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Abstract

This bachelor thesis presents a stochastic agent-based model that simulates pedestrian movement
in the Luzen Valley, National Park Šumava. The model merges three distinct mathematical
models. Random arrivals of agents are modeled by means of a Poisson process. Further, a fun-
damental diagram-based model is introduced to transport agents to the estimated bottleneck of
the trail. The third microscopical model represents a movement of pedestrians on the bottleneck.
The transport section introduces the agent mass in the perceived surroundings of the agent as
a novel concept to model interaction between agents that represent pedestrians. Furthermore,
kernel estimates are implemented as an individual mass generated by each agent. Due to the
focus of this thesis on the transport section of the model, the bottleneck section is represented
by a very simple cellular automaton, a totally asymmetric simple exclusion process.

Further, this thesis successfully implemented the model in a simulation tool that has been
developed to conduct simulation experiments with the model. The model parameters were cali-
brated using empirical findings from pedestrian movement. Correctness of kernel implementation
was confirmed by one of the experiments. Furthermore, the experiments with the arrival intensity
revealed that jams occur at the average arrival intensity of 48 pedestrians per minute. This value
corroborates the reasonableness of the transport section model, as it aligns with the empirical
findings that were not used for calibration. Additionally, the experiment results validated the
assumption that heterogeneity in speed of agents and heterogeneity in arrival intensity leads to
earlier stoppages.

Keywords pedestrian trail model, recreational pedestrian movement, stochastic agent based
model, trail capacity, agent mass, fundamental diagram, kernel density estimates, random pedes-
trian arrivals, bottleneck flow
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Abstrakt

Tato práce představuje stochastický agentńı model, který simuluje pohyb chodc̊u v Luzenském
údoĺı v Národńım parku Šumava. Model spojuje tři odlǐsné matematické modely. Náhodné
př́ıchody agent̊u jsou modelovány pomoćı Poissonova procesu. Dále je zaveden model založený
na fundamentálńım diagramu pro dopravu agent̊u k odhadovanému úzkému hrdlu stezky. Třet́ı
mikroskopický model reprezentuje pohyb chodc̊u v úzkém hrdle. Dopravńı model zavád́ı hmotu
agent̊u ve vńımaném okoĺı agenta jako nový koncept pro modelováńı interakce mezi agenty
reprezentuj́ıćı chodce. Jádrové odhady jsou nav́ıc zavedeny jako individuálńı hmota generovaná
každým agentem. Vzhledem k zaměřeńı této práce na dopravńı úsek modelu je úzké hrdlo stezky
reprezentováno velmi jednoduchým celulárńım automatem.

V praktické části této práci je model úspěšně implementován do simulačńıho nástroje, který
byl vyvinut za účelem prováděńı simulačńıch experiment̊u s modelem. Parametry modelu byly
kalibrovány na základě empirických pozorováńı o pohybu chodc̊u. Správnost implementace
jádrových odhad̊u byla potvrzena jedńım z experiment̊u. Experimenty s intenzitou př́ıchodu dále
ukázaly, že k zácpám docháźı při intenzitě 48 chodc̊u za minutu. Tato hodnota potvrzuje smyslu-
plnost modelu dopravńıho úseku, protože se shoduje s empirickými pozorováńımi, které nebyly
použity pro kalibraci. Kromě toho výsledky experiment̊u potvrdily předpoklad, že r̊uznorodost
v rychlosti chodc̊u a r̊uznorodost v intenzitě př́ıchod̊u vede k dř́ıvěǰśım zácpám.

Kĺıčová slova model pěš́ı stezky, rekreačńı pohyb chodc̊u, stochastický agentńı model, ka-
pacita stezky, hmota agenta, fundamentálńı diagram, jádrové odhady hustoty, náhodné př́ıchody
chodc̊u, úzké hrdlo stezky
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Introduction

The Luzen Valley is currently a strictly protected and inaccessible area within the first zone of
the Šumava National Park. It houses bogs and rare plant varieties. In addition, it represents a
survival spot for the ruffed grouse, a critically endangered bird that rarely thrives in Europe.

The accessibility of this valley is for many years under extensive debate. Simulating various
options for restricted access could provide valuable insights for the current debate surrounding
the potential opening of Luzen Valley to the public. The purpose of the thesis is to establish
cooperation with the national park administration to estimate the capacity and select a suitable
restriction model for pedestrian movement along the trail.

Pedestrian movement, also known as pedestrian dynamics, is a research field within trans-
portation systems. The theory of pedestrian dynamics is historically based on research conducted
on vehicle traffic, which was the first transportation system to be studied.

Pedestrian traffic is a much more complex issue than vehicle traffic. It is considered to be the
most advanced of all transportation systems among biological systems. For instance, pedestrian
traffic is two-dimensional in nature and pedestrian reactions cannot be described solely by the
distance from surrounding pedestrians. In addition, pedestrian flow is influenced by cultural
differences, elevation of the terrain, and weather.

Pedestrian flow involves several unique phenomena that often differ from modeling highway
traffic. Section 3.1 discusses selected observation and empirical findings related to the pedestrian
movement in detail. It reveals that the capacity of a bottleneck is a crucial factor in modeling
pedestrian flow. This point is not only where walking speed decreases, but it can also lead to
jamming phenomena.

Modeling pedestrian flow has become a popular research topic in recent decades. The rele-
vance of this topic is increasing in light of population growth and urbanization tendencies across
communities. The goal is to build safe and effective transportation environment.

Three principal categories of research methods are employed in the field of pedestrian trans-
portation systems, namely laboratory experiments, empirical methods, and numerical simula-
tions. Conducting experiments under laboratory conditions represents a significant source of
pedestrian behavior data. However, certain experiments are either impractical or unsafe, and
the results may be distorted due to the participants’ awareness of the experiment. In contrast,
the empirical method collects real-world data and is therefore more reliable. As tracking tech-
nology continues to evolve, there is a growing concern about the potential for infringements on
privacy and the limitations of collecting data on streets.

Significant improvements in computational performance have opened up new possibilities for
performing numerical simulations of pedestrian movement. There are two main approaches to
model pedestrian movement, namely knowledge-based models that mimic the pedestrian move-
ment mechanism in explicit ways and data-driven models that use statistical methods to infer
pedestrian behavior. In recent years, research has focused on the data-driven approach, with the

1



2 Introduction

advent of machine learning. Initially, optimization techniques were integrated into knowledge-
based models with the objective of reducing the discrepancy between simulation and reference
data. More recently, pedestrian movement simulation has been approached as a time sequence
generation problem and solved using neural networks.

Compared to vehicle traffic modeling, there exist less empirical data for pedestrian flow. Re-
cently, the analysis of video footage has emerged as the most effective data source for pedestrian
modeling. Several open-source datasets have been created that can be used as training datasets
for the machine learning methods.

Nevertheless, the potential for simulating recreational pedestrian movement has yet to be fully
explored. The state of the art models of pedestrian movement and the models that represent
recreational pedestrian movement are presented in Section 3.3. However, the Luzen valley trail
requires a custom model.

The primary goal of the thesis is to introduce and implement a stochastic agent-based model
that represents recreational pedestrian movement in the Luzen valley. Agent-based modeling is
the subject of Section 1.1. The introduced model consists of three distinct mathematical models,
described in Chapter 4.

The first model deals with random arrivals of agents to the trail by means of a Poisson
process, which is subject of Section 1.3. The second model addresses transportation of agents
from the edges of the trail to the bottleneck section. Crucial quantity in pedestrian dynamics is
the fundamental diagram, which is introduced in Section 2.1. This section employs a fundamental
diagram-based model and introduces a novel concept of interaction between agents, namely the
agent mass in the perceived surroundings of the agent. Furthermore, kernel estimates, which are
introduced in the article [1] and discussed in Section 2.2.2, are implemented as an individual mass
generated by each agent. The third model addresses pedestrian movement on the bottleneck
section of the trail. Due to the focus of this thesis on the transport section of the model,
the bottleneck section is represented by a very simple cellular automaton, which is subject of
Section 1.2.1.

Further goal of this thesis is to implement the agent-based model in a simulation tool to con-
duct experiments with the model and log the trajectories of agents from simulations. Chapter 5
deals with the implementation of the tool in detail. The secondary goal is to create a script
providing a basic animation of the trajectories from the simulation.

To ensure the credibility of the model, the thesis goal is to calibrate the model parame-
ters using empirical findings on pedestrian movement, which are presented in Section 3.1 and
Section 3.2. The parameter calibration is presented in Section 5.1.

The last objective of the thesis is to evaluate a capability of the model to emulate recreational
pedestrian movement. For this purpose, various experiments were conducted in Section 6.2, and
the results were compared with the values presented in Chapter 3.

This thesis contributes to the academic community by introducing an agent-based model
of recreational pedestrian movement. Furthermore, the thesis introduces a novel concept for
modeling interactions between pedestrians. In addition, the thesis practically applies kernel
density estimates presented in the article [1].



Chapter 1

Methodologies for Modeling
Pedestrian Movement

There are various approaches to modeling pedestrian movement, interactions between pedestri-
ans, and arrivals to the trail. In this chapter, the theory of selected modeling methods is formally
introduced and contextualized within the model presented in Chapter 4.

Initially, the concept of a multi-agent system is introduced through definitions of basic the-
ory, classification of multi-agent systems, agent types, and environmental characteristics. Further
section introduces Cellular Automata, a class of models that represent transportation systems,
and introduces its main representatives. Additionally, a random arrival process is formally estab-
lished, and the statistical methods used in the thesis to simulate random arrivals are discussed.
Finally, ordinary differential equation and equations of motion are introduced as a means of
expressing pedestrian movement.

1.1 Multi-agent system
This section is based on the overview book [2], which discusses the concepts of artificial intel-
ligence in detail, including intelligent agents. Initially, the definition of agent, agent function,
and multi-agent systems is introduced. Secondly, the characteristics and types of agents are
presented. Finally, task environment is defined and environment characteristics are presented.
The theory is set in the context of the model introduced later in Section 4.2.

The following definitions formally describe essential concepts of multi-agent systems. Fig-
ure 1.1 contributes to the definitions by providing a schema of the interaction between the agent
and the environment.
▶ Definiton 1.1 (Agent). Anything that can perceive surroundings using its sensors and acts
using actuators.
▶ Definiton 1.2 (Agent function). Maps perceived sequences to action sequences and is run by
agent program.
▶ Definiton 1.3 (Multi-agent system). Collection of independent agents in shared environment.

Agents can vary considerably depending on the application. Robotic agents exist in the
physical world and have physical actuators. On the contrary, software agents exist in a virtual
environment and work with data. The model introduced in this thesis uses software agents.

Despite the existence of differences in usage, agents share fundamental characteristics. These
characteristics are listed below in an itemized list, each contextualized in the brackets within the
agents introduced in this thesis.

3
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Figure 1.1 Schema of agent and environment interaction, taken from [2]

being autonomous (agents have control over themselves),

acting proactively to meet the objective (agents move towards the goal),

making only purposeful activities (agents do not move backwards),

interacting with the environment without having full control over it (agents adjust speed
based on the surrounding environment),

coordination, cooperation, negotiation with other agents (relations between agents are achieved
through interaction).

Since the definition of the agent is too general, there are other ways of categorising agents
into types. Based on their relationship to other agents, the following types of agents can be
distinguished,

1. isolated,

2. cooperative,

3. self-interested,

4. combination of the above.

The agents introduced in this thesis are classified as a combination of cooperative and self-
interested agents. To be complete, isolated agents that ignore other agents were used in some of
the simulation experiments presented in Chapter 6.

One way to distinguish between types of agents is by their behaviour. There are two basic
types, simple reflex agents and model based agents. Both types of agents employ if-then
rules, yet model-based agents possess an internal state that extends beyond that of simple reflex
agents. It is noteworthy that the agents introduced in the thesis are of the simple reflex agent
type.

Further, there are goal-based agents and utility-based agents. Goal-based agents accept
goals and plan actions based on those goals. Utility-based agents, on the other hand, use a utility
function that maps the state of the environment to a real number representing the quality of the
state, and behave based on that value.
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In addition, rationality is a concept for making events that maximize performance. Ra-
tional agents are useful in applications in which tasks are accomplished. This type of agents
is not a suitable approach to model pedestrian movement, in which the objective is to achieve
authenticity and uncertainty.

The agent’s behavior and success rate is strongly dependant on the complexity of the en-
vironment. Therefore, the agent design is intertwined with the specified environment. Task
Environments (PEAS) specifies the multi-agent problem whose solution is the design of a
suitable agent. The specification of the problem consists of the following four tasks, which are
supplemented in the brackets by the context of the environment introduced in the thesis, namely

1. performance measure (no performance measure needed),

2. environment (agent mass profile, position on the trail),

3. actuators (generating an individual agent mass),

4. sensors (perceived surroundings of the agent).

As with agents, there is a wide variety of agent environments. The environment in the
mentioned model is

partially observable (due to perception of the surrounding density profile),

deterministic (based on the current state, the next state is determined),

sequential (next episode depends on the actions taken in the previous episode due to changing
position),

static (environment cannot change in one time instant while the agent is adjusting speed),

continuous (both time and position).

1.2 Cellular Automata
Cellular automata (CA) belong to the computationally efficient simple programs that emulate
processes and particle systems and are used to solve interdisciplinary problems, such as pedes-
trian movement. Initially, the model is defined and fundamental characteristics are presented.
Secondly, the use-cases and extension possibilities are discussed. Further, selected representa-
tives are introduced, and the possibilities of using these models in the context of pedestrian
movement modeling are discussed. The most basic representative, totally asymmetric simple
exclusion process (TASEP), used as the model introduced in Section 4.3, is discussed in detail.

The following paragraphs are based on the overview book [3], which discusses simple programs
and models used to simulate processes in detail, including CA and its variants.

The linear variant of CA consists of a structure of cells, called a lattice, each of which has a
state, typically from finite set. There is a definite rule that determines the state of a given cell
based on the state of the cells in the neighborhood at each time step. The program behavior and
rules have a visual representation. Figure 1.3 shows behavior visualization of simple CA model
rules.

For the purpose of modeling bidirectional pedestrian movement, a two-dimensional variant
of the CA is needed. Although models with two-dimensions share similar behavior with models
with one-dimension, two-dimensional CA show less regular patterns in step visualization.

Simple and proper rules are required to produce highly complex behavior. Even when all
cells follow exactly the same rule, experiments show that different configurations with different
sequences produce all sorts of different kinds of behavior. A popular example is Game of Life
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step 10:

step 9:

step 8:

step 7:

step 6:

step 5:

step 4:

step 3:

step 2:

step 1:

Figure 1.2 Visualization of 10 steps of simple CA model, taken from [3]

Figure 1.3 Visualization of rule examples, taken from [3]

introduced in the article [4]. To reproduce detailed natural system, such as pedestrian move-
ment, more complicated rules may be convenient although they do not bring fundamentally new
features.

There exist several extensions of CA. For example, mobile automata differs in that it
updates only one cell at a time step and not all in parallel. Next, continuous extension
generalizes the default definition using a continuous range of possible states.

Cellular agent systems are computational models that combine the principles of CA and
agent-based modeling. They are used to simulate complex systems comprising individual agents
that interact with one another within a grid-like structure. This concept is employed in the model
presented further in Section 4.3, as each agent possesses unique properties, such as velocity and
direction.

