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Abstract

This thesis analyzes the possibility of using logic synthesis and optimization to speed
up solving satisfiability problem (SAT) instances coming from both the standard bench-
marks and different practical applications.

Logic optimization, in principle, influences an instance in two main ways: (1) it re-
duces its size, and (2) structures making the instance difficult to solve could be dissolved.
However, it is necessary to consider both times of synthesis and solving, as speed up in
solving achieved by “stronger” synthesis could be outweighed by synthesis time, leading
to an overall time increase.

The efficiency of logic synthesis and optimization was evaluated using different in-
stances and syntheses. It can both positively and negatively influence the overall time
of solving, which mostly depends on the instance size and used synthesis. Based on the
results, recommendations regarding the practical use of synthesis are made.

Keywords SAT, Boolean satisfiability, logic synthesis, logic optimization, optimum
circuit generation, ATPG

Abstrakt

Tato práce se zabývá možnost́ı využit́ı logické syntézy a optimalizace ke zrychleńı řešeńı
instanćı problému splnitelnosti (SAT) pocházej́ıćıch ze standardńıch benchmark̊u i prak-
tických aplikaćı.

Logická syntéza může v principu ovlivnit instanci dvěma zp̊usoby: (1) zmenšeńım ve-
likosti a (2) rozptýleńım struktur, které komplikovaly řešeńı p̊uvodńı instance. Nicméně
při použit́ı syntézy je nutné vźıt v potaz nejen čas řešeńı upravené instance, ale i čas
syntézy. Může se stát, že zrychleńı dosažené při řešeńı SATu bude převáženo časem
syntézy samotné.

Efektivita logické syntézy a optimalizace byla vyhodnocena na r̊uzných instanćıch a s
r̊uznými syntézami. Syntéza ovlivňuje celkový čas řešeńı pozitivně i negativně v závislosti
zejména na velikosti instance a použité syntéze. Na základě naměřených výsledk̊u jsou
popsány možnosti praktického využit́ı syntézy.

Kĺıčová slova SAT, splnitelnost Booleovských formuĺı, logická syntéza, logická opti-
malizace, generováńı optimálńıch obvod̊u, ATPG
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Introduction

The Boolean satisfiability problem (SAT) involves determining whether some variable
valuation satisfies a given formula and, if so, finding such valuation. Although this
problem is NP-complete, fast and efficient SAT solvers have been developed in the last
two decades. This development has made it possible to use these solvers in practical
areas such as artificial intelligence or circuit design.

Specifically, in circuit design, many Electronic Design Automation (EDA) tools use
SAT or its derivatives, like pseudo-Boolean optimization or Satisfiability modulo theories
(SMT). Furthermore, SAT is used for model-checking engines and the Automated Test
Pattern Generation process (ATPG). Even though SAT solvers should be efficient enough
to solve instances reasonably fast, large and difficult-to-solve instances still occur in areas
such as optimum circuit generation or ATPG.

The SAT instances are most commonly represented in a Conjunctive Normal Form
(CNF), which can be preprocessed and optimized by logic optimization tools, hoping that
the resulting SAT problem will be solved faster. Nevertheless, both time of optimization
and SAT-solving must be considered; thus, finding the optimal trade-off for minimizing
the run time is necessary.

This approach is not new; multiple studies dealing with the application of logic
synthesis in the SAT-solving process have been published [1, 2]. However, there is no
definite conclusion, as the sets of tested instances were rather limited.

This thesis focuses on experimentally evaluating three case studies in which logic
optimization could speed up SAT-solving. Based on the obtained results, we attempt
to make a conclusive recommendation for using (or not using) logic optimization in the
SAT-solving process.

Objectives

The primary goals of this thesis are the following:

Apply different logic synthesis techniques to different SAT problem instances.

Perform respective experiments and determine for what types of instances the opti-
mization reduces the overall SAT-solving time and which optimization process is the
most efficient.

1



Objectives 2

Perform the experiments using several available (open-source) SAT solvers and com-
pare the results.

In the case of positive findings (i.e., the pre-optimization reduces the overall run
time), use the obtained knowledge to optimize some existing algorithms repeatedly
calling the SAT-solver (e.g., SAT-based ATPG).



Chapter 1

Theory

In this chapter, topics and concepts used in Chapters 2 and 3 are introduced. We start by
defining the SAT problem and describing its usefulness, followed by a brief description of
algorithms for solving it. Specifics of three different implementations of these algorithms
– SAT solvers used in the following chapters are then provided.

Logic synthesis can be used to preprocess SAT instances before solving them. It
is briefly explained what it is and how it can be used specifically for SAT instance
preprocessing.

Two algorithms, where the SAT is frequently used, are presented to give an idea
of practical problems where it can be used and how the particular SAT instances are
created. These are optimum circuit generation and (SAT-based) ATPG. The influence
of logic synthesis on instances created while solving these problems is evaluated in the
following chapters.

In most cases, logic synthesis speeds up the solving of only a small number of SAT
instances (around 10–30%). One of the approaches to utilize it, despite the low rate of
improved instances, is to find a method of selecting instances that should be preprocessed
using synthesis to speed up as many instances as possible while not slowing down others.
For this purpose, machine learning models are used. An overview of different models, as
well as other aspects of machine learning, is provided.

Since the approach of using synthesis to speed up SAT-solving is not novel, the results
of two papers on this topic are shortly discussed.

1.1 Boolean Satisfiability Problem (SAT)

A Boolean formula consists of variables that can be assigned a logic value, either 0 or
1, logical connectives (¬, ∧, ∨), and parentheses determining the priority of operations.
There are other logical connectives than the presented ones (i.e., =⇒ , ⇐⇒ ); never-
theless, each formula can be rewritten to one using just ¬, ∧, and ∨. When all variables
are assigned values, the formula evaluates to either 0 or 1.

The SAT is a problem of determining whether, for a given Boolean formula, there is
such variable assignment that evaluates the formula to 1 (i.e., the formula is satisfiable)
or no such assignment exists (i.e., the formula is unsatisfiable). For a satisfiable formula,

3



Boolean Satisfiability Problem (SAT) 4

one of the satisfying variable valuations is usually reported.
The SAT problem was the first one to be proven to be NP-complete [3]. As a result

(unless P=NP), SAT solving has the worst-case exponential time complexity, as for n
variables; there are 2n possible truth assignments to be checked. On the other hand,
checking whether some variable valuation satisfies the formula can be done in polynomial
time. In practice, however, instances are usually far from the worst-case, and solvers
can solve large instances with many variables and clauses [4].

Each Boolean formula can be written in the conjunctive normal form (CNF), some-
times called the Product of Sums form. A literal is a variable or its negation; a clause
is a literal or disjunction of multiple literals; and a formula is in CNF if it is a clause or
conjunction of multiple clauses. A useful property of CNF is that in order for the formula
to be satisfied, all clauses must be satisfied; conversely, if one clause is not satisfied, the
whole formula can not be satisfied. An unsatisfied clause is called a conflicting clause.

There are usually many functionally equivalent CNF representations of a formula.
Equation 1.1 shows an example Boolean formula in CNF. This formula has multiple
satisfying assignments, one of them being a = 0, b = 1, and c = 1.

(¬a ∨ b ∨ c) ∧ (¬a ∨ c) ∧ (b ∨ ¬c) (1.1)

There are many solvers for the SAT problem (e.g., [4, 5, 6]), which can be divided
into two main groups, incomplete and complete. An incomplete solver is not guaranteed
to return an answer – it has some resource limit and either finds a solution or reports a
failure. These solvers usually specialize in finding valid solution while not attempting to
prove the formula unsatisfiable. Incomplete solvers are usually significantly faster com-
pared to complete solvers which will always find a solution or prove unsatisfiability [7].

Most solvers accept formulas written in CNF, usually in DIMACS format [8]. The
use of CNF is not limiting, as transforming a formula to CNF can be done in polynomial
time using the Tseitin transformation [9].

1.1.1 Tseitin transformation
Using naively de Morgan laws to transform a given Boolean formula to CNF can lead
to an exponential blowup in the worst case. Fortunately, using the Tseitin transforma-
tion [9], we can get an equisatisfiable (i.e., satisfiable iff the original formula is satisfiable)
formula in CNF of any Boolean formula. The resulting formula’s size is linear in the
original formula’s size and can be found in polynomial time.

We can show the steps of the transformation on the formula F .

F := (a ∧ b) =⇒ ¬(c ∨ ¬d) (1.2)

We introduce a new auxiliary variable for each subformula (everything more than just
a simple variable) and for the whole formula. We start with the simplest subformulas
and use previously created auxiliary variables to ensure that each variable is assigned
only a negation of another variable or a formula consisting of two variables joined by a
binary operation.
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x1 := a ∧ b

x2 := ¬d

x3 := c ∨ x2

x4 := ¬x3

x5 := x1 =⇒ x4

Then we put each auxiliary variable into equivalence with its formula, forming its
characteristic function.

x1 ⇐⇒ (a ∧ b)
x2 ⇐⇒ ¬d

x3 ⇐⇒ (c ∨ x2)
x4 ⇐⇒ ¬x3

x5 ⇐⇒ (x1 =⇒ x4)

We continue by modifying these equivalences (characteristic functions) using Boolean
rules until they are in CNF. Since there is a finite number of binary operations, it is
possible to prepare the CNF for each operation beforehand and then just swap the
variables for the actual ones.

x1 ⇐⇒ (a ∧ b) ≡ (x1 =⇒ (a ∧ b)) ∧ ((a ∧ b) =⇒ x1)
≡ (¬x1 ∨ (a ∧ b)) ∧ (¬a ∨ ¬b ∨ x1)
≡ (¬x1 ∨ a) ∧ (¬x1 ∨ b) ∧ (¬a ∨ ¬b ∨ x1)

x2 ⇐⇒ ¬d ≡ (x2 =⇒ ¬d) ∧ (¬d =⇒ x2)
≡ (¬x2 ∨ ¬d) ∧ (d ∨ x2)

x3 ⇐⇒ (c ∨ x2) ≡ (x3 =⇒ (c ∨ x2)) ∧ ((c ∨ x2) =⇒ x3)
≡ (¬x3 ∨ c ∨ x2) ∧ ((¬c ∧ ¬x2) ∨ x3)
≡ (¬x3 ∨ c ∨ x2) ∧ (¬c ∨ x3) ∧ (¬x2 ∨ x3)

x4 ⇐⇒ ¬x3 ≡ (x4 =⇒ ¬x3) ∧ (¬x3 =⇒ x4)
≡ (¬x4 ∨ ¬x3) ∧ (x3 ∨ x4)

x5 ⇐⇒ (x1 =⇒ x4) ≡ (x5 =⇒ (x1 =⇒ x4)) ∧ ((x1 =⇒ x4) =⇒ x5)
≡ (¬x5 ∨ ¬x1 ∨ x4) ∧ ((x1 ∧ ¬x3) ∨ x5)
≡ (¬x5 ∨ ¬x1 ∨ x4) ∧ (x1 ∨ x5) ∧ (¬x4 ∨ x5)

As all the characteristic functions must be satisfied, they are concatenated by con-
junction, forming the resulting formula FT in CNF.
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FT :=x5∧
(¬x1 ∨ a) ∧ (¬x1 ∨ b) ∧ (¬a ∨ ¬b ∨ x1)∧
(¬x2 ∨ ¬d) ∧ (d ∨ x2)∧
(¬x3 ∨ c ∨ x2) ∧ (¬c ∨ x3) ∧ (¬x2 ∨ x3)∧
(¬x4 ∨ ¬x3) ∧ (x3 ∨ x4)∧
(¬x5 ∨ ¬x1 ∨ x4) ∧ (x1 ∨ x5) ∧ (¬x4 ∨ x5)

FT is not equivalent to the original formula F . It is only equisatisfiable. Nevertheless,
if we have a variable assignment satisfying FT , by dropping auxiliary variables, we get
a variable assignment that satisfies the original formula F [10].

1.1.2 Encoding problems and practical use of SAT
Instances of many problems can be encoded in CNF and solved using a SAT solver. This
can be beneficial since SAT solvers are fast, continuously developed, and optimized. Nev-
ertheless, there are usually more strategies for encoding instances of a chosen problem,
with encoding techniques having a significant impact on the efficiency of the solver [11].

We can use a simple problem called the Pigeon-hole problem to demonstrate encoding
in CNF. This problem involves placing n+1 pigeons in n holes with, at most, one pigeon
in each hole [12]. This obviously is not possible, but it shows how a simple problem can
be transformed into the SAT.

For each pigeon i and each hole j, we create variable xi,j , which is true if pigeon
i is placed in hole j. For each of n + 1 pigeons, we create a clause that ensures that
each pigeon is placed in some hole, i.e., ∀i ∈ {1, . . . , n + 1} : ∨n

j=1 xi,j . Then, for
each hole j, we create a set of clauses allowing at most one pigeon to be present, i.e.,
∀j ∈ {1, . . . , n}; ∀i1, i2 ∈ {1, . . . , n + 1}, i1 ̸= i2 : ¬xi1,j ∨ ¬xi2,j . In the end, we have
n · (n + 1) variables and (n + 1) + n · n·(n+1)

2 clauses [12].
The development of efficient SAT solvers led to widespread use of SAT in many areas

and problem domains: “Examples include model-checking of finite-state systems, design
debugging, AI planning, and haplotype inference in bioinformatics. Additional successful
examples of practical applications of SAT include knowledge-compilation, software model
checking, software testing, package management in software distributions, checking of
pedigree consistency, test-pattern generation in digital systems, design debugging and
diagnosis, identification of functional dependencies in Boolean functions, technology-
mapping in logic synthesis, circuit delay computation, as well as the ones mentioned
above. However, this list is incomplete as the number of applications of SAT has been
on the rise in recent years.” [13]

1.2 SAT solving algorithms

In this section, two main complete SAT-solving algorithms are described. The first one,
DPLL, is not that fast and memory efficient on its own; however, it can be extended
by clause learning and backjumping (CDCL), which is described the second part of this
section. Many modern solvers use a combination of these two algorithms.
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1.2.1 DPLL algorithm
In 1960, Davis and Putnam published a two-part algorithm for predicate logic theorem
proving [14]. In the first part, a growing CNF formula is generated, while the second
tests the formula’s satisfiability. Two years later, the second part was improved by Davis,
Logemann, and Loveland in [15]. In the improved version, while testing satisfiability, the
formula is split into multiple parts, which are then evaluated separately as it significantly
improves memory efficiency.

From this, a recursive algorithm called DPLL (or DLL) is built (Code listing 1.1).
Both the pseudocode and the algorithm description are based on [16]. The DPLL function
is called with the whole formula and an empty set of variable assignments.

The process starts by deducing assignments from the current one. This is usually
done using unit clause rule1 – if all but one literal of a clause were assigned value 0, the
reminding one must be assigned value 1. In the deduction function, values of multiple
variables can be deduced as assigning value to one can result in new unit clauses. During
the deduction, if one variable should be assigned both 0 and 1 in order to satisfy different
unit clauses, a conflict arises.

If the deduction finishes without a conflict, an unassigned variable is selected and
assigned a value, and the algorithm calls itself recursively with the union of previous
variable assignments and those assigned in the current step. If the deduction results in
a conflict, the algorithm backtracks and tries different values for variables.

The algorithm ends if a satisfying variable assignment is found or if all possible
assignments are checked (in this case, the formula is unsatisfiable). It can be extended
to return a satisfying assignment as well.

Code listing 1.1 DPLL algorithm pseudocode [16]

DPLL(formula , assignment ) {
necessary = deduction (formula , assignment );
new_asgnmnt = union (necessary , assignment );
if ( is_satisfied (formula , new_asgnmnt ))

return SATISFIABLE ;
else if ( is_conflicting (formula , new_asgnmnt ))

return CONFLICT ;
var = choose_free_variable (formula , new_asgnmnt );
asgn1 = union ( new_asgnmnt , assign (var , 1));
if (DPLL(formula , asgn1 )== SATISFIABLE )

return SATISFIABLE ;
else {

asgn2 = union ( new_asgnmnt , assign (var , 0));
return DPLL(formula , asgn2 );

}
}

If we store assigned variables in the order they were assigned value, we can divide
them into groups based on the decision level. Each manual value assignment creates a

1This rule is based on “Rule for the Elimination of One-Literal Clauses” [14]. However, it differs
slightly as solvers do not eliminate variables with an assigned value, so it is an unsatisfied clause with
one unassigned literal instead of a clause with only one literal. This clause is usually called unit clause.
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new decision level, and the manually assigned variable is the first variable on the new
level. Variables assigned values before any decision are on level 0 [17].

