

Quality of Service-aware scheduling for distributed

unit in Open Radio Access Network

Master Thesis

Supervisor: prof. Ing. Zdenek Becvar, Ph.D.

Field of study: Communications Systems and Networks

Bc. Lin, Xiu-Wei

May 2024

Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Telecommunications Engineering

ii

iii

iv

Acknowledgment
I am sincerely grateful to Professor Becvar for his invaluable guidance and insightful advice

throughout the process of writing my thesis and papers. His mentorship has been instrumental in shaping

my understanding and approach to academic writing. I am equally indebted to Professor Ray for

challenging me to push beyond my limits, fostering my growth and resilience in the face of academic

challenges. Their mentorship has not only enriched my academic journey but also imparted valuable

lessons in critical thinking and problem-solving.

I extend my heartfelt appreciation to my friends whose unwavering support and encouragement have

been a constant source of strength during challenging times. Their willingness to lend an ear and offer

guidance over countless phone calls has been truly uplifting.

Special thanks are due to my seniors, Dennis Huang and Mick Lin, whose guidance and advice have

been invaluable in terms of implementation of the thesis. Their insights and expertise have been

instrumental in shaping the development of my work.

Lastly, I am deeply grateful to my parents for their unwavering support and sacrifices. Their belief

in my abilities and unwavering financial support have enabled me to pursue my academic and

professional aspirations. I am forever indebted to them and aspire to make them proud by achieving my

goals and providing them with the retirement they deserve.

Declaration
I declare that the submitted thesis was developed individually and that I listed all used information

sources in accordance with the Methodical Guideline on Ethical Principles for College Final Work

Preparation. In Prague, 24. May 2024.

v

vi

Abstract
The Open Radio Access Network (O-RAN) architecture offers flexibility and efficiency compared

to traditional architecture of mobile networks. One crucial aspect of O-RAN is management of radio

resources, which directly impacts the network performance and users' quality of service. This thesis

focuses on radio resource management, specifically on scheduling, in O-RAN. The scheduling

implemented in the current O-RAN Software Community can only handle one user within one

transmission interval (TTI). This limit efficiency of radio resource usage. To improve this, in this thesis,

we introduce bit rate control mechanism to develop and implement a new scheduler that handles multiple

users simultaneously while also considering guaranteed flow bit rate and maximum flow bit rate of

individual users to ensure users service quality. Besides, the implemented scheduler also considers

retransmission of erroneous blocks and provides fairness to users. The enhanced scheduler is integrated

into the O-RAN distributed unit source code and undergoes extensive testing to validate its performance

and reliability. The experiments demonstrate an increase in throughput by 15.1% introduced by the

implemented multi-user scheduler compared to traditional O-RAN single user scheduler.

Keywords: Open RAN, O-RAN

Abstrakt
Architektura Open Radio Access Network (O-RAN) nabízí flexibilitu a efektivitu ve srovnání s

tradiční architekturou mobilních sítí. Jedním z klíčových aspektů architektury O-RAN je správa

rádiových prostředků, která přímo ovlivňuje výkon sítě a kvalitu služeb pro uživatele. Tato práce se

zaměřuje na správu rádiových prostředků, konkrétně na přidělování rádiových prostředků (scheduling),

v O-RAN sítích. Přidělování rádiových prostředků implementované v existujícím softwaru pro sítě O-

RAN může zpracovat pouze jednoho uživatele v rámci jednoho přenosového intervalu. V této diplomové

práci je zaveden mechanismus pro kontrolu přenosové rychlosti pro vývoj a implementaci nového bloku

pro přidělování rádiových prostředků, který obsluhuje více uživatelů současně, přičemž bere v úvahu

také garantovanou přenosovou rychlost a maximální přenosovou rychlost uživateli, abychom zajistili

požadovanou kvalitu služeb. Kromě toho, implementovaný blok pro přidělování rádiových prostředků

bere v úvahu retranslace chybných bloků dat a spravedlivé rozdělení prostředků mezi uživatele. Řešení

je integrováno do zdrojového kódu distribuované jednotky O-RAN za účelem jeho testování a ověření

funkčnosti a spolehlivosti. Experimenty ukazují zvýšení propustnosti sítě o 15.1% díky

implementovanému řešení oproti řešení pro jednoho uživatele integrovaném v síti O-RAN.

Klícová slova: Open RAN, O-RAN

vii

Contents
1. Introduction .. 1

2. System Architecture ... 3

2.1 O-RAN Architecture .. 3

2.2 O-DU High architecture ... 7

2.3 Functionality of MAC layer .. 9

2.4 UE Attachment and UE dedicated scheduling ... 9

2.5 Scheduling of PRACH, PDCCH, PDSCH, PUCCH, and PUSCH 11

3 Developed Scheduler.. 12

3.1 Scheduling of Multiple UE per TTI ... 12

3.2 QoS-aware scheduling ... 15

3.3 Retransmission scheduling ... 19

4 Experimental Result ... 21

4.1 Testing Environment .. 21

4.2 Multiple UE per TTI scheduling .. 23

4.3 QoS-aware scheduling ... 26

4.3.1 Functionalities of GFBR & MFBR .. 26

4.3.2 QoS satisfactory .. 28

4.3.3 Effect of average window size .. 28

4.3.4 Processing time ... 29

4.4 Retransmission scheduling ... 30

5 Conclusion .. 33

6 Reference.. 34

7 Appendix .. 36

7.1 List of modified file list for scheduling of Multiple UE per TTI .. 36

7.2 List of modified file list for QoS-aware scheduling .. 37

7.3 List of modified file list for retransmission scheduling ... 38

viii

List of Figures
Figure 2.1-1: Logical Architecture of O-RAN .. 4

Figure 2.1-2: MSC of F1 setup, UE Context Management, RRC message transfer 6

Figure 2.2-1: O-DU High architecture ... 7

Figure 2.4-1: The procedure of UE Attachment and UE dedicated scheduling in NR 10

Figure 2.4-2: The flow chart of OSC MAC scheduler .. 11

Figure 3.1-1: The illustration of code modification for MU per TTI SCH 12

Figure 3.1-2: Resource allocation of PDCCH, PDSCH and PUCCH ... 14

Figure 3.2-1: The flow chart of QoS-aware SCH ... 16

Figure 3.2-2: Illustration of leaky bucket mechanism... 17

Figure 3.2-3: Illustration of the Memory release problem in OSC SCH .. 18

Figure 3.3-1: The flow chart of DL dedicated scheduling function .. 19

Figure 3.3-2: The flow chart of the retransmission scheduling function .. 20

Figure 4.1-1: The testing environment for this paper ... 22

Figure 4.2-1: O-DU Log of UE Throughput list .. 23

Figure 4.2-2: O-DU Log of FAPI PDUs ... 23

Figure 4.2-3: O-DU Log of scheduled UEs per slot ... 23

Figure 4.2-4: Illustration of the experiment for SU and MU scheduling per TTI 25

Figure 4.2-5: Downlink overall throughput and PRB usage between SU and MU scheduling per TTI 26

Figure 4.3.1-1: Downlink Throughput of GBR and Non-GBR Traffic for MFBR Testing Experiment 27

Figure 4.3.1-2: Downlink Throughput of GBR and Non-GBR Traffic for GFBR Testing Experiment 28

Figure 4.3.2-1: QoS satisfactory under different GFBR values .. 28

Figure 4.3.3-1: The effect of different average window values. ... 29

Figure 4.3.4-1: The comparison of processing time between QoS-aware SCH, FCFS SCH, and slice-

enabled SCH .. 30

Figure 4.4-1: The average throughput of retransmission ... 31

Figure 4.4-2: The average throughput of retransmission and new transmission 32

ix

List of Tables
Table 4.2-1: CU Stub DL Packet Generation Parameters for MU per TTI Testing 24

Table 4.3.1-1: CU Stub DL Packet Generation Parameters for MFBR Testing Experiment 27

Table 4.3.1-2: CU Stub DL Packet Generation Parameters for MFBR Testing Experiment 27

Table 4.4-1: CU Stub DL Packet Generation Parameters for retransmission Testing Experiment 31

1

1. Introduction
The Open Radio Access Network (O-RAN) is a new emerging concept of a fully open and intelligent

radio access network developed by the O-RAN Alliance [1]. The O-RAN provides open interfaces

enabling vendors and operators to customize the network according to their own needs. The intelligence

is embodied by the RAN intelligent controller (RIC), which monitors and controls the RAN by utilizing

closed-loop automation exploiting artificial intelligence (AI). The collaborative efforts of the O-RAN

Alliance and the Linux Foundation have given rise to the O-RAN Software Community (OSC). This

community focuses on the development of reference software for essential O-RAN components in line

with O-RAN specifications.