In a cellular agent system, each cell is either occupied by an agent or not. Each agent has its
own state, behavior, and rules. Furthermore, agents can move, interact with surrounding agents,
and update their states based on local rules and environmental conditions.

A useful resource for the following paragraphs is the overview book [5], which provides a
detailed analysis of transportation systems.

CA models are a popular approach in modeling pedestrian movement. Space discretion in
these models can be derived from the assumption that each pedestrian occupies a similar area.

The most basic model of all cellular models is the Nagel-Schreckenberg (NaSch) model, in
which both time and space are discrete. A special case of this model is the TASEP with all its
modifications. It is noteworthy that these models are primarily utilized in vehicle traffic models
and in single-file dynamics systems.

The article [6] introduced more sophisticated model that has become popular in pedestrian
flow dynamic, which is called floor field. The book [5] states that the model is capable of
comprehending the collective effects observed in pedestrian dynamics. It is based on the idea
that each direction has a different probability of being selected and is inspired by chemostaxis
phenomena used by insects.

There are also models that use non-CA approaches. One commonly used in pedestrian dynam-
ics is the social-force model, described in the article [7]. Behavioral changes are implemented
using the concept of a social field that affects pedestrians, and the main contribution of force
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comes from the territorial effect.

1.2.1 Totally Asymmetric Exclusion Process
The article [8] states that models of pedestrian traffic are strongly related to the TASEP because
it is considered to be the simplest possible stochastic transport model. Furthermore, it is generally
regarded as a generic model for many particle systems. In addition, the paper provides the basis
for the following paragraphs.

The model is based on the asymmetric simple exclusion process (ASEP) that consists of one-
dimensional finite lattice and boundary points, called bounds, typically distinguished into left
and right. Each cell is in one of two states, namely unoccupied or occupied. In comparison to
ASEP, there is only one moving direction. In comparison to the NaSch model, this model allows
only two different speed levels.

All particles are moving in the same direction, typically from left to right, as depicted in
Figure 1.4. During the particle update, each particle either moves to the subsequent cell if it is
unoccupied or remains at the same cell. The update frequency for each particle is determined
by the update probability.

According to the update strategy, parallel and sequential updates are distinguished,
whereby parallel updates are more common in modeling traffic flow. Parallel updates performs
injection, hopping, and removal simultaneously to all sites. Furthermore, important update
strategies, namely random-sequential, and time-continuous updates, are introduced in the fol-
lowing paragraphs. The source of the following text is the article [9], which studies different
types of updates for ASEP in detail.

Random-sequential update picks one of the particles, each with the same probability. If the
subsequent cell is empty, the particle moves with probability p. In general, the particle on the
boundary of the lattice is removed with probability β, and new particle moving to the lattice
with different probability α, as shown in Figure 1.4.

The model introduced in Section 4.3, in which each particle represents an agent with indi-
vidual optimal velocity, implements a time-continuous update strategy that shares stationary
properties with random-sequential update. In contrast, it generates a time period, in which the
particle waits for the subsequent update. During update, the particle hops to the subsequent
cell if the cell is empty or waits for the next update.

Further, the book [5] distinguishes two main classes of TASEP models according to boundary
conditions, i.e. behavior of particles on the edges of the one-dimensional lattice. With periodic
boundary conditions, the lattice forms close circuit where particles can hop from the end of
the lattice to the beginning. The appropriate boundary condition for pedestrian traffic is the
open boundary, in which new particles emerge on the left boundary of the lattice and exiting
particles leave the lattice on the right boundary.

The open boundary is realized by infinite reservoirs at the edges of the lattice. This idea is
illustrated in Figure 1.4. On the left boundary, the particles are inserted at a rate α and on the
right boundary, the particles are removed with the rate β. To be complete, each particle has the
same update probability p.

1.3 Random Arrival Process
In this thesis, random arrival process results in a sequence of times of events. An important
process that simulates random arrivals is the Poisson process. Initially, Exponential distribution,
Poisson distribution and Poisson process are defined. Secondly, definition of the Poisson process
and definition of non-homogeneous Poisson process is introduced. Finally, procedure to retrieve
a trajectory of random arrival process is presented. The source for this section are the lecture
notes [10], which are focused on application of selected statistical methods.
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Figure 1.4 Illustration of TASEP with open boundary, taken from [5]

The following definitions of probability distributions are necessary to define the Poisson pro-
cess.

▶ Definiton 1.4 (Exponential distribution). Continuous random variable X has Exponen-
tial distribution with parameter λ

def⇐⇒ the density function fX(x) = λ · e−λx , denoted as
X ∼ Exp(λ).

▶ Definiton 1.5 (Poisson distribution). Discrete random variable X has Poisson distribution
with parameter λ

def⇐⇒ P (X = k) = λk

k! e−k, k ∈ N0 , denoted as X ∼ Poisson(λ).

Poisson process is an example of a counting process that is established in the following
definition.

▶ Definiton 1.6 (Counting process). Stochastic process {Nt | t ∈ [0, +∞)} is a counting process
if it meets the following conditions,

(i) Nt ≥ 0,

(ii) Nt ∈ Z,

(iii) s ≤ t⇒ Ns ≤ Nt .

In the following definition is established the homogeneous Poisson process.

▶ Definiton 1.7 (Poisson process). The process {Nt | t ∈ [0, +∞)} is a Poisson process if the
following apply,

(i) N0 = 0 almost surely,

(ii) Nt −Ns ∼ Poisson(λ(t− s)) for all t > s ≥ 0,

(iii) {Nt} has independent increments, i.e., for all k ∈ N and for all 0 ≤ t0 < t1 < · · · < tk,
Nt1 −Nt0 , Nt2 −Nt1 , . . . , Ntk

−Ntk−1 are independent.

The homogeneous Poisson process has one other equivalent definition using a trajectory.
Using this definition, the random arrivals presented in Section 4.1 are constructed.

▶ Definiton 1.8 (Poisson process). Let {Xj | j ∈ N} be random variables i.i.d. (independent
and identically distributed) random variables with distribution Exp(λ).

Let us define trajectory {Tn |n ∈ N} as follows,

T0 = 0, Tn = Tn−1 + Xn =
n∑

j=1
Xj , n ∈ N .
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Then the random process {Nt | t ∈ [0, +∞)}, where

Nt(ω) := max{n ∈ N0 |Tn(ω) ≤ t} ,

is called a Poisson process.

A non-homogeneous Poisson process, which is established in the following definition, is em-
ployed to capture the variable intensity of arrivals over time.

▶ Definiton 1.9 (Non-homogeneous Poisson process). Let λ(r) be a integrable function on a
finite interval.

Then the process {Nt | t ≥ 0} is called an non-homogeneous Poisson process with intensity
λ(r) if the following apply,

(i) N0 = 0 almost surely,

(ii) {Nt} has independent increments,

(iii) Nt −Ns ∼ Poisson
(∫ t

s
λ(r) dr

)
for t > s.

It is possible to construct the non-homogeneous Poisson process with intensity λ(t) using
following theorem. The idea is depicted in Figure 1.5.

▶ Theorem 1.10 (Thinning). Let us consider a Poisson process {Nt|t ≥ 0} with intensity λ.
Let p(t) be a function integrable on a finite interval. Further, at the event time t happens an
event of type 1 with probability p(t), and an event of type 2 with probability 1 − p(t). Let us
define processes {N (1)

t |t ≥ 0}, and {N (2)
t |t ≥ 0} that record the event count of type 1, type 2

respectively. Then the process {N (1)
t } counting events of type 1 is an inhomogeneous Poisson

process with intensity λ(t) = Λ · p(t).

Figure 1.5 Illustration of non-homogeneous thinning, taken from [10]

Let us define Λ as the maximum intensity and p(t) as the function that determines the variable
probability of the event at time t, i.e.

Λ = max{λ(t) | t ≥ 0} , (1.1)

p(t) := λ(t)
Λ . (1.2)

The process accepting events with probability p(t) is a non-homogeneous Poisson process
with intensity Λp(t) = λ(t).

The previous definitions and theorems can be used to construct the times of non-homogeneous
random arrivals. Initially, the times of events {Tn |n ∈ N} of the homogeneous Poisson process
with the intensity λ are generated using definition 1.8. To achieve non-homogeneous Poisson
process, each event time t is accepted with the probability p(t) from Equation (1.2).
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1.4 Equations of Motion
The motivation for this section is the model introduced in Section 4.2, in which the velocity of
each agent is described by the equation of motion presented in Equation (4.8). The valuable
source for this section is the book [11] that introduces the fundamentals of ordinary differential
equations.

To define the equation of motion, ordinary differential equations must be first introduced. In
addition, a numerical method that approximates the solution is presented. Further, velocity and
acceleration are defined. Finally, the approach in the model introduced in this thesis is briefly
presented.

Ordinary differential equation (ODE) is an equation

y′(x) = f(y, x), where y : R→ R ∧ x ∈ R . (1.3)

The equation can be extended with initial conditions. Initial conditions determine the func-
tion value in the point a ∈ R, e.g.

y(0) = 0 . (1.4)

Differential equation that contains second-degree derivative is called second-order differ-
ential equation. This equation is represented by the second-degree derivative of the function
y(x) on the left side of the equation and a function of the derivative of the function y(x), the
function y(x) and the variable x on the right side of the equation, i.e.

y′′(x) = f(y′, y, x) . (1.5)

In the following, the explicit Euler method is introduced. It numerically solves the differ-
ential equation (1.3) with initial condition

y′(x0) = C , where x0 ∈ R ∧ C ∈ R . (1.6)

Initially, the domain of function y is discretized into sequence

(xn)∞
n=0, where xn = x0 + h · n .

Further, the method approximates the function y(x) in these discrete points with sequence
(yn)∞

n=0, i.e. yn ≈ y(xn). The method explores the points of sequence (yn)∞
n=0 by replacing the

expressions that contain the function y(x) with values of sequence (yn).
In the following example, the Euler method is used to numerically solve the following differ-

ential equation (1.7) with the initial condition y(0) = 0.

y′(x) = y2(x) + x , (1.7)

The derivative y′(x) is replaced with expression yn+1−yn

xn+1−xn
and the indeterminate y2(xn) is

replaced with y2
n, which leads to the following approximate solution,

yn+1 = yn + h · (y2
n + xn) . (1.8)

In order to use the explicit Euler method for the second-order differential equation, it is
neccessary to transform the equation (1.5) to a system of coupled ODE of the first-order by
substituting the first-order derivation y′(x) by artificial variable v, i.e.

y′ = v , (1.9)

whereby applies that the derivation of this variable is equal to y′′, i.e.

v′ = f(v, y, x) . (1.10)
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In addition to the approximation of the target function y(x) by yn ≈ y(xn), another variable,
variable v from Equation (1.9), has to be approximated similarly to the variable y by a sequence
(vn)∞

n=0, where vn ≈ v(xn) = y′(xn).
As in Equation (1.8), the approximate solution of the second-order differential equation is

shown in the following equations,

yn+1 = yn + h · vn , (1.11)
vn+1 = vn + h · f(vn, yn, xn) , (1.12)

As mentioned, the equations of motion describe the motion as a function of time, which is in
the following text denoted as variable t ∈ [0;∞]. In context of Section 4.2, position of agent α
at time t is denoted as xα(t). Using time and position, velocity and acceleration are defined in
the following definitions.

▶ Definiton 1.11 (Velocity). Velocity is a change of position in a period of time, denoted as
ẋ(t).

▶ Definiton 1.12 (Acceleration). Acceleration is a change of velocity in a period of time,
denoted as ẍ(t).

Newtonian model of equations of motion describes acceleration ẍ at the time t by the force
F that depends on a position x and velocity ẋ, i.e.

ẍ(t) = F(ẋ, x, t) .

This concept is taken over by the social-force model that determines a motion of each agent
α ∈ A at the time t by a force F, which is described in the article [7]. The force F depends
on positions {xβ ; β ∈ A} and velocities {ẋβ ; β ∈ A}. Therefore, the trajectories are given by a
coupled second-order differential equations,

ẍα(t) = F({xβ ; β ∈ A}, {ẋβ ; β ∈ A}, t) for α ∈ A . (1.13)

In contrary, the model introduced in this thesis describes the motion of agents by a coupled
first-order differential equations, presented in Equation (4.8). In order to achieve the great-
est degree of simplicity, the velocity of each agent is solely dependent on the positions of all
agents. Using the explicit Euler method, the approximate solution of this coupled equations is
the following formula where parameter h denotes the parameter of discretization, i.e.

xα,n+1 = xα,n + h ·Vα({xβ,n |β ∈ A}, h · n) . (1.14)
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Chapter 2

Characteristics of Pedestrian
Flow

This chapter presents selected concepts of pedestrian flow theory. It begins by introducing the
fundamental diagram (FD) as a key characteristic of traffic and pedestrian flow, along with nec-
essary quantities such as flow or density. The chapter then proceeds to discuss density estimate
methods in pedestrian flow, including kernel estimates, as part of the model introduced in Sec-
tion 4.2. Finally, this chapter introduces the level of service (LOS) as a measure of quality of
service from a user’s perspective.

2.1 Fundamental Diagram
Fundamental serves as a key characteristic of mutual interactions within a pedestrian group.
There exists variety of basic parameters and functional forms characterizing FD. Initially, def-
initions of the characteristics are introduced. Furthermore, forms of fundamental diagram are
presented and methods for its measuring are discussed.

Initially, key variables are introduced using definitions from the article [1]. The measurement
of pedestrian flow is based on the hydrodynamic theory. The following two definitions introduce
density, and flow.

▶ Definiton 2.1 (Pedestrian Density). The pedestrian density ρ denotes the number of pedes-
trians per unit area. It is commonly measured as ρ = N

|A| , where N denotes the number of
pedestrians and |A| denotes the size of the area.

▶ Definiton 2.2 (Pedestrian Flow). The pedestrian flow J is a number of pedestrians crossing
a checkpoint per unit time. It is commonly measured as J = N

∆T , where N denotes number of
pedestrians crossed within time interval of the length ∆T .

Using the definitions 2.1, 2.2 FD is formally established in the following definition.

▶ Definiton 2.3 (Fundamental Diagram). The fundamental diagram is a relation between den-
sity and pedestrian flow, i.e.

J = J(ρ) . (2.1)

The book [5] states that the hydrodynamic relation J = ρv enables its three equivalent forms,
namely J(ρ), v(ρ) and v(J), shown in Figure 2.1. To be noted, model introduced in Section 4.2
is inspired by the form v(ρ).

13



14 Characteristics of Pedestrian Flow

Figure 2.1 Generic shapes of fundamental diagram forms, taken from [5]

Moreover, the papers express concern that a single form may not be sufficient to characterize
bidirectional traffic, due to differing perceptions of pedestrians in the opposite direction. These
opinions diverge in the literature, and in general, the measurement of the fundamental diagram
remains a topic of contention.

The book [5] further states that due to practical observations, the average speed of pedestrians
in traffic remains independent of density at low densities. However, at some sufficiently high
density, referred to as critical density, average speed decreases. At a particularly high density,
referred to as maximum density, the speed reduces to the point of complete stopping.

