
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Application for configuration of modular products

Michal Dobeš

Ing. Jiří Hunka

Informatics

Business Informatics 2021

Department of Software Engineering

until the end of summer semester 2024/2025

Instructions

Cílem této práce je návrh, realizace a následné prototypové (ukázkové) nasazení aplikace

umožňující zákazníkům online 3D konfiguraci modulárních produktů. Důraz je kladen na

univerzální využití daného konfigurátoru nezávisle na cílovou oblast použití.

Postupujte v těchto krocích:

1. Proveďte důkladnou analýzu s ohledem na potenciální cílový okruh budoucích

uživatelů. Zaměřte se také na již existující řešení.

2. Na základě analýzy vytvořte vhodný návrh.

3. Na základě návrhu vytvořte použitelnou aplikaci.

4. Výsledný prototyp řádně otestujte vhodně zvolenými testy.

5. Analyzujte dopad implementace aplikace na business procesy vybrané společnosti.

Využijte ukázkově vaše řešení právě pro vámi zvolenou společnost.

6. Zhodnoťte dosažené výsledky a navrhněte možná budoucí vylepšení.

Electronically approved by Ing. David Buchtela, Ph.D. on 22 January 2024 in Prague.

Bachelor’s thesis

APPLICATION FOR
CONFIGURATION OF
MODULAR PRODUCTS

Michal Dobeš

Faculty of Information Technology
Department of Software Engineering
Supervisor: Ing. Jǐŕı Hunka
May 15, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Michal Dobeš. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been
submitted at Czech Technical University in Prague, Faculty of Information Technology.
The thesis is protected by the Copyright Act and its usage without author’s permission
is prohibited (with exceptions defined by the Copyright Act).

Citation of this thesis: Dobeš Michal. Application for configuration of modular products.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2024.

Contents

Acknowledgments vii

Declaration viii

Abstract ix

List of Abbreviations x

Introduction 1

1 Analysis 3
1.1 Existing Solutions . 4

1.1.1 Applications of Product Configurators 4
1.1.1.1 IKEA PAX Planner 6
1.1.1.2 Muuto Product Planner 7
1.1.1.3 LD Seating Nido Configurator 8

1.1.2 Available Toolkits . 10
1.1.2.1 Threekit . 10
1.1.2.2 Roomle . 11

1.1.3 Summary of Existing Solutions 12
1.2 Proposed Solution . 13

1.2.1 Requirement Engineering 14
1.2.1.1 Functional Requirements 15
1.2.1.2 Non-Functional Requirements 20

2 Design 23
2.1 Technologies . 23

2.1.1 Platform . 23
2.1.2 3D Visualization Technology 24

2.1.2.1 WebGL Framework 25
2.1.3 Front-End Framework 25

2.1.3.1 CSS Framework 26
2.1.4 Programming Languages 27
2.1.5 Additional Libraries . 27

2.1.5.1 Routing . 27
2.1.5.2 Language Support 27
2.1.5.3 State Management 28

ii

Contents iii

2.1.5.4 Validation . 28
2.1.6 Development Tooling . 28

2.1.6.1 Version Control 28
2.1.6.2 Package Manager 29
2.1.6.3 Formatters . 29

2.2 Domain Model . 29
2.2.1 Catalog . 32
2.2.2 Configuration . 33

2.3 User Interface . 33
2.3.1 Configuration Screen . 35
2.3.2 Introduction Screen . 37
2.3.3 Confirmation Screen . 38

3 Implementation 40
3.1 Structure of the Toolkit . 40

3.1.1 Project Directory Tree 41
3.2 Data Schemas . 42

3.2.1 Catalog . 45
3.2.2 Product Specification 46
3.2.3 User Creation . 47

3.3 Challenges and Solutions . 48
3.3.1 Component Visualization 48

3.3.1.1 Component Interactivity 50
3.3.2 Model Material Change 50
3.3.3 Undo and Redo Actions 51
3.3.4 Collision Detection . 52
3.3.5 Configuration Processing 54
3.3.6 Application Configuration 55

3.3.6.1 Interface Texts 56
3.3.7 Routing . 57

3.3.7.1 Data Flow . 57
3.3.8 Catalog Management 58

3.4 Views . 58
3.4.1 Configurator Application 59

3.4.1.1 Configuration Screen 59
3.4.1.2 Introduction Screen 60
3.4.1.3 Confirmation Screen 60

3.4.2 Administrator Application 61
3.4.2.1 Catalog Composer 61
3.4.2.2 Product Composer 62

3.5 Summary of Implementation 63
3.5.1 Possible Future Improvements 65

Contents iv

4 Deployment 66
4.1 Application Setup and Configuration 66

4.1.1 Building and Launching the Application 67
4.1.2 Customizing the Application 68

4.1.2.1 Localizations 68
4.1.2.2 Appearance . 68
4.1.2.3 Data Source 68
4.1.2.4 Example Case 68

4.1.3 Catalog Creation and Content Management 69
4.1.3.1 Example Case 70

4.2 Business Aspects . 71
4.2.1 Cost-Effectiveness . 71

4.2.1.1 Return on Investment 72
4.2.2 Operational Impact . 72

4.2.2.1 Original Process 74
4.2.2.2 New Process 74

5 Testing 75
5.1 Unit Testing . 76
5.2 System Testing . 77
5.3 Usability Testing . 78

5.3.1 Test Plan . 78
5.3.1.1 Evaluation Methods 79
5.3.1.2 Scenario . 81

5.3.2 Testing Process . 82
5.3.2.1 Participants 82
5.3.2.2 Execution and Observations 83

5.3.3 Test Results . 85
5.3.3.1 Insights . 86

6 Conclusion 90

A Additional Visuals 92

B Additional Code Listings 95

Contents of the Attachment 105

List of Figures

1.1 Screenshot of IKEA PAX Planner Tool with example configuration 6
1.2 Screenshot of Muuto Product Planner tool with example config-

uration . 8
1.3 Screenshot of LD Seating Nido Configurator with example con-

figuration . 9

2.1 Diagram of core functionality of product configurators 30
2.2 Domain model as UML diagram 31
2.3 Wireframe of configuration screen 35
2.4 Wireframe of configuration screen with panels 36
2.5 Wireframe of mobile configuration screen 37
2.6 Wireframe of mobile configuration screen with panels 37
2.7 Wireframe of introduction screen 37
2.8 Wireframe of confirmation screen 38
2.9 Wireframe of mobile confirmation screen 39

3.1 Directory structure of the project 41
3.2 Structure of src directories . 42
3.3 Data schemas as UML diagram 44
3.4 Screenshot of configuration screen 59
3.5 Screenshot of introduction screen 60
3.6 Screenshot of confirmation screen 61
3.7 Screenshot of catalog composer screen 62
3.8 Screenshot of product composer screen 62

4.1 Original order process as UML activity diagram 73
4.2 New order process with the implemented solution as UML ac-

tivity diagram . 73

5.1 Apple Magic Mouse . 84
5.2 System Usability Scale scores by participant 85
5.3 Component addition menu before the implemented fix 86
5.4 Component addition menu with implemented arrows for scrolling 86

A.1 Threekit’s Platform’s landing page 93
A.2 Threekit’s Platform’s editor . 93
A.3 Screenshot of Roomle’s Rubens example 94

v

List of Tables

1.1 Summary of key points discussed in the analysis of existing
modular product configurators 12

3.1 Summary of features implemented in the configurator application 63
3.2 Summary of fulfilled functional requirements 64

4.1 Overview of the pricing per requests (reqs) for serverless providers 71

5.1 System Usability Scale questionnaire 81

List of Code Listings

3.1 Data schema of catalog . 45
3.2 Data schema of product and component specifications 46
3.3 Data schema of user creation 47
3.4 Preview of component visualization implementation 49
3.5 Preview of model composition implementation 51
3.6 Preview of collision detection implementation 53
3.7 Data schema of contact information 54
3.8 Preview of application initialization and config loading imple-

mentation . 55

4.1 Configuration of Apache HTTP Server for client-side routing . 67
4.2 Implementation of serverless function for forwarding inquiry

form data . 70

5.1 Example unit test used to validate store action within the solution 76

B.1 Creating and displaying a 3D red cube with Three.js 96
B.2 Creating a 3D red cube as a React component with R3F 96
B.3 Conversion from Zod schema to TypeScript type 97

vi

I want to express my heartfelt gratitude to my supervisor,
Ing. Jiř́ı Hunka, for enabling me to create a bachelor’s
thesis on this topic and for providing invaluable advice
throughout the entire process.

I am also profoundly thankful to the testers for their
time and feedback in the usability testing of the solution.

Last but not least, I want to thank my family and
friends for their inexhaustible moral and material sup-
port, which enabled my bachelor’s study at the univer-
sity.

vii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited
all sources of information in accordance with the Guideline for adhering to
ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Section 2373(2) of Act No. 89/2012 Coll., the Civil Code, as
amended, I hereby grant a non-exclusive authorization (licence) to utilize this
thesis, including all computer programs that are part of it or attached to it and
all documentation thereof (hereinafter collectively referred to as the ”Work”),
to any and all persons who wish to use the Work. Such persons are entitled to
use the Work in any manner that does not diminish the value of the Work and
for any purpose (including use for profit). This authorisation is unlimited in
time, territory and quantity.

In Prague on May 15, 2024

viii

Abstract

This bachelor’s thesis focuses on the design and development of a web appli-
cation for 3D online configuration of modular products. The thesis examines
comparable existing applications and implements a product-agnostic, front-
end-only, customizable web configurator conceived for use by small businesses.
The configurator provides a straightforward definition of configurable products
and operates solely using a web server. The implementation leverages modern
technologies, combining Three.js with React. The thesis furthermore describes
an example deployment of the created solution in a real-world scenario and
discusses the business aspects of the application. The result of this bachelor’s
thesis is a tool businesses can use to introduce modular product configuration
on their websites.

Keywords mass customization, 3D configurator, web application, modular
product, Three.js, React, front-end development

Abstrakt

Tato bakalářská práce se zabývá návrhem a vývojem webové aplikace pro
3D online konfiguraci modulárńıch produkt̊u. Práce analyzuje existuj́ıćı srov-
natelné aplikace a implementuje produktově nezávislý, pouze front-endový
a přizp̊usobitelný webový konfigurátor koncipovaný pro použit́ı v malých pod-
nićıch. Konfigurátor umožňuje př́ımočarou definici konfigurovatelných produkt̊u
a funguje výhradně pomoćı webového serveru. Implementace využ́ıvá moderńı
technologie a kombinuje Three.js a React. Práce dále popisuje nasazeńı vy-
vinutého řešeńı na př́ıkladném scénáři v reálném prostřed́ı a jsou diskutovány
byznysové aspekty aplikace. Výsledkem této bakalářské práce je nástroj, který
mohou podniky využ́ıt k zavedeńı modulárńı konfigurace produkt̊u na svých
webových stránkách.

Kĺıčová slova masová kustomizace, 3D konfigurátor, webová aplikace,
modulárńı produkt, Three.js, React, vývoj front-endu

ix

List of Abbreviations

API Application Programming Interface
AR Augmented Reality

BVH Bounding Volume Hierarchy
CAD Computer-Aided Design

CD Continuous Deployment
CI Continuous Integration

CSS Cascading Style Sheets
DNS Domain Name System

DOM Document Object Model
ERP Enterprise Resource Planning
FCP First Contentful Paint
GLB Graphics Library Transmission Format Binary

gLTF Graphics Library Transmission Format
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
JSON JavaScript Object Notation
PDF Portable Document Format
R3F React Three Fiber
ROI Return on Investment
SPA Single-Page Application
SUS System Usability Scale

UML Unified Modeling Language
URL Uniform Resource Locator

USDZ Universal Scene Description Zip
VR Virtual Reality

WebGL Web Graphics Library

x

Introduction

Product configurators and their value.

Over the past few decades, the rise of e-commerce has caused a shift in consumer
expectations, resulting in an increased demand for individualized products.
This gives rise to the need to shift focus towards mass customization, where
products are customized according to individual preferences. To thrive in this
sector, companies must modify their product offerings to meet the unique needs
of users. This necessitates the existence of a system that enables customers to
express their preferences and convert them into product configurations. [1]

The task of transforming user preferences into concrete designs is a difficult
endeavor that can be hindered by a lack of effective communication between
the customer’s explanation of their desires and the business’s comprehension.
The use of online product configurators seemingly provides a solution to this
issue by offering a user-friendly and visually appealing platform that allows
customers to customize products according to their needs, improves the cus-
tomer experience by increasing engagement and interactivity, and helps bridge
the gap between customer expectations and the end product. These tools have
become an integral part of successful personalization strategies. [2]

The involvement of consumers in the customization process leads to a stron-
ger bond with the product compared to standard off-the-shelf products. This
aspect of mass customization makes it an appealing and compelling strategy for
businesses to implement [3]. However, when implementing such a system, it is
crucial to ensure that the customization process is pleasurable for the customer.
Research has shown that the enjoyment experienced during the customiza-
tion process also affects the perceived value of the final product, highlighting
the importance of a good implementation. [4]

The introduction of modern technologies such as WebGL or Augmented
Reality (AR) has expanded the potential of online configurators. These advances
enable these toolkits to become more powerful and visually illustrative tools
that provide a higher level of interactivity and realism than what was previously
accessible. [5]

1

Introduction 2

Objective of This Thesis

The primary objective of this thesis is to design and implement an application
(toolkit) for the 3D online configuration of modular products. The toolkit
aims to be product-agnostic, adaptable, and customizable, usable by various
businesses, enabling their customers to customize their modular products
interactively. The focus is on ensuring that the toolkit is not only flexible in
accommodating various specific needs, but also straightforward for businesses to
maintain after deployment, emphasizing lightweight infrastructure requirements.

To accomplish this main objective, an accompanying analysis of the charac-
teristics found in current product configurators is required, as well as an exam-
ination of comparable solutions currently available to businesses.

Structure of This Thesis

This thesis is divided into six chapters.

Chapter 1 The initial chapter entails an examination of existing solutions
and an investigation into the functionalities that should be incorporated
into this particular application.

Chapter 2 The second chapter discusses the design of the application and
the technologies chosen.

Chapter 3 The third chapter is devoted to implementation.

Chapter 4 Chapter four focuses on the example deployment of the imple-
mented application in a chosen example business. In addition, it discusses
the resulting changes in the business processes of a particular business.

Chapter 5 In the fifth chapter, the tests used in the development of the ap-
plication are described.

Chapter 6 Finally, the last chapter summarizes the results achieved and
suggests possible directions for future development.

Chapter 1

Analysis

A comprehensive evaluation of existing solutions, identification of key features
and limitations, and outlining of the specifications for the proposed solution.

Product configurators can be implemented in various ways, and the design
of the tool itself determines the types of products that can be customized
using the tool later on. The number of unique configurations of a product that
the tool can create is called the solution space. The size of the solution space is
determined by the count of customizable attributes and the achievable values
of each attribute [6]. A relevant study [7] examined the solution spaces of these
toolkits and proposed an evaluation model that enables the categorization and
assessment of various implementation approaches. Based on the target outcome
and the guidance provided by the tool, the following mechanisms are defined:

▶ Definiton 1.1 (Veneer). Customization by adding a visual decorative layer.
(e.g., printing, engraving, etching)

▶ Definiton 1.2 (Modularity). Customization by combining modules or com-
ponents.

▶ Definiton 1.3 (Parametric). Customization by changing the parameter
values of parts.

▶ Definiton 1.4 (Generative). Customization using code and scripting to
synthesize the final form of the product.

There are often some common characteristics among configuration tools
with different mechanisms; however, the main focus of this thesis is on toolkits
that primarily employ modularity mechanisms.

3

Existing Solutions 4

1.1 Existing Solutions

1.1.1 Applications of Product Configurators
Many companies across multiple industries, such as automotive, fashion, furni-
ture, housing, are integrating product configurators into their sales strategies.
These configurators serve as the main or supplementary sales tools for these
businesses.

The Configurator Database Project by cyLEDGE MEDIA aims to catalog
these web-based configuration tools. The 2017/2018 report tracked 1250 de-
ployments of these tools; however, the true count will be significantly higher
since the database only includes the most frequently visited applications. [8]

An analysis of the 100 most viewed configurators from May 2020 to May 2021
in the Configurator Database Project was performed in a study [9] that examined
the shared characteristics of these configurators. The summary of some of
the relevant characteristics and design choices that the study has analyzed are
presented in this section:

Responsive design: 75.3% of examined tools had responsive design (the de-
sign adapted to the viewport of the device).

Navigation: 17.5% of configurators had linear predefined navigation (meaning
the configuration had to follow a specified sequence), whereas the 82.5% ma-
jority of tools had open navigation (meaning the user has the flexibility to
configure the product in any order).

Visualization: 79.4% of tools utilized photorealistic visualization (as opposed
to illustrations or no visualization); however, the study acknowledges that
there were significant variations depending on the industries in which
the configurator is utilized.

Data transfer: The mean network data size transferred for 3D configurator
was 35.6 MB.

Configuration options: 60.8% of configurators offered more than ten cus-
tomizable attributes.

Purchase capability: Given that car brands typically do not directly sell
their cars online, they were excluded from the analysis of this particular
characteristic. Without vehicle configurators, 70.5% of the configurators
could complete an online purchase of the configured product.

Price calculation: 56.7% of the configurators were able to instantly reflect
the changes made to the configuration in the displayed price.

The previous paragraphs discussed general trends among all product con-
figurators of all kinds. As part of the analysis in this chapter, it is essential
also to examine existing particular modular 3D product configurators.

Existing Solutions 5

Due to the large number of existing applications, it is not within the scope
of this work to perform an exhaustive analysis. Instead, this section will focus
on a select group of three applications. These have been selected based on
a combination of factors such as their popularity, functionality, and importance
in the context of a modular product configuration. This selection is intended
to provide insightful examples that highlight different approaches, rather than
being representative of the entire domain.
The main aspects under consideration are as follows:

Platform: How is the application accessible?

Navigation: How does the user navigate in the application during the con-
figuration process?

Visualization style: How is the product visualized within the configuration
process?

Placement options: Can the modular components be freely placed, or
are they restricted to fixed points?

Camera movement: From which angles can the product be visualized,
and how can it switch between them? In the context of the tool, camera
refers to a virtual camera in a 3D graphical environment that simulates
the viewpoint and perspective from which the 3D scene is viewed.

Impossible configurations:Is it possible to create configurations that are
not feasible in reality, such as physically overlapping components?

Responsiveness: How does the application adapt to different device
viewports?

Price calculation: Is the price of the configured product calculated in
real-time?

Purchase option: Is there an option to finalize and purchase the configured
product within the application?

Save option: Can users save their configurations to return to them later?

Version history: Does the configurator provide an accessible history of
configuration changes?

VR or AR: Can the configured product be visualized in Virtual Reality
or Augmented Reality?

Real dimensions: Can the configurator display information about the real
dimensions of the configured products?

Existing Solutions 6

Furthermore, the design decisions are also discussed:

Views: What is the position and size of the views inside the application?

Navigation bars: Where are the navigation bars placed and how are they
utilized?

Button placements: How are different buttons placed within the applica-
tion’s interface?

1.1.1.1 IKEA PAX Planner

IKEA is a widely recognized global home furnishings retailer specializing in
affordable furniture. [10]

IKEA offers the PAX fitted wardrobe, for which they not only sell predefined
configurations, but also allow customers to modularly choose the ideal size,
doors, knobs, handles, interior organization, and lightning. [11]

To accomplish this, they utilize the PAX Planner web tool.1

Figure 1.1 Screenshot of IKEA PAX Planner Tool with example configuration
Source: IKEA [11]

The tool consists mainly of two views. The primary view on the left
contains a 3D preview of the configured product, allowing users to observe
objects from different viewpoints by moving along an orbital trajectory in
a 180-degree half-circle. The components displayed in the 3D view are both
realistic and interactive. Users can adjust their position by dragging, and
selecting a component offers additional information along with real-life images
of the item. All modular options that can be added to the current configuration

1Available at: https://www.ikea.com/addon-app/storageone/pax/web/latest/cz/en/

https://www.ikea.com/addon-app/storageone/pax/web/latest/cz/en/

Existing Solutions 7

are found in the secondary smaller view on the right side and can be added by
clicking or dragging them into the 3D preview. The application is responsive,
and on mobile devices, the secondary view moves from the right side to a bottom
sliding panel. The navigation bar is located at the top of the secondary view,
and other buttons are located around the edges of the primary view.

At the beginning of the configuration process, the application prompts
the user to select the starting point of the configuration. The configurator has
open navigation, meaning that the components can then be configured in any
order. Components can be placed anywhere along a specified axis with certain
restrictions, effectively preventing the creation of impossible configurations.