The algorithm can be rewritten into an iterative form, using checkpoint symbols to
keep track of decision levels and to simulate the stack used in the recursive version. The
iterative version has two main benefits: (1) it avoids creating a new stack each time a
variable is manually assigned value [17], and (2) it enables non-chronological backtracking
(i.e., returns more than one decision level at once). Non-chronological backtracking is
described in the following subsection.

1.2.2 Conflict-driven clause learning (CDCL)
Conflict-driven clause learning consists of two parts: clause learning and non-chronologi-
cal backtracking. It extends and significantly improves the DPLL algorithm. It was
introduced in 1996 in GRASP solver [18] and it is used by many modern solvers [17].
This description is based on [18].

The idea of clause learning is that conflicts are inevitable and that we can learn
from the “mistakes” that led to them. If a conflict occurs, it is a result of some variable
assignments the solver chose earlier (or that the formula is unsatisfiable). As variable
assignments are either chosen by the solver or deduced from the choices (using the unit
clause rule), we can find which choices of the solver lead to the conflict and learn a
new clause from them. This clause consists of literals representing negations of variable
assignments leading to the conflict. E.g., if assignments a = 0, b = 1, and c = 1 caused
the conflict, the newly learned clause would be a ∨ ¬b ∨ ¬c.

The conflict can either result from the last chosen assignment (current decision level)
or from the previous ones (lower decision levels). In the first case, it implies the opposite
assignment of the last variable (if it has not been tried already). In the second case, the
solver can backtrack to the highest decision level on which the conflict can yet be avoided.
Multiple levels can be backtracked at once since conflict will always arise after assigning
all variables leading to it. This second case is called non-chronological backtracking and
can help to prune the search space significantly. If the solver backtracks before the first
decision, the instance is proven unsatisfiable.

These methods speed up the solving of structured instances, i.e., the instances have
some inner structure that does not depend on the instance size; industrial and real-world
instances usually do have some structure. While solving random instances, they do not
help [4].

1.3 Solvers used in the experimental part

In this section, solvers used in Chapter 2 are described. All three solvers use the CDCL
algorithm, with the main differences being strategies for selecting the variable to assign
a value to and for keeping/removing learned clauses and an approach to restarts.

The solvers are listed in order of their first appearance, from oldest to newest.

1.3.1 zChaff
zChaff was created in 2001, improved in 2004 [4], and then slightly modified in 2007 [19].
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The search procedure follows the standard conflict-driven idea utilizing backjumping.
It uses a heuristic variable selection method called Variable State Independent Sum
(VSIDS). It keeps scores for each literal of a variable, which is incremented each time a
newly learned clause contains this literal. After a fixed time period, all scores are divided
by 2. The score of a variable is greater of two associated literal scores. The variable
with the highest score is assigned value – true if a positive literal has higher VSIDS and
false otherwise.

zChaff uses methods to learn shorter clauses, which lead to faster clause propagation
and can significantly prune the search space. Usage statistics and clause length are used
to estimate its usefulness. Less useful clauses are periodically deleted.

Lastly, frequent restarts are used. After restarting, all VSIDS scores are set to 0,
and the first variable is chosen arbitrarily [4].

1.3.2 MiniSat
MiniSat is a small, efficient, and easily extendable SAT-solver. It was developed in
2003 and modified in the following years [20].

It uses a similar heuristic for selecting variables as zChaff. Each variable is as-
signed an activity value, which is increased each time it appears in a new conflict clause.
After each conflict, all activity values are multiplied by a constant smaller than 1. The
unassigned variable with the highest activity is assigned a value first.

The clauses have activity is well. When a learned clause is used in the analysis of
conflict, its activity is increased. Learned clauses with lower activity are periodically
deleted. By default, MiniSat starts with a small set of learned clauses and gradually
increases its size [5].

It also utilizes restarts to escape from hopeless parts of the search tree. The number
of conflicts leading to restart increases during solving [5].

1.3.3 Glucose
The Glucose [6] SAT-solver is based on MiniSat [5]. It was introduced in 2009 and
was significantly improved in the following years.

The main extension is a new quality measure of learned clauses called Literal Block
Distance (LBD). LBD is calculated as: “Given a clause c, and a partition of its literals
into n subsets according to the current assignment, such that literals are partitioned w.r.t
their decision level. The LBD of c is exactly n.” Practical results show LBD is a very
good indicator of learned clause usefulness [6].

To speed up clause propagation, the number of learned clauses is repeatedly halved
so that their number slightly increases each time clauses are halved. Clauses with lower
LBD are kept.

The restart policy is based on the quality of recently learned clauses, which has
proven to be efficient in practice. When restarting, learned clauses remain. Moreover, if
the solution seems to be near, the restart can be postponed.

An additional extension is parallel solving. Solvers solve the whole problem on each
CPU separately and exchange the most useful learned clauses with each other [6].
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1.4 Logic synthesis

“Logic synthesis transforms HDL code into a netlist describing the hardware (e.g., the
logic gates and the wires connecting them). The logic synthesizer might perform opti-
mizations to reduce the amount of hardware required.” [21]

A SAT instance can be seen as a circuit with one input for each variable and one
output for the whole formula. This circuit can then be optimized using logic synthesis
and transformed back to CNF using the Tseitin transformation [9] (see Subsection 1.1.1),
hoping that the resulting SAT instance will be “easier” to solve.

In the experimental part (Chapter 2), the ABC tool [22] is used for synthesis. ABC
is a public-domain tool for logic synthesis and verification. It uses And-Inverter Graphs2

(AIGs) for representing circuits. Using AIG-based optimization repeated multiple times
can be more efficient than approaches used by earlier tools while achieving the same or
better results and using less memory and runtime, thus enabling its use on much larger
circuits [23].

1.5 Optimum circuit generation

An optimum circuit is a circuit representing a given k-variable Boolean function that is
optimal in some aspect – usually has the minimum number of gates. Optimum circuits
can be used in logic synthesis, e.g., the rewriting algorithm [24] repetitively rewrites
subcircuits by their smaller, preferably optimum representations.

SAT-based method of generating the optimum circuit of a function is presented
in [25]. The described procedure is as follows: for the k-variable function, start with n =
1 and attempt to find optimum implementation using n gates by generating and solving
a corresponding SAT instance; if the instance is unsatisfiable, such implementation does
not exist, increase n by one and repeat the process; if the instance is satisfiable extract
optimum circuit structure from it.

In Section 2.3, the use of logic synthesis on SAT instances created while generating
optimum implementations of four- and five-variable functions is evaluated.

1.6 Automatic Test Pattern Generation (ATPG)

Automatic test pattern generation (ATPG) is a method of generating patterns (inputs)
for testing the presence of defects in a physical circuit. It is possible to convert an ATPG
instance into multiple SAT instances, which can then be solved by a SAT solver. If the
SAT instance is satisfiable, a test pattern is extracted from the satisfying assignment.
For unsatisfiable instances, no test pattern for the fault exists. This approach is called
SAT-based ATPG [26].

In Section 2.4, the effectiveness of logic synthesis is evaluated on SAT instances
generated by a simple SAT-based ATPG based on the original idea of Larrabee [26].

2“An And-Inverter Graph is a directed acyclic graph (DAG), in which a node has either 0 or 2
incoming edges. A node with no incoming edges is a primary input (PI). A node with 2 incoming edges
is a two-input AND gate. An edge is either complemented or not. A complemented edge indicates the
inversion of the signal.” [23]
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This approach generates conceptual hardware (miter) by XORing the fault-free and
faulty circuit. This miter is then converted to a CNF by the Tseitin transformation [9]
(see Subsection 1.1.1), and a test vector is generated as a satisfiability proof.

1.7 Machine learning models and related topics used in
evaluating practical use of synthesis

In this section, machine learning (ML) models and related topics used in Chapter 3 are
described. All described models are from the part of ML called supervised learning.
This means that the desired outcomes are known. The opposite of supervised learning
is unsupervised, where we do not know the outcomes, and the goal is to understand the
structure of the data or some aspects of it [27].

In supervised learning, models are trained on many pairs of data–annotation to
predict some target value (e.g., predict a digit from an image consisting of pixel data).
The ability of the model is evaluated using some metric (e.g., ratio of correctly predicted
digits). The goal is generalization – to create a model performing as well as possible on
previously unseen data [27].

The two most common ML tasks are classification and regression. In classification,
the model predicts one of multiple classes, while in regression, a real (continuous) value
is predicted. Some models can be used for both tasks only with small modifications,
while others can only be used for one of them.

1.7.1 Model training and evaluation
There are two main methods of using data for training and evaluating models. The
simpler one divides the dataset into three parts: training, development, and test sets.
Models are trained on the training set. The development set is used to compare different
models and hyperparameters and to select the best one, and the test set is used to
evaluate the best model’s generalization ability (i.e., the ability to predict on previously
unseen data). This approach is used in most cases; however, if the dataset is small, it
might be better to use cross-validation [28].

The basic method of cross-validation is k-fold cross-validation, which divides the
data into k similarly sized parts. Then k models are trained and evaluated. Each one
is trained on k − 1 parts of the data and evaluated on the remaining one (each part is
used for evaluation only once). The results of the model on the evaluation parts are then
averaged together [28].

There are two approaches to selecting the best model using cross-validation. Firstly,
the data can be divided into two sets: a training set and a test set. The best model
is selected using cross-validation on the training set, and its generalization ability is
evaluated on the test set. Secondly, if we do not want to divide the test set, we can use
nested cross-validation to select the best model and evaluate it. An inner cross-validation
is used to select the best model, and the outer is used to evaluate it. The average of
evaluation results on outer cross-validation is then returned [29].
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1.7.2 Linear regression
Linear regression is one of the simplest models in machine learning. It is used for
regression. It models linear relation between the data and targets. Interestingly, an
exact formula for calculating weights of the model exists: for data X ∈ Rm,n (m samples
of n features) and targets Y ∈ Rm,1, weights of the model are w = (XT X)−1XT Y .
Prediction for a point x is then just Ŷ = xT w [30].

The power of this simple model can be extended by using some non-linear transfor-
mations (power, log, sin) of the features. It can also be limited by penalizing the size of
model weights – preferring smaller and simpler models [30].

1.7.3 Logistic regression
Logistic regression is a modification of linear regression used for binary classification.
This model predicts a real number, which is then mapped into [0, 1] interval using the
sigmoid function, σ(x) = ex

1+ex . This number is then interpreted as the probability of
one of the classes, the probability of the other class is complementar [31].

Contrary to linear regression, there is no exact formula for calculating the model’s
weights, so they are found using numerical methods (e.g., using gradient descent) [31].

1.7.4 Naive Bayes
Naive Bayes is a classification model that chooses a different approach than other models
described in this section. Instead of predicting the probability of a class given some data
(i.e., p(Ck|x)), using Bayes’ theorem, it models data distribution for each class, and
in combination with the probability of each class, it predicts the most likely one (i.e.,
arg maxk p(x|Ck)p(Ck)). Since modeling p(x|Ck) is difficult, naive Bayes assumes all
features to be independent so that p(x|Ck) = ∏n

d=1 p(xd|Ck) which can be modeled
easier [32].

The distribution of each feature is modeled for each class independently. Normal,
Bernoulli or multinomial distributions can be used for this purpose; the parameters of
each distribution are calculated from data with the corresponding class. By choosing
one of the distributions, we assume that features are from that distribution [32].

1.7.5 K-nearest neighbours
K-nearest neighbors is a simple model that can be used for both classification and re-
gression. As is written in the name, it uses the nearest neighbors of a point to predict
its value [32].

Its training is trivial – the training data are the model, and the training targets
are the values of each training sample. Nevertheless, it has multiple hyperparameters
that influence the model’s predictions. The main ones are the number of neighbors used
for predicting, metrics used for measuring distance, and weights of the neighbors (e.g.,
uniform or inverse to the distance) [32].

During prediction, k nearest neighbors of the given point are found. In the case
of classification, the weights of neighbors are summed for each class separately, and the
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class with the highest sum is chosen. In regression, the prediction is the weighted average
of the neighbors [32].

1.7.6 Decision tree
The decision tree divides the feature space into smaller parts, and each part is then
handled separately. The model is a binary tree with internal nodes splitting data into
two parts based on a simple condition on one of the features, e.g., x3 ≤ 10. The leaves
are used for predicting: in classification, the majority class of leaf samples is predicted;
in regression, prediction is the average of the samples [33].

Prediction of a decision tree is just following the path from the root to a leaf; if the
condition in the node is met, go to the left node; otherwise, to the right one. An example
of decision tree is in Figure 1.1; for x = (1, 20)T model would predict class 1 [33].

If the tree had unlimited depth, it would be an index of the data. Since this is usually
not wanted, hyperparameters such as maximum depth, minimum samples to split, or
maximum number of leaf nodes are used [33].

x2 ≤ 10

x1 ≤ 0

class 0 class 1

x1 ≤ 15

class 1 class 0

Figure 1.1 Example of decision tree for binary classification

1.7.7 Random forest
Random forest consists of a collection of decision trees and combines their predictions –
majority voting for classification, and an average for regression [33]. The idea is that by
aggregating the results of many (smaller) models, the error will be smaller than of each
individual model [34]. It can be used for both classification and regression.

During training, each tree is usually trained on a bootstrapped dataset in order to
create diverse trees. The main hyperparameters are the number of trees in the model
and the parameters of the trees [33].

1.7.8 Gradient boosting decision trees
The gradient boosting decision trees uses a collection of decision trees similarly to random
forest. However, in this case, models are trained sequentially and new trees attempt to
correct errors of the previous ones. This model can be used for both classification and
regression [35].

As with the random forest, the main hyperparameters are the number of trees in the
model and the parameters of the trees.
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1.7.9 Data preprocessing (feature normalization)
In some cases, it is beneficial for features to have similar sizes. E.g., when using k-nearest
neighbors, if one feature is in thousands while the other is between zero and one, the
smaller one will have almost no impact on which points are the nearest neighbors.

In order to train and use the model on values of features that have similar sizes, data
can be preprocessed. Two commonly used methods are:

Normalization – scaling all features to [0, 1] interval using: xnorm
i,j = xi,j−minkxk,j

maxkxk,j−minkxk,j

Standardization – scaling all features to have zero mean and standard deviation of
one using: xstandard

i,j = xi,j−µ̂j

σ̂j

1.8 Usage of logic synthesis in SAT-solving

Using synthesis to speed up SAT-solving is not a novel idea. It has already been explored
by [1] and [2]. However, only a limited number of instances were tested in both studies.

The first study presents results of using synthesis for preprocessing integer factoriza-
tion problem3, which is hard for a SAT solver. For synthesis, SIS tool [36] (predecessor
of ABC [23]) is used and zChaff solved the instances. The paper presents the results
of ten instances solved without preprocessing and with preprocessed using the simplify
synthesis algorithm. On unsatisfiable instances (factorization of a prime is attempted),
significant speedup was measured, while on the satisfiable ones (factorization exists),
solving with synthesis led to worse results [1].

The second paper is from the authors of MiniSat solver and ABC synthesis tool. Two
approaches DAG-aware circuit compression and technology mapping for lookup-table
(LUT) based FPGAs are explored with the use of MiniSat solver. In total, 30 hard SAT
instances consisting of hard industrial instances and those from SAT-Race 2006 were
tested. Applying both techniques led to a 5x speedup (does not include synthesis time)
when solving hard industrial instances. In the case of SAT Race instances, synthesis
sped up some of them while slowing down others [2].

This thesis intends to explore this topic further by analyzing the influence of logic
synthesis on the solving time of a larger number of instances (benchmark as well as
practical ones) using multiple currently available solvers (MiniSat, zChaff, Glucose)
and ABC logic synthesis tool. In cases where synthesis led to speedup, the possibility of
effective use in practice is also analyzed.

3Given an integer x find its factors p and q greater than 1, such that x = p · q.



