Master’s Thesis

Czech

Technical
University
in Prague

F E L Faculty of Electrical Engineering
Department of Computer Science

Creating a Knowledge Base from Websites

Bc. Josef Stérovsky

Supervisor: Ing. Radek Marik, CSc.
Study program: Open Informatics
Specialization: Data Science

May 2024

ii

S MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details

~
Student's name: Stéfovsky Josef Personal ID number: 484037
Faculty / Institute: Faculty of Electrical Engineering
Department / Institute: Department of Computer Science
Study program: Open Informatics
Specialisation: Data Science
k J
Il. Master’s thesis details
~
Master’s thesis title in English:
Creating a Knowledge Base from Websites
Master's thesis title in Czech:
Tvorba znalostni baze z webovych stranek
Guidelines:
1/ Create an overview of the methods needed to retrieve the content of company and institutional websites and extract
the information contained.
2/ Select appropriate methods and implement the experimental environment.
3/ Scrape a given set of web page references, create an input data corpus from the downloaded web content. Identify
required entities and save their attributes and relations into a suitable form of knowledge base. Demonstrate how such a
database might be used.
4/ Discuss the obtained results also with respect to their accuracy.
Bibliography / sources:
1/ Hobson Lane, Cole Howard, Hannes Max Hapke: Natural Language Processing in Action, Manning, 2019.
2/ Thushan Ganegedara: Natural Language Processing with Tensorflow, Packt, 2018.
3/ Li Deng, Yang Liu: Deep Learning in Natural Language Processing, Springer, 2018.
4/ Ryan Mitchell. Web Scraping with Python, 2e. Sebastopol, CA: O’Reilly Media, 2018.
Name and workplace of master’s thesis supervisor:
Ing. Radek Mafrik, CSc. Department of Telecommunications Engineering FEE
Name and workplace of second master’s thesis supervisor or consultant:
Date of master’s thesis assignment: 01.02.2024 Deadline for master's thesis submission: 24.05.2024
Assignment valid until: 21.09.2025
Ing. Radek Mafik, CSc. Head of department's signature prof. Mgr. Petr Péata, Ph.D.
k Supervisor’s signature Dean'’s signature)

[ll. Assignment receipt

The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

iv

Acknowledgements

I would like to thank my supervisor,
Radek Maftik, for making this thesis pos-
sible, for sharing his resourcefulness and
experience in advice and stories, and for
being genuinely interested in the experi-
ments and providing valuable feedback.

I would also like to thank Adam Dobias
for supporting the project and for the per-
mission to use the production data labels
which were used to assess the quality and
accuracy of the models throughout this
thesis.

Last but not least, thanks go to my
family, friends and colleagues, to everyone
who has supported me, and to everyone
who has been patient with me for the last
year.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.
In Prague, 24. May 2024

Abstract

The aim of this thesis is to assess the
feasibility of automating knowledge ex-
traction from websites, primarily in clas-
sifying businesses into pre-defined cate-
gories based on industry sectors. Cus-
tom HTML datasets are compiled directly
from the websites of businesses operating
in several target countries by means of
web scraping. Natural language corpora
are extracted from the HTML datasets
in the English, German and Spanish lan-
guages. The corpora are then embedded
into vector spaces using large pre-trained
models, as well as smaller models trained
directly on the datasets. The degree of
correspondence between ground-truth cat-
egories of the websites and the position
of the documents in the vector spaces
is visualized using dimension reduction
methods. The quality of selected datasets
and text extraction tools is also evaluated
using the precision of classifiers trained
on the labelled document vectors. Al-
ternative strategies are explored as well,
namely clustering of the document vec-
tors, prompting LLMs with the extracted
documents, and the possibility of using
existing open knowledge bases. The cre-
ation and querying of a new knowledge
base using the predictions of the models
and the used category hierarchy is also
demonstrated. Ensuring the quality of
the corpora is a major issue, training or
at least fine-tuning models for the task is
very beneficial.

