
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Import and post-processing of BIM files in Unreal Engine

Denis Dubin

Ing. Petr Pauš, Ph.D.

Informatics

Web and Software Engineering, specialization Computer

Graphics

Department of Software Engineering

until the end of summer semester 2023/2024

Instructions

BIM files contain information about the structure of buildings. The goal of this work is to

create a project in Unreal Engine that allows importing them, assigns appropriate

textures and sets the necessary parameters of the imported models.

Instructions:

1. Analyse the BIM format and its capabilities.

2. Analyze the capabilities of Unreal Engine to import BIM files and assign appropriate

properties.

3. Using software engineering methods, design a project in Unreal Engine that will enable

the import.

4. Implement the model import. Implement the ability to browse the imported building

from a first-person view.

5. Perform appropriate testing of the project on the provided sample files.

Electronically approved by Ing. Radek Richtr, Ph.D. on 4 February 2023 in Prague.

Bachelor’s thesis

IMPORT AND
PROCESSING OF BIM
FILES INTO UNREAL
ENGINE

Denis Dubin

Faculty of Information Technology
Department of software engineering
Supervisor: Ing. Petr Pauš, Ph.D.
May 16, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Denis Dubin. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Dubin Denis. Import and processing of BIM files into Unreal Engine. Bachelor’s
thesis. Czech Technical University in Prague, Faculty of Information Technology, 2024.

i

Contents ii

Contents

Abstract iv

Introduction 3

1 Goals 4

2 Unreal Engine 5
2.1 Understanding File Structures . 5
2.2 Blueprints . 7

2.2.1 BP ThirdPersonCharacter . 8
2.2.2 In-game controls . 9

2.3 Materials . 10
2.4 Collision . 11

2.4.1 Manual collision creation . 11
2.4.2 Common . 14

2.5 Hardware and Software Specifications . 15

3 Formats 16
3.1 Understanding File Structures . 16

3.1.1 BIM File . 16
3.1.2 IFC File . 17
3.1.3 DWG File . 19
3.1.4 UASSET File . 19
3.1.5 FBX file . 19
3.1.6 Compatability of formats . 20

3.2 Processing and translation . 20
3.2.1 Datasmith . 20
3.2.2 Alternative methods . 21

4 Data processing and requirements 23
4.1 Software prerequisites . 23

4.1.1 Setting up project and Datasmith . 23
4.1.2 Electronic nodes . 24

4.2 Input/Output . 24
4.2.1 Hierarchy . 24
4.2.2 Metrics . 25
4.2.3 Materials . 27
4.2.4 Collision . 27
4.2.5 Metadata . 28

5 Result project and features 30
5.1 Provided functionality . 30

5.1.1 Material manager . 30
5.1.2 How to use Material Manager . 32

5.2 Profiling widget . 33
5.3 Analysis . 35

6 Conclusion 36

7 Project folder 39

List of Figures

2.1 Simplified diagram of native and created classes with description. 6
2.2 Blueprints example . 8
2.3 Third person character blueprint, detail panel and other. 9
2.4 Node graph of metal material imported from Starter Content. 10
2.5 Node graph of simple emissive material. 11
2.6 Mesh without collision and basic collider. Lit on the left side and Collision on the

right side . 12
2.7 Collision Editor. The context menu with basic collisions is opened in the upper

part of the image. 12
2.8 Result mesh collision . 13
2.9 Details panel with collision response settings. 14

3.1 IFC domain architecture and structure.[1] . 18
3.2 Datasmith compatability.[2] . 21

4.1 Plugins button location . 24
4.2 Hierarchy of IFC file on the left side and hierarchy of scene in Unreal Engine on

the right side.[3] . 25
4.3 Initial dimensions of the object within the original software.[3] 26
4.4 Object dimensions after rescaling as a result of importing.[3] 26
4.5 Comparing Player collision and Lit layers after import. 28
4.6 Left: an IFC file’s attributes. Right: Datasmith Metadata was constructed using

those attributes.[3] . 29

5.1 Material after import. Light implemented via added point light. Lit on the left
side and unlit on the right. 30

5.2 A script that changes the material for each actor on the stage with a corresponding
name. 31

5.3 Changed materials. Light implemented via emissive materials. Lit on the left side
and unlit on the right. 32

5.4 Default interface is located in the details panel of actor that is placed on level. . 33
5.5 Widget and denug data. 34
5.6 Recorded data example. 35

iii

Abstract

This undergraduate work aims to explore the optimal methods for importing BIM files into Unreal
Engine 5 and provide basic functionality for viewing the final result. The main focus will be on
an off-the-shelf solution from Unreal Engine developers called DataSmith. Also demonstration
of the functionality of the project to view the test files provided to me.

Keywords UE5, Unreal Engine 5, Datasmith, BIM, Building Information Modeling, Building
Information Management.

Abstrakt

Ćılem této bakalářské práce je prozkoumat optimálńı metody importu soubor̊u BIM do Unreal
Engine 5 a poskytnout základńı funkce pro zobrazeńı konečného výsledku. Hlavńı zaměřeńı
bude věnováno hotovému řešeńı od vývojář̊u Unreal Engine s názvem DataSmith. Také ukázka
funkčnosti projektu pro zobrazeńı testovaćıch soubor̊u, které mi byly poskytnuty.

Kĺıčová slova UE5, Unreal Engine 5, Datasmith, BIM, Building Information Modeling, Build-
ing Information Management.

iv

First and foremost I would like to thank my presenter of this work.
Without Ing. Petr Pauš, Ph.D., this work would not have been
possible and was completed only thanks to his support.
In addition, I would like to thank Ing. Radek Richter Ph.D. and Ing.
Jiř́ı Chludil for being able to interest the students in the material
they teach and for having an individual approach to each of their
students, being always open to discussion and not sparing their time
for the students.
I would also like to thank the school for providing me with the skills
used in this work, as well as the developers of Epic Games for mak-
ing the documentation quite nice and convenient.
I also want to express my gratitude to my family and relatives for
the moral and emotional support during the process of this work.

1

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact
that the Czech Technical University in Prague has the right to conclude a licence agreement on
the utilization of this thesis as a school work pursuant of Section 60 (1) of the Act

In accordance with Section 2373(2) of Act No. 89/2012 Coll., Civil Code, as amended, I hereby
grant a non-exclusive authorisation (licence) to use this copyright work, including all computer
programs and all their documentation (hereinafter collectively referred to as ”the Work”), to
all persons who wish to use the Work. Such persons shall be entitled to use the Work in any
manner that does not diminish the value of the Work, but only for non-profit purposes. This
authorisation is unlimited in time, territory and quantity.

In Prague on May 16, 2024

2

Introduction

There is a lot of software for rendering scenes, objects, animations and other things, but, at the
moment, the most popular is Unreal Engine 5 because of the presence of advanced technologies for
rendering light with Lumen, geometry thanks to Nanite and other technologies that at the time
of writing are unrivaled. Among those interested in using this software there are representatives
from a variety of parties, but in context of this paper we will deal exclusively with users of the
format BIM, and specifically the problem of transferring files from the format BIM to formats
accepted Unreal Engine 5 through the official plugin from the developers of Unreal Engine called
Datasmith. The range of accepted formats of Datasmith includes a huge number of formats such
as: 3ds Max. Cinema 4D, Revit and SketchUp Pro, IFC, Rhino 3DD, SolidWorks and CATIA,
VRED and DELTAGEN, a solid number of other formats from the CAD/CAID spectrum.

3

Chapter 1

Goals

The first task of this work is to create a description of BIM files, their properties, and describe
their transformation stages during the import process.

