50% S-All and fine-tuned on
M-1 reached the lowest PL of 0.328;

CNN-Conv pretrained on a combined dataset 12.5% M-All + 87.5% S-All and fine-tuned
on M-1 achieved the best MSE of 0.042 as well as the lowest PL of 0.328.

Additionally, since we noticed during our experiments that the quantitative measures used
for our model selection (6) do not fully capture perceptual quality, we also tried training some of
the methods for longer and then picked the best manually based on reconstructed samples from
the validation dataset. Reconstructions of these decoders are shown in the last four columns in
Figure 7.7, and their names are marked with an asterisk (∗). Although such a model selection is
not optimal, it shows the achievable performance when a more suitable criterion is in place.

Ta
rg

et

In
ve

rte
d

En
co

de
r

GA
N-

M
EI

 w
/ E

M
 (M

-1
)

CN
N-

Co
nv

 (5
0%

 S
-A

ll
 M

-1
)

CN
N-

Co
nv

 (8
7.

5%
 S

-A
ll

 M
-1

)

CN
N-

M
EI

 (C

 M
-1

)*

CN
N-

M
EI

 (C

 M
-A

ll)
*

GA
N-

M
EI

 w
/ E

M
 (M

-1
)*

GA
N-

M
EI

 (M
-1

)*

Figure 7.7 Decoded samples from the M-1 dataset by the best-performing methods.

Conclusions

In this thesis, our objective was to test a range of deep neural network architectures and train-
ing paradigms for the data-constrained task of decoding neural activity into images. For this
overarching goal, we introduced novel decoding architectures derived from convolutional neu-
ral networks and generative adversarial networks, developed an auxiliary training loss called
encoder matching, and quantified how synthetic data and transfer learning influence the final
performance. We performed extensive comparisons and selected the best-performing decoding
method from experiments on data from a biologically plausible model of cat V1, as well as in
vivo recordings of V1 from mice.

More specifically, we (1) demonstrated how data-constrained settings can benefit from incor-
porating priors in the form of most exciting inputs, (2) found the optimal amount of synthetic
training data, and (3) outperformed the state-of-the-art baseline in the setting of limited data us-
ing our decoding architectures and novel encoder matching objective. Despite the improvements
and findings of this thesis, making neural decoding accurate and reliable enough for real-world
applications in visual prostheses still requires further work.

Firstly, our decoded reconstructions still lack the finest details that might be paramount in
use cases such as fine motor tasks of visual prosthesis users. This is closely related to the fact
that we tested our methods only on relatively small images, and it is unclear how the methods
would scale to larger image stimuli in this data-constrained setting.

Secondly, invasive neural recording devices can be costly, difficult to maintain, and pose risks;
therefore, having a better understanding of the required number of recorded neurons in advance
could be very beneficial. In this regard, future work could explore correlating the amount of
decoded neural responses with the quality of the reconstructions.

Third, a broader consideration concerns the image quality measures, among which we ob-
served striking disagreements. Given that many of these measures target perceptual quality
from a human perspective, it would be interesting to incorporate neural responses evoked by the
reference and reconstructed images, thereby comparing their neural equivalence.

Lastly, considering the improvements coming from the use of synthetic data and transfer
learning, future work could explore other pretraining datasets and training paradigms. Fur-
thermore, we see great promise in merging our structurally accurate reconstructions with the
semantic information available from the currently trending image generation models trained on
large-scale datasets.

In conclusion, our results demonstrate the potential of deep learning-based methods for de-
coding visual percepts from neural responses and highlight the importance of careful architecture
and dataset design. Since neural decoding is a relatively nascent field, it presents an exciting
opportunity for researchers to develop novel methods and tackle new challenges. Moreover, given
the potential applications that range from visual prostheses to robot control and brain-to-brain
communication, neural decoding is of significant importance beyond the academic setting.

35

Appendix A

Qualitative results on the
SENSORIUM 2022 dataset

Here we show example reconstructions by all methods presented in the main part of the thesis.
The brackets in the names of the decoding methods contain information on the specific datasets
on which the models were trained.

Ta
rg

et

In
ve

rte
d

En
co

de
r

CN
N-

FC
 (M

-1
)

CN
N-

FC
 w

/ E
M

 (M
-1

)

CN
N-

Co
nv

 (M
-1

)

CN
N-

Co
nv

 w
/ E

M
 (M

-1
)

CN
N-

M
EI

 (M
-1

)

CN
N-

M
EI

 w
/ E

M
 (M

-1
)

GA
N-

Co
nv

 (M
-1

)

GA
N-

Co
nv

 w
/ E

M
 (M

-1
)

GA
N-

M
EI

 (M
-1

)

GA
N-

M
EI

 w
/ E

M
 (M

-1
)

Figure A.1 Decoded samples from the M-1 dataset by methods trained on M-1.

36

37

Ta
rg

et

In
ve

rte
d

En
co

de
r

CN
N-

FC
 (M

-A
ll)

CN
N-

FC
 w

/ E
M

 (M
-A

ll)

CN
N-

Co
nv

 (M
-A

ll)

CN
N-

Co
nv

 w
/ E

M
 (M

-A
ll)

CN
N-

M
EI

 (M
-A

ll)

CN
N-

M
EI

 w
/ E

M
 (M

-A
ll)

GA
N-

Co
nv

 (M
-A

ll)

GA
N-

Co
nv

 w
/ E

M
 (M

-A
ll)

GA
N-

M
EI

 (M
-A

ll)

GA
N-

M
EI

 w
/ E

M
 (M

-A
ll)

Figure A.2 Decoded samples from the M-1 dataset by methods trained on M-All.

Ta
rg

et

In
ve

rte
d

En
co

de
r

CN
N-

Co
nv

 (1
00

%
 M

-1
 +

 0
%

 S
-1

)

CN
N-

Co
nv

 (7
5%

 M
-1

 +
 2

5%
 S

-1
)

CN
N-

Co
nv

 (5
0%

 M
-1

 +
 5

0%
 S

-1
)

CN
N-

Co
nv

 (1
2.

5%
 M

-1
 +

 8
7.

5%
 S

-1
)

CN
N-

Co
nv

 (0
%

 M
-1

 +
 1

00
%

 S
-1

)

CN
N-

M
EI

 (1
00

%
 M

-1
 +

 0
%

 S
-1

)

CN
N-

M
EI

 (7
5%

 M
-1

 +
 2

5%
 S

-1
)

CN
N-

M
EI

 (5
0%

 M
-1

 +
 5

0%
 S

-1
)

CN
N-

M
EI

 (1
2.

5%
 M

-1
 +

 8
7.

5%
 S

-1
)

CN
N-

M
EI

 (0
%

 M
-1

 +
 1

00
%

 S
-1

)

Figure A.3 Decoded samples from the M-1 dataset by CNN-based methods trained on M-1 and
S-1.

38

Ta
rg

et

In
ve

rte
d

En
co

de
r

GA
N-

Co
nv

 (1
00

%
 M

-1
 +

 0
%

 S
-1

)

GA
N-

Co
nv

 (7
5%

 M
-1

 +
 2

5%
 S

-1
)

GA
N-

Co
nv

 (5
0%

 M
-1

 +
 5

0%
 S

-1
)

GA
N-

Co
nv

 (1
2.

5%
 M

-1
 +

 8
7.

5%
 S

-1
)

GA
N-

Co
nv

 (0
%

 M
-1

 +
 1

00
%

 S
-1

)

GA
N-

M
EI

 (1
00

%
 M

-1
 +

 0
%

 S
-1

)

GA
N-

M
EI

 (7
5%

 M
-1

 +
 2

5%
 S

-1
)

GA
N-

M
EI

 (5
0%

 M
-1

 +
 5

0%
 S

-1
)

GA
N-

M
EI

 (1
2.