One of the most simple forms is the Greenshields model, corresponding to the velocity-density
relation

v(ρ) = vopt

(
1− ρ

ρmax

)
, (2.2)

shown on left in Figure 2.2.
More complex form the fundamental diagram, given by [12], has the analytical form

v(ρ) = vopt

[
1− exp

(
−ρ0

(
1
ρ
− 1

ρmax

))]
. (2.3)

and is shown on right in Figure 2.2.
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Figure 2.2 Velocity-density relation of Greenshields and Weidmann fundamental diagram

To be complete, the model introduced in Section 4.2 uses a modified Greenshields fundamental
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diagram, given by the following formula and shown in Figure 4.6,

v(ρ) =


vopt for ρ < ρcrit ,

vopt

(
1− ρ−ρcrit

ρmax

)
for ρcrit < ρ < ρmax ,

0 for ρmax < ρ ,

(2.4)

Comparison of different fundamental diagrams can be found in the report [13]. Most of the
experiment results show similarity to the function (2.4). It is noteworthy that Society of Fire
Protection Engineers (SFPE) issues standards and guidelines that include recommendations how
to conduct pedestrian flow studies.

2.2 Estimates of Pedestrian Density

Initially, the importance of pedestrian density is explained and the reasons for estimating pedes-
trian density are debated. Next, an overview of methods used to estimate pedestrian density is
presented, and two popular methods are presented in detail.

As the article [1] discusses, the standard definitions of flow and density describe the global
current state of the system. However, local estimates describe the traffic situation in more detail
that is desired for the precise simulation of the pedestrian movement. Additionally, during density
measurement using experimental data, the definition of pedestrian density produces scattered
values. The methods of density estimates can approximate the continuous density.

The article [14] focuses on a comparison of different methods used to measure fundamental
diagram. It considers the X-T measure, which is grid method, as the most effective measure.
Another grid method is the Voronoi diagram measure, which is popular but computationally
intensive space-based method presented further in this section.

The first discrete form of the grid method was introduced by [15]. This method divides the
space into cells, with area its denoted as |A|, and each pedestrian contributes to the local density
of the cell by value 1

|A| . Continuous version of the grid method was introduced by [16] extending
the individual contribution into t/T

|A| including proportion of the time spent in the cell.
Later, smoother versions of density estimate methods were published. An overview of the

methods can be found in the article [14]. Further follows an introduction of two selected methods,
namely Voronoi diagram and kernel estimates. The source for the following text is the article [1]
that analyzes kernel estimates of pedestrian density and compares them with other popular
density estimation methods.

2.2.1 Voronoi Diagram
Voronoi diagram is one of the most popular and basic methods used to estimate density. The
fundamental idea of this method is that each point x ∈ R is assigned to the nearest pedes-
trian α. This divides observed area A into subsets Aα ⊂ A, referred to as Voronoi cell, for each
pedestrian α. Resulting density at a point x ∈ Aα is then equal to 1

Aα
.

Due to distribution oscillation in every timestep, the article [17] states that density estimate
retrieved from Voronoi method is usually a time average taken over the time. Further charac-
teristic of this method is a computational intensive. To be complete, the article [14] states that
it is possible to consider a additional parameter as a size limit of the Voronoi cell. This prevents
extending Voronoi cells into infinity when no boundaries of the diagram are set.

An illustration of the space division of Voronoi cells in two dimensions is shown in Figure 2.3.
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Figure 2.3 Voronoi diagram illustration, black points represent pedestrians

2.2.2 Kernel Estimates
Initially, notation of variables is defined and kernel estimates are derived from pedestrian den-
sity definition. Further, parameters are introduced, and interpretation of kernel estimates is
discussed. Additionally, examples of kernels are presented and the use of a selected kernel in the
model introduced in Section 4.2 is debated.

Kernel methods consider each pedestrian as a source of density distribution. Kernels are
parameterised by kernel type and kernel size. Parameterization in the kernel method brings the
desired features.

In the following text, the space will be limited to one dimension due to the one-dimensional
model in Section 4.2. To be complete, potential pedestrians can walk in one direction or the
opposite direction only. In contrary to the article [1], the position in the space is under these
conditions single component vector x ∈ R. The variable A denotes the observed area, i.e. interval
of space between locations a and b, where a, b ∈ R. The function p(x, blur) denotes the density
distribution in the area A.

As discussed in the article, using kernel distribution theory, definition of density can be
expanded to

ρ = N

|A|
=

∫
A

p(x, blur)dx

|A|
=

∫
A

∑N
α=1 pα(x, blur)dx

|A|
= 1

N

N∑
α=1

∫
A

pα(x, blur)dx

|A|
, (2.5)

where pα denotes the individual density distribution generated by each pedestrian α ∈ {1, 2, . . . , N}.
Parameter blur ∈ R+ denotes kernel parameter, which is size of affected area Aα ⊂ A by pedes-
trian α, i.e.

Aα = {x ∈ A | pα(x, blur) > 0} . (2.6)

Due to the fact that individual density distribution is normalised, i.e.∫
pα(x)dx = 1 , (2.7)

the following relation can be interpreted as the count of pedestrians in the whole are A,

R =
∫

A

p(x, blur)dx =
∫

A

1
N

N∑
α=1

pα(x, blur)dx . (2.8)
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In Section 4.2, the previous relation is considered to be the mass of agents, extending the
count with the option of a smaller area resulting in the integration of parts of the individual
density distribution of a pedestrian.

There is a variety of kernel types used as individual density distribution in Equation (2.5).
The standard approach is the Dirac delta function that represents a point approximation of
the pedestrian distribution, denoted as

pα(x) = δx,xα
. (2.9)

Another popular kernel example is the Gaussian kernel, applied in the following example,

pα(x, blur) = 1
2πblur2 exp

(
− (x− xα)2

2blur2

)
. (2.10)

An additional possible kernel example, used in Section 4.2, is a asymmetric triangular kernel
function, where xβ ∈ R denotes the position of pedestrian β, and constant C = 2

c back+c front
denotes a normalization coefficient, i.e.

K(x; c back, c front) =


C · (1− |xβ−x|

c back
) for z ∈ (xβ − c back, xβ) ,

C · (1− |xβ−x|
c front

) for z ∈ (xβ , c front) ,

0 for z /∈ (xβ − c back, xβ + c front) .

(2.11)

where asymmetry is achieved by replacing parameter blur with two different parameters.
This kernel is selected due to the interpretative and computational simplicity. The capabilities

of such a kernel should be sufficient, because the article [1] provides a study proving generality
of the concept, i.e. after proper parameterization, kernel methods incorporate the non-kernel
approaches in the results. It is noteworthy that the effect of kernel parameterization on the results
was not fully explored, therefore there exists no general approach to solve the parameterization.
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Chapter 3

Pedestrian Flow in Recreational
Scenarios

This chapter provides an overview of pedestrian behavior phenomena, observations, and mea-
sured data. Additionally, the chapter discusses the usability of the observations for the calibration
of model parameters that is presented in Section 5.1.

Initially, selected phenomena and mostly data of non-recreational origin are presented. This
is because only fragmentary pieces of evidence exist for unstressful flow, and a research greatly
focuses on emergent scenarios and urban traffic. Although these environments differ from recre-
ational scenarios, they share the fundamentals of pedestrian movement. Further, evaluation
methods for walkway capacity and metrics for measuring the quality of the pedestrian experi-
ence are introduced. Pedestrian Level of Service (PLOS) as an evaluation of pedestrian flow is
presented, and further extensions are discussed. In addition, the following text introduces works
related to pedestrian movement in similar scenarios. Articles that estimate trail capacity in na-
tional parks are briefly presented and agent-based models that simulate recreational pedestrian
movement are compared with the model introduced in this thesis. Finally, recent approaches
used to simulate pedestrian movement are briefly debated.

3.1 Empirical Findings
Due to the fact that each pedestrian has different movement characteristics, published results
from different authors vary. The following text introduces selected results presented in the
paper [18] that compares data from different authors and introduces common phenomena and
pedestrian behaviour. Despite the submission date, the paper is still cited abundantly today and
the relevance of the presented results does not decline due to integrity of pedestrian behavior.
The article states that the most representative data for comfort situations, such as recreational
walks in the national park, come from the paper [19] which takes measurements on student
campuses. It is noteworthy, that pedestrian behavior may differ significantly depending on the
country, culture and social group.

The distribution of unimpended pedestrian speed is commonly in the range of 0.75−
2 ms−1 with standard deviation σ = 0.26 ms−1. According to the report [20], the average speed
in leisure situations is approximately 1.2 ms−1. In contrast to vehicle traffic, pedestrian speed is
unlimited and pedestrians can accelerate and slow down instantly.

The report [20] further states that the size of a pedestrian body is on average 50 × 60 cm
for standing areas and 0.75 × 0.75 m for walking areas. Further, the article [18] states that
the distance to see the person from the head to the toe is 2.1 m and the lateral width between

19
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strangers is 75 cm and within members of a group 65 cm.
The observations presented work with the quantity space allocation per pedestrian,

therefore the relationship between the allocation of space, velocity v, which is defined in Defini-
tion 1.11, and flow J , defined in Definition 2.2, is introduced in the following equation,

space allocation = v

J

[
m2/ped

]
, (3.1)

where symbol ped represents 1 pedestrian.
In the context of Section 4.2, following formula describes the relationship between space

allocation per pedestrian and the agent mass in the perceived surroundings, where area denotes
the area of the perceived surroundings.

agent mass = area
space allocation (3.2)

More space is required for faster movements. Slow walkers lose the ability to maintain their
chosen speed in space allocation 1.4− 1.7 m2/ped. On the contrary, fast walkers lose the ability
to maintain their chosen speed in space allocation 2.8− 3.7 m2/ped.

Jam is a flow situation, in which speed vα of at least one pedestrian α reaches vα = 0. Under
jammed conditions, there is approximately 60 cm lateral spacing. Lifetime of a jam distribution
is an important quantity in capacity estimation. Most frequent jam reason is a presence of a
bottleneck, which is narrowed section of a trail, such as in Section 4.3.

Headway distribution is next important quantity that characterizes pedestrian flow. It is
a distribution of spacing between pedestrians with the same direction. Details can be found in
the paper [21] that deals with headway distribution for the model used in Section 4.3.

The article [18] further mentions that evasion from fixed objects starts at 5 m and distance
from moving object to make evasive actions ranges from 0.6 − 5.2 m based on the speed of the
agent and space allocation conditions. In space allocation 3.7 m2/ped the distance in which
evasive actions are taken in the face of imminent collision is 0.6 m while in space allocation
30 m2/ped the distance is 2.1 m.

Passing slower pedestrians is unrestricted in space allocation above 3.3 m2/ped and is impos-
sible without confrontation between pedestrians below space allocation of 1.7 m2/ped. Chance
of conflicts between pedestrians drops to zero around space allocation above 4.2 m2/ped. Mostly,
the chance of conflicts under this space allocation is around 50− 60%. It is noteworthy that the
model presented in Chapter 4 is collision-free.

The following observations of the average speed ratio of pedestrians in relation to space
allocation serve as a source for the appropriate calibration of the fundamental diagram parameters
presented in Section 4.2. The observations are supplemented with Table 3.1.

The paper [18] merges results from different author. It concludes that in space allocation
9.3 m2/ped the average speed is about 96 − 97% of optimal speed. Further, average speed in
space allocation 3.7 m2/ped is observed to be 90 − 93% of optimal speed, in space allocation
1 m2/ped to be 64− 75% of optimal speed, and at 0.4− 0.9 m2/ped to be 27− 50% of optimal
speed. To be complete, conditions bellow space allocation 1 m2/ped lead inevitably to stoppages.

Lane formation is a phenomenon that often solves the jam problem at the bottleneck.
Pedestrians create one long line on both sides of the bottleneck. Each line has one leader that
determines the speed of a line and all pedestrians in the line move fluently through the bottleneck.
Similar phenomena to lane formation is platooning and bunching, which occurs already under
50 m2/ped. The important observation about this phenomena is that flow not categorised as
constrained may belong to the constraint conditions when platooning occurs.

It is noteworthy that pedestrians tend to accelerate or slow to avoid walking side by side
strangers. This leads to the checkboard spacing pattern phenomenom, which occurs around
space allocation 5.6 m2/ped.
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3.2 Evaluation of Capacity and Experience
The primary motivation for simulating pedestrian movement in the Luzen Valley is the aim to
estimate capacity, which is fundamentally determined by a pedestrian experience. The research
presented in this section aims to identify pedestrian flow characteristics, capacity estimate meth-
ods, and methods to measure the pedestrian experience to achieve a sufficiently sparse pedestrian
flow that does not induce stress for pedestrians.

The greatest motivation for the simulation of a pedestrian movement in the Luzen Valley is
the estimate of capacity, which is fundamentally determined by the pedestrian experience. The
research of pedestrian flow characteristics, capacity estimation and measuring experience aims
to achieve sufficiently sparse pedestrian flow to induce no stress for the pedestrians.

As previously stated, the quantitative characteristics of pedestrian flow include the space
allocation and the average speed and flow rate. These characteristics are used to evaluate the
capacity of pedestrian facilities. Additionally, the report [20] presents qualitative measures that
determine the experience of the pedestrians visiting the recreational facility, such as

freedom in speed choice,

ability to pass slower pedestrians,

ability to cross pedestrians,

ability to walk in the reverse stream,

maneuver without conflicts,

freedom to stop and enjoy the view without impeding others or be impeded.

In addition to the previous section, observations in the article [18] of space allocation directly
related to the capacity are presented. The allocation of space under 0.66 m2/ped is definitely
unacceptable. Capacity of urban facilities, such as shopping centres and community centres,
are designed with the space allocation around 1 m2/ped. From the pedestrian view, the space
allocation 1.7 − 3.3 m2/ped is tolerable in heavily used facilities. Although around 3.5 m2/ped
pedestrians have a free choice of speed and direction, they continuously interact with each other
and are aware of others, which decreased the quality of the experience. Furthermore, the rec-
ommended space allocation above 12 m2 is recommended for the narrow sidewalks, such as the
section of the model presented in Section 4.3.

As the report [22] discusses, in bidirectional flow, such as in the model introduced in this
thesis, the capacity strongly depends on the flow distribution of the two directions. Each stream
occupies a share of a walkway proportional to its share in total flow. Hence, the directional
imbalance increases the reduction in capacity.

It is noteworthy that the article [18] divides the pedestrian flow into seven categories. The
categories are displayed in Table 3.2. As mentioned in the previous section, pedestrian flow with
platoons may be constrained in different conditions. In addition to average flow, table displays
characteristics for the pedestrian flow with platoons.

Level of Service (LOS) is a quantitative measure of traffic conditions that divides traffic flow
into several groups, typically A-F, based on density. Unlike in highway traffic design, operating
at maximum capacity is not desirable in pedestrian facilities. Pedestrian Levels of Service
(PLOS) were introduced to define acceptable pedestrian behaviour under different conditions.
To be complete, selection of particular level is a matter of judgment and policy.