The O-RAN separates a traditional RAN into three components: O-RAN radio unit (O-RU), O-RAN

centralized unit (OCU), and O-RAN distributed unit (O-DU). Each component plays a crucial role in

enhancing the flexibility and efficiency of the network. The O-RU is responsible for handling radio

transmission and reception including conversion of digital signal to analog and vice versa. The O-CU

acts as a centralized entity responsible for a higher-layer processing including functions, such as radio

resource management and network control. The O-DU is responsible for facilitating the communication

between the network infrastructure and the user equipment (UE) ensuring reliable and efficient data

transmission and overseeing functionalities of the Radio Link Control layer (RLC), medium access

control layer (MAC), and physical layer (PHY) in the 5G protocol stack [2]. Meanwhile, the Open RAN

Software Community (OSC) [3][4] collaborates with organizations like the O-RAN Alliance and the

Linux Foundation to foster the development of open-source solutions for radio access networks,

ensuring accessibility to every developer. Embracing the architecture and specifications outlined by the

O-RAN Alliance workgroups, OSC endeavors to create an open-source software ecosystem aimed at

establishing an intelligent 5G Radio Access Network. Over time, OSC has released eight versions of its

open-source code, with each version denoted alphabetically from the earliest Release A to the latest

Release H (released in June 2023). The community's code repository, accessible at [5], serves as a hub

for ongoing developments and contributions. In this thesis, our primary emphasis lies on Layer 2 of the

protocol stack, specifically addressing the MAC layer and the RLC layer.

Within OSC, several ongoing projects are underway, ranging from the Near-Real-time RAN

Intelligent Controller Platform to developments in radio access network. This thesis primarily focuses

on the development of a UE per Transmission Time Interval (TTI) scheduler and the implementation of

a QoS-aware scheduler. This QoS-aware scheduler takes into account critical parameters such as

Guaranteed Flow Bit Rate (GFBR) and Maximum Flow Bit Rate (MFBR), aiming to optimize resource

allocation while ensuring stringent quality of service requirements.

In addition to OSC, also other projects, bodies, and activities contribute to the open-source RAN

landscape. One example is Open Air Interface (OAI) [6], maintained by the OAI Software Alliance

(OSA), providing open-source software for RAN and other network components and functions for 4G

and 5G. Similarly, srsRAN [7], developed by Software Radio System (SRS) [8], offers an open-source

software collection for 4G and 5G radio implementations. These projects, primarily developed in C and

C++ programming languages, enrich the open-source RAN ecosystem.

However, despite OSC's advantages, the OSC software implementation lacks crucial functionalities

within the MAC layer, particularly in terms of scheduling capabilities. Key absent features include

multi-UE scheduling per transmission time interval (TTI) and multi-queue scheduling based on

Guaranteed Bit Rate (GBR) information [9]. Multi-UE scheduling per TTI allows for the simultaneous

scheduling of multiple UEs within a single TTI, thereby enhancing resource utilization. Meanwhile,

multi-queue scheduling ensures that GBR traffic meets individual Quality of Service (QoS)

2

requirements while maintaining transmission reliability. The absence of these functionalities imposes

limitations on resource efficiency and may adversely impact network performance. Single-UE

scheduling per TTI restricts spectrum resource utilization, potentially leading to resource

underutilization and even starvation scenarios where minimum bit rate guarantees are not met and

maximum bit rate limits are not enforced based on QoS requirements. To address these limitations within

the MAC layer implementation of OSC, this paper aims to enhance the ORAN scheduler in the OSC O-

DU [10] by introducing critical functionalities currently not implemented. Our primary objective is to

overcome the challenge posed by scheduling of multiple UEs per TTI, with the ultimate goal of

improving overall Physical Resource Block (PRB) utilization. Through the implementation of multi-UE

per TTI scheduling, we intend to enhance resource allocation efficiency. Additionally, we propose the

introduction of QoS-aware scheduling, leveraging Guaranteed Flow Bit Rate (GFBR) and Maximum

Flow Bit Rate (MFBR) mechanisms to ensure the satisfaction of GBR traffic flows while preventing

traffic from exceeding its maximum flow bit rate.

The paper [11] discusses resource scheduling based on diverse quality-of-service (QoS)

requirements while considering channel status. In [12], the authors introduce a concept for controlling

the maximum bit rate. Reference [13] highlights the absence of a standardized data communication

mechanism to disaggregate QoS flows into multiple routes and demonstrates how to incorporate

retransmission into the scheduling mechanism while ensuring precise fairness and rate requirements.

Paper [14] explores prioritizing retransmissions for different classes of traffic.

However, these works overlook considerations for practical implementation. For instance, both

papers fail to account for parameters defined in specifications or the nuanced factors influencing real-

world deployment. In our analysis, we adopt a practical implementation perspective, delving into these

overlooked aspects to develop a comprehensive understanding of the problem. By doing so, we propose

a solution that bridges the gap between theoretical concepts and practical application, ensuring the

efficacy and viability of our approach.

The main contributions of the thesis include enhancing the MAC scheduler in O-DU to support

multi-UE scheduling in a single TTI, thereby improving spectral efficiency. Moreover, our solution is

uniquely distinguished in the open-source domain by the introduction of a leaky bucket mechanism that

incorporates Guaranteed Bit Rate (GBR) information. This innovative approach prioritizes both spectral

efficiency and ensures adherence to QoS requirements. Furthermore, the development of SCH to support

multiple UEs per TTI is compliant with current OSC slice-enabled SCH, along with the implementation

of a framework supporting multiple queues based on different QoS flows, including GFBR, MFBR, and

retransmission, significantly contributes to the enhancement of the open-source codebase. Overall, our

enhanced scheduler not only achieves higher overall throughput but also guarantees the Guaranteed

Flow Bit Rate (GFBR) for GBR traffic, while ensuring fairness through Maximum Fair Bit Rate (MFBR)

in accordance with system requirements.

The rest of the paper is organized as follows. Section 2 presents the system architecture considered

in this paper. Section 3 discusses the proposed method. Section 4 presents the experimental result.

Finally, the conclusion and future works will be presented in section 5.

3

2. System Architecture
In this section, we present an in-depth examination of the system architecture, beginning with an

overview of the O-RAN architecture to provide a comprehensive understanding of its structure and

principles. We then delve into the architecture of the O-DU, the focal point of our study within the open-

source domain. Subsequently, we explore the functionalities of the Medium Access Control (MAC) layer,

offering insights into the specific components and functionality that form the crux of our investigation.

Finally, we provide background information on UE attachment and UE dedicated scheduling, laying the

groundwork by elucidating fundamental concepts governing the interaction between the radio access

network and user equipment (UE) side.

2.1 O-RAN Architecture
In this section, we begin by providing an overview of the general O-RAN architecture. Following

this, we delve into the specifics of the O-RAN component known as O-DU, which serves as the host for

the MAC scheduler —a central focus of our paper.

The O-RAN architecture, depicted in Figure 2.1-1, represents a transformative framework that

reshapes the architecture and functionality of mobile networks. At its core, the near real-time RIC

emerges as a centralized entity pivotal for network optimization, policy enforcement, and intelligent

control functions. This component significantly enhances network performance and efficiency by

enabling dynamic resource control and optimization with minimal latency. It facilitates critical functions,

such as mobility management and service orchestration, ensuring seamless operations. Complementing

the near real-time RIC is the non-real-time RIC, which handles longer-term optimization tasks while

providing similar functionalities. Additionally, the Service Management and Orchestration Framework

(SMO) oversees network management and automates the deployment of network virtualization.

The O-CU, O-DU, and O-RU represent the disaggregated and virtualized components of the radio

access network [15], establishing a noteworthy benchmark for other open-source entities like the O-

RAN Alliance [16] and the Small Cell Forum [17]. These elements introduce flexibility, scalability, and

interoperability through standardized interfaces and open architectures. The Y1 consumer block

symbolizes the end-user, emphasizing their pivotal role as the ultimate beneficiary of the O-RAN

architecture's advancements. Furthermore, the integration of O-eNB (Open eNodeB) signifies an open-

source base station implementation within cellular networks, fostering innovation and accessibility. Last,

the O-Cloud serves as a crucial cloud-based infrastructure hosting RAN control applications, thereby

enhancing the agility and adaptability of the O-RAN system.

4

Figure 2.1-1: Logical Architecture of O-RAN [18]

Our main focus is O-DU High in this thesis. As shown in Figure 2.1-2, O-DU High interfaces with

the following modules and each plays a crucial role in facilitating two primary functions: UE attachment

with the radio access network and dedicated scheduling. Before initiating dedicated scheduling for user

data transmission, the O-DU must complete connection setup with the O-CU via the F1 interface and

exchange UE context and RRC messages. The management procedures are outlined as follows:

 The O-CU is responsible for communication with the O-DU High on the F1 Application Protocol

(F1AP) interface. This interface facilitates both control and data message exchanges between the O-

CU and O-DU High. The following key F1AP messages are implemented on the F1-C interface,

with detailed specifications provided in reference [9]:

- Interface Management

 F1 Setup: Initiates the establishment of the F1 interface between the O-CU and O-DU

High.

 gNB-DU Configuration Update: Allows for updates to the configuration of the gNB-

DU.

