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Abstract
This work deals with optimisation of
a therapeutical web application origi-
nally implemented in Python using the
Django framework. Performance gains are
achieved by reimplementing a key module
of the application into Rust. Motivation
for this are general performance limita-
tions of Python as a consequence of its
fundamental features. Rust, as a com-
piled language with emphasis on memory
safety offers a promising alternative for
performance-critical tasks. The work in-
cludes an analysis of the relevant parts
of the original application, design and im-
plementation of the Rust module, and its
integration to the existing CI/CD solu-
tion. The results demonstrate a nearly
30% performance gain and significant im-
provement of its stability under heavy
load. The work also provides an insight
into the process of integration of Rust
in web applications based on the Django
framework and shows the potential for im-
provement of their performance, stability,
and scalability.

Keywords: Python, Rust, PyO3,
Optimisation, Django, Docker, CI/CD,
DevOps

Supervisor: doc. Ing. Daniel Novák,
Ph.D.
Na Zderaze 269/4,
120 00 Praha 2 - Nové Město

Abstrakt
Tato práce se zabývá optimalizací terape-
utické webové aplikace, původně imple-
mentované v jazyce Python za pomoci
frameworku Django. Zvýšení výkonu apli-
kace je docíleno přepsáním klíčové části
aplikace do jazyka Rust. Motivací k to-
muto kroku jsou obené výkonnostní limi-
tace jazyka Python plynoucí z jeho zá-
kladních vlastností. Rust, jakožto kom-
pilovaný jazyk s důrazem na paměťovou
bezpečnost nabízí slibnou alternativou pro
úkony náročné na výkon. Práce zahrnuje
analýzu relevantních částí aplikace, návrh
a implementaci Rustového modulu a jeho
integraci do existujícího CI/CD řešení. Vý-
sledky demonstrují přibližně 30% nárůst
výkonu aplikace a výrazné zlepšení její
stability v zátěži. Práce také poskytuje ná-
hled do procesu integrace Rustu ve webo-
vých aplikacích založených na frameworku
Django a ukazuje potenciál zlepšení jejich
výkonu, stability a škálovatelnosti.

Klíčová slova: Python, Rust, PyO3,
Optimalizace, Django, Docker, CI/CD,
DevOps

Překlad názvu: Continuous Integration
webové terapeutické aplikace

vi



Contents
1 Introduction 1

2 Analysis Of Existing Solution 3
2.1 Main Framework . . . . . . . . . . . . . . 3
2.2 Serafin . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 Application in the Project . . . . 4
2.3 Code Structure . . . . . . . . . . . . . . . . 5

2.3.1 Core Methods of the Engine
Class . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Designing Rust Solution 7
3.1 Comparison of Rust and Python . 8

3.1.1 Language Design . . . . . . . . . . . . 8
3.1.2 Performance . . . . . . . . . . . . . . . . 8
3.1.3 Static vs Dynamic Typing . . . 10
3.1.4 Developer Experience and

Ecosystem . . . . . . . . . . . . . . . . . . . . 11
3.2 Choosing the Framework . . . . . . 12

3.2.1 PyO3 . . . . . . . . . . . . . . . . . . . . . 12

4 Implementing Rust Module 15
4.1 Implementation Process . . . . . . . 15

4.1.1 Getting started . . . . . . . . . . . . 15
4.1.2 Common patterns between the

original code and Rust
implementation . . . . . . . . . . . . . . . 19

4.1.3 Dynamic vs. Static Typing . . 20
4.1.4 Seemingly Compatible Data

Types . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.5 Using Modules of the Original

Implementation . . . . . . . . . . . . . . . 24
4.1.6 Finishing up . . . . . . . . . . . . . . . 25

4.2 Integration into CI/CD . . . . . . . . 26

5 Performance testing and
optimisation 27
5.1 Tools and methods . . . . . . . . . . . . 27

5.1.1 Profiling . . . . . . . . . . . . . . . . . . 27
5.1.2 Performance/Load Testing . . 28

5.2 Chosen Strategy . . . . . . . . . . . . . . 30
5.2.1 Hardware . . . . . . . . . . . . . . . . . 30
5.2.2 Designing the Test Plan . . . . 31

5.3 Running the Test . . . . . . . . . . . . . 33
5.3.1 Preparation . . . . . . . . . . . . . . . 33
5.3.2 Load Testing . . . . . . . . . . . . . . 34

5.4 Results . . . . . . . . . . . . . . . . . . . . . . 34
5.4.1 Incremental Load Testing . . . 35
5.4.2 Constant Load Testing . . . . . 36

6 Conclusion 39

Bibliography 41

vii



Figures
5.1 Codes Per Second, Incremental

Load, Python implementation . . . . 35
5.2 Codes Per Second, Incremental

Load, Rust implementation . . . . . . 36
5.3 Response Time Over Time,

Incremental Load, Rust
implementation . . . . . . . . . . . . . . . . . 37

5.4 Response Time Percentiles,
Constant Load, Python
implementation . . . . . . . . . . . . . . . . . 38

5.5 Response Time Percentiles,
Constant Load, Rust
implementation . . . . . . . . . . . . . . . . . 38

Tables
5.1 Constant Load Testing Summary 37

viii



Chapter 1
Introduction

Ensuring efficient and reliable performance is extremely important in today’s
web applications, as it could make the difference between the users staying,
or leaving the website. This work deals with the optimisation of a web
therapeutic application focused on smoking cessation, originally built with
Python, by reimplementing a performance-critical module of the back end of
the application in Rust.

Python, known for its simplicity and ease of use, often falls short in
performance-critical scenarios due to its interpreted nature and dynamic
typing. Conversely, Rust offers significant performance advantages with its
compiled nature and strict memory safety guarantees. The work provides
detailed comparison of Python and Rust programming languages, analysis of
the original project with focus on the reworked module, options for integrating
Rust into Python, as well as the caveats that were encountered during the
implementation.

This work is not only relevant in the context of the smoking cessation web
application. The same approach can be applied in a wide variety of web
application implementations. Performance bottlenecks can severely impact
user experience and engagement, making optimisation a crucial aspect of
development. By reimplementing a key module in Rust, this project explores
the potential for performance gains and improved resource management.

A core component of this work is the reimplementation process itself, which
is documented to provide insights into the practical aspects of integration Rust
with Python. This includes a discussion of the tools and techniques used, the
challenges faced, and the solutions devised to overcome these obstacles. The
integraion options for combining Rust and Python are examined, offering a
direction for developers looking to adopt similar approaches in their projects.

The final chapters are devoted to analysis of the results of performance
tests, and comparison of performance of the Python implementation and the

1



1. Introduction .....................................
Rust implementation. These tests are designed to measure various aspects
of the application’s performance, such as response times, throughput and
error rates. The findings from these tests are analysed to draw conclusions
about the efficacy of using Rust for performance-critical components in web
applications.
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Chapter 2
Analysis Of Existing Solution

2.1 Main Framework

The application is build with Django as the main back end framework. Django
is a high-level open source Python web framework developed between 2003
and 2005. Since then, it has grown into a robust framework used for building
complex, database-driven websites.[1]

Django puts a lot of emphasis on security, which helps developers avoid
many common mistakes by providing secure defaults and protection against
vulnerabilities such as SQL injection, cross-site scripting, cross-site request
forgery, and click-jacking.[1] This makes Django a reliable choice for rapid
development of secure web applications.

2.2 Serafin

The project uses Serafin, which is a logic-driven content creation kit. It is a
Django-based web platform that provides flexible building blocks for creating
logic-driven websites, such as forms and questionnaires, self-help programs,
e-learning programs, or dynamic websites with complex underlying logic.

Serafin is a therapeutic application developed by Inonit AS for SERAF,
a Norwegian Centre for Addiction Research at the University of Oslo. It is
designed to help users quit smoking while simultaneously gathering research
data on the effectiveness of various therapeutic techniques.