5%
 M

-1
 +

 8
7.

5%
 S

-1
)

GA
N-

M
EI

 (0
%

 M
-1

 +
 1

00
%

 S
-1

)

Figure A.4 Decoded samples from the M-1 dataset by GAN-based methods trained on M-1 and
S-1.

Ta
rg

et

In
ve

rte
d

En
co

de
r

CN
N-

Co
nv

 (1
00

%
 M

-A
ll

+
0%

 S
-A

ll)

CN
N-

Co
nv

 (7
5%

 M
-A

ll
+

25
%

 S
-A

ll)

CN
N-

Co
nv

 (5
0%

 M
-A

ll
+

50
%

 S
-A

ll)

CN
N-

Co
nv

 (1
2.

5%
 M

-A
ll

+
87

.5
%

 S
-A

ll)

CN
N-

Co
nv

 (0
%

 M
-A

ll
+

10
0%

 S
-A

ll)

CN
N-

M
EI

 (1
00

%
 M

-A
ll

+
0%

 S
-A

ll)

CN
N-

M
EI

 (7
5%

 M
-A

ll
+

25
%

 S
-A

ll)

CN
N-

M
EI

 (5
0%

 M
-A

ll
+

50
%

 S
-A

ll)

CN
N-

M
EI

 (1
2.

5%
 M

-A
ll

+
87

.5
%

 S
-A

ll)

CN
N-

M
EI

 (0
%

 M
-A

ll
+

10
0%

 S
-A

ll)

Figure A.5 Decoded samples from the M-1 dataset by CNN-based methods trained on M-All and
S-All.

39

Ta
rg

et

In
ve

rte
d

En
co

de
r

GA
N-

Co
nv

 (1
00

%
 M

-A
ll

+
0%

 S
-A

ll)

GA
N-

Co
nv

 (7
5%

 M
-A

ll
+

25
%

 S
-A

ll)

GA
N-

Co
nv

 (5
0%

 M
-A

ll
+

50
%

 S
-A

ll)

GA
N-

Co
nv

 (1
2.

5%
 M

-A
ll

+
87

.5
%

 S
-A

ll)

GA
N-

Co
nv

 (0
%

 M
-A

ll
+

10
0%

 S
-A

ll)

GA
N-

M
EI

 (1
00

%
 M

-A
ll

+
0%

 S
-A

ll)

GA
N-

M
EI

 (7
5%

 M
-A

ll
+

25
%

 S
-A

ll)

GA
N-

M
EI

 (5
0%

 M
-A

ll
+

50
%

 S
-A

ll)

GA
N-

M
EI

 (1
2.

5%
 M

-A
ll

+
87

.5
%

 S
-A

ll)

GA
N-

M
EI

 (0
%

 M
-A

ll
+

10
0%

 S
-A

ll)

Figure A.6 Decoded samples from the M-1 dataset by GAN-based methods trained on M-All and
S-All.

40

Ta
rg

et

In
ve

rte
d

En
co

de
r

CN
N-

Co
nv

 (C

 M
-A

ll)

CN
N-

Co
nv

 (C

 M
-1

)

CN
N-

M
EI

 (C

 M
-A

ll)

CN
N-

M
EI

 (C

 M
-1

)

Figure A.7 Decoded samples from the M-1 dataset by CNN-based methods pretrained on C and
fine-tuned on M-1 or M-All.

41

Ta
rg

et

In
ve

rte
d

En
co

de
r

CN
N-

Co
nv

 (0
%

 S
-A

ll
 M

-1
)

CN
N-

Co
nv

 (5
0%

 S
-A

ll
 M

-1
)

CN
N-

Co
nv

 (8
7.

5%
 S

-A
ll

 M
-1

)

CN
N-

Co
nv

 (1
00

%
 S

-A
ll

 M
-1

)

CN
N-

M
EI

 (0
%

 S
-A

ll
 M

-1
)

CN
N-

M
EI

 (5
0%

 S
-A

ll
 M

-1
)

CN
N-

M
EI

 (8
7.

5%
 S

-A
ll

 M
-1

)

CN
N-

M
EI

 (1
00

%
 S

-A
ll

 M
-1

)

Figure A.8 Decoded samples from the M-1 dataset by methods pretrained on M-All + S-All and
fine-tuned on M-1.

Appendix B

Quantitative results after training
on synthetic data

Here we show the quantitative evaluation of methods trained with additional synthetic data.

42

43

Method
M-1 M-All

SSIML MSE PL SSIML MSE PL

Inverted encoder [45] 0.335 0.057 0.358 0.336 0.057 0.357
Trained on M-1 + S-1

CNN-Conv (0% S-1) 0.327 0.058 0.339 – – –
CNN-Conv (25% S-1) 0.314 0.053 0.337 – – –
CNN-Conv (50% S-1) 0.309 0.053 0.339 – – –
CNN-Conv (87.5% S-1) 0.301 0.049 0.346 – – –
CNN-Conv (100% S-1) 0.327 0.056 0.364 – – –
CNN-MEI (0% S-1) 0.324 0.056 0.341 – – –
CNN-MEI (25% S-1) 0.317 0.055 0.342 – – –
CNN-MEI (50% S-1) 0.316 0.052 0.349 – – –
CNN-MEI (87.5% S-1) 0.312 0.065 0.365 – – –
CNN-MEI (100% S-1) 0.362 0.062 0.349 – – –
GAN-Conv (0% S-1) 0.326 0.058 0.342 – – –
GAN-Conv (25% S-1) 0.342 0.062 0.344 – – –
GAN-Conv (50% S-1) 0.315 0.055 0.346 – – –
GAN-Conv (87.5% S-1) 0.311 0.057 0.345 – – –
GAN-Conv (100% S-1) 0.358 0.073 0.365 – – –
GAN-MEI (0% S-1) 0.321 0.056 0.338 – – –
GAN-MEI (25% S-1) 0.311 0.057 0.338 – – –
GAN-MEI (50% S-1) 0.310 0.051 0.338 – – –
GAN-MEI (87.5% S-1) 0.325 0.052 0.340 – – –
GAN-MEI (100% S-1) 0.378 0.068 0.348 – – –

Trained on M-All + S-All
CNN-Conv (0% S-All) 0.329 0.057 0.355 0.326 0.056 0.349
CNN-Conv (25% S-All) 0.315 0.053 0.371 0.330 0.053 0.353
CNN-Conv (50% S-All) 0.333 0.061 0.354 0.332 0.063 0.353
CNN-Conv (87.5% S-All) 0.298 0.045 0.350 0.293 0.045 0.352
CNN-Conv (100% S-All) 0.338 0.058 0.365 0.334 0.057 0.368
CNN-MEI (0% S-All) 0.312 0.064 0.378 0.323 0.055 0.355
CNN-MEI (25% S-All) 0.301 0.056 0.374 0.303 0.054 0.376
CNN-MEI (50% S-All) 0.302 0.053 0.366 0.306 0.053 0.366
CNN-MEI (87.5% S-All) 0.312 0.065 0.365 0.315 0.053 0.366
CNN-MEI (100% S-All) 0.338 0.058 0.360 0.345 0.059 0.369
GAN-Conv (0% S-All) 0.328 0.064 0.354 0.329 0.063 0.350
GAN-Conv (25% S-All) 0.349 0.064 0.355 0.345 0.062 0.346
GAN-Conv (50% S-All) 0.351 0.066 0.353 0.329 0.059 0.358
GAN-Conv (87.5% S-All) 0.333 0.064 0.349 0.312 0.058 0.354
GAN-Conv (100% S-All) 0.388 0.071 0.353 0.372 0.070 0.367
GAN-MEI (0% S-All) 0.334 0.064 0.358 0.329 0.062 0.354
GAN-MEI (25% S-All) 0.340 0.059 0.345 0.326 0.058 0.348
GAN-MEI (50% S-All) 0.315 0.058 0.357 0.320 0.059 0.346
GAN-MEI (87.5% S-All) 0.329 0.059 0.343 0.334 0.064 0.356
GAN-MEI (100% S-All) 0.397 0.072 0.348 0.382 0.071 0.358

Table B.1 Performance after training on synthetic data. Columns M-1 and M-All refer to evaluation
datasets. Bold measurement values signify the lowest (best) results in each of the evaluation settings.