Keywords: knowledge base, text
extraction, text classification, web
scraping, Scrapy, Doc2Vec, Top2Vec,
PaCMAP, Mistral LLM, RDF

Supervisor: Ing. Radek Maiik, CSc.

vi

Abstrakt

Cilem této prace je posoudit provedi-
telnost automatizace extrakce znalosti z
webovych stranek, predevsim pii klasifi-
kaci obchodnikt do kategorii, které jsou
predem definovany na zakladé pramyslo-
vych odvétvi. Z webovych stranek obchod-
nikl pusobicich v nékolika cilovych zemich
jsou sestaveny HTML datasety pomoci
web scrapingu. Déale jsou pak z HTML da-
tasetu extrahovany korpusy v angli¢ting,
némciné a Spanélstiné. Korpusy jsou poté
transformovany do vektorovych prostort
pomoci velkych predtrénovanych modela
i mensich modelt trénovanych primo na
datasetech. Mira shody mezi skutecnymi
kategoriemi webovych stranek a polohou
dokumentt ve vektorovych prostorech je
vizualizovana pomoci metod redukce di-
menze. Kvalita vybranych dataseti a na-
stroju pro extrakci textu je hodnocena
také pomoci presnosti klasifikatori natré-
novych na vektorech anotovanych doku-
menti. Rovnéz jsou zkoumény alterna-
tivni strategie, konkrétné shlukovani vek-
tortt dokumentt, LLM prompting pomoci
extrahovanych dokumentt a moznost vyu-
ziti jiz existujicich otevienych znalostnich
bézi. Je demonstrovano vytvofeni a do-
tazovani nové znalostni baze s vyuzitim
predpovédi modeli a pouzité hierarchie
kategorii. Dilezitym problémem je zajis-
téni kvality korpust, velmi pfinosné je tré-
novani nebo alespon fine-tuning modela
pro tuto tlohu.

Klicova slova: znalostni baze, extrakce
textu, klasifikace textu, web scraping,
Scrapy, Doc2Vec, Top2Vec, PaCMAP,
Mistral LLM, RDF

Preklad nazvu: Tvorba znalostni baze z
webovych stranek

Contents

1 Introduction 1
2 Theoretical foundations 3
2.1 Knowledge graphs 4
211 RDF and OWL 5
2.1.2 Cypher, 6
2.2 Natural language processing. 7
2.2.1 Tokenization 7
222TF-IDF.................... 8
2.2.3 Generative and discriminative
models 8
2.3 Classification 9
2.3.1 Performance metrics......... 9
2.3.2 Statistical learning algorithms 11
2.4 Dimension reduction methods .. 15

2.4.1 Linear discriminant analysis . 15
2.4.2 Latent Dirichlet allocation .. 16

2.4.3 UMAP and PaCMAP 16
2.5 Clustering 17
2.5.1 K-means clustering 18
2.5.2 Hierarchical clustering 18
2.5.3 Density-based clustering 19
2.6 Deep learning 20
2.6.1 Word2Vec and Doc2Vec 22
262LSTM ... 24
2.6.3 Transformer models 26
3 Overview of existing tools 29
3.1 Databases 29
3.2 Web scraping 30
3.3 Parsing HTML 30
3.4 Rendering and browser emulation 31
3.5 Content extraction 31
3.6 Topic detection 33
3.6.1 Top2Vec 33
3.7 LLMs and Al search engines ... 35
3.8 Workflow management systems . 35
4 Methodology 37
4.1 Problem statement............ 37
4.2 Main pipeline 38
4.3 Scraping algorithm............ 40
4.4 Alternative approaches 41
5 Experiments 43
5.1 Implementation 43
5.1.1 Pipeline management 44

5.1.2 Testing the implementation . 45

vii

5.1.3 Proposed modification to the
Top2Vec package
5.2 Results,
5.2.1 Dataset properties
5.2.2 Comparison of classifiers and
extractors
5.3 Discussion
5.4 Alternative approaches
5.4.1 Extracting tag descriptions
from existing knowledge bases . . .
5.4.2 Using LLMs for text
classification
5.4.3 Using clustering to categorize
businesses
5.5 Creating a knowledge base
5.6 Further steps.................