The tool performs live price calculations and contains a final summary
confirmation screen from which it is possible to order the configured product in
the e-shop. The configurator maintains a history of recent changes, accessible
through undo and redo buttons. It also features the ability to save configurations
on the server, which can be retrieved later using a generated code.

The configurator also provides a range of innovative features, such as
the ability to change the visibility of some elements using a button (e.g. hiding
the doors of a wardrobe to reveal the contents inside) or the ability to display
dimensions directly in the 3D preview.

The application is a Single-Page Application (SPA) and does not update
the URL based on the selected product or phase of the configuration.

SPA is a web application implementation approach that loads only a single
page and then sequentially updates the content of the page with scripting on
the client side, rather than loading whole new pages from the server. [12]

1.1.1.2 Muuto Product Planner

Muuto is a Scandinavian design company that produces furniture and home
accessories. [13]

The company provides Product Planner, a 3D web-based configurator, which
allows customers to customize and combine the designs of various products,
such as storage systems, sofas, tables, or wall hangers, tailored to their specific
needs.2 [14]

The design of the configurator is similar to that in the previous case.
The configurator also consists of two views. The primary view on the left
provides full realistic 3D visualization, while the smaller secondary view on the
right side allows users to add components by dragging them into the main view.
Selecting a component in the primary view enables users to remove it or alter its
materials. As the design is responsive, on smaller devices, the secondary view
transforms into a bottom slide panel. Depending on the configured product,
the tool offers a preview either from a single angle or a preview from any point
on an orbital trajectory. The main view is also surrounded by buttons along

2Available at: https://planner.muuto.com/

https://planner.muuto.com/

Existing Solutions 8

Figure 1.2 Screenshot of Muuto Product Planner tool with example configuration
Source: Muuto [14]

its edges. The navigation bar is positioned at the bottom across the entire
application, while the company logo is displayed on the top left.

The tool follows a similar flow, starting with the selection of the starting
point and then moving to the configurator process, which has open navigation.
Components can be placed anywhere, unless their position is dependent on
another component. Due to this flexibility and also the wide variety of products
that it supports, the configurator is not restricted to generating configurations
that are feasible to produce and can create impossible configurations.

The tool can display real dimensions and can reverse the performed changes
using the undo and redo buttons. The configuration can also be saved on
the server-side and later accessed using a unique code. Live price calculation
is also performed, and there is a summary page, but it is not possible to
order the configured product; instead, the user is redirected to a physical store
locator.

Furthermore, the designed configuration can be quickly shared with other
users using email, or it can be downloaded in several file formats containing
the 3D model itself. The application makes it possible to view the product in
AR, directly in a web browser, albeit only on Apple devices using the Universal
Scene Description Zip (USDZ) format and AR Quick Look. [15]

The application has multiple URL schemes that depend on the configuration
phase, but they are not determined by the current product.

1.1.1.3 LD Seating Nido Configurator

LD Seating is company based in the Czech Republic that specializes in the pro-
duction of chairs, armchairs, and sofas. [16]

Existing Solutions 9

The company uses a 3D web-based configurator to market the Nido modular
seating system, which consists of elements that are designed to be combined in
various ways.3 [17]

Figure 1.3 Screenshot of LD Seating Nido Configurator with example configuration
Source: LD Seating [17]

The configurator consists of one large view, covering the whole applica-
tion, which displays high-definition 3D models of the configured components.
The buttons are placed around the entire view, on the top right, bottom center,
and top left, where the company logo is also displayed. The controls for adding
components and modifying properties are embedded directly in the 3D scene.
When necessary, a panel opens to the right, allowing users to select components
to add, adjust component properties, or change materials. The application is
partially responsive, as the side panel opens fullscreen on smaller viewports;
however, there are some issues with image and text overflows on mobile devices.
The main view allows the user to observe the configuration from all angles
along an orbital trajectory.

The flow of the application also includes selecting a starting point. The prod-
uct configuration process itself uses open navigation. The tool assesses whether
a component can fit into a space and, if not, prevents its placement, thereby
restricting impossible configurations. At the completion of the configuration,
a confirmation summary is presented; however, in this case, the price is not
calculated live. The configurator cannot directly place an order for the product,
but instead confirming results in the display of an inquiry form.

The resulting configuration can be downloaded as a file containing the 3D
models. The configuration can also be saved server-side, which generates
a unique link at which the configuration is accessible. The tool features

3Available at: https://nido.ldseating.com/en/configurator

https://nido.ldseating.com/en/configurator

Existing Solutions 10

a version history that stores each saved configuration for future access. Users
can revisit these versions, while undo and redo buttons are also available.
The resulting configuration can also be exported to a PDF file containing a list
of components. The tool also has the ability to display real dimensions.

The application is a SPA, maintaining a consistent URL and changing it to
reflect the location of a saved configuration (if one exists).

1.1.2 Available Toolkits
In this section of the analysis chapter, the focus shifts from specific 3D modular
configurator applications to the fundamental toolkits that power the configu-
rators. Although many configurators are bespoke and tailored to the specific
needs of companies and their individual products, there are providers offering
more generic and adaptable solutions. These offerings are highly relevant to
this thesis, as the objective of this thesis is to create a product-agnostic toolkit,
which means that there is a need to consider the way the configurator is set up
by the business.

A variety of providers offer these toolkits for deploying product configurators,
intending to provide semi-custom or fully custom solutions, as well as generic
options. This section examines two particular toolkits to carry out a focused
and relevant analysis. The choice of toolkits analyzed has been complicated by
the fact that most providers are cautious about the details of the technology,
typically revealing in-depth information only after a serious business inquiry.
The choice was also based on factors such as the implementation approach and
compatibility with modular products.
This section seeks to answer the following questions about the toolkits:

Administration: How is the product configurator created and adminis-
tered?

Assets: How are assets stored and cataloged?

Product configuration: How are the configuration options and rules
defined?

Integration: How is the tool integrated into other systems?

Pricing: What is the cost of the offered solution?

1.1.2.1 Threekit

Threekit is a leading global company in visual commerce technologies that
specializes in 3D product visualizations. The Threekit Platform, which enables
clients to create interactive product experiences according to their needs,
functions as an administrative application and has the capability to generate
product configurators (see Figure A.1 in Appendix A). [18, 19]

Existing Solutions 11

The platform is very complex with many distinct features. At its core, it
uses a catalog for storing all product data (the products themselves, materials
used, configurable parts, etc.). The items in the catalog can then be loaded
into The Treekit Player, which will display the models in 3D, with the option
for users to change attributes (models and materials) that are tied to the item.
The behavior of the configurator can be set up using item rules and logic that
support conditions, queries, and even custom scripts. The platform also offers
a data tables feature that is similar to spreadsheets and is designed to handle
extensive configuration data and logic. The application also has a built-in asset
editor for refining 2D and 3D assets and configuration options (see Figure A.2
in Appendix A). Models of the products can be uploaded in various 3D formats.
The platform provides API integration with the leading e-commerce and ERP
systems. [20]

The offered solution is still partially tailored to the client, which is the rea-
son why the service does not have standardized pricing. Instead, the price is
determined through a personalized quote. It is important to note that the anal-
ysis of Threekit presented here is based on the publicly available documentation
of the platform. Direct access to the full suite of Threekit’s tools is typically
available only after formalizing a business agreement with the company.

1.1.2.2 Roomle

Roomle is an Austrian company focused on pioneering visual product config-
uration. They provide solutions for product visualization, room design, and
product configuration. Roomle’s solution, called Rubens, is described as “Open
Full Logic 3D-Configurator”. The tool utilizes both parametric and modular
configuration mechanisms. The software allows integration with third parties
through the use of an API. In addition, it supports integration with other
front-end technologies on web and mobile platforms and has a built-in AR
experience. [21]

A web application, Rubens Admin, is used to set up the configurator
application. To add a product that can then be configured by customers, 3D
models, and materials are uploaded to the admin application. Components are
defined using RoomleScript language, which is loosely based on the JavaScript
language. The design of the configurator itself can be tuned in the admin
application as well. Multiple language variants can be defined for product names
and descriptions. The configurator application (see Figure A.3 in Appendix A)
runs on the client-side and can be simply embedded into a website. Additionally,
a JavaScript library that can subscribe to events or modify the configurator
can be utilized. A framework is also provided to utilize the configurator within
an iOS application. [22]

In terms of pricing, Roomle’s Rubens configurator with the listed capabilities
is offered to businesses at a monthly fee of €1450. [23]

Existing Solutions 12

1.1.3 Summary of Existing Solutions

Features
IKEA
Pax

Planner

Muuto
Product
Planner

LD Seating
Nido

Configurator

Platform Web Web Web

Navigation Open Open Open

Visualization Realistic Realistic Realistic

Placement options Free Free Fixed points

Camera movement Orbital Orbital;
Static Orbital

Impossible
configurations No Yes No

Responsiveness Yes Yes Yes

Price calculation Yes Yes No

Purchase option E-shop order Store locator Inquiry form

Save option Server-side Server-side;
Local

Server-side;
Local

Version history Undo & redo Undo & redo Undo & redo;
Multiple saves

VR or AR No Yes No

Real dimensions Yes Yes Yes

Table 1.1 Summary of key points discussed in the analysis of existing modular
product configurators

All the product configurators analyzed have common characteristics, espe-
cially in terms of navigation and visualization styles, which remain consistent
across different tools. Despite this, certain trade-offs were observed between

Proposed Solution 13

them, especially regarding placement options. While some solutions offer users
the freedom to position components anywhere, others restrict placement to
fixed points. This variance stems from implementation complexity, as the fixed-
point system is simpler, furthermore offering a better way to restrict impossible
configurations. Another significant distinction was observed in the product
finalization process, which ranged from the ability to place an order to being
directed to a physical store.

The key points discussed in the analysis of modular product configurators
are summarized in Table 1.1.

The user interface design of the analyzed configurations also displayed
similarities, particularly in layout style, featuring a primary 3D preview on
the left, a secondary view on the right, and buttons surrounding the primary
view.

Analyzing the offered toolkit solutions proved challenging due to the infor-
mation being closely guarded, as it is in the financial interest of the providers.
However, the examined toolkits are very sophisticated solutions that are sup-
ported by large backend services, which are used for storing assets and facil-
itating the configurators functionality. The toolkits offer advanced features
that allow for the definition of rules and logic, allowing companies to create
configurators with a large amount of complexity. This indicates that these
toolkits target a market composed mainly of larger corporations that require
sophisticated solutions, which is also reflected in pricing.

1.2 Proposed Solution

This thesis aims to develop a new solution for the configuration of modular
products. To do so, the proposed solution will incorporate the common charac-
teristics identified in the analyzed solutions. The following paragraphs of this
chapter should answer the important questions of who, what, why and how,
detailing the key aspects of the proposed solution.

The main differentiation factor of this proposed toolkit is its emphasis on
catering to small businesses. As the existing toolkits that were examined were
costly and mainly aimed at larger companies, this solution aims to fill this
market gap. To achieve this, it will be necessary to make some trade-offs
ensuring the solution’s adaptability and relevance across various product types
without making the solution overly complex. Therefore, the proposed toolkit
will prioritize simplicity and cost-effectiveness, following the best practices seen
in larger-scale solutions but with a specific focus on the needs and capabilities
of the target market.

The following chapter outlines the features that should be implemented in
the solution proposed in this thesis.

The proposed toolkit is envisioned to be universal with regard to products,
adaptable, and customizable, catering to a wide variety of modular products
and industries. The solution should be simple for businesses to deploy and

Proposed Solution 14

manage, without the need for extensive technical resources, ensuring that it is
straightforward for smaller businesses to maintain and operate effectively.

1.2.1 Requirement Engineering
Following the overview of objectives and the definition of the target market,
it is necessary to formulate precise requirements for this solution. Detailing
these features and characteristics is crucial for successful implementation. Thus,
the description of requirement engineering for this solution will be provided
here.

The process of requirement engineering for software products involves
gathering, analyzing, selecting, and managing requirements. It focuses on
interpreting and understanding the goals, needs, and beliefs of stakeholders
and transforming them into specific requirements. [24]

There are many ways to categorize software requirements, such as audience-
oriented categorization or using the FURPS method, which classifies require-
ments based on functionality, usability, reliability, performance, or supportabil-
ity. [25]

Given that the majority of requirements for the solution fall either into
the functionality or usability category, the requirements in this section are
separated only into the following common [24] two main categories:

1. Functional requirements: These requirements describe what the system
should be able to do. They specifically outline the system’s behavior and
its interactions in specific situations.

2. Non-functional requirements: These requirements put constraints on the so-
lution that meets the functional requirements, rather than being focused
on specific behaviors of the system. They are often, among others, focused
on performance, security, accessibility, and compatibility.

To manage and prioritize these requirements, each is assigned an approx-
imate priority level using the MoSCoW method. This approach classifies
the requirements into four distinct categories:

1. Must: Requirements crucial for the final solution.

2. Should: Requirements to be implemented if feasible.

3. Could: Requirements that are desirable but not essential.

4. Won’t: Nice-to-have requirements that most likely will not be implemented
in this solution.

This method helps to plan and allocate resources throughout the implementation
phase. [25]

Proposed Solution 15

Additionally, each requirement is given a rough estimate of the implemen-
tation difficulty, separated into three categories:
1. Simple: Requirements that are straightforward to implement and require

little time and few resources.

2. Intermediate: Requirements that pose moderate challenges and demand
a considerable amount of resources, time, and problem-solving.

3. Complex: Requirements that are highly challenging and involve substantial
resources, time, and expertise.

This preliminary assessment aims to classify the requirements without relying
on specific rigid criteria for each category. This method is specifically used only
for functional requirements, as non-functional requirements affect the software’s
functionality and user experience through abstract constraints, making them
unsuitable for the same difficulty estimation approach.

1.2.1.1 Functional Requirements

F1: 3D product visualization
The tool shall offer users 3D visualization of their configured product,
employing realistic models to accurately represent the components used
and their characteristics.

Priority: Must
Difficulty: Complex

F2: Dynamic orbital camera controls
The tool should have dynamic orbital camera controls that allow users
to view the product in the 3D product visualization (see requirement
F1) from any angle by rotating, panning, and zooming the camera
around the product. This feature aims to provide an engaging visual
experience that allows users to examine the product with a 360-degree
view. The controls should be intuitive, allowing for seamless navigation
through mouse actions or touch gestures depending on the device used.

Priority: Must
Difficulty: Simple

F3: Modularity configuration mechanism
The toolkit should incorporate modularity mechanisms that allow users to
configure products by adding, removing, or modifying components within
the overall product or in relation to other components. Different modules
may be available for each component, and the toolkit administrator
should have the ability to designate them either as optional or mandatory,

Proposed Solution 16

thereby enhancing the flexibility of configuration.

Priority: Must
Difficulty: Intermediate

F4: Component interactivity
The configurator should support interactivity with each component of
the product. Users should be able to select components directly within
the 3D visualization (see requirement F1), which should allow them to
change attributes of the components, remove them, or swap them with
alternative options (see requirement F3). The changes made by the users
should be immediately visible, allowing for an iterative and engaging
customization process. Moreover, the components that are interacted
with need to offer feedback, such as highlighting, in order to assist users
in navigating the accessible customization choices.

Priority: Should
Difficulty: Complex

F5: Open navigation
The configurator should offer high flexibility in the order of configuring
components and attributes, avoiding a linear step-by-step configuration
and enabling all changes to be performed at any point during the config-
uration process. This flexibility enhances the user’s ability to navigate
freely among various different components of the product (see requirement
F3).

Priority: Should
Difficulty: Simple

F6: Fixed point component placement
In alignment with the modularity configuration mechanism (see require-
ment F3), the configurator should enable components to be attached
to other components or the whole product at predefined fixed points.
While this approach restricts the potential solution space, it greatly
streamlines the configuration process from the user side and helps to
ensure that the configured product remains within the realm of feasible
configurations.

Priority: Should
Difficulty: Intermediate

F7: Component collision detection
The tool should incorporate a collision detection system to prevent

Proposed Solution 17

components from being positioned in such a way that would result
in physical overlaps during configuration. This feature is essential to
maintain the realism and feasibility of the configured product.

Priority: Should
Difficulty: Complex

F8: Material color configuration
Users should be able to modify the appearance of materials of components
and products through a selection from a palette of colors. The chosen
appearance should immediately be reflected in the 3D visualization (see
requirement F1) of the configuration.

Priority: Should
Difficulty: Complex

F9: Configuration review
Before the configuration process is finalized, users should be presented
with a review page that allows for a detailed examination of their product
configuration. This feature should provide a summary listing all selected
components and any other parameters. In addition, users should be
able to return to previous configuration steps to make any necessary
adjustments.

Priority: Should
Difficulty: Simple

F10: Configuration processing
At the end of the configuration process, users should be optionally pre-
sented with a confirmation button, provided that a specific confirmation
action has been set up for the product. This button is intended for
users to confirm their choices and trigger a predetermined action, such
as calling a webhook or being directed to another page, as specified by
the administrator. This should allow for a smooth transition, where,
upon configuration confirmation, the user is engaged in a follow-up action,
like a checkout process or being guided to a physical store locator page.
The ability to perform a custom API call at the end of the configuration
process provides a flexible way to integrate the configurator with differ-
ent systems or processes, thus improving its functionality and delivering
a seamless user experience from start to finish.

Priority: Should
Difficulty: Simple

Proposed Solution 18

F11: Inquiry form
As an extension of configuration processing (see requirement F10), the ad-
ministrator should be able to set the product’s confirmation action to
trigger an inquiry form. In this scenario, when users click on the con-
firmation button, they should encounter a form asking for their contact
details. Once completed, the created product configuration along with
the user’s contact information should be sent to an API predefined by
the toolkit’s administrator. This allows for a standard inquiry form
process directly within the configurator application.

Priority: Should
Difficulty: Simple

F12: Configuration saving and retrieval
The tool should allow users to save the current product configuration,
allowing them to pause the customization process without losing progress.
Users should have the ability to easily access and resume editing their
saved configurations at a later time.

Priority: Could
Difficulty: Intermediate

F13: Undo and redo actions
The configurator should integrate undo and redo functionality, enabling
users to easily revert or reapply changes made anytime during the con-
figuration process.

Priority: Should
Difficulty: Intermediate

F14: Interface appearance customization
The interface of the configurator should offer customizable options, en-
abling the toolkit’s administrator to tailor the style, color scheme, and
images to align with the branding and design of the business employing
the toolkit.

Priority: Could
Difficulty: Simple

F15: Interface texts customization
The toolkit should provide a way for the administrator to change the tex-
tual contents of the configurator’s interface, ensuring that the language,
tone, and terminology used are perfectly aligned with the business’s

Proposed Solution 19

needs and reflect the business’s terminology and branding.

Priority: Could
Difficulty: Intermediate

F16: Visual catalog management
The toolkit should provide administrators with the ability to visually
manage the catalog of configurable products and their components.
The visual preview of the components provided within catalog manage-
ment should mirror the 3D previews in the actual configuration process
(see requirement F1). This management system should allow adminis-
trators to add, update, or remove products and components, along with
specifying their precise mounting locations (see requirement F6), directly
through a visual interface.

Priority: Must
Difficulty: Complex

F17: Product properties and attributes management
The toolkit should provide a way to manage the properties and attributes
of the products and components in the catalog (see requirement F16),
allowing administrators to define and adjust the characteristics that
users can configure. It should allow for the detailed specification of
each component’s features, such as color options, material types (see
requirement F8), and any other attributes that define it.

Priority: Must
Difficulty: Complex

F18: Real-time price calculation
If the configured attributes and components have prices predefined by
the toolkit’s administrator, the configurator should automatically update
and display the price of the whole customized product with every change
made. The tool should be capable of dealing with different currencies.

Priority: Could
Difficulty: Intermediate

F19: AR viewing capabilities
The configurator should extend its visualization features (see require-
ment F1) to include AR viewing capabilities, enabling users to project
their configured products into their real-world environment through
their device’s camera. In case the device they are using does not have
AR capability, the tool should provide a seamless way for the user to open

Proposed Solution 20

the configuration in AR on another device that does have such capability.

Priority: Won’t
Difficulty: Complex

F20: Parametric configuration mechanism
As a complement of the modularity mechanism (see requirement F3)
the toolkit should incorporate parametric mechanisms that allow users to
configure products by setting parametric values on the configured com-
ponents when interacting with them (see requirement F4). The toolkit
administrator should have the ability to create configurable parameters
on the modular components, along with the types and possible ranges of
values, enlarging the solution space of configuration.

Priority: Won’t
Difficulty: Complex

F21: Real dimensions visualization
The tool should provide users with a visualization of the real dimensions
of the configured products. The visualization should accompany the con-
figured product in the 3D view (see requirement F1) and should provide
realistic measurements of dimensions in actual, real-life units.