Bibliography

1. O’CONNOR, Daniel H; FUKUI, Miki M; PINSK, Mark A; KASTNER, Sabine. Attention
modulates responses in the human lateral geniculate nucleus. Nature Neuroscience. 2002,
vol. 5, no. 11, pp. 1203–1209. Available from doi: 10.1038/nn957.

2. HUBEL, D H; WIESEL, T N. Receptive fields, binocular interaction and functional archi-
tecture in the cat’s visual cortex. J Physiol. 1962, vol. 160, no. 1, pp. 106–154. Available
from doi: 10.1113/jphysiol.1962.sp006837.

3. HEDGES, V. Introduction to Neuroscience. Michigan State University Libraries, 2022. isbn
9781626101227. Available also from: https://openbooks.lib.msu.edu/introneuroscie
nce1/.

4. BEAR, M.; CONNORS, B.; PARADISO, M.A. Neuroscience: Exploring the Brain, En-
hanced Edition: Exploring the Brain, Enhanced Edition. Jones & Bartlett Learning, 2020.
isbn 9781284211283. Available also from: https://books.google.cz/books?id=m-PcDw
AAQBAJ.

5. CADENA, Santiago A.; WILLEKE, Konstantin F.; RESTIVO, Kelli; DENFIELD, George;
SINZ, Fabian H.; BETHGE, Matthias; TOLIAS, Andreas S.; ECKER, Alexander S. Diverse
task-driven modeling of macaque V4 reveals functional specialization towards semantic
tasks. bioRxiv. 2023. Available from doi: 10.1101/2022.05.18.492503.

6. JONES, J P; PALMER, L A. The two-dimensional spatial structure of simple receptive
fields in cat striate cortex. J Neurophysiol. 1987, vol. 58, no. 6, pp. 1187–1211. Available
from doi: 10.1152/jn.1987.58.6.1187.

7. LAU, Brian; STANLEY, Garrett B; DAN, Yang. Computational subunits of visual cortical
neurons revealed by artificial neural networks. Proc Natl Acad Sci U S A. 2002, vol. 99, no.
13, pp. 8974–8979. Available from doi: 10.1073/pnas.122173799.

8. PRENGER, Ryan; WU, Michael C-K; DAVID, Stephen V; GALLANT, Jack L. Nonlinear
V1 responses to natural scenes revealed by neural network analysis. Neural Netw. 2004,
vol. 17, no. 5-6, pp. 663–679. Available from doi: 10.1016/j.neunet.2004.03.008.

9. ANTOLÍK, Ján; HOFER, Sonja B.; BEDNAR, James A.; MRSIC-FLOGEL, Thomas D.
Model Constrained by Visual Hierarchy Improves Prediction of Neural Responses to Natural
Scenes. PLOS Computational Biology. 2016, vol. 12, no. 6, pp. 1–22. Available from doi:
10.1371/journal.pcbi.1004927.

10. ZHANG, Yimeng; LEE, Tai Sing; LI, Ming; LIU, Fang; TANG, Shiming. Convolutional
neural network models of V1 responses to complex patterns. J Comput Neurosci. 2018,
vol. 46, no. 1, pp. 33–54. Available from doi: 10.1007/s10827-018-0687-7.

44

https://doi.org/10.1038/nn957
https://doi.org/10.1113/jphysiol.1962.sp006837
https://openbooks.lib.msu.edu/introneuroscience1/
https://openbooks.lib.msu.edu/introneuroscience1/
https://books.google.cz/books?id=m-PcDwAAQBAJ
https://books.google.cz/books?id=m-PcDwAAQBAJ
https://doi.org/10.1101/2022.05.18.492503
https://doi.org/10.1152/jn.1987.58.6.1187
https://doi.org/10.1073/pnas.122173799
https://doi.org/10.1016/j.neunet.2004.03.008
https://doi.org/10.1371/journal.pcbi.1004927
https://doi.org/10.1007/s10827-018-0687-7

Bibliography 45

11. LURZ, Konstantin-Klemens; BASHIRI, Mohammad; WILLEKE, Konstantin; JAGADISH,
Akshay K.; WANG, Eric; WALKER, Edgar Y.; CADENA, Santiago A.; MUHAMMAD,
Taliah; COBOS, Erick; TOLIAS, Andreas S.; ECKER, Alexander S.; SINZ, Fabian H.
Generalization in data-driven models of primary visual cortex. bioRxiv. 2021. Available
from doi: 10.1101/2020.10.05.326256.

12. LI, Bryan M.; CORNACCHIA, Isabel Maria; ROCHEFORT, Nathalie; ONKEN, Arno.
V1T: large-scale mouse V1 response prediction using a Vision Transformer. Transactions
on Machine Learning Research. 2023. issn 2835-8856. Available also from: https://openr
eview.net/forum?id=qHZs2p4ZD4.

13. IVAKHNENKO, A.G.; LAPA, V.G.; ENGINEERING., PURDUE UNIV LAFAYETTE
IND SCHOOL OF ELECTRICAL. Cybernetic Predicting Devices. Joint Publications Re-
search Service [available from the Clearinghouse for Federal Scientific and Technical Infor-
mation], 1965. JPRS 37, 803. Available also from: https://books.google.cz/books?id
=l38DHQAACAAJ.

14. ROSENBLATT, F. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review. 1958, vol. 65, no. 6, pp. 386–408. Available
from doi: 10.1037/h0042519.

15. CYBENKO, G. Approximation by superpositions of a sigmoidal function. Mathematics of
Control, Signals and Systems. 1989, vol. 2, no. 4, pp. 303–314. issn 1435-568X. Available
from doi: 10.1007/BF02551274.

16. ZHOU, Ding-Xuan. Universality of deep convolutional neural networks. Applied and Com-
putational Harmonic Analysis. 2020, vol. 48, no. 2, pp. 787–794. issn 1063-5203. Available
from doi: 10.1016/j.acha.2019.06.004.

17. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

18. CADENA, Santiago A.; DENFIELD, George H.; WALKER, Edgar Y.; GATYS, Leon A.;
TOLIAS, Andreas S.; BETHGE, Matthias; ECKER, Alexander S. Deep convolutional mod-
els improve predictions of macaque V1 responses to natural images. PLOS Computational
Biology. 2019, vol. 15, no. 4, pp. 1–27. Available from doi: 10.1371/journal.pcbi.10068
97.

19. WILLEKE, Konstantin F; FAHEY, Paul G; BASHIRI, Mohammad; PEDE, Laura; BURG,
Max F; BLESSING, Christoph; CADENA, Santiago A; DING, Zhiwei; LURZ, Konstantin-
Klemens; PONDER, Kayla, et al. The Sensorium competition on predicting large-scale
mouse primary visual cortex activity. arXiv preprint arXiv:2206.08666. 2022. Available
also from: https://arxiv.org/abs/2206.08666.

20. FUKUSHIMA, Kunihiko. Neocognitron: A self-organizing neural network model for a mech-
anism of pattern recognition unaffected by shift in position. Biological Cybernetics. 1980,
vol. 36, no. 4, pp. 193–202. issn 1432-0770. Available from doi: 10.1007/BF00344251.

21. IOFFE, Sergey; SZEGEDY, Christian. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. In: BACH, Francis; BLEI, David (eds.). Pro-
ceedings of the 32nd International Conference on Machine Learning. Lille, France: PMLR,
2015, vol. 37, pp. 448–456. Proceedings of Machine Learning Research. Available also from:
https://proceedings.mlr.press/v37/ioffe15.html.