The article [20], which focuses on capacity estimate for pedestrian walkways in Parks Victoria,
USA, largely revolves around PLOS discussion and capacity parameters such as pedestrian space
allocation and walking speed. In addition, the paper presents Table 3.3 that displays an example
of LOS categories based on space allocation and interperson spacing. Similarly, the paper [23]
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Table 3.2 Characteristics of average flow and flow in platoons, taken from [18]

Average Flow Possible Flow in Platoons
Quality of Flow Space per Pedestrian Flow Rate Space per Pedestrian Flow Rate

[m2] [ped/min/m] [m2] [ped/min/m]
Open More than 49.238 Less than 0.5 More than 49.238 Less than 0.5

Unimpeded 49.238 to 12.077 0.5 to 2
Impeded 12.077 to 4.645 2 to 6 5.574 to 3.716 4.645 to 6

Constrained 3.716 to 2.230 6 to 10 3.716 to 2.230 6 to 10
Crowded 2.230 to 1.486 10 to 14 2.230 to 1.486 10 to 14

Congested 1.486 to 1.022 14 to 18 1.486 to 1.022 14 to 18
Jammed 0.186 to 1.022 18 to 25 Less than 1.022 More than 18

focuses on modeling PLOS for various pedestrian walking facilities in India through pedestrian
behavioral responses. Further, the report [22] describes the methods used to calculate PLOS and
presents several PLOS models.

Table 3.3 Level of Service criteria for pedestrian traffic, taken from [20]

LOS Space [m2/ped] Flow Rate [ped/min/m] Average Speed [m/s]
A > 5.6 < 14 > 1.3
B 3.7− 5.6 14− 21 1.27− 1.3
C 2.2− 3.7 21− 33 1.22− 1.27
D 1.4− 2.2 33− 49 1.14− 1.22
E 0.75− 1.4 49− 60 0.75− 1.14
F < 0.75 - < 0.75

The values and recommendations presented in this section can be valuable for the calibration
of the model parameters conducted in Section 5.1, and evaluation of the experiments discussed
in Chapter 6.

From the six levels shown in Table 3.3, the paper [20] recommends LOS level D as a capacity
for day use facilities in national parks. This corresponds to space allocation 1.4 − 2.2 m2/ped,
flow rate 33−49 ped/min/m and average speed around 1.14−1.22 m/s. Furthermore, Table 3.4
displays recommended walkway widths for LOS level D, which can be used for calibration of
parameters in model introduced in Section 4.3.

Table 3.4 Recommended walkway widths for LOS D given different flow rates, taken from [20]

Flow Rate [ped/min] Speed [m/min] Space [m2] Recommended Width [m]
10 68.4− 73.2 0.15− 0.14 1.5
25 68.4− 73.2 0.37− 0.34 1.5
50 68.4− 73.2 0.73− 0.68 1.5
100 68.4− 73.2 1.46− 1.37 2.44− 2.28
150 68.4− 73.2 2.19− 2.05 3.65− 3.42
200 68.4− 73.2 2.92− 2.73 4.87− 4.55

The article [18] recommends that expected visitor flows can be estimated using data from
existing facilities, which have similar distances to the parking lots, population centres and share
similar physical characteristics. This estimate can be used in the subsequent studies and is not
incorporated in this thesis. In addition, the paper [20] recommends the arrival rate of pedestrians
to be less than 50 ped/min for narrow walkways, such as the bottleneck in Luzen Valley.

It is evident that PLOS is not without its shortcomings. For instance, an increase in traffic
volume is associated with an improved PLOS score. Additionally, PLOS demonstrates insen-
sitivity to various environmental factors along walkways, such as pavement type, surrounding
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natural elements, and the presence of parking lots. Other concepts that aim to quantify the
performance of pedestrian facilities were published and compensate for the imperfections. It is
crucial to acknowledge that these concepts are primarily applicable to urban settings and are
not particularly pertinent to the analysis of pedestrian flow in the Luzen Valley.

Quality of Service (QOS) evaluates the pedestrian flow from the pedestrian’s point of view.
In addition to PLOS, this concept analyses safety, intersection types, and availability of urban
facilities. Table 3.5 displays example of LOS levels for pedestrian delay at crossings. In recent
years, municipal offices implement Multimodal level of service (MMLOS) to evaluate high-
ways, roads, sidewalks, and intersections in cities. This concept includes evaluation of pedestrian
and drivers experience and capacity.

The previously presented observations related to average pedestrian speed are summarized
in Figure 3.1. The parameter calibration introduced in Section 5.1 is based on this summary.

Table 3.5 LOS levels for pedestrian delay at crossings, taken from [22]

LOS Delay [s/p] Comment
A 0− 5 Usually no conflicts
B 5− 10 Occasionally delay due to conficts
C 10− 20 Delay noticeable to pedestrians, but not inconveniencing
D 20− 30 Delay noticable and irritating, likelihood of risk taking increased
E 30− 45 Delay approaches tolerance level, risk-taking behavior likely
F > 45 Delay exceeds tolerance level, high likelihood of pedestrian risk taking

Figure 3.1 Empirical findings related to average pedestrian speed

3.3 Related Work and State of the Art
The subsequent work will involve experiments with restriction of pedestrians movement along
the trail. For this purpose, the book [24], which synthesizes social science literature to explain
principles of outdoor recreation management, may be of use. Similarly, the article [25], which
presents case studies of pedestrian movement simulation within national parks and discusses its
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contributions to sustainable tourism, may serve as a source of inspiration for subsequent phases
of this project.

Further, the article [26] details the historical development of simulation models for recre-
ational pedestrian movement. It highlights the role of simulation in understanding current visitor
patterns and estimating the impact of pedestrian flows on management objectives. Additionally,
the paper identifies challenges in computer simulation within outdoor recreational management
and offers recommendations for modeling pedestrian movement. This paper can be valuable
source for the improvement of the current model in the subsequent work.

Similarly, the article [27] provides a historical overview of pedestrian simulation in recre-
ational settings, which offers insights into future directions. Meanwhile, the paper [28] introduces
benchmark tools for agent-based models and evaluates common schemes in agent-based models
for pedestrian movement, uncovering inherent imperfections. These findings can be used in the
subsequent work to evaluate the agent-based model of the trail.

In addition, the doctoral thesis [29] provides a comprehensive methodology for modeling
pedestrian behavior, relevant for shaping desired pedestrian behavior within the model in the
subsequent work.

The article [30] investigates the influence of restriction conditions on pedestrian flow capacity
within facilities. The findings hold relevance for estimating capacity along the bottleneck section
in the subsequent work. Additionally, the article underscores limitations in utilizing a singular
fundamental diagram to describe pedestrian flow across diverse path types. Various studies such
as [31, 32, 33] analyze real-world urban traffic observations. Their findings may offer additional
perspectives on capacity dynamics.

Further, the paper [34] presents a laboratory experiments that were conducted to examine
bidirectional pedestrian walkway flows and its impact on the fundamental diagram. Their results
reveal a significant differences in flow rates between unidirectional and bidirectional streams,
which can be compared with the current model in the subsequent work.

Related articles [35, 36], which similarly focus on managing visitors in protected areas, present
a simulations of pedestrian movement in national parks using software NetLogo1. Despite their
focus on visitor experiences, model created in this software may be compared in the subsequent
work with the mathematical model introduced in this thesis. Similarly, the agent-based models
presented in the articles [37, 38, 39, 40, 41] may be compared with the model in the subsequent
work. They share various characteristics with the model introduced in this thesis.

The article [37] develops an agent-based model that simulates tourist flow and decision-
making scenarios based on various constraints. Further, the article [38] proposes a rule-driven
agent-based model using geographic information systems to analyze pedestrian interaction with
the environment. The paper similarly aims to enhance recreational management in national
parks. Meanwhile, the paper [39] introduces a collision-free speed-based model for pedestrian
flow, and examines influence of walking preferences on pedestrian movement. The article [40]
combines microscopic and macroscopic rules to simulate complex pedestrian behavior. Finally,
the article [41] employs a cellular automaton model to simulate bidirectional movement, and
compares the results with empirical data.

In recent years, there has been a lot of studies employing a data-driven approach to model
pedestrian behavior. For instance, the article [42] introduces model simulating pedestrian trajec-
tories using recurrent neural networks. It states that the data-driven approach outperforms the
knowledge-based models in accuracy, flexibility and efficiency. The authors expect wider appli-
cation of the data-driven models. However, the neural networks are black-box method with bad
interpretability and heavy reliance on the training data. The paper states that neural network
interpretability studies might provide a solution.

1https://ccl.northwestern.edu/netlogo/

https://ccl.northwestern.edu/netlogo/
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Chapter 4

Model Description

The Luzen Valley Trail commences at Březńık and leads to the following pavement in Germany.
The trail can be accessed from both Czech and the German side. Initially, the route comprises
a path that borders the Luzen Creek. The path is followed by a 150 cm wide timber walkway
traversing the bog, which is considered as the bottleneck section of the model. Beyond the timber
walkway, another pathway leads to Luzen Mountain in Germany. In the following model, the
pathways are consider as the transport sections. Pedestrians can arrive from both ends of the
trail. The individual sections are marked on map in Figure 4.1.

Figure 4.1 Marked sections of the trail on the map, map taken from mapy.cz

The trail model comprises three distinct mathematical models, each presented in one section
of this chapter. Initially, the chapter introduces random arrivals of agents to the trail. Further,
transport section and the bottleneck section are presented. It is important to note that all
sections of the model are interconnected.

The current model assumes there are two types of visitors, the visitors that arrive in Březńık
and are headed to Luzen, and the visitors that arrive in Luzen and are headed to Březńık.
At both ends of the trail, the journey of agents begins in the transport section that leads to
the bottleneck section. After passing the bottleneck section, the agents get through the second
transport section to the end of the model and disappear. Figure 4.2 displays an illustration of
the model.

27
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Figure 4.2 Model illustration

4.1 Arrivals
In the following model, the agents are represented by indices. As previously mentioned, there are
two types of agents. The agents that begin at Březńık belong to the index set B and the agents
that begin at Luzen belong to the index set L. The direction of the agents is further referred to
as B-type or L-type. Together, the sets form index set of all agents A, i.e.

A = B ∪ L (4.1)

In the following model, each agent α ∈ A has individual optimal velocity, denoted as vα. The
direction of agents is distinguished based on the sign of the velocity, where applies the following,

vα ≥ 0 for α ∈ B ,

vα ≤ 0 for α ∈ L .

The positions of the boundaries of the trail are denoted as xstart for Březńık, and xend for
Luzen. Therefore, the length of the trail is equal to |xend − xstart|. The position of each agent
α ∈ A at the time t is determined by function xα(t).

The arrival of each agent α ∈ A, denoted as tα
arr, is defined as the time when the agent reaches

the beginning of the trail, i.e.

xα(tα
arr) =

{
xstart for α ∈ B
xend for α ∈ L

(4.2)

The trajectory of agent is considered from the time it reaches the beginning of the trail
through the time it reaches the end of the trail, denoted as tα

dep, i.e.

xα(t) for t ∈
[
tα
arr, tα

dep
]

.

It is important to note that outside the trajectory, each agent is invisible to the other agents in all
sections of the model. To be complete, for each agent’s trajectory applies xα(t) ∈ [xstart, xend].

The time period, in which arrivals are possible, begins at 0. The parameter tB
max limits the

time period for arrivals of B-type agents, and the parameter tL
max limits the time period for

arrivals for L-type agents, i.e. applies,

tα
arr ≤ tB

max for α ∈ B ,

tα
arr ≤ tL

max for α ∈ L .
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Random arrivals on both ends are modeled by means of a Poisson process, which is subject of
Section 1.3. There are both, homogeneous and non-homogeneous, variants possible. Parameters
ΛB and ΛL represent the homogeneous arrival rates to the trail for the B-types agents, L-types
agents respectively. The non-homogeneous arrival intensity is represented by parameters pB and
pL, which denote the probability function at each time, discussed in Equation (1.2), for the
B-types agents, L-types agents respectively.

At the beginning of the simulation, times of events are generated for both boundaries of the
trail independently. The times of events represent sequence of arrivals to the trail, denoted as
TB for the arrivals to Březńık, and TL for the arrivals to Luzen.

The cardinality of the set B and L are determined by the size of the corresponding sequences
of arrivals. Each agent α ∈ B is then assigned the arrival time tα

arr ∈ TB, and each agent β ∈ L is
then assigned the arrival time tβ

arr ∈ TL. It is important to note that Equation (4.2) is the initial
condition for the differential equation (4.8) introduced in the following section.

4.2 Transport section
The definition of the model introduced in this chapter contains two identical transport section,
one commencing at Březńık, one commencing at Luzen. The boundaries of the transport section
are denoted xstart, 1, xend, 1 for the Březńık transport section, xstart, 2, xend, 2 for the Luzen
transport section respectively. The boundaries of the trail xstart and xend are identified with
the section boundaries xstart, 1, xend, 2 respectively. Illustration of the boundaries is shown in
Figure 4.3. To be complete, the B-type agents are moving towards section boundary xend, 1,
xend, 1 respectively, and the L-type agents are moving towards xstart, 2, xstart, 1 respectively.

xstart = xstart, 1 xend, 1 xstart, 2 xend = xend, 2

Figure 4.3 Illustration of transport section boundaries

The pavement is expected to be wide enough, approximately 3 m, that microscopic mod-
eling is unnecessary and more efficient and interesting approach is to model the interactions
between agents through perception of surrounding agents. The pedestrian flow is modeled in
one-dimensional space.

4.2.1 Pedestrian Mass in the Perceived Surroundings
The idea is that each agent generates individual mass around its current position. Each agent
reacts to the agent mass in the perceived surroundings by potential decrement of speed. In com-
parison to density, which is discussed in Section 2.1, the agent mass in the perceived surroundings
agents reflects the position of agents on the boundaries of the perceived surroundings. While an
agent is located in the perceived surrounding, the mass outside the surroundings is not taken
into account, as illustrated in Figure 4.4. If assumed that the mass of pedestrians is identified
with the number of pedestrians, the following relation describes relation between mass R and
density ρ,

ρ(R) = R
width · |d2 − d1|

where width represents pathway width and |d2 − d1| length of the perceived surroundings.
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Figure 4.4 Illustration of the perceived surroundings of agents

Despite the values selected in Section 5.1, the model accommodates variability in the per-
ceived surroundings of agents, both walking in the same direction and in the opposite. The
motivation is that pedestrians may perceive variously oriented flows differently. The surround-
ings are determined by the parameters d dir

1 and d dir
2 , which dictate the range of perception for

agents moving in the same direction, and d opp
1 and d opp

2 , governing the range of perception for
agents moving in the opposite direction. It is important to note that the area of the individ-
ual mass is expected to be considerably smaller than the perceived surroundings. This fact is
especially important for the implementation of the model, discussed in Section 5.2.

At each timestep t, sum of individual masses from the same flow creates a mass profile for
each direction, which is illustrated in Figure 4.5. The agent mass in the perceived surroundings
is a integral of the mass profile on an interval representing the perceived surroundings of agent.
It is important to note that the mass of perceiving agent is not included.