The second task is to find and describe existing methods of importing these files into Unreal
Engine and provide information regarding the characteristic features of these methods.

Based on one of the selected methods, using methods of software engineering, provide a
project capable of importing the provided test data on the basis of one of the described methods
and the corresponding documentation on the creation of such a project.

Analyze the resulting project containing imported test data and describe the final results.

4

Chapter 2

Unreal Engine

Unreal Engine is a game engine owned and developed by Epic Games. Initially, this game
engine was developed exclusively for shooters, but in the wake of changes in the company’s
policy has been repeatedly revised, and the goal is to make it universal. Written in C++ has
ready functionality for the development of products on most existing operating systems and
platforms. To simplify porting to different operating systems and platforms, the engine uses a
modular system of dependent components: it supports various rendering systems, audio playback,
voice text playback, speech recognition, modules for networking, and support for various input
devices.[4]

Thanks to its universal functionality, Unreal Engine has a large and diverse audience, includ-
ing representatives of the film industry, game industry, architecture and many others. Thanks
to this, the community actively interacts on forums and other platforms to share knowledge and
solve problems. The high-level functionality provides the ability to produce complex renders
using a variety of development tools, including level editors, material editors, animation edi-
tors, sound editors and many others, making it relatively self-contained and avoiding the use of
third-party editors.

2.1 Understanding File Structures
The parent of any class used inside Unreal Engine is UObject. This does not mean that it is
impossible to create a class that is not a descendant of UObject, but it does mean that you will
lose all the benefits of UObject and your class will exist in isolation from the internal Unreal
Engine ecosystem. The four main gameplay classes are most often extended. These are UObject,
AActor, UActorComponent and UStruct. Each of them will be described in detail below. You
can create types that do not extend any of these classes, but they will prevent you from using
most of the engine’s built-in features. As a rule, classes that are created outside the UObject
hierarchy (they are not inherited at any depth from UObject) exist for the following purposes:
integration of third-party libraries, wrapping of operating system features, etc.[5]

5

Understanding File Structures 6

Figure 2.1 Simplified diagram of native and created classes with description.

UObject
As mentioned earlier, UObject is a Unreal Engine base class that provides you with basic
functionality such as:

Reflection of properties and methods
Serialization of properties
Garbage collector
Search UObject by name
Customizing values for properties
Network mode support for properties and methods

Each class inherited from UObject contains a UClass singleton created for that class. This
class contains all the metadata about the class instance. The functionality of the UObject
and UClass (together) is the basis for everything a gameplay object does during its lifecycle.
The best way to understand the difference between UClass and UObject is that UClass
describes exactly what a UObject instance is and what properties are available for things like
serialization and networking. [6]

AActor

The AActor class represents the base object of the game space (every object in the scene is an
AActor or its descendant). An AActor inherits from a UObject, that is, it uses the standard
functions that were listed in the previous section. AActor can be destroyed manually (C++ or

Blueprints 7

Blueprint) or by using the standard garbage collection mechanism (when a level is unloaded
from memory). It provides high-level behavior for our game objects, eliminates the need
for low-level memory management, and provides basic functionality that enables network
mode replication. When replicating (in multi-user mode), an AActor also provides access to
information about any of its UActorComponents, which is necessary to support network mode
operation. AActors have their own behavior (specialized by inheritance), but in addition they
are containers for a hierarchy of UActorComponents (specialized by composition). Within
the actor is usually located all the logic of game mechanics and basic animations like spline
movement.
It’s important to mention that AActor contains a lot of basic events that give you the func-
tionality you need to implement their logic. For example, the Tick(float Delta) event is
updated with each tick of the game cycle and returns the time from the last Tick, which
allows you to bind, for example, the animation of movement along the curve to the delta and
thus make it smoother and more correct relative to real time. The BeginPlay event is called
at the moment of AActor construction completion and thus notifies about the beginning of
its existence and execution of its logic. [7]

UActorComponent

UActorComponent are not independent objects with their own implemented logic and are
used as a rule to give this logic to AActors that initially do not have a common parent to
avoid duplication of code and logic. It is assumed that each component solves a separate
unique high-level task, so for example each NPC, quest object, city, etc. needs to have its
own marker on the map, but between the quest object and NPC initially common parent is
only AActor. This problem can be solved by implementing this logic in UActorComponent
and adding this component to these objects. [8]

ACharacter

ACharacter in Unreal Engine is a base class designed to represent game characters in the
virtual world. It is part of the Unreal Engine game engine and provides a number of ba-
sic features and characteristics that can be used to create different types of characters in
the game. ACharacter contains functionality for controlling movement, interaction with the
environment, animation, and handling input from the player or other sources.
This class is typically used as a base class to create specific character types such as heroes,
enemies, NPCs, etc. Developers can extend the functionality of ACharacter by adding unique
features and characteristics depending on the needs and requirements of their project.

All classes that will be used in this paper are derived from the above classes.

2.2 Blueprints
Blueprint is a visual programming system in Unreal Engine 4 and Unreal Engine 5 based on
nodes with data: events and functions. They can be linked to each other and form gameplay
elements. There are several types of Blueprints designed for specific tasks, from creating a level
event to interfaces and macros that can be used as the basis for another Blueprint. Even though
Blueprints don’t have the same amount of functionality as C++, their capabilities are quite
extensive. They can dynamically modify geometry, materials and their configuration, particle
system behavior, and more.

In practice, it usually works like this: developers provide all the necessary functionality that
can be used in the game, and game designers, technical artists and others use the provided

Blueprints 8

functionality at the Blueprint level to implement the final concepts, so they do not need to know
C++ and its api in the context of Unreal Engine.

Figure 2.2 Blueprints example

The original parent of Blueprint is believed to be Kismet, but it is generally not used at
the moment due to high qualification requirements on the developer side. Blueprints due to its
abstractness and multiple encapsulation, has comparatively lower performance than the same
code written in C++.

Within Blueprint it is worth to arrange rather basic logic like: actor move to a point, play an-
imation, make requests to other actors or subsystem, but not calculations or other mathematical
logic.

2.2.1 BP ThirdPersonCharacter
BP ThirdPersonCharacter was created and developed by the development team at Epic Games,
the company behind the Unreal Engine. They created this class as part of the standard set
of functionality provided by the engine to simplify the process of creating third-person game
characters.

There are several reasons why BP ThirdPersonCharacter is the way it is:

Versatility: BP ThirdPersonCharacter is designed to provide basic functionality that can be
used to create a wide range of characters in a variety of games. It provides the basic control,
animation, and interaction features that are often required in third-person view games.

This class is designed to be relatively easy to use and customize for game developers, includ-
ing those without deep programming knowledge. It can be customized and extended using
Blueprint’s visual interface, making it accessible to a wide range of developers.

Blueprints 9

Flexibility: BP ThirdPersonCharacter provides basic functionality, but remains flexible and
customizable. Developers can augment it with their own logic and functionality to customize
it to meet the specific requirements and design of their games.

Compatibility: This class integrates well with other Unreal Engine components and features,
making it part of the vast ecosystem of game development tools and resources.

The above-mentioned features make it indispensable and alternative at least at the early
stages of development, and some solutions used in already implemented projects are custom
versions of this class.[9]

Figure 2.3 Third person character blueprint, detail panel and other.

The above image shows the standard interaction interface and settings of this class. In the
details panel you can change the default values of this actor, for example the blueprint animations
used, the response to a particular collision channel, the mass of the actor and more. The space in
the middle is the Blueprints themselves. In them the logic of the object is realized. The interface
on the top left shows the hierarchy of actor components within the actor itself. You can add or
remove components and customize the values of their attributes. The lower left tab stores a list
of all the events and functions as well as the variables of the actor.