22. SRIVASTAVA, Nitish; HINTON, Geoffrey; KRIZHEVSKY, Alex; SUTSKEVER, Ilya; SALAKHUT-
DINOV, Ruslan. Dropout: A Simple Way to Prevent Neural Networks from Overfitting.
Journal of Machine Learning Research. 2014, vol. 15, no. 56, pp. 1929–1958. Available also
from: http://jmlr.org/papers/v15/srivastava14a.html.

https://doi.org/10.1101/2020.10.05.326256
https://openreview.net/forum?id=qHZs2p4ZD4
https://openreview.net/forum?id=qHZs2p4ZD4
https://books.google.cz/books?id=l38DHQAACAAJ
https://books.google.cz/books?id=l38DHQAACAAJ
https://doi.org/10.1037/h0042519
https://doi.org/10.1007/BF02551274
https://doi.org/10.1016/j.acha.2019.06.004
http://www.deeplearningbook.org
https://doi.org/10.1371/journal.pcbi.1006897
https://doi.org/10.1371/journal.pcbi.1006897
https://arxiv.org/abs/2206.08666
https://doi.org/10.1007/BF00344251
https://proceedings.mlr.press/v37/ioffe15.html
http://jmlr.org/papers/v15/srivastava14a.html

Bibliography 46

23. CHOLLET, François. Xception: Deep Learning with Depthwise Separable Convolutions.
In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017,
pp. 1800–1807. Available from doi: 10.1109/CVPR.2017.195.

24. CLEVERT, Djork-Arné; UNTERTHINER, Thomas; HOCHREITER, Sepp. Fast and Ac-
curate Deep Network Learning by Exponential Linear Units (ELUs). In: BENGIO, Yoshua;
LECUN, Yann (eds.). 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings. 2016. Avail-
able also from: http://arxiv.org/abs/1511.07289.

25. KINGMA, Diederik P; WELLING, Max. Auto-Encoding Variational Bayes. 2022. Available
from doi: 10.48550/arXiv.1312.6114.

26. WALKER, Edgar Y; SINZ, Fabian H; COBOS, Erick; MUHAMMAD, Taliah; FROUDARAKIS,
Emmanouil; FAHEY, Paul G; ECKER, Alexander S; REIMER, Jacob; PITKOW, Xaq;
TOLIAS, Andreas S. Inception loops discover what excites neurons most using deep pre-
dictive models. Nat Neurosci. 2019, vol. 22, no. 12, pp. 2060–2065. Available from doi:
10.1038/s41593-019-0517-x.

27. PONCE, Carlos R; XIAO, Will; SCHADE, Peter F; HARTMANN, Till S; KREIMAN,
Gabriel; LIVINGSTONE, Margaret S. Evolving Images for Visual Neurons Using a Deep
Generative Network Reveals Coding Principles and Neuronal Preferences. Cell. 2019, vol. 177,
no. 4, 999–1009.e10. Available from doi: 10.1016/j.cell.2019.04.005.

28. BARONI, Luca; BASHIRI, Mohammad; WILLEKE, Konstantin F.; ANTOLÍK, Ján; SINZ,
Fabian H. Learning invariance manifolds of visual sensory neurons. In: SANBORN, Sophia;
SHEWMAKE, Christian; AZEGLIO, Simone; DI BERNARDO, Arianna; MIOLANE, Nina
(eds.). Proceedings of the 1st NeurIPS Workshop on Symmetry and Geometry in Neural
Representations. PMLR, 2023, vol. 197, pp. 301–326. Proceedings of Machine Learning
Research. Available also from: https://proceedings.mlr.press/v197/baroni23a.html.

29. ERHAN, Dumitru; BENGIO, Y.; COURVILLE, Aaron; VINCENT, Pascal. Visualizing
Higher-Layer Features of a Deep Network. Technical Report, Univeristé de Montréal. 2009.
Available also from: https://www.researchgate.net/publication/265022827_Visuali
zing_Higher-Layer_Features_of_a_Deep_Network.

30. OLAH, Chris; MORDVINTSEV, Alexander; SCHUBERT, Ludwig. Feature Visualization.
Distill. 2017. Available from doi: 10.23915/distill.00007.

31. BENCHETRIT, Yohann; BANVILLE, Hubert; KING, Jean-Remi. Brain decoding: toward
real-time reconstruction of visual perception. In: The Twelfth International Conference on
Learning Representations. 2024. Available also from: https://openreview.net/forum?id
=3y1K6buO8c.

32. NISHIMOTO, Shinji; VU, An T; NASELARIS, Thomas; BENJAMINI, Yuval; YU, Bin;
GALLANT, Jack L. Reconstructing visual experiences from brain activity evoked by natural
movies. Curr Biol. 2011, vol. 21, no. 19, pp. 1641–1646. Available from doi: 10.1016/j.cu
b.2011.08.031.

33. SEELIGER, K; GÜÇLÜ, U; AMBROGIONI, L; GÜÇLÜTÜRK, Y; GERVEN, M A J
van. Generative adversarial networks for reconstructing natural images from brain activity.
Neuroimage. 2018, vol. 181, pp. 775–785. Available from doi: 10.1016/j.neuroimage.201
8.07.043.

34. SCOTTI, Paul Steven; BANERJEE, Atmadeep; GOODE, Jimmie; SHABALIN, Stepan;
NGUYEN, Alex; ETHAN, Cohen; DEMPSTER, Aidan James; VERLINDE, Nathalie;
YUNDLER, Elad; WEISBERG, David; NORMAN, Kenneth; ABRAHAM, Tanishq Mathew.
Reconstructing the Mind’s Eye: fMRI-to-Image with Contrastive Learning and Diffusion
Priors. In: Thirty-seventh Conference on Neural Information Processing Systems. 2023.
Available also from: https://openreview.net/forum?id=rwrblCYb2A.

https://doi.org/10.1109/CVPR.2017.195
http://arxiv.org/abs/1511.07289
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.1038/s41593-019-0517-x
https://doi.org/10.1016/j.cell.2019.04.005
https://proceedings.mlr.press/v197/baroni23a.html
https://www.researchgate.net/publication/265022827_Visualizing_Higher-Layer_Features_of_a_Deep_Network
https://www.researchgate.net/publication/265022827_Visualizing_Higher-Layer_Features_of_a_Deep_Network
https://doi.org/10.23915/distill.00007
https://openreview.net/forum?id=3y1K6buO8c
https://openreview.net/forum?id=3y1K6buO8c
https://doi.org/10.1016/j.cub.2011.08.031
https://doi.org/10.1016/j.cub.2011.08.031
https://doi.org/10.1016/j.neuroimage.2018.07.043
https://doi.org/10.1016/j.neuroimage.2018.07.043
https://openreview.net/forum?id=rwrblCYb2A

Bibliography 47

35. TAKAGI, Yu; NISHIMOTO, Shinji. High-resolution image reconstruction with latent dif-
fusion models from human brain activity. In: 2023 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 2023, pp. 14453–14463. Available from doi: 10.1
109/CVPR52729.2023.01389.

36. SOHL-DICKSTEIN, Jascha; WEISS, Eric; MAHESWARANATHAN, Niru; GANGULI,
Surya. Deep Unsupervised Learning using Nonequilibrium Thermodynamics. In: BACH,
Francis; BLEI, David (eds.). Proceedings of the 32nd International Conference on Machine
Learning. Lille, France: PMLR, 2015, vol. 37, pp. 2256–2265. Proceedings of Machine Learn-
ing Research. Available also from: https://proceedings.mlr.press/v37/sohl-dickste
in15.html.

