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Abstract

Given a discrete deep neural network with
binary activations and ternary weights,
each neuron can be expressed as a logic ex-
pression, either an M-of-N rule or a pred-
icate. This logical form is suitable for the
abductive explanation of neural networks,
where the explanation is a classification
rule. Since abductive rule extraction is at
least NP-hard, this work focuses on ap-
proximate methods of varying complexity.
The thesis presents a method which uses
activation statistics of individual neurons
on class and non-class data determined by
the quantised network to estimate neuron
importance and extract sufficient rules by
network pruning. The methods are exper-
imentally compared.

Keywords: quantised neural networks,
interpretability, rule extraction

Supervisor: doc. Ing. Tomáš Pevný,
Ph.D.

Abstrakt

V diskrétních neuronových sítich s binár-
ními aktivacemi a ternárními váhami lze
každý neuron vyjádřit jako logický výrok
ve formě M-of-N pravidla nebo predikátu.
Tato logická forma je vhodná pro abduk-
tivní vysvětlování neuronových sítí, kdy
vysvětlení je klasifikační pravidlo. Vzhle-
dem k tomu, ze extrakce abduktivních
pravidel je nejméně NP-těžká, tato práce
se zaměřuje na aproximativní metody s
různou složitostí. Metody jsou experimen-
tálně porovnány.

Klíčová slova: kvantované neuronové
sítě, interpretovatelnost, extrakce
pravidel

Překlad názvu: Extrahování logických
pravidel z neuronových sítí s diskrétními
vahami
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Chapter 1

Introduction

The thesis proposes and presents a method for providing classification expla-
nations for deep neural networks with discrete weights. Deep neural networks
are widely popular today, offering immense predictive power, but they suffer
from being black boxes. The thesis aims to develop a method that uses a
deep neural network expressed as logic rules and extracts sets of rules that
provide classification explanations.

The second chapter introduces prior arts in the field of AI, specialising in
providing explanations for predictions made by different AI models. Numerous
different techniques and creative ideas have been devised to gain insight into
the decision mechanism of different AI models. The solution proposed in
subsequent chapters uses logical rules’ expressive and inference power to deliver
the explanation. It has to compete with conventional and contemporary
approaches in rule learning, like a decision tree. Hence, a detailed overview
of methods of directly learning rules from data is provided.

The third chapter introduces the NuLog method, which requires a trained
binarised neural network. The chapter presents quantised neural networks
in a general manner and the different techniques used to train them. It
goes over the specific implementation of quantised neural networks and their
special binarised version, with binary activations and ternary weights. The
chapter discusses feature quantisation as an integral part required by discrete
neural networks. After the binarised networks are introduced, expressing
such network’s neurons as logic, specifically predicates and M-of-N rules,
and converting it into a logical neural network is covered. A theoretical
introduction and complexity analysis of the problem being dealt with to
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1. Introduction .....................................
extract the valid explanatory rule. Defines the general problem of extracting
rules from a neural network and the necessary conditions and implications
which must hold for such extracted rules. Everything is accompanied by
simple examples illustrating the procedures.

The fourth chapter describes how the proposed rule extraction is imple-
mented. It clarifies each phase of the devised solution in the NuLog method
with implementation details and time complexity analysis. Pseudo-codes of
the procedures are provided for easier understanding.

The fifth chapter provides the results of experiments conducted on two
classification problems, with outcomes and effects of the developed solution.
The NuLog method is evaluated and compared to two contemporary methods,
CART and RIPPER. Generated rules by all strategies are evaluated by
qualitative and quantitative metrics, like total number of rules, rule length
on average and average rule scope. Evaluation is done on two interesting
datasets, MNIST and the generated flower dataset, both of which are used
for classification problems. Nice visual representations of the extracted rules
are provided for the used data sets.

The sixth and final chapter contains the conclusions drawn during the
development and evaluations of the datasets. Lists the benefits and drawbacks
of the developed methods and where areas for improvement lie. The chapter
provides ideas for further exploration and research.

1.1 Motivation

AI is becoming an integral part of our daily lives and exerts a great influence
on us as ever greater reliance is being placed on AI, from education and
entertainment industries to essential and critical sectors like healthcare,
security, defence and finance [46]. Decision-making processes in these fields
have a profound and enduring impact; therefore, everybody’s greatest interest
is to have the best possible judgement [65]. AI systems are expected to make
all decisions and resolve deadlocks on our behalf but to be able to achieve
the level of trustworthiness in humans to delegate decisions, it necessitates
explaining its decision-making process [8]. For example, what type of medical
treatment is best or whether a program is malicious or not? For medical
purposes, clinical decision rules are more followed if the decision has an
explanation with an inherent logic that can be interpreted and deduced to
make medical sense, and such decisions are more likely to be followed and
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..................................... 1.1. Motivation

implemented by the staff [49]. It holds for any use case in which AI models
could be employed, but as humans will be reaping the benefits or suffering
the consequences of those decisions, it is only natural and human to ask,
"Why?" "Why is this condition diagnosed as benign?" "Why is this transaction
labelled as fraudulent?" [65] [15].

Taking a detailed look into the world of cybersecurity, AI is being used
to address many varying problems and threats, spanning from anomaly and
intrusion detection over zero-day attacks to deepfakes [6]. Zero trust is
a cybersecurity standard with the premise that trust is never granted by
default, but it must be constantly validated and certificated [76]. Developing
any method without understanding how it works or the ability to formally
verify the results and decision-making processes opens it up to potential
vulnerabilities and malicious use cases [35]. Complete or even high testing
coverage of an AI model is not efficient or even realistically achievable, which
is a consequence of high complexity. Security provided by an AI solution
cannot be depended on and used, assuming zero trust principle, because it
cannot be guaranteed without formal evaluation by knowing the reasoning
behind the decisions [35]. If the adversary discovers a potential way to fool
and bypass the protection, like an AI-based firewall, he can disguise malicious
traffic as benign and avoid detection [39]. Possibly, even in this case, he has
no access to the AI model itself, just its inference results [63]. The same
issues exist as with any non-AI-based solution with a bug or feature opening
a vulnerability for zero-day attacks.

The best examples to highlight this importance are adversarial examples,
with detailed definitions provided later in the thesis, here 2.1 in chapter
2. Examples of stickers targeting image classifiers processed by models,
influencing their decisions, but which are not noticeable to humans [13] [77].
An attack would be to add a sticker with specifically designed noise and place
it on or next to the road such that an autonomous vehicle would detect it and
process it. The sticker could then influence the decision-making mechanism
to cause the car to swerve to the side on a straight road or speed up and cause
a disaster [83]. That is exactly why AI detectors and decision makers require
to be debugged and formally verified, which is something you cannot do with
models that provide no direct interpretability, like black-box oracles [56]. By
providing explanations for decision-making and a way to decide if the logic
behind it is sound, justified and reasonable or not, debugging is possible [56].

Discrete weighted networks are extensively investigated as they offer a
smaller memory footprint and reduced inference time compared to ones with
continuous weights [75] [31]. Discrete neural networks are developed with edge
devices in mind, which cannot afford huge amounts of hardware resources to
store the classifier locally, and any decision must be delegated to a central
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1. Introduction .....................................
server over the Internet, which takes time [62]. If a network intrusion detector
has to consult the servers to determine whether some suspicious behaviour is
justified for raising the alarm, precious time is lost on getting the answer [62].
Furthermore, such communication could be targeted and sabotaged. The
ideal scenario would be to have a classifier on the edge locally that can be
interpreted and its decisions explained.

The motivation behind the decision to use discrete weighted neural networks
is these weights are ideal for expressing neuron activation functions as logic
rules, specifically as M-of-N rules and predicates. Networks with continuous
weights can also be expressed as M-of-N rules [78], but discrete weights offer
numerous advantages, as stated above. The conversion process from discrete
weights to M-of-N rules is straightforward and described in chapter 2 here 3.2.
These rules are the basis of the rule extraction method proposed in the thesis.

May 24, 2024 4



Chapter 2

Prior works

The chapter briefly overviews and introduces prior arts in Explainable Ar-
tificial intelligence. It gives information regarding different definitions of
explanations, interpretations, and metrics for comparison and evaluation.
The chapter dwells on different methods for gaining an explanation related
to various machine learning models, whether they are interpretable or black
boxes, with particular interest in neural networks. The main emphasis is on
analysing rules as prediction explanations and methods for their learning and
extraction to compare contemporary approaches to the solution proposed in
this thesis, which is based on extracting rules from a neural network.

2.1 Explainable Artificial Intelligence

Explainable Artificial Intelligence (XAI) is a field of artificial intelligence that
develops techniques which provide users with explanations for decisions made
by AI models. An explanation is preferably simple and understandable, while
the performance and predictive power of explanation-based models are not
greatly diminished compared to the AI model being explained [1]. The first
introduction of the term XAI occurred in [47], depicting the system’s capacity
to generate AI-controlled entity behaviour explanations within the context of
simulation game applications [1]. Another term used alongside explainable is
interpretable. There exist multiple different definitions of these terms. The
interpretable method is "if a user can correctly and efficiently predict the
method’s results" [44]. These are the definitions set by the International Stan-
dards Organisation [40]: explainability refers to the "level of understanding
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2. Prior works......................................
of how the AI-based system came up with a given result", interpretability
is the "level of understanding how the underlying (AI) technology works".
Other valid terms are understandability and comprehensibility. In essence,
the point is to be able to "take a look under the hood", recognise and fix an
issue, as well as have a formal validation and verification for attained results.

An abductive explanation is a reasoning form in philosophy and science,
along with deductive and inductive, inferring the most likely hypothesis to
explain the attained result [38]. Given an ML model M and prediction π, an
prediction explanation is a subset-minimal set of literals E representing
distinct, influential features and their values such that E |= (M→ π) [39] [38].
Example-based explanations are simple and straightforward; they select the
best representatives of examined data, who capture most of the features of a
black box model [56]. Types of examples [56]: counterfactual (how a sample
has to change to alter its prediction, explains how the model predicts), in-
fluential (exert the biggest influence on the prediction model’s parameters),
prototypes (representative samples of a population subset), criticisms
(samples with poor representation by prototypes). Counterexample is a
subset-minimal set C of literals to a prediction π if C |= (M→ π) where p is
a prediction and p ̸= π [39]. Adversarial examples are counterexamples
with minimal modifications to feature values w.r.t to a predefined distance
measure, such that misclassification is caused [39]. Adversarials are particu-
larly interesting from the cybersecurity point of view regarding attacks on
black-box models by minuscule alterations to samples causing a different clas-
sification, like single-pixel attacks and adversarial patches [33] [63] [77] [13].
Case-based reasoning uses experiences based on examples and similar cases to
adapt existing solutions instead of building them from the ground up based
on general knowledge and predefined rules[79].

Explanations can be modelled in different forms requiring defining metrics
for explanation comparison to differentiate a lousy explanation from a good
one and achieve a proper level of interpretability and explainability. Any
explanation should correlate feature values of an instance to its model predic-
tion in a natural and intuitive fashion [56]. Properties by which explanations
and their methods can be compared are defined in [70]. Expressive power
is the explanation structure (natural language, IF-THEN-ELSE rules, value
ranges). Portability is the set of models the method applies to (surrogate
models high, neural networks low). Translucency is the method’s reliance
on the inner workings of a system, a tradeoff between transparency and
portability (linear regression high, data perturbation none). Algorithmic
complexity is the computational complexity of the explanation generation.
Qualities of individual explanations are defined in [70], as the following:
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............................ 2.1. Explainable Artificial Intelligence

.Accuracy: performance predicting unseen data. Fidelity: approximation of black box model’s predictions.Consistency: differences between explanations of models trained for
the same task, with similar predictions. Stability: similarity for similar instances.Comprehensibility: human understanding of explanations.Certainty: reflecting the certainty of the ML model.Degree of importance: evaluating feature importance.Novelty: reflecting if a sample is from the same distribution as training
data.Representativeness: number of instances explanation explains

Explanations frequently take the form of IF-THEN-ELSE logic structures
representing the reasoning behind a decision; a formal definition of a rule
is given later in chapter 2.2. Influential examples are also often used and
chosen by methods performing feature importance, which indicates features
greatly impact decisions, but such examples tend to suffer from the Rashomon
effect [56]. The Rashomon effect is a storytelling term that depicts multiple
contradictory explanations of the same outcome, which can happen if a
method providing explanations is non-deterministic and highly unstable due
to randomisation [48]. It can be stated that not all machine learning models
are created equal. Models can be separated into two distinct groups: the
interpretable group, which by design or as a side effect offers the user an
explanation for their predictions, and the uninterpretable group, black-box
models, which do not provide any interpretation. Explanations derived from
interpretable models are modelled directly based on their parameters and
structure, whereas highly specialised techniques are necessary to identify
them from black-box models.

Interpretable models. Machine learning models with "out of the box" inter-
pretability are linear and logistic regression models, decision rules, decision
trees, naive-Bayes and k-NN [74]. Linear regression is a weighted sum
of features, and linearity makes interpretation straightforward, weights cor-
responding to prediction change for a unit change of a feature, with many
techniques for feature importance estimation [36]. Logistic regression is an
adaptation of linear regression for classification problems [36]. k-NN algo-
rithm bases its decision-making on majority voting or the average outcome
of class samples on a predefined neighbourhood [36]. Decision trees are
hierarchical structures with a series of decision nodes, explanations provided
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2. Prior works......................................
by traversing the tree and modelling a rule from nodes. Random decision
forests are sets of decision trees. Many models are considered interpretable ,
but provided explanations are weighted, probabilistic or rely on fuzzy logic,
which is not ideal since the explanations are vague, less understandable and
intuitive. They can be expressed as fuzzy logic rules, which are difficult
to understand [3]. Naive-Bayes [2] is a linear classifier based on Bayes’s
theorem, providing a probabilistic estimation of feature importance. Rule-
Fit [25] algorithm combines linear regression with decision trees to overcome
correlated features, while SIRUS [10] technique operates on random forests,
both of which result in generating weighted decision rules.

Interpreting black-box models. Black-box models are models without the
benefit of direct interpretability and can be understood indirectly. Many
different approaches currently exist, with varying degrees of success, usually
performing model sensitivity, component analysis or using surrogate mod-
els [57]. Other methods focus on getting a local explanation by targeting a
single instance and inspecting how well the explanation describes it and how
well it generalises for its neighbours [57].

The model-agnostic approach separates processed data from the model
processing it, explaining the underlying nature of the data by simpler in-
terpretable models, referred to as surrogates, using the results to explain
more complex black-box models [56]. The main advantage is the flexibility
of models, explanations, and representations, which is not achievable with a
model-specific approach that provides highly specialised methods [67]. Model
agnosticism creates a pipeline, starting with a real-world process, captures
the data, predicts targets with a robust black box model, interprets the
same data with a less powerful interpretable model and ends with humans
using the black box results with the explanations provided by a less powerful
tool [56]. Global model agnostic methods explain average behaviours and
help understand the bigger picture of how a model operates [56]. Local
interpretable model-agnostic explanations [68] (LIME) is a strategy for
local explanations, working on a subset of samples with a specific prediction
and training a surrogate to explain it. Applicable for different data formats,
tabular, text and images [56].

As mentioned earlier, many methods for result interpretation perform
feature importance estimation to identify which features of the model are
sensitive enough to change a decision and identify influential examples. Func-
tional decomposition is a procedure decomposing complex functions into
simpler parts, a sum of individual and interaction effects interpreted indi-
vidually by different strategies [56]. Dependence plots and local effects
are methods indicating marginal feature impacts on the targeted outcome,
discovering input-output relationship nature [24] [7]. Dependency plots are
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............................ 2.1. Explainable Artificial Intelligence

a valuable tool for measuring and representing feature importance [34]; the
higher the variance in the plot, the higher the feature’s importance and influ-
ential examples are easier to isolate. Permutation feature importance is
the idea of permuting the feature’s values between samples, measuring and
testing the sensitivity to error change [23]. Processing data, in this fashion,
breaks relationships between features; if the error then increases, the feature
is deemed important. A direct parallel to determining feature importance is
the concept of coalitional games from the field of game theory. Coalitional
games model the problem of fair division of the prize among winning coalition
players[71], with features as players and prediction being the prize, providing
axiomatical foundations behind the generated explanation[56]. Shapley val-
ues specify the fair payout distribution or, in the context of interpretability,
feature importance for a given sample[52].