Chapter 2

Experiments

In this chapter, three case studies are evaluated: applying logic optimization to SAT
instances obtained from (1) standard satisfiability benchmarks (SATLIB) [37], (2) in-
stances obtained from SAT-based optimum circuits generator [25], and (3) SAT-ATPG
instances. The influence of different logic optimization processes on the overall run-time
is studied.

2.1 Experimental Setup

Experiments were run on an Intel Xeon Gold 5218 (2.30GHz) processor with 4 GB of
memory running Debian 11 or Debian 12. All solvers were run using one CPU core,
and Glucose was run on four CPU cores as well. For practical reasons, the solvers had
a time limit of 2000 seconds (real-time); the solving was terminated if an instance was
not solved within the limit. The solvers are in the text referred to using their names;
in the case of Glucose, the results using one CPU core are referred to as Glucose
or, in some cases, Glucose (one CPU), and four CPU cores results are referred to
as “Glucose (4CPU)” or “Gl. 4cpu” in tables. All time values are CPU time unless
specified otherwise.

Logic synthesis was done using ABC 1.01 [22]. Glucose-syrup 4.2.1 [6], zChaff
2007.3.12 [4], and MiniSat 2.2 [5] solvers solved the SAT instances.

As for the logic synthesis and optimization, the following ABC scripts were used,
and they will be referred to in the subsequent text as follows:

Just a simple conversion to an AND-inverter-graph (AIG) [22], without any opti-
mization: st:
strash;

A simple technology-independent optimization, with different efforts: st-re2-[1, 2,
3]x; the whole script repeated x times:
strash; resyn2;

A powerful optimization and mapping into 2-input gates, with different efforts: 2-
gate-[1, 5, 10, 15]x; the part between get and put (first and last command) repeated
x times:

15
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&get -n; &st; &synch2; &if -m -a -K 2; &mfs -W 10; &st; &dch;
&if -m -a -K 2; &mfs -W 10; &put;

A powerful optimization and mapping into 6-input LUTs, with different efforts: 6-
LUT-[1, 5, 10, 15]x; the part between get and put (first and last command) repeated
x times:
&get -n; &st; &synch2; &if -m -a -K 6; &mfs -W 10; &st; &dch;
&if -m -a -K 6; &mfs -W 10; &put;

In experiments where a SAT instance in CNF was the source (i.e., Section 2.2 and
2.3), the CNF had to be transformed to a format accepted by ABC – the BLIF [38] and
then, after the optimization, converted back to the CNF. The first conversion involved
rewriting the CNF to a two-level network of a product of sums. The Tseitin transfor-
mation did the latter conversion [9] (see Subsection 1.1.1). An in-house tool was used
for this purpose.

In the case of SAT solving with synthesis, only the synthesis time and subsequent
SAT solving time are considered and compared to solving without synthesis. The time
of file conversion from CNF to BLIF and back is not taken into account, as the tool used
them is not optimized for speed.

2.2 SATLIB benchmark instances

The SATLIB benchmark [37] offers a number of randomly generated hard 3-SAT in-
stances, i.e., instances with the ratio of clauses to variables near 4.3 [39] and many other
instances from different problem domains.

From available categories, only those with instances that took longer time to solve
were selected. Those are uniform Random-3-SAT instances with the numbers of variables
and clauses equal to 200-860, 225-960, and 250-1065, as well as SAT-encoded Quasigroup
(Latin square) instances and Pigeon-hole problem instances.

2.2.1 Synthesis influence on CNF properties
Tables 2.9, 2.10, and 2.11 show how the synthesis and Tseitin transformation influenced
the number of variables, number of clauses, and their ratio, respectively. Interestingly,
many unsatisfiable instances from the first group of instances were transformed into
trivial ones (i.e., for variable a, the CNF would be a∧¬a). The numbers of such instances
are in Table 2.12. It happened mostly with 6-LUT-[1, 5, 10, 15]x syntheses and in the
case of Quasigroup and Pigeon-hole instances with 2-gate-[1, 5, 10, 15]x synthesis as
well. Repeating the synthesis script led to higher numbers of trivial instances. With
the increasing complexity of uniform Random-3-SAT instances, the number of trivial
instances decreases as the instances were probably too complex for synthesis to “solve”
them.

If the trivial instances are left out, the average number of clauses increased signifi-
cantly for almost all syntheses, with the exception of 6-LUT-[5, 10, 15]x syntheses on
the smallest uniform Random-3-SAT instances, and Pigeon-hole instances with 2-gate-
[5, 10, 15]x and 6-LUT-[1, 5, 10, 15]x syntheses, which were all transformed into trivial
ones.
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Similarly, if the trivial instances are left out, the use of all syntheses led to a significant
increase in the average number of variables, of course, with the exception of cases where
all instances are transformed into trivial ones.

The more complex syntheses or their repetitions (2-gate-[1, 5, 10, 15]x and 6-LUT-[1,
5, 10, 15]x) led to a lower number of variables and clauses compared to other synthesis
or less repetitions of the same script.

Although the number of clauses and variables mostly increased, their ratios usually
decreased. In the case of uniform Random-3-SAT, with all syntheses except 6-LUT-[1, 5,
10, 15]x, the ratio changed from 4.3 to 2.7–2.8 with negligible standard deviations. With
6-LUT-[1, 5, 10, 15]x syntheses, the ratio gradually increases as the 3-SAT instances
get larger; this happens even if trivial instances are left out.

The original clause-to-variable ratio of Quasigroup instances of 74.1±85.3 decreased
with all syntheses significantly to 2.8–6.7 and a much lower standard deviation as well
(at most 2.2). Lastly, Pigeon-hole instances clause-to-variable was originally 4.1, and in
cases where resulting instances were not trivial ones, the ratio was, on average, around
2.1–2.7.

Table 2.1 SATLIB benchmark: influence of logic synthesis on the number of variables

Problem type 3-SAT 200-860 3-SAT 225-960 3-SAT 250-1065 Quasigroup Pigeon-hole
# instances 1991 200 200 22 5
Original 200.0 225.0 250.0 1043.2 ± 574.3 74.0 ± 26.9
st 2772.3 ± 2.6 3097.1 ± 2.4 3437.0 ± 2.8 161177.4 ± 123534.2 773.0 ± 391.3
st-re2-1x 2716.1 ± 7.7 3039.4 ± 8.2 3373.0 ± 8.3 101578.3 ± 64170.8 467.0 ± 197.8
st-re2-2x 2699.3 ± 11.7 3021.1 ± 11.0 3344.3 ± 11.1 100150.1 ± 63138.6 459.0 ± 195.2
st-re2-3x 2687.0 ± 16.6 3005.2 ± 14.8 3319.3 ± 13.9 99692.7 ± 62791.3 456.0 ± 197.6
2-gate-1x 2678.9 ± 8.3 3004.4 ± 8.8 3339.6 ± 8.8 93769.2 ± 71918.8 148.2 ± 329.1
2-gate-5x 2529.7 ± 12.0 2846.6 ± 11.9 3163.0 ± 11.8 91215.3 ± 70761.6 1.0
2-gate-10x 2423.3 ± 11.5 2730.0 ± 11.6 3030.7 ± 12.0 90210.6 ± 70434.0 1.0
2-gate-15x 2361.7 ± 9.9 2661.1 ± 10.6 2950.2 ± 11.0 82938.0 ± 74727.9 1.0
6-LUT-1x 180.2 ± 194.5 601.4 ± 315.2 901.2 ± 90.8 25146.9 ± 20706.8 1.0
6-LUT-5x 159.5 ± 168.6 471.6 ± 314.2 842.1 ± 176.9 23854.3 ± 21167.3 1.0
6-LUT-10x 157.1 ± 165.2 379.2 ± 302.4 791.6 ± 222.1 23646.9 ± 21018.6 1.0
6-LUT-15x 156.1 ± 163.7 354.4 ± 292.4 754.2 ± 252.3 22748.1 ± 21415.0 1.0

2.2.2 Synthesis influence on solving time
As tested instances had the upper time limit of 2000 seconds for the SAT-solver (see Sec-
tion 2.1), some of them were not solved within the limit; if so, the process was terminated.
Table 2.5 shows the numbers of instances of each combination of finished/terminated and
with synthesis / without synthesis.

Table 2.6 shows ratios of instances whose time of solving improved after using logic
synthesis. If an instance was solved both with and without synthesis, improvement
was achieved only if the time of solving with synthesis (synthesis + SAT-solving) was
smaller than solving without synthesis (only SAT-solving). If some instance was solved

1This is not a mistake, in the benchmark instances archive are only 99 unsatisfiable instances in this
category
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Table 2.2 SATLIB benchmark: influence of logic synthesis on the number of clauses

Problem type 3-SAT 200-860 3-SAT 225-960 3-SAT 250-1065 Quasigroup Pigeon-hole
# instances 199 200 200 22 5
Original 860.0 960.0 1065.0 58469.7 ± 42171.1 322.0 ± 170.3
st 7717.8 ± 7.7 8617.3 ± 7.3 9562.0 ± 8.3 480403.7 ± 370199.3 2098.0 ± 1093.2
st-re2-1x 7549.4 ± 23.0 8444.3 ± 24.7 9369.9 ± 24.8 301606.4 ± 191564.8 1180.0 ± 512.6
st-re2-2x 7498.9 ± 35.2 8389.4 ± 33.0 9283.8 ± 33.3 297321.9 ± 188461.8 1156.0 ± 505.0
st-re2-3x 7462.0 ± 49.7 8341.7 ± 44.4 9208.9 ± 41.8 295949.6 ± 187414.9 1147.0 ± 512.0
2-gate-1x 7437.7 ± 25.0 8339.1 ± 26.3 9269.7 ± 26.5 281540.3 ± 216567.1 378.0 ± 840.8
2-gate-5x 6990.0 ± 36.1 7865.8 ± 35.8 8740.0 ± 35.4 274069.4 ± 213224.6 2.0
2-gate-10x 6670.9 ± 34.6 7516.1 ± 34.7 8343.2 ± 35.9 271034.2 ± 212256.6 2.0
2-gate-15x 6486.2 ± 29.8 7309.4 ± 31.8 8101.7 ± 32.9 248910.7 ± 225150.1 2.0
6-LUT-1x 539.6 ± 891.5 3750.8 ± 2330.6 6205.7 ± 638.1 180036.6 ± 141421.9 2.0
6-LUT-5x 411.9 ± 615.6 2549.4 ± 2078.0 5257.1 ± 1143.7 170474.2 ± 145506.0 2.0
6-LUT-10x 392.0 ± 575.8 1779.9 ± 1798.7 4569.4 ± 1377.3 168269.8 ± 144417.7 2.0
6-LUT-15x 384.5 ± 560.4 1569.9 ± 1656.3 4183.8 ± 1497.8 160829.6 ± 147639.6 2.0

Table 2.3 SATLIB benchmark: influence of logic synthesis on the clause-variable ratio

Problem type 3-SAT 200-860 3-SAT 225-960 3-SAT 250-1065 Quasigroup Pigeon-hole
# instances 199 200 200 22 5
Original 4.3 4.3 4.3 74.1 ± 85.3 4.1 ± 0.8
st 2.8 2.8 2.8 3.0 2.7
st-re2-1x 2.8 2.8 2.8 3.0 2.5
st-re2-2x 2.8 2.8 2.8 3.0 2.5
st-re2-3x 2.8 2.8 2.8 3.0 2.5
2-gate-1x 2.8 2.8 2.8 2.9 ± 0.3 2.1 ± 0.2
2-gate-5x 2.8 2.8 2.8 2.9 ± 0.3 2.0
2-gate-10x 2.8 2.8 2.8 2.9 ± 0.3 2.0
2-gate-15x 2.7 2.7 2.7 2.8 ± 0.4 2.0
6-LUT-1x 2.3 ± 1.0 5.2 ± 2.1 6.8 ± 0.5 6.7 ± 1.7 2.0
6-LUT-5x 2.2 ± 0.8 4.2 ± 1.9 6.1 ± 0.9 6.3 ± 2.1 2.0
6-LUT-10x 2.1 ± 0.7 3.5 ± 1.7 5.5 ± 1.1 6.2 ± 2.1 2.0
6-LUT-15x 2.1 ± 0.7 3.3 ± 1.6 5.2 ± 1.2 5.9 ± 2.2 2.0

with synthesis but not without it, it is considered to be sped up as well. However, if
the time of solving with synthesis (synthesis + SAT-solving) is above the time limit for
the SAT solver (2000 real-time seconds (corresponds to 8000 CPU seconds for Glucose
(4CPU))). It cannot be decided whether the solving was sped up; in such case, the ratio
of improved instances is presented as a range. Instances that were solved neither with
nor without synthesis are left out.

The influence of synthesis on the solving time is shown in Table 2.7 and 2.8. The
percentage changes are calculated based on instances that were finished both with and
without synthesis within the time limit. The number of such instances is the first value of
the corresponding cell in Table 2.5. This approach results in possibly different instances
being used for calculating the percentage changes for different combinations of solver and
synthesis, which, in some cases, causes worse comparability if many instances are left
out. We chose this approach as the number of instances that were solved by all solvers
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Table 2.4 SATLIB benchmark: numbers of unsatisfiable instances which were transformed
by synthesis into trivial ones (i.e., for variable a, the CNF would be a ∧ ¬a)

Problem type 3-SAT 200-860 3-SAT 225-960 3-SAT 250-1065 Quasigroup Pigeon-hole
# UNSAT instances 99 100 100 12 5
st 0 0 0 0 0
st-re2-1x 0 0 0 0 0
st-re2-2x 0 0 0 0 0
st-re2-3x 0 0 0 0 0
2-gate-1x 0 0 0 2 4
2-gate-5x 0 0 0 2 5
2-gate-10x 0 0 0 2 5
2-gate-15x 0 0 0 4 5
6-LUT-1x 97 37 2 2 5
6-LUT-5x 99 50 8 4 5
6-LUT-10x 99 64 13 4 5
6-LUT-15x 99 67 18 5 5

without synthesis and with all syntheses would sometimes be rather limited. Moreover,
the main goal of this thesis is to evaluate the improvements achievable by synthesis, and
this approach allows for individual results to be more precise as they are based on more
instances.

Likewise, the average time shown in each column can be compared between solvers
only if all instances (or most of them) were solved without synthesis. If some instances
are left out (due to not being solved within the time limit), the real average time would
be much higher than the presented one. Therefore, it usually offers only a rough idea
about the solving time to which the percentage changes can be related. In case all
instances were solved, which is for benchmark instances mostly true, all values are exact
and can be compared easily.

In many cases, the average time of solving for different solvers in one category varies
greatly. This, even with approximate results, means that a large potential improvement
of using some synthesis would not usually be useful in practice as using the fastest solver
(even without any synthesis) would result in a faster time.

The values in Table 2.7 are calculated using Equation 2.1 where (nosyn, syn) are
pairs of solving time without synthesis (only SAT-solving of the original instance) and
with synthesis (synthesis + SAT-solving). The values show how the original total time
would change if synthesis were used only on instances when it decreased the overall time
of solving that instance and others were solved without it. These values show how large
improvement can be potentially achieved with each synthesis script on tested instances.
On its own, it does not reflect any practical application. However, for synthesis to have
practical use, a (high) potential decrease in solving time is a necessary condition. In the
following paragraphs, mainly, this potential improvement is discussed.∑

(time,syn) min{time, syn}∑
(time,syn) time

− 1 (2.1)

Table 2.8 presents how the solving time would be influenced by always using synthesis.
In the category of smallest uniform Random-3-SAT instances (3-SAT 200-860), all
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instances were solved within the time limit. Most or all unsatisfiable instances were
transformed into trivial ones by 6-LUT-[1, 5, 10, 15]x syntheses. From all solvers,
MiniSat had the lowest average time of 0.1 seconds with no noteworthy improvement
achieved with synthesis. zChaff had a slightly higher average time of 0.7 seconds, with
no meaningful results of solving with synthesis as well. Glucose had an even higher
average time of 4.4 seconds. On the other hand, 6-LUT-[1, 5, 10, 15]x syntheses all
sped up 36.7% of instances with potential time decrease around 64%. Lastly, Glucose
(4CPU) had the highest average time of 5.9 seconds. The highest ratio of instances
(51.3%) was improved by st synthesis. Nevertheless, the biggest potential improvement
slightly above 50% was achieved by 6-LUT-[1, 5, 10, 15]x syntheses, which sped up
47.2% of instances.