Position

Ag
en
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s

B-type Agent Mass
L-type Agent Mass

Figure 4.5 Illustration of agent mass profile for both directions

In the following text, the mass generated by agent α ∈ A on position y at the time t is denoted
as rα(y, t). As illustrated in Figure 4.4, there are four combinations of types of interacting agents,
namely

1. B-type agent perceives B-type agents,

2. B-type agent perceives L-type agents,
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3. L-type agent perceives L-type agents,

4. L-type agent perceives B-type agents.

For each combination of types, a different function that expresses the agent mass in the per-
ceived surroundings is introduced in the following formulas (4.3) – (4.6). Each agent contributes
to the final sum with the mass that encroaches into the perceived surroundings of the perceiving
agent, in other words with non-zero values in the perceived interval of function rβ .

RB,B
per (α, {xβ(t) |β ∈ A}, t; d dir

1 , d dir
2 , d opp

1 , d opp
2 ) =

∑
β∈B\{α}

∫ xα+d dir
2

xα+d dir
1

rβ(y, t) dy , (4.3)

where RB,B
per represents agent mass of B-type agents in the perceived surroundings of the B-type

agent.

RB,L
per (α, {xβ(t) |β ∈ A}, t; d dir

1 , d dir
2 , d opp

1 , d opp
2 ) =

∑
β∈L

∫ xα+d opp
2

xα+d opp
1

rβ(y, t) dy , (4.4)

where RB,L
per represents agent mass of L-type agents in the perceived surroundings of the B-type

agent.

RL,L
per (α, {xβ(t) |β ∈ A}, t; d dir

1 , d dir
2 , d opp

1 , d opp
2 ) =

∑
β∈L\{α}

∫ xα−d dir
1

x
α L −d dir

2

rβ(y, t) dy , (4.5)

where RL,L
per represents agent mass of L-type agents in the perceived surroundings of the L-type

agent.

RL,B
per (α, {xβ(t) |β ∈ A}, t; d dir

1 , d dir
2 , d opp

1 , d opp
2 ) =

∑
β∈B

∫ xα−d opp
1

x
α L −d opp

2

rβ(y, t) dy , (4.6)

where RL,B
per represents agent mass of B-type agents in the perceived surroundings of the L-type

agent.
To be complete, the total agent mass in the perceived surroundings of agent α ∈ A at the

time t, denoted as Rα, is a sum of the mass perception from the both flows. The motivation is
that at each moment, the surrounding pedestrians are objects with the same impact, i.e.

Rα({xβ(t) |β ∈ A}, t) =
{

RB,B
per (α, {xβ(t) |β ∈ A}, t) + RB,L

per (α, {xβ(t) |β ∈ A}, t) for α ∈ B ,

RL,L
per (α, {xβ(t) |β ∈ A}, t) + RL,B

per (α, {xβ(t) |β ∈ A}, t) for α ∈ L .

(4.7)

4.2.2 Motion Description
As mentioned in Section 1.4, the velocities ẋα(t) of agents at the time t are determined by the
following coupled differential equations,

ẋα(t) = Vα({xβ(t) |β ∈ A}, t) for α ∈ A , (4.8)

where the speed-governing function Vα depends on the positions of active agents and the time
t. The final solution of the equations are the trajectories xα(t) for each agent α ∈ A.

The explicit Euler method, described in Equation (1.14) from Section 1.4, approximates the
discrete trajectories

xα(tn+1) where t0 = 0 ∧ tn+1 = tn + h ∧ n ∈ N for α ∈ A .
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The function Vα is inspired by the velocity-density fundamental diagram, shown on Fig-
ure 4.6 from Section 2.1. Instead of density, the function accepts agent mass in the perceived
surroundings discussed in the previous subsection, i.e.

Vα({xβ(t) |β ∈ A}, t) = FDα(Rα({xβ(t) |β ∈ A}, t)) for α ∈ B . (4.9)

Form of the function FDα is shown in Figure 4.6 and in the following formula (4.10). Inner
parameters Rcritical, and Rmax, carry similar meaning as in the ordinary fundamental diagram,
i.e. critical value of agent mass in perceived surroundings, at which agent begins to slow down,
at which the agent stops respectively.

FDα(R; vα, Rmax, Rcritical) =


vα for R < Rcrit ,

vα · (1− R−Rcrit
Rmax

) for Rcrit ≤ R < Rmax ,

0 for R ≥ Rmax .

(4.10)
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Figure 4.6 Illustration of the velocity-governing function

Based on the discussion from Section 2.2.2, the individual mass generated by agent β, denoted
as rβ , is modeled by normalized kernel function with center at xβ(t). Normalization ensures that
the entire mass of an agent is equal to 1. With asymmetric kernel function there are necessary
two different kernel function, one for each walk direction, i.e.

rβ : (y, t) 7→
{

KB(y − xβ(t)) for β ∈ B ,

KL(y − xβ(t)) for β ∈ L .
(4.11)

As mentioned in Section 2.2.2, the model uses triangular kernel to represent the individual
mass. In walk direction is the outermost point of the kernel given by parameter c front and the
back of the agent is given by parameter c back. To be complete, constant C is a scale parameter
for normalization, for which it applies

C = 2
c back + c front .

(4.12)

The function KB, shown on Figure 4.7 on the left, represents mass of agent β ∈ B at the
position z,

KB(z; c back, c front) =


C · (1− |z|

c back
) for z ∈ (−c back, 0) ,

C · (1− |z|
c front

) for z ∈ (0, c front) ,

0 for z /∈ (−c back, c front) ,

(4.13)
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and the function KL, shown on Figure 4.7 on the right, represents mass of agent β ∈ L at the
position z,

KL(z; c back, c front) =


C · (1− |z|

c front
) for z ∈ (−c front, 0) ,

C · (1− |z|
c back

) for z ∈ (0, c back) ,

0 for z /∈ (−c front, c back) .

(4.14)
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Figure 4.7 Illustration of kernel function, B-type on the left, L-type on the right

4.3 Bottleneck Section

The bottleneck section is the most critical in terms of trail capacity. Due to the fact that this
thesis focuses on the transport section of the model, this section is represented by simple cellular
automaton called TASEP, which is subject of Section 1.2.1.

Based on the empirical findings presented in Section 3.1, it is estimated that two lines of
flow are possible in this section. Each path is represented by a one-dimensional array of cells,
where each cell has the capacity for one agent. It is important to note that the two flows do not
influence each other.

The scheme of this section is displayed in Figure 4.8. The cell size, denoted as wcell, is
identified with the size of pedestrian body, which is one of the model parameters presented
further in Table 5.1. The length of this section is the distance between the two transport
sections. Number of cells is given by the following formula, where xend,1 represents the boundary
of the transport section closer to Březńık, and xfront,2 represents the boundary of the transport
section closer to Luzen,

number of cells =
⌈
|xfront,2 − xend,1|

wcell

⌉
. (4.15)

In contrast to the previous section, the time is considered to be continuous in the simulation.
Continuous time is simulated using the continuous update strategy, described in Section 1.2.1.
After each update, each agent α ∈ A waits until next update for the time period tα

wait, for which
it applies

tα
wait = Xα where Xα ∼ Exp (pα) . (4.16)



34 Model Description

Figure 4.8 Illustration of the bottleneck section

Updates are performed sequentially, in ascending order according to the time of the next
update. The transition from discrete to continuous time is carried out by moving agents leaving
the preceding section of the model to the queue. The first update time tα

update(1) for each agent
α ∈ A is given by the following formula, where time t denotes the moment, at which the agent
appears at the front of the queue.

tα
update(1) = t + tα

wait . (4.17)

During the update of each agent, if the subsequent cell is not occupied, the agent proceeds to
the next cell. Otherwise, the agent waits the subsequent update period. Either way, agent gen-
erates new update time. It is expected that each agent α ∈ A will take on average wcell

vα
to move

to the next cell. Therefore, the parameter of the exponential distribution from Equation (4.16),
pα = EX−1

α , is derived from the following,

EXα = wcell

vα
(4.18)

pα = vα

wcell
. (4.19)



Chapter 5

Implementation of the Simulation
Tool

This thesis project is publicly accessible via personal GitHub repository1. The simulation tool
is a C++ program that implements the model introduced in Chapter 4. The program performs
both, a simulation, and saving logs for the output analysis. Moreover, the repository comprises
Python scripts, designed to execute simulations across various parameter sets. In addition, a
Jupyter notebook crafted to validate the implementation is present in the repository. To add a
visual dimension to the exploration, a Python script within the repository generates animations
depicting the trajectories derived from the simulations.

As displayed in Figure 5.1, a snapshot reveals the trajectories of simulated agents from one
such simulation. The x-axis represents the positional data, while each column represents an
individual agent, differentiated by color. The red color indicates B-type agents and the blue
color indicates L-type agents. Notably, the column height in the transportation section correlates
with the current speed of agent. A timer, positioned in the upper left corner, provides temporal
context. Additionally, the bottleneck section features a display showing the number of agents
queuing at the given time on each side of the bottleneck.

Figure 5.1 Screenshot from the animation of the simulation progress

Initially, Section 5.1 provides an overview of the model parameters. Moreover, the section
discusses the calibration of the parameters. In Section 5.2, the groundwork is laid for the C++

1https://github.com/tomnovota/bachelor-thesis
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project responsible for realizing the model introduced in this thesis. This section identifies
the essential components of the project and explains their roles and interactions. Moreover,
functions pivotal to the project functionality are examined in more detail. It is noteworthy that
the functionality of the solution is validated in Section 6.1. Finally, Section 5.3 explains how to
use the tool. Specifically, the section describes how to pass parameters to the program and run
the simulation. Additionally, it defines the format of output files.

5.1 Parameter Overview and Calibration
The model introduced in the previous chapter contains various parameters. Initially, this section
briefly presents all parameters and discusses calibration of these parameters. In addition, this
section introduces an overview of the simulation parameters in Table 5.1, which also displays the
selected values. It is noteworthy that the tool is designed to set all the parameters through a
parameter file. The way in which the parameter file is handled is the subject of Section 5.3.

The parameter timestep h represents the discretization of the time, explained in Equa-
tion (1.14). The choice of value for this parameter is subject to two criteria. First, the dis-
cretization has to be fine enough to ensure smooth behavior of the model. Second, as the value
for this parameter decreases, the computational complexity of the whole simulation increases
significantly. The value 0.1 s is considered to be fine enough while preserving a reasonable
computational efficiency of the simulation.

Further, there are pedestrian parameters, such as the size of the body ellipse and the speed
distribution. Based on the analysis in Section 3.1, the body size of pedestrian is considered to
be 0.75× 0.75 m in this thesis. Moreover, the speed distribution is approximated with trimmed
normal distribution with median speedmed = 1.2 m/s, and standard deviation speedstd = 0.26
m/s. The width of the trim on each side is determined by the parameter speedtrim = 0.45 m/s.
Figure 5.2 displays the shape of the selected speed distribution.

0.75 1.20 1.65

Figure 5.2 Illustration of the selected speed distribution

There are overall 8 parameters that are connected to the mass of agents, introduced in
Section 4.2.1. Parameters d dir

1 , d dir
2 , d opp

1 , d opp
2 that represent the perceived surroundings, pa-

rameters Rcrit, Rmax that are parameters of the fundamental diagram from Equation (4.10),
and parameters c back, c front representing the size of the individual mass generated by agents.
The following paragraphs discuss the values of the mentioned parameters based on the analysis
presented in Chapter 3.

In this thesis, the range of the perceived surroundings is the same for both flows. The
perceived range begins at the position of agent, i.e. d1 = 0 m, and ends 5 m in front of the
agent, i.e. d2 = 5 m. Furthermore, the space allocation 3.7 m2/ped is considered to slow down
the pedestrians, and conditions with the space allocation 1 m2/ped are considered to lead to
stoppages. The values of the critical and maximum mass are obtained using Equation (3.2). The
value area in the equation is calculated as the area of a rectangle with dimensions equal to the
length of the perceived surroundings and the width of the pavement. As depicted in Figure 5.3,
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the area is 15 m2. Therefore, the parameter values are Rcrit = 15/3.7, and Rmax = 15. Finally,
the size of the kernel function is set 0.75 m behind the agent, which is consistent with the size
of body ellipse, and 1.2 + 0.75 m in front of the agent, which is consistent with the body ellipse
increased by the average walking speed, i.e. c back = 0.75 m, and c front = 1.95 m. The idea is
that the pedestrians perceive the mass of other pedestrians differently depending on the walking
direction.

Figure 5.3 Illustration of an area of the perceived surroundings

The only directly selectable parameters are lengths of the sections of the model, i.e. the length
of each transport section and the length of the bottleneck section. Based on the distances, the
boundaries of both transport sections, denoted as xfront, and xend, are calculated. Due to the
fact that this thesis does not aim to introduce the final model of the trail, the values of these
parameters are artificial. In experiments described in Section 6.2, the length of each section is
150 m. It should be noted that the transport section between Březńık and the bottleneck section
is called the transport section 1, and the second transport section is called the transport section
2.

The remaining parameters are related to the random arrivals that are subject of Section 4.1.
Parameters tB

max, and tL
max represent the time period of the arrivals, whereas the parameters ΛB,

and ΛL represent the homogeneous intensity of the arrivals. The aforementioned parameters
facilitate the realization of a various scenarios along the trail. Therefore, they are crucial for
estimating the capacity of the trail. Based on Table 3.4, the expected flow rate is in order of tens
and lower hundreds of pedestrians per minute, which is approximately a range in 0.2− 30 ped/s.
It is noteworthy that development of the flow with increasing arrival intensity is an essential
experiment conducted in Chapter 6. As no interpretable probability of random arrivals has not
been introduced, a rational time period of the arrivals is not set yet.

5.2 Implementation of the Agent-based Model

The implementation of the tool adheres to an object-oriented approach. Table 5.2 provides an
overview of the classes discussed in this section.

Each pedestrian agent in the simulation is represented by the CPedestrian class, which en-
capsulates properties such as ID, optimal velocity, and current position. Additionally, it stores
the arrival time of the agent, the time of passing the initial transport section, and the time of
passing the bottleneck section. This class also handles the format for log entries.

The random arrival times are implemented by class CArrivalGenerator. The class handles
both homogeneous and non-homogeneous arrival intensity. The variable arrival intensity, rep-
resented by function p(t) in Equation (1.2), is passed to the class in the form of a polynomial
function given by its coefficients. In the absence of the coefficients, the class generates arrivals
with homogeneous intensity Λ.
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Table 5.1 Overview of Simulation Parameters, grouped by the type of parameter

Parameter Name Variable Selected Value Units
timestep h 0.1 s

body width wcell 0.75 m
speed median speedmed 1.2 m/s

speed deviation speedstd 0.26 m/s
speed trim speedtrim 0.45 m/s

critical mass Rcrit 15/3.7 mass of pedestrians
maximum mass Rmax 15 mass of pedestrians

d1 dir d dir
1 0 m

d2 dir d dir
2 5 m

d1 opp d opp
1 0 m

d2 opp d opp
2 5 m

c back c back 0.75 m
c front c front 1.95 m

distance transport1 |xend, 1 − xstart, 1| 150 m
distance bottleneck |xstart, 2 − xend, 1| 150 m
distance transport2 |xend, 2 − xstart, 2| 150 m

arrival period B tB
max 1500 s

arrival period L tL
max 1500 s

arrival intensity B ΛB 0.1− 30 ped/s
arrival intensity L ΛL 0.1− 30 ped/s

The behavior of agents is differentiated based on their location within the trail network.
Agents exhibit distinct behaviors in both transport and bottleneck sections. In the transport
section, agents maintain a position range for calculation of the agent mass in the perceived
surroundings discussed in Section 4.2.1. In the bottleneck section, agents handle the time of the
next update.