Key features of Serafin include:.Built on top of Django: Leveraging the power, flexibility and versatil-
ity of Django, Serafin benefits from a secure, well-supported, and highly
scalable framework.

3



2. Analysis Of Existing Solution..............................
.Graphical User Interface: The platform includes a web-base GUI

that streamlines the creation and management of content. This interface
allows non-technical users to design and customise pages without needing
to write code.. Logic-Driven Architecture: Serafin’s core strength is it’s ability to
handle complex logic. This is particularly useful for applications requiring
conditional workflows, dynamic content generation, and personalised
user experiences.. Invisible Special Actions: Among the logic that Serafin provides
for building the web application are also special nodes that provide
functionality that is normally not visible to the users, such as sending
cellular text messages and emails, or delayed actions.

The logic is organised in an oriented graph, or more specifically, a tree. A
node typically represents a single page, but can also represent background
actions. Unless it is a final page or action of the sequence, the node has one
or more outbound edges. These edges may contain an expression that, when
evaluated as true, represents the consecutive node.

There are two types of edges - special edges and normal edges. Special
edges are always evaluated before the normal edges. It should be noted, that
it is expected that only a single special, or a single normal edge evaluates
to true, because the order of evaluation is not guaranteed. Once an edge
evaluates to true, the consecutive node has been chosen.

2.2.1 Application in the Project

In this project, Serafin is employed to develop therapeutic sessions aimed
at smoking cessation. The platform’s web-based GUI is utilised to build a
series of interconnected pages that guide users through these sessions. Each
page within the series can contain various types of content and interactive
elements, such as:. Forms and Questionnaires: To collect user information and feedback,

mainly for dynamic adjustment of subsequent content based on the user’s
responses.. Educational Material: Providing users with information, tips, strate-
gies and support for quitting smoking.. Interactive Exercises: Engaging users in activities designed to rein-
force behavioural changes and coping strategies.

4



....................................2.3. Code Structure

2.3 Code Structure

The objective of this thesis is analysis and subsequent reimplementation
of a performance-critical module of the application in a more performance-
oriented programming language with the goal of achieving performance gains.
A successful conventional optimisation was already performed by Jakub
Trnal in 2020, resulting in a substantial reduction in computation time and
demonstrating the effectiveness of the chosen strategies.[2] Building on this
success, the current work aims to further enhance performance by leveraging
the advantages of a compiled programming language over an interpreted
language like Python.

Before starting with the implementation itself, it is beneficial to try to
understand the original module. Upon first investigation, I realised that the
Engine module, which is the subject of the optimisation, is always used in
a single way. First, the constructor is used to get and instance of the class,
and then a single method run is called. From this I deduced, that all other
logic is effectively private to the class and that all of it is used exclusively
internally in this class.

The Engine class interacts with several other modules of the project.
Namely, it is several of the data access models, primarily for getting informa-
tion about pages, session data, or getting and persisting user data. Another
important dependency is the expressions module with its Parser class. This
class is used to evaluate expressions that are often attached to edges. If the
expression is evaluated to true, then that edge is used to traverse from the
source node to the destination node.

2.3.1 Core Methods of the Engine Class

Contructor

The constructor accepts several arguments, but the most important one is
context. It contains information about the data gathered in the previous
step of the session, such as user’s response to interactive parts of the session.
This parameter is often crucial for determining what page will be displayed
to the user next.

Run

The run method accepts two arguments: next and pop. If next is true, it
means that the user is passing from one page to another during a session.

5



2. Analysis Of Existing Solution..............................
The id of the current node is extracted from the user’s data and passed as an
argument to transition method, from where the correct subsequent page
is found and eventually returned. The pop parameter is used to finish up
the current session when a final node of the session is reached. The current
session is popped from the user’s sessions stack and the subsequent session
is initialised. If neither of the parameters is true, the current node gets
"triggered". This performs the action according to the type of the node - for
example an email node or an SMS node send an email or a text message,
respectively. Other node types include: Expression node - sets a value on the
user’s record, or Page - sends data that should be displayed to the front-end.

Transition

transition is one of the core methods of the Engine class. It is the part of
the algorithm that enables the transition from the current node to the next.
It divides the edges directed from the current node into special and normal
edges. Special edges are processed first. For each edge that the expressions
module evaluates to true, the corresponding target node gets triggered. If
any of the triggered nodes return a value, the method ends here and the same
value is returned. Otherwise, a similar process is applied to the list of normal
edges. If no traversable edge is found, typically at the end of a session, it is
considered a "dead end" and the current session is popped from the user’s
session stack. Otherwise the result of trigger_node method is returned.

Trigger Node

trigger_node is a method that performs the action of the passed node based
on its type. It typically calls a method from a different module that contains
the logic to handle the action.

6



Chapter 3
Designing Rust Solution

First, I would like to summarise the ideas behind choosing to rewrite a part of
the original project in Rust. Why should the Rust implementation be faster
than Python?..1. Compiled vs. Interpreted Language: This is likely the biggest

difference between the two languages. Rust is a compiled language,
meaning its code is transformed into machine code before execution.
This allows for various optimisations by the compiler, leading to faster
runtime performance.

Python is an interpreted language, which means its code is executed
line-by-line by an interpreter at runtime. This introduces overhead, as
the interpreter needs to process and execute each instruction on the
fly.[3]..2. Memory Management: Rust employs a unique ownership model with
strict compile-time checks for memory safety, which eliminates the need
for a garbage collector. This results in more predictable and often faster
memory management.[4][5]

Python uses automatic garbage collection to manage memory, which
can introduce latency during program execution as the garbage collector
periodically runs to reclaim unused memory.[6]..3. Type System: Rust’s static type system ensures type safety at com-
pile time, which can prevent many runtime errors and allow for more
aggressive optimisations at compile time.

Python is dynamically typed, which introduces overhead for type checking
and can lead to less optimised code paths.

7



3. Designing Rust Solution ................................
3.1 Comparison of Rust and Python

Rust is a compiled systems programming language that aims to provide
memory safety and concurrency without sacrificing performance. Developed
by Mozilla and first released in 2010, Rust has gained significant popularity for
its ability to produce fast, efficient, and secure code, making it an ideal choice
for performance-critical applications. Rust’s syntax is similar to C++ but with
additional safety features, making it a modern alternative for systems-level
programming.

Conversely, Python is a high-level, interpreted programming language
known for its simplicity and readability. It emphasises ease of use, making
it an excellent choice for beginners, prototyping, and rapid development.
Python supports multiple programming paradigms, including procedural,
object-oriented and functional programming. It has a dynamic type system
and automatic memory management through a garbage collector. Python is
widely used in web development, scientific computing, data analysis, artificial
intelligence, and automation, thanks to its extensive standard library and
the vast ecosystem of third-party packages. Python’s flexibility and ease of
learning have made it one of the most popular programming languages in the
world.

3.1.1 Language Design

Rust and Python are designed with different philosophies and intended use
cases, reflecting their core priorities and target audiences. Rust prioritises
safety, concurrency, and performance. It employs a strict ownership model to
ensure memory safety without a garbage collector, preventing issues like null
pointer references and data racing. This makes Rust well suited for a variety
of performance-critical applications.

Python, on the other hand, emphasises simplicity, readability, and ease of
use. Its clean syntax and dynamic typing make it accessible to beginners and
allows for rapid development across various domains, from web development
to scientific computing.