Interpreting neural networks. Neural networks offer great prediction per-
formances and are a prevalent approach for flexibility and scalability, but
they are black boxes. Model-agnostic methods can be utilised for neural
network interpretation, but far better results are achieved if the network
and neuron specifics are examined and used for interpretation [56]. Most
methods are related to image detection and classification problems, where
convolutional neural networks (CNN) are used. Explanations are commonly
found by some form of feature importance analysis and presented as images
or heat maps indicating important segments of the image that influence a
decision. Provided explanations give an insight into the network’s "think-
ing" process but can be suffering from the Rashomon effect, defined above
2.1 and could provide an illusion or false impression of interpretability [56].
The illusion of interpretability stems from the fact that neural networks are
immensely complex and incredibly difficult to draw conclusions based on
small samples. Feature visualisation [60] marks significant features by
finding inputs maximising different unit (neuron, layer, channel) activation
functions, uncovering what image parts the network is sensitive to. Net-
work dissection [9] locates highly activated areas of CNN channels and
links them with human concepts visible and labelled in processed images,
like a flower, tree, dog, or cat. Saliency maps [73] are constructed by
importance evaluation of individual pixels for classification and, depending
on estimation strategy, can be perturbation-based or gradient-based. The
gradient approach uses the gradient of the class score function with respect
to input pixels, while perturbations introduce small input changes to images
and observe error changes [32]. Feature importance for image classification
heavily relies on individual pixels, which, by themselves, are meaningless.
Concept detecting discovers larger concepts based on colours or shapes
and measures their influence on the prediction, indirectly explaining it [56].
A popular method is TCAV [45], which measures the conceptual sensitivity
of a single sample or the entire class.
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2. Prior works......................................
The approach examined in the thesis relies on exploiting the specific struc-

ture of neurons with discrete weights to express them as rules and ultimately
extracting decision rules from a neural network employing an importance es-
timation strategy for individual units. Emphasises the significant importance
placed on rule learning overview.

2.2 Rule learning

Rule-based models are a subset of machine learning models distinguished
by their notable ease of interpretability [28]. Rules are expressed as IF-
THEN-ELSE statements, and their interpretability stems from pattern and
irregularity search in the processed data [16].

Rule is a predefined statement dictating how a system processes input
data to deliver the output and consists of a head and a body [29]. The head
and body naming convention is used in rule systems based in PROLOG [51].
The head is the left-hand side or IF part of a rule, indicating conditions
that all must be satisfied for the rule to be triggered or activated, as per the
Domination law 2 in boolean algebra. The head is represented as a set of
premises or independent boolean predicates which form terms in conjunction
with one another. However, in the case of M-of-N rules, at least M out
of all N terms must be true to evaluate true. The body is the right-hand
side, the consequence or the THEN part of the rule, specifying outcomes of
inference and activation. In the case of classification, it holds the predicting
class label. Predicates specify a precise value within a specific categorical
feature or its membership in a discrete set of values. For continuous feature
analysis, predicates evaluate the inclusion of said features within predefined
value intervals. Anchor of a prediction is a scoped rule for which any change
in the sample’s feature values within the scope does not change the original
prediction [69]. Coverage, scoping or rule support is the percentage of the
population for which the relationship is relevant, and the rule’s head and
body are satisfied [29]. Rule confidence measures the relationship between the
head and body; it is the percentage of the population that satisfies the rule’s
body, satisfying the rule’s head simultaneously [29]. The advantage of rules
is the ease of interpretation and direct conversion to natural language [58].
Unfortunately, rule-based classifiers, employed as surrogates, suffer from
numerous hyperparameters and inefficiency as they require many black box
model calls. Rule learning techniques have to deal with the problem of
quantising real-valued features needed to model predicates for a rule head;
significant ranges are needed as strict equality for real-valued features limits
their predictive power [31]. A number of rule-learning techniques only work
with discrete values like CORELS 2.2, so data must be transformed before
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.....................................2.2. Rule learning

training by a quantisation strategy, which defines the number of bins and bin
ranges for data quantisation.

As the classifying rules are scoped, a single rule cannot be expected to
cover all of the class data; frequently, a rule can cover only a single sample,
like extreme edge cases or outliers [69]. In other words, a single rule is
often insufficient to provide a complete explanation of class data for complex
problems since rule learning can easily overfit, and multiple rules must be
combined [29]. Rule sets, and decision lists are quintessential for a complete
rules-based classifier, which must fully understand the entire population.
Rule set is a list of rules without any hierarchy or order, meaning everybody
has the same power and importance; every rule must be evaluated to obtain
an answer and follow the consequences [29]. In using rule sets, two issues arise:
activation of multiple rules, necessitating additional rules to solve deadlocks
for classification, and no rule activation, again demanding additional default
rules [29]. These cases describe ambiguous classifications which can occur and
reduce the classifier’s accuracy. Decision list has a predefined hierarchy
and levels of importance, so classification is done such that the first rule that
evaluates true indicates the class [29]. Decision lists remove the necessity for
additional default and tie-breaking rules but can be biased and depend on
the correct ordering of rules. Two major approaches to rule learning exist:
descriptive and predictive rule learning.

Descriptive rule learning is an unsupervised machine learning approach
to rule learning, working towards describing important patterns and criti-
cal features in the examined dataset [29]. The idea behind them is to find
rules describing the actual data’s nature as best as possible, not focusing on
predictive performance as a classifier. There are two major approaches: sub-
group discovery and associative rules [80] [37]. Apriori is the representative
algorithm, which finds associative rules by searching for the most frequent
item sets and then extracts a rule which covers all items of a set [30]. While
the approach is generally intriguing, the primary focus is on the extraction
of rules for predictions, relying on supervised learning and labelled data.
One idea for a part of the solution presented in this thesis is adapted and
modified from the Top-Down Hill-Climbing algorithm from descriptive
rule learning. It is a greedy algorithm finding a single rule, starting from an
empty one and building it up until finding the best rule by a specific heuristic,
generally maximising class and minimising non-class coverage. The pitfall of
this approach is that it can get stuck in local optimums [27].

Predictive rule learning is an approach for dealing with supervised
machine learning, predicting labelled data [29]. Emphasis is placed not on
discovering the nature of data being processed but on exact predictions of
discrete outcomes. The goal is to learn as few rules as possible from training
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2. Prior works......................................
data, correctly discriminate between classes, and perform on unseen data
as best as possible. Predictive rules are generally learned as descriptive
rules, but with additional constraints like rules must not misclassify on the
dataset. Classification by association operates on learning associative
rules, finding frequent patterns and selecting those indicating the target
class [29]. Popular algorithms in this category are CBA, CMAR and
FARC-HD algorithms based on the Apriori algorithm 2.2, introduced above,
but vary in how the identification of frequent sets work. The methods are
only applicable to features with discrete values; real-valued features must
be quantised as described above 2.2. FARC-HD solves the problem using
fuzzy logic to alleviate this issue [29], but as discussed earlier 2.1, fuzzy logic
reduces the rule’s interpretability. Covering algorithms are a divide-and-
conquer or divide-and-explain strategy, and in a nutshell, consist of learning
a single rule, removing all the samples it explains or covers and repeating the
process until all data is explained or stopping criteria is met[29]. The solution
examined in the thesis falls under this category. AQ is the oldest and original
covering algorithm, adopting a top-down beam search, finding only the seed
example’s specialisation, CN2 is a beam search-guided overfitting reduction
estimate and Opus is the first to learn rules that maximise a certain quality
or heuristic [29]. The solution proposed in this thesis belongs to this category
of algorithms; the only difference is that the rules will not be learned and
extracted from the data, but the neural network is the one learning, and rules
will be extracted as prediction explanations for the said network.

Decision trees are interpretable models as defined above 2.1. Methods to
learn trees employ different strategies to fit the data by forming a hypothesis
growing the tree, possibly overfitting. Certain methods prune and simplify the
tree to improve predictive power and reduce the query costs [16]. A popular
decision tree method is Classification and Regression Tree [49] (CART),
which works based on binary recursive partitioning, repeatedly dividing the
population into two groups by alternating feature predicates.

Reduced Error Pruning (REP) is a rule-learning algorithm where, in
training, data is split into a growing and pruning set, and an overfitting rule
is learned from a growing set, which is then simplified by pruning such that
the error is maximally reduced [16]. Incremental REP (IREP) modification
integrates it with a separate and conquer technique [16]. Repeated Incremental
Reduced Error Pruning [16] (RIPPER) is a state-of-the-art rule learning
algorithm, a modification of the REP and rectifies its main weaknesses [29],
and improvement of IREP with a heuristics for evaluation of rules during
pruning and greedy stoppage of adding rules, as well as an additional post-
pass phase for rule optimisation. The optimisation is done by re-learning
already generated rules under a different context, as other rules have already
been generated and the dataset has been changed [29].
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.......................... 2.3. Rule extraction from neural networks

Certifiably Optimal Rule Lists [5] (CORELS) is currently the best algo-
rithm for solving optimal decision tree problems. Corels strategy is to generate
rule candidates and select ones that maximally reduce the classification error
based on splitting data or misclassified instances coverage to improve overall
accuracy. Corels terminates on a predefined stopping criterion, like maximum
number of rules, minimum accuracy improvement or after an exhaustive
search of the rule space [5]. A key feature of CORELS is the ability to provide
theoretical guarantees of optimality for the generated rule list, ensuring the
rule list is certifiably optimal within a certain error bound.

2.3 Rule extraction from neural networks

Extraction of rules is based on connection weight analysis and network node
sensitivity, translated into symbolic rules using quantisation, mirroring the
underlying knowledge of the network [4]. Rule extraction from neural networks
is not an unexplored idea and dates back to the 1990s.

KT [26] algorithm is one of the first methods for extracting symbolic
rules from trained neural networks. The paper [26] formally established an
association between neural networks and rule-based classifiers, along with
verifying that neural network-generated rules outperform decision trees on
datasets with noisy data. The KT algorithm, in essence, performs activation
analysis of hidden layers to search for patterns of influential activations
and features for the final decision. Pattern search is done by combining
positive and negative attributes, exploring and refining positives with negated
negative attributes, and vice versa for negative attributes, finding patterns for
attribute-concept relationships. A pattern of features is ultimately expressed
as a symbolic rule, which is generated by performing a systematic tree search
led by heuristic pruning to reduce the exponential search space.

Knowledge-Based Artificial Neural Networks [78] (KBANN) is an ap-
proach which merges symbolic knowledge, often problem or domain-specific,
with connectionist AI paradigm employing deep neural networks to further
process the knowledge with backpropagation training, creating a hybrid
system. The basic principle is that the neural network is initialised with
preexisting knowledge already expressed as rules. The network is then trained,
which is sped up, thanks to being led by the initialisation knowledge, and
after training, the rules are extracted again back into symbolic form using
some form of pattern analysis, like the KT algorithm 2.3.
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2. Prior works......................................
The paper [14] introduced rule extraction for binary convolutional neural

networks with stochastic local search. The method successfully creates a
rule-based system, which can model a neural network while at the same time
producing interpretable logical rules. It showed that the extracted rules are
usually longer, but they explain the decision for the input and also have the
benefit of easy interpretation by visualisations, which is extensively used in
interpretations of experimental results of the thesis. The rules themselves
are extracted with activation analysis, which is an approach explored and
utilised by the solution presented in the thesis in subsequent chapters.
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Chapter 3

NuLog method introduction

The chapter details training and utilising quantised neural networks, em-
phasising the neural networks with ternary weights and binary activations
and exploring different techniques to train and achieve such a network. The
chapter also briefly discusses the network elements used for binarisation, such
as feature quantisers and quantised dense layers. The solution presented in the
thesis exploits the neuron’s discrete weight property to convert such neurons
to logical expressions. This property is the target of the proposed solution,
introduced in this chapter, and the implementation details are explained
in the next chapter. The method is essentially a rule extraction technique
based on abductive reasoning and explanations introduced later to produce
classification rule lists.

3.1 Quantised Neural Networks

Quantised neural network (QNN) is a network which has activations
restricted to a discrete set of values represented as integers [75]. Binarised
neural network (BNN) is a special case of a QNN, which has activations
restricted to two discrete values +1 and −1; the weights can be restricted
the same as well, but depending on the implementation, weights could also
be ternary, with a third value of 0 [72]. The goal of the use of ternary
weighted networks is the pruning of densely connected layers for redundancy
reduction [27] [53] [55].
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3. NuLog method introduction ..............................
The best results are, by far, achieved with classic deep neural networks.

Still, a significant restriction for their mass deployment is their requirement for
massive resources to operate correctly and cannot be deployed on edge devices.
Different techniques in the field of Tiny ML (ML for low-power devices) are
being developed, like topological and hardware optimisations [75]. Quantised
networks use reduced precision and significantly faster integer operations over
floating point ones to minimise memory footprint and inference time on devices
with limited hardware resources [75]. The solution proposed in this thesis is
interested in the different aspects QNNs have to offer. Specifically, neurons
of BNNs can be easily transformed and expressed as logical expressions,
ultimately extracting classification decision rules from such a network.

Discrete weights are incompatible with classic backpropagation and the
gradient descent approach for training, as the gradient is non-existent every-
where and offers no information [18]. Networks with continuous weights are
transformed into quantised weighted networks with either quantised aware
training or post-training quantisation [31].

Post-training quantisation is done without any fine-tuning, meaning
no re-training, benefits of no overhead and limited training data require-
ments, but worse performance compared to quantised training [11]. Zero-shot
quantisation is an approach to quantising without any training data [31] [18].
Numerous approaches exist for post-quantisation, like deterministic (sign),
stochastic (probabilistic decision using hard sigmoid), ACIQ (finding opti-
mal clipping range), AdaRound, simulated, and mixed-precision (different
parameters use different levels of quantisation).

Quantised aware training is an adaptation of training to produce
discrete neural networks. Straight-through estimator (STE), which is a
simple and often the best approach for quantising stochastic discrete neu-
rons [11]. STE originated from the 1950s perceptron training algorithm,
where the gradient is not computed via the standard chain rule. The gradient
is estimated via modifications where the identity function’s derivative is a
proxy for the derivative of the binary function [81]. The choice of the proxy
function is not limited to just the identity; different functions offer differ-
ent features. Examples of used proxy functions are clipped ReLU, vanilla
ReLu [81], piecewise polynomial [50], hard tanh and SwishSign [19]. The
intent is to minimise the discrepancy between forward and backward passes, as
they are done, in essence, with different activation functions. For that reason,
a network trained with the STE technique suffers enormously from instability,
the introduction of gradient bias, discretisation errors and vanishing gradient,
compared to full-precision neural network [19]. BinaryConnect is a process
to train a network with regularisation to force binary weights, essentially
a binary version of the DropConnect algorithm with custom noise distribu-
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................................3.2. Logical Neural Networks

tions [17]. A different approach to ternary weight networks, which trains
weights by first parametrising them with tanh(Θ) imposing the weights in a
range [−1, +1] and a weight discretisation regularisation forces the weights
to be ternary [21]. The approach mentioned above is being investigated and
developed in a student Bachelor’s thesis [59], to be used instead of the STE
approach. XNOR-Net is an adaptation of BNNs for convolutional neural
networks, optimising the convolutional layer by implementing the XNOR
operation and dot product as bit counting over binary vectors [66].