Priority: Could
Difficulty: Intermediate

1.2.1.2 Non-Functional Requirements

NF1: Multiplatform compatibility
The solution should work smoothly on various operating systems and
devices, such as desktop and mobile platforms. This ensures that
the solution is accessible to a wide audience, regardless of their preferred
technology, thereby maximizing user engagement and reach.

Priority: Must

NF2: Responsiveness
The user interface should be responsive, adapting to viewport sizes
and resolutions on different screens, ensuring an optimal viewing and
interaction experience across all supported devices.

Priority: Must

Proposed Solution 21

NF3: Self-hostable architecture
The toolkit should be designed with the intent of being deployed and
hosted on a business’s preferred infrastructure, whether on-premises
or in a private cloud. This facilitates greater control over the data
and security according to the operator’s policy, as well as flexibility for
possible modifications.

Priority: Must

NF4: Infrastructure needs
The toolkit should ideally operate with lightweight infrastructure needs,
possibly leveraging the resources that may already be used to offer
the products. The configurator application is expected to operate pri-
marily on the client side, requiring only minimal back-end support,
possibly making use of a simple serverless architecture if needed. This
approach reduces the demand for maintenance and is for this solu-
tion cost-effective, improving existing operations without necessitating
significant new investments in infrastructure.

Priority: Must

NF5: Maintainability
The codebase and architecture should be designed to facilitate easy
maintenance, straightforward updates, modifications, and enhancements.
To ensure that the toolkit remains robust and flexible for future needs,
industry standards and best practices should be adhered to during
implementation. The tool should require minimal routine maintenance
by the administrator. The quality of the codebase must be maintained
to a high standard through the use of rigorous testing.

Priority: Must

NF6: Documentation
To support maintainability (see requirement NF5) and ease of use,
comprehensive documentation is essential. This should cover the config-
urator’s setup, deployment, customization options, managing products,
components, and also possible user interactions. Providing comprehen-
sive and detailed documentation guarantees that administrators and
developers can efficiently employ and customize the configurator to suit
their individual requirements. It also serves as a valuable resource for
troubleshooting, further development, and maximizing the potential of
the tool.

Priority: Should

Proposed Solution 22

NF7: Performance
The toolkit should ensure optimal performance under typical usage
load, with swift loading and quick response times across all compatible
devices, particularly those with lower processing power. Therefore,
the application should aim to achieve performance of more than 30 frames
per second on average consumer computers or mobile devices.

Priority: Must

NF8: Multilingual support
The configurator should offer multilingual support. Administrators
should be able to simply add, remove, or update languages, thus making
it easier to adapt the interface for different language versions. This
capability builds on the interface text customization requirement (see
requirement F15), extending its scope to include different language
options. Users should be provided with a simple method to select their
preferred language.

Priority: Could

Chapter 2

Design

Selection of used technologies, establishment of the domain model, and initial
design of the user interface layout.

2.1 Technologies

Choosing the appropriate technologies is crucial and will have a significant
impact on the overall effectiveness and excellence of the developed solution.
Selecting technologies requires assessing different technological choices based
on all the factors that will enable them to meet the requirements outlined in
the preceding chapter. The right technology stack can also decrease the time
spent on development, minimize costs, and ensure the solution remains relevant
in the future.

2.1.1 Platform
In considering the foundation for the 3D modular product configurator, given
the multiplatform requirement (NF1), two distinct development approaches were
evaluated: applications specifically designed for desktop and mobile platforms
or a web application.

Desktop and mobile applications can provide a better overall experience
tailored to the specific platform and potentially be more performant as they
can utilize the hardware better; however, in this case, they come with serious
drawbacks. Having multiple applications that are designed for different devices
would increase the amount of maintenance and development work required
because each version would need to be managed (at least in some capacity)
separately. Furthermore, accessibility for users would be dramatically dimin-
ished since they would need to download and install the application prior to
using it and subsequently manage any updates that may arise.

Developing separate desktop and mobile applications presents such signifi-
cant challenges that the disadvantages far outweigh the advantages; therefore,

23

Technologies 24

a web application was selected for its better alignment with the project’s re-
quirements (this is also consistent with the norm in this space, as the majority
of existing solutions that were analyzed in the previous chapter are web-based).
There are also several key factors in favor of this solution: it can be accessed
from almost any device with an internet connection and web browser, it is
cost-effective as it possibly utilizes existing website infrastructure, and it has
streamlined maintenance needs. The application will be focused on the front-
end, as that is where the configuration process will be happening.

Choosing a front-end-only architecture offers several advantages that align
closely with the objective of the project. The nature of modular product
offerings usually does not demand frequent updates, which makes serving static
content feasible and efficient. While there are some aspects of the solution’s
requirements that might require back-end interaction, such as more complex
final processing of configuration or saving of configurations, these can, however,
be in some way be handled through external API calls or a lightweight serverless
architecture. These aspects do not represent the highest priority requirements,
and the core functionality can be accomplished using just front-end technologies.

This architectural choice significantly simplifies the development process.
Since the application can be hosted on an existing web server architecture,
deployment is also simplified, thus reducing the costs. This architecture is
particularly advantageous for businesses that already have web hosting, such as
those operating an inquiry form, but wish to enhance their configurable product
offerings presentation without additionally complicating their infrastructure.
Compared to a full stack solution, maintenance is reduced and, from a security
point of view, the attack surface is greatly minimized.

2.1.2 3D Visualization Technology
To fulfill the requirement of 3D visualization (F1), a library that will allow 3D
graphics to be rendered in the browser will have to be used. However, the range
of options for this particular technology is quite restricted.

Historically, the integration of 3D graphics required the use of external
plugins, primarily Adobe Flash Player. The evolution of web standards, partic-
ularly the introduction of HTML5, has revolutionized this aspect, and it is now
possible to render 3D graphics directly in the browser, eliminating the necessity
for any plugin. [26]

Web Graphics Library (WebGL) is a standard 3D graphics API for web
browsers. It is based on OpenGL ES and can be used inside the HTML canvas
element. WebGL is supported in all major desktop and mobile browsers.1 It
is utilized using C-like shading language (OpenGL Shading Language) and
JavaScript. [27]

Currently, there are no significant alternatives to WebGL. WebGPU aims
1WebGL browser support details: https://caniuse.com/webgl

https://caniuse.com/webgl

Technologies 25

to be a successor to WebGL; however, as of February 2024, it is in a state
of ongoing development and has not yet been finalized or supported in web
browsers.2 [28]

2.1.2.1 WebGL Framework

Direct WebGL programming is very powerful and offers fine-grain control,
necessitating extensive code to be written in both JavaScript and its shader
language. Fortunately, there are several frameworks built on top of WebGL that
provide high-level abstractions and access. These frameworks can significantly
reduce the amount of code required to achieve what would otherwise take
hundreds of lines when using bare WebGL, often condensing it into just a few
lines. [26]

Three.js was selected from a range of frameworks, including Babylon.js [29],
that are designed to streamline the process of developing in WebGL. This deci-
sion was made after considering several important factors. Three.js is considered
an undisputed leader in this category, having the biggest community support,
which can be evidenced by its popularity and the volume of contributions on
GitHub.3 It is also open source, published under the MIT license, offering
great freedom in development and distribution. Furthermore, Three.js uses
the best practices of 3D graphics; it is lightweight, easy to use, cross-platform,
and contains many prebuilt assets. [30]

2.1.3 Front-End Framework
Leveraging front-end frameworks significantly enhances the development of web
applications by addressing common front-end challenges. These frameworks
often provide a structured approach for creating maintainable and reusable
components, optimizing data manipulations, employing common design pat-
terns, and ensuring that the user interface remains in sync with the underlying
state. Various frameworks and libraries are available, such as React, Vue.js,
or Angular, each with different benefits and drawbacks. The choice of which
framework to use often involves complex decision making, influenced by specific
project needs, team skills, and the unique characteristics of each framework. [31,
32]

For this solution, the decision has been greatly influenced by the selection
of WebGL framework, which is Three.js (see previous section). That is because
of the React Three Fiber (R3F) library, which offers a seamless integration of
Three.js into the React ecosystem. R3F is a React renderer, enabling the direct
use of Three.js components as React components. The integration is optimized,
with the Three.js components rendered outside React’s rendering process,

2WebGPU browser support details: https://caniuse.com/webgpu
3Three.js GitHub: https://github.com/mrdoob/three.js

https://caniuse.com/webgpu
https://github.com/mrdoob/three.js

Technologies 26

therefore, having minimal overhead. Moreover, it is comprehensive, meaning
that all Three.js features are exposed and accessible using this library. [33]

In addition, the Drei library, built on top of R3F, introduces a collection
of useful components, abstractions, and helpers. These additions streamline
the development with Three.js and React even more. [34]

These libraries make React an attractive choice for this project. To see
how the code differs when aiming to achieve similar objectives, refer to Code
listing B.1 in Appendix B for the plain Three.js version and Code listing B.2
in Appendix B for the R3F version, both creating a simple 3D red cube.

React is a user interface library created at Facebook in 2011, but soon
after became open source. React has gained widespread acclaim across many
projects and has been continually developed since its inception. It empha-
sizes component-based architecture, where reactive components are written in
JavaScript (or TypeScript) combined with HTML-like markup code, facilitating
the creation of dynamic user interfaces. [35]

React itself is just a user interface library that lacks more sophisticated
functionalities, such as routing. There are several frameworks compatible with
React, such as Next.js or Gatsby.js, which offer advanced features like caching,
routing, server-side rendering, search engine optimization, and more [36]. How-
ever, because the dynamic content of this web application is highly influenced by
user interactions, the solution would not benefit from these frameworks. There-
fore, the decision was made to maintain simplicity, opting for the utilization of
select libraries for advanced features rather than complex frameworks.

Prioritizing speed, simplicity, and minimal configuration requirements,
Vite.js has been chosen as the build tool and development server. [37]

2.1.3.1 CSS Framework

The development of a product configurator requires custom components. To
define the styles of these custom designs, it will be necessary to utilize Cascading
Style Sheets (CSS).

TailwindCSS is a utilitfy-first CSS framework. It enables the creation
of custom designs using predefined CSS utility classes, directly applicable in
the React markup language, eliminating the necessity of directly writing CSS.
It is highly customizable, has comprehensive and illustrative documentation,
and makes it easy to create responsive designs. The framework allows for a fast
development process, however, it needs to be integrated carefully, as the direct
combination of style classes with the rest of the code of the component can
make the codebase look very disorganized. [38]

It was chosen for this project for its ability to accelerate the development
process and to help meet the responsiveness requirement (NF2).

Technologies 27

2.1.4 Programming Languages
The selection of programming language is predetermined by the already chosen
technologies and libraries, necessitating the use of React markup and JavaScript
in some form.

Fortunately, with Vite.js’s ability to transpile TypeScript to JavaScript, and
given that type declarations are exported from the chosen JavaScript libraries,
TypeScript can also be used. [37]

TypeScript is a programming language created by Microsoft that extends
JavaScript by implementing strong typing. Strong typing helps detect bugs
during development, reduce errors, and improve overall code quality. It also
allows for tighter integration with code editors, enabling features such as
autocompletion or inline documentation. All code written in TypeScript is
transpilable to JavaScript, which means that it is compatible with existing
libraries and frameworks. [39]

Given these advantages, TypeScript will be used in this project in place of
JavaScript, ensuring a maintainable, high-quality codebase.

2.1.5 Additional Libraries
To enhance the functionality in a way that the frameworks described above do
not support natively, several additional libraries will be used in the solution.

2.1.5.1 Routing

To improve the application’s user experience with navigable URLs, allowing
redirection, linking, or bookmarking pages, the use of a routing library is
essential, as in a SPA, all content is served on a single address by default.

For React, the leading library for routing is React-Router, which will be
utilized for this purpose in this solution. This library has been chosen for its
widespread use and robustness. Its use promises that the application supports
dynamic and user-friendly navigation. [40]

2.1.5.2 Language Support

To address the requirement of user interface text customization (F15) and
multilingual support (NF8), an internationalization and localization library is
essential. Such library enables the dynamic sourcing of user-interface texts from
separate files according to the application’s current settings. Consequently, on
the basis of the extensive set of features and extensions offered, the i18next
internationalization framework was chosen for this project. [41]

Technologies 28

2.1.5.3 State Management

State management is a critical element of React applications that links the in-
ternal state directly to the user interface. Although React offers a basic
mechanism by default, complex applications highly profit from a sophisticated
state management library that manages state updates and interface redraws in
a comprehensive manner. [42]

Although there are numerous different state management libraries, each
with its advantages and disadvantages (such as Zustand, Redux, MobX, etc.),
for this project, Valtio has been chosen. Valtio stands out for its extremely
minimalistic API, while being very flexible with data structures. It uses proxies
and allows for direct mutations, making the handling of state as intuitive as
working with regular JavaScript (or TypeScript) objects. [43]

These characteristics make Valtio highly beneficial for this application, as
it will simplify mapping the underlying state to 3D objects, which will be
necessary to fulfill the 3D preview requirement (F1).

2.1.5.4 Validation

To guarantee the integrity and structure of the loaded data with values that
adhere to specified constraints, validation is crucial. Validation libraries have
been designed for this purpose, and in this project, Zod has been chosen as
the data validation library.

Zod allows the inference of TypeScript types directly from the created data
schemas, meaning a single schema definition can be used for parsing as well as
type checking. Furthermore, Zod is also very lightweight, and its powerful yet
straightforward API for schema definition makes it a compelling choice for this
task. [44]

2.1.6 Development Tooling
The effectiveness and resilience of the development process depends on the selec-
tion of development tools. These tools not only simplify code creation, but also
help ensure code quality, version control, and improve efficiency in collaborative
work.

2.1.6.1 Version Control

Version control plays a crucial role in modern software development, allowing
developers to track changes to source code over time. For this project, Git has
been chosen as the version control system due to its widespread adoption and
robust feature set. Git is a distributed system that allows for easy collaboration
with other developers, as well as the creation of independent adaptations of
the codebase through forking, all while preserving a connection to the original
repository for future updates or integrations. In this way, a unique version of

Domain Model 29

the application codebase can be tailored, in case it is required to meet specific
custom business needs. [45]

GitLab is a DevOps platform that is used to host Git repositories, offering
a wide range of features. The primary benefit for this project lies in its CI/CD
pipelines, which can be used for automated testing, linting, and building of
the project. This automation speeds up the development process. [46]

Conventional Commits is a convention for naming Git commit messages in
a descriptive form, creating rules that communicate the scope of changes and
allow the creation of further automations on top of them. This convention will
be used to ensure order and clarity in the Git repository. [47]

To enforce the use of conventions in commits, Husky, a tool for utilizing
Git hooks, will be integrated into the development workflow. Husky allows for
the setup of actions that are triggered at specific points in the Git lifecycle.
This way, the project can automatically lint commit messages to ensure that
they follow the Conventional Commits format, as well as check contents of
the commits. [48]

2.1.6.2 Package Manager

To streamline the process of managing the dependencies of the project, npm has
been selected as the package manager due to its wide adoption and compatibility
within the ecosystem. [49]

2.1.6.3 Formatters

For ensuring code consistency and style guidelines adherence, especially when
working with TypeScript, due to the nature of the language, linters and code
formatters need to be used.

ESLint will be used as a linter to help identify and fix problems in Type-
Script code, removing problematic patterns, promoting best practices and code
consistency. [50]

Prettier will automatically format the code to meet style guidelines, making
it easy to read and reducing formatting discrepancies. [51]

2.2 Domain Model

Before implementation, an important part of the design process is the description
of a domain model. This outlines the concepts the tool will work with and
defines the interactions of entities, establishing an important context that serves
as a foundation for building the toolkit.

The domain of the solution is based on the basic functionality of product
configurators [52], which is illustrated in Figure 2.1. At the core of the tool
are two actors: the customer and the configurator, as well as two models:
the product specification, which defines the possible configuration options, and

Domain Model 30

the configured product, which stores the options the customer has chosen.
The flow is then as follows:

1. The product specification, which stores the product options, is loaded into
the configurator.

2. The configurator presents the customer with the product options.

3. The customer expresses their desired values of the product options to
the configurator.

4. The configurator stores the desired values of the product options as a con-
figured product.

The domain model for this solution is based on these concepts; however, it is
more detailed, as more complex relationships and objects are necessary.

Figure 2.1 Diagram of core functionality of product configurators
Source: Adapted from [52]

Unified Modeling Language (UML) diagram can easily represent the domain
model. [53]

The UML diagram that illustrates the domain model of the entities related
to the proposed toolkit is presented in Figure 2.2. This model serves as
a blueprint for the architecture of the system, outlining a coherent structure
that aligns with the project objectives described in the previous chapters.

The domain model presents a structure of product specifications contained
in a catalog, the dependencies between different entities, and illustrates the pro-
gression from generic specifications to concrete user configurations. This model
aims to offer a clear insight into the design rationale behind the tool.

D
om

ain
M

odel
31

Figure 2.2 Domain model as UML diagram

Domain Model 32

2.2.1 Catalog
The catalog forms the backbone of the proposed toolkit and defines the blueprint
for customizable products. It encompasses a variety of product specifications,
each defining a configurable product along with all its potential customizations.
This section looks at how these specifications lay the foundation for user-driven
product configuration. The entities from the diagram in Figure 2.2 discussed
in this section are as follows:

Catalog

Product Specification

Component Specification

Mounting Point Specification

Material Specification

Color Specification

Model

Confirmation

Administrator

Product specification acts as an overreaching comprehensive concept that
encompasses all aspects of a given product. The entity may be associated with
confirmation, an action to finalize the configuration of the product, fulfilling
the need for processing of the configuration (see requirement F10). Given
that the tool focuses on the handling of modular products (see requirement
F3), it is imperative that each product consists of various components. There-
fore, the product specification is made up of component specifications, which
represent all the various possible components that the product can have.

To meet the requirement of 3D visualization (see requirement F1), com-
ponent specifications must be linked to a model featuring 3D meshes. This
model acts as a representation of the component that will be presented during
the configuration process. In addition to this, the component specification is
composed of material specifications and mounting point specifications.

The material specification is needed with respect to the requirement of
material color configuration (see requirement F8). It describes the materials of
a given component that the user can customize, with each material specification
specifying which part of the component this material influences, thereby en-
abling preview updates as the user makes selections. In addition, the material
specification consists of color specifications that define the possible colors that
this material can take on in the configuration process.

User Interface 33

Mounting point specifications are introduced to address the requirement
of fixed point component placement (see requirement F6). They represent
points on a component to which other modular components can be attached.
The mounting point specification includes the relative position and rotation of
the point on the component specification, the requirement for a component’s
presence at this point, and possible component specifications that can be
mounted on the point.

All these specifications are maintained in the catalog by the administrator,
who has the authority to modify any properties. The tool then utilizes these
specifications to enable the configuration of customized products.

2.2.2 Configuration
Transitioning from specifications to actual configurations, the configuration sec-
tion describes how users bring customizable products to life through the toolkit.
It illustrates how configured components are the building blocks of user-
generated configurations, realizing the transformation from a generic template
into a product uniquely tailored to individual preferences. The entities from
the diagram in Figure 2.2 covered in this section include:

Configuration

Configured Component

User

Users of the application create configurations that represent configured
products. The cornerstone of the configuration lies in its configured components.
The specifications described in the previous section serve as templates for these
configured components. While the specifications outline all the configuration
options, the configured component indicates a particular set of options selected
by the user. Beyond storing the component specification the configured compo-
nent customizes, it also stores the mounting point specification to which it is
attached, as well as the selected color specifications of its material specifica-
tions. Thus, a configuration is composed entirely of these individual configured
components.

2.3 User Interface

The design of the user interface plays an essential part in the development of
such a tool because it significantly influences user satisfaction when interacting
with the tool. Good preparation of user interface design helps to determine
the direction and streamline the implementation, as well as making clear from
the beginning how to deal with factors such as responsiveness.

In this section, low-fidelity wireframes are used to depict the proposed
user interface, highlighting the layout and architecture of the application.

User Interface 34

This approach captures the most important information at this stage, leaving
the finer details to be refined as part of the implementation phase.

An article [54] used The Configurator Database Project to analyze common
design elements of product configurators. The study identified several key
design elements that were prevalent in the majority of configurators analyzed.
The following key insights of commonly used designs from the article are relevant
to this thesis:

At the end of the configuration process, a summary of selected options is
presented.

To present the products that can be configured, detailed images are used.

Horizontally positioned navigation bar is always visible.

Order button is clearly visible and available for completion purposes.

Prices of the components are accessible in all phases of the configuration.

Logo of the business is prominently displayed.

Users can navigate within their configurated product.

Furthemore, design guidelines from the Website Tools and Application with
Flash report by Nielsen Norman Group [55] were also considered. Although
the report analyzed and offered guidelines for the design of Flash applications,
it is still relevant to this thesis as many of the applications were 3D-based or
featured product configuration. In particular, the following key principles were
followed:

Core task must at center of the application.

Complex features that detract from the core task overwhelm users and
increase learning time and should be avoided.