37. HO, Jonathan; JAIN, Ajay; ABBEEL, Pieter. Denoising diffusion probabilistic models.
Advances in neural information processing systems. 2020, vol. 33, pp. 6840–6851. Available
from doi: 10.48550/arXiv.2006.11239.

38. BRACKBILL, Nora; RHOADES, Colleen; KLING, Alexandra; SHAH, Nishal P; SHER,
Alexander; LITKE, Alan M; CHICHILNISKY, E J. Reconstruction of natural images from
responses of primate retinal ganglion cells. Elife. 2020, vol. 9. Available from doi: 10.7554
/eLife.58516.

39. KIM, Young Joon; BRACKBILL, Nora; BATTY, Eleanor; LEE, Jinhyung; MITELUT,
Catalin; TONG, William; CHICHILNISKY, E J; PANINSKI, Liam. Nonlinear Decoding of
Natural Images From Large-Scale Primate Retinal Ganglion Recordings. Neural Comput.
2021, vol. 33, no. 7, pp. 1719–1750. Available from doi: 10.1162/neco_a_01395.

40. BENSTER, Tyler; BABINO, Darwin; THICKSTUN, John; HUNT, Matthew; LIU, Xiyang;
HARCHAOUI, Zaid; OH, Sewoong; GELDER, Russell N. Van. Reconstruction of visual
images from mouse retinal ganglion cell spiking activity using convolutional neural networks.
bioRxiv. 2022. Available from doi: 10.1101/2022.06.10.482188.

41. THIRION, Bertrand; DUCHESNAY, Edouard; HUBBARD, Edward; DUBOIS, Jessica;
POLINE, Jean-Baptiste; LEBIHAN, Denis; DEHAENE, Stanislas. Inverse retinotopy: infer-
ring the visual content of images from brain activation patterns. Neuroimage. 2006, vol. 33,
no. 4, pp. 1104–1116. Available from doi: 10.1016/j.neuroimage.2006.06.062.

42. GOODFELLOW, Ian; POUGET-ABADIE, Jean; MIRZA, Mehdi; XU, Bing; WARDE-
FARLEY, David; OZAIR, Sherjil; COURVILLE, Aaron; BENGIO, Yoshua. Generative ad-
versarial nets. In: Advances in neural information processing systems. 2014, pp. 2672–2680.
Available also from: https://proceedings.neurips.cc/paper_files/paper/2014/file
/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

43. HAYASHI, Ryusuke; KAWATA, Hayaki. Image Reconstruction from Neural Activity Recorded
from Monkey Inferior Temporal Cortex Using Generative Adversarial Networks. In: 2018
IEEE International Conference on Systems, Man, and Cybernetics (SMC). 2018, pp. 105–
109. Available from doi: 10.1109/SMC.2018.00028.

44. RAN, Xuming; ZHANG, Jie; YE, Ziyuan; WU, Haiyan; XU, Qi; ZHOU, Huihui; LIU,
Quanying. Deep auto-encoder with neural response. arXiv preprint arXiv:2111.15309. 2021.
Available from doi: 10.48550/arXiv.2111.15309.

45. COBOS, Erick; MUHAMMAD, Taliah; FAHEY, Paul G.; DING, Zhiwei; DING, Zhuokun;
REIMER, Jacob; SINZ, Fabian H.; TOLIAS, Andreas S. It takes neurons to understand
neurons: Digital twins of visual cortex synthesize neural metamers. bioRxiv. 2022. Available
from doi: 10.1101/2022.12.09.519708.

46. ZHANG, Yijun; BU, Tong; ZHANG, Jiyuan; TANG, Shiming; YU, Zhaofei; LIU, Jian K;
HUANG, Tiejun. Decoding Pixel-Level Image Features From Two-Photon Calcium Signals
of Macaque Visual Cortex. Neural Comput. 2022, vol. 34, no. 6, pp. 1369–1397. Available
from doi: 10.1162/neco_a_01498.

https://doi.org/10.1109/CVPR52729.2023.01389
https://doi.org/10.1109/CVPR52729.2023.01389
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://doi.org/10.48550/arXiv.2006.11239
https://doi.org/10.7554/eLife.58516
https://doi.org/10.7554/eLife.58516
https://doi.org/10.1162/neco_a_01395
https://doi.org/10.1101/2022.06.10.482188
https://doi.org/10.1016/j.neuroimage.2006.06.062
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://doi.org/10.1109/SMC.2018.00028
https://doi.org/10.48550/arXiv.2111.15309
https://doi.org/10.1101/2022.12.09.519708
https://doi.org/10.1162/neco_a_01498

Bibliography 48

47. LI, Wenyi; ZHENG, Shengjie; LIAO, Yufan; HONG, Rongqi; HE, Chenggang; CHEN, Weil-
iang; DENG, Chunshan; LI, Xiaojian. The brain-inspired decoder for natural visual image
reconstruction. Frontiers in Neuroscience. 2023, vol. 17. issn 1662-453X. Available from
doi: 10.3389/fnins.2023.1130606.

48. PIERZCHLEWICZ, Pawe l A.; WILLEKE, Konstantin Friedrich; NIX, Arne; ELUMALAI,
Pavithra; RESTIVO, Kelli; SHINN, Tori; NEALLEY, Cate; RODRIGUEZ, Gabrielle; PA-
TEL, Saumil; FRANKE, Katrin; TOLIAS, Andreas S.; SINZ, Fabian H. Energy Guided
Diffusion for Generating Neurally Exciting Images. In: Thirty-seventh Conference on Neural
Information Processing Systems. 2023. Available also from: https://openreview.net/fo
rum?id=1moStpWGUj.

49. CHEN, Xing; WANG, Feng; FERNANDEZ, Eduardo; ROELFSEMA, Pieter R. Shape per-
ception via a high-channel-count neuroprosthesis in monkey visual cortex. Science. 2020,
vol. 370, no. 6521, pp. 1191–1196. Available from doi: 10.1126/science.abd7435.

50. FERNÁNDEZ, Eduardo; ALFARO, Arantxa; SOTO-SÁNCHEZ, Cristina; GONZALEZ-
LOPEZ, Pablo; LOZANO, Antonio M.; PEÑA, Sebastian; GRIMA, Maria Dolores; RODIL,
Alfonso; GÓMEZ, Bernardeta; CHEN, Xing; ROELFSEMA, Pieter R.; ROLSTON, John
D.; DAVIS, Tyler S.; NORMANN, Richard A. Visual percepts evoked with an intracortical
96-channel microelectrode array inserted in human occipital cortex. The Journal of Clinical
Investigation. 2021, vol. 131, no. 23. Available from doi: 10.1172/JCI151331.

51. HOCHBERG, Leigh R; BACHER, Daniel; JAROSIEWICZ, Beata; MASSE, Nicolas Y;
SIMERAL, John D; VOGEL, Joern; HADDADIN, Sami; LIU, Jie; CASH, Sydney S;
SMAGT, Patrick van der; DONOGHUE, John P. Reach and grasp by people with tetraple-
gia using a neurally controlled robotic arm. Nature. 2012, vol. 485, no. 7398, pp. 372–375.
Available from doi: 10.1038/nature11076.

52. CHAPIN, John K; MOXON, Karen A; MARKOWITZ, Ronald S; NICOLELIS, Miguel A L.
Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex.
Nature Neuroscience. 1999, vol. 2, no. 7, pp. 664–670. Available from doi: 10.1038/10223.

53. DONOGHUE, John P.; NURMIKKO, Arto; BLACK, Michael; HOCHBERG, Leigh R.
Assistive technology and robotic control using motor cortex ensemble-based neural inter-
face systems in humans with tetraplegia. The Journal of Physiology. 2007, vol. 579, no. 3,
pp. 603–611. Available from doi: 10.1113/jphysiol.2006.127209.