3.1.2 Performance

Memory Management

Rust’s ownership model is a key feature of the language, designed to ensure
memory safety without a garbage collector. It enforces strict rules around

8



............................ 3.1. Comparison of Rust and Python

ownership, borrowing, and lifetimes, allowing developers to write concurrent
programs without data races. Ownership Mensa that each piece of data has
a single owner, which controls its lifetime. When the owner goes out of scope,
the memory is automatically deallocated. This model eliminates common
issues like null pointer dereferencing and double-free errors.[4][5]

In contrast, Python uses a garbage collector to manage memory. Python’s
garbage collector tracks object references and deallocates memory once an
object’s reference count drops to zero. It also uses cyclic garbage collection
to detect and clean up reference cycles. This approach simplifies memory
management for the programmer, but introduces overhead and can lead to
unpredictable pauses in program execution.[6]

Rust’s approach provides performance benefits by avoiding the runtime cost
associated with garbage collection. Programs written in Rust can have more
predictable performance, as memory deallocation occurs deterministically
when variables go out of scope. However, this requires developers to be more
mindful of how they manage references and lifetimes, which can increase the
complexity of the code.

Python, on the other hand, trades off some performance for ease of use and
developer productivity. Its automatic memory management allows developers
to focus on the logic of their applications without worrying about manual
memory management. This can be particularly beneficial in rapid development
and prototyping scenarios.

Both models have their advantages: Rust’s ownership model is well-suited
for systems programming a performance-critical applications, while Python’s
garbage collector is ideal for applications where ease of use and development
speed are more critical than raw performance.

Interpreted vs. Compiled

Compiled languages, such as Rust, are transformed into machine code by a
compiler before execution. This process results in an executable file that the
computer’s hardware can run directly, leading to faster runtime performance,
since the code is already translated into a low-level format. Additionally,
compilation process ensures that errors are caught at compile time, providing
robust type safety and reducing runtime errors.

Python, as a representative of the interpreted languages, executes code line-
by line through an interpreter, which translates high-level code into machine
code at runtime. This allows for greater flexibility and ease of debugging, but
typically results in slower execution speeds compared to compiled languages.

9



3. Designing Rust Solution ................................
This is also allows for dynamic typing, which further simplifies the source
code, making it an ideal choice for scripting, web development, and rapid
prototyping.

Another crucial difference, which has a big impact on performance, are
compile-time optimisations. The compiler applies optimisations improving
the efficiency and speed of the generated machine code. Rust, as a com-
piled language benefits significantly from these optimisations. Examples of
the optimisations include: inlining functions, removing unused code (dead
code elimination), and loop unrolling, all of which can lead to substantial
performance improvements.

Python does not have a compilation step, and therefore cannot take ad-
vantage of these optimisations. However, implementations like PyPy support
Just-In-Time (JIT) compilation, which can optimise code at runtime to some
extent (typically after several executions of the section of the code).

3.1.3 Static vs Dynamic Typing

In statically typed languages like Rust, the type of a variable is known at
compile time. The type of each variable must be manually declared and
type checking is performed during compilation process. This allows for
early error detection, because type mismatches are caught early during the
compilation phase, reducing runtime errors and improving code reliability. It
also enables possible optimisations made by the compiler, leading to overall
better performance. It also enforces specification of parameter and return
value types, which contributes to ease of use of external libraries and other
code in general. However, static typing comes with disadvantages as well.It is
generally more verbose, which expands the code and can make it less concise
and less flexible, because the type of a variable cannot change at runtime
without explicit conversions.[7][8]

In Python, the type of a variable is determined at runtime - this is called
dynamic typing. Variables can hold any type of data at different times during
execution, and type checking is done at runtime. Because variables can
change types, programmers can produce more flexible and concise code. This
is especially useful in scenarios where types are not known ahead of time.
Less boilerplate is needed, as types do not have to be declared explicitly,
making it easier to write and maintain code - particularly in case of scripting
and prototyping.[7][8]

10



............................ 3.1. Comparison of Rust and Python

3.1.4 Developer Experience and Ecosystem

Learning Curve

Rust is known for its steep learning curve primarily due to its strict and
complex type system, ownership model, and borrow checker. These features,
while ensuring memory safety and concurrency, require developers to quickly
grasp advanced concepts that differ from other, even low-level programming
languages like C.[13][14][15]

Simplicity, readability, and ease of use are some of the biggest advantages
of Python. Its syntax is clean and intuitive, which allows new developers to
learn and start coding quickly. Python’s design philosophy focuses on code
readability and simplicity, lowering the learning curve significantly.[16][17]

Tooling and Development Environment

Rust’s package manager and build system, Cargo, is very easy to use and
integrate into development processes. It simplifies dependency management,
compilation, and running tests, providing a seamless development experience.
It reduces boilerplate code and setup overheads, making development more
efficient.[13][15]

Python uses pip for package management and virualenv for creating isolated
environments. While effective, these tools can be cumbersome, especially when
dealing with dependency conflicts. Tools like pipenv and poetry have been
developed to simplify these processes, combining package and environment
management.[16][17][18]

Developers can take advantage of a wide range of Integrated Development
Environments (IDE) for both of the languages. Visual Studio Code is one
of the most popular options, especially for beginners, as it is free to use
and offers both community-made and official extensions to enhance the
programmer’s experience. JetBrains offers two versions of their IDE for
python - a Community Edition, which is free of charge, and supports Python’s
build tools, HTML, and even Rust via a plugin, which however, no longer
receives support. The Professional edition adds support for a wide range
of web development frameworks along with their build tools or database
tools.[19] JetBrains also provides a standalone IDE focused entirely on Rust,
called RustRover.[20]
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3. Designing Rust Solution ................................
3.2 Choosing the Framework

There are several frameworks available, that enable native execution of Rust
code within a Python environment. Here is an overview of the primary
options:. rust-cpython: Framework which allows for writing a native Python

module in Rust. It also supports using Python code within a Rust library.
This dual capability makes it versatile for integrating Python and Rust
functionalities.[21].PyO3: Originating as a fork of rust-cpython, PyO3 emerged during a
period when rust-cpython was not actively maintained. PyO3 shares
many features with rust-cpython but offers simplified memory manage-
ment, making it easier to use. At the time of working on this project,
PyO3 was also actively maintained, which ensured continuous updates
and community support.[22].CFFI and ctypes: Python provides libraries that can load and call
native C functions, and Rust is able to expose a C-compatible API using
the Foreign Function Interface. This is basically a way of tricking Python
into thinking that it is running a library written in C, while in reality it
runs a Rust library.[24][25]

As a beginner in Rust programming language, I was looking for the option
that would be the easiest to get started with. I chose PyO3, primarily due
to its extensive documentation, and because it has the simplest memory
management. This made the initial learning curve less steep and provided
ample resources to troubleshoot and understand the integration process.

3.2.1 PyO3

PyO3 is a powerful framework designed to enable seamless integration of
Rust with Python. It allows developers to write Rust code that can be called
from Python, as well as to write Python extensions in Rust.

Key Features:. Ease of use: PyO3 simplifies memory management, making it easier for
developers to handle interactions between Rust and Python. It provides
a simple way to convert between Python and Rust types, which reduces
boilerplate code and potential errors in manual type conversions. For
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example, Python lists can be converted to Rust vectors, or Python
dictionaries into Rust hash maps, etc.[26]. Extensive Documentation: PyO3 is well-documented, providing clear
and detailed guides on how to set up and use the framework, The
documentation includes examples and explanations of various features,
helping developers quickly learn how to integrate Rust with Python
efficiently.[22].Performance: By leveraging Rust’s performance advantages, PyO3
allows developers to write high-performance Python extensions. This
can be particularly beneficial for computationally intensive tasks where
Python’s performance might be a bottleneck.

GIL and Mutability. Python allows any object to be referenced and mutated
from multiple references, facilitated by its use of boxed objects. To Global
Interpreter Lock (GIL) ensures that only one thread can use the Python
interpreter at a time, though non-Python operations can release the GIL.
In PyO3, holding the GIL is represented by the Python<’py> token, which
serves multiple purposes including providing global API access and ensuring
that certain functions are called only while the GIL is held.

This token can be used to create Rust references that implicitly guarantee
the GIL is held, which explains why some PyO3 APIs require the py: Python
argument. For mutating operations on Python objects, PyO3 allows shared
references, which can only be created with a GIL lifetime, instead of mutable
Rust references.