The interfaces must not be overcrowded and should prioritize presenting
the most important information.

The interactions should be consistent within similar components of the ap-
plication.

The design should respect and reuse good design principles of similar
solutions that users may already feel familiar with.

Technical details of the solution should be hidden from the user.

Feedback to user’s actions should be imminent.

If available, prices should always be displayed.

User Interface 35

Visalization should match the input of users.

Popup windows should include close buttons.

The design is therefore based on the described insights and respects the in-
tuitive design principles of similar solutions that users may already be familiar
with, ensuring an intuitive and efficient interface for users.

The configurator as an application is specific in that it primarily centers
around the configuration process, with this interface being the most impor-
tant and all other interfaces being secondary. In this section, the design of
this configuration screen will be introduced, as well as the introduction and
confirmation screens.

The common element of all screens is a top bar with the logo of the business
that operates the configurator, which should redirect the user to the main
website of the company when clicked. All of this should be customizable in
the admin settings of the toolkit.

2.3.1 Configuration Screen

Figure 2.3 Wireframe of configuration screen

The configuration screen is presented to the user during the configuration
process. The screen is dominated by the 3D preview of the configured product,
featuring interactable components and spatial buttons for the addition of
components into the configuration. This design follows the requirement of open
navigation (see requirement F5). Control buttons are placed in the upper left
corner within the 3D preview, symbolizing their direct relation to the preview,
yet maintaining their distinctiveness as a separate element. At the bottom of
the screen, there is another bar, this one containing buttons that allow users
to go back or to finalize the configuration. The wireframe of the configuration

User Interface 36

screen in its default state is shown in Figure 2.3, where the 3D preview of
the product is represented by a blueish cube.

Figure 2.4 Wireframe of configuration screen with panels

This default view, as outlined in the previous paragraph, maximizes the view-
port with the most important presentation, which is the 3D preview of the prod-
uct. However, at some stages of the configuration process, it is also necessary
to present the user with further information. Therefore, upon selecting a com-
ponent within the 3D preview, the component should become highlighted and,
following the approach of existing solutions analyzed, a side panel with detailed
information about the selected component will emerge from the right. If neces-
sary, another panel with further options presented to the user may appear at
the bottom. This design strategy maximizes the screen space for the important
elements while still being flexible enough to present additional information in
a streamlined way. The wireframe of the interface with panels that contain
additional information and options presented is shown in Figure 2.4.

To ensure responsiveness, a mobile version of the interface should also be
outlined. The prioritization of the 3D preview in the default state makes this
simple, as this means that on smaller viewports the elements are presented in
the same way, with the preview being in different aspect ratio, which is easily
compensated for by the 3D preview taking on different zoom level. The outline
of this wireframe is presented in Figure 2.5.

The wireframe for the mobile version of the interface with the presented side
panel is shown in Figure 2.6. At this reduced viewport size, the side panel can
maintain the same internal layout but to be usable it needs to occupy the whole
3D preview. This will need to be kept in mind when utilizing interactions with
the 3D preview, as it may not always be fully visible when the panels are active.

The design remains mostly consistent on both small and large viewports
while still being adaptive and responsive. This ensures that the familiarity with

User Interface 37

Figure 2.5 Wireframe of
mobile configuration screen

Figure 2.6 Wireframe of
mobile configuration screen
with panels

the tool is maintained for all viewport sizes.

2.3.2 Introduction Screen

Figure 2.7 Wireframe of introduction screen

The introduction screen is the first screen presented to the user when

User Interface 38

launching the application. It offers a simple way of selecting the configurable
product from the catalog, with image and name of the product presented on
a large tile. The selection of the product takes the user to the configuration
process. Mobile interface of this screen mirrors the large version. The wireframe
of the design can be seen in Figure 2.7.

2.3.3 Confirmation Screen

Figure 2.8 Wireframe of confirmation screen

The confirmation screen is presented to the user at the end of the configura-
tion process and satisfies the configuration review requirement (see requirement
F9). The wireframe of the configuration screen is shown in Figure 2.8. On
the left side, the confirmation screen presents the selected and configured
components in a comprehensive list and allows the user to review their choices.
The right side of the screen contains two buttons, one to confirm the config-
uration, which can initiate a confirmation action, and another to return to
the configuration process for any adjustments.

The wireframe for the mobile version of the confirmation screen is depicted
in Figure 2.9. In this layout, the summary spans the entire width of the screen,
with the buttons moved to form a bar at the bottom of the screen.

User Interface 39

Figure 2.9 Wireframe of mobile confirmation screen

Chapter 3

Implementation

Architectural structure and data schemas of the application, a comprehensive
account of the implementation of core features, preview of the implemented
views and evaluation of the requirements.

The following chapter will describe the implementation of the toolkit as envi-
sioned in this thesis, building on the foundation created in the previous analysis
and design chapters.

Implementation focuses primarily on the requirements outlined in Subsec-
tion 1.2.1, with an emphasis on those of the highest priority. The output of
this chapter is the realization of a viable and usable tool.

3.1 Structure of the Toolkit

The application is designed as a front-end only solution. Given it’s front-end
nature, the configuration’s administration can be done through reading from
static configuration files rather than relying on data from a backend API. This
way, operators of the application can easily adjust the application’s behavior
and offerings without the need for complex back-end processing, which is not
needed in this case as the data are not sensitive or time specific and have
a predefined structure.

Consequently, the toolkit is divided into two main applications: the con-
figurator application and the administrator application. The configurator is
the user-facing part that businesses deploy or embed on their webservers, of-
fering the ability to configure products based on the supplied configuration
files. The administrator application, on the other hand, is used by the toolkit
administrators to generate and edit these configuration files.

It should be noted that with this architecture, deploying the administrator
application is not a prerequisite for every instance of the configurator; it
can be used across various configurators of the same version or even run for

40

Structure of the Toolkit 41

the necessary short moment in development mode. This flexibility ensures that
businesses can manage and update their configurator setups without the need
to deploy an instance of the administrator application.

This architecture not only ensures the toolkit’s scalability and ease of
use, but also allows to be easily integrated into a wide range of business
environments, addressing different customization needs without the complexities
and maintenance overheads associated with traditional back-end-dependent
applications, avoiding incurring additional costs or technical challenges.

This structure is also implemented in such a way that if the need for a back-
end develops at some point, it will be very easy to modify the application for
that change.

3.1.1 Project Directory Tree

/
apps/

admin/
src/
index.html
vite.config.ts
package.json

main/
src/
index.html
vite.config.ts
package.json

packages/
shared/

src/
package.json

package.json

Figure 3.1 Directory structure of the project

Given the separation of the toolkit into the configurator and administrator
components, the project is split into two subprojects in the apps directory.
The configurator application is located in the main directory, while the admin
directory contains the source files for the administrator application. Conse-
quently, each of the subprojects has its own Vite.js configuration, among their
index.html files, src directories for code and package.json for managing
the subproject-specific dependencies.

To minimize code duplication, a shared library is located in the packages
directory. This shared library contains common elements imported by both
applications, such as data schemes, generic React components, custom React

Data Schemas 42

hooks, types and interfaces, CSS styles, or other utility functions. Using this
shared package in the configurator and administrator applications ensures
consistency and reduces redundancy across the toolkit.

Most dependencies are managed centrally in the root package.json file,
with dependencies specific to the subprojects being handled in their correspond-
ing package files. This approach optimizes dependency management across
the entire project.

It is important to note that the presented directory tree focuses on il-
lustrating the separation of the project into subprojects: configurator and
administrator applications, and the shared library. It is not exhaustive, as
the actual project contains various other config and dot files.

Figure 3.2 presents a brief overview of the src directories, which organize
the source code into logical sections. The directories have the same layout
across all subprojects.

src/
components/ UI elements; React components
configurations/....................configuration of the application
hooks/...custom React hooks
interfaces/.......................................object interfaces
schemas/...Zod data schemas
stores/...............................Valtio data stores and actions
styles/...CSS styles
toasts/.....................................presets for notifications
utilities/.............................helper functions and classes

Figure 3.2 Structure of src directories

3.2 Data Schemas

The data schemas are derived from the domain model discussed in Section 2.2.
These schemas define the shape of the objects that are used to transfer and
store information within the tool.

To visualize these schemas, UML diagram is provided in Figure 3.3. The di-
agram provides a general overview of utilized structures and associations;
however, the implementation requires slight adjustments.

Data schemas are stored in the shared library discussed in the previous
section. This ensures consistency, as they are used in both the configurator
and administrator applications.

The schemas are organized into three separate parts: catalog, product spec-
ification, and user creation. Each of these parts corresponds to a separate file
in the shared library, in addition to their different roles within the application.

Data Schemas 43

The parts are discussed in the following sections, and the UML diagram in
Figure 3.3 provides color coding to differentiate them.

As discussed in Subsubsection 2.1.5.4, the implementation of data schemas
utilizes the Zod validation library, which allows straightforward validation of
the shape and values of the data during parsing. TypeScript types are then
easily created from these Zod schemas, which is illustrated in Code listing B.3
in Appendix B. [56]

D
ata

Schem
as

44

Figure 3.3 Data schemas as UML diagram

Data Schemas 45

3.2.1 Catalog
The catalog data schema, visualized with an orange tint in the UML diagram,
is essential for the initial user interaction with the application.

export const SubmissionOptionSchema = z.object({
type: SubmissionTypeSchema,
endpointUrl: z.string().url(),

});

export const CatalogProductSchema = z.object({
name: z.string().max(100),
productSpecificationUrl: z.string(),
imageUrl: z.string(),
submission: SubmissionOptionSchema.optional(),

});

export const CatalogSchema = z.object({
products: z.record(CatalogProductSchema),

});

Code listing 3.1 Data schema of catalog

Building upon the domain model, the catalog is created by the adminis-
trator of the tool and covers all product specifications. However, compared
to the domain model, there is an additional level of abstraction in the form
of CatalogProduct, which contains the most important information about
the product specification, such as the name and the preview image. The catalog
is separated from the product specifications, which are stored elsewhere. One
reason for this is that the catalog will first be fetched when the configuration
application is launched, and this information must be presented to the user as
soon as possible. The specification of the product, which contains the infor-
mation needed for the configuration process, can then be fetched from a URL
stored inside this object after the user decides which product to configure,
which is represented by the stereotype urlLink in the UML diagram.

In addition, information about the confirmation action is stored for each
product in the form of SubmissionOption, which specifies the type of action
and the endpoint to which the application potentially sends the confirmed
configuration.

The TypeScript implementation can be seen in Code listing 3.1. In the cata-
log, each product is stored using a record structure, with the ID of the product
as a key. The names have been arbitrarily limited to 100 characters to ensure
that they can fit within the correct user interface position. URLs, except for
the endpoint, are not validated to accommodate local addresses.

Data Schemas 46

3.2.2 Product Specification
The advantage of the structure where the catalog is separate from the speci-
fications, which are fetched only when needed, is that each specification can
be sourced from a different location. The specifications can also be updated
independently on the rest of the catalog.

The product specification part is visualized by a green tint in the UML
diagram.

export const ComponentSpecificationSchema = z.object({
name: z.string().max(100),
description: z.string(),
imageUrl: z.string(),
modelUrl: z.string(),
materialSpecs: z.record(

MaterialSpecificationSchema),
mountingPointsSpecs: z.record(

MountingPointSpecificationSchema),
positionOffset: z.tuple(

[z.number(), z.number(), z.number()]).optional(),
rotationOffset: z.tuple(

[z.number(), z.number(), z.number()]).optional(),
scaleOffset: z.tuple(

[z.number(), z.number(), z.number()]).optional(),
ignoreCollisions: z.boolean().optional(),
collisionSensitivity: z.number().min(50).max(100).optional(),
sortIndex: z.number().optional(),

});

export const ProductSpecificationSchema = z.object({
baseSpecs: z.record(z.string()),
componentSpecs: z.record(ComponentSpecificationSchema),

});

Code listing 3.2 Data schema of product and component specifications

This part of the data is created by the tool’s administrator and provides
information about the available options for user configuration of a chosen
product.

The schemas are also derived from the domain model, although with some
modifications such as changes in attributes and some entities being merged.

Most of the concepts in this part are identical to the domain model; however,
the new concept of base component is introduced here. Due to the modularity
principle, each component is in some way mounted on another component.

Data Schemas 47

Base components are such components that can initiate the configuration, as
they are not mounted to other components. They represent the potentially
first component of a configuration. These base components are defined in
the product specification.

In the data schema, the model is directly included in the component specifica-
tion, with the modelUrl attribute pointing to a location with the 3D model file.
To compensate for this coupling, attributes that modify the position, rotation,
and scale of the model are added to the component specification. The com-
ponent specification, as well as the color specification, include the sortIndex
attribute, which determines the presentation order to the user, with lower
numbers having higher priority. Further attributes are also present, such as
description or the option to ignore collisions for this component.

The material specification includes the names of the affected meshes in
the attribute modelMaterials, and the color specification includes the color
value.

In TypeScript, the aggregations depicted in the UML diagram are imple-
mented as records, with the IDs serving as keys and the objects as values.
Other associations are implemented using solely IDs. Color values are repre-
sented using hex codes. The implementation of the product and component
specifications can be viewed in Code listing 3.2. Other entities in this section
are implemented similarly and, therefore, do not require detailed code previews
within the text of the thesis.

3.2.3 User Creation

export const UserComponentSchema = z.object({
componentSpec: z.string(),
materials: z.record(z.string()),
mounted: z.record(z.string()),

});

export const UserCreationSchema = z.object({
product: z.string(),
base: z.string(),
components: z.record(UserComponentSchema),

});

Code listing 3.3 Data schema of user creation

UserCreation corresponds to the configuration entity of the domain model
but has been renamed in the implementation, as “configuration” is an ambiguous
term that can mean several things in application development (e.g. configuration
of the application itself). This naming clarifies what this data schema represents.

Challenges and Solutions 48

The user creation is utilized by the configurator application for storing
chosen options of the user, and is tinted blue in the UML diagram.

The user creation is associated with the product specification and stores
its configured components, as well as the selected base component, which is
the first component of the configuration. All other components are mounted
on the base component or other components.

In contrast to the domain model, the configured component is represented by
UserComponent. This user component links to a component specification that
serves as a template. It also stores information about the mounted components,
including the specific mounting points where each component is attached, as
well as the selected colors of the materials that have been customized.

In the TypeScript implementation, which can be seen in Code listing 3.3,
the user components are stored in a record with their unique ID as the key.
The component specification for each user component (as well as the product
specification to which the components belong) is linked by its ID. Information
about mounted components is stored in records, with the mounting point
specification ID as the key to identify the position and the ID of the user
component as the value. Similarly, materials are organized with the material
specification ID as the key and the ID of the selected color specification for
that material as the value.

3.3 Challenges and Solutions

During the implementation phase of the project, various challenges emerged.
This section touches on these challenges, detailing both the issues encountered
and the innovative solutions used to overcome them. The majority of these
challenges were related to the implementation of the defined requirements.
Examining these obstacles offers valuable insight into the software engineering
involved in the development of product configurators.

3.3.1 Component Visualization
The implementation of component visualization primarily stems from require-
ment F1, which mandates a 3D visualization of the configured product while
employing realistic models. The solution is shaped by the chosen 3D technology
(see Subsection 2.1.2), primarily the React Three Fiber library supported by
Three.js, and the created data scheme described in the previous section. This
also facilitates the open navigation requirement (F5).

A simplified version of the implementation is illustrated in Code listing 3.4.
The group feature of the Three.js library is utilized for effective position and
rotation composition. The component is primarily made up of this group,
which integrates the model and the mounting points of the component.

Inside ComponentModel, the 3D model is loaded from a gLTF file, a format
which can fully represent 3D objects widely used in web applications and greatly

Challenges and Solutions 49

export const Component = ({ componentId }) => {
const {

component, componentSpec
} = useComponent(componentId);

return (
<group name={componentId} >

<ComponentModel componentId={componentId} />

{Object.entries(componentSpec.mountingPointsSpecs).map(
([mountingPointSpecId, mountingPoint]) => {

const mountedComponentId = component
.mounted[mountingPointSpecId];

return (
<group

key={mountingPointSpecId}
position={mountingPoint.position}
rotation={mountingPoint.rotation}

>
{mountedComponentId ? (

<Component componentId={mountedComponentId} />
) : (

<MountingPointButton
componentId={componentId}
mountingPointSpecId={mountingPointSpecId}

/>
)}

</group>
);

}
)}

</group>
);

};

Code listing 3.4 Preview of component visualization implementation

supported in the Three.js library. The position, rotation and scale of the model
is adjusted by the values stored in the component specification, using a nested
R3F group, which can be previewed in Code listing 3.5.

Considering that configured components (other than the base component)
are mounted on top of each other, a recursive approach is employed to manage

Challenges and Solutions 50

this hierarchical structure and mapping between the data schema and the vi-
sualization. Therefore, for each mounting point, a nested group is utilized to
adjust the position and rotation according to the mounting point specification.
If a component is attached to this mounting point, it is recursively inserted into
the group; otherwise, a spatial button is displayed at this position to facilitate
the addition of components.

This recursive nesting ensures that each mounted component’s position and
rotation are automatically adjusted through the group composition, eliminating
the need for direct calculation of these values. The simplification this offers
significantly outweighs the minor performance impact introduced by recursion.

Properties of components are managed through Valtio proxies using a custom
React hook useComponent, therefore, whenever the underlying state changes,
the interface, including the 3D elements, immediately redraws. All 3D elements
are placed within a R3F canvas element. The orbital camera controls needed
by the requirement F2 are accomplished using the OrbitControls Three.js
element, integrated using the Drei library, which is placed within the canvas
and offers standard orbital camera controls.

3.3.1.1 Component Interactivity

To meet the requirement F4, which enables users to select components directly
within the visualization, an onClick event is utilized on the group containing
the model. Upon clicking on the model, a side panel is presented that displays
detailed information about the selected component. To visually highlight
the selected component in the visualization, an outline of the model is created
using the Outlines element from the Drei library, which is included within
the same group as the model. The color of the outline can be configured
by the application administrator. Additionally, an onPointerMissed event
employed on the canvas allows to deselect the component by clicking on
the background.

3.3.2 Model Material Change
To fulfill the requirement F8, which allows users to modify the appearance of
materials of the component, there must be a mechanism that allows to change
the colors of parts of the model within the preview. Each gLTF file with model
contains meshes and default materials. When the user changes the color of
a material, the model needs to be decomposed into these atomic parts. This
allows for the material of each part to be found and adjusted.

In the implementation, which is in a simplified form presented in Code
listing 3.5, it is iterated in a recursive manner through all meshes of the model,
replacing the default materials for the customized ones whenever needed.

As a result of this approach, the model is not inserted into the scene at once,
but instead every mesh is included separately along with the corresponding

Challenges and Solutions 51

material. This is achieved also using the group where all the meshes of the model
reside, which, as mentioned in the previous section, changes the position,
rotation, and scale of the model.

Changing the colors of the materials is facilitated through the side panel.
The new color value is stored in a Valtio proxy, from which it is read when
composing the 3D model, ensuring dynamic updates of the visual preview
whenever the user makes changes.

export const Render = ({
object,
materialOverride

}: RenderProps) => {
if (object.type === "Group" || object.type === "Object3D") {

return (
<group data={object.data}>

{object.children.map((child) => (
<Render

object={child}
materialOverride={materialOverrides}

/>
))}

</group>
);

} else if (object.type === "Mesh") {
return (

<mesh
material={getMaterial(mesh.material, materialOverride)}
data={object.data}}

/>
);

}
};

Code listing 3.5 Preview of model composition implementation

3.3.3 Undo and Redo Actions
Undo and redo actions enable users to revert the changes made during the con-
figuration process, fulfilling the requirement F13. Buttons for these actions are
intuitively designed as forward and backward arrows and are placed around
the preview view.

Since the user’s creation is stored in a Valtio proxy during the configuration
process, the implementation of this feature is straightforward. Valtio provides

Challenges and Solutions 52

an enhanced version of the proxy that maintains a history in the form of
snapshots and includes callable undo and redo functions. The management of
snapshots is smart, as multiple actions performed immediately after each other
are considered to be aggregated within one snapshot. This is particularly useful
for this application, since, for example, the addition of a new component consists
of two operations: the creation of a new component in the store and then
mounting it on a point on another component, which is correctly considered as
only one snapshot. Therefore, except for the setup of the initial snapshot, this
implementation approach did not need any additional adjustments.

3.3.4 Collision Detection
Collision detection is necessary for preventing impossible configurations by
disallowing physically overlaping components. This feature directly addresses
the requirement F7. As the shapes of the components can be highly complicated,
the method for detecting collisions needs to be based on the 3D preview working
directly with the component models.

Three.js provides a bounding-box method (where each model is considered
to be cube shaped, and overlaps are determined based on these primitive
shapes), which is far too simple for complex shapes and large amounts of
models; therefore, a more sophisticated approach was needed.