2.2.2 In-game controls
The basic functionality of third-person character control will be described below. In case of need,
they can be changed using project settings and changing mapping of inputs.

• W – Moves the character forward.

• A – Moves the character left.

• S – Moves the character back.

• D – Moves the character right.

• Spacebar – Jump.

• Mouse Rotation – Rotating camera around character via mapping 2D movement onto
sphere.

Materials 10

2.3 Materials
Materials are one of the most important elements for creating compelling interactive content.
Materials determine how each individual pixel in a scene reacts to light, shadow, and reflection.

Creating materials in real-time can be very different from creating materials in 3D applications
and renderers. Like most Unreal Engine processes, materials work focuses on interactivity and
performance. Unreal Engine has WYSIWYG1, real-time material previewing and - through the
visual Material Editor - the ability to program, literally based on every pixel and vertex, how
materials behave. Because of its interactive nature, Unreal Engine provides instant feedback on
stage about how materials look.[10]

There is no material creation within the scope of this work. The main interaction with
materials is the application of materials to meshes based on the method of syntactic analysis of
mesh names, which will be described in the next chapters. The materials that will be used in
this work are taken from the Starter Content2.

Figure 2.4 Node graph of metal material imported from Starter Content.

In the above image 2.4 material is collected from a set of parameters such as Base Color (the
basic color of the material collected from several textures), maximum value Metallic (a parameter
describing the presence of metallic properties in the range from 0 to 1), average value Roughness
(a parameter describing the roughness or smoothness of the material) and Normal (the map of
material normals). This set of parameters creates the material that can be seen in the image 2.4
in the upper left corner. Most of the materials used within the work use this preset or are even
more primitive. Due to the fact that Unreal Engine solves most of the implementation on its
own, it will define the object normals itself if you don’t specify them and so on.

1WYSIWYG is an acronym for What You See Is What You Get.
2Starter Content pack is a list of basic content such as meshed, material, etc provided by Unreal Engine

developers.

Collision 11

Figure 2.5 Node graph of simple emissive material.

An emissive material in computer graphics is a material that is itself a light source. Unlike
materials that reflect or transmit light, emissive materials create light themselves, making them
useful for creating luminous or glowing objects in a scene. While it is technically difficult to
implement such materials, it is quite easy within the Material Editor. In the figure2.5, may be
observed the implementation of such a material by changing the material domain and passing a
large value to Emissive Color. This material is subsequently used as part of the work to realize
light sources within the imported IFC files.

2.4 Collision
Collision is a very broad term, in engines and visualization it means the interaction between
objects, and more precisely, their collision (you can also meet the notion of intersection) and its
result. There is such a process as collision detection. This process is the result of mathematical
calculations, its task is to determine the total number of objects in the frame, sift out the
overlapping ones and determine collisions between them to calculate further interaction. You
can often meet the concept of collider - it is some invisible object, a simplified shell that is
assigned to the object and sets its shape allowing the engine to understand whether the object in
the frame collided with something or not. This is a narrower term, although in essence it works
with the same functions and is basically a collision shell. We will touch on it a bit further in the
text.[11]

2.4.1 Manual collision creation
There are two ways to create collision on your own. Using primitives in the engine itself in the
Static Mesh Editor - Collision section, or in a 3D editor (Maya, Bldender, etc.). When manually
creating, the collision must match the name of the asset for which it was made, usually it has some
additional prefixes to the main naming. For example, if your asset is named SM Wood Chair A,
then its collision will be named UCX SM Wood Chair A.

Collision 12

For the example, a collision of the specified mesh will be created by means of the Collision
Editor.

Figure 2.6 Mesh without collision and basic collider. Lit on the left side and Collision on the right
side

The above image2.6 shows that the mesh has no collisions. Expanding the mesh itself as an
asset will take you to the collision editor.

Figure 2.7 Collision Editor. The context menu with basic collisions is opened in the upper part of
the image.

Clicking on the collision tab at the top will open the context menu.

Collision 13

Among the existing options for creating a collision, the following variants can be found:

Basic shapes – Primitive forms to which all kinds of transformations are applied.

Box
Sphere
Capsule

KDOP – Are simple collision generators, where K is the number of planes projected along
the selected axis (X, Y, Z).

10 – box with 4 beveled edges3 (faces) on one of the axes.
18 – box with all beveled edges.
26 – box with all beveled edges and corners.

Auto Convex Collision – Another option for creating collisions. And although it is called
”Auto”, there is a lot of manual work to be done with it. Selecting it opens an additional
window with three parameters:

Hull Count – Is the total number of primitives of the final collider.
Max Hull Vertex – The total number of vertices that the collision will have.
Hull Precision – coefficient of collision projection accuracy.

This solution is imperfect and will require repeated generation of the collider in order to
obtain a suitable result. It is important to pay attention to the fact that the final collision of
this method is complex, not simple.

Figure 2.8 Result mesh collision

In the image2.8, may be observed the added basic cube collision to our meshes.
Collisions can also be added within the scene itself as primitive shapes. This is a quicker and

simpler solution that may allow, for example, to traverse several meshes with a single collider,
however, adding collisions at the mesh level will apply the collision to the instances of the mesh
located at the level.

3Beveled edges means that the edges (faces) of a primitive collision shape have rounded corners or smoothed
edges. This makes the collision shape more suitable for handling collisions with other objects in the scene

Collision 14

2.4.2 Common
Any collision also has Collision Presets, the presets help customize how the asset interacts with
various environment elements and events. This is a separate complex topic that will not be dealt
with in this paper. It is enough to know that by selecting the BlockAll collision preset the object
will be an obstacle or a surface on which you can move.

Figure 2.9 Details panel with collision response settings.

You can customize the collision response both within the mesh itself and at a specific object
on the stage. The Collision Presets section must be found in the details panel and the Collision
Presets section in it.2.9.

Hardware and Software Specifications 15

2.5 Hardware and Software Specifications
The main development platform is Windows. Although the developers claim that Unreal Engine
is compatible with Mac and Linux, these solutions are unstable and very problematic, so in this
section I will only describe the recommended technical requirements for Windows and used for
research.

Operating System

Recommended: Windows 10 64-bit version 1909 revision .1350 or higher, or versions
2004 and 20H2 revision .789 or higher.
Used for research: Windows 10 64-bit version 1904

Processor

Recommended: Quad-core Intel or AMD, 2.5 GHz or faster
Used for research: 16-core Xeon W-2245 3.9 GHz

Memory

Recommended: 8 GB RAM
Used for research: 64 GB RAM

RHI Version

Recommended: DirectX 11/DirectX 12/Vulkan: AMD (21.11.3+) and NVIDIA (496.76+)
Used for research: DirectX 12

Video card

Recommended: Vastly different depending on the features you want to use. For our
subject, NVIDIA RTX-2000 series and higher will be more than enough.
Used for research: NVIDIA GeForce RTX 3090

It is worth realizing that some of the recommended requirements in the context of this research
paper are somewhat overstated. It is not even necessary to run a world simulation to study the
results of the import outcome. All the work can be done within the framework of an editor like
this one.[12]

Chapter 3

Formats

3.1 Understanding File Structures
Since this work will deal with methods of processing different types of data, it is necessary to
have a minimal idea of which formats represent what. BIM is an intelligent 3D model-based
process in which all stakeholders can coordinate, collaborate, and share information. BIM files
are usually organized in a hierarchical structure where at the top level are project files that
contain data related to the entire building project, and below that are discipline-specific files
that contain information related to each individual discipline, such as: architecture, landscape
architecture, construction, structural, mechanical, and lighting/electrical engineering. Each of
these disciplines implies a separate layer of information, represented by a separate unique set of
dates, which is only partially related to the other disciplines or not related at all. Finally, individ-
ual component families contain information specific to each building component. Understanding
these file structures is key to efficient and effective use of BIM technology.