6 Conclusion
Bibliography

A Attachments

B Dataset properties

C Document embedding
visualizations

D SPARQL query for testing the
knowledge base

o6
o7
99

63
65
71
73

75

79

Figures
2.1 Classification tree............. 14
2.2 Latent Dirichlet allocation 16
2.3 Word2Vec 24
24LSTM ... 25
4.1 Pipeline flowchart............. 42

5.1 Category visualization — jusText +
LDiA + PaCMAP 49
5.2 Category visualization — jusText +

LDIA +PCA 50
5.3 Visualization — PaCMAP nearest

neighbors, 51
5.4 GraphDB — initialize 59
5.5 GraphDB — import 60
5.6 GraphDB —result............. 61
B.1 Category tree 73

B.2 Category distributions in datasets 74

C.1 Visualization — nearest neighbors

on artificial dataset 75
C.2 Category visualization — Spanish,
jusText, Doc2Vec, PaCMAP 76
C.3 Category visualization — German,
Trafilatura, Doc2Vec, PACMAP .. 76
C.4 Category visualization — Spanish,
jusText, USE, PACMAP 77
C.5 Category visualization — English,
jusText, Mistral 7B, PaCMAP.... 77
C.6 Category visualization — English,
jusText, Doc2Vec, PaCMAP 78
C.7 Category visualization —
topic-category 78

viii

Tables

5.1 Classification results — German . 52
5.2 Classification results — English.. 52
5.3 Wikidata subclasses........... 54
5.4 Matching topics on categories .. 58

Chapter 1

Introduction

This thesis deals with the extraction of knowledge from websites, using the
text content of the websites and machine learning techniques. The use case
for this task is to aid in the annotation of businesses for TapiX', an API for
payment data enrichment used by mobile apps of banking institutions.

The main part of the annotation process that we will investigate is the
categorization of the businesses. Card transactions have their own category
system of Merchant Category Codes (MCCs). However, there are several issues
with MCCs — namely, they are sometimes very broad, very narrow, outdated,
or used incorrectly by card terminal operators®. For this reason, TapiX uses
a custom category system that has a hierarchical, tree-like structure. Due to
the unreliability of MCCs, correctness of the categories has to be verified by
human specialists.

The correct category labels have been kindly provided by the TapiX data
team and they will be used as ground truth throughout this thesis. Links to
the websites of the businesses are also available. However, the content of the
linked websites is not maintained by TapiX. For this reason, we will need to
start by building a dataset from the provided websites. However, we will not
be able to publish the created datasets, as they consist of scraped content of
business websites, which we have no permission to reproduce.

After processing the data, we will show how to create a knowledge base using
the obtained data and the utilized category tree. However, this knowledge
base has no affiliation with TapiX and serves only for demonstration purposes.

Below is an outline of the structure of the thesis.

® Chapter 2 is concerned with definitions and theoretical concepts that we
expect to be useful when modeling and classifying text data.

® Chapter 3 introduces examples of software and pre-trained models that
are freely available and could be helpful for some part of the knowledge
extraction process.

® Chapter 4 elaborates on the categorization problem, and proposes strate-
gies to address it.

"https://www.tapix.io/
2See this article for more details: https://www.tapix.io/resources/post/
why-mcc-codes-do-not-help-much-with-payment-categorization

https://www.tapix.io/
https://www.tapix.io/resources/post/why-mcc-codes-do-not-help-much-with-payment-categorization
https://www.tapix.io/resources/post/why-mcc-codes-do-not-help-much-with-payment-categorization

1. Introduction

® Chapter 5 describes the implemented experiments and their results.

Attempts have already been made to deal with the categorization problem
in | |, focusing on active learning. This thesis will approach the problem
more generally, gather more data and utilize various language models which
have not been used previously.

Chapter 2

Theoretical foundations

This chapter shall encompass a brief theoretical introduction to the relevant
scientific fields and algorithms that might be used during the implementation.
Many of the topics described here would probably warrant a full thesis-length
text if described properly, so we will focus on introducing the most common
and relevant terminology, and trying to provide at least basic intuition to the
functioning of the algorithms.

Before we get into specifics, let us first clarify what is the ultimate aim of
the thesis, i.e. creating a knowledge base, for there are varying definitions of
the term “knowledge base”. Some use the term to refer to software systems not
entirely unlike databases, but with more focus on capturing the complexity
arising from the relationships and hierarchies formed by the described objects,
and sometimes also the ability to automatically draw some conclusions that
aren’t explicitly in the data, but are a logical consequence of the properties
of the data. Many others know “knowledge bases” as a different kind of
software, facilitating the writing, organizing and sharing of knowledge among
people by means of documentation, primarily in a corporate environment,
like Atlassian’s Confluence'. In this thesis, when referring to knowledge
bases, we shall follow the former definition, i.e. our knowledge base should
be machine-readable and similar to a database.