 F1 Reset: Enables the reset of the F1 interface.

 PAGING: Facilitates paging procedures for user equipment (UE) mobility management.

- UE Context Management

 UE Context Setup: Establishes and initializes UE context within the O-CU.

 UE Context Modification: Allows for modifications to existing UE context parameters.

 UE Context Release: Initiates the release of UE context resources.

- RRC Message Transfer

 Initial UL RRC Message Transfer: Transfers initial uplink (UL) Radio Resource Control

(RRC) messages.

 DL RRC Message Transfer: Transfers downlink (DL) RRC messages.

 UL RRC Message Transfer: Transfers uplink (UL) RRC messages.

 RRC Delivery Report: Provides acknowledgment and delivery status of RRC messages.

5

 O-DU Low serves as the interface between the O-DU High and the physical layer of the radio access

network. Communication between O-DU High and O-DU Low occurs via the FAPI (Flexible

Application Platform Interface) interface. Below are the supported FAPI messages, based on the

FAPI interface files provided by Intel:

- P5 messages - PHY mode control interface

 PARAM.request/PARAM.response: Requests and responses for configuring PHY

parameters.

 CONFIG.request/CONFIG.response: Requests and responses for configuring PHY

configuration parameters.

 START.request: Initiates the start of PHY processing.

 STOP.request: Requests the stop of PHY processing.

 STOP.indication: Indicates the stop of PHY processing.

- P7 messages - Main data path interface

 DL_TTI.request: Requests downlink transmission time interval (TTI) processing.

 UL_TTI.request: Requests uplink transmission time interval (TTI) processing.

 SLOT.indication: Indicates the occurrence of a time slot.

 UL_DCI.request: Requests uplink downlink control information (DCI) processing.

 TX_Data.request: Requests transmission of data.

 RX_Data.indication: Indicates reception of data.

 CRC.indication: Indicates cyclic redundancy check (CRC) status.

 UCI.indication: Indicates uplink control information (UCI) status.

 RACH.indication: Indicates random access channel (RACH) status.

At the outset, O-DU High synchronizes its configuration with the physical layer through PARAM

and CONFIG messages, establishing a common operational framework. The initiation of slot indication

via START request from the physical layer triggers the commencement of crucial message exchanges

between O-CU, O-DU High, and O-DU Low, as depicted in Figure 2.1-2. Within the F1AP message

exchange, F1 setup and gNB-DU Configuration Update play pivotal roles in the cell-up procedure,

facilitating the establishment of connectivity between O-RU and O-DU. Subsequently, messages

pertaining to UE context management and RRC message transfer come into play, facilitating the

establishment of UE context within the radio access network. The transmission of messages across the

FAPI interface is transferred through P7 messages, where DL_TTI.request and UL_TTI.request dictate

data transfer timings, while UL_DCI.request and UCI.indication transfer the data on control channel.

Additionally, TX_Data.request and RX_Data.indication transfer the data on shared channel

communication. Each of these message exchanges is integral to the setup of our environment, laying the

foundation for the operation of radio access network.

6

Figure 2.1-2: MSC of F1 setup, UE Context Management, RRC message transfer

7

2.2 O-DU High architecture
Broadly, the O-DU is horizontally divided into two distinct functional blocks: O-DU High,

responsible for hosting RLC and MAC functionalities, and O-DU Low, managing specific aspects of

the PHY layer functionalities [19]. The O-DU High operates through several threads, each dedicated to

its unique network function. The architecture of the O-DU High is depicted in Figure 2.2-1 revealing

numerous components, such as DU APP, RLC, MAC, Scheduler, or O1 Module [20], each serving

specific functions across eight running threads.

Figure 2.2-1: O-DU High architecture

A brief explanation of each module and submodule is provided below.

 DU APP: It serves as a central hub for communication and coordination within the Open RAN

ecosystem, facilitating seamless interactions with various network entities. In its interface with the

Operation, Administration, and Maintenance (OAM) system, DU APP leverages the O1 interface to

manage configuration settings, monitor alarms, and conduct performance management tasks.

Additionally, DU APP interfaces with the O-CU component, establishing connections over the F1

interface, which is underpinned by the Stream Control Transmission Protocol (SCTP). Within this

interface, control messages traverse the F1-C channel, while data messages flow through the F1-U

channel, enabling efficient exchange of RAN functionalities. Moreover, DU APP is responsible for

storing the configurations of both O-DU High and UEs, as well as handling message forwarding

within the system. It comprises several submodules, each serving specific functions within DU APP.

Additionally, DU APP engages with the RAN Intelligent Controller (RIC) via the E2 interface,

leveraging SCTP to facilitate seamless communication. Through these interfaces, DU APP plays a

pivotal role in orchestrating network operations, optimizing resource allocation, and ensuring the

reliability and performance of the Open RAN infrastructure.

8

- Config Handler: Manages the configurations received on O1 interfaces and stores them

within DU APP context.

- DU (Cell) Manager: Handles all cell operations at the DU APP.

- UE Manager: Manages UE contexts at the DU APP.

- Stream Control Transmission Protocol (SCTP) Handler: Responsible for establishing SCTP

connections with O-CU and RIC on the F1AP and E2AP interfaces, respectively.

- Enhanced GPRS Tunneling Protocol (EGTP) Handler: Responsible for establishing EGTP

connections with O-CU for data message exchange on the F1-U interface.

- ASN.1 Codecs: Contain ASN.1 encode/decode functions used for System information, F1AP,

and E2AP messages.

 O-DU Utility and Common Functions: The library for utility functions, typically utilized for

message exchange purposes.

 5G NR RLC: This component provides the functions of the NR RLC layer, ensuring the dependable

and effective transmission of data across the radio interface. Its primary operations involve dividing

and reconstructing data packets, crucial for maintaining data integrity and optimizing transmission

efficiency. For a more comprehensive understanding of the NR RLC's operations, detailed

explanations can be found in [21].

 5G NR MAC: This component provides the functions of the NR MAC layer; it facilitates efficient

management of radio resources in the 5G New Radio (NR) system. Its primary functions include

scheduling and coordination of data transmissions, handling contention resolution, and managing

access to the radio channel. Additionally, the NR MAC layer supports Quality of Service (QoS)

management, prioritizing traffic based on application requirements and network conditions, detailed

explanations can be found in [22].

 5G NR SCH: A critical submodule of the MAC layer, the Scheduler, plays a pivotal role in

orchestrating the allocation of radio resources to user equipment (UEs) across the network. Its

primary function encompasses the strategic determination of transmission parameters tailored to

each UE, encompassing factors like time-frequency resources and modulation schemes. By

meticulously optimizing spectrum utilization, the Scheduler ensures streamlined and efficient data

transmission throughout the network. It accomplishes this by dynamically assessing channel

conditions, Quality of Service (QoS) criteria, and network congestion levels, enabling informed

resource allocation decisions. Ultimately, the Scheduler's adept management maximizes network

capacity and enhances the overall user experience.

 Lower MAC: It is also known as the MAC sublayer, is responsible for managing access to the

physical transmission medium in a network by functional application platform interface (FAPI).

To implement multiple UEs per TTI scheduling, the primary software modules requiring

modification are SCH, MAC, and lower MAC layers. For QoS-aware scheduling based on Guaranteed

Flow Bit Rate (GFBR) and Maximum Flow Bit Rate (MFBR), the key modules in need of adjustment

are SCH and RLC. Further elaboration on the implementation methodology is provided in subsequent

sections of this paper.

9

2.3 Functionality of MAC layer
The MAC layer is responsible for crucial functions within the O-RAN architecture, encompassing

tasks like channel mapping, MAC service data unit (SDU) management, error correction through hybrid

automatic repeat request (HARQ), and prioritization of logical channels. In this paper, we focus on the

intricate challenges and considerations surrounding scheduling within the O-RAN framework.

Specifically, the MAC scheduler plays a pivotal role in managing various aspects, including User

Equipment (UE) status reporting, allocation of physical layer resources, and rate control to uphold

quality of service (QoS) standards [23]. Effective QoS provisioning hinges on the selection and

implementation of appropriate scheduling algorithms tailored to radio resource allocation needs.

2.4 UE Attachment and UE dedicated scheduling

In the domain of 5G NR, scheduling stands as a fundamental process governing the allocation of

limited spectrum resources for data transmission. At its core, the scheduler module orchestrates this

allocation dynamically and efficiently. Figure 2.4-1 provides a visual representation of the sequential

phases a User Equipment (UE) undergoes, transitioning from an unconnected state to establishing

connectivity with a Next Generation Node B (gNB) and commencing data transmission. This

progression unfolds across three distinct phases: the broadcast procedure, the random access procedure,

and the UE transmission procedure.