54. ANUMANCHIPALLI, Gopala K; CHARTIER, Josh; CHANG, Edward F. Speech synthesis
from neural decoding of spoken sentences. Nature. 2019, vol. 568, no. 7753, pp. 493–498.
Available from doi: 10.1038/s41586-019-1119-1.

55. WILLETT, Francis R; AVANSINO, Donald T; HOCHBERG, Leigh R; HENDERSON,
Jaimie M; SHENOY, Krishna V. High-performance brain-to-text communication via hand-
writing. Nature. 2021, vol. 593, no. 7858, pp. 249–254. Available from doi: 10.1038/s4158
6-021-03506-2.

56. METZ, Luke; POOLE, Ben; PFAU, David; SOHL-DICKSTEIN, Jascha. Unrolled Genera-
tive Adversarial Networks. In: International Conference on Learning Representations. 2017.
Available also from: https://openreview.net/forum?id=BydrOIcle.

57. ODENA, Augustus; OLAH, Christopher; SHLENS, Jonathon. Conditional Image Synthesis
with Auxiliary Classifier GANs. In: PRECUP, Doina; TEH, Yee Whye (eds.). Proceedings
of the 34th International Conference on Machine Learning. PMLR, 2017, vol. 70, pp. 2642–
2651. Proceedings of Machine Learning Research. Available also from: https://proceedi
ngs.mlr.press/v70/odena17a.html.

https://doi.org/10.3389/fnins.2023.1130606
https://openreview.net/forum?id=1moStpWGUj
https://openreview.net/forum?id=1moStpWGUj
https://doi.org/10.1126/science.abd7435
https://doi.org/10.1172/JCI151331
https://doi.org/10.1038/nature11076
https://doi.org/10.1038/10223
https://doi.org/10.1113/jphysiol.2006.127209
https://doi.org/10.1038/s41586-019-1119-1
https://doi.org/10.1038/s41586-021-03506-2
https://doi.org/10.1038/s41586-021-03506-2
https://openreview.net/forum?id=BydrOIcle
https://proceedings.mlr.press/v70/odena17a.html
https://proceedings.mlr.press/v70/odena17a.html

Bibliography 49

58. ZHANG, Han; GOODFELLOW, Ian; METAXAS, Dimitris; ODENA, Augustus. Self-Attention
Generative Adversarial Networks. In: CHAUDHURI, Kamalika; SALAKHUTDINOV, Rus-
lan (eds.). Proceedings of the 36th International Conference on Machine Learning. PMLR,
2019, vol. 97, pp. 7354–7363. Proceedings of Machine Learning Research. Available also
from: https://proceedings.mlr.press/v97/zhang19d.html.

59. KADURIN, Artur; NIKOLENKO, Sergey; KHRABROV, Kuzma; ALIPER, Alex; ZHA-
VORONKOV, Alex. druGAN: An Advanced Generative Adversarial Autoencoder Model
for de Novo Generation of New Molecules with Desired Molecular Properties in Silico.
Molecular pharmaceutics. 2017, vol. 14, no. 9, pp. 3098–3104. Available from doi: 10.1021
/acs.molpharmaceut.7b00346.

60. ZHANG, Han; XU, Tao; LI, Hongsheng; ZHANG, Shaoting; WANG, Xiaogang; HUANG,
Xiaolei; METAXAS, Dimitris N. StackGAN: Text to Photo-Realistic Image Synthesis With
Stacked Generative Adversarial Networks. In: Proceedings of the IEEE International Con-
ference on Computer Vision (ICCV). 2017. Available also from: https://openaccess.thec
vf.com/content_ICCV_2017/papers/Zhang_StackGAN_Text_to_ICCV_2017_paper.pdf.

61. ISOLA, Phillip; ZHU, Jun-Yan; ZHOU, Tinghui; EFROS, Alexei A. Image-To-Image Trans-
lation With Conditional Adversarial Networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2017. Available also from: https://o
penaccess.thecvf.com/content_cvpr_2017/papers/Isola_Image-To-Image_Translat
ion_With_CVPR_2017_paper.pdf.

62. SALIMANS, Tim; GOODFELLOW, Ian; ZAREMBA, Wojciech; CHEUNG, Vicki; RAD-
FORD, Alec; CHEN, Xi. Improved techniques for training GANs. In: Proceedings of the
30th International Conference on Neural Information Processing Systems. Barcelona, Spain:
Curran Associates Inc., 2016, pp. 2234–2242. NIPS’16. isbn 9781510838819. Available also
from: https://proceedings.neurips.cc/paper/2016/file/8a3363abe792db2d8761d64
03605aeb7-Paper.pdf.

63. GUI, Jie; SUN, Zhenan; WEN, Yonggang; TAO, Dacheng; YE, Jieping. A Review on Gen-
erative Adversarial Networks: Algorithms, Theory, and Applications. IEEE Transactions
on Knowledge and Data Engineering. 2023, vol. 35, no. 4, pp. 3313–3332. Available from
doi: 10.1109/TKDE.2021.3130191.

64. KARRAS, Tero; AILA, Timo; LAINE, Samuli; LEHTINEN, Jaakko. Progressive Growing
of GANs for Improved Quality, Stability, and Variation. In: International Conference on
Learning Representations. 2018. Available also from: https://openreview.net/forum?id
=Hk99zCeAb.

65. KARRAS, Tero; LAINE, Samuli; AILA, Timo. A Style-Based Generator Architecture for
Generative Adversarial Networks. In: 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). 2019, pp. 4396–4405. Available from doi: 10.1109/CVPR.20
19.00453.

66. REGMI, Krishna; BORJI, Ali. Cross-view image synthesis using geometry-guided condi-
tional GANs. Computer Vision and Image Understanding. 2019, vol. 187, p. 102788. issn
1077-3142. Available from doi: 10.1016/j.cviu.2019.07.008.

67. ELGAMMAL, Ahmed; LIU, Bingchen; ELHOSEINY, Mohamed; MAZZONE, Marian. Can:
Creative adversarial networks, generating ”art” by learning about styles and deviating from
style norms. arXiv preprint arXiv:1706.07068. 2017. Available from doi: 10.48550/arXiv
.1706.07068.

68. SANDFORT, Veit; YAN, Ke; PICKHARDT, Perry J.; SUMMERS, Ronald M. Data aug-
mentation using generative adversarial networks (CycleGAN) to improve generalizability
in CT segmentation tasks. Scientific Reports. 2019, vol. 9, no. 1, p. 16884. issn 2045-2322.
Available from doi: 10.1038/s41598-019-52737-x.

https://proceedings.mlr.press/v97/zhang19d.html
https://doi.org/10.1021/acs.molpharmaceut.7b00346
https://doi.org/10.1021/acs.molpharmaceut.7b00346
https://openaccess.thecvf.com/content_ICCV_2017/papers/Zhang_StackGAN_Text_to_ICCV_2017_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2017/papers/Zhang_StackGAN_Text_to_ICCV_2017_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2017/papers/Isola_Image-To-Image_Translation_With_CVPR_2017_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2017/papers/Isola_Image-To-Image_Translation_With_CVPR_2017_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2017/papers/Isola_Image-To-Image_Translation_With_CVPR_2017_paper.pdf
https://proceedings.neurips.cc/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://doi.org/10.1109/TKDE.2021.3130191
https://openreview.net/forum?id=Hk99zCeAb
https://openreview.net/forum?id=Hk99zCeAb
https://doi.org/10.1109/CVPR.2019.00453
https://doi.org/10.1109/CVPR.2019.00453
https://doi.org/10.1016/j.cviu.2019.07.008
https://doi.org/10.48550/arXiv.1706.07068
https://doi.org/10.48550/arXiv.1706.07068
https://doi.org/10.1038/s41598-019-52737-x

Bibliography 50

69. CHEN, Xinyuan; XU, Chang; YANG, Xiaokang; SONG, Li; TAO, Dacheng. Gated-gan:
Adversarial gated networks for multi-collection style transfer. IEEE Transactions on Image
Processing. 2018, vol. 28, no. 2, pp. 546–560. Available from doi: 10.1109/TIP.2018.2869
695.