In all our experiments, the network is trained using gradient descent esti-
mation done with STE. The STE used in the BNN is an identity function
estimator with a fixed window width of 1. The activation function is a hard
hyperbolic tangens, with the deterministic binarisation of output with sign
function. For weights, a ternary function is used, which essentially works as
a sign function, except for a neighbourhood around 0 for which the output
is exactly 0. The neighbourhood is defined by a window of fixed width 0.05.
Weights and biases are initialised with uniform distribution, batch normalisa-
tion is used, and no weight sparsification is performed during training. BNNs
rely on binarised features, and different binarisation techniques exist [31].
The training process in our experiments uses a logit cross-entropy as an error
function and an AdaBelief optimiser.

3.2 Logical Neural Networks

The method proposed in this thesis for extracting logical rules from neural
networks necessitates a discrete weights network, specifically a network with
ternary weights {−1, 0, 1} and binary activations {−1, 1}, as described in
the paper [18]. The choice of binarisation outputs as {−1, 1} over {0, 1}
representation does not matter as both encodings are linear transformations
of the other [41]. Most implementations opt for {−1, 1} for the symmetry and
simplicity of implementation of operations like AND, XOR and multiplication
(implemented as simple sign-changing). The reason for specific weight and
activation requirements is that the neuron of such a BNN can be expressed as
a logic expression with equivalent performance [78]. A neural network where
all neuron activation functions are expressed as logic expressions in the form
of M-of-N rules is referred to as Logical Neural Network (LNN). LNN is
the basis for extracting rules based on the training data for the BNN, which
is described later in the chapter.

LNN architecture consists of two types of layers. An important distinction
is that the first layer is special since it is a feature quantiser for features with
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3. NuLog method introduction ..............................
real values and training the quantisation strategy. The feature quantiser is
integral for extracting interpretable rules, as it is transformed into a predicate
which defines which feature values are important. The quantisation level
is the number of threshold values that perform the quantisation of real-
valued features, which is predetermined by the network design. Features
are quantised into quantisation level +1 number of bins. Each feature has
the same level, with a specific number varying from problem to problem.
For instance, for MNIST data, a single level proved sufficient as the feature
values are in a relatively narrow interval [0, 1], and a single predicate splitting
the interval into two bins is more than sufficient 5.3. In contrast, for the
classification problem on the flower dataset, level numbers can vary between
4 and 20 5.2. Theoretically, there can be infinitely many quantisations,
according to Cantor’s diagonal argument for the cardinality of the set R [22],
but limited by the floating-point representation of real numbers in computer
memory. If the data processed is binary, with correct encoding {−1, +1},
feature quantisation is unnecessary and should be omitted from the model.

For x ∈ Rn, feature quantiser neuron used is formulated as
y = sign(Wx + b)

Here is a general expression for converting a binarised neuron for quantisa-
tion into logical expressions with predicates.

W =


w11 w12 · · · w1k

w21 w22 · · · w2k
...

... . . . ...
wn1 wn2 · · · wnk

 b =


b11 b12 · · · b1k

b21 b22 · · · b2k
...

... . . . ...
bn1 bn2 · · · bnk

 P =



x1 ≤ − b11
w11

x1 ≤ − b12
w12...

x1 ≤ − b1k
w1k

x2 ≤ − b21
w21

x2 ≤ − b22
w22...

xn ≤ − bnk
wnk



Example. Converting a feature quantiser for binary outputs into an equiv-
alent predicate is shown below. It shows a two-element real-valued input
sample x after a forward pass through a layer that binarises input into two
quantities for each feature, resulting in a four-element output vector.

x =
[

0.75
−1.23

]
W =

[
1.52 −1.18
0.12 −1.05

]
b =

[
−0.03 −1.21
−0.23 −1.03

]


0.75 ≤ 50.67
0.75 ≤ −1.03
−1.23 ≤ 1.92
−1.23 ≤ 0.98

⇒ y =


T
F
T
T

 =


1
−1
1
1


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Predicates are only compatible with real-valued features, as discrete features
require exact equality. Still, they could be simulated if integer features are
transformed into real values and with multiple inequalities in conjunction to
uniquely determine the integer value in the range specified by the predicates.
For example x ∈ {1, 2, 3} and a predicate x = 2 can be expressed as (x >
1.5) ∧ (x < 2.5).

Quantised dense layer is a linear-BatchNorm-binarise module mapping
binary input to output vectors with trainable weight parameters [41]. Let binw

be a function defined as binw : Rm×n → {−1, 0, 1}m×n. For x ∈ {1,−1}n, it
is formulated as

y = sign(BatchNorm(binw(W)x) + b)

Here is a general way of how a binarised dense layer produces outputs and
the strategy for converting a densely connected binarised neuron into logical
expressions with M-of-N rules, where lit is a function defined as returning
a logical literal, which references the antecedent layer’s neuron. In case
the binw(w) is −1, the literal is negated, while if it is 0, the literal is discarded
from the M-of-N terms. The algorithm for converting a BNN neuron’s weights
and biases into M-of-N rules is shown here 1, with the formula for determining
the correct M value.

W :


w11 w12 · · · w1m

w21 w22 · · · w2m
...

... . . . ...
wn1 wn2 · · · wnm

 b :


b11
b21
...

bn1




m1of(lit(w11, 1), · · · , lit(w1k, k))
m2of(lit(w21, 1), · · · , lit(w2k, k))

...
mnof(lit(wm1, 1), · · · , lit(wmk, k))



Example. Conversion of weight and bias matrices of a quantised dense layer
into M-of-N rules of a logical layer, with equivalent performance, are shown.
It shows the forward propagation result of the previous example’s output
through the network.

x =


1
−1
1
1

 W =

 0.68 0.37 −0.23 0.07
−0.72 0.26 0 0.92
−0.16 −0.39 −0.33 0.74

 b =

 0.5
0.5
−1.5



M-of-N rules:

2 of (x1, x2, x̄3, x4)
2 of (x̄1, x2, x4)

3 of (x̄1, x̄2, x̄3, x4)

⇒ y =

T
F
F

 =

 1
−1
−1


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3. NuLog method introduction ..............................
Algorithm 1 Conversion of ternary weights into M-of-N rules
Require: w-ternary weights, b-bias, jth layer of the NN

function Ternary weights to MofN rule(wj , bj)
if any wj /∈ {−1, 0, 1} then

Error: conversion to logic requires weights to be {−1, 0, +1}
end if
T ← ∅
for each wj

i ∈ w do
if binw(wj

i ) > 0 then
T ← T ∪ {f j−1

i }
else if binw(wj

i ) < 0 then
T ← T ∪ {f̄ j−1

i }
end if

end for
M ← |T |−b

2
M̄ ←

⌈
|T |−b

2

⌉
if M = M̄ then

M ← M̄ + 1
else

M ← M̄
end if
return MofN(M, T )

end function

3.3 Rule extraction

Let X and Y denote the sets of samples and labels, respectively and the LNN
denoted as classification function f = fn ◦ fn−1 ◦ · · · ◦ f1, where f i is the
ith layer with each neuron expressed as an M-of-N rule. Function f takes as
input a sample x ∈ X and outputs a prediction π as a label c ∈ Y.

Decision rule extracted from the structure of the LNN provides an
abductive explanation of the made decision 2.1 [38]. It is defined as a function
taking a sample x ∈ X as input and output a binary value, representing
whether the network decided it belongs to class c ∈ Y for which f(x) = c or
not, formulated here

rc : X → {F, T}

∃c ∈ Y, ∃x ∈ X s.t. f(x) = c

∀x′ ∈ X , rc(x) = T⇒ f(x′) = f(x) ∧ ∀z ∈ X , f(z) ̸= f(x)⇒ rc(z) = F
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The above implication that defines the rule must hold for the entire problem
space, meaning for both training and testing sets of samples. Let Xtr and Xte
denote the sets of training and testing samples, Xtr = X \ Xte. A less strict
criterion is defined and used such that the above implication holds only for
the training set Xtr which was used to train the BNN used in the extraction,
while at the same time, no guarantees are given for the set of samples defined
as the testing set Xte. The decision rule is now formulated as

∃c ∈ Y,∃x ∈ Xtr s.t. f(x) = c

∀x′ ∈ Xtr, rc(x) = T⇒ f(x′) = f(x) ∧ ∀z ∈ Xtr, f(z) ̸= f(x)⇒ rc(z) = F

This criterion, which defines rules based on the training set alone, gives
no guarantees for the performance of said rule on the testing set regarding
precision and recall.

Let X c
tr ⊆ Xtr be a set of samples from Xtr, strictly and unambiguously

classified as a class c by the LNN, referred to as set of class data. Set X c̄
tr

is the complement of the of class data set X c̄
tr = X \ X c

tr, referred to as
non-class data later. Rc is a set of decision rules, defined above 3.3, then rsc

is a function that can be defined as

Rc = {rc | ∃x ∈ X c
tr, rc(x) = T ∧ ∀z ∈ X c̄

tr, rc(z) = F}

rsc : X → {F, T}

rsc(x) =
{

T ∃rc ∈ Rc s.t. rc(x) = T
F ∀rc ∈ Rc s.t. rc(x) = F

Using this rule set extraction function is defined as

EXrs : (Xtr, f)→ Rc

∀x ∈ Xtr s.t. rsc ∈ Rc, rsc(x) = T⇒ f(x) = c

∀x ∈ Xtr s.t. rsc ∈ Rc, rsc(x) = F⇒ f(x) ̸= c

The rule set extraction function takes as input the training set and the function
f , representing the LNN, and produces Rc as a set of rules explaining the
classification decisions of the network.

Extracted rules will provide understandable abductive explanations for
classifications, be used to form a rule-based classifier, evaluate and compare
its performance to the original network it was extracted from, as well as some
contemporary rule learning methods. The problem of abductive explanation
extraction is proven to be NP-hard; more specifically, to highlight the level of
computational complexity, it is even NPNP hard [38].

21 May 24, 2024



3. NuLog method introduction ..............................
The complexity of the described problem justifies the use of heuristic

approaches to find a solution, which is suboptimal but sufficient. For that
reason, the method introduced in the thesis, named NuLog short for Neural
Logic, implements the rule set extraction function EXrs as defined above
led by heuristics of the activation values for each neuron based on the Xtr
training set.

The NuLog logical rules extraction method, based upon abductive reasoning
and explanation as defined here 2.1, extracts the explanation rule for the
classification for a single sample x and its prediction π, which is then tested
for how well it explains other samples.

3.4 Redundancy assumption and heuristic for
network pruning

Artificial neural networks often exhibit redundancy, which can be utilised
and reduced in multiple diverse approaches. The redundant networks have
better predictive performances and exhibit more robustness but suffer from
a high memory footprint and slower inference times [62]. Techniques for
removing redundant elements of a network are precision reduction, weight
sparsification and pruning dense and convolutional layers [62]. BNNs are used
to reduce redundancy by discretising weights and outputs without significant
performance loss, forcing the weights to belong to the set {1, 0,−1} [18].

One example of redundancy in the BNNs designed with the feature quantiser
layer, specifically the threshold values trained to binarise real-valued features,
is that they fall out of the value ranges specified by the nature of the problem
or the training data. A detailed explanation of redundancy reduction by
identifying contestants and propagating them through the network is explained
in the appendix B. The mentioned constants propagation is a preprocessing
of the LNN after conversion from a BNN and does not affect the accuracy
performance, it only simplifies the network structure to improve inference
performance.

Papers [62] [12] discuss different pruning techniques and approaches for
complete precision networks. Generally, the problem of removing redundancy
via network pruning is expressed as training the weights with sparsification
terms in the cost function to minimise the model size, represented by an
l0 norm minimisation [55]. Unfortunately, the l0 norm minimisation is a
known NP-complete problem [61], as it is non-convex, requiring combinatorial
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search [55].

The network pruning problem can be formulated as a binary or 0-1 integer
program, finding the optimal selection of neurons to keep [82]. The goal is to
keep the most important connections to have the simplest possible network
with minimal loss in precision and recall properties. The pruning can be done
individually for each neuron or as a whole for the entire layer. As the M-of-N
rule, used in LNNs, equates to having a

(N
M

)
of rules to choose from, selecting

the best ones by exhaustive search has a factorial time complexity for a single
neuron. Furthermore, selection can be formulated as a 0-1 integer program,
where the goal is to find at least M terms which, in conjunction, form a rule
which maximises the coverage function over a set of samples X .

max
|X |∑
j=1

yj

s.t.
n∑

i=1
xi ≥M

yj ≤ 1− 1
N

N∑
i=1

(xi − sij) ∀j ∈ {1, · · · , |X |}

xi ∈ {0, 1} ∀i ∈ {1, · · · , N}
sij ∈ {0, 1} ∀i ∈ {1, · · · , N}, ∀j ∈ {1, · · · , |X |}
yj ∈ {0, 1} ∀j ∈ {1, · · · , |X |}

Where:

. X set of samples.N number of neurons in the M-of-N rule.M number of neurons to be selected from the M-of-N rule. S matrix of N × |X | binary constants modelling whether the ith term
evaluates true on the jth sample of the sample set, if the term is not
selected the value must be 0. x vector of N binary decision variables modelling whether an antecedent
layer’s neuron is included in the final selection, or in other words, the
decision is the link between the layers pruned. y vector of |X | binary variables modelling whether the conjunction of
selected terms evaluates true on the jth sample of the sample set
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3. NuLog method introduction ..............................
0-1 integer programming is a known NP-complete problem [42] and is listed
as one of Karp’s 21 NP-complete problems [43].

Papers [82], [55] introduce various approaches to estimating the impor-
tance of neurons for pruning and redundancy elimination. Their idea works
with convolutional neural networks, estimating the importance of final layer
neurons, then propagating it backwards through the network by weights and
removing connections if the estimation is below a predetermined threshold
value.

NuLog’s rule extraction idea is to have a suboptimal greedy heuristic-guided
search and selection of the best M subset from N terms, essentially perform-
ing pruning. The heuristic is based on the activation statistics collected
independently for each neuron or logical expression. It is defined as the
absolute difference in the percentage of positive activations between class and
non-class data that identifies neuron importance for best class discrimination.
The heuristic estimates neuron importance in each layer independently of
preceding and succeeding layers. The methodology is founded upon the
premise that the redundant neurons, if such are present, will be indicated
by the importance metric and eliminated from the selection, which would
result in extracting highly general rules with relatively high coverage. The
NuLog extraction method does not presuppose the existence of redundancy
in hidden layers of the network for the rule to be extracted but bases the
number of rules which can be extracted and their generalisation on the re-
dundancy. The NuLog’s approach differs from the papers referenced above,
as it independently estimates neuron importance for each layer and does not
propagate it from back to front. Also, the NuLog is designed around LNNs
and BNNs instead of convolutional networks with continuous weights.
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Chapter 4

NuLog method implementation

This chapter introduces the NuLog method for extracting rules as prediction
explanations. The chapter is divided into sections by describing specific
phases of the NuLog method. The first section presents NuLog’s main method,
network pruning, which deals with extracting an abductive explanation. The
second part extensively details the implementation of extracting sufficient
rules with a minimal number of redundant terms. Explicit pseudo-codes
describing the algorithms solving the tasks at hand are provided along with
the time complexity analysis. Adequate token examples accompany the
introduction for better understanding.