During the broadcast procedure, synchronization between the UE and gNB is achieved through

periodic broadcasts of system information by the gNB. These broadcasts include synchronization signals

and essential system information such as the master information block (MIB) and system information

block (SIB) [19]. Upon the conclusion of the broadcast procedure, the UE achieves Downlink (DL)

synchronization after assimilating the necessary information from the gNB.

Subsequently, the random access procedure ensues to establish Uplink (UL) synchronization. This

phase involves the exchange of four messages, known as MSG1 through MSG4, between the UE and

gNB. Central to this process is the role of the scheduler in allocating spectrum resources for these

messages. The scheduling activities conducted during both the broadcast and random access procedures

fall under the common channel scheduling paradigm.

Upon successful attachment to the gNB, the UE gains the capability to initiate the transmission of

user data to other UEs, marking the commencement of dedicated channel scheduling. This phase entails

the allocation of spectrum resources based on Channel State Information (CSI) and Quality of Service

(QoS) requirements. Downlink Control Information (DCI) serves as the conduit through which

instructions regarding available spectrum resources and their utilization timing are conveyed to the UE.

In response, the UE retrieves the corresponding data based on the information provided in the DCI.

When the need arises for Uplink (UL) data transmission, the UE dispatches a scheduling request

(SR) and buffer status report (BSR) to the gNB, soliciting the allocation of resources for UL data

transmission in the frequency domain. Subsequently, the gNB communicates the availability of spectrum

resources and the corresponding timing to the UE through the DCI, empowering the UE to execute the

transmission of UL data.

The overview of the procedure of OSC MAC SCH is shown in Figure 2.4-2. In this thesis, our initial

focus is on ensuring the seamless functionality of User Equipment (UE) attachment following code

modifications. Subsequently, we proceed to assess the efficacy of our scheduling mechanism through

numerical analysis in dedicated scheduling scenarios. This sequential approach allows us to validate our

10

implementation and demonstrate the effectiveness of the scheduling mechanism in practical deployment

scenarios.

Figure 2.4-1: The procedure of UE Attachment and UE dedicated scheduling in NR

11

Figure 2.4-2: The flow chart of OSC MAC scheduler

2.5 Scheduling of PRACH, PDCCH, PDSCH, PUCCH, and

PUSCH
Scheduling in NR encompasses the allocation of resources for various channels, each serving a

unique purpose. PRACH (Physical Random Access Channel) scheduling allows UEs to initiate

communication with the base station by transmitting random access preambles. PDCCH (Physical

Downlink Control Channel) scheduling involves allocating control information to UEs, carrying

essential commands for resource assignments, and downlink data transmission. PDSCH (Physical

Downlink Shared Channel) scheduling determines the allocation of downlink data resources, optimizing

time-frequency blocks to meet QoS requirements. PUCCH (Physical Uplink Control Channel)

scheduling allocates resources for UEs to send uplink control information such as acknowledgments,

channel quality indicators, and scheduling requests. Finally, PUSCH (Physical Uplink Shared Channel)

scheduling manages uplink data resources, assigning specific time-frequency blocks for UEs to transmit

user data, ensuring a balanced load, and maintaining QoS for various applications.

12

3 Developed Scheduler
In this section, we present our implementation approach to enhance scheduling capabilities within

OSC O-DU High. Firstly, we detail the process of extending Single-UE (SU) per Transmission Time

Interval (TTI) scheduling to support Multi-UE (MU) per TTI scheduling, thereby optimizing resource

utilization and enhancing network efficiency. Following this, we delve into the implementation of a

multiple queues scheduling framework based on 5G Quality indicator (5QI), incorporating features such

as Guaranteed Flow Bit Rate (GFBR) and Maximum Flow Bit Rate (MFBR). By introducing this

framework, we aim to ensure robust Quality of Service (QoS) provisioning while dynamically adapting

to varying traffic demands. Lastly, we discuss the integration of retransmission queues into our

scheduling architecture, accompanied by the application of our proposed algorithm. This comprehensive

approach enables the handling of transport block retransmissions.

3.1 Scheduling of Multiple UE per TTI
To enable the scheduling of multiple UEs per TTI, our proposed solution unfolds in four stages,

each validated through rigorous verification processes. We begin by modifying the O-DU's data structure

to transition from single UE per TTI to supporting multiple UEs. The subsequent stages involve handling

multiple Functional Application Platform Interface (FAPI) Protocol Data Units (PDUs), modifying the

scheduler framework for efficient scheduling, and customizing the Centralized Unit (CU) simulator to

tailor packet size and transmission period for individual traffic flows. Each stage is followed by thorough

verification, ensuring the robustness of our solution.

The code modifications for supporting multiple UEs per TTI are illustrated in Figure 3.1-1. Here,

MAX_NUM_UE represents the total number of UEs in the system. For example, ueId1 is the identifier

for UE1, ueId2 is the identifier for UE2, and ueId3 is the identifier for UE3. In the scenario of multiple

UEs per TTI, both UE1 and UE3 are scheduled within a single TTI, demonstrating the enhanced

scheduling capability.

Figure 3.1-1: The illustration of code modification for MU per TTI SCH

13

To initiate the enhancement process, the foremost step involves the modification of data structures

schUlSlotInfo and macUlSlot. This encompasses extending variables schPucchInfo and ulInfo within the

data structure from a single element to multiple elements, facilitating the storage of information for

multiple User Equipments (UEs). Following this, each function associated with the modified data

structures undergoes necessary adjustments.

Subsequently, modification is needed for the FAPI message handler within the lower MAC

functional block. The original O-DU faces challenges in handling multiple FAPI PDUs from diverse

UEs, particularly concerning UL TTI requests. Thus, it becomes imperative to adapt the FAPI message

handler in the lower MAC, enabling it to adeptly traverse each UL TTI request from individual UEs.

In the realm of modifying the scheduler framework, pivotal changes are instituted in two core

functions: schSliceBasedScheduleSlot() and schSliceBasedDlScheduling(). The

schSliceBasedScheduleSlot() function is responsible for managing Random Access, DL user data, and

UL user data, while the schSliceBasedDlScheduling() function handles DL user data allocation and PRB

allocation to users.

In function schSliceBasedScheduleSlot(), the original function maintains the Hybrid Automatic

Repeat reQuest (HARQ) list for a single User Equipment (UE) and orchestrates UE removal or

reordering on the scheduling list. Post-modification, the maintenance of the HARQ list shifts to the

function schSliceBasedDlScheduling(). In this altered structure, the UE list is systematically traversed

for effective scheduling list management. When a UE does not have UL data and there is no DL data to

be sent, no action is taken. However, if a UE has UL data and DL data needs to be sent, the UE node is

added to the end of the scheduling list. Conversely, if both DL and UL data from a UE have already been

sent, the UE node is removed from the scheduling list.

In function schSliceBasedDlScheduling(), the modification involves relocating the generation of

HARQ processes to the function's outset and their removal to the conclusion. In addressing the allocation

of Downlink Control Information (DCI), a comprehensive loop is implemented to traverse the entire UE

list. Concurrently, the UE list is seamlessly integrated into the scheduling algorithm function to facilitate

resource allocation. This holistic approach optimizes the scheduler framework for enhanced multi-UE

per Transmission Time Interval (TTI) performance.

Following the modification of the scheduler framework, essential changes are implemented to

improve the Physical Downlink Control Channel (PDCCH) and the Physical Uplink Control Channel

(PUCCH) for multiple UEs. The PDCCH is used to convey control information, such as scheduling

decisions and resource allocations, from the gNodeB to the UE. The PUCCH carries control information,

including acknowledgments and channel state information, from the UE back to the gNodeB. This

adaptation adheres to the specifications outlined in “TS 38.211 section 7.3.2” [24] and “TS 38.213

section 9.2.1” [19], respectively. Specifically, a new function is introduced to allocate resources for

PUCCH, accommodating varying numbers of UEs. Unlike the original hardcoded approach limited to a

single UE in the OSC scheduler (SCH), this dynamic allocation method ensures adaptability to diverse

UE scenarios. the allocation of Control Channel Elements (CCEs) has been expanded from supporting

a single UE to accommodating multiple UEs. In our thesis, the allocation ranges from two CCEs for one

UE to eight CCEs for four UEs. The spectrum of these implementations is visually represented in Figure

3.1-2.