Rust structs wrapped as Python objects (pyclass types) typically need
mutable access. While the GIL ensures thread-safe access, PyO3 cannot
statically guarantee the uniqueness of mutable references once ownership is
transferred to the Python interpreter. This uniqueness is managed at runtime
using PyCell, which is similar to Rust’s RefCell. This runtime scheme
ensures safe and controlled access to mutable references in a multi-threaded
environment.[23]

Object Types. PyAny in PyO3 represents a Python object of unspecified
type and is restricted to a GIL lifetime. PyAny can only occur as a reference
(&PyAny) and is used when you need to access a Python object while holding
the GIL. This is typically seen with intermediate values and arguments to
pyfunctions or pymethods implemented in Rust, where any type is allowed.

The PyAny struct includes many general methods for interacting with
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3. Designing Rust Solution ................................
Python objects, such as getattr, setattr and call. These methods facilitate
attribute access and method calling on Python objects within Rust.

Additionally, &PyAny types can be converted to their specific types using
downcast and extract methods - the former downcasts the reference to a
more specific PyO3 type, such as PyList, while the latter extracts a Rust
type from the reference, such as vector.[23]

Using Python Modules in Rust. PyO3 allows calling Python functions
from Rust using the call and call_method APIs. This integration makes
it straightforward to execute Python functions, pass arguments, and handle
return values directly within Rust.

For running existing modules from Rust, PyO3 offers the PyModule API.
This is especially useful in cases, where existing logic needs to be called from
Rust. Importing modules is straightforward using the import API. To call a
method from an external module, we can combine these two approaches like
this:

Listing 3.1: Calling functions from external modules

fn main ( ) −> PyResult <()> {
Python : : with_gi l ( | py | {

l e t b u i l t i n s = PyModule : : import (py , " b u i l t i n s " ) ? ;
l e t t o t a l : i 32 = b u i l t i n s

. g e t a t t r ( " sum " ) ?

. c a l l 1 ( ( vec ! [ 1 , 2 , 3 ] , ) ) ?

. e x t r a c t ( ) ? ;
assert_eq ! ( t o ta l , 6 ) ;
Ok( ( ) )

})
}

This will be crucial for the ability to call methods from the original Serafin
implementation, as well as Django functionality.
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Chapter 4
Implementing Rust Module

This chapter recounts my experience with rewriting a critical module of the
application in Rust programming language. I will describe the implementation
process - the difficulties and caveats. Next, I will outline the steps needed to
integrate the module into the build stage of the CI/CD pipeline. Last, I will
go over what I learned in the process and what could be further improved.

The reason for the decision to re-implement the module is fairly straight-
forward. The goal is performance optimisation, as Python is known for not
being the most efficient programming language when in comes to performance.
Oppositely, Rust is known for its exorbitant obsession with memory safety,
as well as amazing performance.

4.1 Implementation Process

4.1.1 Getting started

I was considering adopting the test driven development approach, because the
original module had some tests ready to run, but I soon realised, that I could
not use these tests for this purpose, as they are not true unit tests. In the
end I decided to go from the smallest prototype that I could test manually,
for example just in Python console, and just try to replicate the code from
the original module.

Learning PyO3

First, I needed to create the skeleton of a PyO3 project. This is a straightfor-
ward process. Using python package maturin, which can be installed using
pip, one can initialise a PyO3 project in single step. The package generates
both the necessary files. Cargo.toml, which is a Rust project definition file,
that specifies project name, version, description, and dependencies, among
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4. Implementing Rust Module...............................
other things. The other generated file is located in newly created src folder,
and it is called lib.src. The name of the file is important, because later
when building the module, this is the filename that the compiler expects.

The bare lib.src file contains a simple test code intended as an introduc-
tion to the PyO3 framework, showing how to build a very simple function
in rust and expose it to the Python environment. This is where I decided
to experiment before diving into the documentation. At this point, I was
a bit sceptical about the memory management. My goal was to verify that
the generated Python module can accept an instance of a data structure and
mutate its contents - as part of that rust code. First I prepared a function
that accepts an instance of a list as a parameter and inserts an item to the
list.

Listing 4.1: First encounter with PyO3 - file src/lib.rs

use pyo3 : : pre lude : : ∗ ;
use pyo3 : : types : : PyList ;

#[ pyfunct ion ]
fn add_to_list ( l i s t : &PyList ) −> PyResult <()> {

l i s t . append ( " new item " ) ? ;
Ok( ( ) )

}

#[pymodule ]
fn PyO3_test (_py : Python , m: &PyModule ) −> PyResult <()> {

m. add_function ( wrap_pyfunction ! ( add_to_list , m) ? ) ? ;
Ok( ( ) )

}

The procedure to test the code was simple:..1. In Python, create an instance of an empty list...2. Call the function on the Python module built from the PyO3 file...3. An item is added to the list in the function of the module from the PyO3
file...4. Use print to display the content of the list in the original Python script
after the function call.

Listing 4.2: First encounter with PyO3 - file main.py
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import PyO3_test

i f __name__ == ’__main__ ’ :
l i s t _ i n s t a n c e = [ ]
PyO3_test . add_to_list ( l i s t _ i n s t a n c e )
print ( l i s t _ i n s t a n c e )

I used maturin develop command to build the PyO3 module and inject it
into the Python virtual environment of a test project and ran the python script.
To my great surprise and pleasure, the output of this test was [’new item’]
in the console. This was something that I hoped would not be an issue, but
I had to verify this fact as soon as possible. This meant a couple of things.
Most importantly, when an instance of an object gets passed as a parameter
to my Rust module, the original Python context keeps ownership of the object.
Also, the Rust function does not create a copy of the object when it receives
it as a parameter. We can deduce this from the fact that when I called
print(list_instance), we can see the ’new item’ inside the list, which
was added in the Rust module. This all might sound trivial, or unimportant,
but it ultimately means, that I could rewrite the original module without
changing the signatures of the original functions, which means that adopting
the new module would just mean changing the import statement wherever
the Engine module is used, because all the objects passed to it can in fact be
mutated inside the Rust code.

Let’s go over the structure of the Rust code in listing 4.1. First lines
contain use statements, which is a way of importing different crates (Rust
naming for modules). Then, we can see a macro #[pyfunction]. This is a
way of signifying that this is a function that we will likely want to expose
to the Python code the module will run in. The function add_to_list
accepts a single parameter - a reference to a PyList. PyO3 comes ready
with interfaces for all the basic data types that Python uses. PyList is
the equivalent to list, and PyDict is the equivalent to dict [26]. My
add_to_list function’s return type is PyResult<()>. That is another type
that is specific to PyO3. It is a shorthand for Rust’s Result<T, E> type,
where E implements From<E> for PyErr. This will raise a Python exception
if the Err variant is returned. The () in my function signature’s return
type just means that the function does not return a value, but is fallible.
This return type allows me to use the ? on line 6. The return type of the
method PyList.append also returns a PyResult<()>. The question mark
operator unwraps valid values or returns erroneous values, propagating them
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to the calling function. The next function uses the macro #[pymodule] which
carries out exporting the initialisation function of our module to Python.

Starting work on Engine module

After I tried out some of the basic concepts of using the PyO3 framework, I
began work on the Engine module by creating the constructor, which meant
first defining class variables. A class in PyO3 is defined using two macros:
#[pyclass], which is created using Rust’s struct statement, where the class
variables are located. The other part of a class is the implementation of its
methods. This is achieved using the macro #[pymethods] in combination
with Rust’s impl statement.

The original Engine module has many dependencies in the rest of the
project. I needed a way to call methods on these different modules in the
context of my Rust module. PyO3 offers interface to achieve this. This is a
method that I wrote to be able to access the database using Django. It is
used in the constructor, where the reference to the user can either be passed
directly, or just a user id is passed, in which case the user needs to be retrieved
from database.