3.1.1 BIM File
The term BIM is an abbreviation for Building Information Model - Building Information Model
or Building Information Modeling, if we are talking about process or technology. Russian leg-
islation has a similar term - information modeling technology or BIM. When they talk about
BIM technology, they most often mean the creation in specialized programs 3D-geometry of the
building with associated attributive information (for example: material, article or price). The
construction of a BIM model is based on the principle of object design, i.e. the assembly of a
complex model from elements, each of which belongs to its own class - windows, walls, floors,
fittings, etc. The class of an element defines a set of properties and behavior of the element.
Thus, BIM-model, can be called a copy of the building in a virtual computer environment. With
the spread of BIM-technologies, the use of information modeling is already spreading to other
stages of the life cycle of a construction project. A BIM file architecture system relies on a
database that keeps relevant information about building design, construction and maintenance.
[13]

Considering appropriate parameters for the evaluation helps to identify unique characteristics
between different BIM formats files since each possesses its own structure and data repository
defining how project information or individual components/attributes are arranged. Structural
organization determines how information is accessed in each format which may have little influ-
ence on the reading or importing activities.

16

Understanding File Structures 17

3.1.2 IFC File
The Industry Foundation Classes (IFC) Format is widely used in the architecture, engineering,
and construction (AEC) industry to exchange information between different building software
and systems [14]. It was developed by the International Alliance for Interoperability (IAI) as an
open standard to facilitate communication and collaboration across disciplines and organizations.
IFC files contain data about the building geometry, properties, relationships, and model views,
and they can be imported and exported by many software applications.

High interoperability has come to be used as a standard in the production domain, where in
each iteration of the working pipelines the final product of production must be an IFC file.[15]

This interoperability enables stakeholders to work together more efficiently, reduce errors
and duplication, and enhance the overall quality and sustainability of the built environment.
Critics argue that IFC is too complex, verbose, and outdated, and that it hinders innovation and
customization. However, proponents counter that IFC is constantly evolving and improving, and
that it provides a common language that transcends hardware, software, and culture.

In addition to IFC, there are two derivative formats of IFC:

IFC-XML is a derived format from the standard IFC that represents the same data structure
as standard IFC files, but in XML (eXtensible Markup Language1) format. XML is a markup
language used for storing and transmitting structured data in text format. The IFC-XML
format provides a more flexible and human-readable way of representing data than the binary
format of standard IFC files.[17]

IFC-ZIP is a way to package IFC files and related data into a single ZIP archive for easy
transfer and storage. This format is typically used to group multiple IFC files and associated
resources (e.g., texture files, images, etc.) into a single file for ease of data sharing and
portability. Typically, an IFC-ZIP file contains both the structured IFC-formatted data and
the associated materials needed to fully represent a building or infrastructure model.[17]

1eXtensible Markup Language (XML) is a markup language used to organize and store structured data in text
format. It is a set of rules for creating custom tags and attributes that can be used to describe data.[16]

Understanding File Structures 18

Figure 3.1 IFC domain architecture and structure.[1]

IFC file as a representation of the BIM format group is divided into several domains including:

Resource layer layer containing the basic objects and entities represented in the IFC standard,
such as walls, windows, doors, floors and other building or infrastructure elements. This layer
defines the basic structural elements that are used to create models of buildings and other
objects.

Core layer defines the basic abstract concepts and data models that underpin the IFC standard.
Includes objects, relationships, attributes and other elements that are used to describe and
model buildings and their components.

Interoperability layer defines mechanisms and standards for information exchange and inter-
operability between different software and systems using the IFC standard. Includes specifi-

Understanding File Structures 19

cations for file formats, exchange protocols, and technologies that allow different systems to
exchange data and work together.

Domain layer defines the specific application areas and knowledge domains in which the IFC
standard applies. Includes various industry domains and disciplines such as architecture,
engineering systems, construction, real estate management and others. Each domain has its
own characteristics and requirements for modeling and data exchange, which are taken into
account at the domain level.

The specific specifications of the domains are configured within a specialized softwire to work
with IFC files. Due to these specifications data volumes and data types located within domains
can be varied. All information describing IFC file domains was found in the official developer
documentation.[1]

3.1.3 DWG File
Engineering design and computer-aided design heavily rely on the widely used DWG (from
drawing) file format which is a standard format. It has the ability to store various data types
and boasts of a rich structure.

Storing graphic elements, like lines, circles, arcs, polylines, and text, is the DWG file’s exper-
tise. Every element possesses its distinct coordinates, defining where it belongs in either 3D or
2D space.

Organizing elements into different layers is made possible by the format, granting you the
ability to control their settings and visibility. Drawing components can be reused by utilizing
blocks, which are a set of graphical elements. For calculation and analysis purposes, files are
equipped with information on both coordinates and points. DWG grants the power to store
various display choices like line styles, strokes, text, and customizations. 3D models are supported
by geometry, both in 2D and 3D formats.

3.1.4 UASSET File
Containing data and metadata about game assets, uasset is a binary file format utilized within
the Unreal Engine game engine. This format serves as a managing system for a diverse range
of game assets such as 3D models, textures, animations, sounds, and more. Assets within the
uasset structure are organized at multiple levels, integrating seamlessly into projects developed
within the Unreal Engine. Handling assets and resources with ease, uasset format is an essential
component of the infrastructure that supports game development using the Unreal Engine.

Binary data optimized for the Unreal Engine game engine is what the uasset format stores.
The format’s purpose is to hold a range of assets, like sounds, animations, textures, and 3D
models. Every uasset file is dedicated to a singular asset, and its structure is specific. Binary
codes and data structures are utilized within the file to describe the data, allowing for rapid
access to the data during gameplay, and efficient storage of information.

The arrangement of assets in a hierarchical order is made simpler thanks to the uasset struc-
ture. The uasset carries metadata that plays a role in managing the asset, making certain that
it’s utilized properly in the project. Managing a large number of assets in complicated game
projects is made easier through this structure.

3.1.5 FBX file
Developed by Autodesk, FBX (Filmbox) is a widely used file format in 3D modeling, animation,
and visualization, providing a transfer method for 3D data across various platforms and software.
In an FBX file, there are geometry, materials, textures, animations, lights, cameras, custom

Processing and translation 20

properties, object hierarchies, and metadata. In the 3D graphics and animation industry, this
format is paramount for interoperability, allowing effortlessly exchange data across programs and
projects.

3.1.6 Compatability of formats
The standard UE format has always been FBX. Depending on the version of UE it accepts all
versions of FBX released earlier, however, if you need to import the newest version of FBX file
into UE, there is an option to import this file into Blender or other 3D editor to export as an
older version of FBX. The undertaking of incorporating BIM data formats, such as IFC, into
Unreal Engine’s uasset format poses a potentially valuable, albeit challenging opportunity. It is
essential to establish efficient import techniques, attribute mapping, and careful consideration of
data structure in order to bridge the gap between the gaming and architectural data standards.
The solution to this problem deserves a separate research paper, so I will use a ready-made
solution provided by the UE developers (Datasmith).