The three-mesh-bvh1 package extends the Three.js library by providing
an implementation of a Bounding Volume Hierarchy (BVH) tree, which enables
efficient shape intersection queries for high-definition meshes. [57]

To compute the bounds tree, the entire scene is wrapped in a bvh element
from the Drei library, which performs this computation on each mesh. Collision
detection is performed for all mountable components at unoccupied mounting
point whenever the user attempts an addition of a component or when attempt-
ing to swap the configured component. To do so, the model of the potential
component is loaded, adjusted by the values in the component specification,
and its position is set to the potential mounting location in the scene. This is
not visible in the preview to the user and is performed using standard Three.js
code.

Then, each mesh of the model is queried on geometry collision against
the meshes of models of existing components in the preview, excluding the com-
ponent containing the mounting point. This exclusion happens because, when
a mounting point exists, even if there is a collision with the owning component,
the defined mountable component should be allowed to be mounted. In addition,
the administrator of the tool can exclude certain components from all collision
calculations by specifying this in the component specification. The collision
sensitivity can also be adjusted for each component specification. Setting this
option to low sensitivity (smaller number) causes the model that is checked for

1https://github.com/gkjohnson/three-mesh-bvh

https://github.com/gkjohnson/three-mesh-bvh

Challenges and Solutions 53

collisions with the scene to be slightly reduced in size, meaning that close fits
are more likely to pass.

In case the model collides with models of existing components in the scene,
the option to add the component to the configuration is not presented to the
user.

A highly simplified implementation that illustrates this principle can be
seen in Code listing 3.6. Although collision detection is highly computationally
intensive, it is performed only after specific user actions, which are not supposed
to be very frequent; therefore, the possible performance hit is deemed acceptable
given its benefits.

export function collisionDetection(
model: THREE.Group,
scene: THREE.Scene

): boolean {
const collisionDetected = false;

traverseMeshes(model, (modelMesh) => {
traverseMeshes(scene, (sceneMesh) => {

const transformMatrix = new THREE.Matrix4()
.copy(sceneMesh.matrixWorld)
.invert()
.multiply(modelMesh.matrixWorld);

if (
(sceneMesh.geometry as BVHBufferGeometry)

.boundsTree.intersectsGeometry(
modelMesh.geometry,
transformMatrix

)
) {

collisionDetected = true;
}

});
});

return collisionDetected;
}

Code listing 3.6 Preview of collision detection implementation

Challenges and Solutions 54

3.3.5 Configuration Processing
For the implemented tool to be useful, there needs to be a mechanism that will
facilitate performing further actions with the user’s creation when the configu-
ration process finishes. This is in accordance with the requirement F10.

As needed by requirement F9 and discussed previously, after completion
of the product configuration, users are presented with a summary screen that
details the selected options. To save the configuration for future reference
in a readable way, a button has been introduced that enables saving this
summary to PDF. Implementation of this button action needed to be done on
the front-end and utilizes the HTML print API.

export const ContactInfoSchema = z.object({
name: z.string(),
email: z.string().email(),
phone: z.string().max(26).optional(),
note: z.string().max(10000).optional(),

});

Code listing 3.7 Data schema of contact information

The administrator of the tool can define the confirmation action in the cat-
alog. If such an action is defined, it may include an endpoint URL to ensure
that it can be executed. The supported confirmation actions are as follows:

1. Preview: This is the default behavior if no confirmation action is defined.
In this case, the confirmation button is not presented to the user at all, and
the configurator serves only as a preview tool. The URL of the endpoint is
also not defined.

2. Redirect: This action allows for a simple flow where clicking the confirma-
tion button redirects the user to the chosen URL.

3. Webhook: Upon clicking the confirmation button, the user configuration,
in the form of the UserCreation data schema presented in the previous
sections, is sent using a POST request to the defined endpoint URL. The user
creation is sent as a JSON in the body of the request. In order to present
the result of this action as a success to the user, the response must return
OK. Optionally, the response can contain a JSON body with valid URL
in the redirectUrl field. If this is the case, and the request has been
successful, users will be redirected to this returned URL, otherwise, the tool
returns to the initial view. This mechanic facilitates possible integration
with other systems or serverless functions for further processing.

4. Inquiry form: This action presents the user with an inquiry form asking
for their contact information, such as name, email, phone number, and

Challenges and Solutions 55

additional notes. This fulfills the requirement F11. When the form is
sent, the process is identical to the webhook case, with the difference that
the request contains the user contact details in the JSON payload under
the field contact. This allows for direct creation of inquiries without
the need for users to navigate away from the application. The structure of
the contact data schema is detailed in Code listing 3.7.

3.3.6 Application Configuration
Application configuration is central for setting the behavior and appearance of
the tool so that the individual preferences of the operator are met. Given that
the solution is designed for adaptability, it is essential to provide extensive setup
options. These settings are managed by the administrator of the application,
allowing them to tailor the application without the need to change the code
directly. This also helps to fulfill the interface customization requirement (F14).

fetch(globalConfigUrl)
.then((response) => {

return response.json();
})
.then((data) => {

globalConfig.config = AppConfigSchema.parse(data);
})
.then(() => {

const i18n = configureI18n();
const router = createBrowserRouter(routes);
root.render(

<React.StrictMode>
<App i18n={i18n} router={router} />

</React.StrictMode>
);

})
.catch((error) => {

console.error(error);
root.render(

<p className="text-red-600">Fatal error</p>
);

});

Code listing 3.8 Preview of application initialization and config loading implemen-
tation

As the tool is front-end-based, its configuration is handled using a JSON file.
The file is fetched at the start of the application, before React is even initialized,

Challenges and Solutions 56

from location /appconfig.json. This ensures that the configuration is not
baked in the application, rather it is refreshed each time the application is
accessed, meaning that the administrator can update the settings without
the need to redeploy the entire application, which supports the maintainability
requirement (NF5). The implementation of the application initialization with
the fetch of the config can be seen in Code listing 3.8.

This may slightly increase the First Contentful Paint (FCP) metric, which
measures the time it takes to display anything on screen during the loading of
the application. [58]

However, in this case, the impact is minimal, as the resource is relatively
small, and located in the same location as the rest of the application.

Right after the config file is fetched, libraries for routing and international-
ization are prepared. Then, React and the rest of the app is initialized.

The config file includes the URL with the location of the catalog (which is
therefore also fetched at runtime, allowing for live updates), toggles for features,
settings of the 3D preview, and color settings for the tint of the interface,
meaning unless larger customization is required, there is no need for CSS
modifications. It also includes locations of images such as logos or favicons, as
well as the title of the website.

3.3.6.1 Interface Texts

As described in Subsubsection 2.1.5.2, the i18next library was chosen for
localization. This addresses the multilingual support requirement (NF8), as
well as simplifies the interface text customization requirement (F15).

The library is setup in such a way that it expects for all localization files to
be located in /locales/{language}/translation.json, where {language}
is a two-letter language code. This structure allows simple addition of further
languages, as the application performs lookup for these translation files. Then
the general config file needs to be updated with the list of available languages.
Additionally, one language must be designated as the default localization in
the general config file, which will serve as a fallback.

Like the general config file, the translation files are loaded at runtime,
therefore changes to the interface texts or additions of new localizations can be
performed without redeploying of the application.

The application attempts to automatically choose the correct language based
on the detected browser settings, but also allows users to override this selection
via a two-letter parameter in the ?lng= query of any URL in the application.
The language is also changeable using a menu.

As part of the implementation, a default template localization in English is
provided, establishing a baseline.

Challenges and Solutions 57

3.3.7 Routing
Routing within the application is performed using the React-Router library,
based on a choice discussed in Subsubsection 2.1.5.1.

Routes are split based on the three main screens designed using wireframes
in Section 2.3. The routing pattern is implemented as follows:

Route / navigates to the introduction screen

Route /editor/:productId navigates to the screen with the configuration
process itself. The parameter of product ID chooses the product from
the catalog.

Route /confirm/:productId navigates to the confirmation screen using
the same product ID as in the configuration process.

Routing helps the user navigate the application better, as forward and
backward browser actions are possible, meaning that users can return from
the confirmation screen to the configuration screen by clicking back; this means
that the browsing history is preserved. Navigation between screens occurs
without page refreshes, maintaining a seamless user experience.

From an implementation standpoint, the utilization of different screens is
also simplified, as they are managed centrally by the router, and are defined
declaratively.

Errors are handled by the router as well; therefore, if there is any issue
that throws an unrecoverable error during the runtime of the application, it is
intercepted by the router and an error screen is displayed.

3.3.7.1 Data Flow

As the application follows a specific flow between the three routes during usage,
some data manipulation is closely tied to this process. The data flow is managed
by the loader functions that are executed when accessing each route. This
is necessary to ensure that the application handles transitions smoothly and
maintains data integrity throughout the user’s session.

In the introduction screen route, the catalog is fetched into the memory to
allow users to choose which product to configure.

The configuration screen route fetches the product specification based on
the ID specified within the route and prepares the user creation. In case
the introduction screen is not opened and users navigate directly to this route,
the catalog is fetched beforehand as well, to ensure that all necessary data are
available.

Furthermore, in the confirmation screen route, it is verified that some user
creation with this product ID was created. If not, the user is redirected to
the configuration screen.

The error screen is displayed if there are any discrepancies during the routing
process, such as if the route requests a product that does not exist in the catalog.

Views 58

3.3.8 Catalog Management
As outlined in the previous sections, the toolkit is structured into two separate
applications: the user-facing configurator and the administrator application.
This approach aligns with requirement F16, which demands that catalog
management should be visual rather than relying on direct file editing, and
should mirror the preview visible during the configuration process. Furthemore,
this also addresses the requirement F17, so that the properties of the products
within the catalog are easily manageable.

The administrator application is organized into two screens, each tailored
for specific management tasks, which is reflected in its routing patterns, which
are as follows:

Route /catalogcomposer and / navigates to a catalog composer screen,
which provides an interface for editing the catalog data schema. In essence,
it serves to modify the JSON file that contains the catalog using a visually
appealing and user-friendly approach. The interface is based on structured
forms that, compared to composing the file manually, enhance the efficiency
and prevent errors.

Route /productcomposer navigates to a product composer screen that
serves to set up component specifications and their properties. The inter-
face of product composer aims to mirror the interface of the configurator
application during the configuration process.
For visual editing of positioning within the product composer’s 3D preview,

Drei’s PivotControl is used, which displays interactive three-axis arrows
for adjusting position, rotation, and scale of the component specifications.
Interacting with this control mechanism immediately stores the new values in
the underlying Valtio proxy, meaning the changes are immediately reflected in
both the 3D preview and the side panel, where the corresponding values are
displayed in input fields.

Given that no back-end has been implemented, the administrator application
does not feature a save button. Instead, the capability to export the relevant
JSON files containing the specified data schemas is provided. In addition,
import of these already existing files is also possible, which provides flexibility
and eases modifications.

The administrator application is used when administrators need to update
product specifications or manage catalog settings. The implementation is done
in such a way that future back-end integration tying the configurator and
administrator applications should be possible if the need and opportunity arise.

3.4 Views

This section presents the visual aspect of the implemented views and screens,
which are based on the wireframes described in Section 2.3. The implemented

Views 59

interfaces are shown using screenshots, providing a visual confirmation of the de-
sign’s adherence to the designed wireframes and demonstrating the application
of the design concepts discussed earlier.

The choice of technologies (such as TailwindCSS) was paramount to this
task, as it greatly facilitated the straightforward implementation of responsive
design, making sure that the application performs well across a variety of device
sizes and resolutions, and supports accessibility features such as automatic
support of dark mode.

3.4.1 Configurator Application
In the following section, screenshots of the three screens that were described
using the wireframes are displayed. The interface is shown only in its light-
mode version, given that the dark mode is identical, only with an inverted color
scheme.

For demonstration purposes, the screenshots feature a sample product
loaded from the catalog. The top bar displays a fictional logo of a business,
which is clickable and leads to a homepage of the business, adjustable in
the application’s settings.

3.4.1.1 Configuration Screen

Screenshot of the implemented configuration screen is presented in Figure 3.4.

Figure 3.4 Screenshot of configuration screen
Source: 3D assets used within the interface are adapted from [59]

Compared to the wireframes, the top bar also includes a settings button on
the right, allowing users to choose theme or language.

Views 60

The screenshot captures the interface during the ongoing configuration
process with sample products, illustrating the layout that includes an expanded
side panel. The 3D preview displays the components that have been configured
by the user, along with spatial buttons for adding additional components.
The selected component is highlighted using blue edges.

The side panel shows more details about the selected component, along
with the options to change the color of its materials, remove it, or change it.

Buttons located in the upper left corner of the preview allow for resetting
the camera angle or hiding spatial buttons, while the buttons at the bottom
center are dedicated to undo and redo actions. This is a slight deviation
from the wireframe, as placing the important action buttons here seems more
convenient than in the upper left.

3.4.1.2 Introduction Screen

The implemented introduction screen is presented in Figure 3.5. The imple-
mentation adheres closely to the designed wireframe. The background color
of the main section differentiates this part from the top bar and enhances
the visibility of the tiles.

Figure 3.5 Screenshot of introduction screen
Source: 3D assets used within the interface are adapted from [59]

3.4.1.3 Confirmation Screen

The implementation of the confirmation screen again closely follows the designed
wireframe, as shown in Figure 3.6.

Views 61

The screenshot contains a list of configured components for a sample product,
optionally displaying the details in the form of selected colors of their materials.

The panel on the right side, which contains the different buttons, is floating;
therefore, it stays fixed in the same position even if the page is scrolled.
The panel contains back and confirm buttons, as well as a button for printing
the component list visible on the left.

Figure 3.6 Screenshot of confirmation screen
Source: 3D assets used within the interface are adapted from [59]

3.4.2 Administrator Application
This section presents the interfaces of the administrator application, the func-
tionality of which is described in more detail in previous sections (see Subsec-
tion 3.3.8).

For demonstration purposes, the screenshots included here feature sample
products, which are being prepared for use in the configurator application.

The top bar in the administrator application includes a toggle switch
between the two screens: catalog composer and product composer.

3.4.2.1 Catalog Composer

The screen presents catalog entries as tiles, each containing a form with editable
fields of the catalog product. These entries can be easily added using a button
on the top right, and removed using a button within the tile or a button that
removes all catalog products located at the bottom.

The catalog can be downloaded as a JSON file using an export button
located at the bottom of the screen. Furthermore, the catalog can be imported

Views 62

Figure 3.7 Screenshot of catalog composer screen

from JSON using an import button. The exported file can then be utilized in
the user-facing configurator application.

3.4.2.2 Product Composer

Figure 3.8 Screenshot of product composer screen

The product composer screen, visible in Figure 3.8, copies the layout of the
configuration screen of the user-facing application, but has an additional side

Summary of Implementation 63

panel on the left. This panel is used to add and remove component specifica-
tions or to select the potential base component specifications of the product
specification. Bottom of this panel also contains the clear, import and export
buttons, which serve to download or upload product specifications in a JSON
file. Selecting a component specification within this panel displays its model in
the 3D preview area, while the right side panel, used during the configuration
process to present detailed information, allows for the adjustment of all compo-
nent specification attributes, such as model file, name, position, rotation, scale,
mounting points, and materials.

The 3D preview also includes helpful features, such as a navigation gizmo
indicating the current orientation of the camera, or grid that serves as a reference
plane under the model.

3.5 Summary of Implementation

This chapter outlined the successful implementation of a viable toolkit for
the online configuration of 3D modular products. The implementation ful-
fills most of the requirements set out in Subsection 1.2.1, including all with
the highest priority.

Features Implemented solution

Platform Web
Navigation Open
Visualization Realistic
Placement options Fixed points
Camera movement Orbital
Impossible configurations No2

Responsiveness Yes
Price calculation No
Purchase option Webhook; Inquiry form; Redirection
Save option PDF only
Version history Undo & redo
VR or AR No
Real dimensions No

Table 3.1 Summary of features implemented in the configurator application

The implemented versatile toolkit provides robust solutions for both user and
administrative needs. Users can flexibly configure modular products through
an intuitive interface, while administrators are provided with the necessary
tools to efficiently handle product specifications.

2Depends on the setup of the product specification

Summary of Implementation 64

Requirement Fulfilled

F1 3D product visualization Yes
F2 Dynamic orbital camera controls Yes
F3 Modularity configuration mechanism Yes
F4 Component interactivity Yes
F5 Open navigation Yes
F6 Fixed point component placement Yes
F7 Component collision detection Yes
F8 Material color configuration Yes
F9 Configuration review Yes
F10 Configuration processing Yes
F11 Inquiry form Yes
F12 Configuration saving and retrieval No
F13 Undo and redo actions Yes
F14 Interface appearance customization Partially
F15 Interface texts customization Yes
F16 Visual catalog management Yes
F17 Product properties and attributes management Yes
F18 Real-time price calculation No
F19 AR viewing capabilities No
F20 Parametric configuration mechanism No
F21 Real dimensions visualization No

Table 3.2 Summary of fulfilled functional requirements

The implemented functional requirements are summarized in Table 3.2,
providing a clear overview of the project’s achievements and the functionality of
the toolkit. As shown, the majority of the requirements have been implemented.

Notably, the requirements concerning the configuration saving and retrieval
(F12), real-time price calculation (F18), AR viewing capabilities (F19), para-
metric configuration mechanism (F20) and real dimensions visualization (F21)
have not been implemented. These areas represent potential opportunities for
further development. The omission of these functionalities was due to prioritiza-
tion based on the scope of the project and the availability of resources. Current
technological constraints also played a role in the lack of implementation of
the AR viewing capabilities.

The requirement for interface appearance customization has (F14) has been
partially satisfied, as the application allows to change the color scheme by
changing the config file, but more complex elements, such as button style are
customizable only by changing directly the CSS code.

Complementing the functional requirements summary is a comprehensive
overview of the set of features implemented in the solution, presented in
Table 3.1. The summary follows the same structure as used in the analysis

Summary of Implementation 65

of existing product configurators, which can be seen in Table 1.1. However,
compared to the existing configurators, it is important to keep in mind that
the tool developed here is different in two ways: it is meant to be adaptable
and product-agnostic, therefore it comprises of an admin application that
allows different types of products to be set up. In addition, it focuses on
cost-effectiveness and simplicity. Despite this, the tool still provides features
comparable to those of existing solutions deployed by companies.

3.5.1 Possible Future Improvements
There are various possible enhancement this solution could incorporate to
enhance the user experience and extend its capabilities.

Implementation of missing functionalities: Some of the non-priorized
requirements, such as local configuration saving and retrieval, real-time
price calculation, and augmented reality viewing, were not implemented due
to resource constraints and technological limitations. Future work could
focus on integrating these features.

Back-end integration: While the toolkit currently operates primarily
on the client side, developing a corresponding back-end could increase
the possibilities of complex features such as better data management, user
account management and better integrations with other services.

Full rules evaluation: Adding a rule evaluation engine would increase
the amount of products that this toolkit is suitable for, as the handling
of sophisticated product configurations may involve multiple dependencies
and conditions, which this feature could ensure.

Integrations: Integrating the application to existing e-commerce platforms,
such as Shopify, WooCommerce, or Shoptet, could significantly expand
the toolkit’s usability. This integration would allow data synchronization
between the configurator and the e-commerce platforms, enabling automated
updates to product listings or a direct checkout process.

UI Themes: The user interface currently has customizable color scheme;
however, larger customizations need to be made by editing the CSS code.
In the future, there could be more predefined themes of the interface, which
the operator of the toolkit could choose from.

User interaction improvements: Additional interactivity features could
be implemented, such as drag-and-drop addition of components to the config-
uration, or providing detailed information panels or tooltips for components.

The enhancements described in this section outline possible future devel-
opment directions of this toolkit, aimed at increasing functionality, improving
user experience, and ensuring scalability.

Chapter 4

Deployment

Example deployment, configuration and customization of the application.
Examination of associated costs and the impact on business processes.

In the following chapter, the attention is shifted from the development process
to the deployment of the created solution. In this chapter, the focus is two-fold:
firstly, the deployment of the solution is described in practical steps from
the toolkit’s administrator perspective, then business implications such as cost
and process optimization are examined.

The setup of the solution is described from the point of view of a business
wanting to utilize the tool. For illustration purposes, an example company
is used in this chapter. The chosen company manufactures modular point-of-
sale cardboard displays. To offer their product, they maintain a basic online
presence using a simple WordPress website with information about the company,
a showcase of their products, and an inquiry form which allows them to be
contacted by their customer. In this scenario, the company aims to integrate
the 3D configurator into its existing website to offer an interactive, user-friendly
service that allows customers to customize and visualize options for their own
configurations of cardboard displays.

By the end of this chapter, a comprehensive understanding of the deployment
process of the toolkit from both a technical and business perspective will be
provided.