4.1 Method overview and implementation

This section is the general outline of the idea behind using LNNs and obtaining
a reasonable explanation for the classifications made by the same network.
The goal of the procedure is to determine the most significant terms related
to features responsible for the procured classification. An ideal result would
be to have a conjunction of terms related to significant value ranges. The
procedure is done in multiple steps and works by greedily selecting a sample,
extracting a rule from its classification and checking how well it explains other
samples with identical classification. A pedagogical example is given here with
a simplified overview of the procedure works and will be used as a reference
point in the overview. The figure below 4.1 is a simple representation of
an LNN required by this method, which consists of three layers, the input
layer being a feature quantiser and the rest being quantised dense layers with
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4. NuLog method implementation.............................
neurons as logical expressions in the form of M-of-N rules. The presented
network deals with a single feature vector and classifies it into class c ∈ {1, 2}.
For this trivial example, the term importance estimated by activation statistics
will be identical to the lexicographic order of the neuron labels. The first
layer’s expressions have been marked by lower case letters and the second by
upper case letters for easier distinction between expressions. The sample to
gain an explanation for is a vector x =

[
10

]
.

a = F
x1 ≤ 9

b = T
x1 ≥ 3

c = T
x1 > 5

A = T
2of(ā, b, c)

B = F
2of(a, b̄, c)

C = F
3of(a, b̄, c̄)

D = T
1of(ā, b, c)

T
3of(A, B̄, C̄, D)

F
3of(Ā, B, C̄, D)

(a) : Initial LNN state

a = F
x1 ≤ 9

b = T
x1 ≥ 3

c = T
x1 > 5

A = T
ā ∧ b

B = F
a ∨ b̄

C = F
a

D = T
ā

T
A∧B̄∧C̄

F
Ā ∨ B

(b) : State of the LNN after pruning

a = F
x1 ≤ 9

b = T
x1 ≥ 3

T
ā ∧ b

F
a ∨ b̄

(c) : Rule extraction

Figure 4.1: NuLog - heuristic generalisation
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4.2 Statistics collection

A prerequisite of the method is the collection of activation statistics of each
neuron, which means tracking whether it is true or false. The intention is to
take the training data, split it based on a class determined by the network
for which an explanation is desired, and, for each sample, infer the network
while collecting statistics on each layer. Statistics collection is done by first
evaluating all samples labelled as a certain class, followed by evaluating
all other samples not belonging to said class. The process is performed by
layer encapsulation, which acts like regular layers but with the additional
task of tracking which neuron logical expression is evaluated true in each
pass. Activation statistics are later used as a metric to prioritise neurons and
estimate the importance of their respective rules. Statistics collection is done
on the entire training data but can be done on a subset as well.

4.3 Extracting abductive rule by network pruning

After all the activation statistics are collected, the process of extracting
an abductive explanation 2.1 for a single sample begins. The image 4.1a
visualises the evaluation of each neuron after a forward pass on the sample in
question. The network is pruned such that all connections not contributing
to the classification are removed in densely connected layers. The significance
of the collected statistics is that they serve as a guide for deciding which
element of the input vector is worth keeping for each neuron based on the
activations of the previous layer. The pruning procedure starts from the
output layer and proceeds through hidden layers, converting M-of-N rules
into simple conjunctions or disjunctions until reaching the input layer. The
input layer has nothing to prune, being only the quantiser layer and having
simple predicates as expressions. For a single layer, each neuron is examined
and converted independently, meaning the pruning process can be done in
parallel.

Each neuron in LNN is represented as an M-of-N rule, and pruning trans-
forms it into a conjunction of the best M selected terms from the N given
terms. Conversion filters the terms not matching the previous layer’s output,
sorting the remaining terms by importance estimation, and finally selecting
the best M terms from the matching terms and forming a rule. The first
neuron of the final layer, in 4.1a, will be used as an example to demonstrate
and clarify the pruning procedure. The neuron evaluates true, meaning its
expression is taken as is, which states that three of the four terms must match.
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Going through the terms individually and looking at their evaluations from
the antecedent layer, it is seen that A is a match, as it expects the A neuron
to be true, and it is evaluated to be true. B̄ is a match since it negates
the B’s evaluation, which is false, meaning it is true and a match; C and
D̄ are also matching by analogy. As the number of matching terms here is
more than the minimum of three, sorting of terms is required. Terms are
greedily selected by importance order, meaning A, B̄, C̄ are chosen and put
in conjunction. The rule defined here 2.2 as a conjunction is interpreted as
a list of neurons from the previous layer that must be evaluated as true to
have this neuron’s output be true.

The process is identical whether the M of N rule’s output should be true
or false; the only difference is that if the output is false, the M-of-N rule
is first negated, then pruned and finally, the conjunction is negated again,
resulting in the disjunction of terms. Negation of M-of-N terms is defined
by De Morgan’s law defined later in the chapter, here 8. The second neuron,
in 4.1a, to be pruned in the final layer, evaluates false, and its expression
must be negated, so 2 of (A, B̄, C, D̄) is the rule to be pruned. Repeating the
same procedure, only A and B̄ match the antecedent outputs and are put in
conjunction, but the new expression must be negated so the final result is a
disjunction Ā ∨ B. Disjunction is interpreted as a list of neurons from the
previous layer, which must be false to have this neuron evaluated as false.

The pruning procedure results in sparse connections between layers, shown
in the image here 4.1b, and the neurons not referenced by their subsequent
layer should be completely removed for optimisation as they are redundant.
The pruned network must be evaluated correctly for all samples the extracted
rule covers, but the size of this set is not guaranteed, only guarantee is it
must be non-empty if pruning is done correctly. Generally, for all samples
other than the one being explained, correct predictions of a pruned network
are not guaranteed. In case the set of covered samples by a rule is empty, it
means the pruning was not done correctly, which happens if, for some M-of-N
rule, less than M terms remain for selection, resulting in a contradictory rule
with zero coverage being extracted.

H function. The most important function is the H function, which controls
the pruning phase and decides ahead of time for the entire layer which terms
are to be preserved and which are to be discarded. Assuming a neural
network in the form of fn ◦ fn−1 ◦ · · · ◦ f1, where f i ∈ F is the logical layer
with neurons expressed as M-of-N rules and collected statistics from the
initial phase. For a given input x, the output of layers (activation vector)
is denoted as hi = f i(hi−1) with h0 = x. The H function can be defined
as H : F → {(d, s)}mi where d ∈ {+,−} and s ∈ R and serves to decide for
each neuron in the layer what literal is matching and calculates the importance
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score estimation. The results are once used for pruning the current layer,
then saved and reused for the following layer, as pruning the subsequent
layer requires decisions made for the current layer. For a single neuron, the
function is expressed as

Hj(f i
j , (ac, nc), (ac̄, nc̄))

{
(+, | ac

nc
− ac̄

nc̄
|) f i

j(hi−1
j ) = 1

(−, | ac
nc
− ac̄

nc̄
|) f i

j(hi−1
j ) = −1

Where ac is the total number of positive or true activations of the jth neuron,
nc is the total number of inferences of the neuron on class data, with c̄
denoting non-class data, which is stored in the layer.

Prune Literals. The procedure to prune literals, as input, takes a literal,
which refers to the output of a specific neuron of the preceding layer and a
list containing tuples with all data needed for pruning. The literal can be
an affirmation expressed as xi−1

j or negation x̄i−1
j . The procedure, as shown

in the expression below, checks the corresponding decision made by the H
function relative to the supplied literal being pruned.

Prune(tj , hi−1
j ) =


tj tj ≡ xj ∧ decision(hi−1

j ) = +
tj tj ≡ x̄j ∧ decision(hi−1

j ) = −
F othervise

If the evaluation decision of a literal matches the decision value, the same
literal is returned as a result. The matching cases are if the literal is affirmative
and the output of the neuron in the previous layer is +1 or if the literal is the
negation of its respective value and the output of the neuron is −1, for all
other cases mismatch is the default result. If there is a mismatch, a constant
value false is returned. Indicating the term is to be pruned or discarded,
because the literal does not contribute to the activation of the neuron.

Prune M-of-N rule. This procedure deals with the pruning of M-of-N rules,
and as input, it takes the M-of-N rule mentioned above and a list of tuples
necessary for the pruning itself. The algorithm is shown here 0.

It filters the M-of-N rule terms by the result of pruning functions applied
to those terms. For each term, the according pruning function is called, and
in the case the result of pruning a particular term is a constant, the term
is discarded. Three situations are possible after filtering the terms of the
M-of-N rules. In the case that too many terms had to be pruned. Now, the
number of remaining terms is less than M , which means the condition for the
M-of-N rule to evaluate true can never possibly be met and is always going
to evaluate false, so the procedure returns a constant false value. In the other
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4. NuLog method implementation.............................
case, the number of filtered terms equals the number M , and the condition
to evaluate to true is met if all terms are evaluated to true. Therefore, the
result of the procedure is a conjunction of all remaining terms. The final
case is if more than M terms remain, the best M terms must be selected.
A greedy approach is used; the list of terms is sorted by the scores saved in
the list of tuples calculated ahead of time by the H function; first, M terms,
after sorting, are selected and placed in conjunction with the final result of
the procedure. The time complexity is O(n log n), where n is the number of
terms in M-of-N, and p represents the pruning complexity for the terms.

Algorithm 2 Prune M of N rule
Require: rM,N - M-of-N rule, H-previous layers’s decision list

1: function prune(rM,N ,Hi−1)
2: T ← ∅
3: for each tj ∈ rM,N do
4: t′

j ← Prune(tj , hi−1
j )

5: if t′ ̸= F then
6: T ← T ∪ {t′

j}
7: end if
8: end for
9: if |T | < M then

10: return F
11: else if |T | = M then
12: return Rule(T )
13: end if
14: T ′ ← Sort(T , by = score(H), order = desc)
15: return Rule({t′

1, t′
2, · · · , t′

m})
16: end function

Special cases. For special cases, if the logical expression is in the form of a
rule or a rule set, which represents conjunction and disjunction, respectively,
the pruning process is delegated to the pruning M-of-N rule with special
properties. For the case of the rule, it is equivalent to pruning an N-of-N rule,
where N is the number of terms in the rule.

x1 ∧ x2 ∧ · · · ∧ xn ≡ n of (x1, x2, · · · , xn)

On the other hand, the case of the rule set is equivalent to pruning a 1-of-N
rule.

x1 ∨ x2 ∨ · · · ∨ xn ≡ 1 of (x1, x2, · · · , xn)

Prune layer. The prune layer procedure takes as input an LNN layer which
needs to be pruned and two lists which store important information needed
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for pruning. The lists hold tuples with evaluation decisions and scoring for
their neurons.

The procedure is mapping each neuron’s logical expression into its pruned
version, importantly, taking the values of the second list, which is relevant
to the current layer. For each neuron, its respective tuple is read for the
decision value. If the decision is +, the neuron is supposed to evaluate as true,
and it is pruned as is; on the other hand, if the decision is −, the neuron’s
logical expression must be negated and pruned as its negated form. After the
pruning of the negated expression, the result must again be negated to cancel
out the first negation. The procedure results in a logical layer with all of its
neurons pruned, and the algorithm is shown here 0. Additionally, neurons
which are not referenced by the subsequent layer should be replaced by a
constant value, either true or false, or eliminated completely to reduce the
structure complexity, without affecting the accuracy of the pruned network.

The time complexity is O(mn log n), where m is the number of neurons
in the current layer being pruned, while m is the number of neurons of the
antecedent layer.

Algorithm 3 Prune Logical Layer
Require: f i-Logical layer,Hi-decision lists, jth neuron in ith layer in LNN

1: function prune(f i,Hi−1,Hi)
2: E ← ∅
3: for j ∈ |f i| do
4: if decision(hi

j) = + then
5: e← Prune(f i

j ,Hi−1)
6: else
7: e← ¬Prune(¬f i

j ,Hi−1)
8: end if
9: E = E ∪ {p}

10: end for
11: return LogicalLayer(E)
12: end function

4.3.1 Extracting sufficient rule

The rule extracted from the previous phase is guaranteed to cover the sample
used to generate it, but no guarantees have been made about it covering
other samples from the same class. The only guarantee is that it will not
be evaluated as true for any sample of other classes; in other words, it will
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not be misclassified. It is important to state that the sample’s class means
the class determined by the LNN and not the actual class defined by the
dataset generator, which means if the network incorrectly decides, so will the
extracted rule. The generality of rules extracted by the previous phase can
not be guaranteed, which greatly depends on the nature of the dataset being
explained and the complex inference process of the neural network from which
it is extracted. Terms selection is a post-processing procedure after NuLog’s
extraction to provide sufficient rules. Sufficient rules have improved coverage
of extracted rules, ultimately improving the recall metric of a rule-based
classifier without sacrificing precision.

Essentially, term selection is a performing feature selection by eliminating
terms that are not essential for a correct decision on classifications of other
samples of the same class and any sample of other classes. It can be formulated
as a 0-1 integer program in the same fashion as the pruning of the M-of-N
rules, defined here 3.4, but it is an NP-complete problem. Many different
strategies exist for feature selection; all-subset selection is an exhaustive
search that guarantees an optimal solution but works in O(2|T |m), where
T is the set of terms of the extracted rule, and m relates to checking for
misclassification and stands for total number of non-class samples.

A token example is presented here of the given problem: let x, y ∈ X c be
class data samples and z ∈ X \ X c a sample of non-class data decided by an
LNN. rc is a rule extracted from the LNN, as mentioned earlier by NuLog,
and it covers only the sample x.

x =

0.25
13.1

2

 y =

0.33
10.9
3.1

 z =

−0.1
14.2
5.5


rc(x) = (x1 ≥ 0)1 ∧ (x2 > 11)2 ∧ (x2 ≤ 15)3 ∧ (x3 ≥ 1)4

rc(x) = 1 rc(y) = 0 rc(z) = 0

NuLog’s method utilises the collected activation statistics from the initial
phase explained here 4.2 as a heuristic to guide the selection. This metric
defines the best terms as those that evaluate the same value for most class
samples and, for most non-class samples, evaluate the opposite, while the
worst terms are those that equally evaluate the class and non-class data. In a
nutshell, the difference between activations as an indicator of discrimination
power between classes of a single predicate is taken. The set of sorted terms
for the token example is T = {t(0.75)

3 , t
(0.6)
1 , t

(0.56)
4 , t

(0)
2 }, along with importance

scores.

The selection process to reduce the rule length is done by sorting all terms
by the importance score. After sorting, terms are greedily added to a rule
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until it stops misclassifying; at this point, the reduced rule is found, and the
final rule is generated. For the token example, the first term to be added is
the fourth in the original rule, and the modified rule currently is

rc(x) = (x2 ≤ 15)4 → rc(x) = 1 rc(y) = 1 rc(z) = 1

As it is misclassifying, the second best term is added, which happens to be
the first term in the original rule.

rc(x) = (x2 ≤ 15)4 ∧ (x1 ≥ 0)1 → rc(x) = 1 rc(y) = 1 rc(z) = 0

The new rule does not misclassify sample z and any other sample in non-class
data, so the search is finished. The final rule is shown above, which covers
both x and y samples and the generalisation is improved without sacrificing
precision. The final explanation provided is that x and y are classified as a
certain class because x1 ∈ [0, +∞) and x2 ∈ (−∞, 15], while x3 ∈ (−∞, +∞)
and does not influence the decision.

The order in which terms are selected to be removed from the full conjunc-
tion (backwards selection) matters as the issue is that by removing one term,
the coverage of a rule is changed, which might not be possible to further
expand by additional removals, starting to misclassify, but with a different
removal order more terms might be removed to gain a similar coverage. Still,
a shorter rule is achieved, which is also a goal, as shorter rules are easier for
humans to understand and interpret 5.1. The same reasoning holds for the
inclusion of terms in forward selection.