In recent times, our definition of a knowledge base is associated with the
idea of the Semantic Web | |. Many currently active projects describing
themselves as knowledge bases according to this definition utilize technologies
originally developed for the Semantic Web. These technologies, some of
which we will touch upon in Subsection 2.1.1, were originally developed in
the 2000s to improve upon the existing Internet standards and provide an
alternative communication framework. Nowadays, they are mostly used in
research projects to organize complex data and build taxonomies, but they are
also employed by websites to help web crawlers make sense of their content.
However, the Semantic Web has never been adopted universally and many
projects don’t use its tools despite having very similar goals. We will not

!"'When searching for the term “knowledge base” using Google, it’s likely that all results
except Wikipedia will use exclusively this definition. Similarly, if we ask ChatGPT what
a knowledge base is, it will most likely only refer to this definition. Here is an article
listing “knowledge base software” while completely ignoring the first definition: https:
//medium.com/@HelpLook/the-best-knowledge-base-software-in-2024-e65c9407113f

3

https://medium.com/@HelpLook/the-best-knowledge-base-software-in-2024-e65c9407113f
https://medium.com/@HelpLook/the-best-knowledge-base-software-in-2024-e65c9407113f

2. Theoretical foundations

dwell upon using Semantic Web technologies too much, as much of this thesis
is concerned with learning from unstructured data, and this task remains the
same regardless of the expected format of the output.

B 21 Knowledge graphs

When describing a knowledge base, especially one containing complex rela-
tionships, it’s common to employ the already existing mathematical concept
of graphs, using the graph’s nodes to represent complex objects in the real
world, or entities |]. There are essentially two kinds of elementary
statements that we may wish to express about those entities and the structure
of the knowledge base:

® Two entities may be in a relationship, which will be mapped to an edge
between them. For instance, if Prague is the capital city of Czechia,
we will connect the entities Prague and Czechia with an edge that is
named isCapitalCityOf or similarly.

B Entities and relationships may have attributes, characterizing or anno-
tating them in some way. An example is that Prague has 1.3 million
inhabitants. The simplest way to do this is to add an attribute, called
e.g. hasInhabitants, with the value 1.3 million.

In the case of relationships between entities, it’s quite straightforward
that the relationship should be a (directed) edge between the entity nodes.
However, it’s not as clear how to represent an attribute, and in fact, attributes
are represented differently in the various existing knowledge graph standards.
One common approach is to define a new type of node, often called a literal,
which stores a simple value (like 1.3 million), and attach attributes to entities
by defining edges that specify the kind of attribute stored in the literal (like
hasInhabitants). Another approach is to expose an interface for annotating
the entity nodes extensively, meaning that the attributes are stored directly
in the entity node | .

Knowledge graphs have long been used for reasoning, meaning that an
algorithm uses logical rules to infer relationships that are not explicitly in the
graph, or find contradictions in the graph. Many early artificial intelligence
used this kind of reasoning on knowledge graphs extensively, most notably Cyc,
a research project active from at least 1986 until today | |. More recently,
reasoning has been implemented using ontologies | |, which could be seen
as subgraphs of the knowledge graphs that describe the rules which should
be applied. These rules cannot be too complex?, or else they quickly become
computationally infeasible on large graphs. In ontology implementations,
description logics | | are used to define the constraints on the rules
which can be created in a particular knowledge graph.

2 An example of a reasoning rule would be that if a person A is a child of person B, and
person B is a child of person C, then person A is the grandchild of person C.

4

2.1. Knowledge graphs

Due to the popularity of relational databases, various standards have been
developed for mapping relational data to graph data and describing such a
mapping in a formalized way [].

B 2.1.1 RDF and OWL

RDF (Resource Description Framework) is a data model for graph data,
where both entities and relationships are treated as resources, each resource
having a unique identifier (IRI). It is defined by W3C recommendations such
as | | and has an extensive framework for modeling complex relationships,
different types of attributes, hierarchies of classes, and much more. The graph
is stored as a set of triples, where each triple consists of a subject, predicate
and object. In the context of a triple, the predicate can be interpreted as an
edge pointing from the subject to the object, but the predicate is a resource
just like the subject and object, meaning that the predicate of a triple can be
a subject or object of another triple. Attribute values are stored as a special
type of node in the graph (literal), which is then used as the object of the
statement expressing the attribute.