Listing 4.3: Calling methods of other Python modules

fn get_user_by_id ( py : Python , user_id : i 32 )
−> PyResult<PyObject> {

PyModule : : import (py , " django . db . t r a n s a c t i o n " ) ?
. call_method1 ( " set_autocommit " , ( f a l s e , ) ) ? ;

Ok( PyModule : : import (py , " django . con t r i b . auth " ) ?
. call_method0 ( " get_user_model " ) ?
. g e t a t t r ( " o b j e c t s " ) ?
. call_method (

" get " ,
( ) ,
Some ( [ ( " id " , user_id ) ] . into_py_dict ( py ) )

) ? . into_py ( py ) )
}

In Python, getting a user instance from database using Django is achieved in
two lines of code, one of which is the import statement. The original code were
two lines, each calling a function or method in an imported module, so tech-
nically four lines. That means that I first needed to import these two module.
PyO3 offers an interface that can call any function and access any attribute on
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any PyObject. This is because Python technically does the same, as it is an
interpreted language, and type checks are performed in runtime. The painful
part about this rewrite was the fact that every time I need to call a method on
a non-standard object, I needed to insert an additional function call between
the object and the function call or attribute. This can be seen in listing
4.3, where the original code called transaction.set_autocommit(false),
I needed to import the module and use call_method1 function to call the
set_autocommit method. The other call is even worse, as the original code
accessed an attribute on the imported module, and only after that it called a
method on that attribute. The code expands fairly fast as a result of these
extra calls. The original Python module contains about 640 lines of code,
many of which are docstrings, while the finished PyO3 module reached about
840 with no docstrings.

4.1.2 Common patterns between the original code and Rust
implementation

On the rare occasion that the Python module checked for a None value, I
got the opportunity to take advantage of Rust’s Option object. Rust has
a mechanism that ensures that whenever the developer cannot be 100%
certain that a variable contains a non-None value, then it is visible on first
sight. Option is an enum that has two values: None and Some(T), where T
is the data type of the value the Option can contain. This way, an optional
argument bar of type i32, a 32-bit integer, of a function foo would be noted as
fn foo(bar: Option<i32>). This makes it clear, that bar might not contain
a value. To access the contained variable, one can call bar.unwrap(). This is
considered unsafe, as in the case where bar is actually None, Rust panics (the
terminology for unexpected termination of the program). A different way to
handle Options is by calling let bar = bar.unwrap_or(<default value>),
which reinitialises the variable bar with type T and either the value contained
in the Option in case it is Some, or the default value passed as a parameter
in case the Option is None. Another two approaches to handling Options are
an if let Some(value) = bar along with an else statement, and a match
statement.

Listing 4.4: Example handling of Option.

whi le ! spec i a l_edges . is_empty ( ) {
i f l e t Some( edge ) = s e l f . t r a v e r s e (py , spec i a l_edges )? {

// t r i g g e r the node . . .
} e l s e {
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break ;

}
}

Listing 4.5: The original code in Python

whi le spec ia l_edges :
edge = s e l f . t r a v e r s e ( spec i a l_edges )
i f edge :

# t r i g g e r the node . . .
e l s e :

break

As an example of the if let Some, I present the code in listing 4.4, which
is part of transition method in the Engine module. The return type of
self.traverse is PyResult<Option<PyObject>>, which means that using
the question mark operator, we effectively change the value to Option<PyObject>
type. The if branch handles the case where Option is a Some value, and the
else branch handles the None case.

4.1.3 Dynamic vs. Static Typing

Python’s dynamic typing turned out to be a hard obstacle to overcome, as
most of the original code did not have the (optional) typing annotations. To
create a first prototype, I had to guess what type was used. Sometimes the
type annotations were present, but they turned out to be more confusing
than helpful. Let’s take this snippet from the original implementation for an
example:

Listing 4.6: Confusing type annotation in the original code

de f i n i t _ s e s s i o n ( s e l f ,
s e s s i on_id : i n t = None ,
node_id : i n t = None ,
should_save : bool = True ) :

s e s s i on_id = se s s i on_id or s e l f . use r . data . get ( ’ s e s s i on ’ )

The first time that I saw this, I automatically assumed that session_id
is an integer type, because it is a parameter of the function with a type
annotation. So I was very surprised, when after running my Rust imple-
mentation, the code crashed inside this function. The error turned out to
originate in the data type being stored inside the self.user.data collection.
The session key of the data attribute contains a string and Python has no
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problem assigning that value to the original parameter. I ended up fixing this
issue by explicitly converting the value to Rust’s i32 type. I achieved this by
creating a helper method, any_to_i32.

Listing 4.7: Any to i32 Method

fn any_to_i32(& s e l f , data : &PyAny) −> Option<i32> {
match data . get_type ( ) . name ( ) {

Ok( " s t r " ) => {
i f l e t Ok( data_str ) = data . ex t r a c t : : < Str ing >() {

l e t data_str = data_str . as_str ( ) ;
i f " " . eq ( data_str ) {

re turn None ;
}
re turn Some( data_str . parse ( ) . unwrap ( ) )

}
None

} ,
Ok( " i n t " ) => Some( data . ex t r a c t :: < i32 >() . unwrap ( ) ) ,
Ok( other ) => panic ! ( " Unexpected data type : { other } " ) ,
Err (_) => panic ! ( " Fa i l ed g e t t i n g type name . . . " )

}
}

In the end, I did not need a conversion from other than string data type.
The method first gets the name of the data type of the variable that was
passed as an argument. Based on the type name, it then converts the type
to integer and returns it. In case of Python’s int type, all that is needed
is extracting the Rust’s i32 value. In case of a string, first a Rust String
type is extracted from the &PyAny, and then the i32 value is parsed from the
string.

This was not the only time when I struggled with ambiguous data types.
Consider the following snippet from the Python implementation:

Listing 4.8: Ambiguous data type of "edges" parameter in the original Python
implementation

de f t r a v e r s e ( s e l f , edges : l i s t , source_id : i n t ) :
f o r edge in edges :

exp r e s s i on = edge . get ( ’ expres s i on ’ )
i f e xp r e s s i on :

t ry :
s e l f . pa r s e r . r e f r e s h ( s e l f . user . data )
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passed = s e l f . pa r s e r . parse ( exp r e s s i on )

except :
passed = False

i f passed :
r e turn edge

e l s e :
r e turn edge

The datatype of the items of the edges parameter are not obvious at first
glance. I did not notice this and the resulting code for this method was the
following:

Listing 4.9: Ambiguous data type of "edges" parameter in the original Python
implementation

fn t r a v e r s e (& s e l f , py : Python , edges : &PyList )
−> PyResult<Option<PyObject>>

{
l e t user_data = s e l f . user . g e t a t t r (py , " data " ) . unwrap ( ) ;
f o r edge in edges {

i f l e t Ok( exp r e s s i on ) = edge . g e t a t t r ( " exp r e s s i on " ) {
i f l e t Ok(_) = s e l f . pa r s e r

. call_method1 (
py , " r e f r e s h " , ( user_data . as_re f ( py ) , )

) {
i f l e t Ok( passed ) = s e l f . pa r s e r

. call_method1 (
py , " r e f r e s h " , ( expres s ion , )

) {
i f passed . ex t r a c t ::<&PyBool>(py ) ? . i s_true ( ) {

re turn Ok(Some( edge . into_py ( py ) ) ) ;
}

}
}

} e l s e {
re turn Ok(Some( edge . into_py ( py ) ) ) ;

}
}
Ok(None )

}

PyO3 allows iteration over PyList collections, however, the bindings will
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have the general PyAny type. My assumption was, that simply by calling
getattr on the PyAny object, I would get the value of expression. This,
combined with the if let Ok(... expression and a safe else path led to a
hidden bug, that manifested by not following the correct path in the decision
tree based on user input. This was fixed by extracting the &PyDict type from
the edge binding and calling get_item on that.