The heuristic-guided search is an adaptation of the Top-Down Hill-Climbing
algorithm first mentioned here 2.2. It is a suboptimal solution regarding rule
length because, just like the hill-climb algorithm, it easily gets stuck in local
minimums. However, the greedy selection is optimised for time complexity
and runs in O(n log n + nm), where n is the number of terms in a rule and
m is the total number of non-class samples required to be consulted to avoid
misclassification. Rule coverage of class samples should be improved after
selecting the best terms, although this is still not a guarantee, as it again
greatly depends on the nature of the training set. The pseudo-code for the
procedure is shown below 0.
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Algorithm 4 Best terms selection
Require: rc- rule, X -training data, S-predicate scores, c-class

1: function Terms Selection(rc,X ,S, c)
2: Ts ← Sort(rc, by = S, order = desc)
3: T ← ∅
4: for each t ∈ Ts do
5: T ← T ∪ {t}
6: if ¬Misclassify(T ,X , sf) then
7: return Rule(T )
8: end if
9: end for

10: return rc

11: end function

The only exception is that the order in which terms are to be selected in
advance is determined by the heuristic score of each term. Inclusion and
elimination implemented over a heuristic-determined order will finish with
the same selection of terms, as both of them will run until the conjunction of
selected terms stops misclassifying in such a predetermined order. The reason
behind this is that the order is known ahead and just reversed. The process
is implemented in the opposite direction by sorting in ascending order and
removing terms from the full rule until a misclassifying rule is obtained. The
order of sorting the terms should depend on whether the sufficient rules are
expected to be longer than half of the length of the extracted rule; if that
is the case, it makes more sense to remove terms from the full conjunction.
On the other hand, if sufficient rules are expected to be shorter than half the
length of the extracted, then it makes more sense to build the conjunction by
including terms. Different directions of term selection, which use a heuristic
guide like in NuLog, provide the same final rule. It must be noted that in
the general case, if the ordering for forward selection is not the reverse of
the backward selection, then the two approaches do not guarantee the same
selection, for instance, with randomised ordering.

4.4 Extracting classification rule set

Rule extracting is accomplished by converting the pruned network to a single-
layer network, which must provide identical predictions as the original input
network, fn ◦ fn−1 ◦ · · · ◦ f1 ≡ fn,n−1,··· ,1, and the rule is read from the cth

neuron in the single-layer network, rc ≡ fn,n−1,··· ,1
c . The extraction procedure

lacks novelty, and it is skipped over in this chapter, but it is based on merging
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and simplifying logic expressions and is exhaustively detailed in the appendix;
refer to the appendix here A for explicit clarification.

The procedure extracts rules and explains the entire class data as deter-
mined by the trained neural network. It takes as input an LNN, training data,
and the class for which an explanation is wanted. The result returned is a set
of rules explaining the class of interest. In short, it performs NuLog pruning
extraction and post-extraction processing iteratively to generate all possible
rules and provide explanations of classifications for the provided data.

Extraction of rules starts by taking the LNN, wrapping it in a statistics
collection layer, and executing a forward pass on all training data to collect the
activation statistics. The statistics are collected ahead of any rule extractions.

The first sample of unexplained class data is taken from the set and
evaluated using the wrapped network. If the class output does not predict the
class of interest, the sample is removed from the list and discarded, and the
loop starts from the beginning; this is done as it makes no sense to explain
why something is classified as a certain class if it is not classified as such.

If the output matches the class of interest, the wrapped network is pruned.
After pruning, a rule is extracted from the network. The initial rule is then
subjected to terms selection to obtain a sufficient rule without redundant
terms.

The extracted sufficient rule filters class data to remove all samples that
the rule covers. In case the rule fails to explain anything, in other words,
it evaluates false on all samples, including the sample used to generate it,
an exception is raised, and generation is terminated. If that case occurs, it
indicates that the pruning phase was not done properly and resulted in a
contradiction inside the pruned network. It means a contradictory rule or a
constant false value was extracted from the network, which fails to explain
anything. The issue stems from the criteria defined in the H function, which
controls pruning. On the other hand, if one or more samples are covered,
they are removed from the class data, and one iteration is finished. The loop
runs until class data has been explained, for which the examined network can
answer. The pseudo-code shown is shown here 0.
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Algorithm 5 Generate rules
Require: f - Logical Neural Network, X -training data, c-class

1: function Generate rules(f,X , c)
2: Rc ← ∅
3: fS ,S ← CollectStats(f,X , c)
4: while |X | ̸= 0 do
5: π ← f(x1)
6: if π ̸= c then
7: X ← X \ {x1}
8: continue
9: end if

10: fP ← Prune(fS)
11: rc ← Extract(fP , c)
12: rc ← TermsSelection(rc,X ,S, c)
13: U ← ∅
14: for each x ∈ X do
15: if ¬rc(x) then
16: U ← U ∪ {x}
17: end if
18: end for
19: if |U| = |X | then
20: Error: Rule is contradictory
21: end if
22: X ← U
23: Rc ← Rc ∪ {rc}
24: end while
25: return Rc

26: end function

The order of selecting samples for rule extraction and abductive explanation
generation does matter here, as the order will determine the number of
extracted rules. Let r1 be a rule explaining only the sample x. In the second
iteration of the algorithm 0, for sample y, rule r2 is extracted, which covers
the y sample but also evaluates true on the x sample. If the sample y is used
first to extract a rule, r2 would be extracted and set {x, y} would be covered,
sample x would be removed from class samples, and r1 would not be extracted.
The reason why the sample x did not provide the rule r2 immediately is that
the extraction is based on the structure of the LNN used and the heuristic
used to guide the search, which does not offer an optimal solution and can
lead to local optimums. The LNN can conceivably have multiple different
rules for explaining a single sample, and NuLog, being a heuristic approach,
extracts a sufficient but suboptimal rule. Ideally, it would be best to select
the sample whose rule, when extracted, has the highest possible coverage out
of all possible rules that could be extracted to gain the minimal possible rule
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set that explains the class data. Finding such samples is not a trivial problem,
but luckily, it can be avoided by generating all rules using any strategy in
selecting initial samples, which can be greedy or randomised. Evaluate all
coverage sets for class samples and check if there are any pairs of sets where
one is a subset of the other. If there exist such two sets, the rule, which is
the subset of the larger set, is removed, in the case of the last example with
r1 and r2, Ec

1 ⊂ Ec
2, so r1 is to be removed, where E is the set of samples

explained by a rule.
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Chapter 5

Experimental results

The chapter presents the results of evaluating the introduced NuLog rule
extraction method on two classification problems. It briefly introduces metrics
by which methods will be compared and a basic overview of the datasets used.
The methods are measured by qualitative and quantitative characteristics of
yielded rules and their respective scopes, along with neat visual representations
of the achieved results.

5.1 Rule comparisons

The evaluation and comparison of extracted rules are based on the quality
and quantity of generated rules for each class and compared to contemporary
methods for learning rules, like CART and RIPPER. Evaluations compare
how many rules are generated for each classification being explained. The
fewer and shorter rules extracted, the more desirable the technique is, as fewer
rules are more interpretable and easier for humans to understand. Miller’s
law [54], from the field of psychology, states that humans can, at most, hold
7± 2 items in short-term memory at once, meaning any rule which is longer
than 7 terms significantly lose on direct comprehensibility. Additional forms
of presentations for rules and rule sets must be used to get a clear picture
of the reasoning behind a decision, which is related to understanding higher
dimensional spaces, as each term is a predicate associated with one dimension.
The best case scenario is to have a rule set of cardinality 1, or simply a single
rule, to explain the entirety of the class data training set. The opposite is
to have a one-to-one match of rules to samples; each rule is only good for a
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single sample and fails to generalise.

Besides the quantity, the length of individual rules is an important factor.
The shorter the rule, the simpler it is, and the important features and their
respective values are clearer. Rule length is expressed as the number of terms
in conjunction. A rule of length n can reference anywhere between ⌈n

2 ⌉ and
n dimensions because for one dimension at most 2 predicates can be present
in conjunction, as described in the appendix here A.1. The ideal scenario is
to generate rules with as small a number of terms as possible, highlighting
the critical features for classification. An optimal number of terms is problem
and data-dependent. The opposite is to have two terms for each feature and
for all features to be significant, which would create the longest possible rules.

Another interesting metric is the coverage or the rule’s scope. Coverage is
the percentage of the training and testing set explained by the rules. Besides
the quality of the rules, the accuracy of classifiers created from generated
rules is of the utmost importance, indicated by precision and recall metrics.
Therefore, the trained LNN, NuLog, CART, and RIPPER rule-based classifiers
are compared using training and testing sets.

5.2 Flower dataset

5.2.1 Dataset introduction

The flower dataset is a toy dataset with symmetrically spaced non-linearly
transformed normal distributions. First introduced in [64] for density esti-
mation, but here it is used for a classification problem, with each leaf being
one class. The dataset has two real features in the range [−5.25, 5.25], ideal
for representing explanations on a 2D plot, and the target value is the class
of the flower, defined as the colour. The size of the generated dataset for
method evaluation is 2000 samples for training and 1000 samples for testing
purposes, approximately equally split between 8 classes. The training dataset
is shown here 5.1, and classes are colour-coded.

The neural network’s architecture used for classification consists of four
layers with 50, 20, 20, and 8 neurons, respectively. The first is a feature
quantiser layer, with a quantisation level of 25, followed by three quantised
dense layers. Each layer incorporates a hard tanh as an activation function.
Additionally, the sign function is used as a quantiser for each layer with a
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Figure 5.1: Flower training dataset representation

linear proxy STE 3.1, with the window width of 1, and each layer employs
batch normalisation. The parameters used in training were AdaBelief as an
optimiser and logit cross entropy as the loss function. The training of the
BNN was done in 100 epochs.

5.2.2 Results

Interpretability

The following results were achieved and shown in the table 5.1. It compares
the total number of rules, mean rule length of individual rules and mean rule
coverage of the training data set.

The table contains evaluations for the NuLog extraction method and
compares two different post-extraction processing strategies for extracting suf-
ficient rules. More precisely, the two different best-term selection approaches,
along with CART and RIPPER methods for reference. The first NuLog
method, labelled NL, performs sufficient rule extraction using a heuristic-
guided selection, as described in 4.3.1. The other NuLog method, the column
marked as eNL, performs sufficient rule extraction employing an exhaustive
search for the minimal length rule by finding the shortest rule that does not
misclassify and maximises class coverage simultaneously. It must be stated
that to avoid any confusion, the initial extraction of both NuLog approaches
is identical; the only difference for comparison is the post-extraction phase.
These two strategies are selected to be compared on performance qualities.
Comparisons are shown for each class, respectively, and for the overall problem
for each rule-based classifier.
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Number of rules Mean rule len Mean coverage in %

Class NL eNL CA RI NL eNL CA RI NL eNL CA RI
Blue 1 1 1 13 2.0 2.0 4.0 3.5 100.0 100.0 100.0 7.5

Orange 5 2 1 7 3.2 3.0 3.0 3.4 20.6 49.9 100.0 13.8
Green 3 3 1 13 2.0 2.0 3.0 3.6 67.3 67.3 100.0 7.7
Red 9 6 1 7 3.4 2.7 3.0 3.4 11.1 17.4 100.0 13.8

Violet 3 2 1 14 2.0 2.0 2.0 3.6 52.8 79.2 100.0 7.1
Brown 4 3 1 8 2.8 2.7 3.0 3.5 25.0 33.3 100.0 12.5
Pink 3 2 1 14 3.0 3.0 3.0 3.6 30.7 46.0 100.0 7.1
Gray 17 6 1 8 3.6 2.8 4.0 3.5 6.4 16.6 100.0 12.5
All 45 25 8 84 2.8 2.5 3.1 3.5 39.9 50.7 100.0 10.2

Table 5.1: Interpretability metrics of generated rules for the flower dataset
NL: NuLog - sufficient heuristic ex.,

eNL: NuLog - sufficient exhaustive ex.,
CA: CART, RI: RIPPER

All methods indicate the generated rules are understandable based on the
number and length of rules, which is greatly helped by the small dimensionality
of the problem space. The results are interesting, and by far, the best method
regarding the quality of rules is CART, as it has only one rule for each
class, the best-case scenario for interpretability. The two NuLog methods are
significantly less intuitive for interpreting overall as the total rule number is
nearly 6 and 4 times the CART’s rule count, respectively, but the number of
rules, in this case, greatly varies across classes. The blue class only has one
rule of two terms, but on the other hand, the grey class is far more complex
as it has 17 rules for heuristic and 6 for exhaustive terms selection, using
NuLog.

Comparing the NuLog method with RIPPER indicates that NuLog methods
give far better results than RIPPER, which has nearly double the number of
rules extracted by heuristic and more than triple the exhaustive approach
with NuLog. Interestingly, some classes are easily explained by NuLog and
are more complex with RIPPER and vice versa, like blue and grey classes, to
highlight a few cases.

Regarding the average length of rules, the best results are given by NuLog
methods as it has the minimal average length, closely followed by CART, and
the worst again is RIPPER. As expected, the exhaustive selection in NuLog
has, on average, the shortest rules, but those results are paid for by slower
extraction time compared to the heuristic-guided selection.

The coverage of rules, in table 5.1, shows consistent results, as it is negatively
correlated with the number of rules and their length. Simpler and shorter
rules result in having fewer rules and higher coverage. Again, after looking at
the coverage metric, CART is the best as its result is the ideal case, the single
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rule for the entire class data set. NuLog’s methods show worse coverage than
CART, while RIPPER is the worst. Comparing two NuLog methods with
different approaches again indicates that the exhaustive search offers better
coverage.

Visualisation

The generated rules and statistics are best presented with visualisations in
figure 5.2, with 2D plots. The figure showcases the training data and colour-
coded classes, with rectangles as visual representations of classification areas
defined by rules. Each area is coloured as the class the method unambiguously
determines. The yellow-coloured areas mark values the classifier cannot decide;
it gives no answers. On the other hand, teal-coloured areas mark values for
which the classifier makes an ambiguous decision; it answers that the area
belongs to two or more classes.

The first image 5.3a portrays the decision-making logic of the LNN, indi-
cating classifications for areas with training data and decisions for areas with
unseen data where it generalises and hallucinates. The second image 5.3b pic-
tures the result of the network pruning, as the rules shown here are extracted
but not subjected to any post-extraction processing, like best terms selection.
A nice comparison between 5.3b and 5.3a images. Even though more rules
exist in the network, only the ones which are activated and inferred on the
training set are extracted. It indicates the reason why extracted rules and
networks will not perform identically for the entire problem space and why
recall can be significantly worse for rule-based classifiers compared to the
original LNN.

The third 5.3c and fourth 5.3d images are the final results of NuLog methods
and display how NuLog-extracted rule-based classifiers make decisions. A
really interesting comparison is how different best terms selection strategies
end up extracting sufficient rules from the same starting rule in various ways
and terminating with different rule interpretability metrics, as discussed
earlier 5.1. The third image 5.3c is by rules generated with NuLog using a
heuristic-led best terms selection, while the fourth 5.3d is by rules generated
with NuLog using exhaustive search.

Fifth 5.3e and sixth 5.3f images present the CART’s and RIPPER’s rule
classifiers, respectively. They are serving to compare direct training and
learning of rules to extracting from structures like neural networks.
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(a) : LNN (b) : NuLog - extracted rules

(c) : NuLog - extracted sufficient rules by
heuristic search

(d) : NuLog - extracted sufficient rules by
exhaustive search

(e) : CART (f) : RIPPER
Ambiguous answer No answer

Figure 5.2: Comparisons of classification boundary plots.

Taking a look at the final NuLog results in images 5.3c and 5.3d, an
interesting and rather strange phenomenon sticks out in the form of oddly
shaped rectangles. For example, in the image 5.3c, the grey class area is
strictly marked for one part while for the rest above and below overlaps with
blue and brown areas. That kind of decision classification directly results
from post-extraction processing, and at first, the reason for such rules and
areas is not intuitive, so a detailed explanation is provided.
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Image 5.3b demonstrates how the original extracted rule looked like. The
rule at hand is in the form rv = (x ≥ xlo) ∧ (x ≤ xhi) ∧ (y ≥ ylo) ∧ (y ≤ yhi).
The area determined by the rule immediately after extraction is x ∈ [xlo, xhi]
and y ∈ [ylo, yhi]. By removing the term y ≤ yhi, the area becomes y ∈ [ylo,∞),
while the x axis remains unchanged. The new shorter rule does not misclassify
training data, and it is deemed sufficient; no sample exists in the training
data to contradict such an expansion.