14

Figure 3.1-2: Resource allocation of PDCCH, PDSCH and PUCCH

15

3.2 QoS-aware scheduling
In the QoS-aware scheduling implementation, the initial phase revolves around ensuring the

accurate encoding and decoding of Quality of Service (QoS) information, encompassing parameters like

Guaranteed Flow Bit Rate (GFBR) and Maximum Flow Bit Rate (MFBR) within the Guaranteed Bit

Rate (GBR) Information. This process begins with the extension of GBR information in Abstract Syntax

Notation One (ASN.1) format based on the F1AP within the BuildDRBSetup() function, coupled with

ensuring proper memory release in the FreeDRBSetup() function. Following the transmission of GBR

information from the CU stub to O-DU High, the GBR information is interpreted within the

extractQosInfo() function. Subsequently, the acquired QoS details are relayed from the DU APP to the

scheduler (SCH) by adapting the schLcCtxt data structure, with necessary modifications made to

functions such as fillSchDlLcCtxt (responsible for populating Downlink (DL) logical channel

information in the UE control block) and schSliceBasedFillLcInfoToSliceCb (tasked with filling DL

logical channel information in the slice control block).

After integrating the essential QoS information into the scheduler, a series of new functions are

introduced to facilitate QoS-aware scheduling. These include schGetResourceTypeFromFiveQI(),

schSortLcByPriority(), schMFBRAlgoforLc(), schGFBRAlgoforLc(), and schQoSBasedAlgo(). The

schGetResourceTypeFromFiveQI() function serves to distinguish between GBR and non-GBR traffic

based on their 5G QoS Identifier (5QI). Meanwhile, schSortLcByPriority() prioritizes traffic for

scheduling based on their assigned priority levels. The schQoSBasedAlgo() function forms the backbone

of the scheduler framework, employing multiple queues to organize GBR and non-GBR traffic lists and

scheduling them according to GFBR and MFBR requirements, as illustrated in Figure 3.2-1.

Additionally, schMFBRAlgoforLc() and schGFBRAlgoforLc() represent distinct scheduling algorithms,

ensuring that each GBR traffic receives a minimum throughput dictated by GFBR and that both GBR

and non-GBR traffic are scheduled while preventing them from surpassing their maximum throughput

based on MFBR. These functions collectively enable precise and efficient QoS-aware scheduling within

the O-DU High architecture.

16

Figure 3.2-1: The flow chart of QoS-aware SCH

In implementing the scheduling algorithm for MFBR, we utilize the leaky bucket mechanism, as

illustrated in Figure 3.2-2. However, the current OSC open-source codebase lacks support for this

mechanism. Consequently, when attempting to limit the scheduling of Guaranteed Bit Rate (GBR) traffic

in the scheduler to prevent exceeding MFBR, packet transmission still occurs at the Radio Link Control

(RLC) layer, and it will cause a system crash since accumulated packets can not be consumed. To address

this discrepancy, modifications are required in the RlcProcDlUserDataTransfer() function. Our

proposed solution involves implementing a mechanism to drop packets in the function

RlcProcDlUserDataTransfer() when GBR traffic exceeds MFBR. Another challenge arises from

occasional instances where GBR traffic surpasses MFBR, thereby jeopardizing the guarantee of

17

Guaranteed Flow Bit Rate (GFBR). This issue stems from the asynchronous nature of timers between

the scheduler and RLC layers. To mitigate this, we propose a mechanism to reset the accumulated Buffer

Occupancy (BO) for GFBR and MFBR when both the RLC and SCH timers expire concurrently.

Through rigorous experimentation, we validate the effectiveness of our QoS-aware scheduler, with

detailed numerical results presented in Section IV for comprehensive evaluation.

Figure 3.2-2: Illustration of leaky bucket mechanism

Furthermore, our exploration of the MFBR scheduling algorithm uncovered a memory allocation

issue during the Uplink Control Information (UCI) allocation process when User Equipment (UE)

exclusively handles Guaranteed Bit Rate (GBR) traffic. Specifically, when GBR traffic satisfies the

Maximum Flow Bit Rate (MFBR) requirement but remains unscheduled in a given slot, the memory

allocation for the DlMsgSchInfo data structure is inadequately released, as depicted in Figure 3.2-3. To

address this, we developed a solution to ensure proper memory management and alleviate potential

system instabilities.

18

Figure 3.2-3: Illustration of the Memory release problem in OSC SCH

19

3.3 Retransmission scheduling
In the original OSC scheduler, the functionality for retransmission is not supported. To enable

retransmission, we implemented HARQ failure in the fillPucchF0F1PduInfo function within the OSC

PHY simulator to trigger retransmissions. Following this, we integrate a retransmission queue within

the DL dedicated scheduling function.

In the DL dedicated scheduling function schSliceBasedDlScheduling(), as depicted in Figure 3.3-1,

we implement a retransmission scheduling function called schRetransmissionQueue(). Before invoking

schRetransmissionQueue(), we first identify which UEs require retransmission and add them to a

retransmission UE list. We then prioritize these UEs based on the amount of GBR traffic they have or

the number of retransmission attempts. After sorting the retransmission UE list, we traverse it to perform

retransmissions using the function schRetransmissionQueue().

Figure 3.3-1: The flow chart of DL dedicated scheduling function

20

For the retransmission scheduling function schRetransmissionQueue(), implemented as shown in

Figure 3.3-2, we first retrieve the scheduling information for the PDCCH, PDSCH, and PUCCH time

slots. Next, we allocate memory for the UE DL scheduling information. Instead of recalculating the

transport block size, we reuse the transport block size from the previous transmission. After verifying

that the available bandwidth is sufficient for retransmission scheduling, we populate the UE scheduling

information with the PDCCH, PDSCH, and PUCCH data.

Figure 3.3-2: The flow chart of the retransmission scheduling function

21

4 Experimental Result
In this section, we systematically present our testing methodology and evaluate the performance

enhancements achieved through three phase implementations within our testing environment. We

introduce the testing environment in the first subsection, providing essential details to contextualize our

experiments and analyses. Subsequently, we focus on the performance improvements resulting from the

extension of Single-UE (SU) per Transmission Time Interval (TTI) scheduling to support Multi-UE

(MU) per TTI scheduling. Demonstrating the efficacy of this extension in improving resource utilization.

Following that, we evaluate the effectiveness of our QoS-aware scheduling scheme in the next

subsection, considering its impact under different input parameters and analyzing its processing time

compared to the original open-source implementation, providing insights into its practical viability.

Finally, we present the numerical results obtained from our evaluation of the retransmission queue,

shedding light on the effectiveness of our proposed algorithm.

4.1 Testing Environment
To evaluate the system with the implementation of our work, we prepared the following test setup.

This setup primarily focuses on evaluating the downlink Radio Link Control (RLC) throughput, a key

performance indicator for our system. Our testing configuration involves the utilization of a CU stub, a

simulator of OSC O-CU, as a substitute for the O-CU component. This CU stub serves to generate

dummy data via the F1-U interface, which is then relayed to the RLC and MAC layers subsequent to

the reception of scheduling result information by MAC. This scheduling result information includes the

Modulation and Coding Scheme (MCS) index value alongside resource allocation details. The MCS

index value guides the determination of the data transmission capacity per transmission instance. Upon

receiving this information, MAC initiates a data request to RLC, which, in turn, forwards the requested

downlink data to MAC and subsequently to the Physical (PHY) layer via the PHY Stub, a simulator of

OSC O-RU. The quantity of data forwarded by RLC is directly ascertainable via the O-DU function.

This downlink data serves as the basis for evaluating system performance across diverse channel

conditions, with the scheduling task being managed by the scheduler (SCH).

In our test setup, the CU Stub generates synthetic data via the F1-U interface and QoS Information

via the F1-C interface. Once MAC receives the scheduling result information, this data is directed to

RLC and MAC. The scheduling result information encompasses the allocation of physical resource

blocks, determining the volume of data transmissible in a single transmission. Armed with this allocation,

MAC requests data from RLC, initiating the transfer of requested downlink data from RLC to MAC and

then to the PHY layer (PHY Stub). Both the forwarded data from RLC and the corresponding PRB usage

values are readily indicated by the O-DU. So there are two key parameters are recorded during the

experiments: downlink throughput, measured in bits per second, which quantifies the rate of data

transmission from the base station to the user equipment (UE), and downlink overall Physical Resource

Block (PRB) usage, measured as a percentage per second, reflecting the proportion of utilized PRBs

relative to the total available.

The conducted experiments aim to present a performance measurement between scenarios for the

following subsections, the testing procedure is delineated as follows:

1. Cell-Up Procedure: O-DU initiates the cell-up procedure in collaboration with CU stub.

2. UE Attach Procedure: PHY stub executes the UE attach procedure, involving both O-DU and

CU stub.

22

3. Transmission of Dummy DL User Data: CU stub transmits simulated Downlink (DL) user data

to O-DU.

4. Resource Scheduling: The scheduler undertakes resource scheduling for each UE.

5. Throughput Measurement: RLC conducts an evaluation of overall throughput [25] based on the

scheduler's report.

6. PRB Usage Measurement: Simultaneously, DU APP measures overall Physical Resource Block

(PRB) usage [25] concurrently with the throughput assessment.