Each transport section of the model is represented by subclass of the class CTransport. Sub-
class CTransportB manages transport from Březńık, while subclass CTransportL manages trans-
port from Luzen. The class defines the environment parameters such as the positions of the left
and right boundaries of the section. It incorporates the fundamental diagram function, given by
Equation (4.10), along with critical density and maximum density parameters. Additionally, it
stores array of active agents for each walking direction.

The CMass class handles calculations of agent mass. The implementation is designed for
comparison of different kernels, allowing for the addition of new kernels as subclasses of the
CMass class. Currently, the implemented kernels include the Diraq and triangular kernels,
described in Section 2.2.2, represented respectively by the CDiraq and CTriang subclasses. No
interaction between pedestrians is represented by subclass CFree. In addition, the triangular
kernel requires storing the parameters c back, c front, found in Equation (2.11).

The bottleneck section is handled by subclasses of the CBottleneck class. Due to the fact
that the two walking directions do not cross, two independent instances manage each walking
direction within the bottleneck. The subclass CBottleneckB serves B-type agents, while subclass
CBottleneckL serves L-type agents. The lattice is represented by an array of agents. The size of
the array is determined by Equation (4.15). Further, class implements a queue of agents waiting
to move to the beginning of the bottleneck, and storing an order of agents by time of next update.

Additionally, the CParameters class reads parameters from the parameter file, enhancing the
configurability of the simulation, while the CConfig class oversees simulation control with spe-
cialized subclasses for simulation of all sections of the model through CConfigFull and transport
section-only simulation through CConfigTransport.

Implementation of the agent-based model, introduced in Chapter 4, follows a scheme illus-
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Table 5.2 Overview of classes present in C++ project

Class Description Subclasses
CArrivalGenerator generates arrival times

CPedestrian represents agent
CTransport represents transport section CTransportB, CTransportL

CMass represents mass calculations CDiraq, CTriang, CFree
CBottleneck represents bottleneck section CBottleneckB, CBottleneckL
CParameters reads parameter file

CConfig controls simulation CConfigFull, CConfigTransport

trated in Figure 5.4. Before simulation of the movement, all agents are created, and assigned a
arrival time, as described in Section 4.1. Thereafter, the agents are inserted into corresponding
reservoir of inactive agents on each boundary of the model, depicted in the scheme.

Figure 5.4 Scheme of agent-based model implementation

5.2.1 Crucial Components in Detail
The algorithm for generation of random arrival times, based on Section 1.3, is written in Al-
gorithm 1, where the parameter period indicates the time period tmax discussed in Section 4.1,
the parameter lambda denotes the maximum arrival intensity Λ, and parameter coeffs denotes
coefficients of polynomial function p(t), representing the non-homogeneous intensity of arrivals
discussed in Section 1.3.

Prior to the description of the simulation steps, algorithms representing calculation of the
agent mass in the transport section are presented. Figure 5.5 displays a set of possible cases of
the overlay of the perceived surroundings and the individual mass. As discussed previously in
Section 4.2.1, presented overlays assume that the perceived surroundings is greater than the area
of the individual mass. As the figure depicts, the perceived area of this triangular kernel is in
each case calculable exclusively by areas of a right-angled triangles.

Algorithm 2, and Algorithm 3, represent simple functions that calculate the area of a right-
angled triangle that is part of the back triangle of a triangular kernel, front triangle respectively,
given by the distance from the origin. The normalizing coefficient C is explained in Equa-
tion (2.11).

Further, follows the implementation of Algorithm 4 and Algorithm 5, which are derived from
the previous analysis of various overlay cases. The constants Content Back, and Content Front,
represent the area of the right-angled triangle where side = c back, side = c front respectively.

Notably, Algorithm 5 distinguishes itself from Algorithm 4 through mirrored utilization of
the concepts of ”back” and ”front”.

The discretization of time in the transport section, which comes from Equation (1.14), results
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Algorithm 1 GenerateEvents(period, lambda, coeffs)
1: procedure GenerateEvents(tmax, λ, coeffs)
2: events homo← Empty array
3: while True do
4: time← X+ LastEvent(events homo); X ∼ Exp (λ)
5: if time > tmax then
6: break
7: end if
8: AddEvent(events homo, time)
9: end while

10: if not IsEmpty(coeffs) then
11: events nonhomo← Empty array
12: for each time in events homo do
13: prob← CalculateProbability(time, coeffs) / λ
14: if Y ≥ prob; Y ∼ Binomial(1, prob) then
15: AddEvent(events nonhomo, time)
16: end if
17: end for
18: return events nonhomo
19: else
20: return events homo
21: end if
22: end procedure

x

Case 1, 2

x

Case 3

x

Case 4

x

Case 5

x
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x
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Figure 5.5 Visualization of all possible cases of the overlay of the perceived surroundings and the
individual mass represented by triangular kernel
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Algorithm 2 CTriangle::TriangContentBack(x)
1: function TriangContentBack(x)
2: h← 2 · (c back + c front)−1 // (4.12)
3: height← C · (1− |x|

c back
)

4: side← max(0, c back − |x|)
5: return height · side/2
6: end function

Algorithm 3 CTriangle::TriangContentFront(x)
1: function TriangContentFront(x)
2: h← 2 · (c back + c front)−1 // (4.12)
3: height← C · (1− |x|

c front
)

4: side← max(0, c front − |x|)
5: return height · side/2
6: end function

Algorithm 4 CTriangle::GetMassB(x beta, from, to)
1: function GetMassB(xβ , from, to)
2: mass← 0
3: i1 ← from− xβ

4: i1 ← to− xβ

5: if [−c back, c front] ∩ [i1, i2] = ∅ then
6: return 0 // case 1, 2
7: end if
8: if [−c back, c front] ⊆ [i1, i2] then
9: return Content Back + Content Front // case 5

10: end if
11: if i2 ∈ [−c back, 0] then
12: return TriangContentBack(i2) // case 3
13: end if
14: if i1 ∈ [0, c front] then
15: return TriangContentFront(i1) // case 7
16: end if
17: if i2 ∈ [0, c front] then
18: return Content Back + Content Front− TriangContentFront(i2) // case 4
19: end if
20: if i1 ∈ [−c back, 0] then
21: return Content Front + Content Back− TriangContentBack(i1) // case 6
22: end if
23: end function
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Algorithm 5 CTriangle::GetMassL(x beta, from, to)
1: function GetMassL(xβ , from, to)
2: mass← 0
3: i1 ← from− xβ

4: i2 ← to− xβ

5: if [−c front, c back] ∩ [i1, i2] = ∅ then
6: return 0 // case 1, 2
7: end if
8: if [−c front, c back] ⊆ [i1, i2] then
9: return Content Front + Content Back // case 5

10: end if
11: if i2 ∈ [−c front, 0] then
12: return TriangContentFront(i2) // case 3
13: end if
14: if i1 ∈ [0, c back] then
15: return TriangContentBack(i1) // case 7
16: end if
17: if i2 ∈ [0, c back] then
18: return Content Front + Content Back− TriangContentBack(i2) // case 4
19: end if
20: if i1 ∈ [−c front, 0] then
21: return Content Back + Content Front− TriangContentFront(i1) // case 6
22: end if
23: end function

in the simulation running in discrete timesteps denoted as tn, for which applies

tn = tn−1 + h ,

where h denotes the discretization parameter.
At each timestep, all sections of the model are updated. After the update, inactive agents

with the arrival time occurring in the current timestep are passed to the initial transport section,
and agents leaving their current sections are transferred to the subsequent section, as displayed
in Figure 5.4. After passing all sections, each agent logs the final information from its trajectory
and disappear.

The update algorithm of the transport section is implemented by Algorithm 6, where the
parameter t n represents current simulation time. Moreover, the function implements equations
(4.3), (4.4), (4.5), (4.6), (4.7), (1.14), and (4.9). Functions GetMassB, and GetMassL represent
calculation of the mass of agent β ∈ B, β ∈ L respectively, denoted as rβ in Section 4.2.1, in a
surroundings given by parameters from and to.

The update algorithm of the bottleneck section, described in Algorithm 7, operates with
the parameter tn representing the discrete time of the simulation. The algorithm progresses
sequentially through all updates scheduled until time tn. Furthermore, it records the order of
agents based on their next update time. It generates updates for the agent that just completed
its update and for the first agent in the queue following the movement of the preceding agent
onto the lattice.

5.3 Use of the Simulation Tool
It is worth showing the directory structure of the project in Figure 5.6. File Makefile compre-
hends information for utility CMake. The command make compiles the C++ source code located in
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Algorithm 6 CTransport::Step(t n)
1: procedure Step(tn)
2: speed← Empty Map
3: for each α ∈ B do
4: mass←

∑
β∈B\{α} GetMassB(xβ , xα + d dir

1 , xα + d dir
2 ) // (4.3)

5: mass +=
∑

β∈B\{α} GetMassL(xβ , xα + d opp
1 , xα + d opp

2 ) // (4.4)
6: speed[ped] ← FD(mass) // (4.9)
7: end for
8: for each α ∈ L do
9: mass←

∑
β∈B\{α} GetMassL(xβ , xα − d dir

1 , xα − d dir
2 ) // (4.5)

10: mass +=
∑

β∈B\{α} GetMassB(xβ , xα − d opp
1 , xα − d opp

2 ) // (4.6)
11: speed[ped] ← FD(mass) // (4.9)
12: end for
13: for each α ∈ A do
14: xα ← xα + vα · speed[ped] · Timestep // (1.14)
15: end for
16: end procedure

Algorithm 7 CBottleneck::Step(tn)
1: procedure Step(tn)
2: while not IsEmpty(Update Order) do
3: α← Front(Update Order)
4: if NextUpdate(α) > tn then
5: break
6: end if
7: Pop(Update Order)
8: TryMove(α)
9: if IsEmpty(SubsequentCell(α)) then

10: MoveForward(α)
11: AssignUpdateTime(α)
12: if not IsEmpty(Queue) and not HasNextUpdate(Front(Queue)) then
13: AssignUpdateTime(Front(Queue))
14: end if
15: else
16: AssignUpdateTime(α)
17: end if
18: end while
19: end procedure
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the directory src, and creates the executable file simulation. The executable has 3 parameters,
that are further specified in the following list,

1. number of independent simulations run,

2. path to parameter file,

3. signal to log trajectories from transport section.

An example of an executing simulation is shown in the following bash command,

./simulation 1 params/full_simulation 1

Figure 5.6 Directory structure within the thesis project

To be complete, the directory structure reveals Python script analysis.py, which is used
to retrieve outputs analysed in Section 6.2, and animation/anim.py, which creates the anima-
tion presented in Figure 5.1. Morover, the directory animation/ contains a Jupyter notebook
analysis.ipynb, which presents validation of kernels, discussed in Section 6.1.

5.3.1 Entering Parameters
Initially, simulation parameters, discussed in the previous section, are read from a parameter file.
The parameter file is a text file with the value of each parameter on one line. The first line of
the parameter file is a path to log directory, where the output of the simulation is saved. It is
followed by the values of parameters that are presented in Table 5.1. The order of the parameters
is the same as displayed in the table.

All parameters are expected to be floating point numbers, except the log directory, which is
expected to be text string. To be complete, a value that determines which kernels are run in
the simulations follow. For each set of arrivals, an independent simulation is conducted for each
selected kernel. The value is expected to be integer in range 0 − 4. The following list explains
the behavior for each value. The no mass kernel represents free flow.

0 – Diraq kernel, both triangular kernels deflected foward and backwards, and no mass kernel,
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1 – only Diraq kernel,

2 – only triangular kernel deflected forward,

3 – only triangular kernel deflected backwards,

4 – only no mass kernel,

To be complete, triangular kernel deflected backwards is a reversal of Equation (4.14), and
Equation (4.13).

A format of such a file is given by the following example,

log/log_dir/ # [string] path
0.1 # [double] timestep
0.75 # [double] body_width
1.2 # [double] speed_median
0.26 # [double] speed_std
0.45 # [double] speed_trim
4 # [double] R_crit
15 # [double] R_max
0 # [double] d1_dir
5 # [double] d2_dir
0 # [double] d1_op
5 # [double] d2_op
0.75 # [double] c_back
1.95 # [double] c_front
150 # [double] distance fd1
0 # [double] distance tasep
0 # [double] distance fd2
1500 # [double] time_intervalB
1500 # [double] time_intervalL
0.2 # [double] lambdaB
0.2 # [double] lambdaL
0 # [enum] kernels

In addition, the non-homogeneous arrivals are run when the parameters lambdaB and lambdaL
are negative. Then the meaning of these parameters changes to the maximum arrival intensity
on the given time interval and the probability function, discussed in Equation (1.2), is set on
the additional lines of the parameter file as the coefficients of the polynomial function in the
descending order. The format is given by the following example, where the polynomial pB =
0.3x4 − 0.4x3 + 0.7x2 + 0.9x + 0.

0.3 -0.4 0.7 0.9 0
1 2 -1 0 2

It is noteworthy that the tool is able to run the simulation in multiple modes. In addition to
run simulation with all sections of the model, the implementation enables to run only transport
section or place not-moving artificial agents in the transport model. However, the project is not
in final version and these features may will undergo major modifications in the subsequent work.

5.3.2 Outputs Files
The outputs of simulation are located in the directory determined by the first parameter of a
parameter file. Due to the option of multiple iterations of the particular parameter configuration,
each iteration is saved in the individual folder, named by the order of iteration, counted from 0.
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For example, if the executable accepted 3 as iteration count, in the log directory will be folders
0, 1, and 2, containing output files for the corresponding runs of the simulation.

Each selected kernel has its own output files. The prefix of the log file name varies based on
the kernel. The following list displays prefix for each kernel,

Diraq kernel – diraq ,

triangular kernel deflected forward – triang1 ,

triangular kernel deflected backwards – triang2 .

A total of six output files are generated for each simulation run. Based on the content, each
log file type has individual suffix separated from the prefix by a dot. An example of log file
names for triangular kernel deflected forward is shown in the following text,

triang1.bottleneckB
triang1.bottleneckL
triang1.transportB
triang1.transportL
triang1.transportB_end
triang1.transportL_end

The files with the suffix bottleneckB or bottleneckL contain, on each line, the state of the
bottleneck section at the time when the section undergoes an update of agents. Each line follows
the format timestamp:queue size:, followed by a sequence of records for each present agent
separated by a space. An example of two lines from such a log file is provided below,

179.54:0:44,13 49,12
179.59:0:45,13 49,12

In this example, at a simulation time of 179.54 seconds, there are 0 agents present in the
queue, and the agents with IDs 13 and 12 are situated in this section at positions 45 and 49,
respectively. The position of the cell is counted from the Březńık side for both instances of the
bottleneck section.

Furthermore, in the files with the suffix transportB or transportL, counts of active agents
are recorded for each stream on one line, for every timestep of the simulation. Additionally, when
the executable receives a signal to log trajectories, each line is followed by a sequence consisting
of the agent’s ID, current speed, and position, with each value separated by a comma. Each log
entry is separated by a space. An example of such a log file is provided below,

2 11,1.19,3.21 10,1.13,10.04
1 0,1.43,22.23

In this example, there are 2 active B-type agents, with the first agent having an ID of 11, a
current speed of 1.19 m/s, and a position of 3.21 m. Additionally, there is 1 active L-type agent
with an ID of 0, a speed of 1.43 m/s, and a position of 22.23 m.