4.1 Application Setup and Configuration

This section describes the necessary steps needed to utilize the implemented
solution, from the perspective of a person designated by the business to operate
the toolkit.

66

Application Setup and Configuration 67

4.1.1 Building and Launching the Application
If the code of the application has been modified in any way, the instal-
lation of Node.js and npm is a prerequisite for building the application.
The configurator application can then be built by executing npm install
followed by npm run build --workspace main , which will generate the files
in apps/main/dist/ directory. If no modifications have been made, pre-built
files may be utilized directly.

In the example case, the company already operates a website; therefore,
the newly implemented configurator tool will be deployed to the appropriate
subdomain of the website (e.g. configurator.example.com). This approach
requires proper configuration of DNS settings for the new subdomain and
appropriate adjustments to the web server, but otherwise utilizes the already
existing web hosting infrastructure. If this were not the case, it would be
necessary to facilitate web hosting through an HTTP server.

To deploy the application, the built files need to be copied to the web
server, ensuring that they are statically served. The index.html file loads and
initializes that application on access.

Due to the implementation of client-side routing, the web server needs
to be adjusted to correctly redirect requests. A web server by default in-
terprets request as a query for files located on the URL address, and since
the routes defined in the application do not correspond to the actual files,
the “not found” responses would be returned. Therefore, the server needs to be
configured in such a way, that requests for nonexistent files are redirected to
the index.html file, where they will be managed internally by React-Router.
The company in the example case uses Apache HTTP Server, therefore its
configuration .httaccess file, which sets the rules such that requests for
nonexistent files, directories, or symlinks are redirected to index.html can be
previewed in Code listing 4.1. A similar setup can be achieved in comparable
fashion with NGINX or other web servers.

RewriteEngine On

RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteCond %{REQUEST_FILENAME} !-l

RewriteRule ˆ index.html [L]

Code listing 4.1 Configuration of Apache HTTP Server for client-side routing

With this set, the application should be functional and available, albeit yet
without the content of configurable products.

Application Setup and Configuration 68

4.1.2 Customizing the Application
The following section describes the adaptation of the deployed application to
correspond to the identity and meet the needs of the business. This is done by
the administrator through modifications of the appconfig.json file.

4.1.2.1 Localizations

To adjust the interface texts and provide different localization options, trans-
lation files should be created in the locales/ directory. This functionality is
described in more detail in Subsubsection 3.3.6.1. These translations can be
based on the English translation file included with the built application. Once
the necessary language files are set up (note that supporting English is optional),
they should be listed by their two-letter codes in the appconfig.json file under
the ui.languages.all key. Additionally, a default language must be specified
in ui.languages.default.

4.1.2.2 Appearance

Following, the appearance of the interface can be tailored. Color scheme is
customizable by updating the hex color codes in ui.colors and for the outlines
within the 3D preview in spatialUi.selectionColors. The logo displayed
on the top left, as well as the favicon can be customized by setting the paths
to the image files under images key. The web page to which the displayed logo
links to can be configured using the sources.homepageUrl key. In addition,
the title of the web page can be adjusted using the title key. The appearance
customizations provide options for both dark and light modes of the interface.

Moreover, the camera style and floor shadow in the 3D visualization can be
adjusted, and the option whether to display the button to save the completed
configuration in PDF to users is provided.

4.1.2.3 Data Source

Finally, the source from which the product catalog is fetched must be defined
in sources.catalogUrl. Any accessible location which provides the correct
data scheme can be provided here. The creation of this catalog file is described
in the following sections.

4.1.2.4 Example Case

In the example case discussed in this chapter, the interface was customized
according to the company’s brand guidelines. The company logo, set to
appear in the top left corner, links back to the company’s original website.
The catalog source was defined as a static file located on the web server at
products/catalog.json.

Application Setup and Configuration 69

4.1.3 Catalog Creation and Content Management
The following section describes the process of managing configurable products
for the deployed application.

The first step needed to create the catalog of products is the preparation
of 3D models that will be used in the configurator. The supported format
is gLTF and its binary form GLB, to which other 3D formats can be converted.
These files can be generated out of Computer-Aided Design (CAD) files used by
the company to manufacture the products, or modeled manually. The images
of the components that help the models with the representation should also be
prepared and kept somewhere accessible.

It is necessary to store the files in an accessible location so that they can
be fetched from their paths by the configurator application. It should be kept
in mind that the size of the file and the complexity of the models correspond
to the performance of the configurator application; therefore, it is beneficial
to have simplified models with compressed textures to achieve the greatest
possible performance. For easier component specification creation, the center
of the model should also align with the center of the 3D scene in the file.

To create the configurable products, the administrator application needs to
be launched. With the same prerequisites and dependencies as the main applica-
tion, the admin tool can be built using the following command:
npm run build --workspace admin

The resulting files will be created in apps/admin/dist. These built files
can be again uploaded to a web server (perhaps within the company intranet)
or be served locally for the duration needed to create the specifications by
executing the command: npm run preview --workspace admin

Within the administrator application’s product composer screen, product
specification can be now created, by creating component specifications along
with their materials, mounting points and specified base components. It should
be kept in mind that the 3D models of the components (and images) in
the administrator application are loaded from the same paths as they will be in
the configurator application, and it is therefore crucial for these models to be
accessible in both applications on the same paths. When product specifications
are created, they can be exported to JSON files, and again need to be stored
in locations accessible from the deployed configurator application.

The catalog is then created in the catalog composer screen of the adminis-
trator application. Each catalog entry must reference the location accessible
from the deployed configurator application where the product specification file
created in the previous step can be fetched from. After the catalog is complete,
it should be exported and stored at the location specified in the global config
file, which was discussed in previous section.

For updates of the created product specifications and the catalog, the exist-
ing files can be downloaded, imported back into the administrator tool, edited,
and then uploaded back to their original locations.

Application Setup and Configuration 70

4.1.3.1 Example Case

async function handleRequest(request: Request) {
const headers = new Headers({

"Access-Control-Allow-Origin" : "configurator.example.com" ,
"Access-Control-Allow-Methods" : "POST, OPTIONS" ,
"Access-Control-Allow-Headers" : "Content-Type"

});

if (request.method === "OPTIONS") {
return new Response(null,

{ headers, status: 204 });
}
if (request.method !== "POST") {

return new Response("Method Not Allowed" ,
{ headers, status: 405 });

}

const formData = await request.json();
try {

const parsedData = RequestSchema.parse(formData);
await sendEmail(parsedData);
return new Response(null,

{ headers, status: 200 });
} catch (error) {

return new Response("Invalid data" ,
{ headers, status: 400 });

}
}

addEventListener("fetch" , event => {
event.respondWith(handleRequest(event.request));

});

Code listing 4.2 Implementation of serverless function for forwarding inquiry form
data

In the example company followed in this chapter, the 3D models were
generated from CAD software used in manufacturing process of the company
and stored as static files on the web server. Then, the administrator application
was utilized to create the product specifications and the catalog. The cre-
ated files were also transferred to the web server, from where they will be
statically served. Given that the company utilizes an inquiry form on their

Business Aspects 71

website, the configurable products followed the same approach and had an
inquiry form set as a confirmation action. A serverless function, hosted on
Cloudflare Workers1, was created to process the data. The function accepts
POST requests with the contact info and configuration created by the user
sent from the inquiry form within the application, and forwards these data
to a company email. To enable this, the URL of this serverless function was
set as the endpoint of the confirmation action in the catalog composer screen.
A simplified illustration of the implementation of the serverless function can be
seen in Code listing 4.2.

4.2 Business Aspects

This section explores the business aspects of deploying the configurator tool,
examining the cost-effectiveness as well as business process modifications within
the company.

4.2.1 Cost-Effectiveness
As this solution aims to cater to small businesses, this project has been concep-
tualized with cost-effectiveness in mind, with the requirement of lightweight
infrastructure needs (NF4) and self-hostability (NF3). These principles have
been greatly reflected in the design and implementation.

The primary costs of this solution stem from the setting up of the tool, which
includes acquiring 3D models and specifying the configurable content, as well as
the customization of the tool and its integration into the infrastructure. These
costs can vary greatly between different companies, as some may be disposing
of the necessary files, while others will have to create them. The complexity of
the offered products that are defined in the tool also plays a role in this step.

From a technical standpoint, the infrastructure costs are low. For companies
with an existing web server, no additional infrastructure is required. In addition,
the costs of web hosting are minimal, as static websites can often be hosted for
free in some capacity on platforms such as Cloudflare Pages [60] or Netlify [61].

Provider Free plan limits Cost over limit
(per million reqs)

Cloudflare Workers 100,000 reqs/day $0.30
AWS Lambda 1,000,000 reqs/month $0.20
Google Cloud Functions 2,000,000 reqs/month $0.40
Table 4.1 Overview of the pricing per requests (reqs) for serverless providers

Source: Cloudflare [62], Amazon [63], Google [64]

1https://workers.cloudflare.com

https://workers.cloudflare.com

Business Aspects 72

For use cases that require additional processing of the configuration data
or the inquiry form, serverless functions, as demonstrated in the example case,
can be used. Unless a very large amount of requests is processed, these can also
be very cost-effective, and the overview of the pricing per requests for three
major serverless providers (Cloudflare Workers, AWS Lambda, Google Cloud
Functions) as of April 2024 can be seen in Table 4.1.

In the example company described in this chapter, the only expense asso-
ciated with the tool was the time spent preparing the content and deploying
the application.

4.2.1.1 Return on Investment

Consequently, the Return on Investment (ROI) for this solution is therefore
projected to be hugely positive. While having minimal costs, the configurator
not only acts as a sales assistance tool, allowing for detailed product visualization
and customization, but also serves as a marketing tool that can enhance
the company’s market presence and appeal to a technically adequate consumer
base.

4.2.2 Operational Impact
Evaluating the impact that the deployment of the solution brings to businesses
and companies is a complex task. The toolkit is adaptable and product-agnostic,
meaning it can be utilized by different companies across different industries or
in different parts of a supply chain. Consequently, the impact on processes will
differ in each scenario.

Therefore, this section will describe the change in processes after the tool’s
deployment in the example company examined in this chapter, as this should
serve as an illustration of one of the common effects this tool can have.

This solution deployed in the example company impacts the inquiry and
order process. This section will describe this process before and after imple-
mentation. The process involves two actors: the customer wanting to purchase
a product and the company employee handling the customer’s requests.

B
usiness

A
spects

73

Figure 4.1 Original order process as UML activity diagram

Figure 4.2 New order process with the implemented solution as UML activity diagram

Business Aspects 74

4.2.2.1 Original Process

The UML activity diagram of the original process is illustrated in Figure 4.1.
The inquiry and order process before deployment of the solution looks as
follows. Initially, when the customer wants to purchase a manufactured product,
they visit the website of the company and fill out the inquiry form. Based
on the information provided in the inquiry form, the employee creates a
visualization, which is sent to the customer along with additional product
customization informations. At this point, the customer decides whether this is
the product they want or if they want to stop the process there. If the customer
likes the product and options presented by the employee, an iterative process
begins between the customer and the employee, where the employee tries to
create an adequate quote for the product to the customer, while the customer
sends back the proposed adjustments to the employee, who tries to process
and incorporate them. When an agreement is reached, the order is placed, and
the product goes into production.

4.2.2.2 New Process

After deploying the solution in the example company, as described in the previ-
ous sections, the inquiry and order process can change into the form illustrated
in Figure 4.2. With this change, the customer visits the company’s website
and directly creates the configuration of the product they desire. The steps
where the employee would need to present product visualizations and options
are bypassed, as these are now handled by the tool. If the customer is satisfied
with the configured product, they send an inquiry containing the product
configuration, and the employee can process it and base the quote on this
configuration. The process then follows in the same way as in the original
scenario.

This demonstrates the power of the developed tool to simplify the initial
step of the process, saving the employees time that would otherwise be spent
on communicating with the customer. It also allows the customers to clearly
express their preferences using the tool, reducing the friction of the inquiry
process and potentially leading to more conversions into orders.

The tool also finds its application in marketing, where it can be used by
the company to attract more potential customers.

Chapter 5

Testing

Unit testing, system testing, usability testing and gained insights.

Testing is an integral part of the software development process. This chapter
provides an overview of the tests conducted during the development of this
solution, as well as an evaluation and discussion of the testing results.

Software testing is essential for detecting malfunctions that may negatively
affect the application’s users and create further issues for the operator of
the software. Testing is also necessary to confirm that the solution complies
with the set specifications and helps to validate the design choices made. [65]

There are various types of software tests, which can be categorized in
many different ways, such as automated versus manual, functional versus non-
functional, black-box versus white-box, by their coverage (unit versus whole
system) or by their scope (performance versus compatibility). The choice of
tests is always context-dependent and needs to be aligned with the project
goals and limitations. [66]

Testing 3D applications presents unique challenges that differentiate it from
testing standard web applications, with main differences in user interactions.
The developed solution enables users to move within a 3D space and interact
with spatial objects. Interactions therefore occur in a 3D environment projected
onto a 2D viewport, significantly expanding the range of possible interactions
compared to traditional 2D applications. The potential interactions also vary
depending on the product being configured in the application, as the solution
aims to be product-agnostic, as well as further complicating matters with
the configurator’s open navigation mechanism.

Unlike 2D applications where layout and style are the focus, 3D applications
require tests to confirm that objects appear correctly from various angles and
under different conditions. This aspect is challenging, as it is less straightforward
than verifying the DOM of a standard website, since in this scenario, the 3D
preview is represented by a canvas element without a straightforward method
for breakdown. In addition, loading 3D content is time and computationally

75

Unit Testing 76

consuming, which makes testing resource intensive. These complexities limit
the applicability of certain types of tests, such as automated browser testing,
which typically does not accommodate the nuances of working with 3D content.

Given these constraints and the goals of the solution, three distinct kinds of
tests were performed during the development lifecycle of the application: unit
tests, system tests, and usability tests. The tests performed are described in
the following sections.

5.1 Unit Testing

Unit testing involves testing the smallest parts of the software, which are
typically individual functions. The testing is performed in isolation from
the rest of the system, with dependencies being mocked or stubbed to ensure
that the tests are independent. These tests provide immediate feedback on
the functionality of the written code and help detect bugs or regressions
when the code undergoes changes during development. Since the resulting
application is composed of these integrated parts, validating these parts helps
with the validation of the whole software. [67]

describe("CatalogActions.getCatalog" , () => {
test(

"returns the existing catalog "
+ "if already present in the store" ,
async () => {

const existingCatalog = generateMock(CatalogSchema);
storeMock.catalog = existingCatalog;

const catalog = await CatalogActions.getCatalog(
"http://example.com/catalog" ,
storeMock);

expect(fetchCatalog).not.toHaveBeenCalled();
expect(catalog).toBe(existingCatalog);

}
);

});

Code listing 5.1 Example unit test used to validate store action within the solution

Due to the technologies chosen and the nature of the developed solution,
the majority of the codebase is made up of code visualizing the products,
written in markup language. This type of code is unsuitable for unit testing
as it does not encompass any testable logic. However, parts of the solution

System Testing 77

that involve manipulation of data schemas in stores require complex logic and,
therefore, these parts of the solution were subjected to unit testing.

The tests are stored in the src/ tests directory. For the purpose of unit
testing, the Jest framework1 was used, which enables a streamlined definition
and execution of the tests. These tests can be run by executing the following
command: npm run test

Although tests should be isolated, they still operate with some data; there-
fore, these data schemas need to be mocked. Because data schemas were defined
using the Zod framework (see Section 3.2), the zod-mock2 along with faker
packages were used to quickly generate fake data from the schemas to be used
in these tests, which closely resemble the values that will be used in real-world
scenarios. An example of a defined unit test can be seen in Code listing 5.1,
which illustrates the generation of the mocked data, the calling of the tested
function, and the verification of the results. Other unit tests are similar to
the one illustrated.

These tests validate the logic within the application and were run when
committing changes to confirm the integrity of the updates made to the code
during the development process.

5.2 System Testing

System testing verifies that all integrated components and subsystems of the so-
lution work as expected. This type of testing verifies that the application
behaves as expected from the perspective of the user and that it meets the spec-
ified requirements. [25]

Due to the specifics of this solution outlined at the beginning of this chapter,
this testing was not automated and was performed periodically manually during
implementation. When defects were found, they were immediately addressed.
Therefore, the evaluation of the fulfillment of the requirements, which should
result from this testing, was done periodically and is described at the end of
the implementation chapter (see Section 3.5).

To streamline this manual testing process, automatic deployment of the
development environment was enabled using the GitLab CI/CD pipeline, which
was triggered after each change to the codebase. To assess various different
functionalities of the application, several different sample products, such as
computer or shelves configurations, were created to enable the system testing
process.

To ensure the compatibility and responsiveness of the application across
different browsers and operating systems, the LambdaTest platform3 was
utilized. This platform enables the testing of web applications on thousands of
combinations of major browsers and operating systems. [68]

1https://jestjs.io
2https://www.npmjs.com/package/@anatine/zod-mock
3https://www.lambdatest.com/

https://jestjs.io
https://www.npmjs.com/package/@anatine/zod-mock
https://www.lambdatest.com/

Usability Testing 78

Therefore, the application was tested on a relevant sample of browsers.
The solution is designed to be compatible with all major browsers (Chrome,
Firefox, Safari, Opera, Edge) with versions released from the year 2022 onward.

5.3 Usability Testing

Usability testing evaluates the functionality of the web application. In contrast
with the system testing described in the previous section, usability tests employ
real users. They are carried out by a facilitator, along with a selected sample of
users, who perform tasks representative of actual usage situations. The facilita-
tor observes the users as they complete the tasks, noting their interactions with
the system and their reactions. This allows to measure effectiveness, efficiency,
and satisfaction of using the software. Usability testing is important, as it
validates the proposed design from a fresh point of view, as the perception of
the developed solution is different between the developer, who already knows
every detail of the application, and the user, who has to learn how to work
with the application. [69]

Various categories of usability tests can be performed to assess different
aspects of usability. Quantitative testing focuses on gathering numerical data
about user experience, while qualitative testing collects observations and subjec-
tive feedback. In moderated testing, the user is led by the facilitator, compared
to unmoderated testing, where the user is acting independently. Testing can
be done remotely or in person, depending on available resources. [70]

5.3.1 Test Plan
Before the actual testing process takes place, it is necessary to establish what
is tested, in what manner, who are the test participants, and how is the testing
conducted and evaluated. The following section discusses these aspects of
the solution’s usability testing.

In this thesis, usability testing is performed only on the configurator ap-
plication. As discussed in the introduction of this thesis, the enjoyment of
the configuration process itself directly influences the perceived value of the con-
figured product [4], therefore, it is imperative to ensure that the customer-centric
configurator application is highly efficient and provides a great user experience
in order to maximize the satisfaction of customers using the tool to configure
their products.

Although usability testing could also be extended to the administrator part
of the toolkit, it is important to note that the administrator application will
be used only by administrators, which are only a few compared to the users
of the configurator application. Administrators are also expected to have
better technical knowledge than ordinary customers. The administrator part
of the toolkit is conceived to be used infrequently, typically during the initial
setup of the tool or for occasional updates of the product catalog. Given

Usability Testing 79

these factors, the configurator part of the toolkit must comply with usability
standards higher than those of the administrator part; therefore, the available
testing resources are better allocated entirely to the configurator application.

Usability testing was performed in person and in locations that are natural to
the participants, either at their workplaces or at their homes. Since the solution
requires no installation, the test participant’s personal device was used to
simulate real-world conditions and keep the participants comfortable.

The comfort of the test participant is important during the testing process,
as anxious users can skew the results by not reacting the same way as they
would naturally when using the tool outside of a testing context. [71]

Based on analysis of performed usability testing, research has revealed that,
on average, five test participants are enough to reveal around 85% of usability
flaws, with additional participants providing diminishing returns in terms of
unique feedback [72]. For this reason, the usability test was performed with
five different users to efficiently gather as much comprehensive information as
possible without overly intensive testing.

During testing, standard approaches were followed. These include recording
the sessions to enable for more objective processing afterward. The testing pro-
cess was clearly explained, making it known to the participant that the solution
is being tested, not the user, and therefore they are free to express themselves
and will not be judged. In addition, the facilitator aimed to conduct the test
in a way that does not lead or influence the test participant by helping in any
way or asking suggestive questions during the testing process. [70]

5.3.1.1 Evaluation Methods

Usability testing was performed using both qualitative and quantitative meth-
ods.

To gather important context before the testing process, participants were,
along with their general profile, asked about the following information:

1. Does the participant have any previous experience with online product
configuration, has the participant ever used similar tool to preview or order
a product?

2. Does the participant have experience with 3D computer programs?

3. When ordering custom products, does the participant prefer personal con-
tact, such as phone or email communication, or would they rather use
an online configurator?