All of the middle-sized uniform Random-3-SAT instances (3-SAT 225-960) were
solved within the time limit as well. Between third and two-thirds of the unsatisfi-
able instances were transformed into trivial ones by 6-LUT-[1, 5, 10, 15]x syntheses,
with more repetitions resulting in more trivial instances. MiniSat and zChaff results
are similar to the previous category. They had the lowest average times of 0.6 and 2.9,
respectively, while achieving none or insignificant improvements using synthesis. Glu-
cose and Glucose (4CPU) had average times of 19.2 and 17.5 seconds. Potential
improvements were much higher than with other solvers, around or slightly above 20%
with st and st-re2-[1, 2, 3]x syntheses. Glucose sped up 39.5%–45.5 of instances with
these syntheses and Glucose (4CPU) 52.0%–53.5% of them.

From the largest uniform Random-3-SAT instances (3-SAT 250-1065), with zChaff
solver, some instances were solved within the time limit only without the synthesis (rang-
ing from low units to just under a quarter of instances). Other solvers solved all instances
within the limit. Only a small number of instances were transformed into trivial ones,
most being 13 and 18 (from 100 unsatisfiable instances) with 6-LUT-[10, 15]x syntheses.
As in previous cases, both MiniSat and zChaff had the lowest average times of 2.7 and
16.6 seconds, respectively, and they did not achieve any significant improvement in com-
bination with any synthesis. On the contrary, some instances transformed by synthesis
were not solved by zChaff within the time limit. Glucose and Glucose (4CPU)
had average times of 61.5 and 53.5 seconds. Potential improvements were around 20%
with st and st-re2-[1, 2, 3]x syntheses (almost the same as in the middle-sized 3-SAT
instances category). The ratio of improved instances was a bit higher, 45.5%–55.0 with
Glucose and 54.0%–58.0% with Glucose (4CPU).

When solving Quasigroup instances, all instances were solved within the time limit,
and some of them were transformed into trivial ones. The MiniSat solver was the
fastest, with an average of 0.3 seconds, followed by zChaff with 2.6 seconds. Both
solvers achieved no potential improvement at all. Slightly slower than zChaff was
Glucose (4CPU), with an average time of 2.9 seconds. It achieved small potential
improvements of 0.9% and 4.8% with st and st-re2-1x syntheses, respectively, in both
cases improving 4.5% of instances. These were the only improvements achieved by
synthesis on this category of instances. The slowest of all solvers was Glucose, with
an average time of 3.5 seconds.

Pigeon-hole problem instances were all solved within the time limit with the exception
of one instance with Glucose solver, which was solved only with synthesis. Interestingly,
2-gate-[5, 10, 15]x as well as 6-LUT-[1, 5, 10, 15]x syntheses transformed all 5 instances
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into trivial ones. Without synthesis, the fastest solver was zChaff, which was not
sped up by synthesis at all. The second one was MiniSat. In this case, synthesis
helped significantly: st decreased the time of solving by 99.1% and sped up four out
of five instances, achieving time slightly above one-third of zChaff time; st-re2-[1, 2,
3]x decreased the time by 98.1%–98.3%, still achieving times bellow the zChaff time
and speeding up three instances. The use of these syntheses led only to easier-to-solve
instances but not to the trivial ones.

When solving Pigeon-hole instances, Glucose and Glucose (4CPU) were the slow-
est, with averages of 44.6 and 359.7 seconds, respectively. Even though it seems that the
4 CPU variant was much slower, Glucose (one CPU) did not finish in time one of the in-
stances, which, therefore, is neither part of the average time nor potential improvement
percentages. Glucose (4CPU) did solve that instance within 1658.7 seconds, which
caused the results to look worse at first glance. Without it, the average time would
be 35.0 seconds, and potential improvements achieved by syntheses would be similar to
Glucose (one CPU). Nevertheless, on current results, the largest potential improve-
ments of 98.9% were achieved by Glucose solver with 2-gate-[1, 5, 10, 15]x syntheses
and by Glucose (4CPU) 96.1%–96.2% with 6-LUT-[1, 5, 10, 15]x syntheses. With
these syntheses, the solving time of four or all five instances was decreased.

Always using synthesis would, in most cases, significantly increase the solving time
of uniform Random-3-SAT instances. The time increase for MiniSat was always above
+100%, but in many cases, in thousands of percent. For zChaff, increases were always
above +1000% percent. Nevertheless, Glucose and Glucose (4CPU) with st and st-
re2-[1, 2, 3]x syntheses achieved in some cases small decreases, up to 7.1% for Glucose
and 9.4% for Glucose (4CPU). On the medium and large instances, Glucose (4 CPU)
with st-re2-1x synthesis would achieve small improvements of 6% and 9.4%, respectively.

The time of solving Quasigroup instances was never improved by synthesis if used
always. This is not surprising as the only cases with any potential improvements were
Glucose (4CPU) with st and st-re2-1x syntheses. The increase, resulting from using
synthesis always, was always above +100%, but in most cases, in thousands of percent.

Contrary to other categories, results on Pigeon-hole instances were mostly the same
as when calculating potential improvements. This is because the solving time with
synthesis was in four or all five cases smaller than the solving time without synthesis,
so there is a slight or no difference in the calculation. Overall, the best results in this
category were still achieved by MiniSat with st syntheses.

To sum up, MiniSat, without any synthesis, achieved the best results when solving
uniform Random-3-SAT and Quasigroup instances. No combination of any other solver
and synthesis had the potential to achieve better results. Using MiniSat with any
synthesis would be most likely decremental as the potential improvements are very low
or none, and using synthesis for all instances significantly increases the solving time (i.e.,
selecting instances to run with synthesis would have to be very precise). Pigeon-hole
instances solving time was improved by many syntheses, but the fastest combination
was MiniSat with st synthesis.
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Table 2.5 SATLIB benchmarks: separated by slashes are the numbers of instances (1) which were solved in 2000 seconds (real-time), both
with and without synthesis, (2) which were solved in 2000 seconds (real-time) with synthesis but not without it, (3) which were solved in 2000
seconds (real-time) without synthesis but not with it, (4) which were solved in 2000 seconds (real-time) neither with nor without synthesis. In
case values (2), (3), and (4) are all zeroes, they are omitted.

Problem type 3-SAT 200-860 3-SAT 225-960 3-SAT 250-1065 Quasigroup Pigeon-hole
Solver MiniSat zChaff Glucose Gl. 4cpu MiniSat zChaff Glucose Gl. 4cpu MiniSat zChaff Glucose Gl. 4cpu MiniSat zChaff Glucose Gl. 4cpu MiniSat zChaff Glucose Gl. 4cpu

st 199 199 199 199 200 200 200 200 200 174/0/26/0 200 200 22 22 22 22 5 5 4/1/0/0 5
st-re2-1x 199 199 199 199 200 200 200 200 200 174/0/26/0 200 200 22 22 22 22 5 5 4/1/0/0 5
st-re2-2x 199 199 199 199 200 200 200 200 200 174/0/26/0 200 200 22 22 22 22 5 5 4/1/0/0 5
st-re2-3x 199 199 199 199 200 200 200 200 200 171/0/29/0 200 200 22 22 22 22 5 5 4/1/0/0 5
2-gate-1x 199 199 199 199 200 200 200 200 200 167/0/33/0 200 200 22 22 22 22 5 5 4/1/0/0 5
2-gate-5x 199 199 199 199 200 200 200 200 200 160/0/40/0 200 200 22 22 22 22 5 5 4/1/0/0 5
2-gate-10x 199 199 199 199 200 200 200 200 200 152/0/48/0 200 200 22 22 22 22 5 5 4/1/0/0 5
2-gate-15x 199 199 199 199 200 200 200 200 200 154/0/46/0 200 200 22 22 22 22 5 5 4/1/0/0 5
6-LUT-1x 199 199 199 199 200 200 200 200 200 198/0/2/0 200 200 22 22 22 22 5 5 4/1/0/0 5
6-LUT-5x 199 199 199 199 200 200 200 200 200 195/0/5/0 200 200 22 22 22 22 5 5 4/1/0/0 5
6-LUT-10x 199 199 199 199 200 200 200 200 200 197/0/3/0 200 200 22 22 22 22 5 5 4/1/0/0 5
6-LUT-15x 199 199 199 199 200 200 200 200 200 196/0/4/0 200 200 22 22 22 22 5 5 4/1/0/0 5
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Table 2.6 SATLIB benchmarks: the ratio of instances whose time of solving decreased after using the synthesis preprocessing. Instances that
were solved neither with nor without synthesis are left out.

Problem type 3-SAT 200-860 3-SAT 225-960 3-SAT 250-1065 Quasigroup Pigeon-hole
Solver MiniSat zChaff Glucose Gl. 4cpu MiniSat zChaff Glucose Gl. 4cpu MiniSat zChaff Glucose Gl. 4cpu MiniSat zChaff Glucose Gl. 4cpu MiniSat zChaff Glucose Gl. 4cpu

st 0.5% 6.0% 26.6% 51.3% 6.0% 3.0% 39.5% 53.5% 7.5% 4.0% 55.0% 54.0% 0.0% 0.0% 0.0% 4.5% 80.0% 0.0% 60.0% 80.0%
st-re2-1x 0.0% 3.0% 26.6% 50.8% 3.0% 3.0% 45.0% 53.0% 10.5% 3.0% 49.0% 58.0% 0.0% 0.0% 0.0% 4.5% 60.0% 0.0% 80.0% 60.0%
st-re2-2x 0.0% 2.5% 24.1% 47.7% 2.0% 2.0% 42.0% 52.5% 6.5% 1.0% 45.5% 58.0% 0.0% 0.0% 0.0% 0.0% 60.0% 0.0% 60.0% 60.0%
st-re2-3x 0.0% 2.5% 27.1% 47.2% 2.5% 2.0% 40.5% 52.0% 4.0% 2.0% 50.5% 55.5% 0.0% 0.0% 0.0% 0.0% 60.0% 0.0% 40.0% 60.0%
2-gate-1x 0.0% 0.0% 10.1% 17.1% 0.0% 0.0% 28.5% 28.5% 0.0% 1.0% 40.5% 45.5% 0.0% 0.0% 0.0% 0.0% 20.0% 0.0% 80.0% 100.0%
2-gate-5x 0.0% 0.0% 0.0% 1.5% 0.0% 0.0% 13.0% 12.0% 0.0% 0.0% 20.5% 26.5% 0.0% 0.0% 0.0% 0.0% 20.0% 0.0% 80.0% 80.0%
2-gate-10x 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2.0% 2.0% 0.0% 0.0% 11.0% 11.5% 0.0% 0.0% 0.0% 0.0% 20.0% 0.0% 80.0% 80.0%
2-gate-15x 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.5% 0.0% 0.0% 0.0% 7.5% 11.5% 0.0% 0.0% 0.0% 0.0% 20.0% 0.0% 80.0% 80.0%
6-LUT-1x 0.0% 3.5% 36.7% 47.2% 0.0% 2.0% 9.0% 9.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 20.0% 0.0% 80.0% 100.0%
6-LUT-5x 0.0% 3.5% 36.7% 47.2% 0.0% 2.0% 9.0% 9.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 20.0% 0.0% 80.0% 100.0%
6-LUT-10x 0.0% 3.5% 36.7% 47.2% 0.0% 2.0% 9.0% 9.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 20.0% 0.0% 80.0% 80.0%
6-LUT-15x 0.0% 3.0% 36.7% 47.2% 0.0% 2.0% 9.0% 9.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 20.0% 0.0% 80.0% 80.0%
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Table 2.7 SATLIB benchmarks: potential influence of synthesis on the solving time (i.e., using synthesis only when it decreases the solving
time of an instance). Only instances solved both with and without synthesis are considered. The average time is calculated from instances solved
without synthesis within the time limit.

Problem type 3-SAT 200-860 3-SAT 225-960 3-SAT 250-1065 Quasigroup Pigeon-hole
Solver MiniSat zChaff Glucose Gl. 4cpu MiniSat zChaff Glucose Gl. 4cpu MiniSat zChaff Glucose Gl. 4cpu MiniSat zChaff Glucose Gl. 4cpu MiniSat zChaff Glucose Gl. 4cpu

Average time 0.1 0.7 4.4 5.9 0.6 2.9 19.2 17.5 2.7 16.6 61.5 53.5 0.3 2.6 3.5 2.9 25.4 0.6 44.6 359.7

st −0.1% −2.0% −18.4% −24.1% −3.2% −0.6% −20.9% −19.8% −1.7% −0.8% −20.3% −19.6% 0.0% 0.0% 0.0% −0.9% −99.1% 0.0% −6.6% −52.8%

st-re2-1x 0.0% −0.7% −18.8% −23.4% −2.5% −1.4% −21.9% −21.2% −3.4% −2.8% −19.3% −20.6% 0.0% 0.0% 0.0% −4.8% −98.1% 0.0% −32.9% −76.9%

st-re2-2x 0.0% −1.0% −15.5% −21.4% −1.3% −1.1% −23.9% −19.6% −1.0% −0.0% −15.7% −18.8% 0.0% 0.0% 0.0% 0.0% −98.2% 0.0% −39.3% −72.7%

st-re2-3x 0.0% −0.8% −16.1% −20.5% −0.7% −1.0% −19.1% −23.2% −1.8% −0.7% −17.6% −18.3% 0.0% 0.0% 0.0% 0.0% −98.2% 0.0% −12.7% −69.2%

2-gate-1x 0.0% 0.0% −5.0% −9.6% 0.0% 0.0% −13.8% −9.6% 0.0% −0.4% −14.3% −12.8% 0.0% 0.0% 0.0% 0.0% −0.7% 0.0% −98.9% −65.5%

2-gate-5x 0.0% 0.0% 0.0% −1.0% 0.0% 0.0% −7.1% −2.6% 0.0% 0.0% −7.6% −9.0% 0.0% 0.0% 0.0% 0.0% −0.7% 0.0% −98.9% −62.3%

2-gate-10x 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% −1.0% −0.6% 0.0% 0.0% −3.9% −3.7% 0.0% 0.0% 0.0% 0.0% −0.7% 0.0% −98.9% −63.2%

2-gate-15x 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% −0.7% 0.0% 0.0% 0.0% −3.0% −4.2% 0.0% 0.0% 0.0% 0.0% −0.7% 0.0% −98.9% −62.4%

6-LUT-1x 0.0% −1.2% −64.3% −50.4% 0.0% −0.2% −5.8% −4.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% −60.8% 0.0% −88.0% −96.2%

6-LUT-5x 0.0% −1.1% −64.2% −50.3% 0.0% −0.2% −5.8% −4.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% −60.0% 0.0% −88.0% −96.1%

6-LUT-10x 0.0% −1.1% −64.1% −50.2% 0.0% −0.2% −5.8% −4.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% −60.8% 0.0% −88.0% −96.2%

6-LUT-15x 0.0% −1.0% −64.0% −50.1% 0.0% −0.2% −5.8% −4.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% −60.8% 0.0% −88.0% −96.2%
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Table 2.8 SATLIB benchmarks: the influence of synthesis on the solving time if used always; values larger than or equal to +1000% are
replaced by “-”. Only instances solved both with and without synthesis are considered. The average time is calculated from instances solved
without synthesis within the time limit.