The example provides a great comparison of how two different best terms
selection techniques work. Results in the image 5.3d indicate that the ex-
traction of sufficient rules takes a slightly different path as the overall rules
with the exhaustive search are more limited but provide a lot less ambiguous
answers.

As the selection of terms is led by selection such that no misclassification
occurs, the rectangle results from the fact that there are no samples in the
training set to contradict the removal of terms limiting the range for the
x axis on a 2D plot. The previous examples show how the extraction of
sufficient rules works, headed by consulting the training set. Still, a pitfall
of such consultation is that no guarantees can be given on the accuracy of
unseen data. The rules might produce rules that are more general and have
great coverage; for example, the blue class rules defined by the NuLog method
are visually similar to CART’s result, shown in image 5.3e. It could also just
as easily cause misclassification and errors because of rules that create these
bizarre decision areas, like for orange and grey classes. Extracting sufficient
rules is highly dependent on how quantisation thresholds, i.e. the weights,
are trained in the first layer.

The quality of extracted rules is highly dependent on the inner structure of
the LNN and best observable in the image 5.3a. For red and grey classes can
be viewed that the trained quantisation thresholds are extremely dense, while
for other classes like blue and green, which are explained with a few rules, the
thresholds are more spaced apart, as well as that such a high quantisation
level is redundant.

It must be stated that visualisations nicely show for which samples the
network is not working properly, like the fact that pink class samples are
classified as brown. The network’s outputs must be taken at face value
without explanations like these. It is exactly where the NuLog method shines
and proves its worth as a method to make neural networks interpretable by
showing for which results the network should not be trusted and must be
debugged and rectified.
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Regarding the quality of rules and the explanations that follow from the

rules, CART shows the nicest, most intuitive and coherent areas, which are
easily explainable. RIPPER’s rules are slightly worse in comparison, as the
shapes are rather unexpected and far from the actual division; they are still
easy to understand. NuLog’s method produces odd shapes for classification
explanations and is the worst of the three methods.

A curious comparison is how each method decides on the area in the centre
of the plot. The NuLog method cannot give any answer, as it is limited to
training data, and no samples exist to be used to generate a rule, depicted in
the second image 5.3b Only a sample existing outside of the central area can
provide a rule which and its restrictions loosened by term selection can cover
such areas, but as long as it does not cause a different prediction than an LNN.
RIPPER created such rules that the area is symmetrically divided between
classes. It is biased towards some classes, specifically the four corner classes
(blue, red, purple, pink), by giving them larger areas, while it has ambiguous
classifications for areas between them. Effectively overlapping and reducing
the precision of the extracted rule sets for each class. Interestingly, NuLog
methods overlap on the edges and corners, caused by the lack of samples to
provide rules and prevent expansion of class areas, but not between class
areas. CART marked the central area as one of the classes, similar to the
selection of the terms in NuLog, because no contradiction could be found,
and the original assumption persisted.

Accuracy

Comparison of classifiers’ accuracy in the table 5.2. The comparison is made
between the LNN, the classifiers based on the rules extracted from the same
network, and the two rule learning methods for reference.

Train Test
Class NN NL eNL CA RI NN NL eNL CA RI

Blue 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 0.98
Orange 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 0.97
Green 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Red 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 0.95
Violet 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Brown 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Pink 0.99 0.99 0.99 1.00 1.00 0.99 0.99 0.99 1.00 1.00
Gray 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

All 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.99

Table 5.2: Accuracy metrics for the LNN and rule-based classifiers
NL: NuLog - sufficient heuristic ex.,

eNL: NuLog - sufficient exhaustive ex.,
NN: LNN, CA: CART, RI: RIPPER
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The results show the quality of the rule extraction method and prove its
worth. Results closely follow the accuracy of the original LNN and CART
while being better than RIPPER. The flower problem at hand is relatively
simple and does not punish overfitting the data on the training set. Out of the
interpretable methods, CART is the best, with the best accuracy accompanied
by the simplest possible explanation for all classes. It nicely indicates how a
model-agnostic method using a surrogate model works, introduced here 2.1 to
explain how the black-box model like LNN works. CART is closely followed
by NuLog as the accuracy and the quality of generated rules and related
explanations are slightly worse compared to it. Out of the two post-extraction
approaches, accuracy is nearly identical, but in favour of the exhaustive search,
regarding interpretability, the exhaustive search takes the win as expected.
Heuristic-led search provides worse rules, but extraction and processing are
significantly faster.

5.3 MNIST dataset

5.3.1 Dataset introduction

The MNIST [20] dataset, a standardised and widely used dataset in the ma-
chine learning world, has been used to evaluate and measure the performance
of the NuLog method. MNIST stands for modified National Institute of
Standards and Technology database and is a collection of handwritten digits,
from 0 to 9, each digit represented as a grayscale image of size 28× 28 pixels.
It is an ideal dataset for testing the explanations generation method as it
poses several key challenges to overcome the variance of handwriting styles,
noise, and ambiguities in the images. Here are two representative samples of
digit zero 5.3; the dataset supplied the first, and the second is transformed
into two discrete values.

The same parameters for training neural networks on MNIST are used for
the flower problem LNN, defined here 5.2.1. The only difference is in the
layers, as it uses four layers with 784, 784, 392, and 10 neurons, respectively,
and the quantisation level is now 1 creating 2 separate bins for each pixel.
The network will train threshold values for binarising pixel intensity values.
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(a) : Classic (b) : Binarised

Figure 5.3: Examples of MNIST samples of digit zero

5.3.2 Results

Interpretability

Results of the rule-generating methods achieved are shown in the table 5.3
below, along with contemporary rule learning methods’ results. The table
compares techniques by the number of rules generated, the average rule length,
and coverage expressed as the average percentage of the training set covered
by generated rules. It is shown for each class respectively and for the overall
rule-based classifiers.

The table contains evaluations for two NuLog extractions, CART and
RIPPER methods. The first NuLog method uses heuristic-guided best terms
selection, denoted as NL. The second NuLog evaluation, here denoted as
gNL, employs a greedy terms selection, which takes a full rule and then
greedily selects the term that can be deleted whose removal will not cause
the remaining rule to misclassify and will maximise coverage; this is repeated
until all terms which fit the condition above are removed.

The difference between the techniques is staggering when comparing the
number of generated rules. The NuLog method with heuristic selection ex-
tracts around three times the number of rules generated by CART and just
shy of eleven times more than the RIPPER method. The greedy best terms
selection approach offers a significantly better solution regarding interpretabil-
ity, as the number of extracted rules is nearly halved. Still, this approach
suffers from significantly slower extraction time compared to heuristic-guided
best terms selection but is faster than a full, exhaustive one, which guarantees
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Number of rules Mean rule len Mean coverage in %
C NL gNL CA RI NL gNL CA RI NL gNL CA RI
0 222 142 58 23 16.5 9.3 9.6 5.7 1.0 2.7 1.7 11.6
1 127 33 42 16 30.0 14.3 10.6 6.2 1.6 15.6 2.4 13.0
2 369 224 104 35 17.5 9.9 10.2 5.5 0.4 1.7 0.9 5.8
3 364 208 103 27 17.1 9.5 10.4 6.5 0.4 1.6 0.9 7.5
4 298 197 96 21 19.0 10.9 10.6 6.1 0.5 2.4 1.0 12.4
5 379 306 89 22 17.4 9.9 10.3 6.3 0.3 0.7 1.1 8.0
6 183 125 69 24 16.0 10.1 10.0 6.1 1.0 4.5 1.4 9.3
7 211 129 68 17 22.0 10.0 11.0 6.4 1.2 3.4 1.4 16.6
8 447 222 116 60 17.2 10.2 10.0 5.9 0.3 1.6 0.8 2.1
9 421 206 86 30 24.6 10.4 10.9 7.5 0.3 1.7 1.1 4.1
A 3021 1792 831 275 19.7 10.5 10.4 6.2 0.6 3.0 1.1 7.9

Table 5.3: Interpretability metrics of generated rules for MNIST
NL: NuLog - sufficient heuristic ex.,
gNL: NuLog - sufficient greedy ex.,

CA: CART, RI: RIPPER

the optimal solution.

The NuLog heuristic selection method yields longer rules, nearly two times
longer on average than CART and even more than three times longer rules
than RIPPER. The greedy term selecting NuLog generates nearly identical
rule length to CART on average, but RIPPER generates the shortest rules
over all.

The coverage statistics are in table 5.3. Understandably, longer rules are
less general. Subsequently, more rules are required to cover the same sample
size. However, an interesting result is gained for class 1, which shows that
the greedy NuLog version extracted 21% less rules than CART, and the
average coverage is significantly higher than CART’s for the class. Achieved
by extracting rules where all rules have similar coverage percentages and
explain approximately equal portions of the training set. For the above reason,
the overall result breaks the negative correlation between the number of rules
and rule set coverage. NuLog’s version with greedy selection has a higher
number of rules and higher coverage than CART.

Visualisation

Interpreting these rules at face value, RIPPER stems as the best method
regarding interpretability, as fewer simpler rules are preferable to more con-
voluted ones. The issue that arises here is that looking at class zero, for
example, is impractical and nearly impossible to take all 23 rules into account,
at the same time, as just a list of predicates. Visual representation of said
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rules is required to compare interpretability effectively.

Representations are done in such a way that they indicate the relevant
pixels and give information about the data in the form of a heatmap. The
heatmap has three main colour shades; the yellow pixels indicate that areas
of the full 28× 28 image are not referenced by any predicate in the extracted
rules. Dark and light pixels are portrayed as variations of black and purple,
as well as various shades of orange. The extracted rules reference these pixels
and are important for decision-making. The pixels marked as dark mark
areas are expected to be dark, meaning they have an intensity of 0 or close
to 0, while light expects their intensity to be as high as possible, as 1 or as
close to 1. The following images are visualisations of decision rule sets for
the same class of digit zero, achieved by different techniques 5.4.

(a) : Important pixels by ex. suff. rules
with heuristic elimination

(b) : Important pixels by ex. suff. rules
with greedy backwards elimination

(c) : Important pixels by CART method (d) : Important pixels by RIPPER
method

Light Dark Not checked

Figure 5.4: Class 0 visualisations of important pixels for classification
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The first 5.5a and second 5.5b images are visual representations of NuLog
extracted rules. Image 5.5a is the heuristic guided search, while 5.5b shows
the greedy best terms selection, which generates shorter rules. Third 5.5c
and fourth images 5.5d are for CART and RIPPER generated rule sets. It is
interesting to notice that the approach which generated longer rules requires
significantly fewer terms overall, specifically for this problem pixels, out of the
full 28× 28 image to explain the training set. The result is expected as the
pixels are selected as part of the post-extraction processing led by heuristic
sort, which will always generate the same order, but the misclassification will
determine the length, resulting in always the same terms being selected for
the sufficient rule. Overall, the number of critical features is considerably less
than other methods, also supported by the numbers in the table 5.4.

Num. of features Percentage of full image
C NL gNL CA RI NL gNL CA RI
0 35 116 165 72 4.46 14.8 21.05 9.18
1 43 108 144 54 5.48 13.8 18.37 6.89
2 49 126 216 106 6.25 16.1 27.55 13.52
3 42 134 217 95 5.36 17.1 27.68 12.12
4 40 129 206 84 5.10 16.5 26.28 10.71
5 45 127 202 83 5.74 16.2 25.77 10.59
6 45 117 183 76 5.74 14.9 23.34 9.69
7 43 131 176 67 5.48 16.7 22.45 8.55
8 47 127 214 142 5.99 16.2 27.30 18.11
9 60 116 197 87 7.65 16.4 25.13 11.10

A 60 167 308 328 7.65 21.3 39.29 41.84

Table 5.4: Key features metrics for the MNIST
NL: NuLog - sufficient heuristic ex.,
gNL: NuLog - sufficient greedy ex.,

NN: LNN, CA: CART, RI: RIPPER

Here, a trade-off in interpretability quality is presented between having
more numerous rule sets with longer rules but fewer important features versus
having fewer and shorter rules with significantly more important features. If
fewer important features are deemed a higher priority, the NuLog method is
the best, and RIPPER is the worst. Still, if the number and length of rules
take higher precedence, the roles are reversed, RIPPER being the best and
NuLog the worst method. CART is found to be the middle ground in this
case. The heuristic strategy result is consistent with the nature of the NuLog
method, as it explains a neural network for which the first layer’s quantifiers
during training can have threshold values outside the expected value ranges.
Therefore, these predicates are meaningless as part of the explanation and
should not be considered. The procedure for identification and propagation
of constants is explained in detail in the appendix here B. However, the
greedy selection strategy in NuLog indicates properties similar to CART and
RIPPER with more relevant pixels than the heuristic approach in NuLog.
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It is interesting to see and interpret the "neural network’s decision process

on differentiating digits, as shown in the images 5.4. For the class of digit
zero, it is clear that it looks for dark blobs in the middle of the image, with a
patch of lighter pixels on all sides surrounding the dark blob and, again, a
dark patch on both sides of the lighter patches. An interpretation like this
indicates that it is memorising the parts characteristic of a particular digit
enough to distinguish it from other digits. A similar result can be seen using
the RIPPER method, while nothing analogous can be done to interpret the
CART’s visualisation of zero’s rule set.

Accuracy

The most important comparison is the comparison of accuracies and how
the methods behave on unseen data, with precision and recall metrics shown
below 5.5. The comparison between the rule-based classifiers and the neural
network explained by the NuLog method is also shown.

Train Test
Metric NN NL gNL CA RI NN NL gNL CA RI

Precision 1.00 1.00 1.00 1.00 1.00 0.98 0.95 0.95 0.95 0.96
Recall 0.99 0.99 0.99 1.00 0.98 0.93 0.87 0.82 0.77 0.91

Table 5.5: Accuracy metrics for the neural network and rule-based classifiers
NL: NuLog - sufficient heuristic ex.,

gNL: NuLog - sufficient greedy backwards ex.,
NN: LNN, CA: CART, RI: RIPPER

The results here show what was already known: neural networks are the best
classifiers overall. CART is the best for training data. Interestingly, RIPPER
shows rather poor accuracy in both training and testing data. NuLog’s
rules have significant performance on the training set, which is expected as
the training set is consulted in extraction, which explains the difference in
training performances. For the training data, the NuLog’s rules follow the
network’s performance, but as the NuLog method offers no guarantees for
unseen data, accuracies differ significantly on testing. All methods are precise,
with precision on a testing set of at least 95%, but recall stats for NuLog
methods are worse as they can only identify around 82% to 87% of relevant
results. CART has a slightly worse recall than heuristic selection NuLog, and
RIPPER has the best recall out of the rule-based classifiers but is worse than
the LNN.

The reason for bad recall metrics for NuLog methods compared to the
neural network’s metric used to extract said rules stems from the fact that
only the training set is used in the extraction, each sample serving as a "seed"
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to extract an explaining rule. The extraction would have to rely only on
the neural network’s elements and extract all possible rules that could be
inferred in the network to gain a better recall metric. An alternative would
be to perform an exhaustive extraction of rules based on the entire possible
problem space, effectively brute-forcing all significant samples of the problem.

These results indicate that the best results are achieved by separating
concerns, which means having the best tool for each part of the job. Have
the best classifier, a neural network, accompanied by rule sets and a method
to generate the same rules, which is NuLog’s rules extraction technique. The
selection of the best terms and techniques to use depends on which aspect
is prioritised. If interpretability is required, then some form of greedy or
randomised criteria for selection is best, of course, if the problem size does
not allow an exhaustive search. On the other hand, if faster sufficient rule
extraction is prioritised, a heuristic-guided terms selection is the best with a
worse but satisfiable level of interpretability.