7. Repeated Evaluation: Steps 3 to 6 are iterated for 10 seconds, ensuring a comprehensive

assessment of the system's performance under different UE scheduling conditions.

The illustration of our environment setup for our thesis is shown in Figure 4.1-1.

Figure 4.1-1: The testing environment for this paper

23

4.2 Multiple UE per TTI scheduling
Post-modification of data structure and influenced functions, a comprehensive evaluation of the

code's functionality ensues. This evaluation includes assessing the successful attachment of each UE to

the RAN, as indicated by their presence on the throughput display list, illustrated in Figure 4.2-1.

Figure 4.2-1: O-DU Log of UE Throughput list

For verification of the functionality of the modified FAPI message handler, an assessment is

conducted to ensure the appropriate exchange of FAPI PDUs, as visually depicted in Figure 4.2-2.

Figure 4.2-2: O-DU Log of FAPI PDUs

Upon completing the aforementioned code modifications, a rigorous verification process ensues.

This involves a thorough examination of the augmented code through the scrutinization of added logs.

The objective is to validate the scheduler's capability to schedule multiple User Equipments (UEs)

within each time slot. The log details are presented in Figure 4.2-3, providing a transparent insight into

the scheduling performance achieved by the implemented enhancements.

Figure 4.2-3: O-DU Log of scheduled UEs per slot

24

After confirming the functionality of the scheduler framework for multiple UEs per TTI scheduling,

our focus shifts to measuring performance metrics. Specifically, we aim to conduct a numerical

comparison between scenarios involving multiple UEs per TTI and those with a single UE per TTI. This

comparison will provide valuable insights into the efficiency and effectiveness of the scheduling

approach, highlighting improvements and optimizations in network resource utilization and overall

performance in terms of throughput.

We configure the parameters for the simulated traffic as outlined in Table 4.2-1. To ensure UE1 will

be scheduled and make it less efficient in single user per TTI scheduling, we assign the highest priority

to UE1 to prioritize UE1's traffic, but for this case, multiple UE per TTI scheduling will still allocate

resources in an efficient way since it can schedule remaining PRBs to other UEs. In this experimental

setup, traffic is generated over ten seconds. Following this period, the transmission from UE1 ceases,

while other traffic accumulates due to larger packet sizes. Despite this, MU per TTI scheduling

demonstrates superior resource utilization, enabling earlier completion of transmissions. This

phenomenon is illustrated in Figure 4.2-4.

UE ID Packet size sent from UE Transmission interval

UE#1 10 bytes 2 milliseconds

UE#2 150 bytes 2 milliseconds

UE#3 150 bytes 2 milliseconds

UE#4 150 bytes 2 milliseconds

Table 4.2-1: CU Stub DL Packet Generation Parameters for MU per TTI Testing

25

Figure 4.2-4: Illustration of the experiment for SU and MU scheduling per TTI

26

The resulting numerical insights are illustrated in Figure 4.2-5, and the findings reveal following

observations:

1. Multiple UEs per TTI scheduling demonstrates significantly superior Physical Resource Block

(PRB) utilization compared to Single UE per TTI scheduling, achieving a 20.9% improvement.

2. Following the tenth second, traffic from all sources except UE1 continues to accumulate due

to larger packet sizes, as shown in Figure 4.2-4, necessitating continued transmission. However,

MU per TTI scheduling outperforms SU per TTI scheduling by achieving earlier completion

of transmissions.

3. The enhanced PRB usage directly contributes to improved overall throughput performance.

Consequently, Multiple UEs per TTI scheduling exhibits superior throughput performance

compared to Single UE per TTI scheduling, achieving a 15.1% increase in throughput.

Figure 4.2-5: Downlink overall throughput and PRB usage between SU and MU scheduling per TTI

4.3 QoS-aware scheduling
The numerical results validate the successful implementation of our QoS-aware scheduler,

effectively meeting the specified criteria. This scheduler ensures that each Guaranteed Bit Rate (GBR)

traffic, prioritized according to its level, adheres to the Guaranteed Flow Bit Rate (GFBR), while

simultaneously avoiding exceeding the Maximum Flow Bit Rate (MFBR). Additionally, we test the

performance under different input parameters and the processing time compared to the original

scheduling function.

4.3.1 Functionalities of GFBR & MFBR

In the first experiment assessing MFBR, the traffic configuration detailed in Table 4.3.1-1 was

utilized. This setup involved three GBR (Guaranteed Bit Rate) traffic “Traffic 1, Traffic 2, and Traffic

3” each subject to GFBR and MFBR constraints, alongside a non-GBR traffic exempt from these

requirements. The results, depicted in Figure 4.3.1-1, illustrate that the maximum throughput of each

27

traffic remains below the designated MFBR threshold, and the throughput values of non-GBR traffic

will not be constrained to a narrow range.

Traffic MFBR Priority level Packet size Transmission

interval

Traffic#1 15000 20 200 Bytes 8 milliseconds

Traffic#2 20000 40 200 Bytes 8 milliseconds

Traffic#3 25000 7 200 Bytes 8 milliseconds

Traffic#4 None 70 200 Bytes 8 milliseconds

Table 4.3.1-2: CU Stub DL Packet Generation Parameters for MFBR Testing Experiment

Figure 4.3.1-1: Downlink Throughput of GBR and Non-GBR Traffic for MFBR Testing Experiment

In the subsequent experiment aimed at assessing GFBR, the traffic configuration, as outlined in

Table 4.3.1-2, was employed. To achieve full loading, we adjusted parameters by increasing packet size

and reducing transmission intervals. As depicted in Figure 4.3.1-2, the results illustrate that once Traffic

1 and 3 fulfill their GFBR requirements, the scheduler allocates resources accordingly before switching

to schedule another GBR traffic, Traffic 2.

Traffic GFBR Priority level Packet size Transmission

interval

Traffic#1 150000 20 200 Bytes 4 milliseconds

Traffic#2 170000 40 200 Bytes 4 milliseconds

Traffic#3 190000 7 200 Bytes 4 milliseconds

Traffic#4 None 70 200 Bytes 4 milliseconds

Table 4.3.1-3: CU Stub DL Packet Generation Parameters for MFBR Testing Experiment

28

Figure 4.3.1-2: Downlink Throughput of GBR and Non-GBR Traffic for GFBR Testing Experiment

4.3.2 QoS satisfactory

In the third experiment, illustrated in Figure 4.3.2-1, the findings indicate an inverse relationship

between the MCS value or Guaranteed Flow Bit Rate (GFBR) value and the overall percentage of

Quality of Service (QoS) satisfactory outcomes. Specifically, as the MCS value or GFBR value increases,

the proportion of instances where the GFBR of the traffic meets expectations decreases.

Figure 4.3.2-1: QoS satisfactory under different GFBR values

4.3.3 Effect of average window size

In the fourth experiment, depicted in Figure 4.3.3-1, the impact of varying average windows is

examined. In the OSC Radio Link Control (RLC) module, throughput statistics are measured every

29

second. A smaller average window leads to more precise control of the Maximum Flow Bit Rate (MFBR)

by the scheduler. This precision enables finer control over the throughput of each traffic, resulting in a

sharper Probability Density Function (PDF) curve.

Figure 4.3.3-1: The effect of different average window values.

4.3.4 Processing time

In this section, we conduct a comprehensive evaluation of the processing time for our implemented

QoS-aware scheduler. This evaluation includes a comparative analysis with two existing schedulers. The

first is the original OSC scheduler, which employs a First-Come-First-Served (FCFS) pattern,

prioritizing UEs with earlier traffic. The second is a slice-enabled scheduler developed by the OSC

Taiwan lab [26], which supports network slicing and uses a round-robin (RR) scheduling algorithm to

manage traffic.

30

Figure 4.3.4-1: The comparison of processing time between QoS-aware SCH, FCFS SCH, and slice-

enabled SCH

The processing time values reflect the efficiency of our scheduler functions during dedicated

scheduling. To assess performance trends with increasing numbers of UEs in the system, we

incrementally increase the total number of UEs up to four , as illustrated in Figure 4.3.4-1. Through this

analysis, we observe notable differences in processing time among schedulers. Specifically, the FCFS

scheduler show a significant increase in processing time with each additional UE, demonstrating a 27%

longer processing time than the QoS-aware scheduler in the single UE case and a 138% longer

processing time in the four UE case. In contrast, both the QoS-aware scheduler and slice-enabled

scheduler exhibit only slight increases. Notably, the QoS-aware scheduler has approximately 7% longer

processing times than the slice-enabled scheduler due to the additional task of accumulating the counter

for the average window at the end of the scheduling function. However, regarding sorting for

prioritization and resource allocation, both the QoS-aware scheduler and the slice-enabled scheduler

exhibit similar time complexities.