Datasmith was developed to import and process BIM files. Using a suite of tools and plugins
called Datasmith, users may import sophisticated assets and complete pre-built scenes from a
range of industry-standard design programs into Unreal Engine.

3.2 Processing and translation
The process of converting data from BIM to uasset format is a complex task, given the differences
between these formats and their purpose. A significant impact on the final result can have both
the original file and its settings and subsequent manipulations with it.

In work, dealing with the transfer of BIM models to Unreal Engine, little attention has been
paid to performance aspects, and even when this is taken into account, the most efficient model
transfer techniques are not used in this case, so computing power is used inefficiently. The most
efficient model transfer techniques are not used, resulting in inefficient use of computing power.
There are many solutions to automatically build interactive visualizations of BIM models. They
can be divided into two groups: solutions that fully automate model visualization and solutions
that automatically export geometries to the most popular 3D engines.

The advantages of automated model visualization solutions is that they do not require the
user to perform any action related to visualization creation. On the other hand, the quality of the
visualization is usually not the highest and there are no options for fine-tuning the visualization
(available in modern graphics engines) and implementing your own interaction logic.

Automatically exported solution allows you to avoid intermediate editing of the model in
the 3D editor and minimize its further adjustment in the engine (Adjustment of materials,
placement of light sources, etc.). Clearly, this automation significantly reduces the time required
to create interactive visualizations. However, there are currently no solutions that can efficiently
export complex BIM models. For these reasons, BIM models need to be manually intermediated
before they are transferred to the engine in order to create interactive visualizations that use the
available computing power as efficiently as possible.

3.2.1 Datasmith
The content of this chapter is an extract of information on the topic of work from official docu-
mentation [18].

A set of utilities and add-ons called Datasmith facilitates the import of material into Unreal
Engine 5. The goal of Datasmith is to address the unique problems encountered by non-gaming
businesses wishing to leverage Unreal Engine for real-time rendering and visualizations, such as

Processing and translation 21

manufacturing, engineering, building, live training, and architecture. However, game developers
that have comparable issues with their asset pipelines could also find it interesting.

Figure 3.2 Datasmith compatability.[2]

Datasmith has set lofty objectives, which involve effortlessly incorporating entire pre-built
scenes and intricate structures into Unreal Engine, regardless of their size or intricacy. It elimi-
nates the necessity of dividing scenes into separate fragments for import and effectively maximizes
the usage of existing resources and layouts from other design instruments.

With each release, Datasmith aims to ensure compatibility with a broad range of 3D design
applications and file formats like Autodesk 3ds Max, Trimble Sketchup, Dassault Systèmes Solid-
Works, among others. The platform also tackles the obstacle of integrating modifications made
to the original content without necessitating a total overhaul of brought-in resources in Unreal.

At present, Datasmith is primarily dedicated to the task of converting design material into
formats that can seamlessly work with Unreal Engine in order to facilitate real-time render-
ing. Looking ahead, their aspirations are aimed at improving the process of intelligent data
preparation, ensuring that imported content is optimized for efficient performance during execu-
tion. Additionally, they aim to integrate more advanced and intelligent behaviors during runtime
operations.

3.2.2 Alternative methods
Alternative methods of importing IFC files into Unreal Engine do not necessarily require addi-
tional softwares or plugins. For example, it is possible to translate a file into FBX format, which

Processing and translation 22

is the standard for Unreal Engine accepted meshes, but this implies that additional problems
may arise as part of the intermediate iteration. There are also custom solutions to solve specific
problems [19].

Chapter 4

Data processing and requirements

There are a fair number of methods for accepting Unreal Engine BIM files:

1. Transit format – some devices support translation from IFC to FBX which is directly accepted
by Unreal Engine and is the engine’s primary format.

2. Connecting third-party plugins, as for example, 3drepo or Modumate, which have quite a lot
of functionality, but it does not exceeds the native solution and implies partial use of Unreal
Engine command lines and use of the internal API.

3. Others – imply additional qualification on the part of the user.
Taking into account all of the above, it can be argued that Datasmith is the most suitable
solution.

4.1 Software prerequisites
To study the import method I will use Unreal Engine version 5.2.1, although it is worth noting
that Datasmith is compatible with almost all versions starting from 4.0.2. Among additional
third-party software I use Electronic Nodes, which simplifies the work with Blueprints a bit, but
it is entirely cosmetic and is absolutely not important or necessary for importing BIM files. More
detailed steps will be described within the following chapters.

4.1.1 Setting up project and Datasmith
If you use Unreal Engine 4, you will be necessary to manually connect the plugin to the project.
This is done by going to the plugins section in dropbox of the Edit tab located in the upper left
corner of the Unreal Engine window.

23

Input/Output 24

Figure 4.1 Plugins button location

Find the Datasmith plugin or the modification and check the checkbox. In case of use Unreal
Engine 5, no additional steps are required as Datasmith is a component of it.

4.1.2 Electronic nodes
Electronic nodes is a custom plugin that modifies the standard Unreal Engine user interface and
allows to customize it according to liking. A characteristic feature of this plugin is that it uses
angular linear curves instead of traditional curves typical for Blueprint scripting.

4.2 Input/Output
This chapter will describe the characteristic features of import, the difference between the char-
acteristics of the object in its original format and after import according to the official documen-
tation [3] and the results of own experience.

4.2.1 Hierarchy
Datasmith creates an Actor for each object presented in your IFC scene. The name of each Actor
is prefixed with the IFC type of the corresponding object. These Actors are then organized in a
parent-child hierarchy of the Datasmith scene that exactly follows the layout of your IFC objects,
so it is important to keep the hierarchy correctly in the original file to avoid problems before and
after import.

Input/Output 25

Figure 4.2 Hierarchy of IFC file on the left side and hierarchy of scene in Unreal Engine on the right
side.[3]

In the Unreal Editor World Outliner, the actors at each level of the hierarchy are always
ordered alphabetically. This can lead to visual differences in the ordering of siblings between
Unreal Engine and other IFC viewing and editing applications, but the relationship between
parents and children remains the same.

While Unreal Engine requires unique names, IFC allows multiple objects with the same name.
For this reason, during import, Unreal will pre-generate a numeric suffix to avoid collisions.

4.2.2 Metrics
The standard unit of measurement in Unreal Engine has always been the centimeter. Some of the
applications that work with BIM files have different standards, for example inches. Datasmith
uses metadata to understand what units of measurement the original objects were in and when
importing, recalculates them in Unreal Engine units so that the original transformation of the
imported object will be standard, while rescaling operations will be performed on the object.

Input/Output 26

Figure 4.3 Initial dimensions of the object within the original software.[3]

Thus inches as a unit of measurement in the source application will be converted from an
object with a length of 10 units in the source scene to a length of 25.4 world units in Unreal
Engine.

Figure 4.4 Object dimensions after rescaling as a result of importing.[3]

With complex transformation values for scene objects and objects that are in the lower
layers of the hierarchy that are compensated at the level of individual objects, the complexity of

Input/Output 27

coordinate system transformations can cause the results in Unreal Engine to be inconsistent with
the original scene. To fix this problem, you must go back to the original scene in your softwire
and simplify the transformations within the scene hierarchy

4.2.3 Materials
Datasmith locates a Material Asset in Unreal with the same name for each surface material it
discovers in your IFC scene and adds it to the Materials folder adjacent to your Datasmith Scene
Asset. To shade the surfaces of the Static Mesh Assets it develops, Datasmith allocates these
Material Assets to them.

Every Material in the Materials folder is a Material Instance, exposing the color values,
transparency values, specular colors, and other attributes defined in the IFC file.