This information is relevant, as the 3D controls employed in the developed
solution are common; therefore, previous experience could impact the results of
the usability test. In addition, the sentiment regarding the preferred shopping
process could also influence the perceived usability of the tool.

Usability Testing 80

During the process, the actions of the participants were observed and
the think-aloud method was used.

With the think-aloud protocol, participants are encouraged to reveal their
thoughts during the process and to think out loud when using the application.
This means that along with the actions taken, the information about why they
have taken it is also immediately captured. [70]

After the test, a qualitative evaluation was done by conducting an interview
with a general discussion about the solution, including the following questions:

1. What difficulties did the participant encounter when using the tool? Was
there anything particularly frustrating?

2. What three improvements or features would the participant like to see?

3. Did any part of the tool feel unnecessary or redundant?

4. Is the product representation clear enough to understand what was config-
ured?

5. Would the participant use this tool in a real scenario to inquire configured
products?

6. What was the initial feeling of the participant about the tool?

For quantitative evaluation, the System Usability Scale (SUS) questionnaire
was used.

The SUS is an industry standard for quickly evaluating the usability of
a system. It consists of 10 questions, each with a numerical response on a scale
from one to five, one representing “strongly disagree” and five being “strongly
agree”. The questions are presented in Table 5.1. [73]

A score is then calculated from the SUS questionnaire as follows:

The response values for odd-numbered questions are subtracted by one.

The response values for even-numbered questions are subtracted from five.

The adjusted responses are then added together and multiplied by 2.5, giving
a score between 0 and 100. This is calculated for each participant. To get
a single value that rates the entire system, the average of these scores is
taken. [74]

Research of 500 usability studies has shown that the average SUS score
is 68. Therefore, a score above 68 suggests that the solution is better than
the average system in terms of usability. However, it should be noted that this
is a comparison with different types of systems, not necessarily with the same
functionality. The 90th percentile is an SUS score of about 80.3. [74]

The time to complete the tasks was not measured, as product configuration
is a creative process where speed does not necessarily mean better performance.

Usability Testing 81

1. I think that I would like to use this system frequently
2. I found the system unnecessarily complex
3. I thought the system was easy to use
4. I think that I would need the support of a technical person to be able

to use this system
5. I found the various functions in this system were well integrated
6. I thought there was too much inconsistency in this system
7. I would imagine that most people would learn to use this system very

quickly
8. I found the system very cumbersome to use
9. I felt very confident using the system

10. I needed to learn a lot of things before I could get going with this
system

Table 5.1 System Usability Scale questionnaire
Source: [73]

5.3.1.2 Scenario

For usability testing purposes, a mock product, a modular kitchen countertop,
was prepared for configuration within the tool, with configurable components
such as drawers, sinks, cabinets, corners and smooth edges.

Consequently, a single test case was used that involved the configuration
of the defined kitchen product. This test case was broken down into several
subtasks that participants were instructed to complete using the configurator
application.

In the scenario presented to the users, the background context involved
them renovating their homes and being in need of a new remodeled kitchen.
They found a company specialized in custom kitchen furniture, which utilized
a website where they used the developed solution to handle inquiries. The user
has visited the configurator, at which point the usability testing has started.
The subtasks were as follows:

1. Create a configuration of kitchen modules in “L” shape. The left part
of the kitchen should include a drawer and sink, and the right part of
the kitchen should contain two cabinets and another drawer.

2. Add a smooth edges component to the edge modules.

3. Set the color of the countertop of all the modules to “dark” and the wooden
part of the modules to the color “cherry”. The color of the sink component
should be set to “copper”, and the faucet to “gold” color.

4. Review the created configuration and fill out and send an inquiry form with
contact details.

Usability Testing 82

These product features and subtasks were selected to ensure that the major-
ity of functionalities of the configurator application were tested by the users in
a single, comprehensive test case, which represented the expected regular use.

5.3.2 Testing Process
The following section describes the selection of participants for the usability
test and provides a summary of the transcription from the testing process itself.

5.3.2.1 Participants

As mentioned in the previous section, five participants were selected, which
should be sufficient to uncover most usability issues. The participants were
deliberately chosen to be heterogeneous, representing a range of different age
groups, to ensure that the testing provided as much information as possible.

The participants, along with the contextual information gathered from them
and the devices they used, are as follows:

Participant A: 18 years old, male

Experience: Previous experience with 2D car configurator, also relevant
experience with 3D modeling and extensive 3D gaming.
Device: Desktop PC with Windows.

Participant B: 22 years old, female

Experience: Previous experience with 3D furniture configurator, also
relevant experience with casual 3D gaming.
Device: Mobile device with iOS.

Participant C: 46 years old, female

Experience: Previous experience with 3D furniture configurator, no
other relevant experience.
Device: Desktop PC with MacOS (with an Apple Magic Mouse).

Participant D: 52 years old, male

Experience: Previous experience with 3D car configurator, also relevant
experience with 3D visualization software.
Device: Laptop with MacOS (with a standard external mouse).

Usability Testing 83

Participant E: 62 years old, female

Experience: No previous experience with configurators or other relevant
experiences.
Device: Laptop with Windows (with a standard external mouse).

All participants expressed a positive sentiment towards using a configurator
tool instead of a direct inquiry process.

5.3.2.2 Execution and Observations

The testing process began by preparing the tested application on the device
and ensuring that there would be no interruptions during the testing.

The usability testing process, its purpose, and principles were then explained
to the participants along with the three stages that it consists of: pre-test
questions, the test itself, and post-test questions.

Questions were asked to establish context about the participant’s back-
ground, experience, and sentiment, as detailed in the previous sections. The re-
sponses can be found in the previous section along with other details about
the participants.

The test of the application itself then began. The participants were reminded
that it was the application being tested, not the user; therefore, they would not
be judged and that any issues they may face are problems of the application’s
usability. Participants were also reminded that they would not be helped during
the process but only observed, and were asked to think aloud and share their
thoughts to help with this observation. The prepared scenario and the tasks
they should complete were explained and presented to them on a sheet of paper
for further easy reference.

All participants immediately understood what to do and chose the ini-
tial component of the kitchen. The controls in the 3D space, along with
the buttons for the addition of components, were also understood quickly by
everyone. Therefore, the addition of the first components of the product was
not problematic for anyone.

However, as the configured product grew more complex, the addition of more
components became an issue for everyone except Participant A. The problem
was caused by an unclear scrolling pattern in the component addition menu.
The menu pops up from the bottom of the screen, with horizontally laid
tiles representing the mountable components. If there are more mountable
components than would fit in this menu, horizontal scrolling is utilized. Due to
the disappearance of the scroll bar and soft shading of the background, it was
not clear to the participants that there could be more components accessible
by scrolling horizontally. Although every participant has eventually figured
it out, it has caused problems and frustrations, which, especially in the case
of Participant C, lasted several minutes. Furthermore, Participant D has also

Usability Testing 84

suggested that a categorization of the available components on this panel would
be beneficial for better orientation.

Another observed pain point, which the majority of participants have also
reported afterwards, was aggressive camera zooming. Whenever a component
is selected, the camera tries to center the chosen component on screen. Almost
all participants have reported that this movement is either too jarring and fast
or that the zoom effect is too strong and that the 3D object should not be
zoomed so much.

Figure 5.1 Apple Magic Mouse
Source: Apple [75]

Participant C, who used an Apple Magic
Mouse with an unconventional button layout
and gestures (see Figure 5.1), experienced par-
ticular difficulties. When trying to compen-
sate for unwanted camera centering, the par-
ticipant accidentally performed a gesture on
the mouse to navigate away from the appli-
cation, restarting the whole configuration.

In addition to the selectable components in the 3D view, as a supporting
element, there is also a small button symbolizing the component that also allows
users to select it. This button is positioned at the point where the component
is mounted. This has caused small issues for Participant C and Participant E.
The post-test discussion revealed that the problem was caused by two things:
the base component does not have a mounting point, therefore, the application
does not have a button for this component, and at the same time the position
of the button on the mounting point caused confusion as it was unclear to
which component the button belongs to. The participants implied that it would
be more intuitive if the button was placed in the center of the component.

Participants C and E also encountered small issues with the remove compo-
nent button, which uses a hold-to-confirm mechanism instead of the traditional
confirmation pop-up. The unfamiliarity with this mechanism has led both
participants to require three attempts to perform this action.

Participant B expected that the review of components in the confirmation
screen would be interactive, allowing for changes to the colors of the materials
instead of merely reviewing them.

After overcoming these challenges, the participants quickly understood and
completed the rest of the tasks without any further obvious problems. The par-
ticipants were then asked to complete the SUS questionnaire on the second
side of the instructions sheet, followed by an interview where the previously
detailed questions were asked.

In the post-test interview, a common wish among all participants except
Participant D was that the material color changes would apply to all components
made of the same material, rather than having to adjust each one individually.
Two participants also mentioned that the outline of the selected components
was too wide and strong, obscuring the customized color. Participant B has
also expressed the desire to have the ability to change the environments in

Usability Testing 85

which the product is visualized.
Participants deemed no part of the tool redundant, except Participant D,

who considered the configuration review and confirmation screen unnecessary
in the current form and suggested that a screenshot of the 3D preview of
the configuration should also be included there.

When asked about their initial feeling, three participants expressed that
they wanted a guide or tutorial to be presented on the initial screen, and two
participants mentioned that having preset configurations with prearranged
components would be beneficial.

All of the participants regarded the 3D product representation to be clear
and understandable and all expressed that they would use this application in
a real scenario.

5.3.3 Test Results
The following section provides evaluation results and a summary of insights
gained from the testing process, as detailed in the previous section.

The general sentiment regarding the usability of the tool was positive among
all participants.

Figure 5.2 System Usability Scale scores by participant

The average SUS score for all participants was 77 which is considered good
and above average when compared to other systems. The lowest SUS score
was 65, recorded by Participant D, and the highest was 92.5, recorded by
Participant B. The scores for all participants are plotted on the chart shown
in Figure 5.2.

Usability Testing 86

A trend appears to indicate that the tool is more suitable for younger users.
However, given the small sample size, this does not provide enough evidence to
draw statistically significant conclusions in this regard.

5.3.3.1 Insights

The following section summarizes the issues identified during usability testing
along with potential improvements, describes how fixes could be implemented,
and reports the current status of these implementations. In addition, the sever-
ity of each issue is estimated based on the difficulties observed during usability
testing. The estimated severity was classified as high, medium, or low. The pri-
ority for implementing fixes was based on the estimated severity.

I1: Unclear scrolling pattern in component addition menu
Horizontal scrolling in the menu is not apparent (see Figure 5.3), leading
users to believe that there are fewer available components than there
really are.

Severity: High
Proposed fix: Arrow buttons should be added as an additional
apparent scrolling mechanism
Implemented: Yes, see Figure 5.4

Figure 5.3 Component addition menu before the implemented fix

Figure 5.4 Component addition menu with implemented arrows for scrolling

Usability Testing 87

I2: Jarring camera movement
The camera moves too abruptly and zooms in too much on component
selection, causing discomfort and confusion among users.

Severity: High
Proposed fix: The camera speed should be slowed down and limited
to rotation only, avoiding zoom on component selection
Implemented: Yes

I3: Incorrect position of the component selection button
The button supporting the selection of components is positioned at
the point the component is mounted at, creating confusion about which
component the button is associated with. The button is also missing on
the base component.

Severity: Medium
Proposed fix: The button representing the component should be
centered within the 3D model and also added to the base component
Implemented: Yes

I4: Excessive outline of the selected component
The outline of the selected component within the 3D preview can be too
wide, obscuring the customized color of the component.

Severity: Medium
Proposed fix: The width of the outline should be reduced or made
transparent
Implemented: Yes

I5: Lack of guidance
The tool does not provide users with any information about the controls.

Severity: Medium
Proposed fix: A panel detailing the controls should be presented
when first accessing the application and also be accessible by a button
at any time
Implemented: No

I6: Separated material changes
Changing the color of materials only affects a single component, even if
there are other components with the same materials in the configuration.
Therefore, updating the same material across all components requires

Usability Testing 88

individually adjusting each one.

Severity: Medium
Proposed fix: The data scheme for material specifications should be
revised to not be part of the components but to be shared between
them, alternatively, changing the color of a material could automatically
update all components with the same material identification
Implemented: No

I7: Missing preset configurations
The configurator does not provide users with precreated configurations
on which the user could build upon.

Severity: Medium
Proposed fix: Administrator should be able to create and offer
product configurations which the user can use to derive their own
configuration
Implemented: No

I8: Unintuitive hold-to-confirm mechanism
The confirmation action used on the delete button, which requires holding
the button for a while, is unintuitive.

Severity: Low
Proposed fix: The hold-to-confirm mechanism should be replaced
with standard confirmation popup
Implemented: No

I9: Confirmation screen does not allow changes
The confirmation screen only offers an overview, and to make changes to
the colors of materials, it is necessary to return to the configurator screen.
In addition, the confirmation screen could provide more information.

Severity: Low
Proposed fix: Changing colors of materials should be enabled directly
from the confirmation screen, and the screen should present a screenshot
of the preview of the 3D configuration
Implemented: No

I10: Lack of categorization in the component addition menu
Categorization of components in the addition menu would improve user
orientation and ease of use.

Severity: Low

Usability Testing 89

Proposed fix: A new category data scheme should be implemented
to encompass different component specifications, and the menu should
group the components based on their respective categories
Implemented: No

I11: Blank environment in the 3D preview
The 3D preview features a blank background with color set by the ad-
ministrator, which can appear bland.

Severity: Low
Proposed fix: Various 3D backgrounds should be introduced to allow
visualization of the configured products in different environments
Implemented: No

Since only the most critical usability improvements were implemented,
the remaining unimplemented usability enhancements could be the subject of
further development of the tool and complement Subsection 3.5.1 on future
improvements.

Chapter 6

Conclusion

The objective of this bachelor’s thesis was to create an application for on-
line 3D configuration of modular products.

To accomplish this goal, an analysis of existing solutions was performed,
examining the perspective of both customers and the businesses that operate
such tools. Based on this, requirements for the solution implemented in this
thesis were created, such that the created application provides businesses with
an innovative solution for product configuration.

Consequently, a responsive web application was designed to support the con-
figuration of a variety of modular products in a 3D environment. The configu-
rator features open navigation, allowing users to customize modular products
by adding or removing specified components at fixed points, and to customize
their properties such as the color of the materials. Additionally, advanced
features such as collision detection were included to ensure that configurations
are realistic and feasible. Further processing of the user-created configurations
has been made available by offering an integration using an API call to other
systems or by presenting an inquiry form.

From a business perspective, the subsequent goals were for the application
to be flexible, lightweight, and easy to maintain, targeting smaller companies in
need of a cost-effective solution. The developed tool is a front-end-only solution,
set up by static files. To allow customers to configure their products, businesses
can deploy the developed solution directly on their webservers. The tool as
a whole has been separated into two separate applications: the user-facing
configurator and an administrator tool allowing the business to define their
configurable products.

In the design chapter, technologies were chosen and wireframes of the user
interfaces were crafted.

The implementation chapter detailed the data schemas and the solutions
to several interesting challenges encountered during the implementation of
the designed application.

In the deployment chapter, the deployment process was described within

90

91

the context of an example business, highlighting the potential changes to
the business processes enabled by this solution.

Furthermore, the testing performed during the development of the applica-
tion was discussed, including unit testing, system testing, and usability testing.
Usability testing was conducted near the end of the development cycle to
validate the functionality and user experience of the application, and the most
severe revealed usability issues were fixed.

Future improvements to this solution could include the creation of an accom-
panying back-end solution, integrations with existing e-commerce platforms,
or the implementation of a rule evaluation engine. Possible future develop-
ment directions are discussed in detail in Subsection 3.5.1, and insights from
usability testing for user experience improvements are also provided in Subsub-
section 5.3.3.1.

The developed solution is freely available for businesses to use, enabling
them to introduce modular product configuration on their websites effectively.

Appendix A

Additional Visuals

92

93

Figure A.1 Threekit’s Platform’s landing page
Source: Threekit Platform Documentation [20]

Figure A.2 Threekit’s Platform’s editor
Source: Threekit Platform Documentation [20]

94

Figure A.3 Screenshot of Roomle’s Rubens example
Source: Roomle Demos [23]

Appendix B

Additional Code Listings

95

96

const renderer = new THREE.WebGLRenderer();
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);

const scene = new THREE.Scene();

const geometry = new THREE.BoxGeometry(5, 5, 5);
const material = new THREE.MeshBasicMaterial({color: 0xff0000});
const mesh = new THREE.Mesh(geometry, material);
scene.add(mesh);

const camera = new THREE.PerspectiveCamera(
75,
window.innerWidth / window.innerHeight,
0.1,
1000

);
camera.position.set(10, 10, 10);
camera.lookAt(mesh.position);

renderer.render(scene, camera);

Code listing B.1 Creating and displaying a 3D red cube with Three.js

const Component = () => {
return (

<Canvas camera={{position: [10, 10, 10]}}>
<mesh>

<meshBasicMaterial color="red" />
<boxGeometry args={[5, 5, 5]} />

</mesh>
</Canvas>

)
}

Code listing B.2 Creating a 3D red cube as a React component with R3F

97

import { z } from 'zod' ;

const customSchema = z.number();

type CustomType = z.infer<typeof customSchema>;

Code listing B.3 Conversion from Zod schema to TypeScript type
Source: Adapted from [56]

Bibliography

1. FULKERSON, Bill; SHANK, Michael. The New Economy Electronic
Commerce, and the Rise of Mass Customization. In: Handbook on Elec-
tronic Commerce. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000,
pp. 411–430. isbn 978-3-540-67344-6.

2. FRANKE, Nikolaus; PILLER, Frank. Configuration toolkits for mass
customization. Arbeitsberichte des Lehrstuhls für Allgemeine und Indus-
trielle Betriebswirtschaftslehre der Technischen Universität München. 2002,
vol. 33, no. 4, p. 28.

3. SCHREIER, Martin. The value increment of mass-customized products:
an empirical assessment. In: [online]. 2006, vol. 5, pp. 317–327. No. 4.
Available from doi: 10.1002/cb.183. Accessed 2024-01-25.

4. FRANKE, Nikolaus; SCHREIER, Martin. Why Customers Value Self-
Designed Products: The Importance of Process Effort and Enjoyment*.
In: [online]. 2010, vol. 27, pp. 1020–1031. No. 7. Available from doi:
10.1111/j.1540-5885.2010.00768.x. Accessed 2024-01-25.

5. COZZI, Patrick. WebGL Insights. CRC Press, 2015. isbn 978-1498716079.
6. ZHAO, Huiwen; MCLOUGHLIN, Leigh; ADZHIEV, Valery; PASKO,

Alexander. An Evaluation Model for Web-based 3D Mass Customization
Toolkit Design. In: Customization 4.0. Cham: Springer International
Publishing, 2018, pp. 375–390. isbn 978-3-319-77555-5.

7. HERMANS, Guido. A Model for Evaluating the Solution Space of Mass
Customization Toolkits. International Journal of Industrial Engineering
and Management [online]. 2012. Available from doi: 10.24867/ijiem-20
12-4-125. Accessed 2024-01-25.

8. CYLEDGE MEDIA. Configurator Database [online]. Vienna, 2018. Avail-
able also from: https://www.configurator-database.com/. Accessed
2024-01-25.

98

https://doi.org/10.1002/cb.183
https://doi.org/10.1111/j.1540-5885.2010.00768.x
https://doi.org/10.24867/ijiem-2012-4-125
https://doi.org/10.24867/ijiem-2012-4-125
https://www.configurator-database.com/

Bibliography 99

9. BLAZEK, Paul. Creating Customization Experiences: The Evolution of
Product Configurators. In: Mass Customization and Customer Centric-
ity: In Honor of the Contributions of Cipriano Forza [online]. Cham:
Springer International Publishing, 2023, pp. 179–209. isbn 978-3-031-
09782-9. Available from doi: 10.1007/978-3-031-09782-9_7. Accessed
2024-01-25.

10. STATISTA RESEARCH DEPARTMENT. IKEA - Statistics & Facts
[online]. Statista, 2024. Available also from: https://www.statista.com
/topics/1961/ikea. Accessed 2024-01-30.

11. IKEA. Design your PAX storage [online]. [N.d.]. Available also from: htt
ps://www.ikea.com/addon-app/storageone/pax/web/latest/cz/en/.
Accessed 2024-01-30.

12. FINK, Gil; FLATOW, Ido. Introducing Single Page Applications. In: Pro
Single Page Application Development: Using Backbone.js and ASP.NET.
Berkeley, CA: Apress, 2014, pp. 3–13. isbn 978-1-4302-6673-0. Available
from doi: 10.1007/978-1-4302-6674-7_1.

13. MUUTO. Our Story [online]. ©2023. Available also from: https://www.m
uuto.com/content/about/our-story-a-space-that-just-feels-ri
ght/. Accessed 2024-01-30.