4.1.4 Seemingly Compatible Data Types

Another caveat of PyO3 are the seemingly compatible data type interfaces. A
concrete example of this is Python’s OrderedDict data type. Consider this
short snippet of Rust code:

Listing 4.10: Example of PyDict data type usage in Rust

fn add_to_dict ( d i c t : &PyDict ) −> PyResult <()> {
d i c t . set_item ( " key " , " va lue " ) ? ;
p r i n t l n ! ( " Rust says : { : ? } " , d i c t . get_item ( " key " ) ) ;
Ok( ( ) )

}

It is a trivial piece of code that sets a value to a key in a reference to a python
dictionary that was passed as a parameter. Now, let’s call this code from a
Python console.

Listing 4.11: Output when passing an instance of OrderedDict to the function
from the previous listing in Python console

>>> from c o l l e c t i o n s import OrderedDict
>>> import PyO3Test
>>> d = OrderedDict ( )
>>> PyO3Test . add_to_dict (d)
Rust says : Some ( ’ value ’ )
>>> d
OrderedDict ( [ ] )
>>> d . get ( ’ key ’ )
’ value ’

We can see that the value is accessible through using the get method, but
otherwise, neither the key, nor the value are visible to Python.

Listing 4.12: Output when passing an instance of the standard dictionary to
the function from the previous listing in Python console

>>> d = d i c t ( )
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>>> PyO3Test . add_to_dict (d)
Rust says : Some ( ’ value ’ )
>>> d
{ ’ key ’ : ’ value ’ }

This time, the key and value are visible immediately. This implementation
detail caused a bug in the code, where adding values to an OrderedDict on
the User instance did not work correctly, causing the newly added keys to not
be visible later on, when the keys are accessed in a different module. To work
around this issue, I used the run method of the PyO3 Python GIL interface,
as seen in listing 4.13.

Listing 4.13: Workaround to set a key-value pair of an OrderedDict instance

fn ordered_dict_set (
py : Python ,
d i c t : &PyAny ,
key : &PyAny ,
va lue : &PyAny

) −> PyResult <()>
{

l e t l o c a l s = [
( " d " , d i c t ) ,
( " key " , key ) ,
( " va lue " , va lue )

] . into_py_dict ( py ) ;
py . run ( r#"d [ key ] = value "#,None , Some( l o c a l s ) ) ? ;
Ok( ( ) )

}

This code essentially sets the value by running python code, using the standard
notation dictionary_instance[key] = value.

4.1.5 Using Modules of the Original Implementation

On several occasions, it is necessary to call either part of the original imple-
mentation, that is located in another module, or part of the Django framework.
To achieve this goal, I used PyO3’s PyModule API. It provides methods for
importing modules from the Python environment to be able to utilise them as
if they were native Rust modules. This is done using he PyModule::import
method. An example usage of this capability is demonstrated in the following
listing:
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Listing 4.14: Calling methods of other Python modules

l e t sess ion_model = PyModule : : import (py , " system . models " ) ?
. g e t a t t r ( " Se s s i on " ) ? ;

s e l f . s e s s i o n = Some( sess ion_model . g e t a t t r ( " o b j e c t s " ) ?
. call_method (

" get " ,
( ) ,
Some ( [ ( " id " , s e s s i on_id ) ] . into_py_dict ( py ) )

) ? . into_py ( py ) ) ;

First, the system.models module is imported. Then, the Session class
is retrieved from the module using getattr. This would be equivalent to
from system.models import Session statement in Python. This is saved
in the session_model binding. After that, we need to call the get methods
from the objects attribute, which is Django’s data access layer. To achieve
that, we use the getattr method and call_method methods, respectively.
Notice the usage of into_py_dict, which converts Rust vector of tuples into
a Python dictionary. This is then used as the keyword arguments for calling
the get method. If we needed to pass any positional arguments, they would
be represented by a Rust tuple as the second argument of the call_method
method. Using the empty braces, we passed an empty tuple.

4.1.6 Finishing up

When most of the functionality was done, I started regularly running the tests
that were prepared by the developers who worked on the project before me.
This uncovered some bugs that were mostly fairly easy to fix. The process of
building the module is following:..1. Use maturin build --release command to build the optimised binary

.whl file...2. Use pip install with the path to the .whl file to introduce the module
to the Python environment.

After these steps, the Engine class can be imported into the project’s modules
using from engine_rs import EngineRS. Notice that I named the module
slightly differently than the original one, so that in case we needed to revert
to the original implementation, we could just rename the references used in
the code to the original class, while it is apparent at first glance which Engine
class is in fact being used.
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4.2 Integration into CI/CD

To incorporate the build process into the CI/CD pipeline, I decided to add the
procedure to the Dockerfile. The Dockerfile is a text document, containing
the instructions required to build a docker image. This process is part of the
build stage of the GitLab CI/CD pipeline. The build is composed of several
steps:..1. Download rustup, a tool used to install rust compiler...2. Run the rustup tool..3. Add /root/.cargo/bin to the PATH environment variable. This step is

required, so that maturin can easily access the rust compiler...4. Copy the Rust source files to the Docker container...5. Run the command maturin build --release. This step builds the
binary specific to the platform of the system on which the command is
run. This is the reason why we do not build the binary locally - because
this approach is more flexible, as it always builds the binary for the
correct platform...6. run pip install <path to .whl file>. This step is more compli-
cated, because maturin does not support specifying the name of the
output file. The name always contains information about the platform for
which the binary was built, among other things. For example on my ma-
chine, the generated file’s name is engine_rs-0.1.0-cp38-none-win_amd64.whl,
where win in the name specifies Windows as the OS the binary is built
for, and amd64 the CPU architecture.

This finalises the process of installing the module on the Docker container.
Unfortunately, despite the tests passing with no issues and the pipeline
finishing with no problem, the code does not run properly on the target
system. It is a great disappointment for me and the rest of the team, because
I ran out of time to try and troubleshoot the issue before the deadline to
submit this thesis. This also means, that regrettably, I cannot run any
reasonable performance tests while the code is not implemented correctly.
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Chapter 5
Performance testing and optimisation

This chapter focuses on the final stage of the project. We will explore the
options I had for measuring the performance of the original and optimised
version and present the results of the chosen method.

5.1 Tools and methods

5.1.1 Profiling

Profiling provides the most precise and detailed information about the perfor-
mance of individual sections of a running program. It involves the analysis of
a program to determine its runtime behaviour, specifically identifying which
parts of the code are consuming the most resources..CPU Profiling: Assesses how the program utilises the CPU. Identifies

sections of code that are computationally expensive..Memory Profiling: Analyses the memory allocation and usage during
program execution. Helps detect memory leaks and optimise memory
usage.. I/O Profiling: Evaluates the input/output operations of a program,
including dish access and network communication, to identify slow I/O
operations..Concurrency Profiling: Analyses multi-threaded applications to detect
race conditions or deadlocks.

Python profiling

As this project is dealing with a python implementation, I will elaborate
on several profiling techniques specific to Python. These are important for
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optimising code performance and identifying bottlenecks. I will cover various
tools and techniques..Deterministic Profiling involves collecting precise data about the

execution of a program by recording function calls, their execution time,
and other statistics. The cProfile and profile modules in Python are
commonly used for deterministic profiling.[9]. Statistical Profiling collects data at specific intervals (sampling). Com-
pared to deterministic profiling, it is less intrusive and introduces lower
overhead, which is traded off for lower accuracy. Yappi is a typical tool
used for statistical profiling.[9]

cProfile. cProfile and profile are built-in Python modules providing
deterministic profiling. They record the number of function calls and their
execution time. profile provides a bit more flexibility and configurability.[10]

pstats. pstats is a module used in conjunction with the two former tools
to analyse profiling data. It allows for sorting of the results in various
formats.[10]

line_profiler. line_profiler provides line-by-line profiling of Python code.
It is useful for identifying which lines within a function are the most time-
consuming.

memory_profiler. memory_profiler is used for memory profiling. It pro-
vides information about the memory usage on a line-by-line basis. It helps
detect memory leaks and optimise memory usage.

py-spy. py-spy is a statistical profiler for python applications. It runs as
a separate process, so it is non-intrusive and suitable for profiling running
programs without modifying their code.