4.4 Retransmission scheduling
For the retransmission scheduling experiment, we utilize the traffic configuration detailed in Table

4.4-1. Four UEs are configured for testing, each with different channel statuses (Block Error Rates, as

defined in [27]) and different types of traffic to be transmitted. We then compare two methods of sorting

UEs for retransmission, one is prioritization based on retransmission times and another is prioritization

based on how many GBR traffics UE has. The results were analyzed based on the average throughput

of both new transmissions and retransmissions, as well as the average throughput of retransmissions

alone. This analysis provides insights into the effectiveness of different retransmission scheduling

strategies.

31

UE ID Traffic type BLER Packet size Transmission

interval

1 GBR 10% 1200 Bytes 20 milliseconds

2 GBR 30% 1200 Bytes 20 milliseconds

3 Non-GBR 50% 1200 Bytes 20 milliseconds

4 Non-GBR 50% 1200 Bytes 20 milliseconds

Table 4.4-1: CU Stub DL Packet Generation Parameters for retransmission Testing Experiment

From the results depicted in Figure 4.4-1 concerning the average throughput measurement for

retransmissions, we note that prioritizing UEs for retransmission based on the number of retransmission

attempts leads to higher throughput, particularly for UEs experiencing higher Block Error Rates (BLER)

such as 50% error rate in our experimental setup. This outcome stems from the sorting method, which

grants UEs with more retransmission attempts and increased scheduling opportunities within each time

slot. Consequently, UEs with better channel status, like UE1 and UE2, exhibit little differences in

throughput as their retransmissions tend to succeed before the transport block is dropped due to

exceeding the maximum retransmission times. Conversely, UE3 and UE4 witness notable improvements

of 5% and 19%, respectively, in throughput when employing prioritization based on retransmission

times instead of prioritization based on the amount of GBR traffic.

Figure 4.4-1: The average throughput of retransmission

From the results of the average throughput measurement for both retransmissions and new

transmissions, shown in Figure 4.4-2, we observe that prioritizing UEs for retransmission based on the

amount of GBR traffic each UE carries leads to higher overall throughput compared to prioritization

based on the number of retransmission attempts, except for UE4. Specifically, using prioritization based

on the GBR traffic amount results in a 2% higher overall throughput. This difference is primarily because,

as indicated by the previous results in Figure 4.4-1, prioritization based on retransmission times results

in a higher proportion of retransmission scheduling and it will reduce the bandwidth available for new

transmissions. Consequently, allocating less bandwidth for new transmissions decreases the total amount

of data that can be sent, thereby reducing overall throughput.

32

The efficiency gained by prioritizing based on GBR traffic highlights the importance of balancing

retransmission and new transmission scheduling to optimize network performance. This approach

ensures that while retransmissions are handled in a balanced way, sufficient bandwidth is also reserved

for new transmissions, maximizing the overall data throughput and improving the quality of service for

all users.

Figure 4.4-2: The average throughput of retransmission and new transmission

Therefore, it can be concluded that prioritizing based on the number of retransmission attempts

allocates more bandwidth to retransmission scheduling, enhancing reliability. Conversely, prioritizing

based on the amount of Guaranteed Bit Rate (GBR) traffic reserves additional bandwidth for new

transmissions, resulting in improved overall throughput.

33

5 Conclusion
In this thesis, we confront the existing limitations of the OSC O-DU MAC scheduler, which

presently confines scheduling to a single UE per TTI and lacks support for rate limiting functionality,

primarily due to deficiencies within the open-source framework. To overcome this challenge, we

undertake a three-phase implementation strategy aimed at enhancing the scheduler module.

We enhance the efficiency of radio resource usage by introducing a bit rate control mechanism and

enabling the simultaneous handling of multiple users. By considering both GFBR and MFBR of

individual users, we ensure quality service for all users based on QoS requirements. Additionally, the

implemented scheduler addresses the retransmission of erroneous blocks and incorporates two methods

of prioritization to ensure fairness among users. We demonstrate that our developed scheduler

significantly improves both throughput and processing time compared to the traditional O-RAN

scheduler, achieving a 15.1% increase in throughput and reduction in processing time ranging from

21.2% to 58%.

Leveraging the comprehensive architecture outlined in the O-RAN specification, but unfortunately,

so far there are no relevant parameters that can be controlled in the resource allocation of GBR traffic

and non-GBR traffic over E2 interface, future endeavors may involve the integration of a RAN

intelligent controller platform, particularly the Near-RT RIC platform. With its Kubernetes-based

infrastructure, the Near-RT RIC platform allows the containerization of intricate scheduling algorithms,

referred to as xApps. This approach ensures easy deployment and adaptation of scheduling algorithms

based on dynamic operational scenarios.

While the introduction of Near-RT RIC holds promise for enhanced system flexibility, it raises

considerations regarding potential performance impacts. The additional workload imposed on the E2

Message handler in O-DU, stemming from reporting and control procedures, introduces complexities.

The selection of scheduling algorithms on Near-RT RIC becomes a pivotal factor influencing overall

system performance. Although uncertainties linger about performance improvement, the proposed

system architecture undeniably empowers more flexible scheduling policy adjustments.

34

6 Reference
[1] “O-RAN: Towards an open and smart RAN,” 2018. [Online]. Available: https://www.o-

ran.org/resources

[2] W. Azariah, F. A. Bimo, C.-W. Lin, R.-G. Cheng, R. Jana, and N. Nikaein, “A survey on open radio

access networks: Challenges, research directions, and open source approaches,” Future Wireless

Communication Networks (Volume II).

[3] O-RAN Software Community, “O-RAN Software Community (SC).”

[4] O-RAN Software Community (SC) Documentation, "O-RAN Software Community (SC)

Documentation." [Online]. Available: https://docs.o-ran-sc.org/en/latest/index.html

[5] O-RAN Software Community, “Code Repositories of OSC on Gerrit.” [Online]. Available:

https://gerrit.o-ran-sc.org/

[6] openairinterface5G, “Open air interface software repository on Gitlab,” 2023. [Online]. Available:

https://gitlab.eurecom.fr/oai/openairinterface5g

[7] srsRAN Project, “srsRAN Documentation,” 2023. [Online]. Available:

https://docs.srsran.com/en/latest/

[8] Software Radio Systems, “SRS,” 2023. [Online]. Available: https://www.srs.io/

[9] 3GPP, “TS 38.473 - NR; F1 Application Protocol (F1AP) specification,” Apr. 2024. Rev. 17.8.0.

[10] O-RAN Software Community (SC) O-DU-L2 Documentation, “O-DU High Overview,” 2023.

[Online]. Available: https://docs.o-ran-sc.org/projects/o-ran-sc-o-du-l2/en/latest/overview.html

[11] X. Wang, G. B. Giannakis, and A. G. Marques, "A Unified Approach to QoS-Guaranteed

Scheduling for Channel-Adaptive Wireless Networks," 2007 Proceedings of the IEEE.

[12] ITU-T, Traffic Control and Congestion Control in B-ISDN, Recommendation I.371, International

Telecommunication Union, 2004.

[13] X. Wang, D. Wang, I. Li, H. Zhuang, and S. D. Morgera, “Incorporating retransmission diversity in

quality-of-service guaranteed multi-user scheduling,” 2008 42nd Annual Conference on Information

Sciences and Systems.

[14] C.-Y. Chang and H.-F. Hsiao, “Priority-based retransmission scheduling for Automatic Repeat

Request over wireless networks,” 2015 Seventh International Conference on Ubiquitous and Future

Networks.

[15] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Understanding O-RAN: Architecture,

interfaces, algorithms, security, and research challenges,” 2022.

[16] O-RAN Alliance, “O-RAN ALLIANCE e.V.” [Online]. Available: https://www.o-ran.org/

[17] Small Cell Forum, “Small Cell Forum – Accelerating small cell adoption.” [Online]. Available:

https://www.smallcellforum.org/

[18] O-RAN Alliance, “O-RAN-WG1-O-RAN Architecture Description—v06.00.00,” Tech. Spec.

[19] 3GPP, “TS 38.213 - v17.2.0 – 5G; NR; Physical layer procedures for control,” Jan. 2022. Rev.

17.0.0.

35

[20] O.-R. S. Community, “O-DU High Overview,” 2023. [Online]. Available: https://docs.o-ran-

sc.org/projects/o-ran-sc-o-du-l2/en/latest/overview.html

[21] 3GPP, “TS 38.322 - NR; Radio Link Control (RLC) protocol specification,” Apr. 2022. Rev. 17.0.0.

[22] 3GPP, “TS 38.321 - NR; Medium Access Control (MAC) protocol specification,” Apr. 2022. Rev.

17.0.0.

[23] K. Juha, “Scheduling,” 2023. [Online]. Available: https://www.3gpp.org/technologies/scheduling

[24] 3GPP, “TS 38.211 – v17.4.0 – 5G; NR; Physical channels and modulation (3GPP TS 38.211 version

17.4.0 release 17),” 2023.