70. ZHU, Jun-Yan; PARK, Taesung; ISOLA, Phillip; EFROS, Alexei A. Unpaired image-to-
image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE
international conference on computer vision. 2017, pp. 2223–2232. Available from doi: 10
.1109/ICCV.2017.244.

71. LEDIG, Christian; THEIS, Lucas; HUSZÁR, Ferenc; CABALLERO, Jose; CUNNING-
HAM, Andrew; ACOSTA, Alejandro; AITKEN, Andrew; TEJANI, Alykhan; TOTZ, Jo-
hannes; WANG, Zehan; SHI, Wenzhe. Photo-Realistic Single Image Super-Resolution Using
a Generative Adversarial Network. In: 2017 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR). 2017, pp. 105–114. Available from doi: 10.1109/CVPR.2017.19.

72. WANG, Xintao; YU, Ke; WU, Shixiang; GU, Jinjin; LIU, Yihao; DONG, Chao; QIAO, Yu;
LOY, Chen Change. ESRGAN: Enhanced Super-Resolution Generative Adversarial Net-
works. In: LEAL-TAIXÉ, Laura; ROTH, Stefan (eds.). Computer Vision – ECCV 2018
Workshops. Cham: Springer International Publishing, 2019, pp. 63–79. isbn 978-3-030-
11021-5. Available from doi: 10.1007/978-3-030-11021-5_5.

73. KADURIN, Artur; ALIPER, Alexander; KAZENNOV, Andrey; MAMOSHINA, Polina;
VANHAELEN, Quentin; KHRABROV, Kuzma; ZHAVORONKOV, Alex. The cornucopia
of meaningful leads: Applying deep adversarial autoencoders for new molecule development
in oncology. Oncotarget. 2017, vol. 8, no. 7, p. 10883. Available from doi: 10.18632/oncot
arget.14073.

74. SANCHEZ-LENGELING, Benjamin; OUTEIRAL, Carlos; GUIMARAES, Gabriel L; ASPURU-
GUZIK, Alan. Optimizing distributions over molecular space. An objective-reinforced gen-
erative adversarial network for inverse-design chemistry (ORGANIC). 2017. Available from
doi: 10.26434/chemrxiv.5309668.v3.

75. SEELIGER, K.; GÜÇLÜ, U.; AMBROGIONI, L.; GÜÇLÜTÜRK, Y.; VAN GERVEN,
M.A.J. Generative adversarial networks for reconstructing natural images from brain activ-
ity. NeuroImage. 2018, vol. 181, pp. 775–785. issn 1053-8119. Available from doi: https:
//doi.org/10.1016/j.neuroimage.2018.07.043.

76. DE MELO, Celso M.; TORRALBA, Antonio; GUIBAS, Leonidas; DICARLO, James;
CHELLAPPA, Rama; HODGINS, Jessica. Next-generation deep learning based on sim-
ulators and synthetic data. Trends in Cognitive Sciences. 2022, vol. 26, no. 2, pp. 174–187.
issn 1364-6613. Available from doi: 10.1016/j.tics.2021.11.008.

77. LU, Yingzhou; SHEN, Minjie; WANG, Huazheng; WANG, Xiao; RECHEM, Capucine van;
WEI, Wenqi. Machine Learning for Synthetic Data Generation: A Review. 2024. Available
from doi: 10.48550/arXiv.2302.04062.

78. TODOROV, Emanuel; EREZ, Tom; TASSA, Yuval. MuJoCo: A physics engine for model-
based control. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems. 2012, pp. 5026–5033. Available from doi: 10.1109/IROS.2012.6386109.

79. ZHAO, Wenshuai; QUERALTA, Jorge Peña; WESTERLUND, Tomi. Sim-to-Real Transfer
in Deep Reinforcement Learning for Robotics: a Survey. In: 2020 IEEE Symposium Series
on Computational Intelligence (SSCI). 2020, pp. 737–744. Available from doi: 10.1109
/SSCI47803.2020.9308468.

80. CHEN, Xiaoyu; HU, Jiachen; JIN, Chi; LI, Lihong; WANG, Liwei. Understanding Domain
Randomization for Sim-to-real Transfer. In: International Conference on Learning Repre-
sentations. 2022. Available also from: https://openreview.net/forum?id=T8vZHIRTrY.

https://doi.org/10.1109/TIP.2018.2869695
https://doi.org/10.1109/TIP.2018.2869695
https://doi.org/10.1109/ICCV.2017.244
https://doi.org/10.1109/ICCV.2017.244
https://doi.org/10.1109/CVPR.2017.19
https://doi.org/10.1007/978-3-030-11021-5_5
https://doi.org/10.18632/oncotarget.14073
https://doi.org/10.18632/oncotarget.14073
https://doi.org/10.26434/chemrxiv.5309668.v3
https://doi.org/https://doi.org/10.1016/j.neuroimage.2018.07.043
https://doi.org/https://doi.org/10.1016/j.neuroimage.2018.07.043
https://doi.org/10.1016/j.tics.2021.11.008
https://doi.org/10.48550/arXiv.2302.04062
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/SSCI47803.2020.9308468
https://doi.org/10.1109/SSCI47803.2020.9308468
https://openreview.net/forum?id=T8vZHIRTrY

Bibliography 51

81. VASWANI, Ashish; SHAZEER, Noam; PARMAR, Niki; USZKOREIT, Jakob; JONES,
Llion; GOMEZ, Aidan N; KAISER, Lukasz; POLOSUKHIN, Illia. Attention is All you
Need. In: GUYON, I.; LUXBURG, U. Von; BENGIO, S.; WALLACH, H.; FERGUS, R.;
VISHWANATHAN, S.; GARNETT, R. (eds.). Advances in Neural Information Processing
Systems. Curran Associates, Inc., 2017, vol. 30. Available also from: https://proceeding
s.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-
Paper.pdf.

82. LIU, Ming-Yu; HUANG, Xun; YU, Jiahui; WANG, Ting-Chun; MALLYA, Arun. Gener-
ative Adversarial Networks for Image and Video Synthesis: Algorithms and Applications.
Proceedings of the IEEE. 2021, vol. 109, no. 5, pp. 839–862. Available from doi: 10.1109
/JPROC.2021.3049196.

83. BROWN, Tom B.; MANN, Benjamin; RYDER, Nick; SUBBIAH, Melanie; KAPLAN, Jared;
DHARIWAL, Prafulla; NEELAKANTAN, Arvind; SHYAM, Pranav; SASTRY, Girish;
ASKELL, Amanda; AGARWAL, Sandhini; HERBERT-VOSS, Ariel; KRUEGER, Gretchen;
HENIGHAN, Tom; CHILD, Rewon; RAMESH, Aditya; ZIEGLER, Daniel M.; WU, Jeffrey;
WINTER, Clemens; HESSE, Christopher; CHEN, Mark; SIGLER, Eric; LITWIN, Mateusz;
GRAY, Scott; CHESS, Benjamin; CLARK, Jack; BERNER, Christopher; MCCANDLISH,
Sam; RADFORD, Alec; SUTSKEVER, Ilya; AMODEI, Dario. Language Models are Few-
Shot Learners. 2020. Available from doi: 10.48550/arXiv.2005.14165.

84. CHADEBEC, Clément; THIBEAU-SUTRE, Elina; BURGOS, Ninon; ALLASSONNIÈRE,
Stéphanie. Data Augmentation in High Dimensional Low Sample Size Setting Using a
Geometry-Based Variational Autoencoder. IEEE Trans. Pattern Anal. Mach. Intell. 2023,
vol. 45, no. 3, pp. 2879–2896. Available from doi: 10.1109/TPAMI.2022.3185773.