Problem type 3-SAT 200-860 3-SAT 225-960 3-SAT 250-1065 Quasigroup Pigeon-hole
Solver MiniSat zChaff Glucose Gl. 4cpu MiniSat zChaff Glucose Gl. 4cpu MiniSat zChaff Glucose Gl. 4cpu MiniSat zChaff Glucose Gl. 4cpu MiniSat zChaff Glucose Gl. 4cpu

Average time 0.1 0.7 4.4 5.9 0.6 2.9 19.2 17.5 2.7 16.6 61.5 53.5 0.3 2.6 3.5 2.9 25.4 0.6 44.6 359.7

st +218.7% - +27.0% −1.8% +102.3% - +6.5% −1.0% +115.2% - −7.1% −8.0% +933.6% - +136.8% +145.1% −99.1% +577.0% −0.2% −52.8%

st-re2-1x +295.6% - +33.1% −2.6% +126.6% - −4.7% −6.0% +118.5% - −4.5% −9.4% - - +271.8% +320.4% −98.1% +111.7% −32.9% −76.8%

st-re2-2x +333.1% - +39.8% +2.4% +136.4% - −3.8% −3.8% +126.6% - +0.3% −9.0% - - +418.3% +492.2% −98.1% +126.0% −39.0% −72.7%

st-re2-3x +389.8% - +35.4% +2.4% +147.6% - +1.8% −5.9% +141.6% - −4.9% −5.3% - - +548.5% +643.4% −98.1% +215.1% +20.5% −69.1%

2-gate-1x - - +99.0% +48.6% +645.9% - +21.5% +21.4% +290.3% - +4.4% +0.2% - - - - +209.7% - −98.9% −65.5%

2-gate-5x - - +261.1% +176.8% - - +59.6% +64.5% +646.9% - +25.6% +21.1% - - - - +434.5% - −98.9% −62.3%

2-gate-10x - - +459.5% +318.6% - - +118.6% +124.5% - - +43.7% +45.1% - - - - +421.8% - −98.8% −63.2%

2-gate-15x - - +652.0% +469.1% - - +169.0% +186.4% - - +60.9% +62.4% - - - - +434.0% - −98.8% −62.4%

6-LUT-1x - - +754.9% +549.6% - - - - - - - - - - - - −45.5% - −88.0% −96.2%

6-LUT-5x - - - - - - - - - - - - - - - - −44.7% - −88.0% −96.1%

6-LUT-10x - - - - - - - - - - - - - - - - −45.5% - −88.0% −96.2%

6-LUT-15x - - - - - - - - - - - - - - - - −45.4% - −88.0% −96.2%
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2.3 MinCirc instances

The tested SAT instances have been generated using a SAT-based optimum circuit gen-
erator MinCirc [25, 40]. These instances were generated when creating optimal four- or
five-variable function implementations composed of AND and XOR gates with a pref-
erence for XOR gates. There are 2188 SAT instances created when generating 220
four-variable input functions and 3074 instances created when generating 249 optimum
five-variable functions. In total, 5262 SAT instances of 469 different functions.

There was a time-limit of one day for optimum circuit generation. Most of the opti-
mum circuits were generated in that time. Processes that did not finish were terminated
and only already generated SAT instances are present in the results. Instances are split
into three similarly sized groups based on clause count.

2.3.1 Synthesis influence on CNF properties
Tables 2.9, 2.10, and 2.11 show how the synthesis and Tseitin transformation influenced
the number of variables, the number of clauses, and their ratio, respectively. Interest-
ingly, most of the unsatisfiable instances from the first group and some from the second
were transformed into trivial ones (i.e., for variable a, the CNF would be a ∧ ¬a). The
numbers of such instances are in Table 2.12. It happened only with 2-gate-[1, 5, 10, 15]x
and 6-LUT-[1, 5, 10, 15]x syntheses, and more repetitions of the synthesis script led
to higher numbers of trivial instances. Even though many instances in the third group
are unsatisfiable as well, none of them were transformed into a trivial one. They were
probably too complex for synthesis to “solve” them.

The average number of variables and clauses increased significantly after the use
of almost all syntheses. If the trivial instances were excluded, the numbers would, on
average, increase after the use of all of them. The more complex syntheses or their
repetitions (2-gate-[1, 5, 10, 15]x and 6-LUT-[1, 5, 10, 15]x) led to a lower number of
variables and clauses compared to other syntheses or less repetitions of the same script.
If the trivial instances are left out, standard deviations usually maintain their relative
size compared to the averages.

Although the number of clauses and variables mostly increased, their ratio usually
decreased. Even though the original ratio differs for each group (average ratios are 4.5,
6.8, and 8.8), after the application of synthesis, and if trivial instances are left out, the
average ratio for one synthesis is usually only slowly increasing. For st, st-re2-[1, 2, 3]x
and 2-gate-[1, 5, 10, 15]x syntheses, the ratio is around 2.6–2.9, and for 6-LUT-[1, 5,
10, 15]x syntheses around 5.1–6.6 (increases with the size of instances).

2.3.2 Synthesis influence on solving time
As the tested instances had the upper time limit of 2000 seconds for the SAT-solver
(see Section 2.1), some of them were not solved within the limit; if so, the process
was terminated. Table 2.13 shows the numbers of instances of each combination of
finished/terminated and with synthesis / without synthesis.

Table 2.14 shows the ratios of instances whose time of solving improved after using
logic synthesis. If an instance was solved both with and without synthesis, improvement
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Table 2.9 MinCirc: influence of logic synthesis on the number of variables

# clauses [428, 4608) [4608, 12688) [12688, 62392) all instances
# instances 1588 1885 1798 5271
Original 426.3 ± 172.4 1146.8 ± 253.0 2735.8 ± 877.3 1471.8 ± 1098.4
st 6582.4 ± 3936.5 24616.2 ± 6975.4 76881.6 ± 32884.5 37011.5 ± 35596.5
st-re2-1x 4903.3 ± 2950.2 18153.2 ± 5215.4 55430.2 ± 23223.4 26877.0 ± 25438.5
st-re2-2x 4873.0 ± 2945.1 18047.5 ± 5186.1 55246.5 ± 23161.7 26767.4 ± 25367.6
st-re2-3x 4857.8 ± 2943.0 18012.8 ± 5178.3 55190.8 ± 23141.4 26731.4 ± 25347.5
2-gate-1x 1155.7 ± 2266.1 11787.0 ± 6077.9 45689.5 ± 20828.1 20148.6 ± 22780.3
2-gate-5x 756.6 ± 1769.9 10465.0 ± 6279.7 44552.0 ± 20719.0 19167.6 ± 22594.1
2-gate-10x 665.1 ± 1593.6 9716.7 ± 6188.7 43751.1 ± 20698.7 18599.2 ± 22394.6
2-gate-15x 621.2 ± 1504.8 9259.1 ± 6047.2 43060.2 ± 20636.7 18186.7 ± 22170.6
6-LUT-1x 356.9 ± 882.0 4071.9 ± 1937.2 13399.6 ± 5639.7 6134.5 ± 6481.5
6-LUT-5x 340.4 ± 849.7 3876.2 ± 2089.2 13495.2 ± 5689.6 6092.1 ± 6575.7
6-LUT-10x 316.6 ± 796.6 3717.6 ± 2114.6 13431.7 ± 5709.7 6006.6 ± 6583.7
6-LUT-15x 301.5 ± 767.3 3569.4 ± 2126.2 13346.9 ± 5716.8 5920.1 ± 6576.1

Table 2.10 MinCirc: influence of logic synthesis on the number of clauses

# clauses [428, 4608) [4608, 12688) [12688, 62392) all instances
# instances 1588 1885 1798 5271
Original 2107.9 ± 1234.5 7853.7 ± 2240.6 24834.9 ± 10811.4 11915.1 ± 11573.3
st 18474.3 ± 11317.2 70433.6 ± 20190.4 222492.7 ± 96049.2 106648.9 ± 103539.6
st-re2-1x 13436.9 ± 8357.2 51044.6 ± 14903.9 158138.6 ± 67063.6 76245.5 ± 73061.7
st-re2-2x 13345.8 ± 8342.4 50727.5 ± 14816.4 157587.6 ± 66878.7 75916.7 ± 72848.9
st-re2-3x 13300.4 ± 8336.2 50623.4 ± 14793.1 157420.3 ± 66817.7 75808.7 ± 72788.6
2-gate-1x 3187.3 ± 6257.9 33537.8 ± 17445.9 133276.8 ± 61685.5 58416.2 ± 66862.4
2-gate-5x 2037.1 ± 4782.4 29672.5 ± 17948.2 129950.9 ± 61430.9 55552.9 ± 66331.4
2-gate-10x 1760.8 ± 4234.8 27452.3 ± 17633.4 127536.7 ± 61369.8 53852.2 ± 65727.7
2-gate-15x 1627.4 ± 3957.2 26078.8 ± 17192.2 125462.1 ± 61189.8 52613.1 ± 65060.5
6-LUT-1x 2102.7 ± 5329.2 25184.8 ± 12137.3 88142.8 ± 39197.3 39706.5 ± 43440.3
6-LUT-5x 1976.9 ± 5078.0 23921.1 ± 13082.7 89961.7 ± 40617.7 39837.2 ± 44846.9
6-LUT-10x 1778.6 ± 4620.1 22605.9 ± 13054.7 88990.5 ± 40747.3 38975.8 ± 44718.3
6-LUT-15x 1665.9 ± 4392.2 21510.6 ± 12995.4 87952.1 ± 40719.9 38195.9 ± 44473.6

was achieved only if the time of solving with synthesis (synthesis + SAT-solving) was
smaller than solving without synthesis (only SAT-solving). If some instance was solved
with synthesis but not without, it is considered to be sped up as well. However, if the
time of solving with synthesis (synthesis + SAT-solving) is above the time limit for the
SAT solver (2000 real-time seconds (corresponds to 8000 CPU seconds for Glucose
(4CPU))). It cannot be decided whether the solving was sped up; in such case, the ratio
of improved instances is presented as a range. Instances that were solved neither with
nor without synthesis are left out.

The influence of synthesis on the solving time is shown in Table 2.15 and 2.16. The
percentage changes are calculated based on instances that were finished both with and
without synthesis within the time limit. The number of such instances is the first value of
the corresponding cell in Table 2.13. This approach results in possibly different instances
being used for calculating the percentage changes for different combinations of solver and
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Table 2.11 MinCirc: influence of logic synthesis on the clause-variable ratio

# clauses [428, 4608) [4608, 12688) [12688, 62392) all instances
# instances 1588 1885 1798 5271
Original 4.5 ± 1.2 6.8 ± 0.6 8.8 ± 1.0 6.8 ± 1.9
st 2.8 2.9 2.9 2.8
st-re2-1x 2.7 ± 0.1 2.8 2.8 2.8
st-re2-2x 2.7 ± 0.1 2.8 2.8 2.8
st-re2-3x 2.7 ± 0.1 2.8 2.8 2.8
2-gate-1x 2.2 ± 0.3 2.7 ± 0.3 2.9 2.6 ± 0.4
2-gate-5x 2.1 ± 0.3 2.7 ± 0.3 2.9 2.6 ± 0.4
2-gate-10x 2.1 ± 0.2 2.6 ± 0.3 2.9 2.6 ± 0.4
2-gate-15x 2.1 ± 0.2 2.6 ± 0.3 2.9 2.6 ± 0.4
6-LUT-1x 2.5 ± 1.4 5.6 ± 1.5 6.5 ± 0.2 5.0 ± 2.0
6-LUT-5x 2.5 ± 1.3 5.4 ± 1.6 6.6 ± 0.2 4.9 ± 2.1
6-LUT-10x 2.5 ± 1.3 5.2 ± 1.6 6.5 ± 0.2 4.8 ± 2.0
6-LUT-15x 2.5 ± 1.2 5.1 ± 1.7 6.5 ± 0.2 4.8 ± 2.0

Table 2.12 MinCirc: numbers of unsatisfiable instances which were transformed by synthesis
into trivial ones (i.e., for variable a, the CNF would be a ∧ ¬a)

# clauses [428, 4608) [4608, 12688) [12688, 62392) all instances
# UNSAT instances 1511 1197 584 3292
st 0 0 0 0
st-re2-1x 0 0 0 0
st-re2-2x 0 0 0 0
st-re2-3x 0 0 0 0
2-gate-1x 1251 295 0 1546
2-gate-5x 1334 397 0 1731
2-gate-10x 1345 441 0 1786
2-gate-15x 1350 459 0 1809
6-LUT-1x 1350 278 0 1628
6-LUT-5x 1353 353 0 1706
6-LUT-10x 1356 388 0 1744
6-LUT-15x 1360 421 0 1781

synthesis, which, in some cases, causes worse comparability if many instances are left
out. We chose this approach as the number of instances that were solved by all solvers
without synthesis and with all syntheses would sometimes be rather limited. Moreover,
the main goal of this thesis is to evaluate the improvements achievable by synthesis, and
this approach allows for individual results to be more precise as they are based on more
instances.

Likewise, the average time shown in each column can be compared between solvers
only if all instances (or most of them) were solved without synthesis. If some instances
are left out (due to not being solved within the time limit), the real average time would
be much higher than the presented one. Therefore, it usually offers only a rough idea
about the solving time to which the percentage changes can be related.

In many cases, the average time of solving for different solvers in one category varies
greatly. This, even with approximate results, means that a large potential improvement
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of using some synthesis would not usually be useful in practice as using the fastest solver
(even without any synthesis) would result in a faster time.

The values in Table 2.15 are calculated using Equation 2.1 where (nosyn, syn) are
pairs of solving time without synthesis (only SAT-solving of the original instance) and
with synthesis (synthesis + SAT-solving). The values show how the original total time
would change if synthesis were used only on instances when it decreased the overall time
of solving that instance and others were solved without it. These values show how large
improvement can be potentially achieved with each synthesis script on tested instances.
On its own, it does not reflect any practical application. However, for synthesis to have
practical use, a (high) potential decrease in solving time is a necessary condition. In the
following paragraphs, mainly, this potential improvement is discussed.

Table 2.16 presents how the solving time would be influenced by always using syn-
thesis.

In the group of smallest-sized instances, the solvers usually solved all or most of the
instances in the limit, both with and without synthesis. Almost all instances in this
category are unsatisfiable, and most of them were transformed into trivial instances by
2-gate-[1, 5, 10, 15]x and 6-LUT-[1, 5, 10, 15]x syntheses scripts; more repetitions of
the script resulted in slightly more trivial instances.

All solvers solved the original instances really fast (in less than 0.2 seconds), with
MiniSat being the fastest. Synthesis led to a speedup very rarely and potential im-
provements are very low or none as well. The highest potential improvement was 3.2%
using Glucose with st synthesis.

Almost all of the middle-sized instances were still solved both with and without the
synthesis within the time limit. However, MiniSat did not solve some of the instances
after using the synthesis (only units of instances), and zChaf had similar results with
the number of unsolved instances after using synthesis slightly higher (at most around
3%).

MiniSat had the lowest average time of 5.0 seconds. Interestingly, it achieved the
highest potential improvement (from all combinations of solvers and syntheses in this
category of instances) of 24.0% with 6-LUT-1x synthesis (only 1.4% of instances were
sped up) and of 23.7% with st synthesis (9.9% of instances were sped up). The zChaf
solver had the highest average time of 28.0 seconds. Its highest potential improvement
of 22.2% was with st as well (8.4% of instances were sped up). Glucose and Glu-
cose (4CPU) had almost the same average time of 15.1 and 15.0 seconds, respectively.
Glucose achieved the largest potential speedup of 7.6% with st synthesis. This led
to solving faster 35.6% of instances. Glucose (4CPU) achieved slightly higher poten-
tial improvement of 10.6% with st-re2-1x synthesis, which sped up solving of 32.9% of
instances.

In the last group, MiniSat, Glucose, and Glucose (4CPU) solvers have similarly
distributed solved/unsolved instances. Most of the instances were solved both with and
without synthesis, while 11%–15% of them were solved in the limit neither with nor
without synthesis. The number of instances solved only with synthesis or only without
it is similarly low, with the latter being higher in some cases. On the contrary, the
zChaf solver solved within the limit only a small number of instances, most of them
being solved only without synthesis. Only about 15% of instances was solved within
the time-limit both with and without synthesis. In this category, no instances were
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transformed into trivial ones.
In this last category of instances, MiniSat had the lowest average time of 141.4 sec-

onds. It achieved lower potential improvements and a higher ratio of improved instances
compared to the middle-sized ones. The biggest potential improvement was 20.7% with
6-LUT-1x synthesis, which improved solving time of 14.4% of instances. zChaf had the
highest average time of 478.8 seconds. With all synthetheses, it achieved high potential
improvements (26.8%–60.7), the highest being with st-re2-2x synthesis, which sped up
27.6% of instances. These results are, however, based only on a small number of finished
instances, as most of them were not solved within the time limit. Glucose had an av-
erage time of 340.5 seconds. The highest potential improvement of 19.7% was achieved
with st synthesis and sped up 35.6% of instances. Lastly, Glucose (4CPU) had a
slightly higher average time than Glucose at 397.1 seconds; however, finishing slightly
more instances within the time limit. The highest potential decrease of solving time of
28.9% was achieved with st synthesis as well, speeding up solving of 37.9% instances.