5.3.3 Comparing the effect of training set size

An interesting result is shown when different sizes of the training are used to
train the QNN, convert it to LNN and extract rules, as shown in the table
below 5.6.

Number of rules R-S ratio in %
Tr. set size NL CA RI NL CA RI
100% - 60000 15556 3330 885 25.9 5.6 1.5
50% - 30000 3021 831 275 10.1 2.8 0.9
25% - 15000 4466 1204 360 29.8 8.0 2.4

Table 5.6: Number of extracted sufficient rules for different sizes of training sets
R-S: Ratio of the number of rules to training set size

NL: NuLog, CA: CART, RI: RIPPER

These results indicate that the number and quality of extracted rules via
training set greatly depends on its size. The network does not generalise,
but it tries to memorise training set samples as much as possible, supporting
the previous conclusion for bad recall performance, as the rule extraction
requires all possible samples in order to extract complete knowledge from the
network in this fashion. An interesting indicator is that both conventional
rule-learning methods behave similarly to the neural network.
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5.3.4 Results on binarised MNIST dataset

The binarised MNIST dataset is used to evaluate and compare two differently
trained networks, one classically and the other more robustly trained, on an
augmented training set. Additionally, with the binarisation of the data set,
the training of feature quantisation is no longer necessary. A pre-binarised
data set with a threshold of 0.5 means all three methods work with the same
initial number of features. In other words, the binarisation of data initially
makes the NuLog’s extraction work with all possible pixels equally relevant.
The data binarised is the same as the previous MNIST evaluation; the only
difference in training is the missing first layer used for feature quantisation.
The robust network training is performed such that 10% of pixels are selected
randomly, and their respective values are flipped from light to dark and vice
versa. Note that the augmentation was done solely during neural network
training and not for the NuLog’s extraction. The following metrics describing
the generated rules are collected 5.7. The comparison shows more or less the

Number of rules Mean rule len Mean coverage in %
NL aNL CA RI NL aNL CA RI NL aNL CA RI

3825 3357 831 249 28.34 27.64 10.35 6.68 0.47 0.52 0.85 9.92

Table 5.7: Interpretability metrics of generated rules for the binarised MNIST
NL: NuLog, CA: CART, RI: RIPPER,

aNL: NuLog using an LNN trained with an augmented set,

same relationships and results as the regular MNIST evaluation. A rather
interesting comparison is that the more robustly trained network indicates
improvements regarding the number of rules and their length. The overall
rule set size is decreased by around 12% on average. However, this is not
uniform across all classes but greatly differs, and for some classes, there is
a negligible increase. The rule length is also slightly reduced. The coverage
indicates again the same negative correlation between the number of rules
required and the coverage, which is indicated by the table 5.7

The key features and their respective numbers and comparisons are shown
below 5.8. Again, the NuLog is the best when selecting fewer key features, and
the training method significantly affects rule generation, which is expected as
the rules are extracted from the trained network.

Number of features Image percentage
NL aNL CA RI NL aNL CA RI
265 65 308 346 33.8 8.3 39.3 44.1

Table 5.8: Key features statistics for the binarised MNIST
NL: NuLog, CA: CART, RI: RIPPER,

aNL: NuLog using an LNN trained with an augmented set,
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Visualisations in 5.5 illustrate a noticeable difference in the extracted rules
between robust 5.5b and non-robustly trained neural networks 5.5a. The
classically trained network neatly concentrates on particular features and
parts of the image. CART 5.5c and RIPPER 5.5d methods are consistent
and do not show any significant differences between the two datasets, which
is expected of such methods. In contrast, the more robust network has far
sparser key pixels that are more spread out, indicating more options and
combinations when selecting features, which results in nicer and shorter rules
with greater coverage.

(a) : NuLog (b) : NuLog - augmented training set

(c) : CART (d) : RIPPER

Light Dark Not checked

Figure 5.5: Binariesd class zero visualisations

The results support the conclusions made for the classic MNIST dataset:
the rule extraction method generated more rules but fewer significant features.
In comparison, rule learning methods generated fewer rules but with more
key features. Also, the more robust network showcases how it learned to
find the 8.3% key pixels to correctly classify to a significant accuracy, with
accuracy comparisons shown in the next table 5.9.
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5. Experimental results..................................
Train Test

Metric NN NL aNN aNL CA RI NN NL aNN aNL CA RI
Precision 1.00 1.00 0.99 0.99 1.00 0.88 0.98 0.95 0.98 0.93 0.97 0.82

Recall 1.00 1.00 0.99 0.99 0.99 0.72 0.95 0.85 0.94 0.84 0.91 0.61

Table 5.9: Accuracy metrics for neural networks and rule-based classifiers
NN: LNN, NL: NuLog, CA: CART, RI: RIPPER,

aNL: NuLog using an LNN trained with an augmented set,

5.4 Experiment result conclusions

From the conducted experiments, conclusions on the provided explanations
can be drawn and referencing the metrics introduced here 2.1.

. Fidelity: Explanations are truthful to the LNNs as they are directly
extracted based on their structure but guaranteed only for the training
data..Consistency: Exact rules extracted from two LNNs differently trained
will be different but provide similar explanations, i.e. they will cover
similar areas.. Stability: NuLog is deterministic, not randomised, meaning the same
rules will be extracted every time..Comprehensibility: Explanations provided are easy to interpret and
convert to natural language [58] but are related to the complexity of the
problem and may require various visualisation techniques.Certainty: NuLog reflects the certainty of the machine learning model,
as it is not model agnostic and is based on the inner structure of the
LNN..Degree of importance: The extracted sufficient rules indicate the
importance of each feature..Novelty: If test data comes from different distributions from training,
the NuLog method does not guarantee a valid or any explanation at all,
and rule-based systems differ from the network’s output..Representativeness: Extracted rules are scoped and often cannot
provide high coverage; at least it is worse than CART and RIPPER, but
this depends on the data.
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Chapter 6

Conclusion

This chapter concludes the thesis and introduction of the NuLog method for
extracting rules from neural networks with discrete weights. More specifically,
converting networks with discrete weights into neural networks with logical
expressions for activation functions and extracting an explanatory rule. The
chapter lists the advantages and disadvantages of the method. Conclusions
are drawn from the experimental results on two classification problems based
on flower and MNIST datasets.

The conclusion is that the extraction of decision rules for a prediction of a
single sample, in other words, abductive explanation, can be done relatively
easily when converting M-of-N into conjunction and disjunctions by pruning
the network by heuristic estimation of neuron importance. The pruning
process led by activation statistic heuristics does not provide an optimal
solution, and often extracted rule contains all possible features. The main
reason the post-extraction phase is necessary is to perform feature selection
and provide a sufficient rule without redundant terms, which is more general
with ideally more coverage.

The advantage of the explanations provided by the NuLog method is that
it utilises discrete neural networks, which have great advantages over full
precision ones. They are perfect for low-power and low-hardware edge devices
and ideal for many security purposes [75]. Reduced precision networks are
being developed to become as good as full precision networks regarding
predictive power [31]. Additionally, discrete networks have the advantage of
fairly straightforward expressions as logical M-of-N rules. Another advantage
is that the quantisation of data is learned and not determined ahead and
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6. Conclusion......................................
biased; essentially, it is done automatically except for the estimation of a
sufficient number of bins to be quantised in. Regarding the extraction of exact
rules with network pruning, it provides valid explanations consistent with the
network’s predictions. After post-extraction processing, the sufficient rules
indicate important features necessary for correct classification.

While discrete neural networks have benefits, their massive disadvantage
is that they are far behind full-precision deep neural networks in predictive
performance [75]. NuLog requires discrete neural networks with binary
activations and ternary weights, which limits the scope of possible models
and neural networks to be explained. The NuLog pruning procedure uses
an activation statistic of individual neurons to provide neuron importance
estimation and prune less important neurons which provides a suboptimal
solution. To find an optimal solution some form of exhaustive search and
pruning would have to be employed. The pruning process does not perform
feature selection well, and post-extraction processing with best terms selection
of the extracted rule is necessary.

Further research will investigate the robustness of networks and how many
different rules could be extracted for a single sample, as well as different
points of view on network pruning and importance estimation, including
MILP solvers, randomised selection and data perturbation. Research could
be expanded as well with different training implementations for BNNs, like
the approach in [21], and implemented in the student Bachelor’s thesis [59],
to compare activation statistic analysis and extracted rules of two differently
trained BNNs.

May 24, 2024 58



Bibliography

[1] Amina Adadi and Mohammed Berrada. Peeking inside the black-box: A
survey on explainable artificial intelligence (xai). IEEE Access, 6:52138–
52160, 2018.

[2] Khadija Mohammad Al-Aidaroos, Azuraliza Abu Bakar, and Zalinda
Othman. Naïve bayes variants in classification learning. In 2010 Inter-
national Conference on Information Retrieval Knowledge Management
(CAMP), pages 276–281, 2010.

[3] José Maria Alonso, Ciro Castiello, and Corrado Mencar. Interpretability
of fuzzy systems: Current research trends and prospects. In Handbook
of Computational Intelligence, 2015.

[4] Robert Andrews, Joachim Diederich, and Alan B. Tickle. Survey and
critique of techniques for extracting rules from trained artificial neural
networks. Knowledge-Based Systems, 8(6):373–389, 1995. Knowledge-
based neural networks.

[5] Elaine Angelino, Nicholas Larus-Stone, Daniel Alabi, Margo Seltzer, and
Cynthia Rudin. Learning certifiably optimal rule lists for categorical
data, 2018.

[6] Meraj Farheen Ansari, Bibhu Dash, Pawankumar Sharma, and Nikhitha
Yathiraju. The impact and limitations of artificial intelligence in cyber-
security: A literature review. IJARCCE, 11:81–90, 10 2022.

[7] Daniel W. Apley and Jingyu Zhu. Visualizing the effects of predictor
variables in black box supervised learning models, 2019.

59 May 24, 2024



6. Conclusion......................................
[8] Theo Araujo, Natali Helberger, Sanne Kruikemeier, and Claes de Vreese.

In ai we trust? perceptions about automated decision-making by artificial
intelligence. AI SOCIETY, 35, 09 2020.

[9] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Tor-
ralba. Network dissection: Quantifying interpretability of deep visual
representations. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3319–3327, 2017.

[10] Clément Bénard, Gérard Biau, Sébastien Da Veiga, and Erwan Scornet.
SIRUS: Stable and Interpretable RUle Set for classification. Electronic
Journal of Statistics, 15(1):427 – 505, 2021.

[11] Yoshua Bengio. Estimating or propagating gradients through stochastic
neurons, 2013.

[12] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John
Guttag. What is the state of neural network pruning?, 2020.

[13] Tom B. Brown, Dandelion Mané, Aurko Roy, Martín Abadi, and Justin
Gilmer. Adversarial patch, 2018.

[14] Sophie Burkhardt, Jannis Brugger, Nicolas Wagner, Zahra Ahmadi,
Kristian Kersting, and Stefan Kramer. Rule extraction from binary
neural networks with convolutional rules for model validation. Frontiers
in artificial intelligence, 4:642263, 2021.

[15] John M Carroll. Why should humans trust ai? Interactions, 29(4):73–77,
2022.

[16] William W. Cohen. Fast effective rule induction. In Armand Prieditis
and Stuart Russell, editors, Machine Learning Proceedings 1995, pages
115–123. Morgan Kaufmann, San Francisco (CA), 1995.

[17] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Bina-
ryconnect: Training deep neural networks with binary weights during
propagations, 2016.

[18] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv,
and Yoshua Bengio. Binarized neural networks: Training deep neural
networks with weights and activations constrained to +1 or -1, 2016.

[19] Sajad Darabi, Mouloud Belbahri, Matthieu Courbariaux, and Vahid Par-
tovi Nia. Regularized binary network training, 2020.

[20] Li Deng. The mnist database of handwritten digit images for machine
learning research [best of the web]. IEEE Signal Processing Magazine,
29(6):141–142, 2012.

[21] Xiang Deng and Zhongfei Zhang. An embarrassingly simple approach to
training ternary weight networks, 11 2020.

May 24, 2024 60



...................................... 6. Conclusion

[22] Jailton C. Ferreira. The cardinality of the set of real numbers, 2013.

[23] Aaron Fisher, Cynthia Rudin, and Francesca Dominici. All models
are wrong, but many are useful: Learning a variable’s importance by
studying an entire class of prediction models simultaneously, 2019.

[24] Jerome H. Friedman. Greedy function approximation: A gradient boost-
ing machine. The Annals of Statistics, 29(5):1189–1232, 2001.

[25] Jerome H. Friedman and Bogdan E. Popescu. Predictive learning via
rule ensembles. The Annals of Applied Statistics, 2(3), September 2008.

[26] LiMin Fu. Rule generation from neural networks. IEEE Transactions
on Systems, Man, and Cybernetics, 24(8):1114–1124, 1994.

[27] Johannes Fürnkranz. Pruning algorithms for rule learning. Machine
Learning, 27:139–172, 1997.

[28] Johannes Fürnkranz, Dragan Gamberger, and Nada Lavrač. Foundations
of rule learning. Cognitive Technologies. Springer, Berlin, Germany, 2012
edition, November 2012.

[29] Johannes Fürnkranz and Tomáš Kliegr. A brief overview of rule learning.
In International symposium on rules and rule markup languages for the
semantic web, pages 54–69. Springer, 2015.

[30] Ekta Garg and Meenakshi Bansal. A survey on improved apriori algo-
rithm. International Journal of Engineering Research and Technology, 2,
2013.

[31] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Ma-
honey, and Kurt Keutzer. A survey of quantization methods for efficient
neural network inference, 2021.

[32] Amirata Ghorbani, Abubakar Abid, and James Zou. Interpretation of
neural networks is fragile, 2018.

[33] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples, 2015.

[34] Brandon M. Greenwell, Bradley C. Boehmke, and Andrew J. McCarthy.
A simple and effective model-based variable importance measure, 2018.

[35] Britta Hale, Douglas L Van Bossuyt, Nikolaos Papakonstantinou, and
Bryan O’Halloran. A zero-trust methodology for security of complex
systems with machine learning components. In International design
engineering technical conferences and computers and information in
engineering conference, volume 85376, page V002T02A067. American
Society of Mechanical Engineers, 2021.

61 May 24, 2024



6. Conclusion......................................
[36] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. Introduction.

In The Elements of Statistical Learning, Springer series in statistics,
pages 1–8. Springer New York, New York, NY, 2009.

[37] Petr Hájek, Martin Holeňa, and Jan Rauch. The guha method and its
meaning for data mining. Journal of Computer and System Sciences,
76(1):34–48, 2010. Special Issue on Intelligent Data Analysis.

[38] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva. Abduction-
based explanations for machine learning models, 2018.

[39] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva. On relating
explanations and adversarial examples. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

[40] International Organization for Standardization. Iso/iec/ieee 26531:2023 –
systems and software engineering — content management for product life
cycle, user and service management information for users, 2023. Geneva,
Switzerland.

[41] Kai Jia and Martin Rinard. Efficient exact verification of binarized
neural networks, 2020.

[42] Ravi Kannan and Clyde L. Monma. On the computational complexity
of integer programming problems. 1978.

[43] Richard Karp. Reducibility among combinatorial problems. volume 40,
pages 85–103, 01 1972.

[44] Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. Examples are
not enough, learn to criticize! criticism for interpretability. In D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 29. Curran Associates,
Inc., 2016.

[45] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler,
Fernanda Viegas, and Rory sayres. Interpretability beyond feature
attribution: Quantitative testing with concept activation vectors (TCAV).
In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 2668–2677. PMLR, 10–15 Jul 2018.