Depending on your source application, Datasmith provides distinct Parent Materials to your
Material Instances based on the principles described below.

Generally, Datasmith assigns a pre-existing Parent Material that comes with the Datasmith
plugin to each Material Instance. The material authoring parameters that are available in your
source application are typically comparable to the pre-defined settings that are provided by
these Parent Materials. Within each Project, Datasmith generates Material Instances, each of
which has exposed parameters that are available for modification. Every Parent Material that
Datasmith provides has a unique collection of attributes.

Datasmith additionally generates new Parent Materials in your project, located inside the
Materials/Master folder, if you’re importing content from 3ds Max or Rhino. Compared to
most other source software, 3ds Max provides a significantly more robust Material creation
method that is essentially comparable to Unreal Engine Material graphs. Consequently, instead
of needing to reuse pre-set Parent Materials with a pre-set graph and a pre-set list of exposed
options, Datasmith is usually able to construct new Master Materials that are extremely similar
to the custom Materials you have in 3ds Max.

In this case, Datasmith typically still creates Material Instances for those custom Parent
Materials. To be more specific, it creates Master Material and then Material Instances to apply
them to Static Mesh Assets and to the Static Mesh Actors located at the scene. Modification of
each Material may be implemented via attributes of Material Instance. For some types of 3ds
Max Materials, Datasmith may skip creating the Material Instances. It is solved via applying
same Parent Material to Static Mesh Actors and Assets.

4.2.4 Collision
By default, all data imported with Datasmith is collision-free. The only exception is 3Ds Max
where it is possible to manually create collisions that will be recognised by Datasmith during
import [20]. This is due to the fact that most software supporting IFC decide to break the scene
into other layers such as: a layer of electrical wiring, plumbing layer, etc., and collision layer is
not presented, while 3Ds Max is focused on design-projecting and animation and in some cases
can use collision objects to simulate collisions in animation [21].

Input/Output 28

Figure 4.5 Comparing Player collision and Lit layers after import.

However, this does not mean that the imported geometry cannot be given the appropriate
collision. After import, the objects become standard uasset and have all their functionality,
which means that you can create their geometry using third-party editors such as Blender and
others or using the built-in mesh editor in Unreal Engine, which provides the functionality to
create complex or simple collision. Due to the fact that each object of the original file is imported
as a separate unique mesh (so 20 identical chairs will be imported as 20 separate meshes) this
method will definitely not be optimal.

Special attention should be paid to the fact that there is a Datasmith Runtime feature that is
at the beta testing stage. It provides access to Blueprint scripting of data imported into Unreal
Engine via Datasmith throughout the process and gives the ability to edit them. Also there is
a separate functionality for creating and generating collision by means of standard tools of the
mesh editor, where Unreal Engine will try to create an optimal collision for imported objects by
means of parameters set by user [22].

4.2.5 Metadata
Datasmith imports geometric object metadata that you define in your source application for
certain types of source file formats [20]. Python scripts and Blueprint may be used in the Unreal
Editor to get this metadata.

Technical metadata values regarding specific scene objects, such as their unique IDs, ob-
ject classes, or other application-specific information, can be accessed through some third-party
applications and file formats [18]. This type of technical data is imported by Datasmith into
Component Tags, which are then assigned to the Static Mesh Component, which in the Level
reflects the geometry of each item.

For example, the provided test data only had Datasmith UniqueId (It is the Datasmith-
generated ID that is used for identification and naming during the import process), whereas if
the object class methods were available, it would be possible to replace duplicate meshes with
instances of a single mesh using the instancing technique.

Every property that Datasmith imports from the IFC file is noted, and the values of these

Input/Output 29

properties are saved as Datasmith Metadata on the Actors that Datasmith constructs to represent
those objects in the Unreal Engine. This metadata is accessible during runtime in the Unreal
Engine or in the Unreal Editor.

Figure 4.6 Left: an IFC file’s attributes. Right: Datasmith Metadata was constructed using those
attributes.[3]

Grouping properties is possible with IFC. A few groups, such as PSetRevitMechanical, PSe-
tRevitDimensions, PSetRevitIdentity Data, and so on, are displayed in the image above. But
Datasmith in Unreal Engine, metadata is always just a flat list of values and keys. As demon-
strated above, if any groups are present in your IFC properties, Datasmith flattens the hierarchy
by compiling all of the metadata keys from each group into a single flat list. The collective names
are eliminated.

In the metadata key names, Datasmith only permits alphanumeric characters, hyphens, and
underscores. Any additional characters in the name of user data will be automatically changed
to underscores. For instance, the Fixture Units field in the Datasmith Metadata is changed to
FixtureUnits in the image above.

Chapter 5

Result project and features

This chapter is devoted directly to the created project and describes the features implemented
by me. The chapter is divided into several sections and represents the whole stage of project
implementation, adding test data to it and analyzing the obtained results.

5.1 Provided functionality
The test data provided to me after importing through Datasmith to Unreal Engine and then
placing it on the scene contained a huge number of problems such as: missing materials, missing
light sources, missing collisions and others. It can be clearly stated that these problems can
be solved by means of corresponding scripts, as for example it was already mentioned in the
collisions section or replacing the lack of lighting by giving emissive materials to light sources,
however, due to time constraints only some of the solutions were implemented.

5.1.1 Material manager
At the time of importing the experimental data provided to me, the main problem was the
inability to inspect the data due to the lack of material on the data. In such cases for standard
Unreal Engine meshes Static Mesh Actor is used, which refers to one specific parent mesh and
due to this all have the same material. After importing, as it was said earlier, each mesh was a
unique object, so this method of solving the problem was simply impossible.

Figure 5.1 Material after import. Light implemented via added point light. Lit on the left side and
unlit on the right.

30

Provided functionality 31

Before describing the solution I have provided, it is necessary to point out the fact that each
of the objects located on the stage has a unique name. Thus even several identical objects added
to the scene will have a generated unique postfix. Based on this data, I decided to analyze the
actors on the stage and provide them with material based on the string of the name of one of
them, ignoring the postfix.

Figure 5.2 A script that changes the material for each actor on the stage with a corresponding name.

Brief description of the script sequence5.2:

1. Retrieves from the current scene all objects whose class is equal to Static Mesh Actor as an
array.

2. With the help of a for loop, it checks each received array object for the presence of a substring
of the string specified as the ”TargetName” argument. If it does, it continues, otherwise it
moves on to the next element of the obtained array.

3. For an element that fulfills the previous condition, changes the material according to the
argument specified as ”Material”.

The solution I implemented is to go through all the actors on the stage and compare their name
with the string passed as one of the function arguments. The second argument is the material
that will be set by all actors whose name matches the string passed as the first argument without
taking into account the ignored postfix.

Thanks to the various materials, orientation on the level is noticeably simplified and the
emergent nature of the scene becomes noticeably clearer.

Provided functionality 32

Figure 5.3 Changed materials. Light implemented via emissive materials. Lit on the left side and
unlit on the right.

This solution is executed within the framework of the editor and even taking into account
that it searches all the actors located on the stage, which is not a big load, it is executed outside
the running of the final version of the project that does not reduce the cost of production of the
final product to zero.

5.1.2 How to use Material Manager
This actor is located within the project where it can be found using the content browser. It can
be used by moving an actor called BP MaterialManager to the scene and then interacting with
its interface.

Profiling widget 33

Figure 5.4 Default interface is located in the details panel of actor that is placed on level.

In the bottom right window is the details panel where you can find the customization section.
Within this section you need to perform the following sequence of actions.