Based on the overall results, MiniSat, Glucose and Glucose (4CPU) finished
around 90% of all instances both with and without synthesis within the time-limit.
zChaf, on the other hand, finished only around 70% of them. The MiniSat solver had
the lowest average time of solving the original instances of 45.1 seconds. The highest
potential improvement of 20.8% was achieved with 6-LUT-1x synthesis, speeding up only
4.9% of instances; the second was st synthesis with a slightly lower potential improvement
of 17.3%, which, however, sped up 10.4% of instances. MiniSat seems to be, the fastest
solver for this problem. zChaf had an average time of 60.3 seconds. With st synthesis
it achieved the highest potential speedup of 43.5%, speeding up 8.5% of instances. This
is, however, overshadowed by the large number of instances unfinished within the time
limit. Glucose and Glucose (4CPU) achieved similar results, with the latter having
a higher average time as well as potential improvement and ratio of sped-up instances.
Glucose had an average time of 109.9 seconds and the biggest potential improvement
of 19.0% with st synthesis, which sped up 19.7% of instances. Glucose (4CPU) had
an average time of 129.6 seconds and the biggest potential speedup of 28.0% with st
synthesis as well. It sped up 21.8% of instances, a bit more than with Glucose.

Interestingly, the overall results show that repeating 2-gate or 6-LUT synthesis script
more than once (i.e, 2-gate-[5, 10, 15]x or 6-LUT-[5, 10, 15]x syntheses) did not increase
the potential improvement nor the ratio of sped up instances; with st-re2 script (i.e, st-
re2-[1, 2, 3]x), it is not clear how many repetitions leads to best results.

Always using synthesis would increase the solving time in all cases. However, com-
pared to benchmark instances (Subsection 2.2.2), the increases are not as high. If the
average time of solving original instances was higher compared to other solvers, the
increase was, in most cases, below +100% (i.e., below twice the original time). With
synthesis that achieved the highest potential speedups (st and 6-LUT-1x), the slowdowns
of using theses always were not as high compared to other syntheses.

In Chapter 3, methods of incorporating synthesis into SAT-solving are explored.
Based on these results, only the combination of MiniSat, which had the lowest average
time on solved instances, while solving almost all of them, with st and 6-LUT-1x syn-
theses will be used. With the MiniSat solver, st synthesis had the highest improvement
rate of 10.4% and the second highest potential improvement of 17.3%; 6-LUT-1x had
the highest potential speedup of 20.8% but significantly lower (although second highest
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for this solver) improvement rate of 4.9%.
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Table 2.13 MinCirc: separated by slashes are the numbers of instances (1) which were solved in 2000 seconds (real-time) both with and
without synthesis, (2) which were solved in 2000 seconds (real-time) with synthesis but not without it, (3) which were solved in 2000 seconds
(real-time) without synthesis but not with it, (4) which were solved in 2000 seconds (real-time) neither with nor without synthesis. In case values
(2), (3), and (4) are all zeroes, they are omitted.

# clauses [428, 4608) [4608, 12688) [12688, 62392)
Solver MiniSat zChaff Glucose Gl. 4cpu MiniSat zChaff Glucose Gl. 4cpu MiniSat zChaff Glucose Gl. 4cpu

st 1588 1588 1588 1588 1884/0/1/0 1860/2/12/11 1885 1885 1447/13/84/254 275/53/98/1372 1475/27/55/241 1565/15/11/207

st-re2-1x 1588 1588 1588 1588 1876/0/9/0 1812/1/60/12 1885 1885 1320/9/211/258 214/28/159/1397 1431/23/99/245 1558/10/18/212

st-re2-2x 1588 1588 1588 1588 1881/0/4/0 1812/2/60/11 1884/0/1/0 1885 1363/8/168/259 219/33/154/1392 1447/28/83/240 1566/13/10/209

st-re2-3x 1588 1588 1588 1588 1878/0/7/0 1810/2/62/11 1884/0/1/0 1885 1318/10/213/257 223/32/150/1393 1450/24/80/244 1561/10/15/212

2-gate-1x 1588 1588 1588 1588 1884/0/1/0 1840/2/32/11 1885 1885 1465/14/66/253 249/38/124/1387 1455/25/75/243 1563/17/13/205

2-gate-5x 1588 1588 1588 1588 1885 1839/2/33/11 1885 1885 1471/16/60/251 246/44/127/1381 1450/31/80/237 1564/13/12/209

2-gate-10x 1588 1588 1588 1588 1885 1843/2/29/11 1884/0/1/0 1885 1466/18/65/249 246/39/127/1386 1435/26/95/242 1562/18/14/204

2-gate-15x 1588 1588 1588 1588 1884/0/1/0 1838/1/34/12 1885 1885 1464/14/67/253 238/34/135/1391 1440/25/90/243 1554/17/22/205

6-LUT-1x 1588 1588 1588 1588 1885 1833/2/39/11 1885 1885 1502/14/29/253 254/44/119/1381 1450/25/80/243 1565/14/11/208

6-LUT-5x 1588 1588 1588 1588 1885 1846/2/26/11 1885 1885 1505/21/26/246 257/47/116/1378 1450/30/80/238 1562/18/14/204

6-LUT-10x 1588 1588 1588 1588 1885 1850/2/22/11 1885 1885 1508/24/23/243 268/44/105/1381 1448/29/82/239 1560/13/16/209

6-LUT-15x 1588 1588 1588 1588 1885 1844/2/28/11 1885 1885 1513/23/18/244 261/44/112/1381 1460/29/70/239 1561/14/15/208

# clauses all instances
Solver MiniSat zChaff Glucose Gl. 4cpu

st 4919/13/85/254 3723/55/110/1383 4948/27/55/241 5038/15/11/207

st-re2-1x 4784/9/220/258 3614/29/219/1409 4904/23/99/245 5031/10/18/212

st-re2-2x 4832/8/172/259 3619/35/214/1403 4919/28/84/240 5039/13/10/209

st-re2-3x 4784/10/220/257 3621/34/212/1404 4922/24/81/244 5034/10/15/212

2-gate-1x 4937/14/67/253 3677/40/156/1398 4928/25/75/243 5036/17/13/205

2-gate-5x 4944/16/60/251 3673/46/160/1392 4923/31/80/237 5037/13/12/209

2-gate-10x 4939/18/65/249 3677/41/156/1397 4907/26/96/242 5035/18/14/204

2-gate-15x 4936/14/68/253 3664/35/169/1403 4913/25/90/243 5027/17/22/205

6-LUT-1x 4975/14/29/253 3675/46/158/1392 4923/25/80/243 5038/14/11/208

6-LUT-5x 4978/21/26/246 3691/49/142/1389 4923/30/80/238 5035/18/14/204

6-LUT-10x 4981/24/23/243 3706/46/127/1392 4921/29/82/239 5033/13/16/209

6-LUT-15x 4986/23/18/244 3693/46/140/1392 4933/29/70/239 5034/14/15/208
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Table 2.14 MinCirc: ratio of instances whose time of solving decreased after using the synthesis preprocessing. Instances that were solved
neither with nor without synthesis are left out.

# clauses [428, 4608) [4608, 12688) [12688, 62392) all instances
Solver MiniSat zChaff Glucose Gl. 4cpu MiniSat zChaff Glucose Gl. 4cpu MiniSat zChaff Glucose Gl. 4cpu MiniSat zChaff Glucose Gl. 4cpu

st 0.0% 0.6% 2.4% 2.6% 9.9% 8.4% 21.3% 24.2% 21.8% 39.0% 35.6% 37.9% 10.4% 8.5% 19.7% 21.8%

st-re2-1x 0.0% 0.0% 0.7% 2.1% 3.3% 2.3% 15.4% 18.8% 7.5% 24.4% 30.3% 32.9% 3.6% 3.7% 15.3% 18.0%

st-re2-2x 0.0% 0.0% 0.3% 0.6% 3.0% 3.1% 12.2% 16.3% 7.6% 27.6% 31.7% 33.5% 3.5% 4.4% 14.5% 16.8%

st-re2-3x 0.0% 0.0% 0.1% 0.4% 1.9% 2.3% 12.2% 14.5% 7.5% 27.7% 29.0% 32.2% 3.0% 4.0% 13.6% 15.6%

2-gate-1x 0.0% 0.0% 0.0% 0.0% 0.4% 2.0% 0.9% 1.3% 7.1% 29.0%–29.4% 14.9%–15.0% 18.1% 2.3% 4.1%–4.1% 5.0%–5.0% 6.2%

2-gate-5x 0.0% 0.0% 0.0% 0.0% 0.4% 0.8% 0.4% 0.3% 3.9%–4.0% 23.7%–24.5% 8.2% 9.3% 1.4%–1.4% 2.9%–3.0% 2.7% 3.0%

2-gate-10x 0.0% 0.0% 0.0% 0.0% 0.3% 0.5% 0.2% 0.2% 2.6%–2.7% 20.1%–20.9% 4.8%–5.1% 6.5% 0.9%–0.9% 2.4%–2.5% 1.6%–1.6% 2.1%

2-gate-15x 0.0% 0.0% 0.0% 0.0% 0.1% 0.6% 0.0% 0.0% 1.9%–2.0% 16.7%–17.2% 3.7%–4.2% 4.5% 0.6%–0.7% 2.1%–2.1% 1.1%–1.3% 1.4%

6-LUT-1x 0.0% 0.0% 0.0% 0.0% 1.4% 2.2% 2.5% 4.6% 14.4% 32.6% 17.9% 20.5% 4.9% 4.6% 6.5% 8.1%

6-LUT-5x 0.0% 0.0% 0.0% 0.0% 0.6% 1.4% 0.6% 0.6% 10.2% 29.5%–30.2% 10.9%–11.0% 12.0% 3.4% 3.9%–3.9% 3.6%–3.6% 4.0%

6-LUT-10x 0.0% 0.0% 0.0% 0.0% 0.4% 0.6% 0.4% 0.4% 7.3% 27.3%–27.6% 8.4%–8.6% 9.2% 2.4% 3.2%–3.3% 2.7%–2.8% 3.0%

6-LUT-15x 0.0% 0.0% 0.0% 0.0% 0.3% 0.6% 0.2% 0.3% 5.4%–5.5% 24.7%–25.2% 6.0%–6.3% 6.5% 1.8%–1.8% 2.9%–3.0% 1.9%–2.0% 2.1%
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Table 2.15 MinCirc: potential influence of synthesis on the solving time (i.e., using synthesis only when decreases the solving time of an
instance). Only instances solved both with and without synthesis are considered. The average time is calculated from instances solved without
synthesis within the time limit.

# clauses [428, 4608) [4608, 12688) [12688, 62392) all instances
Solver MiniSat zChaff Glucose Gl. 4cpu MiniSat zChaff Glucose Gl. 4cpu MiniSat zChaff Glucose Gl. 4cpu MiniSat zChaff Glucose Gl. 4cpu

Average time 0.0 0.1 0.2 0.2 5.0 28.0 15.1 15.0 141.4 478.8 340.5 397.1 45.1 60.3 109.9 129.6

st 0.0% −0.8% −3.2% −2.9% −23.7% −22.2% −7.6% −10.1% −16.9% −54.5% −19.7% −28.9% −17.3% −43.5% −19.0% −28.0%

st-re2-1x 0.0% 0.0% −1.2% −2.4% −14.2% −12.7% −7.3% −10.6% −13.3% −52.1% −17.2% −26.7% −13.4% −35.6% −16.6% −26.0%

st-re2-2x 0.0% 0.0% −0.3% −0.6% −10.4% −12.9% −5.8% −7.6% −13.1% −60.7% −17.6% −25.1% −12.9% −42.6% −16.9% −24.3%

st-re2-3x 0.0% 0.0% −0.1% −0.7% −11.6% −11.1% −7.0% −9.2% −15.4% −57.0% −17.3% −25.3% −15.2% −40.9% −16.7% −24.5%

2-gate-1x 0.0% 0.0% 0.0% 0.0% −15.7% −13.5% −1.9% −2.8% −14.1% −50.5% −11.6% −22.0% −14.2% −35.7% −11.0% −21.1%

2-gate-5x 0.0% 0.0% 0.0% 0.0% −11.4% −8.4% −2.0% −1.1% −7.9% −42.6% −7.1% −18.5% −8.1% −30.5% −6.8% −17.7%

2-gate-10x 0.0% 0.0% 0.0% 0.0% −4.7% −8.8% −0.9% −1.1% −4.5% −29.5% −4.3% −12.9% −4.5% −21.9% −4.1% −12.3%

2-gate-15x 0.0% 0.0% 0.0% 0.0% −0.9% −9.6% 0.0% 0.0% −4.2% −26.8% −2.7% −10.8% −4.0% −20.2% −2.5% −10.3%

6-LUT-1x 0.0% 0.0% 0.0% 0.0% −24.0% −14.5% −3.4% −4.7% −20.7% −53.2% −14.0% −25.8% −20.8% −39.2% −13.4% −24.8%

6-LUT-5x 0.0% 0.0% 0.0% 0.0% −15.3% −14.2% −1.6% −2.0% −16.9% −49.2% −9.7% −17.9% −16.8% −36.9% −9.2% −17.2%

6-LUT-10x 0.0% 0.0% 0.0% 0.0% −9.8% −7.5% −1.2% −1.8% −13.5% −43.8% −7.7% −15.5% −13.4% −30.9% −7.3% −14.9%

6-LUT-15x 0.0% 0.0% 0.0% 0.0% −10.1% −4.9% −0.5% −1.9% −9.3% −40.9% −5.5% −13.6% −9.3% −29.4% −5.3% −13.1%
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Table 2.16 MinCirc: the influence of synthesis on the solving time if used always; values larger than or equal to +1000% are replaced by “-”.
Only instances solved both with and without synthesis are considered. The average time is calculated from instances solved without synthesis
within the time limit.

# clauses [945, 8023) [8023, 16443) [16443, 62392) all instances
Solver MiniSat zChaff Glucose Gl. 4cpu MiniSat zChaff Glucose Gl. 4cpu MiniSat zChaff Glucose Gl. 4cpu MiniSat zChaff Glucose Gl. 4cpu

Average time 0.0 0.1 0.2 0.2 5.0 28.0 15.1 15.0 141.4 478.8 340.5 397.1 45.1 60.3 109.9 129.6

st +601.6% +368.3% +88.4% +72.7% +142.6% +320.3% +18.2% +7.6% +161.8% +5.3% +30.1% +23.6% +160.9% +112.3% +29.5% +22.9%

st-re2-1x - +973.1% +147.1% +121.1% +490.2% +843.4% +23.4% +8.1% +278.9% +58.2% +44.6% +43.2% +289.4% +387.5% +43.4% +41.7%

st-re2-2x - - +208.9% +176.5% +424.2% +905.9% +30.9% +16.2% +277.1% +35.1% +43.3% +40.5% +285.1% +365.5% +42.7% +39.4%

st-re2-3x - - +254.2% +216.5% +661.9% +955.8% +22.7% +16.4% +312.8% +38.5% +44.3% +40.7% +332.1% +360.2% +43.2% +39.7%

2-gate-1x - - - - +462.9% +556.5% +137.0% +128.2% +198.1% +36.6% +69.5% +68.2% +213.3% +248.1% +74.2% +71.7%

2-gate-5x - - - - - +872.6% +391.1% +389.8% +331.2% +87.6% +127.2% +108.7% +382.2% +374.6% +144.3% +123.0%

2-gate-10x - - - - - - +712.4% +680.4% +520.1% +151.4% +200.8% +176.1% +604.0% +509.6% +233.3% +201.5%

2-gate-15x - - - - - - +959.9% +960.2% +730.7% +194.5% +262.6% +245.6% +855.6% +589.5% +306.8% +282.2%

6-LUT-1x - - +751.0% +682.6% +251.4% +438.5% +83.5% +67.8% +74.8% +41.9% +57.5% +52.1% +84.0% +187.1% +59.5% +53.2%

6-LUT-5x - - - - +668.2% +577.6% +226.9% +214.7% +145.9% +70.0% +96.9% +98.6% +172.1% +251.3% +105.3% +104.6%

6-LUT-10x - - - - - +621.5% +384.5% +371.1% +250.5% +97.5% +145.4% +131.6% +293.3% +289.8% +160.7% +143.8%

6-LUT-15x - - - - - +878.2% +536.7% +527.4% +347.5% +109.1% +190.2% +172.3% +407.5% +363.0% +212.1% +189.9%
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2.4 ATPG instances

For this set of experiments, instances from a simple in-house SAT-based ATPG based
on the original idea of Larrabee [26] were used. This approach generates conceptual
hardware (miter) by XORing the fault-free and faulty circuit. This miter is then con-
verted to a CNF by the Tseitin transformation [9], and a test vector is generated as a
satisfiability proof. It is possible to use synthesis to optimize the miter before doing the
Tseitin transformation, to make the CNF smaller. No CNF to BLIF conversion in this
case is needed, since the miter can be dumped to BLIF and optimized by logic synthesis.
Thus, the synthesis can be directly incorporated into the ATPG process, without a need
for any conversions.