The files with the suffix transportB end or transportL end contain travel time information
for agents that have completed their trajectory. Each line consists of a sequence of optimal
velocity, time of passing the last section of the model, and the arrival time, separated by commas.
Each log entry is separated by a space. An example of such a log file is provided below:

-1.43,107.70,0.09 -1.64,109.60,11.80 -1.64,109.60,11.80

In this example, 3 agents completed their trajectory on the first transport section of the
model, indicating they are of L-type. The optimal velocity of the first agent is −1.43 m/s, which
completed the trajectory at the simulation time 107.70 s, and reached the trail at time 0.09 s.



Chapter 6

Analysis of Simulation Output

The simulation tool presented in the previous chapter primarily serves to perform experiments.
This thesis introduces two variants of experiments. Validation of kernel implementation is pre-
sented in Section 6.1, and development of macroscopic pedestrian flow characteristics at increas-
ing arrival intensity is discussed in Section 6.2.

It is important to note that all experiments presented in this chapter are conducted on
simulations of the transport section only. The reason is that neither of the experiments requires
the simple bottleneck section, which is introduced in this thesis.

6.1 Validation of Kernel Implementation
The functionality of the simulation tool is partially validated by the animation shown in Fig-
ure 5.1. However, the most error-prone section of the implementation is the kernel calculations.
The implementations of Algorithm 4, and Algorithm 5, which are presented in the previous
chapter, are validated in the following experiments.

The experiments involve three kernels, namely

Diraq kernel function, introduced in Equation (2.9),

triangular kernel function deflected forward, presented in equations (4.13), (4.14),

and triangular kernel function deflected backwards, discussed in Section 5.3.1.

The experiments are designed to verify the velocity profile of the agents during various sce-
narios. Each kernel is tested in the following set of 5 scenarios. The first scenario from the list
is illustrated in Figure 6.1.

1. 1 B-type agent walks past 1 not-moving L-type agent,

2. 1 L-type agent walks past 1 not-moving B-type agent,

3. 1 B-type agent walks past 1 not-moving B-type agent,

4. 1 L-type agent walks past 1 not-moving L-type agent,

5. 1 B-type agent, 1 L-type agent, walk past each other.

In each experiment, the speed of the moving agents is set to 1 m/s and the length of the
transport section is set to 20 m. Not-moving agents are located at position 10 m. The parame-
ters of the velocity-governing function, presented previously in Equation (4.10), are modified to
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Figure 6.1 Illustration of the scenario 1 B-type agent walks past 1 not-moving L-type agent with
triangular kernel function deflected forwards

capture the interaction between agents. The parameter Rmax is set to value 2 in all experiments.
The remaining simulation parameters are based on the calibration discussed in Section 5.1.

In the first set of experiments, the critical agent mass is set to Rcrit = 0, which captures the
reduction of speed in the velocity profile for as long as the mass of the other agent overlays with
the perceived surroundings. Figure A.1, Figure A.2, and Figure A.3 in Appendix A.1 display the
velocity profile of the moving agents during the 5 scenarios presented previously, for Diraq kernel,
triangular kernel deflected forward, and triangular kernel deflected backwards respectively.

In the second set of experiments, the critical agent mass is set to Rcrit = 0.5 to capture a
milder reaction of the agent. Figure A.4, Figure A.5, and Figure A.6 in A.1 display the velocity
profile for the scenarios 1, 2, 5 from the enumerate list presented previously.

In the experiments with the Diraq kernel, a sudden reaction to the agent mass causes the
velocity profile of agents to be piecewise constant function on two intervals. The interval, in
which the other agent is located in the perceived surroundings, and the interval, in which the
other agent is out of the perceived surroundings.

The velocity profile of B-type agent walking past not-moving L-type agent is displayed in
Figure 6.2. The perceived surroundings [xα(t) + d opp

1 , xα(t) + d opp
1 ] of the B-type agent α in-

cludes the position 10 m, at which is the L-type agent located, for xα(t) ∈ [5, 10], which matches
with the the results from the simulation. The results presented in Figure A.4 in Appendix A.1
can be validated similarly.
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Figure 6.2 Velocity profile of the moving agent in the scenario 1 B-type walks past 1 not-moving
L-type agent with Diraq kernel

The following calculation is limited to a situation, in which the B-type agent, with parameter
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Rcrit = 0, walks past static L-type agent. The individual mass generated by the L-type agent is
the triangular kernel deflected forward. To be complete, the discussed case results are depicted
in Figure 6.3 on the left.

In this scenario, the speed reduction in the velocity profile is determined by 5 different func-
tions, based on the part of the triangular kernel that overlays with the perceived surroundings.
The possible overlays are illustrated previously in Figure 5.5. The position intervals of the agent,
in which the speed reduction follows different function, are presented in the following list. For
each interval, the color used in the derived velocity profile in Figure 6.3 is specified in brackets.
As a point of reference, the values of kernel parameters are c front = 1.95 m, and c back = 0.75 m.

1. the front part of the kernel is partially perceived in position range 3.05− 5 m (red),

2. the front part of the kernel is completely perceived and the back part of the kernel is partially
perceived in position range 5− 5.75 m (blue),

3. both the front and the back part of the kernel are perceived completely in position range
5.75− 8.05 m (yellow),

4. the front part of the kernel is partially perceived and the back part of the kernel is completely
perceived in position range 8.05− 10 m (green),

5. the back part of the kernel is partially perceived in position range 10− 10.75 m (orange).

Furthermore, the agent mass in the perceived surroundings is determined solely by the formula
presented previously in Equation (4.4). On each interval from the previous enumerated list, the
formula is represented by an individual function. For this scenario, the functions that describe
the agent mass in the perceived surroundings on each interval are presented in the following
equations (6.1) – (6.5). For a more comprehensive understanding, the area of the back part of
the kernel is 5

18 , the area of the front part of the kernel is 13
18 , and the normalizing constant C is

2
2.7 .

R =
∫ x+5

8.05

2
2.7 ·

(
1− 10− y

1.95

)
dy + 0 = 1.76686− 1.15859x + 0.189934x2 for x ∈ [3.05, 5] ,

(6.1)

R = 13
18 +

∫ x+5

10

2
2.7 ·

(
1− y − 10

0.75

)
dy = −15.3272 + 5.67901x− 0.493827x2 for x ∈ [5, 5.75] ,

(6.2)

R = 13
18 + 5

18 = 1 for x ∈ [5.75, 8.05] ,

(6.3)

R =
∫ 10

x+0

2
2.7 ·

(
1− 10− y

1.95

)
dy + 5

18 = −11.3082 + 3.05793x− 0.189934x2 for x ∈ [8.05, 10] ,

(6.4)

R = 0 +
∫ 10.75

x+0

2
2.7 ·

(
1− y − 10

0.75

)
dy = 57.0679− 10.6173x + 0.493827x2 for x ∈ [10, 10.75] .

(6.5)

The velocity is determined by the formula presented previously in Equation (4.10). Once
the values vα = 1, Rcrit = 0 and Rmax = 2 have been assigned to the formula parameters, the
obtained velocity-mass relation for this scenario is presented in the following equation.

v(R) = 1− R
2 . (6.6)
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Finally, substitution of the agent mass R in Equation (6.6) with the corresponding function
from equations (6.1) – (6.5) retrieves the function of the velocity profile on each interval, i.e.

v(R) = 1 + 1
2

(
−1.76686 + 1.15859x− 0.189934x2)

for x ∈ [3.05, 5] , (6.7)

v(R) = 1 + 1
2

(
15.3272− 5.67901x + 0.493827x2)

for x ∈ [5, 5.75] , (6.8)

v(R) = 1− 0.5 for x ∈ [5.75, 8.05] , (6.9)

v(R) = 1 + 1
2

(
−26.6785 + 4.53941x− 0.189934x2)

for x ∈ [8.05, 10] , (6.10)

v(R) = 1 + 1
2

(
41.142− 9.1358x + 0.493827x2)

for x ∈ [10, 10.75] . (6.11)

The derived velocity profile is compared with the simulation velocity profile in Figure 6.3. A
match of the simulation velocity profile with the derived velocity profile confirms the correctness
of the implementation of the triangular kernels. The velocity profiles for the remaining experi-
ments presented in Figure A.2, Figure A.3, Figure A.5 and Figure A.6 in Appendix A.1 can be
derived similarly.
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Figure 6.3 Comparison of the calculated velocity profile and the velocity profile from the simulation
of the scenario 1 B-type walks past 1 not-moving L-type agent with triangular kernel deflected forward

6.2 Experiments with Arrival Intensity
The arrival intensity is expected to have the greatest impact on the capacity of the trail. The
experiments presented in this section have several purposes. Mainly, all experiments aim to
detect the intensity of arrivals, at which the pedestrian flow stops to be smooth and jams occur.
Further, the impact of heterogeneity in velocities and heterogeneity in arrival intensity on the
pedestrian flow is observed. Additionally, the experiments serve as a comparison of behavior for
the various implemented kernels. Moreover, the results are compared with the empirical findings
presented previously in Chapter 3.

In the experiments presented in this section, the average arrival intensity is identical for both
ends of the trail. In the simulation results presented in this section, the intensity value applied
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to the x-axis is the average intensity of arrivals to one boundary of the trail. To be complete,
the total average intensity of the arrivals is twice the average arrival intensity to one boundary
of the trail. It is possible to conduct advanced experiments with unbalanced bidirectional flow
in the subsequent work.

Below are presented two groups of experiments. The first group of experiments, presented
in Section 6.2.2, performs simulations with homogeneous arrival intensity for three scenarios
of speed distribution of agents. The second group of experiments, presented in Section 6.2.3,
performs simulations with non-homogeneous arrival intensity for three arrival intensity scenarios.

All experiments share the values of the parameters presented in the following Table 6.1.
Except for the lengths of the bottleneck section and the transport section 2, which are omitted,
the parameter values are selected based on the calibration presented previously in Section 5.1.
In the experiments with non-homogeneous arrival intensity, the speed distribution parameter
speedtrim, discussed previously in Section 5.1, is set to the calibrated value 0.45 m/s.

Parameter Name Variable Selected Value Units
timestep h 0.1 s

body width wcell 0.75 m
speed median speedmed 1.2 m/s

speed deviation speedstd 0.26 m/s
critical mass Rcrit 15/3.7 mass of pedestrians

maximum mass Rmax 15 mass of pedestrians
d1 dir d dir

1 0 m
d2 dir d dir

2 5 m
d1 opp d opp

1 0 m
d2 opp d opp

2 5 m
c back c back 0.75 m
c front c front 1.95 m

distance transport1 |xend, 1 − xstart, 1| 150 m
distance bottleneck |xstart, 2 − xend, 1| 0 m
distance transport2 |xend, 2 − xstart, 2| 0 m

arrival period B tB
max 1500 s

arrival period L tL
max 1500 s

Table 6.1 Parameters with values common to all experiments

The simulation starts at the simulation time 0 s and ends after the departure of the last active
agent. In case of total stoppages, the simulations are ended at the simulation time 2000 s. The end
of each simulation is further represented by the variable tstop, which is given by Equation (6.12).
The variables tB

last, tL
last refer to the last departure of B-type agent, L-type agent respectively.

tstop = min{max{tB
last, tL

last}, 2000} . (6.12)

6.2.1 Analysed Characteristics
The experiments presented in this section analyse two macroscopic characteristics of pedestrian
flow, namely

1. average count of active pedestrians,

2. average velocity of agents.

The set of agents and the time period that are included in the calculations differs for the
experiments with homogeneous and non-homogeneous arrival intensity. Therefore, the sets are
introduced before the introduction of the characteristics.
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To prevent initial arrivals on the trail from distorting the results in the experiments with the
homogeneous arrival intensity, a stationary state is established. The motivation is that after
the departure of agents from both walking directions, the pedestrian flow with the homogeneous
arrival intensity is already established.

The set of agents, denoted as Astat, whose whole trajectories belong to the stationary state, is
defined by Equation (6.13). The discrete time steps Tstat corresponding to the stationary state
are determined by Equation (6.14). The variables tB

earl, tL
earl refer to the earliest departure of B-

type agent, L-type agent respectively. The variable tstop is established above in Equation (6.12).

Astat = {α ∈ A | tα
arr ≥ max{tB

earl, tL
earl}} , (6.13)

Tstat = {tn |n ∈ N ∧ tn ∈
[
max{tB

earl, tL
earl}, tstop

]
} . (6.14)

An attempt was made to impose a tighter condition by establishing an upper limit of the
duration of the stationary state. The upper limit is not established due to the fact that the
agents, who completely jammed and therefore never reach the end of the trail, would not belong
to the stationary state.

The calculation of the characteristics for the experiments with non-homogeneous arrival inten-
sity includes all agents in the simulation. Further, the time period T ranges from the simulation
time 0 s to the end of the simulation tstop.

The calculation of average count of active pedestrians, denoted as N̄, is introduced
in Equation (6.15). A′ represents a set of agents and T′ denotes a set of discrete simulation
timesteps that are included in the calculation, as discussed above.

N̄ = |T −1| ·
∑

tn∈T

∣∣{α |α ∈ A ∧ tn ∈
[
tα
arr, tα

dep
]
}
∣∣ . (6.15)

The calculation of average velocity of agents, denoted as v̄, is presented in Equation (6.17),
where v̄α denotes the average speed of agent α ∈ Astat, given by Equation (6.16).

v̄α = |xend − xstart| · (tα
dep − tα

arr)−1 , (6.16)

v̄ = |Astat|−1 ·
∑

α∈Astat

v̄α . (6.17)

Without interactions between agents, the average speed of agents is theoretically the mean
value of the speed distribution, i.e. speedmed = 1.2 m/s, and the average count of active pedes-
trians at the average arrival intensity λ is given by the following formula, where t̄ represents the
average time of agents to walk the trail with length |xend − xstart|, i.e.

EN̄ = (λ + λ) · t̄ = 2 · λ · |xend − xstart|
speedmed

= 250 · λ . (6.18)

Figure A.13, Figure A.14 in Appendix A.2 and Figure A.21, Figure A.22 in Appendix A.3
show the experiment results, where the agent mass is ignored by the agents. As expected, the
theoretical values presented above match the results.

At the agent mass in the perceived surroundings of the agent equal to Rmax, the agent
completely stops. Therefore, the maximum count of active agents in the simulation step is
limited by the following formula, where Rmax

|d2 − d1|
represents the maximum count of agents on a

one-meter long section and |xend − xstart| represents the length of the trail, i.e.

Nmax = Rmax

|d2 − d1|
· |xend − xstart| . (6.19)
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Equations (6.18), and (6.19) together form an upper estimate of the maximum arrival in-
tensity, at which each pedestrian is guaranteed to stop, given by Equation (6.20). In case of the
experiments presented in this section, this corresponds to the intensity of 1.8 ped/s for each di-
rection, i.e. flow rate equal to 216 ped/min. This value is comparable with the recommendations
presented in Table 3.4, where the flow rate on the walkway with width is recommended to be in
range 10− 200 ped/min.