Yappi. Yappi is a statistical profiler that supports CPU-clock and time-based
profiling. It also supports profiling of multi-threaded applications, making it
a versatile tool for performance analysis.

5.1.2 Performance/Load Testing

This section explores the various tools and methodologies available for con-
ducting performance and stress testing of web servers. It is a crucial aspect
of web server maintenance and optimisation. It provides an insight into the
server’s ability to handle peak loads without compromising speed, efficiency,
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or user experience. Using these tools and methods helps us evaluate a server’s
capacity to manage concurrent users, process requests quickly, and maintain
stability under pressure.

Performance testing involves assessing the speed, responsiveness, and sta-
bility of a web application under a particular workload. It focuses on metrics,
such as response time, throughput, and error rate. This type of testing helps
in understanding the capacity limits of the application and in identifying the
components that need optimisation.

Load testing, a subset of performance testing, specifically examines the
system’s behaviour under normal and peak load conditions. It simulates a
large number of users accessing the application simultaneously to ensure that
the back-end can handle high traffic without degradation in performance. Load
testing is essential for applications expected to experience significant traffic
spikes, such as e-commerce sites during sales events, or services providing
lottery results, which get heavy traffic immediately after the announced result
draw.

Key metrics in Performance and Load Testing include:.Response Time: The time taken by the server to respond to a request.
It is critical for user satisfaction, as longer response times can lead to
user frustration, which in turn can lead to loss of the user’s interest and
diminished revenue..Throughput: The number of requests processed by the server per unit
time. It indicates the capacity of the application to handle concurrent
users.. Error Rate: The number of failed requests compared to the total
number of requests. High error rates under load can be indicative of
stability issues that need to be addressed.

Tools for Performance Testing

Several tools are available to facilitate performance and load testing of web
back-end, each offering unique features to address different aspects of testing.

JMeter. Apache JMeter is an open-source tool designed for load testing and
performance measurement. It supports a wide range of protocols, including
HTTP, HTTPS, SOAP, REST, GraphQL, and many more, making it versatile
for testing various web applications. After running the tests, it provides a
web report with processed results in the form of basic graphs and tables.[11]
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LoadRunner. LoadRunner is a comprehensive performance testing tool that
simulates thousands of users to test applications under load. It provides
detailed analytics and reporting, helping identify performance issues and their
root causes.

Locust. Locust is an open-source load testing tool that allows writing test
scenarios in Python. It is highly scalable and can simulate millions of users
to test the performance of web applications.

Gatling. Gatling is an open-source load testing tool primarily used for
testing web applications. It is known for its high performance and ability to
handle large-scale load tests efficiently.

5.2 Chosen Strategy

In this section, I will elaborate on the decision-making process for choosing the
tool and strategy for performance testing of both the original implementation
and the optimised version of the application. Choosing the right tool and
strategy is critical in validation of the improvements.

My first consideration was profiling, as it provides accurate and easily
comparable measurements of the improvements between the two versions.
Since the optimisation targeted a single module, comparing the run times of
the class’s methods before and after optimisation would be most beneficial.
However, this task proved challenging because the application runs in a Docker
environment. This limited me to using less accurate statistical profiling, with
the added difficulty of running it within the Docker instance.

Ultimately, it was much easier and more straightforward to use performance
testing tools and flood the application with requests.

For this task, I chose Apache JMeter for its detailed documentation, ver-
satile toolset, high performance, comprehensive reporting capabilities, and
strong market adoption and community support. These attributes allowed
me to design a test suite within a day, despite it being my first encounter with
the tool. Furthermore, JMeter is an industry-standard tool for performance
testing, providing valuable experience with a tool I am likely to encounter
again in my career.

5.2.1 Hardware

I decided to take advantage of the existing environment on my laptop, running
Ubuntu OS. It already had all the necessary configurations and tools set
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up since it was the machine I used for development on this project. How-
ever, to access the application over the local network, I needed to make a
minor configuration change. This involved adding the machine’s local IP
address to the Cross-Origin Resource Sharing (CORS) and Cross-Site Request
Forgery (CSRF) allowed origins settings. By doing this, I enabled secure
and authorised network access to the application, facilitating comprehensive
performance testing from other devices within the local network.

Running the application back end on a laptop provided a unique advantage
for performance testing. Laptops generally have more constrained resources
compared to dedicated servers or cloud environments, such as limited CPU
power, memory, and disk I/O capacity. This environment made it easier to
push the hardware to its performance limits, which was particularly useful
for demonstrating the effectiveness of optimisations.

Conversely, the machine simulating the clients was my desktop computer
equipped with a powerful CPU. This meant that generating and sending
multiple requests simultaneously was not an issue. The high-performance
CPU could handle the computational load required to simulate numerous
client requests without becoming a bottleneck. This reliability was crucial,
because it guaranteed that the client machine’s performance would not skew
the results of the test.

5.2.2 Designing the Test Plan

First steps

As this was my first experience with the tool, I began with the simplest
requests and gradually built upon them. I started by adding an HTTP
Request element to the default Thread Group. I opened the app I was testing
in my browser and navigated to the page I wanted to include in my Test
Plan. Using the Network tab of the browser’s developer tools as a reference,
I constructed a basic request. When I ran the test, I received a 403 code
(permission denied), which was not surprising.

The first obstacle I needed to address was maintaining a user’s session.
Initially, I used an HTTP Cookie Manager element, a JMeter tool for setting,
storing, and attaching cookies to the requests sent out. I copied the session
cookies from the developer tools’ storage tab into the cookie manager. When
I ran the test this time, I was pleasantly surprised at how easy it was to set
up a basic working configuration, as I received a success code.

Next, I wanted to add a POST request. A single therapeutic session in
the app takes place on a single web page using Angular on the front end. I
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needed to simulate the user filling out a field and pressing the "Next" button.
The application uses a POST request for that. Just like before, I used the
developer tools to listen to the requests sent out by the app and replicate
the POST request in a new HTTP Request element. This also yielded a
successful response.

Automated login

I was aware that moving through the therapeutic session persists that in-
formation about the user in the database, which meant that I needed more
user records - specifically one user for each thread that I would use to send
out the requests. Otherwise the server would respond with error messages,
because the threads would send requests containing data that is not expected
in the current step of the session. This made me realise that the strategy of
manually copying session cookies into JMeter was not viable for this scenario.

I started by creating the users in the app. Then, I made a comma-separated
values (CSV) file containing the login information for each of the users. Using
the CSV Data Set Config element, the data gets parsed in JMeter. Each
thread gets a single line from the CSV, so each thread then represents a single
user. I then used an Once Only Controller element to log into the users’
accounts at the beginning of the test. However, one more element was needed
to ensure a successful login. The login page contains a hidden input element
containing a CSFR middle-ware token, which is a part of the application’s
security mechanisms. Logging in requires loading the login page, extracting
the token from the body of the page and adding it to the POST request along
with the user’s credentials.

Finalising the configuration

Once I was able to log in with each thread seamlessly, I started adding the
steps of the session. This was a fairly easy process of copying the request
body from the browser and adding HTML Request elements for each of the
requests. Finally, it was a question of configuring the number of threads and
ramp up period according to the test I was conducting.