The ATPG process was run on circuits from a mixture of logic synthesis and testing
benchmarks [41]. Generated SAT instances were solved by MiniSat solver.

2.4.1 Synthesis influences on solving time
Table 2.17 shows the ratios of circuits that were solved faster if synthesis was used.
Circuits are divided into groups based on the solving without synthesis in seconds. The
results are reported for a circuit as a whole, i.e., the ATPG process, including solving all
SAT instances together, i.e., for all tested faults. In the first group containing circuits
solved in up to 5 seconds, almost none were sped up by synthesis preprocessing. With
increasing the original time of solving, the circuits were usually more likely to be sped
up by synthesis. The more complicated syntheses (2-gate-[1, 5, 10, 15]x and 6-LUT-[1,
5, 10, 15]x) did not achieve as good results as other syntheses, speeding up at most
35.0% that originally took 1000 or more seconds. The simpler syntheses (st and st-re2-
[1, 2, 3]x) were more successful, as they all sped up more than 50% of the circuits that
originally took 1000 or more seconds. Nevertheless, most circuits were sped up by st
synthesis script, which sped up the highest number of them in each group of circuits, as
well as more than half of the circuits that originally took 100 seconds or more; in total
speeding up 10.5% of all circuits.

Table 2.18 shows potential improvements that could be achieved if the synthesis
was used only if it decreased the solving time. Values in the table are calculated us-
ing Equation 2.1 where (nosyn, syn) are pairs of solving time without synthesis and
with synthesis. And Table 2.19 shows how the original time of solving would change if
synthesis was used on all instances.

Potential improvements achievable with syntheses are similar to ratios of sped-up
circuits. The fastest-solved circuits could usually not be sped up by synthesis, while
those that took longer to solve could. st and st-re2-[1, 2, 3]x syntheses achieved high
potential decrease in solving time, with st having the highest, in total 32.0%.

Most of the potential improvement achieved by synthesis disappears if the synthesis
is used on all circuits. In many cases, mainly for faster-solved circuits, using synthesis
always would lead to a large increase in the solving time. Nonetheless, st synthesis
sped up solving of circuits from 100 seconds up, with the exception of 2.3% increase for
circuits which originally took [200, 500) seconds. It was the only synthesis that decreased
the total time of solving while using synthesis on all instances – it achieved a significant
time decrease of 19.7%.
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Table 2.17 ATPG circuits: ratio of circuits whose time of solving decreased after using logic
synthesis

Original time [0, 5) [5, 50) [50, 100) [100, 200) [200, 500) [500, 1000) [1000, inf) all circuits
# circuits 788 274 60 47 27 32 20 1248
st 0.8% 10.2% 23.3% 61.7% 51.9% 78.1% 75.0% 10.5%
st-re2-1x 0.3% 4.4% 15.0% 51.1% 48.1% 43.8% 70.0% 7.1%
st-re2-2x 0.3% 3.6% 10.0% 48.9% 40.7% 40.6% 55.0% 6.1%
st-re2-3x 0.3% 2.2% 8.3% 38.3% 29.6% 37.5% 65.0% 5.1%
2-gate-1x 0.0% 0.7% 3.3% 25.5% 7.4% 6.2% 35.0% 2.2%
2-gate-5x 0.0% 1.1% 1.7% 21.3% 11.1% 3.1% 35.0% 2.0%
2-gate-10x 0.0% 0.4% 1.7% 2.1% 0.0% 3.1% 30.0% 0.8%
2-gate-15x 0.0% 0.4% 1.7% 0.0% 0.0% 3.1% 35.0% 0.8%
6-LUT-1x 0.0% 1.1% 1.7% 21.3% 3.7% 6.2% 35.0% 1.9%
6-LUT-5x 0.0% 1.1% 1.7% 19.1% 3.7% 3.1% 35.0% 1.8%
6-LUT-10x 0.0% 1.1% 1.7% 0.0% 3.7% 3.1% 35.0% 1.0%
6-LUT-15x 0.0% 0.7% 1.7% 0.0% 3.7% 3.1% 35.0% 1.0%

Table 2.18 ATPG circuits: potential influence of synthesis on solving time (i.e., using syn-
thesis only when decreases solving time of an instance)

Original time [0, 5) [5, 50) [50, 100) [100, 200) [200, 500) [500, 1000) [1000, inf) all circuits
# circuits 788 274 60 47 27 32 20 1248
st -0.5% -3.3% -7.5% -12.2% -9.3% -20.1% -51.2% -32.0%
st-re2-1x -0.2% -2.3% -3.5% -14.7% -8.7% -7.6% -50.0% -28.4%
st-re2-2x -0.2% -1.9% -3.1% -13.0% -7.0% -6.5% -48.8% -27.2%
st-re2-3x -0.2% -1.5% -2.4% -11.8% -5.9% -5.5% -48.6% -26.6%
2-gate-1x 0.0% -0.8% -1.5% -7.3% -1.2% -1.5% -41.8% -21.5%
2-gate-5x 0.0% -0.8% -1.2% -3.1% -5.7% -0.8% -40.7% -20.9%
2-gate-10x 0.0% -0.5% -0.9% -0.1% 0.0% -0.3% -39.6% -19.5%
2-gate-15x 0.0% -0.5% -0.6% 0.0% 0.0% -0.2% -38.4% -18.9%
6-LUT-1x 0.0% -1.0% -1.4% -5.4% -3.0% -1.0% -38.7% -19.9%
6-LUT-5x 0.0% -0.8% -1.3% -1.0% -2.8% -0.8% -39.0% -19.7%
6-LUT-10x 0.0% -0.6% -1.1% 0.0% -2.8% -0.6% -38.5% -19.3%
6-LUT-15x 0.0% -0.5% -0.9% 0.0% -2.8% -0.7% -38.1% -19.1%

As circuits that took longer to solve are more likely to be solved faster with synthesis,
and using synthesis on all circuits that took longer to solve, on average, reduces this
improvement only slightly, it offers an opportunity to explore – one can attempt to solve
the instance without using synthesis for some time, and if after some time t instance is
not solved, end the process and rerun it with synthesis. This approach is explored in
Chapter 3.



ATPG instances 38

Table 2.19 ATPG circuits: influence of synthesis on solving time if used always

Original time [0, 5) [5, 50) [50, 100) [100, 200) [200, 500) [500, 1000) [1000, inf) all circuits
# circuits 788 274 60 47 27 32 20 1248
st +357.8% +65.7% +20.0% -3.4% +2.3% -19.0% -46.8% -19.7%
st-re2-1x +955.4% +130.4% +41.5% +2.8% +4.6% +31.8% -46.1% +2.7%
st-re2-2x +1367.2% +163.1% +47.1% +11.4% +11.9% +39.6% -44.5% +11.9%
st-re2-3x +1670.1% +182.9% +66.5% +14.6% +17.0% +45.6% -44.2% +18.6%
2-gate-1x +2510.3% +883.8% +192.6% +117.2% +89.3% +113.1% -17.9% +115.1%
2-gate-5x +3285.9% +1175.8% +314.1% +175.4% +103.8% +137.8% -8.6% +160.1%
2-gate-10x +4245.7% +1441.0% +416.8% +225.2% +141.4% +156.0% -0.5% +203.3%
2-gate-15x +4917.9% +1668.1% +473.0% +279.3% +159.2% +177.4% +6.7% +238.6%
6-LUT-1x +2541.9% +927.2% +308.4% +137.7% +96.6% +125.8% -10.4% +132.4%
6-LUT-5x +3263.8% +1280.1% +521.8% +183.1% +135.2% +152.3% -3.2% +185.8%
6-LUT-10x +3778.4% +1550.0% +600.7% +226.6% +151.1% +178.4% +0.8% +222.2%
6-LUT-15x +4515.9% +1760.0% +628.0% +260.2% +179.8% +190.4% +3.7% +250.8%



Chapter 3

Using synthesis in SAT-solving

3.1 Explored approaches

3.1.1 Restarting
One possibility of incorporating synthesis into SAT or ATPG solving is to try to solve
an instance without synthesis for some time t, and if it does not finish in that time, end
the process and run it once again but with the synthesis. This approach is based on the
fact that synthesis is unnecessary and usually decremental for simple instances.

Finding optimal t based on the measured instance solving times can be formalized
by the following expression, where (nosyn, syn) are pairs of solving times without and
with synthesis.

arg min
t

∑
(nosyn,syn)

(min{nosyn, t} + [nosyn > t] · syn) (3.1)

From experimenting on data from ATPG with st synthesis, this approach can achieve
reasonable results; however, the solving time of many instances was increased. This can
be addressed by adding a constraint (Equation 3.2) specifying the minimum ratio of
instances x ∈ [0, 1] that should be solved in the same or faster time1.∑

(nosyn,syn) [(min{nosyn, t} + [nosyn > t] · syn) < nosyn]∑
(nosyn,syn) 1 ≥ x (3.2)

A downside of this approach is that it increases the time of solving the instances that
were restarted and solved with synthesis by the time t.

3.1.2 Selecting instances to run with synthesis
A different approach is to try to predict whether to use synthesis based on some prop-
erties of an instance. There are two possibilities that we can predict: (1) we can predict
one of two classes (binary classification), whether it is beneficial to use synthesis or not,

1Since this model did not achieve the best results when compared to others. This constraint was not
tried as it limits the maximal improvement the model can achieve.

39
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or (2) real value (regression) corresponding to how sure it is that synthesis will improve
the solving time. In the first case, synthesis is beneficial if syn < nosyn. In the second
case, we take log(nosyn

syn ) (both the divisor and whole fraction needs to be increased by
a small constant, e.g., 10−9, in order to avoid undefined operations). This value is zero
if syn = nosyn, less than zero if syn > nosyn, and greater than zero syn < nosyn. The
larger the absolute value of the logarithm is, the more sure the use or not use of syn-
thesis is. It can also be mapped to [0, 1] interval using sigmoid function (σ(x) = 1

1+e−x ).
In which case, the value can be interpreted as “how high is the probability of synthesis
speeding up the SAT-solving”.

In either case, the main problem is the imbalance in data – at best only around
10.5% of instances were sped up after using logic synthesis. This can be problematic as
models can end up predicting the more frequent class in the case of classification or only
values less than zero in the case of regression.

Multiple machine learning (ML) models were tried for selecting instances: linear
regression, logistic regression, naive Bayes, k-nearest neighbors, random forest, and gra-
dient boosted decision trees. If models have hyperparameters that can be tuned, multiple
different values were tried.

3.1.3 Selecting instances for restarting
This approach combines both previously described ones. Firstly, an ML model is trained
to predict whether to use synthesis preprocessing. Then, the restarting model’s t is found
only on instances selected to be run with synthesis.

The final model predicts whether to restart (use synthesis) after t seconds of solving
without synthesis. Instances that should not be restarted are solved without synthesis.
Those that should be restarted are run without synthesis for time t and then restarted
and run with synthesis, in case they have not already been solved.

The idea is that if the ML model falsely predicts to use the synthesis preprocessing
for an instance that would be solved quickly without it, the restarting part fixes it in
some cases. If the ML model predicts the use of synthesis always, this model transforms
into the original restarting model; similarly, if the model’s t is around 0, it transforms
into the selecting model.

3.2 Model training and evaluation

Since the dataset is relatively small, instances sped up by synthesis are scarce, and
improvements achieved using synthesis differ significantly; using train, dev, and test sets
for evaluating models is not ideal as the results would strongly depend on how instances
were divided. For this reason, a cross-validation (CV) will be used. This should help
with this problem as the models are trained and evaluated multiple times on different
parts of data and results are then averaged together.

In the case of the restarting model or if no hyperparameters of the model are tuned,
a simple 5-fold CV is used. In other cases, nested CV is used. The outer CV is 5-fold
and splits the test part of the data from the train and dev parts, and the inner CV is
4-fold and splits the train and dev parts. The inner CV selects the best parameters and
the outer is used to measure the quality of the best parameters. The reported results
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are averages from test parts, while the models with the best parameters are trained on
the rest of the data.

Using simple metrics such as accuracy or F1-score to evaluate the correctness of
predictions is not enough since the speedups or slowdowns of using synthesis differ sig-
nificantly between instances – the goal is to correctly predict instances where using
synthesis would lead to significant speedup or slowdown. One metric that takes this into
consideration is the average change in solving time (Equation 3.3; the model is repre-
sented as a function predicting the solving time of each instance). Results below zero
mean a speedup, while those above a slowdown. This metric is used for selecting the
best model. Test parts used for model evaluation have different total times of solving
instances without synthesis. Using a simple average to aggregate the results of this met-
ric together would not take this into account, thus the weighted average and standard
deviation are used with the total solving times without synthesis as the weights.∑

(nosyn,syn,data) model (nosyn, syn, data)∑
(nosyn,syn,data) nosyn

− 1 (3.3)

Another presented metric is the ratio of instances whose solving time was the same
or faster. This is complementary to the ratio of instances that were solved in a longer
time due to the use of the model. In case solving of no instance was slowed down, and
there is a speedup in solving time as well, using this model has no downside.

To measure how often synthesis is used, the ratio of instances that were solved with
it is also reported.

3.3 MinCirc instances

In this section, data and results regarding the use of synthesis while solving SAT instances
from the MinCirc [25] optimum circuit generator are described. Results of solving these
instances are in detail described in Section 2.3.

3.3.1 Data
Some instances were solved only with or without synthesis, in order to be able to include
them in data used for training and evaluating the models. The unknown time value was
set to 2500 seconds (10000 seconds for Glucose (4CPU)). This is an arbitrary value,
which might, on average, approximate actual times of solving. An approach using linear
regression for predicting the missing value from the other one was tried. However, only
a handful of outliers were solved only with synthesis, thus choosing an arbitrary value
does not make much difference, and instances that were solved only without synthesis
are mostly also outliers and using linear regression would lead to predicting values too
large, which would be problematic with the chosen metric.

Since the number of instances solved only without synthesis is, in most cases, higher
or the same as those solved only with synthesis, this approach should not lead to favoring
the use of synthesis.

Instances that were solved neither with nor without synthesis are left out.
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Same as in Chapter 2, the time of solving with synthesis includes only the time of
synthesis and subsequent SAT solving. The time of file conversion from CNF to BLIF
and back is not taken into account, as the tool used them is not optimized for speed.

For predicting whether to use synthesis, 43 features extracted from each SAT instance
are used. Most of them (38) are extracted using the SATfeatPy library2, and they
correspond to features 1–33 used in SATzilla solver [42] extended by a few similar ones.

Since MinCirc sequentially generates instances with increasing size, five additional
domain-specific features are included: (1) the number of the MinCirc instance, (2–3)
one-hot encoded information, whether the previous MinCirc instance was satisfiable or
not, and (4–5) one-hot encoded information, whether it is an instance from four or
five-variable function generation.

Each model was trained on unpreprocessed data and data preprocessed using min-
max normalization and standardization.

Only results of st and 6-LUT-1x syntheses with the MiniSat solver are used since
MiniSat was the fastest solver and with both st and 6-LUT-1x syntheses had the best
results. st sped up solving of more instances, while 6-LUT-1x achieved higher potential
improvement.