85. GHORBANI, Amirata; NATARAJAN, Vivek; COZ, David; LIU, Yuan. DermGAN: Syn-
thetic Generation of Clinical Skin Images with Pathology. In: DALCA, Adrian V.; MC-
DERMOTT, Matthew B.A.; ALSENTZER, Emily; FINLAYSON, Samuel G.; OBERST,
Michael; FALCK, Fabian; BEAULIEU-JONES, Brett (eds.). Proceedings of the Machine
Learning for Health NeurIPS Workshop. PMLR, 2020, vol. 116, pp. 155–170. Proceedings
of Machine Learning Research. Available also from: https://proceedings.mlr.press/v1
16/ghorbani20a.html.

86. POTLURU, Vamsi K.; BORRAJO, Daniel; COLETTA, Andrea; DALMASSO, Niccolò;
EL-LAHAM, Yousef; FONS, Elizabeth; GHASSEMI, Mohsen; GOPALAKRISHNAN, Sri-
ram; GOSAI, Vikesh; KREAČIĆ, Eleonora; MANI, Ganapathy; OBITAYO, Saheed; PARA-
MANAND, Deepak; RAMAN, Natraj; SOLONIN, Mikhail; SOOD, Srijan; VYETRENKO,
Svitlana; ZHU, Haibei; VELOSO, Manuela; BALCH, Tucker. Synthetic Data Applications
in Finance. 2024. Available from doi: 10.48550/arXiv.2401.00081.

87. NIKOLENKO, Sergey I. Synthetic Data for Deep Learning. 2019. Available from doi: 10.4
8550/arXiv.1909.11512.

88. PASZKE, Adam; GROSS, Sam; MASSA, Francisco; LERER, Adam; BRADBURY, James;
CHANAN, Gregory; KILLEEN, Trevor; LIN, Zeming; GIMELSHEIN, Natalia; ANTIGA,
Luca; DESMAISON, Alban; KÖPF, Andreas; YANG, Edward; DEVITO, Zach; RAISON,
Martin; TEJANI, Alykhan; CHILAMKURTHY, Sasank; STEINER, Benoit; FANG, Lu;
BAI, Junjie; CHINTALA, Soumith. PyTorch: an imperative style, high-performance deep
learning library. In: Proceedings of the 33rd International Conference on Neural Information
Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2019. Available also from:
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f701272
7740-Abstract.html.

89. MUMUNI, Alhassan; MUMUNI, Fuseini. Data augmentation: A comprehensive survey of
modern approaches. Array. 2022, vol. 16, p. 100258. issn 2590-0056. Available from doi:
10.1016/j.array.2022.100258.

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1109/JPROC.2021.3049196
https://doi.org/10.1109/JPROC.2021.3049196
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.1109/TPAMI.2022.3185773
https://proceedings.mlr.press/v116/ghorbani20a.html
https://proceedings.mlr.press/v116/ghorbani20a.html
https://doi.org/10.48550/arXiv.2401.00081
https://doi.org/10.48550/arXiv.1909.11512
https://doi.org/10.48550/arXiv.1909.11512
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.1016/j.array.2022.100258

Bibliography 52

90. WANG, Zhou; BOVIK, A.C.; SHEIKH, H.R.; SIMONCELLI, E.P. Image quality assess-
ment: from error visibility to structural similarity. IEEE Transactions on Image Processing.
2004, vol. 13, no. 4, pp. 600–612. Available from doi: 10.1109/TIP.2003.819861.

91. JOHNSON, Justin; ALAHI, Alexandre; FEI-FEI, Li. Perceptual Losses for Real-Time Style
Transfer and Super-Resolution. In: LEIBE, Bastian; MATAS, Jiri; SEBE, Nicu; WELLING,
Max (eds.). Computer Vision – ECCV 2016. Cham: Springer International Publishing, 2016,
pp. 694–711. isbn 978-3-319-46475-6. Available from doi: 10.1007/978-3-319-46475-6_4
3.

92. SIMONYAN, Karen; ZISSERMAN, Andrew. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556. 2014. Available also from: https
://arxiv.org/abs/1409.1556.

93. DENG, Jia; DONG, Wei; SOCHER, Richard; LI, Li-Jia; LI, Kai; FEI-FEI, Li. Imagenet: A
large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and
pattern recognition. IEEE, 2009, pp. 248–255. Available from doi: 10.1109/CVPR.2009.52
06848.

94. ANTOLÍK, Ján; CAGNOL, Rémy; RÓZSA, Tibor; MONIER, Cyril; FRÉGNAC, Yves;
DAVISON, Andrew P. A comprehensive data-driven model of cat primary visual cortex.
BioRxiv. 2018, p. 416156. Available from doi: 10.1101/416156.

95. BRETTE, Romain; GERSTNER, Wulfram. Adaptive exponential integrate-and-fire model
as an effective description of neuronal activity. J Neurophysiol. 2005, vol. 94, no. 5, pp. 3637–
3642. Available from doi: 10.1152/jn.00686.2005.

96. ZEILER, Matthew D.; KRISHNAN, Dilip; TAYLOR, Graham W.; FERGUS, Rob. Decon-
volutional networks. In: 2010 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. 2010, pp. 2528–2535. Available from doi: 10.1109/CVPR.2010.55399
57.

97. LOSHCHILOV, Ilya; HUTTER, Frank. Decoupled Weight Decay Regularization. In: Inter-
national Conference on Learning Representations. 2019. Available also from: https://ope
nreview.net/forum?id=Bkg6RiCqY7.

98. MORGAN, N.; BOURLARD, H. Generalization and Parameter Estimation in Feedforward
Nets: Some Experiments. In: TOURETZKY, D. (ed.). Advances in Neural Information
Processing Systems. Morgan-Kaufmann, 1989, vol. 2. Available also from: https://proce
edings.neurips.cc/paper_files/paper/1989/file/63923f49e5241343aa7acb6a06a75
1e7-Paper.pdf.

https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.1007/978-3-319-46475-6_43
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1101/416156
https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1109/CVPR.2010.5539957
https://doi.org/10.1109/CVPR.2010.5539957
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://proceedings.neurips.cc/paper_files/paper/1989/file/63923f49e5241343aa7acb6a06a751e7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/63923f49e5241343aa7acb6a06a751e7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/63923f49e5241343aa7acb6a06a751e7-Paper.pdf

List of attachments

readme.txt.................................description of the structure of the attachment
src............................directory containing the source code of the implementation
thesis...directory containing the text of the thesis

src..............directory containing the source code of this thesis in the LATEX format
thesis.pdf.. thesis text in the PDF format

53

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Modeling of neural activity
	Neuroscience behind visual processing
	Encoding neural activity
	Core
	Readout
	Most exciting inputs

	Decoding neural activity
	Encoder inversion

	Applications

	Generative adversarial networks
	Generator
	Discriminator
	Training
	Applications

	Synthetic data
	Approaches
	Simulation-based generation
	Generative AI
	Input space data augmentation

	Metrics
	Mean squared error
	Structural similarity index measure
	Perceptual loss

	Datasets
	SENSORIUM 2022 dataset
	Synthetic dataset from CNN-based encoding model

	Dataset from biologically realistic encoding model

	Methods
	CNN
	Core
	Fully connected readin
	Convolutional readin
	MEI readin
	Training

	Generative adversarial network
	Discriminator
	Generator

	Encoder matching

	Experiments
	Biologically realistic encoding model dataset
	SENSORIUM 2022 dataset
	Impact of synthetic data

	Transfer learning
	Summary of key results

	Conclusions
	Qualitative results on the SENSORIUM 2022 dataset
	Quantitative results after training on synthetic data
	List of attachments