Resulting configuration:.Thread Group. CSV Data Set Config (for loading user credentials). HTTP Cookie Manager (for automatic session cookie retention)
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.Only Once Controller (executes only once in the test)
. HTTP Request (Get Token - loads the login page to extract

the CSRF Middleware Token)
. CSS Selector Extractor (uses CSS to extract the token from

the hidden input element). HTTP Request (Log In - POST request containing CSRF token
and user credentials). HTTP Requests (11x - moving through the therapeutic session). Listeners for viewing the results when debugging the test

5.3 Running the Test

5.3.1 Preparation

To minimise interference from other software running on the laptop simulating
the server, I ran the OS without Graphical User Interface (GUI). This should
lower resource consumption from the operating system itself, which increases
the performance, stability, and predictability. That is crucial for a consistent
test environment.

As for the machine simulating the clients, I only resorted to turning off
all unnecessary running software on the computer. As the machine is fairly
overpowered for the task, I did not consider taking further steps. I validating
my decision by performing an experimental run with the task manager open,
monitoring system resources. The CPU load did not exceed 10%, and memory
usage was nearly unaffected, so I was satisfied with the setup as it was.

However, I followed the instructions from the JMeter documentation and
for the real tests, I ran the Test Plan from using the tool’s CLI, with no GUI.
I prepared a short batch script to create a new directory for each run, to
streamline the process of collecting the data.

Listing 5.1: Batch script for running the Test Plan

@echo o f f
f o r %%i in ( ∗ . jmx) do s e t t e s t run=%%i
s e t f o l d e r=%te s t run :~0,−4%_%date :~6,4%% date :~3 ,2%\

%date :~0 ,2%T%time :~0,2%%time :~3,2%%time :~6 ,2%
md %f o l d e r%
md %f o l d e r%\web_report
jmeter −Jjmeter . r epo r t g ene ra to r . o v e r a l l _ g r a n u l a r i t y =10000\
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−n −t %te s t run% − l %f o l d e r%\r e s u l t s . csv −e\
−o %f o l d e r%\web_report

pause

The script finds a .jmx file containing the JMeter Test Plan definition,
creates a directory with the same name, appending the current date and time
to its name, runs the Test Plan, and saves the results in the newly created
directory. It also sets a finer granularity for the graphs in the web report,
because the default 60 seconds are too coarse for our data.

5.3.2 Load Testing

For the first test, the objective was to determine the maximum traffic the
application could handle. To achieve this, I gradually increased the number
of threads throughout the test, thereby increasing the server’s load. I started
with the original Python implementation and designed the test to add a new
thread every 30 seconds, up to a total of 10 concurrent threads, and limited
the test duration to 6 minutes. However, the server stopped responding
within mere 2 minutes, eventually returning a timeout error. Despite multiple
attempts, the results were the same. This was unexpected, so I performed
another test with only two threads and a duration of 3 minutes. This also
proved problematic, with the server regularly crashing within 30 to 120
seconds. It took about 10 attempts to get a run that did not crash.

Next, I repeated the procedure with the Rust implementation. It was a relief
to find that this version was much more stable. The Rust implementation
completed the first test with only minor issues, successfully handling most of
the traffic, albeit with increasing latency and some errors. I ran the second
test with the same configuration as for the Python implementation—2 threads
for 3 minutes—to obtain comparable results.

The details of the test results are discussed in the following section.

5.4 Results

This section deals with the analysis of the collected data from the performance
tests. It involves examining the results to identify key performance metrics
such as response times, error rates, and system stability under different loads.
By comparing these metrics between the original Python implementation and
the Rust implementation, we can assess the effectiveness of the optimisations.
This analysis provides a comprehensive overview of the performance of the
application, highlighting the overall improvements achieved.
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Figure 5.1: Codes Per Second, Incremental Load, Python implementation

5.4.1 Incremental Load Testing

The configuration for incremental load testing consists of gradually increasing
the number of threads used to send requests to the server, starting with one
thread and going up to 10 threads. The increment is made every 30 seconds
to allow the server room for stabilisation. The ramp-up period is therefore
300 seconds, while the test is set to end after 360 seconds, or 6 minutes.

Python implementation

The original implementation did not do well during this test. After running
the test several times, I finally gave up when the server endured for about one
minute, after which timeout responses started appearing, as seen in figure
5.1. We can see throughput of about 18 successful responses per second (rps)
in the first 30 seconds, when only a single thread was sending requests. After
the initial 30 seconds, the second thread joins in and throughput peaks at
29.6 rps, before the server stopped responding. I cropped the graph from the
right, as the later responses are all only 504 error codes and therefore are
irrelevant.

Rust implementation

The Rust implementation endured the whole 6 minutes of the test, reaching
the maximum load of 10 threads simultaneously sending requests to the server.
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Figure 5.2: Codes Per Second, Incremental Load, Rust implementation

In figure 5.2 we can see a similar pattern to the previous figure, although the
throughput in the first 30 seconds is higher, at over 24 responses per second
(rps), with a single thread feeding the requests. The throughput peaks at 39.5
rps after the first minute of the test. When the fourth thread joins in, error
responses start appearing, lowering the throughput of successful responses.
However, the error codes took up at most 4.1% of the responses.

In figure 5.3 we can see how the increased load reflects on response times.
Even under the heaviest load near the end of the test, the application handled
nearly 90% of requests in less than 500 ms and 50% of requests in under
275 ms. Moreover, the response times appear to grow in a linear manner,
indicating reasonable scalability and performance predictability under even
higher load.[12]

5.4.2 Constant Load Testing

As the stability of the two implementations differs greatly, I decided to
perform a test where the load on the server is constant and equal for both
implementations, and compare the difference of latency of the responses
between the Python and Rust implementations. This time, I configured the
test to employ two threads right from the start, and let the test run for three
minutes. Below is a summary of the results:

36



....................................... 5.4. Results

Figure 5.3: Response Time Over Time, Incremental Load, Rust implementation

Requests Executions Response Times [ms] Throughput
Impl. # Samples Error % Median 90th pct 95th pct Trans/s

Python 4801 0.52% 52 143 178 26.67
Rust 6159 0% 44 99 128 34.23

Table 5.1: Constant Load Testing Summary

Python implementation

The original was unstable during this test, similarly to the first test. I took
about 10 attempts to finish the three-minute test without the server becoming
unresponsive. The response times seem to stay below 100 ms for most of the
steps throughout the session, with the exception of the initial load and steps
1 and 10, as can be seen in figure 5.4. The throughput of this version of the
server sits at 26.67 transactions per second.

Rust implementation

The superior stability of the Rust implementation can be seen in figure 5.5.
Similarly to the original, steps 0, 1, and 10 are more problematic form the
response time point of view. However, in the Rust version, up to 75% of
those requests are processed in under 100 ms. It is not surprising that the
throughput of this implementation is also superior, at 34.23 transactions per
second, which means that it processes the requests about 28% faster.
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Figure 5.4: Response Time Percentiles, Constant Load, Python implementation

Figure 5.5: Response Time Percentiles, Constant Load, Rust implementation

38



Chapter 6
Conclusion

The optimisation of the therapeutic web application by transitioning a key
module from Python to Rust has demonstrated nearly a 30% performance
improvement. This was achieved by reworking only a relatively small part of
the project, while the rest of it remained unchanged.

Along with performance gains, the project unveiled an unexpected positive
side-effect in the form of greatly improved stability of the application under
stress. The Rust implementation was able to process five times as much
simulated traffic compared to the original application without the server
becoming severely unstable. It should be noted, that higher load was not
tested and real limits were not found.

This work underscores the potential benefits of leveraging Rust for performance-
critical components in web applications, offering a direction for efforts of
similar manner. The integration into the pre-existing CI/CD pipeline ensures
that these enhancements are seamlessly incorporated into the development
workflow.

Future work can explore further optimisation opportunities by expanding
the use of Rust to other performance-sensitive areas - namely the expressions
module, which is heavily used in the modified module and is a good candidate
for potential reimplementation as well.
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