λmax = Nmax

2 · speedmed
|xend − xstart|

= Rmax

2 · speedmed
|d2 − d1|

, (6.20)

6.2.2 Experiments with Homogeneous Arrival Intensity
This section presents three experiments with homogeneous arrival intensity, each with different
agent speed distribution. The motivation for these experiments is the assumption that increasing
heterogeneity in the speed of agents leads to jams at lower arrival intensities.

The speed distribution scenarios are presented in Table 6.2. The speed distribution that is is
selected in the parameter calibration previously in Section 5.1 is further denoted as Sdist.

Table 6.2 Description of the speed distribution scenarios in the experiments with homogeneous arrival
intensity

Scenario Name Description
Speed Distribution Scenario 1 vα = speedmed for α ∈ A
Speed Distribution Scenario 2 vα = speedmed for α ∈ B ∧ vβ follows Sdist for α ∈ L
Speed Distribution Scenario 3 vα follows Sdist for α ∈ A

The experiments were performed with the values of the arrival intensity between 0.2 and 0.7
ped/s. To achieve revealing results, a total of 10 iterations are performed for each intensity in
the experiments. In each iteration, the instances of agents were the same for all kernels.

The experiment results for the speed distribution scenarios 1 and 3 with the triangular kernel
deflected forward are shown in Figure 6.4. The results for the remaining kernels and speed
scenarios are displayed in Appendix A.2. The results of the 10 iterations for each arrival intensity
are represented by a boxplot. A rapid increment of the average pedestrian count, rapid decrement
of the average agent speed respectively, indicate the agent stoppages. The theoretical values at
no interaction between agents, discussed above in Section 6.2.1, are plotted for comparison.

Regarding the value, at which the speed reduction occurs, the arrival intensity is around 0.3
ped/s. As shown in Table 6.3, the intensity at which jams occur differs based on the speed
heterogeneity. At heterogeneous speed, the arrival intensity is approximately 0.05 less than for
homogeneous speed of agents. This supports the assumption that heterogeneity in speed leads
to stoppages at lower arrival intensity. Moreover, the value 0.65 ped/s, which is equal to the flow
rate 78 ped/min for both walk direction, is comparable with the recommendations presented
previously in Table 3.4, where it is recommended for the walkaway with flow rate 100 ped/min
to be 2.5 m wide.

Table 6.3 Overview of the results of the experiments with the homogeneous arrival intensity and the
triangular kernel deflected forward

Scenario Deterioration in Flow Stoppages
Speed Distribution Scenario 1 0.6 ped/s 0.7 ped/s
Speed Distribution Scenario 2 0.6 ped/s 0.65 ped/s
Speed Distribution Scenario 3 0.55 ped/s 0.65 ped/s
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Figure 6.4 Results of experiments with homogeneous arrival intensity for homogeneous and hetero-
geneous speed distributions

6.2.3 Experiments with Non-homogeneous Arrival Inten-
sity

This section presents experiments with arrival intensity for three different non-homogeneous
arrival scenarios that are presented below in Table 6.4. The generic shapes of the probability
functions λ1, λ2 and λ3 that represent the non-homogeneous arrival intensity are depicted in
Figure 6.5.

For implementation purposes, the probability functions are polynomials. The coefficients of
the generic polynomials λ1, λ2 and λ3 are the solution of the following coupled linear equations,
where a, b, c, d and e are coefficients of a polynomial in the descending order.

e d c b a λ1 λ2 λ3
1 0 0 0 0 0 0 0
1 375 3752 3753 3754 2

3 1 0.4
1 750 7502 7503 7504 1 0.8 0.8
1 1125 11252 11253 11254 2

3 0.4 1
1 1500 15002 15003 15004 0 0 0


The polynomials that represents the non-homogeneous arrival intensity with the average

arrival intensity λ are obtained by scaling the generic polynomials with value
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Figure 6.5 Illustration of the arrival intensities used in experiments with non-homogeneous arrival
intensity

λ · tmax ·
(∫ tmax

0
λi(t) dt

)−1

for i ∈ {1, 2, 3} .

Therefore, the average arrival intensity of the non-homogeneous arrival intensity represented
by function λ(t) is comparable with the homogeneous arrival intensity λ presented in the previous
section, i.e. ∫ tmax

0
λ(t) dt = λ · tmax . (6.21)

Table 6.4 Description of the arrival intensity scenarios in the experiments with non-homogeneous
arrival intensity

Arrival Intensity of Arrival Intensity of
Scenario Name B-type agents L-type agents
Arrival Intensity Scenario 1 λ1 λ1
Arrival Intensity Scenario 2 λ2 λ3
Arrival Intensity Scenario 3 λ2 homogeneous arrival intensity λ

Due to the occurrence of earlier stoppages, the experiments were performed with the average
arrival intensity ranging from 0.2 to 0.55 ped/s. Again, a total of 10 iterations are performed for
each average intensity in the experiments and in each iteration, the instances of agents were the
same for all kernels.

Similarly to the results presented in the previous section, the experiment results for the arrival
intensity scenarios 1 and 2 with the triangular kernel deflected forward are shown in Figure 6.6.
The results for the remaining kernels and speed scenarios are displayed in Appendix A.3.

In comparison to the experiments in the previous section, the deterioration in flow occurs
at the average arrival intensity value of approximately 0.2 less than at homogeneous arrival
intensity. The overview of the results is shown in Table 6.5

Further, the experiments reveal significant stoppages in the pedestrian flow at the average
arrival intensity of 0.4 ped/s, which corresponds to the value of 48 ped/min. Based on the
recommendations presented in Table 3.3 and Table 3.4, the flow rate at which stoppages occur
should take the values around 100 ped/min. Therefore, the maximum arrival intensity coming
from the simulation results is approximately two times less than recommended value. However,
it is of the same order of magnitude which corroborates the reasonableness of the model. Based
on the results, the arrival intensity scenario 1 has the earliest stoppages. The reason may be
that the peak in arrival intensity is at the same time for both walking directions.

The comparison of all scenarios presented above for each kernel is shown in Figure 6.7 and
Figure 6.8. Based on the figures, the experiments with non-homogeneous arrival intensity show
significantly different results.

The comparison of various kernels is shown in Figure 6.9 and Figure 6.10. As expected,
stoppages for Diraq kernel occur at lower arrival intensity. Although the difference between
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results from various kernels is not significant, the two variants of triangular kernel show differences
that can be targeted in the subsequent work.

Table 6.5 Overview of the results of the experiments with the non-homogeneous arrival intensity and
the triangular kernel deflected forward

Scenario Deterioration in Flow Stoppages
Arrival Intensity Scenario 1 0.3 ped/s 0.4 ped/s
Arrival Intensity Scenario 2 0.4 ped/s 0.5 ped/s
Arrival Intensity Scenario 3 0.4 ped/s 0.5 ped/s
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Figure 6.6 Results of experiments with non-homogeneous arrival intensity for 2 arrival intensity
scenarios
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Figure 6.7 Comparison of average agent count results from all scenarios for each kernel
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Figure 6.8 Comparison of average agent speed results from all scenarios for each kerne
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Figure 6.9 Comparison of kernels in agent count results for each scenario
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Figure 6.10 Comparison of kernels in agent speed results for each scenario



Chapter 7

Conclusion

The thesis successfully introduced an agent-based model that represents pedestrian flow in the
Luzen Valley trail. The model consists of three distinct mathematical models, each defined
in Chapter 4. Random arrivals are implemented by means of a Poisson process, discussed in
Section 1.3. The transport section, situated at both ends of the trail, employs a fundamental
diagram-based model. In Section 4.2.1, a novel concept for interaction between agents is in-
troduced, namely the agent mass in the perceived surroundings of the agent. The individual
agent mass is represented by kernel estimates presented in the article [1]. This thesis focuses
on the transport section. The bottleneck section is currently represented by very simple cellular
automaton, which is discussed in Section 1.2. The subsequent work aims to replace this model
with more complex one.

Furthermore, the simulation tool was developed to conduct experiments with the model.
In addition to the simulation tool, a script was created to provide a basic animation of the
trajectories from the simulation. The implementation of the model is discussed in Chapter 5.
Data from Chapter 3, which provides valuable empirical findings and an overview of work related
to pedestrian movement, served in Section 5.1 to calibrate model parameters.

One of the two experiments conducted is an additional validation of kernels implementation,
presented in Section 6.1. The second set of experiments, discussed in Section 6.2, identified
the average arrival intensity of 48 ped/s, at which jams occur in the model. The empirical
findings presented in this thesis confirm the reasonableness of this value. Additionally, the
experiments compared the behavior of various kernels, which exhibited a high degree of similarity.
Furthermore, an assumption that heterogeneity in speed of agents and heterogeneity in arrival
intensity leads to earlier stoppages was confirmed in the experiments.

The subsequent work aims to estimate the capacity of the trail. To this end, an extension of
the simulation tool, introduced in the thesis, is required to enable various restriction models on
the trail to be tested. In addition, further evaluation of the fundamental diagram-based approach
is appropriate to be done. As previously stated, the bottleneck section will be replaced with a
more complex model, such as an expert system, in order to reflect the complexity of the current
system.
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Appendix A

Experiment Results

A.1 Results of Kernel Validation Experiment
This section presents the experiment results related to the validation of the kernel implementa-
tion, which is presented in Section 5.2. The kernels included in the experiments are the Diraq
kernel, the triangular kernel deflected forward and the triangular kernel deflected backwards. In
the first set of the experiments, the critical mass of agents is set to 0, and in the second set of
the experiments, the critical mass of agents is set to 0.5.
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Figure A.1 Velocity profiles for 5 scenarios, Diraq kernel used as individual mass of agent, Rcrit = 0
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Figure A.2 Velocity profiles for 5 scenarios, triangular kernel deflected forward used as individual
mass of agent, Rcrit = 0
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Figure A.3 Velocity profiles for 5 scenarios, triangular kernel deflected backwards used as individual
mass of agent, Rcrit = 0
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Figure A.4 Velocity profiles for 3 scenarios, triangular kernel deflected forward used as individual
mass of agent, Rcrit = 0.5
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Figure A.5 Velocity profiles for 3 scenarios, triangular kernel deflected backwards used as individual
mass of agent, Rcrit = 0.5
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Figure A.6 Velocity profiles for 3 scenarios, triangular kernel deflected backwards used as individual
mass of agent, Rcrit = 0.5

A.2 Results of Experiments with Homogeneous Arrival
Intensity

This section presents the results for the experiments with the homogeneous arrival intensity that
are subject of Section 6.2.2. The experiments analyse the development of two macroscopical
characteristics of pedestrian flow, namely average agent count and average agent speed, on the
arrival intensity. The experiments were performed for the Diraq kernel, the triangular kernel
deflected backward, the triangular kernel deflected backwards, and the kernel that represents
free flow.
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Figure A.7 Development of average agent count in experiments with homogeneous arrival intensity
for Diraq kernel
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Figure A.8 Development of average agent count in experiments with homogeneous arrival intensity
for triangular kernel deflected forward
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Figure A.9 Development of average agent count in experiments with homogeneous arrival intensity
for triangular kernel deflected backwards
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Figure A.10 Development of average speed of agents in experiments with homogeneous arrival inten-
sity for Diraq kernel
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Figure A.11 Development of average speed of agents in experiments with homogeneous arrival inten-
sity for triangular kernel deflected forward
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Figure A.12 Development of average speed of agents in experiments with homogeneous arrival inten-
sity for triangular kernel deflected backwards
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Figure A.13 Development of average agent count in experiments with homogeneous arrival intensity
for free flow
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Figure A.14 Development of average speed of agents in experiments with homogeneous arrival inten-
sity for free flow

A.3 Results of Experiments with Non-homogeneous Ar-
rival Intensity

This section presents the results for the experiments with the non-homogeneous arrival intensity
that are subject of Section 6.2.3. The experiments analyse the development of two macroscopical
characteristics of pedestrian flow, namely average agent count and average agent speed, on the
arrival intensity. The experiments were performed for the Diraq kernel, the triangular kernel
deflected backward, the triangular kernel deflected backwards, and the kernel that represents
free flow.
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Figure A.15 Development of average agent count in experiments with non-homogeneous arrival in-
tensity for Diraq kernel
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Figure A.16 Development of average agent count in experiments with non-homogeneous arrival in-
tensity for triangular kernel deflected forward
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Figure A.17 Development of average agent count in experiments with non-homogeneous arrival in-
tensity for triangular kernel deflected backwards
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Figure A.18 Development of average speed of agents in experiments with non-homogeneous arrival
intensity for Diraq kernel
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Figure A.19 Development of average speed of agents in experiments with non-homogeneous arrival
intensity for triangular kernel deflected forward
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Figure A.20 Development of average speed of agents in experiments with non-homogeneous arrival
intensity for triangular kernel deflected backwards
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Figure A.21 Development of average agent count in experiments with non-homogeneous arrival in-
tensity for free flow
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Figure A.22 Development of average speed of agents in experiments with non-homogeneous arrival
intensity for free flow
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doi: 10.3929/ethz-a-000687810.

13. KRETZ, Tobias. An overview of fundamental diagrams of pedestrian dynamics. 2019-10.
Tech. rep. PTV Group. Available from doi: 10.13140/RG.2.2.30070.96326.

14. DUIVES, Dorine C.; DAAMEN, Winnie; HOOGENDOORN, Serge P. Quantification of
the level of crowdedness for pedestrian movements. Physica A: Statistical Mechanics and
its Applications. 2015, vol. 427, pp. 162–180. issn 0378-4371. Available from doi: 10.1016/
j.physa.2014.11.054.

15. FRUIN, John J. Designing for Pedestrians: A Level-of-Service Concept. Highway Research
Record. 1971, vol. 355, pp. 1–15. isbn 0309019680. Available also from: http://onlinepubs.
trb.org/Onlinepubs/hrr/1971/355/355-001.pdf.

16. EDIE, L. Discussion of Traffic Stream Measurements and Definitions. 1963, pp. 139–154.
17. STEFFEN, B.; SEYFRIED, A. Methods for measuring pedestrian density, flow, speed and

direction with minimal scatter. Physica A: Statistical Mechanics and its Applications. 2010,
vol. 389, no. 9, pp. 1902–1910. issn 0378-4371. Available from doi: 10.1016/j.physa.
2009.12.015.

18. PUSHKAREV, B.; ZUPAN, J. M. CAPACITY OF WALKWAYS. Transportation Research
Record. 1975, vol. 538, pp. 1–15. isbn 0309023890. issn 0361-1981. Available also from:
http://onlinepubs.trb.org/Onlinepubs/trr/1975/538/538-001.pdf.

19. NAVIN, F. P. D.; WHEELER, R. J. Pedestrian Flow Characteristics. Traffic Engineering.
1969, vol. June, pp. 30–36.

20. ITAMI, Robert M. Estimating Capacities for Pedestrian Walkways and Viewing Platforms.
22 Dunstan Avenue, Brunswick, Victoria 3056, Australia, 2002-06. GeoDimensions Pty Ltd.
Available also from: https://cales.arizona.edu/˜gimblett/Estimating%20Pedestrian%
20Capacities%20for%20Walkways.pdf.
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