[25] 3GPP, “TS 28.552 – v17.10.0 – 5G; Management and orchestration; 5G performance measurements

(3GPP TS 28.552 version 17.10.0 release 17),” 2023.

[26] F. A. Bimo, R.-G. Cheng, C.-C. Tseng, C.-R. Chiang, C.-H. Huang, and X.-W. Lin, "Design and

Implementation of Next-generation Research Platforms," 2023 IEEE Globecom Workshops.

[27] 3GPP, “TS 38.300 – v16.4.0 – 5G; NR and NG-RAN Overall description (3GPP TS 38.300 version

16.4.0 Release 16),” 2021

[28] The GitLab repo. of the developed SCH: https://gitlab.fel.cvut.cz/mobile-and-wireless/codes/o-

ran/o-du-scheduler/-/blob/main/Multiple-UE-Per-TTI-SCH-qos-aware.zip?ref_type=heads

https://gitlab.fel.cvut.cz/mobile-and-wireless/codes/o-ran/o-du-scheduler/-/blob/main/Multiple-UE-Per-TTI-SCH-qos-aware.zip?ref_type=heads
https://gitlab.fel.cvut.cz/mobile-and-wireless/codes/o-ran/o-du-scheduler/-/blob/main/Multiple-UE-Per-TTI-SCH-qos-aware.zip?ref_type=heads

36

7 Appendix
In this section, we present the modified file list and the functions that have been updated. Figure

7-1 illustrates these files. The modifications primarily extend based on the slice-based scheduler.

Figure 7-1: Illustration of modified files of the thesis

7.1 List of modified file list for scheduling of Multiple UE

per TTI
 File common_def.h: Configure the maximum number of UE.

 File phy_stub.h: Configure the identifier of UE.

 File phy_stub_msg_hdl.c

- Function l1HdlUlTtiReq(): Send different amounts of RACH indications based on the total

number of UEs.

 File sch.h: Modify data structures schDlSlotInfo, and schUlSlotInfo to enable multiple UE

scheduling per TTI.

 File mac.h: Modify data structures MacUlSlot to enable multiple UE HARQ per TTI.

 File sch_utils.h: Declare new data structure for PUCCH CS set for PUCCH resource set.

 File sch_utils.c: Create a new PUCCH CS set for PUCCH resource set.

 File sch_slice_based.h: Define parameters isDlMsgPending, isDlMsgScheduled,

isUlGrantPending, isUlGrantScheduled in data structure schSliceBasedUeCb to trace the status of

UE data scheduling.

 File sch_slice_based.c

- Function schSliceBasedDlFinalScheduling(): Assign UE ID to array elements of PDCCH,

PDSCH, and PUCCH for dedicated channel scheduling.

37

- Function schSliceBasedScheduleSlot(): Check if there is new transmission or retransmission

in only function schSliceBasedDlScheduling(), and traverse each UE and check if it needs to

be removed from UE scheduled list or not.

- Function schSliceBasedDlScheduling(): Collect the UE list for new transmissions and

retransmissions that can be scheduled in this DL slot. Check if it is necessary to release the

HARQ process for new transmissions and retransmissions, then release the UE list for both

new transmissions and retransmissions.

 File sch_common.c

- Function schProcessMsg4Req(): Assign UE ID to array elements of PDCCH, PDSCH, and

PUCCH for common channel scheduling.

- Function schProcessRaReq(): assign UE ID to array elements of PDCCH, PDSCH, and

PUCCH for common channel scheduling, and disable one slot that can only be scheduled one

UE.

- Function schMsg3RetxSchedulingForUe(): Disable one slot can only be scheduled one UE.

- Function findValidK0K1Value(): Disable one slot can only be scheduled one UE.

- Function schUlResAlloc(): Allocate PUSCH, PRACH to the fixed position of the array,

traverse all PUCCH scheduled for UEs, and fill in PUCCH info.

- Function schAllocPucchResource(): Allocate memory to PUCCH info. and set HARQ info.

for specific UE.

- Function schDlRsrcAllocDlMsg(): Change CORESET1 config., assign DCI allocation for

multiple UEs.

- Function getPucchResource(): Calculate the resource allocation of PUCCH.

- Function schAllocPucchResourceMu(): Calculate the resource allocation of PUCCH.

- Function fillPucchResourceInfo(): Modify the resource allocation of PUCCH resource set

from fixed allocation to dynamic allocation.

 File mac_rach.c

- Function MacProcUlSchInfo(): Traverse UL info. for each UE.

 File lwr_mac_fsm.c

- Function getnPdus(): Collect the number of PDUs for UL in the current UL slot from each

UE by traversing UL info. for each UE.

- Function fillUlTtiReq(): Handle multiple UL PDUs by traversing each UE.

- Function fillPrachPdu(): Fill PRACH info. for specific UE into PRACH FAPI PDU.

- Function fillPuschPdu(): Fill PUSCH info. for specific UE into PUSCH FAPI PDU.

- Function fillPucchPdu(): Fill PUCCH info. for specific UE into PUCCH FAPI PDU.

7.2 List of modified file list for QoS-aware scheduling
 File sch_slice_based.h: Add 5QI related parameters into struct schSliceBasedLcInfo, and declare the

functions for QoS-aware scheduling algorithm based on GFBR and MFBR.

 File sch_slice_based.c

- Function schSliceBasedFillLcInfoToSliceCb(): Initialize LC config. in UE config.

- Function schGetResourceTypeFromFiveQI(): To get the resource type of traffic carried by

logical channel.

- Function schSortLcByPriority(): Do the sorting for logical channels using insertion sort based

on priority level.

38

- Function schQoSBasedAlgo(): It is a QoS-aware SCH framework, that cascades GFBR LC

list, and MFBR LC list, and puts them into scheduling function schGFBRAlgoforLc() and

schMFBRAlgoforLc() for scheduling.

- Function schGFBRAlgoforLc(): Scheduling function for the logical channels for GBR traffic

based on GFBR.

- Function schMFBRAlgoforLc(): Scheduling function for the logical channels for each traffic

based on MFBR.

- Function schSliceBasedDlIntraSliceScheduling(): Add a new if else condition for QoS

scheduling type.

- Function schSliceBasedDlIntraSliceThreadScheduling(): Add a new if else condition for QoS

scheduling type.

- Function schSliceBasedDlFinalScheduling(): Add a new if else condition for QoS scheduling

type, and release data structure DlMsgSchInfo if there is no logical channel has been

scheduled or there is no available resource block.

- Function schSliceBasedUpdateGrantSizeForBoRpt(): Check if MFBR is achieved, if yes, it

will not accumulate BO in the transport block.

 File sch_utils.h: Create 5QI table for table look up.

 File common_def.h: Declare the MFBR flag and a flag used to synchronize the timer in RLC and

the counter in SCH.

 File sch_utils.c: Set the value of 5QI table.

 File sch.h: Create new members gfbr, mfbr, and avgWindow in data structure schLcCtxt.

 File sch_slot_ind.c

- Function SchProcSlotInd(): Accumulate counter for average windows and reset the

accumulated BO scheduled for GBR traffics.

 File sch_ue_mgr.c

- Function getQoSFlowResourceType(): To check the resource type.

- Function fillSchDlLcCtxt(): To fill GBR info. in the logical channel with GBR traffic.

 File rlc_msg_hdl.c

- Function RlcProcDlUserDataTransfer(): To drop PDUs if MFBR is satisfied.

 File rlc_upr_inf_mgr.c

- Function rlcCalculateTputPerDrb(): we set the flag of time synchronization as true since the

function is called when the timer of throughput measurement is up.

 File cu_f1ap_msg_hdl.c

- Function BuildDRBSetup(): Fill out ASN.1 format for GBR QoS Info. for each DRB.

- Function FreeDRBSetup(): Release memory of GBR QoS Info.

7.3 List of modified file list for retransmission scheduling
 File sch.h: Set the maximum retransmission times of each UE.

 File mac_slot_ind.c

- Function MacProcDlAlloc(): To avoid data pointer txPdu is used and causing the

segmentation fault because the data pointer txPdu is null pointer.

 File sch_slice_based.h: Declare the scheduling function for the retransmission queue, and the

function to prioritize the retransmission queue.

 File sch_slice_based.c

39

- Function schSliceBasedDlScheduling(): Traverse the UEs that need to do retransmission and

release HARQ for retransmission.

- Function schRetransmissionQueue(): Do resource allocation for retransmission.

- Function schSliceBasedScheduleDlLc(): Release data structure dlMsgAlloc.

 File sch_slot_ind.c

- Function SchProcSlotInd(): Calculate the weight of UE retransmission queue based on how

many GBR traffic UE has.

 File phy_stub_msg_hdl.c

- Function fillPucchF0F1PduInfo(): Make HARQ failure to trigger retransmission scheduling.