1. You need to define a common subsequence of object names in which you want to change the
material. For example, if you want to add glass material to all windows, you need to find one
of the mesh instances, such as Fixed window 1 477324 body1 57, and take Fixed window out
of it.

2. Enter this string in the details pane at the attribute value TargetName.

3. Select from the Material attribute in the same section one of the existing project materials
to be assigned to all target objects.

4. Click on the button above these attributes called ChangeMat.

5.2 Profiling widget
As part of development, you often had the need to switch between different types of statistical
information output. In order to make this device the most convenient for subsequent users, a

Profiling widget 34

mechanism was implemented to display actual information about the game performance relative
to the current frame using a widget that contains two buttons.

The first button causes the stat fps and stat unit commands to be executed, while the
second button causes the stat none command to be executed. More details:[23]

stat fps : The stat fps command is used to display frames per second (FPS) information on the
screen, namely the number of frames per second and the average processing time per frame.
These values are of fundamental value for any runtime application.

stat unit : The stat unit command in the Unreal Engine game engine displays information
about the time spent on various stages of processing each frame of the game. This helps de-
velopers optimize game performance by identifying bottlenecks and areas where performance
needs to be improved.
Typically, the stat unit output consists of three parts, representing the time (in milliseconds)
spent on different stages of frame processing:

CPU time : Time spent on the processor (CPU) to process game logic, calculations, and
other CPU-related operations.

GPU time : Time spent on the graphics processing unit (GPU) for rendering a scene,
executing shaders, working with graphics resources, and other graphics-related operations.

Draw time : Time spent rendering a frame to the screen, including rendering graphics,
texture processing, and other steps involved in displaying the image on the screen.

These three parameters allow developers to determine which parts of the game engine take
the most time to process each frame, and help in identifying bottlenecks and possible places
to optimize game performance.

stat none : disables the display of statistics on the screen. This is useful when you don’t need
to monitor game performance or when displaying statistics interferes with gameplay.[24]

All of the above commands can be manually entered by the user at the cmd prompt. This
widget simulates automated injection for ease of use by a third-party user.

Figure 5.5 Widget and denug data.

Analysis 35

The widget has two buttons, one of which displays stat unit and stat fps, and the second one
calls stat none, which allows the user to easily add and remove all necessary statistics.

This widget is invoked by right-clicking on the widget’s Blueprint, which opens a context
menu where the top tab called Run Editor Utility Widget opens it in the editor.

5.3 Analysis
Geometry : The geometry was completely copied from the original scene as it originally ap-

peared. Excessive polygonalization can be observed among the problems. Standard objects
produced within the BIM format are rarely used in the playback of rantime applications and
as a consequence are not optimized to an optimal state. It is also necessary to pay attention
to the fact that each object on the scene is unique. None of the instantiation techniques have
been applied. All this increases the total number of Drow calls by many times. However, even
so such a scene as a school can be reproduced realtime on not the most modern hardware.

Materials and textures : All materials and textures were lost in the import process. This is
easily adjusted using a script I created. However, if you redefine the meshes correctly (for
example, all chairs use the same meshes), it will be enough to assign the material to one
parent mesh and thus assign it to all of them.

Illumination : Because Unreal Engine uses its own model and lighting techniques, light sources
are not imported. This can be easily fixed with a script. For example, in this work we assign
emissive materials to all lamps via the same script5.2. It can also be done with a similar
script by positioning point or directional light.

Figure 5.6 Recorded data example.

Performance : Scenes imported into Unreal Engine using Datasmith do not have the best
performance, but even in this form they can work in realtime. On the example of test
data provided to me in some angles, the number of Drow calls reached up to 8 thousand
and primitives up to 700 thousand as may be seen on the image5.6, which are values that
are above the accepted standards. In general practice there are different solutions for this
problem, but in this case due to limited space it would be sufficient to use level streaming.

Chapter 6

Conclusion

The conclusion contains the result of the research, an attempt to implement one of the solutions,
the results obtained and a conclusion based on the data obtained.

The project looked at several existing methods for importing BIM files into Unreal Engine.
Based on the collected data, we implemented one of the possible solutions for importing BIM files
into Unreal Engine via Datasmith. Various import aspects including geometry, materials, light-
ing, animation, collisions and metadata were analyzed and appropriate techniques and solutions
were applied to improve the performance and visual quality of the project.

Differences between raw data and post-import data were analyzed, identifying key issues and
potential improvements for future work. As part of the study of the import results obtained,
problems and shortcomings were identified. Some of them were eliminated or optimized, solutions
for individual problems were implemented.

Limitations in handling raw data, such as differences in formats or incomplete compatibility
with some applications, also remain relevant and may require additional research and develop-
ment.

Among the directions of further development of the project we can consider additional re-
search and testing with different types of source data and formats to improve the import process
and optimize performance, as well as the development and implementation of additional scripts
and tools to automate and improve the process of data processing after import. Special attention
should be paid to the Datasmith Runtime, which allows direct access to data during the import
process and its modification.

The project allowed for a deeper understanding and exploration of the process of importing
data into Unreal Engine using Datasmith, as well as identifying problems and potential im-
provements in this area. The results and experience gained will be useful for further work on
projects related to visualization and virtual environments, as well as for the development and
improvement of tools and methods for working with data in Unreal Engine.

We should pay attention to the fact that Epic Games are working very actively on Datasmith.
For example, near the end of this paper there is Datasmith Runtime, which is able to solve many
of the problems listed in this paper. It is highly recommended to familiarize yourself with the
current Datasmith articles and documentation at the time of further actions within this paper.

36

Bibliography

[1] BuildingSmart official documentation. online, [cit. 2024-05-11]. Available from: https://
standards.buildingsmart.org/IFC/

[2] Datasmith plugin main page. online, [cit. 2024-05-09]. Available from: https://www.
unrealengine.com/en-US/datasmith

[3] Using Datasmith with IFC Files. online, [cit. 2024-01-27]. Available from: https:
//docs.unrealengine.com/4.27/en-US/WorkingWithContent/Importing/Datasmith/
SoftwareInteropGuides/IFC/

[4] Institute, S. P. Unreal Engine basics. online, [cit. 2024-03-16]. Available from: http://web.
spt42.ru/index.php/chto-takoe-unreal-engine

[5] Class structure. online, [cit. 2024-05-03]. Available from: https://dev.epicgames.com/
community/learning/tutorials/7xWm/unreal-engine-basic-class-structure

[6] Unreal Engine basics. online, [cit. 2024-03-16]. Available from: https://docs.
unrealengine.com/4.27/en-US/ProgrammingAndScripting/ProgrammingWithCPP/

[7] Unreal Engine AActor. online, [cit. 2024-03-16]. Available from: https://docs.
unrealengine.com/5.3/en-US/actors-in-unreal-engine/

[8] Unreal Engine UActorComponent. online, [cit. 2024-03-16]. Available from: https://
unrealcommunity.wiki/component-uxhizejm

[9] Third Person Template. online, [cit. 2024-04-25]. Available from:
https://dev.epicgames.com/documentation/en-us/unreal-engine/
third-person-template-in-unreal-engine

[10] Designing Visuals, Rendering, and Graphics documentation. online, [cit. 2024-05-11].
Available from: https://docs.unrealengine.com/4.26/en-US/RenderingAndGraphics/
Materials/

[11] Collision Overview documentation. online, [cit. 2024-05-12]. Available
from: https://dev.epicgames.com/documentation/en-us/unreal-engine/
collision-in-unreal-engine---overview?application_version=5.0