[46] Raymond ST Lee. Artificial intelligence in daily life. Springer, 2020.

[47] Michael Lent, William Fisher, and Michael Mancuso. An explainable
artificial intelligence system for small-unit tactical behavior. pages
900–907, 01 2004.

May 24, 2024 62



...................................... 6. Conclusion

[48] Anastasia-M. Leventi-Peetz and Kai Weber. Rashomon effect and con-
sistency in explainable artificial intelligence (xai). In Kohei Arai, editor,
Proceedings of the Future Technologies Conference (FTC) 2022, Volume
1, pages 796–808, Cham, 2023. Springer International Publishing.

[49] Roger J Lewis. An introduction to classification and regression tree
(cart) analysis. In Annual meeting of the society for academic emergency
medicine in San Francisco, California, volume 14. Citeseer, 2000.

[50] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-
Ting Cheng. Bi-real net: Enhancing the performance of 1-bit cnns with
improved representational capability and advanced training algorithm,
2018.

[51] J.W. Lloyd and R.W. Topor. Making prolog more expressive. The
Journal of Logic Programming, 1(3):225–240, 1984.

[52] Scott Lundberg and Su-In Lee. A unified approach to interpreting model
predictions, 2017.

[53] David A. Medler and Michael R.W. Dawson. Using redundancy to
improve the performance of artificial neural networks. 1999.

[54] George A. Miller. The magical number seven, plus or minus two: Some
limits on our capacity for processing information. The Psychological
Review, 63(2):81–97, March 1956.

[55] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan
Kautz. Importance estimation for neural network pruning, 2019.

[56] Christoph Molnar. Interpretable Machine Learning. 2 edition, 2022.

[57] Christoph Molnar, Giuseppe Casalicchio, and Bernd Bischl. Interpretable
Machine Learning – A Brief History, State-of-the-Art and Challenges,
page 417–431. Springer International Publishing, 2020.

[58] Aikaterini Mpagouli and Ioannis Hatzilygeroudis. Converting first order
logic into natural language: A first level approach. In Current Trends in
Informatics: 11th Panhellenic Conference on Informatics, PCI, pages
517–526, 2007.

[59] Viktor Nezveda. Training of binary-ternary neural networks, 2024.

[60] Anh Nguyen, Jason Yosinski, and Jeff Clune. Multifaceted feature
visualization: Uncovering the different types of features learned by each
neuron in deep neural networks, 2016.

[61] Thanh T. Nguyen, Charles Soussen, Jérôome Idier, and El-Hadi Djer-
moune. Np-hardness of 0 minimization problems: revision and extension
to the non-negative setting. In 2019 13th International conference on
Sampling Theory and Applications (SampTA), pages 1–4, 2019.

63 May 24, 2024



6. Conclusion......................................
[62] Dimitris Papadimitriou and Swayambhoo Jain. Data-driven low-rank

neural network compression, 2021.

[63] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha,
Z. Berkay Celik, and Ananthram Swami. Practical black-box attacks
against machine learning, 2017.

[64] Tomas Pevny, Vasek Smidl, Martin Trapp, Ondrej Polacek, and Tomas
Oberhuber. Sum-product-transform networks: Exploiting symmetries
using invertible transformations, 2020.

[65] Alun Preece. Asking ‘why’in ai: Explainability of intelligent systems–
perspectives and challenges. Intelligent Systems in Accounting, Finance
and Management, 25(2):63–72, 2018.

[66] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali
Farhadi. Xnor-net: Imagenet classification using binary convolutional
neural networks, 2016.

[67] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Model-agnostic
interpretability of machine learning, 2016.

[68] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should i
trust you?": Explaining the predictions of any classifier, 2016.

[69] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors:
High-precision model-agnostic explanations. Proceedings of the AAAI
Conference on Artificial Intelligence, 32(1), Apr. 2018.

[70] M. Robnik-Sikonja and Marko Bohanec. Perturbation-based explanations
of prediction models. In Human and Machine Learning, 2018.

[71] Lloyd S. Shapley. A Value for N-Person Games. RAND Corporation,
Santa Monica, CA, 1952.

[72] Taylor Simons and Dah-Jye Lee. A review of binarized neural networks.
Electronics, 8(6), 2019.

[73] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside
convolutional networks: Visualising image classification models and
saliency maps, 2014.

[74] Dylan Slack, Sorelle A. Friedler, Carlos Scheidegger, and Chi-
tradeep Dutta Roy. Assessing the local interpretability of machine
learning models, 2019.

[75] Matteo Spallanzani, Gian Paolo Leonardi, and Luca Benini. Training
quantised neural networks with ste variants: the additive noise annealing
algorithm, 2022.

[76] VA Stafford. Zero trust architecture. NIST special publication, 800:207,
2020.

May 24, 2024 64



...................................... 6. Conclusion

[77] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel
attack for fooling deep neural networks. IEEE Transactions on Evolu-
tionary Computation, 23(5):828–841, October 2019.

[78] Geoffrey G. Towell and Jude W. Shavlik. Extracting refined rules from
knowledge-based neural networks. Machine Learning, 13:71–101, 1993.

[79] Ian Watson and Farhi Marir. Case-based reasoning: A review. The
Knowledge Engineering Review, 9(4):327–354, 1994.

[80] Stefan Wrobel. An algorithm for multi-relational discovery of subgroups.
In Jan Komorowski and Jan Zytkow, editors, Principles of Data Mining
and Knowledge Discovery, pages 78–87, Berlin, Heidelberg, 1997. Springer
Berlin Heidelberg.

[81] Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong
Qi, and Jack Xin. Understanding straight-through estimator in training
activation quantized neural nets, 2019.

[82] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I. Morariu, Xintong
Han, Mingfei Gao, Ching-Yung Lin, and Larry S. Davis. Nisp: Pruning
networks using neuron importance score propagation, 2018.

[83] Jindi Zhang, Yang Lou, Jianping Wang, Kui Wu, Kejie Lu, and Xiaohua
Jia. Evaluating adversarial attacks on driving safety in vision-based
autonomous vehicles. IEEE Internet of Things Journal, 9(5):3443–3456,
2022.

65 May 24, 2024



May 24, 2024 66



Appendix A

Extract the rule

Rule extracting is accomplished by converting the pruned network to a single-
layer network, which must provide identical predictions as the original input
network, fn ◦ fn−1 ◦ · · · ◦ f1 = fn,n−1,··· ,1. The conversion of a deep into a
single-layer neural network is designed such that the resulting layer holds the
entirety of the classification decision logic from the layers that come before
it. For that reason, pruning the original network and customising it for a
particular sample, selected ahead of time for abductive explanation extraction,
is done. The conversion is done layer by layer, from the final layer, taking the
preceding layer and merging it with the final into a new final layer, repeated
until reaching the initial layer. At this point, only a single layer remains,
which holds the entire logic of the initial network. The conversion process can
be done on the full LNN but is extremely computationally inefficient, and
the resulting rule is in the form of nested M-of-N rules, which are completely
incomprehensible and uninterpretable, so a pruned network 4.3 is used.

The first neuron of the final layer, in 4.1b, will be used as an example to
demonstrate and clarify the conversion procedure. The expression A ∧ B̄ ∧ C̄
is examined, and all literals, which directly reference neurons of the preceding
layer, are replaced with the logical expressions from their respective neurons.
The expression now becomes (ā ∧ b) ∧ (ā ∧ b) ∧ (ā). With the replacement of
literals, a new logical expression is created through simplification procedures
to attain the minimum or, as small as possible, logical expression regarding the
number of terms and operations. The expression above, after simplifications,
is equivalent to ā ∧ b. The simplifications, in short, are done by filtering the
terms being put into conjunction or disjunction depending on the original
expression into which the layer is merged. They are explained later in the
appendix in greater detail here A.1.
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An identical procedure is performed for all the neurons in the final layer,

creating a new final layer, with the result of the first iteration shown here 4.1c,
and iteratively repeated until only a single layer remains. When a single layer
is reached, the rule explaining a certain classification is simply read from the
neuron representing the class of interest. Other neurons hold negation of the
classification rule, interpreted as what feature values do not cause a certain
classification The rule for the sample x =

[
10

]
, f(x) = 1 is ā ∧ b, which

is ¬(x1 ≤ 9) ∧ (x1 ≥ 3), simplified to just x1 > 9. The provided explanation
states that the network is classifying the sample as class 1 because the value
of the first and only feature is greater than nine.

Convert rule set. Convert rule set procedure accepts a rule set or list of rules
in disjunction and the layer which precedes the one to which the supplied rule
set belongs. The conversion is done so that each rule is mapped and stored as a
new rule set. Converted rules are simplified such that the resulting expression
returned is equivalent to the original but as small as possible. Simplifications
are done on the fly; as each rule is converted, it is added to the set and
the intermediate set is simplified. The specifics of the exact implementation
of these simplifications are explained later in the appendix here A.1. The
procedure for converting conjunctions is analogous to the conversion procedure
for disjunctions; the only difference is the simplifications, which are related
to conjunctions.

Algorithm 6 Convert a set of rules - disjunction
Require: R-ruleset logical expression, l-previous layer

1: function convert(R, l)
2: P ← ∅
3: for each r ∈ R do
4: r′ ← Convert(r, l)
5: e← SimplifyOR(P, r′)
6: if e = T then
7: return T
8: end if
9: end for

10: return Ruleset(P)
11: end function

A.1 Simplifications

Simplifications are operations performed over logical expressions by applying
the following set of replacement rules in logic.
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....................................A.1. Simplifications..1. Identity Law:

A ∧ ⊤ = A, A ∩ U = A
A ∨ ⊥ = A, A ∪∅ = A..2. Domination Law:

A ∧ ⊥ = ⊥, A ∩∅ = ∅
A ∨ ⊤ = ⊤, A ∪ U = U..3. Idempotent Law: A ∧A = A, A ∩A = A..4. Commutative Law: A ∧B = B ∧A, A ∩B = B ∩A..5. Associative Law: A ∧ (B ∧ C) = (A ∧B) ∧ C..6. Distributive Law: A ∧ (B ∨ C) = (A ∧B) ∨ (A ∧ C)..7. Absorption Law: A ∧ (A ∨B) = A, A ∩ (A ∪B) = A..8. De Morgan’s Laws:

¬(A ∧B) = ¬A ∨ ¬B, (U \ (A ∩B)) = (U \A) ∪ (U \B)
¬(A ∨B) = ¬A ∧ ¬B, (U \ (A ∪B)) = (U \A) ∩ (U \B)
¬(m of (A1, A2 · · · , An)) = (n−m + 1) of (¬A1,¬A2 · · · ,¬An)

The principle on which the simplifications of conjunctions and disjunctions
work is analogous to one another, and one can be performed by the other, as
defined by DeMorgan’s laws 8. For that reason, only conjunction simplifica-
tions are examined.

Simplifications work by taking all the terms meant to be placed in conjunc-
tion with one another, going through them individually, and using them to
filter out other terms by a set of laws, stated above. The ordering of terms
in conjunction is irrelevant as a conjunction is a commutative operation 4.
Simplifications could take all the terms and then perform filtering, but a more
efficient way of implementation is to simplify terms one by one as they are
generated. This way, the whole process can be terminated if a contradiction
is reached at some point in the generation. The only issue is time efficiency,
which depends on the ordering of the terms to be processed and put into
conjunction. An example of using the simplifications is best seen in the token
example shown here A, and visually in 4.1 transforming a pruned network
into a single layer network.

The simplification procedures have been implemented such that they sepa-
rate the terms by their type into literals, predicates, rule sets, and M-of-N
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rules, and the function for each type carries out the simplification rules to
discard the new term to be added, find a contradiction or remove already
added terms. In case a constant value is meant to be added as a term, if
it is true, it is discarded, per Domination law 2, and if it is false, it is a
contradiction by Identity law 1. Any term which has already been processed
is discarded by the Idempotent law 3. New literals are used to filter existing
disjunctions by the distribution law of conjunction over disjunction 6.

Predicates are pandans to literals, the only exception being that they
represent value ranges instead of referencing preceding layer outputs. LNNs
use predicates relative to pre-specified elements of a vector or a dimension,
and only ones related to the same feature can be compared. The conjunction
of predicates is the cross-section of sets they define; if a cross-section cannot
be found, they contradict.

As M-of-N rules are a shorter notation for disjunction of
(N

M

)
conjunctions,

which are M terms long, the same simplifications apply, and M-of-Ns are
filtered similarly. The advantage of the condensed representation of M-of-N
rules allows for the filtering of terms to be applied directly; in other words,
the list of N terms is filtered, and the number M is reduced accordingly.
If the number of terms falls under the minimum required number M , it is
a contradiction, while if the minimum required number reaches 0, the rule
is equivalent to the constant value true. M-of-N rule can be expanded and
simplified as such, but because it represents

(N
M

)
rules of length M , it pays

off only if M is a small number like 1 or 2, or close to N , like N − 1. Suppose
any term in the form of a rule set or disjunction is generated. In that case,
it is simplified so that the existing terms are checked against the new rule
set, according to the logic laws, by distributing its elements and looking for
identities and contradictions 7.

May 24, 2024 70



Appendix B

Model constants propagation

A scenario with training threshold values for quantisation, which can happen,
is that the threshold value falls out of the value ranges for a feature, and
the converted predicate effectively acts as a constant value. For example,
in the MNIST problem, pixels have values in the range x ∈ [0, 1] but a
predicate x < 2.3 is equivalent to a constant true. The constant value can
be propagated through the layers to simplify neuron expressions without
losing generality. Improving inference time of a sample as useless predicates
are removed and neuron logical expressions are simplified. It indicates that,
the number of relevant pixels needed for the network to decide correctly,
meaning, for MNIST, it does not need all 784 pixels to make an inference, but
significantly less. As often is the case that the architecture of the network is
bigger than is needed, some parts of it can become redundant and removing
them can simplify the network and improve its performance. One simple
example of the propagation of constants is shown in the following figure B.1.

In the figure B.1a is displayed an LNN which works with the first five
features for the sake of simplicity of the example. The second and fourth
neurons have predicates which have been trained with such thresholds that
they can be replaced with a constant false and true, respectively. After
propagating those constants, the M-of-N rules are simplified by distribution 6
and domination 2 laws.

Constant propagation has no effect if the problem’s nature determines
the feature ranges. If the training data determines the ranges, an issue
might arise if testing data comes from a different distribution or with higher
extreme values, where a complete network might still perform sufficiently,
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B. Model constants propagation..............................
a : x1 < 0.3

b : x2 ≤ −1

c : x3 ≥ 0.1

d : x4 ≤ 3.2

e : x5 > 0.9

3 of (ā, b, c, d, ē)

3 of (b, c, d)

2 of (a, b̄, c̄, d̄, ē)

(a) : Initial LNN

a : x1 < 0.3

b : F

c : x3 ≥ 0.1

d : T

e : x5 > 0.9

2 of (ā, c, ē)

F

a ∨ c ∨ ē

(b) : LNN state after propagation

Figure B.1: Propagation of constants in LNN

but a simplified one will not. For example using MNIST, the corner and edge
pixels of the image are always dark (intensity always 0), even though their
respective term’s threshold falls within the [0, 1] range. Such a predicate
also acts as a constant on the training set and it could be eliminated, but
with the possibility of affecting testing data accuracy.

The process is not essential for extracting rules and explanations but is
useful from the performance and time complexity point of view, as it creates
a simpler structure. These terms will, in any case, be removed in the post-
extraction processing phase when sufficient rules are extracted (best terms
selection) as their scores would be equal on both class and non-class data;
this propagation removes truly unnecessary terms for training data. It can
indicate feature importance if, after propagation, all terms referring to a
feature are constants, then the network does not require it to make a decision.
These predicates will be eliminated in the post-extraction processing phase
when sufficient rules are extracted, as they are redundant.
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