3.3.2 Results
The results of the ten best ML models ordered by the total time change with st synthesis
are in Table 3.1 and with 6-LUT-1x are in Table 3.2.

Model change is the change in solving time resulting from the use of the model
compared to the total original time. Same or better is the ratio of instances whose
solving time was the same or better after using the model. Synthesis use is the ratio of
instances that were solved with synthesis. t is the time after which solving of an instance
would be restarted and rerun with synthesis. All values are averaged over all test parts
during cross-validation; for calculating For Model change, weighted average and standard
deviation are used, with the weights being total solving time without synthesis of the
corresponding test part.

Potential improvement averaged across cross-validation splits is −20.3 ± 4.2% for st
synthesis and −26.9 ± 2.8% for 6-LUT-1x synthesis. These values are weighted using
the same method as Model change (see previous paragraph).

With both syntheses, all tested approaches achieved negligible or no improvements
with high standard deviations. At best −1.6 ± 5.0% change in total solving time was
achieved using MiniSat with 6-LUT-1x synthesis.

Based on the tested models, it seems that using synthesis while solving this type of
SAT instances is not beneficial.

3.4 ATPG instances

This section describes data and results regarding the use of synthesis while solving SAT
instances generated when solving ATPG. Results of these instances are in detail described
in Section 2.4.

2https://github.com/bprovanbessell/SATfeatPy

https://github.com/bprovanbessell/SATfeatPy
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Table 3.1 Practical use of synthesis: results of ten best models by a decrease in solving time
on MinCirc instances using the MiniSat solver with st synthesis

Name Restarting Targets type Preprocessing Model change Same or better Synthesis use t

Random Forest yes binary min-max −0.1 ± 0.3% 99.9 ± 0.1% 0.1 ± 0.2% 33.4 ± 74.6

Random Forest yes binary none −0.1 ± 0.3% 99.9 ± 0.1% 0.1 ± 0.2% 33.4 ± 74.6

Random Forest yes binary standard −0.1 ± 0.3% 99.9 ± 0.1% 0.1 ± 0.2% 33.4 ± 74.6

Gradient Boosting no continuous min-max −0.03% 99.94% 0.2 ± 0.2% -

Gradient Boosting no continuous standard −0.03% 99.94% 0.2 ± 0.2% -

Gradient Boosting no continuous none −0.03% 99.94% 0.2 ± 0.2% -

Gradient Boosting yes continuous standard −0.02% 99.90% 0.2 ± 0.1% 1.0 ± 2.2

Gradient Boosting yes continuous min-max −0.02% 99.90% 0.2 ± 0.1% 1.0 ± 2.2

Gradient Boosting yes continuous none −0.02% 99.90% 0.2 ± 0.1% 1.0 ± 2.2

Gradient Boosting yes binary none −0.01% 99.94% 0.1 ± 0.1% 0.00

Table 3.2 Practical use of synthesis: results of ten best models by a decrease in solving time
on MinCirc instances using the MiniSat solver with 6-LUT-1x synthesis

Name Restarting Targets type Preprocessing Model change Same or better Synthesis use t

K-Nearest Neighbours no continuous min-max −1.6 ± 5.0% 99.8 ± 0.3% 0.4 ± 0.6% -

K-Nearest Neighbours no continuous standard −1.6 ± 5.0% 99.8 ± 0.3% 0.4 ± 0.6% -

K-Nearest Neighbours no binary min-max −1.6 ± 5.0% 99.8 ± 0.3% 0.4 ± 0.6% -

K-Nearest Neighbours yes binary min-max −0.3 ± 0.7% 99.98% 0.1 ± 0.1% 496.4 ± 801.2

Random Forest no binary none 0.00% 100.00% 0.00% -

Random Forest yes binary none 0.00% 100.00% 0.00% 0.00

Random Forest no binary min-max 0.00% 100.00% 0.00% -

Random Forest yes binary min-max 0.00% 100.00% 0.00% 0.00

Random Forest no binary standard 0.00% 100.00% 0.00% -

Random Forest yes binary standard 0.00% 100.00% 0.00% 0.00

3.4.1 Data
Fourteen features of each circuit are used to predict whether to use synthesis, these are
(1) # of primary inputs, (2) # of primary outputs, (3) # of gates, (4) # of edges, (5) the
total number of terms, (6) the total number of literals, (7) # of combinational levels,
(8) # of connected components, (9) # of xors, (10) # of gate equivalents * 2, (11) the
maximum number of fanins, (12) the average number of fanins, (13) the maximum
number of fanouts, (14) the average number of fanouts.

Each model was trained on unpreprocessed data and data preprocessed using min-
max normalization and standardization.

Only the results of st and st-re2-1x syntheses are used since they have better results
than other syntheses. The most promising is st synthesis, which achieved 19.7% speedup
if used always. This sets a baseline improvement that we can attempt to surpass.

3.4.2 Results
The results of the ten best ML models ordered by the total time change with st synthesis
are in Table 3.3 and with st-re2-1x are in Table 3.4.

Model change is the change in solving time resulting from the use of the model
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compared to the total original time. Same or better is the ratio of instances whose
solving time was the same or better after using the model. Synthesis use is the ratio of
instances that were solved with synthesis. t is the time after which solving of an instance
would be restarted and rerun with synthesis. All values are averaged over all test parts
during cross-validation; for calculating For Model change, weighted average and standard
deviation are used, with the weights being total solving time without synthesis of the
corresponding test part.

Potential improvement of st synthesis is −32.0 ± 27.0% and of st-re2-1x synthesis
−28.4 ± 29.7%. Change in solving time if synthesis was used always is −19.7 ± 31.2%
and 2.7 ± 39.3% for st and st-re2-1x syntheses, respectively. These values are weighted
using the same method as Model change (see previous paragraph).

Contrary to MinCirc instances, achieved improvements are with both syntheses much
larger. With st-re2-1x synthesis, the best model (k-nearest neighbors) achieved −14.8 ±
18.7% change, more than half of the potential improvement. In this case, the synthesis
was used in around 4.6% of cases. Almost all instances (98.6 ± 0.9%) were solved in the
same or faster time.

Results with st synthesis are even better – the best model (Gaussian naive Bayes
with standardization / min-max normalization) achieved −26.3 ± 29.2% change, more
than three-quarters of potential improvement. The use of synthesis is also higher at
around 12.7%. However, solving of more instances was slowed down compared to st-re2-
1x synthesis, as in the same or faster time were solved “only” 93.9 ± 2.4% of instances.

In both cases, the best models share their place with other models that differ in the
use of restarting and/or preprocessing. Interestingly, the best models are all classifiers,
so the use of real value to represent how sure is the use or not use of synthesis, does not
seem to help.

Slightly confusing is the 6% difference in results of the Gaussian naive Bayes classifier
with different forms of preprocessing. Mathematically, neither standardization nor min-
max normalization should influence this model. Multiplying each value of a feature by
a constant3 or adding a constant changes the calculation of all model coefficients in
the same way, and thus, the calculated probabilities of different classes should maintain
the same order. Different results are most likely caused by the imprecision of floating
point numbers and/or variance smoothing. For better numerical stability, the calculated
variance of each feature and class usually is increased by a small constant (e.g., 10−9)
multiplied by the maximum of calculated variances. If the variances have significantly
different sizes (which is true for unpreprocessed data), using the smoothing can change
some of the calculated variances more than is desirable.

3min, max, mean, and var of each feature can be viewed as a constant in this context
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Table 3.3 Practical use of synthesis: results of ten best models by a decrease in solving time
on ATPG instances with st synthesis

Name Restarting Targets type Preprocessing Model improvement Same or better Synthesis use t

Gaussian NB no binary standard −26.3 ± 29.2% 93.9 ± 2.4% 12.7 ± 3.2% -

Gaussian NB no binary min-max −26.3 ± 29.2% 93.9 ± 2.4% 12.7 ± 3.2% -

Gaussian NB yes binary standard −26.3 ± 29.2% 93.9 ± 2.4% 12.7 ± 3.2% 0.03

Gaussian NB yes binary min-max −26.3 ± 29.2% 93.9 ± 2.4% 12.7 ± 3.2% 0.03

Restarting yes - none −20.2 ± 31.0% 62.4 ± 2.5% 46.5 ± 5.4% 2.1 ± 0.5

Gaussian NB no binary none −20.1 ± 19.6% 94.1 ± 2.4% 12.1 ± 3.1% -

Gaussian NB yes binary none −20.1 ± 19.6% 94.1 ± 2.4% 12.1 ± 3.1% 0.03

K-Nearest Neighbours no continuous standard −19.0 ± 11.2% 97.5 ± 1.8% 9.1 ± 2.0% -

K-Nearest Neighbours yes continuous standard −19.0 ± 11.2% 97.5 ± 1.8% 9.1 ± 2.0% 0.03

Gradient Boosting no continuous min-max −18.0 ± 12.5% 98.1 ± 0.8% 7.1 ± 1.8% -

Table 3.4 Practical use of synthesis: results of ten best models by a decrease in solving time
on ATPG instances with st-re2-1x synthesis

Name Restarting Targets type Preprocessing Model improvement Same or better Synthesis use t

K-Nearest Neighbours no binary min-max −14.8 ± 18.7% 98.6 ± 0.9% 4.6 ± 1.3% -

K-Nearest Neighbours yes binary min-max −14.8 ± 18.7% 98.6 ± 0.9% 4.6 ± 1.3% 0.03

K-Nearest Neighbours no continuous min-max −9.2 ± 9.4% 98.7 ± 0.8% 4.5 ± 1.3% -

K-Nearest Neighbours yes continuous min-max −9.2 ± 9.4% 98.7 ± 0.8% 4.5 ± 1.3% 0.03

Logistic Regression no binary standard −9.1 ± 14.1% 98.6 ± 1.1% 3.8 ± 1.1% -

Logistic Regression yes binary standard −9.1 ± 14.1% 98.6 ± 1.1% 3.8 ± 1.1% 0.03

Logistic Regression no binary min-max −8.9 ± 14.1% 98.4 ± 0.9% 3.9 ± 0.9% -

Logistic Regression yes binary min-max −8.9 ± 14.1% 98.4 ± 0.9% 3.9 ± 0.9% 0.03

Gradient Boosting no binary min-max −8.9 ± 14.0% 98.4 ± 1.0% 4.9 ± 1.1% -

Gradient Boosting yes binary min-max −8.9 ± 14.0% 98.4 ± 1.0% 4.9 ± 1.1% 0.03



Chapter 4

Discussion

This thesis focused on answering whether it is beneficial to use logic synthesis when
solving benchmark SAT instances as well as those from optimum circuit generator Min-
Circ [25] and instances created when solving ATPG. Compared to [2], where the authors
measured improvements on all of the industrial SAT instances when solved with synthe-
sis, the results presented in this thesis are not that favorable for the synthesis.

Using synthesis was not beneficial when solving uniform Random-3-SAT and Quasi-
group benchmark instances – potential improvements of the fastest solver, MiniSat,
were negligible, and other solvers could not achieve faster solving time even with slightly
better results of using synthesis. In the case of the Pigeon-hole problem, the combination
of st synthesis with MiniSat solver led to about a two-thirds decrease in solving time
compared to zChaff, which without synthesis solved the instances fastest.

When solving SAT instances from MinCirc, the ratio of instances sped up when
preprocessed by synthesis was usually fairly low, with the potential improvements that
could be achieved only slightly higher. For MiniSat, which was the fastest solver, the
highest ratio of improved instances was 10.4% (st synthesis) and the largest potential
improvement 20.8% (6-LUT-1x synthesis). Using synthesis to preprocess all instances
would cause a significant slowdown.

It also does not seem that the synthesis is able to make the originally hard-to-solve
instances easier, as usually more instances were solved within the time-limit only without
the synthesis preprocessing than only with it.

An interesting result of using synthesis on smaller unsatisfiable instances was that
some syntheses transformed those instances into trivial ones (i.e., for variable a, the CNF
would be a ∧ ¬a). This was more frequent with more repetitions of the synthesis script.

Results from ATPG instances are more in favor of synthesis. Using st synthesis
to preprocess all instances would lead to a 19.7% decrease in total solving time. The
possible speedup was even higher – at most, the total solving time could be decreased
by 32.0%.

Using synthesis to preprocess all instances would lead to a significant slowdown in
the case of MinCirc instances, and using synthesis only in some cases would be more
beneficial on ATPG instances as well. Multiple approaches to incorporating synthesis
into SAT-solving were explored. In the case of MinCirc instances, no method of achieving
usable improvement was found. On the other hand, using a Gaussian naive Bayes
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classifier to predict whether to use synthesis on ATPG instances was more successful,
decreasing the solving time on average by 26.3%.



Chapter 5

Conclusion

This thesis analyzes the possible use of logic synthesis in SAT-solving. Different instance
types were processed with multiple ABC synthesis scripts and then solved by three SAT-
solvers – MiniSat, zChaff, and Glucose.

Maximum potential improvement (i.e., using synthesis only when it improves the
overall solving time of an instance) and results of using synthesis on all instances are
presented. Simpler syntheses usually achieved higher potential improvement, while the
more complicated ones could “solve” more unsatisfiable instances (transform them into
trivial ones) on their own. The improvement rate was usually low, as syntheses sped up
usually only around 10%–30% of instances.

From the benchmark instances, only the Pigeon-hole problem instances were solved
faster by a combination of the solver and synthesis than by the solver alone. This
problem is, however, only a benchmark and has no practical use. When solving practical
instances created during optimum circuit generation, potential improvements achieved
with synthesis were around 20% with the fastest solver (MiniSat); however, no reliable
method to take advantage of them was found. Lastly, in the case of ATPG instances,
st synthesis script could achieve a speed-up slightly below 20% if used on all instances.
Using a Gaussian naive Bayes classifier to predict whether to use the synthesis led to an
average decrease in solving time by 26.3%.

To conclude, using synthesis to preprocess MinCirc instances does not seem to be
beneficial, while using st synthesis for preprocessing of SAT instances generated during
ATPG solving can lead to about a quarter shorter solving time if used only on instances
selected using Gaussian naive Bayes classifier.
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5. EÉN, Niklas; SÖRENSSON, Niklas. An Extensible SAT-solver. In: GIUNCHIGLIA,
Enrico; TACCHELLA, Armando (eds.). Theory and Applications of Satisfiability
Testing. Springer Berlin Heidelberg, 2004, vol. 2919, pp. 502–518. Lecture Notes in
Computer Science. isbn 978-3-540-20851-8. Available from doi: 10.1007/978-3-
540-24605-3_37.

6. AUDEMARD, Gilles; SIMON, Laurent. On the Glucose SAT Solver. International
Journal on Artificial Intelligence Tools. 2018, vol. 27, no. 01. Available from doi:
10.1142/S0218213018400018.

7. KAUTZ, Henry; SABHARWAL, Ashish; SELMAN, Bart. Incomplete Algorithms.
In: BIERE, Armin; HEULE, Marijn; MAAREN, Hans van; WALSCH, Toby (eds.).
Handbook of Satisfiability. IOS Press, 2008. isbn 978-1-60750-376-7.

8. HOOS, Holger. SATLIB - Benchmark Problems [online]. 2000. [visited on 2024-04-
18]. Available from: https://www.cs.ubc.ca/˜hoos/SATLIB/benchm.html.

9. TSEITIN, G.S. On the Complexity of Derivation in Propositional Calculus. In:
SIEKMANN, J orgH.; WRIGHTSON, Graham (eds.). Automation of Reasoning.
Springer Berlin Heidelberg, 1983, pp. 466–483. Symbolic Computation. isbn 978-
3-642-81957-5.

50

https://doi.org/10.1145/800157.805047
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1142/S0218213018400018
https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html


Bibliography 51
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readme.md.................................description of the attachment contents
experiment-results.................................. results of the experiments

readme.md.......................................description of the result files
src

metacentrum-scripts....................scripts used for running experiments
environment.yml...........................virtual environment specifications
practical-use-of-synthesis.ipynb ......... Jupyter notebook for evaluating
possibilities of using synthesis
table-gen.ipynb .... Jupyter notebook for generating tables used in this thesis

thesis
thesis.pdf.............................................thesis in PDF format
thesis.zip.............................source files of the thesis text in LATEX
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