[12] Hardware and Software Specifications. online, [cit. 2024-03-
16]. Available from: https://docs.unrealengine.com/5.0/en-US/
hardware-and-software-specifications-for-unreal-engine/

37

https://standards.buildingsmart.org/IFC/
https://standards.buildingsmart.org/IFC/
https://www.unrealengine.com/en-US/datasmith
https://www.unrealengine.com/en-US/datasmith
https://docs.unrealengine.com/4.27/en-US/WorkingWithContent/Importing/Datasmith/SoftwareInteropGuides/IFC/
https://docs.unrealengine.com/4.27/en-US/WorkingWithContent/Importing/Datasmith/SoftwareInteropGuides/IFC/
https://docs.unrealengine.com/4.27/en-US/WorkingWithContent/Importing/Datasmith/SoftwareInteropGuides/IFC/
http://web.spt42.ru/index.php/chto-takoe-unreal-engine
http://web.spt42.ru/index.php/chto-takoe-unreal-engine
https://dev.epicgames.com/community/learning/tutorials/7xWm/unreal-engine-basic-class-structure
https://dev.epicgames.com/community/learning/tutorials/7xWm/unreal-engine-basic-class-structure
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/ProgrammingWithCPP/
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/ProgrammingWithCPP/
https://docs.unrealengine.com/5.3/en-US/actors-in-unreal-engine/
https://docs.unrealengine.com/5.3/en-US/actors-in-unreal-engine/
https://unrealcommunity.wiki/component-uxhizejm
https://unrealcommunity.wiki/component-uxhizejm
https://dev.epicgames.com/documentation/en-us/unreal-engine/third-person-template-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/third-person-template-in-unreal-engine
https://docs.unrealengine.com/4.26/en-US/RenderingAndGraphics/Materials/
https://docs.unrealengine.com/4.26/en-US/RenderingAndGraphics/Materials/
https://dev.epicgames.com/documentation/en-us/unreal-engine/collision-in-unreal-engine---overview?application_version=5.0
https://dev.epicgames.com/documentation/en-us/unreal-engine/collision-in-unreal-engine---overview?application_version=5.0
https://docs.unrealengine.com/5.0/en-US/hardware-and-software-specifications-for-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/hardware-and-software-specifications-for-unreal-engine/

Bibliography 38

[13] BIM files: the main BIM formats for design. online, [cit. 2023-12-11]. Available from: https:
//biblus.accasoftware.com/en/bim-files-the-main-bim-formats-for-design/

[14] About the IFC File Format. online, [cit. 2024-01-01]. Avail-
able from: https://help.autodesk.com/view/RVT/2024/ENU/?guid=
GUID-0D546BEA-6F88-4D4E-BDC1-26274C4E98AC

[15] BIM and IFC – What are IFC models, and how do BIM and IFC relate? online, [cit.
2024-05-11]. Available from: https://plannerly.com/bim-and-ifc-models/

[16] Extensible Markup Language documentation (XML). online, [cit. 2024-05-09]. Available
from: https://www.w3.org/XML/

[17] FileFormat documentation. online, [cit. 2024-05-11]. Available from: https://docs.
fileformat.com/cad/ifc/

[18] Datasmith Overview. online, [cit. 2024-01-27]. Available from: https://docs.
unrealengine.com/5.3/en-US/datasmith-plugins-overview/

[19] IFC to Unreal. online, [cit. 2024-01-27]. Available from: https://dasutt.github.io/
stories/ifc-to-unreal/

[20] About the Datasmith Import Process. online, [cit. 2024-01-27]. Available from:
https://docs.unrealengine.com/4.27/en-US/WorkingWithContent/Importing/
Datasmith/Overview/ImportProcess/

[21] 3Ds Max. online, [cit. 2024-01-27]. Available from: https://media.contented.ru/
glossary/3ds-max/

[22] Using Datasmith at Runtime. online, [cit. 2024-01-27]. Available from: https:
//docs.unrealengine.com/4.27/en-US/WorkingWithContent/Importing/Datasmith/
Overview/UsingDatasmithAtRuntime/

[23] Advanced analysis. online, [cit. 2024-05-03]. Available from: https://dev.epicgames.com/
community/learning/tutorials/dXl5/advanced-debugging-in-unreal-engine

[24] Stat Commands. online, [cit. 2024-05-03]. Available from: https://docs.unrealengine.
com/4.27/en-US/TestingAndOptimization/PerformanceAndProfiling/StatCommands/

https://biblus.accasoftware.com/en/bim-files-the-main-bim-formats-for-design/
https://biblus.accasoftware.com/en/bim-files-the-main-bim-formats-for-design/
https://help.autodesk.com/view/RVT/2024/ENU/?guid=GUID-0D546BEA-6F88-4D4E-BDC1-26274C4E98AC
https://help.autodesk.com/view/RVT/2024/ENU/?guid=GUID-0D546BEA-6F88-4D4E-BDC1-26274C4E98AC
https://plannerly.com/bim-and-ifc-models/
https://www.w3.org/XML/
https://docs.fileformat.com/cad/ifc/
https://docs.fileformat.com/cad/ifc/
https://docs.unrealengine.com/5.3/en-US/datasmith-plugins-overview/
https://docs.unrealengine.com/5.3/en-US/datasmith-plugins-overview/
https://dasutt.github.io/stories/ifc-to-unreal/
https://dasutt.github.io/stories/ifc-to-unreal/
https://docs.unrealengine.com/4.27/en-US/WorkingWithContent/Importing/Datasmith/Overview/ImportProcess/
https://docs.unrealengine.com/4.27/en-US/WorkingWithContent/Importing/Datasmith/Overview/ImportProcess/
https://media.contented.ru/glossary/3ds-max/
https://media.contented.ru/glossary/3ds-max/
https://docs.unrealengine.com/4.27/en-US/WorkingWithContent/Importing/Datasmith/Overview/UsingDatasmithAtRuntime/
https://docs.unrealengine.com/4.27/en-US/WorkingWithContent/Importing/Datasmith/Overview/UsingDatasmithAtRuntime/
https://docs.unrealengine.com/4.27/en-US/WorkingWithContent/Importing/Datasmith/Overview/UsingDatasmithAtRuntime/
https://dev.epicgames.com/community/learning/tutorials/dXl5/advanced-debugging-in-unreal-engine
https://dev.epicgames.com/community/learning/tutorials/dXl5/advanced-debugging-in-unreal-engine
https://docs.unrealengine.com/4.27/en-US/TestingAndOptimization/PerformanceAndProfiling/StatCommands/
https://docs.unrealengine.com/4.27/en-US/TestingAndOptimization/PerformanceAndProfiling/StatCommands/

Chapter 7

Project folder

.uproject...exe of UE project
thesis.zip...Thesis data to recreate it in overleaf
thesis.pdf .. Thesis text in PDF format

39

	Abstract
	Acknowledgments
	Declaration
	Introduction
	Goals
	Unreal Engine
	Understanding File Structures
	Blueprints
	BP_ThirdPersonCharacter
	In-game controls

	Materials
	Collision
	Manual collision creation
	Common

	Hardware and Software Specifications

	Formats
	Understanding File Structures
	BIM File
	IFC File
	DWG File
	UASSET File
	FBX file
	Compatability of formats

	Processing and translation
	Datasmith
	Alternative methods

	Data processing and requirements
	Software prerequisites
	Setting up project and Datasmith
	Electronic nodes

	Input/Output
	Hierarchy
	Metrics
	Materials
	Collision
	Metadata

	Result project and features
	Provided functionality
	Material manager
	How to use Material Manager

	Profiling widget
	Analysis

	Conclusion
	Project folder