14. MUUTO. Product Planner [online]. [N.d.]. Available also from: https:
//planner.muuto.com/. Accessed 2024-01-30.

15. JACKSON, Dean. Viewing Augmented Reality Assets in Safari for iOS. In:
WebKit [online]. 2018. Available also from: https://www.webkit.org/bl
og/8421/viewing-augmented-reality-assets-in-safari-for-ios/.
Accessed 2024-01-30.

16. LD SEATING. About us [online]. ©2024. Available also from: https://ww
w.ldseating.com/en/about-us. Accessed 2024-01-30.

17. LD SEATING. Nido [online]. [N.d.]. Available also from: https://nido
.ldseating.com/en/configurator. Accessed 2024-01-30.

18. THREEKIT INC. About us [online]. ©2023. Available also from: https:
//www.threekit.com/en/about-us. Accessed 2024-01-31.

19. THREEKIT INC. The Enterprise Platform for Visual Commerce [online].
©2023. Available also from: https://www.threekit.com/en/platform-
overview. Accessed 2024-01-31.

20. THREEKIT INC. Platform Documentation [online]. 2024. Available also
from: https://community.threekit.com/v/platform-documentation.
Accessed 2024-01-31.

21. ROOMLE GMBH. Make your furniture a better digital experience [on-
line]. ©2023. Available also from: https://www.roomle.com/en/about.
Accessed 2024-01-31.

https://doi.org/10.1007/978-3-031-09782-9_7
https://www.statista.com/topics/1961/ikea
https://www.statista.com/topics/1961/ikea
https://www.ikea.com/addon-app/storageone/pax/web/latest/cz/en/
https://www.ikea.com/addon-app/storageone/pax/web/latest/cz/en/
https://doi.org/10.1007/978-1-4302-6674-7_1
https://www.muuto.com/content/about/our-story-a-space-that-just-feels-right/
https://www.muuto.com/content/about/our-story-a-space-that-just-feels-right/
https://www.muuto.com/content/about/our-story-a-space-that-just-feels-right/
https://planner.muuto.com/
https://planner.muuto.com/
https://www.webkit.org/blog/8421/viewing-augmented-reality-assets-in-safari-for-ios/
https://www.webkit.org/blog/8421/viewing-augmented-reality-assets-in-safari-for-ios/
https://www.ldseating.com/en/about-us
https://www.ldseating.com/en/about-us
https://nido.ldseating.com/en/configurator
https://nido.ldseating.com/en/configurator
https://www.threekit.com/en/about-us
https://www.threekit.com/en/about-us
https://www.threekit.com/en/platform-overview
https://www.threekit.com/en/platform-overview
https://community.threekit.com/v/platform-documentation
https://www.roomle.com/en/about

Bibliography 100

22. ROOMLE GMBH. Documentation [online]. ©2020. Available also from:
https://docs.roomle.com/. Accessed 2024-02-01.

23. ROOMLE GMBH. Full-logic Configurator [online]. ©2023. Available also
from: https://www.roomle.com/en/demos/full-logic-configurator.
Accessed 2024-02-01.

24. AURUM, Aybüke; WOHLIN, Claes. Requirements Engineering: Setting
the Context. In: Engineering and Managing Software Requirements. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 1–15. isbn 978-3-540-
28244-0. Available from doi: 10.1007/3- 540- 28244- 0_1. Accessed
2024-02-04.

25. STEPHENS, Rod. Beginning Software Engineering. 2nd ed. Hoboken, NJ,
USA: Wiley, 2022. isbn 978-1-119-90170-9.

26. PARISI, Tony. Programming 3D Applications with HTML5 and WebGL:
3D Animation and Visualization for Web Pages. Sebastopol, CA, USA:
O’Reilly Media, Inc., 2014. isbn 978-1-449-36296-6.

27. PARISI, Tony. WebGL: Up and Running. Sebastopol, CA, USA: O’Reilly
Media, Inc., 2012. isbn 978-1-4493-2357-8.

28. WORLD WIDE WEB CONSORTIUM. WebGPU [online]. 2024-02. W3C
Working Draft. World Wide Web Consortium (W3C). Available also
from: https://www.w3.org/TR/2024/WD-webgpu-20240202/. Accessed
2024-02-05.

29. CATUHE, David et al. Babylon.js [online]. 2023. Available also from:
https://github.com/BabylonJS/Babylon.js. Accessed 2024-02-05.

30. CABELLO, Ricardo et al. Three.js - JavaScript 3D library [online]. 2023.
Available also from: https://threejs.org/. Accessed 2024-02-05.

31. GIMENO, Alberto. The deepest reason why modern JavaScript frame-
works exist. In: DailyJS [online]. 2018. Available also from: https://med
ium.com/dailyjs/the-deepest-reason-why-modern-javascript-fr
ameworks-exist-933b86ebc445. Accessed 2024-02-06.

32. PEKARSKY, Max. Does your web app need a front-end framework?
[online]. 2020. Available also from: https://stackoverflow.blog/2
020/02/03/is- it- time- for- a- front- end- framework/. Accessed
2024-02-06.

33. HENSCHEL, Paul et al. React Three Fiber Documentation [online]. 2024.
Available also from: https : / / docs . pmnd . rs / react - three - fiber.
Accessed 2024-02-06.

34. HENSCHEL, Paul et al. useful helpers for react-three-fiber [online]. 2024.
Available also from: https://github.com/pmndrs/drei. Accessed 2024-
02-06.

https://docs.roomle.com/
https://www.roomle.com/en/demos/full-logic-configurator
https://doi.org/10.1007/3-540-28244-0_1
https://www.w3.org/TR/2024/WD-webgpu-20240202/
https://github.com/BabylonJS/Babylon.js
https://threejs.org/
https://medium.com/dailyjs/the-deepest-reason-why-modern-javascript-frameworks-exist-933b86ebc445
https://medium.com/dailyjs/the-deepest-reason-why-modern-javascript-frameworks-exist-933b86ebc445
https://medium.com/dailyjs/the-deepest-reason-why-modern-javascript-frameworks-exist-933b86ebc445
https://stackoverflow.blog/2020/02/03/is-it-time-for-a-front-end-framework/
https://stackoverflow.blog/2020/02/03/is-it-time-for-a-front-end-framework/
https://docs.pmnd.rs/react-three-fiber
https://github.com/pmndrs/drei

Bibliography 101

35. BANKS, Alex; PORCELLO, Eve. Learning React: Modern Patterns for
Developing React Apps. 2nd. Sebastopol, CA, USA: O’Reilly Media, Inc.,
2020. isbn 978-1-492-05172-5.

36. EZE, Peter Ekene. Next.js vs. Gatsby: Comparing React frameworks
[online]. 2023. Available also from: https://blog.logrocket.com/next-
js-vs-gatsby-comparing-react-frameworks/. Accessed 2024-02-06.

37. SAID, Mostafa. Vite vs. Webpack: A Head-to-Head Comparison [online].
kinsta, 2023. Available also from: https://kinsta.com/blog/vite-vs-
webpack/. Accessed 2024-02-06.

38. ABBA, Ihechikara. How to Use Tailwind CSS to Rapidly Develop Snazzy
Websites [online]. kinsta, 2023. Available also from: https://kinsta.com
/blog/tailwind-css/. Accessed 2024-02-06.

39. MICROSOFT. Why TypeScript [online]. 2023. Available also from: ht
tps://www.typescriptlang.org/why-create-typescript. Accessed
2024-02-06.

40. GANATRA, Sagar. React Router Quick Start Guide. Packt Publishing,
2018. isbn 978-1789532555.

41. KRUKOWSKI, Ilya. Go Global with React and i18next: A Comprehensive
Tutorial for Internationalizing Your React App [online]. lokalise, 2023.
Available also from: https://lokalise.com/blog/how-to-internatio
nalize-react-application-using-i18next/. Accessed 2024-04-08.

42. CEDDIA, Dave. React State Management Libraries and How to Choose
[online]. 2021. Available also from: https://daveceddia.com/react-st
ate-management/. Accessed 2024-04-08.

43. ADEPOJU, Opeyemi. State Management In React With Valtio [online].
OpenReplay, 2023. Available also from: https://blog.openreplay.com
/state-management-in-react-with-valtio/. Accessed 2024-04-08.

44. BHIMANI, Kesar. Zod and React: A Perfect Match for Robust Validation
[online]. DhiWise, 2023. Available also from: https://www.dhiwise.co
m/post/zod-and-react-a-perfect-match-for-robust-validation.
Accessed 2024-04-08.

45. PONUTHORAI, Prem Kumar; LOELIGER, Jon. Version Control with Git.
3rd ed. Sebastopol, CA, USA: O’Reilly Media, 2022. isbn 9781492091196.

46. GITLAB. Gitlab Docs [online]. 2024. Available also from: https://docs
.gitlab.com. Accessed 2024-04-07.

47. PETRUNGARO, Damiano et al. Conventional Commits 1.0.0 [online].
2022. Available also from: https://www.conventionalcommits.org/en
/v1.0.0/. Accessed 2024-04-07.

48. TYPICODE. Husky Introduction [online]. 2024. Available also from: http
s://typicode.github.io/husky/. Accessed 2024-04-07.

https://blog.logrocket.com/next-js-vs-gatsby-comparing-react-frameworks/
https://blog.logrocket.com/next-js-vs-gatsby-comparing-react-frameworks/
https://kinsta.com/blog/vite-vs-webpack/
https://kinsta.com/blog/vite-vs-webpack/
https://kinsta.com/blog/tailwind-css/
https://kinsta.com/blog/tailwind-css/
https://www.typescriptlang.org/why-create-typescript
https://www.typescriptlang.org/why-create-typescript
https://lokalise.com/blog/how-to-internationalize-react-application-using-i18next/
https://lokalise.com/blog/how-to-internationalize-react-application-using-i18next/
https://daveceddia.com/react-state-management/
https://daveceddia.com/react-state-management/
https://blog.openreplay.com/state-management-in-react-with-valtio/
https://blog.openreplay.com/state-management-in-react-with-valtio/
https://www.dhiwise.com/post/zod-and-react-a-perfect-match-for-robust-validation
https://www.dhiwise.com/post/zod-and-react-a-perfect-match-for-robust-validation
https://docs.gitlab.com
https://docs.gitlab.com
https://www.conventionalcommits.org/en/v1.0.0/
https://www.conventionalcommits.org/en/v1.0.0/
https://typicode.github.io/husky/
https://typicode.github.io/husky/

Bibliography 102

49. ABRAMOWSKI, Nicole. What is NPM? The Complete Beginner’s Guide
[online]. CareerFoundry, 2022. Available also from: https://careerf
oundry.com/en/blog/web- development/what- is- npm/. Accessed
2024-04-07.

50. GUPTA, Shivam. ESLint: What, Why, When, How [online]. dev.to, 2021.
Available also from: https://dev.to/shivambmgupta/eslint-what-wh
y-when-how-5f1d. Accessed 2024-04-07.

51. WOJTASIŃSKI, Pawe l. Why the Hell Do People Confuse Prettier With
Eslint? In: Hackernoon [online]. 2023. Available also from: https://hack
ernoon.com/why-the-hell-do-people-confuse-prettier-with-esl
int. Accessed 2024-04-07.

52. HANSEN, Torben; SCHEER, Chris J.; LOOS, Peter. Product Configu-
rators in Electronic Commerce - Extension of the Configurator Concept
towards Customer Recommendation. In: MCPC [online]. 2003. Available
also from: https://api.semanticscholar.org/CorpusID:6859338.
Accessed 2024-01-26.

53. WLASCHIN, Scott. Domain Modeling Made Functional. Pragmatic Book-
shelf, 2018. isbn 978-1680502541.

54. LEITNER, Gerhard; FELFERNIG, Alexander; BLAZEK, Paul; REIN-
FRANK, Florian; NINAUS, Gerald. User Interfaces for Configuration
Environments. In: Knowledge-Based Configuration: From Research to
Business Cases. Boston: Morgan Kaufmann, 2014, pp. 89–106. isbn 978-
0-12-415817-7. Available from doi: 10.1016/B978-0-12-415817-7.0000
8-6.

55. LORANGER, Hoa; SCHADE, Amy; NIELSEN, Jakob. Website Tools
and Applications with Flash [online]. 2013. report. Nielsen Norman Group.
Available also from: https://www.nngroup.com/reports/website-too
ls-and-applications-flash/. Accessed 2024-04-29.

56. WYCLIFFE, Maina. Using Zod Schemas as Source of Truth for Typescript
Types. In: All Things Typescript [online]. 2023. Available also from: http
s://www.allthingstypescript.dev/p/using-zod-schemas-as-sour
ce-of-truth. Accessed 2024-04-11.

57. JOHNSON, Garrett. three-mesh-bvh [online]. 2024. Available also from:
https://github.com/gkjohnson/three-mesh-bvh. Accessed 2024-04-
15.

58. WALTON, Philip. First Contentful Paint (FCP). In: web.dev [online].
2023. Available also from: https://web.dev/articles/fcp. Accessed
2024-04-19.

59. NOGUEIRA, Thiago. Modular Kitchen Sink - Game Ready Asset [online,
3D model]. Sketchfab, 2018. Available also from: https://skfb.ly/6xQUA.
Purchased under a standard license; Accessed 2024-05-02.

https://careerfoundry.com/en/blog/web-development/what-is-npm/
https://careerfoundry.com/en/blog/web-development/what-is-npm/
https://dev.to/shivambmgupta/eslint-what-why-when-how-5f1d
https://dev.to/shivambmgupta/eslint-what-why-when-how-5f1d
https://hackernoon.com/why-the-hell-do-people-confuse-prettier-with-eslint
https://hackernoon.com/why-the-hell-do-people-confuse-prettier-with-eslint
https://hackernoon.com/why-the-hell-do-people-confuse-prettier-with-eslint
https://api.semanticscholar.org/CorpusID:6859338
https://doi.org/10.1016/B978-0-12-415817-7.00008-6
https://doi.org/10.1016/B978-0-12-415817-7.00008-6
https://www.nngroup.com/reports/website-tools-and-applications-flash/
https://www.nngroup.com/reports/website-tools-and-applications-flash/
https://www.allthingstypescript.dev/p/using-zod-schemas-as-source-of-truth
https://www.allthingstypescript.dev/p/using-zod-schemas-as-source-of-truth
https://www.allthingstypescript.dev/p/using-zod-schemas-as-source-of-truth
https://github.com/gkjohnson/three-mesh-bvh
https://web.dev/articles/fcp
https://skfb.ly/6xQUA

Bibliography 103

60. CLOUDFLARE, INC. Cloudflare Pages [online]. ©2024. Available also
from: https://pages.cloudflare.com. Accessed 2024-04-23.

61. NETLIFY. Scale & Ship Faster with a Composable Web Architecture
[online]. ©2024. Available also from: https://netlify.com. Accessed
2024-04-23.

62. CLOUDFLARE, INC. Cloudflare Workers [online]. ©2024. Available also
from: https://workers.cloudflare.com. Accessed 2024-04-23.

63. AMAZON WEB SERVICES, INC. Serverless functions, FaaS Serverless
[online]. ©2024. Available also from: https://aws.amazon.com/lambda/.
Accessed 2024-04-23.

64. GOOGLE. Cloud Functions [online]. [N.d.]. Available also from: https:
//cloud.google.com/functions. Accessed 2024-04-23.

65. HOMÈS, Bernard. Fundamentals of Software Testing. ISTE/Wiley, 2012.
isbn 978-1848213241.

66. KRYSIK, Arkadiusz. 21 Types of Software Testing Every Engineer Should
Be Using for Better Results [online]. Stratoflow, 2023. Available also from:
https://stratoflow.com/types-of-software-testing/. Accessed
2024-04-27.

67. KHORIKOV, Vladimir. Unit Testing Principles, Practices, and Patterns.
Manning Publications, 2020. isbn 978-1617296277.

68. LAMBDATEST INC. Real Time Browser Testing [online]. 2024. Available
also from: https://www.lambdatest.com/support/docs/real-time-b
rowser-testing/. Accessed 2024-04-28.

69. BARNUM, Carol M. Usability Testing Essentials. 2nd ed. Morgan Kauf-
mann Publishers, 2020. isbn 978-0128169421.

70. MORAN, Kate. Usability Testing 101 [online]. Nielsen Norman Group,
2019. Available also from: https://www.nngroup.com/articles/usabi
lity-testing-101/. Accessed 2024-04-28.

71. NIELSEN, Jakob. Usability Engineering. San Francisco, CA, USA: Morgan
Kaufmann Publishers, 1993. isbn 978-0-12-518406-9. Available from doi:
10.1016/C2009-0-21512-1.

72. NIELSEN, Jakob. Why You Only Need to Test with 5 Users [online].
Nielsen Norman Group, 2000. Available also from: https://www.nngr
oup.com/articles/why-you-only-need-to-test-with-5-users/.
Accessed 2024-04-29.

73. BROOKE, John. SUS: A ’Quick and Dirty’ Usability Scale. In: Usability
Evaluation in Industry [ebook]. Taylor & Francis, 1996, chap. 21, pp. 189–
194. Available from doi: 10.1201/9781498710411-35.

https://pages.cloudflare.com
https://netlify.com
https://workers.cloudflare.com
https://aws.amazon.com/lambda/
https://cloud.google.com/functions
https://cloud.google.com/functions
https://stratoflow.com/types-of-software-testing/
https://www.lambdatest.com/support/docs/real-time-browser-testing/
https://www.lambdatest.com/support/docs/real-time-browser-testing/
https://www.nngroup.com/articles/usability-testing-101/
https://www.nngroup.com/articles/usability-testing-101/
https://doi.org/10.1016/C2009-0-21512-1
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://doi.org/10.1201/9781498710411-35

Bibliography 104

74. SAURO, Jeff. Measuring Usability with the System Usability Scale (SUS).
In: MeasuringU [online]. 2011. Available also from: https://measuringu
.com/sus/. Accessed 2024-04-30.

75. APPLE INC. Magic Mouse - White Multi-Touch Surface [online]. ©2024.
Available also from: https://www.apple.com/shop/product/MK2E3
AM/A/magic-mouse-white-multi-touch-surface. Accessed 2024-05-
05.

https://measuringu.com/sus/
https://measuringu.com/sus/
https://www.apple.com/shop/product/MK2E3AM/A/magic-mouse-white-multi-touch-surface
https://www.apple.com/shop/product/MK2E3AM/A/magic-mouse-white-multi-touch-surface

Contents of the Attachment

readme.txt overview of the content of the attachment
builds..builds of the solutions

main/dist..................build of the configurator web application
admin/dist build of the administrator web application

text ... text of the thesis
src..........................source code of the text in LATEX format
thesis.pdf compiled text of the thesis

impl repository with the implementation of the solution

105

	Acknowledgments
	Declaration
	Abstract
	List of Abbreviations
	Introduction
	Analysis
	Existing Solutions
	Applications of Product Configurators
	IKEA PAX Planner
	Muuto Product Planner
	LD Seating Nido Configurator

	Available Toolkits
	Threekit
	Roomle

	Summary of Existing Solutions

	Proposed Solution
	Requirement Engineering
	Functional Requirements
	Non-Functional Requirements

	Design
	Technologies
	Platform
	3D Visualization Technology
	WebGL Framework

	Front-End Framework
	CSS Framework

	Programming Languages
	Additional Libraries
	Routing
	Language Support
	State Management
	Validation

	Development Tooling
	Version Control
	Package Manager
	Formatters

	Domain Model
	Catalog
	Configuration

	User Interface
	Configuration Screen
	Introduction Screen
	Confirmation Screen

	Implementation
	Structure of the Toolkit
	Project Directory Tree

	Data Schemas
	Catalog
	Product Specification
	User Creation

	Challenges and Solutions
	Component Visualization
	Component Interactivity

	Model Material Change
	Undo and Redo Actions
	Collision Detection
	Configuration Processing
	Application Configuration
	Interface Texts

	Routing
	Data Flow

	Catalog Management

	Views
	Configurator Application
	Configuration Screen
	Introduction Screen
	Confirmation Screen

	Administrator Application
	Catalog Composer
	Product Composer

	Summary of Implementation
	Possible Future Improvements

	Deployment
	Application Setup and Configuration
	Building and Launching the Application
	Customizing the Application
	Localizations
	Appearance
	Data Source
	Example Case

	Catalog Creation and Content Management
	Example Case

	Business Aspects
	Cost-Effectiveness
	Return on Investment

	Operational Impact
	Original Process
	New Process

	Testing
	Unit Testing
	System Testing
	Usability Testing
	Test Plan
	Evaluation Methods
	Scenario

	Testing Process
	Participants
	Execution and Observations

	Test Results
	Insights

	Conclusion
	Additional Visuals
	Additional Code Listings
	Contents of the Attachment