There are several data formats available for storing RDF data, e.g. an
XML-based format (RDF/XML), a JSON-based format (JSON-LD) and a
format that simply stores the list of defined triples in a plain text format (N-
Triples). RDF Turtle is a format that extends N-Triples with many shortcuts
with the aim of making the data more concise and human-readable. For
example, we might express the already used examples in this section in Turtle
as

@prefix ex: <http://example.org/> .

ex:Czechia a ex:Country ;
ex:hasCapitalCity ex:Prague .

ex:Prague a ex:City ;
ex:hasInhabitants 1300000 .

Knowing already what the conveyed knowledge is supposed to be, it’s
probably easy to make out which part of the Turtle example is encoding
what knowledge. However, Turtle conceals some of the underlying complex-
ity of the RDF model by design. As defined on the first line, the prefix
ex: is replaced with the example IRI, meaning that ex:Czechia becomes
<http://example.org/Czechia>. The predicate a stands for an internal
RDF resource, rdf : type, with the meaning being apparent from the example
(Prague is a city).

The Web Ontology Language (OWL) is another W3C recommendation
[] for defining ontologies that specify rules for RDF graphs. Like
RDF, OWL also has various serialization formats. Some of them are more
specialized formal logic formats, but OWL can also be expressed as a subset
of RDF, meaning that all valid RDF formats are also valid OWL formats.

5

2. Theoretical foundations

Once again using the same example, we might want to define a class of cities
and express a rule that every country has exactly one capital city. This rule
can also be written down in RDF Turtle:

O@prefix ex: <http://example.org/> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

ex:Country a owl:Class;
rdfs:subClass0f [
a owl:Restriction ;
owl:onProperty ex:hasCapitalCity ;
owl:cardinality "1"""xsd:nonNegativeInteger

]

This example uses some advanced features of both the RDF model and
Turtle syntax (blank nodes, RDF Schema). The key point is that constructing
ontologies directly in RDF can be tedious, so specialized tools are often used
instead.

Note that OWL implementations use the open world assumption, meaning
that if the graph contains no triple defining a capital city for a country, we
assume that we do not know what the country’s capital city is, instead of
asserting that the country has no capital city (closed world assumption).
Therefore, the rule can only be violated by a country having 2 or more capital
cities.

RDF graphs can be queried and updated using SPARQL, a specialized
query language. It is up to the database implementation to make it possible
to query triples generated or inferred by OWL (OWL entailment) and other
extensions.

Bl 2.1.2 Cypher

Cypher is the query language of Neo4j | |, one of the most popular graph
databases. While RDF, OWL and SPARQL originated as standards that
were then implemented by various databases, Cypher was designed explicitly
for Neo4j and has a much more unified interface, aiming to be more like a
standard database language similar to SQL. This means that unlike in RDF,
there are no universal identifiers, no explicit ontology support, and updating
and querying the database can all be done using a single language.

The following Cypher snippet inserts the already used capital city example
into a Neo4j database:

CREATE (prg:CITY {name: "Prague", population: 1300000}),
(cz:COUNTRY {name: "Czechia"}),
(cz)-[h:HAS_CAPITAL_CITY]->(prg);

We can then query the database for the capital city of Czechia and its
population:

2.2. Natural language processing

MATCH (ci:CITY)<-[h:HAS_CAPITAL_CITY]-(co:COUNTRY)
WHERE ci.name = "Czechia"
RETURN ci.name as city_name,

ci.population as city_population;

The type (label) of nodes and relationships is explicitly declared when
creating the nodes and relationships in the database. (In this example,
nodes have CITY and COUNTRY types and the relationship is of the type
HAS_CAPITAL_CITY.) Unlike in RDF, attributes don’t have to be declared as
separate nodes, since nodes themselves can have attributes declared using
syntax similar to a JavaScript object, as is evident from the example.

B 2.2 Natural language processing

Natural language processing, or NLP, is an area of computer science concerned
with analyzing and generating text in natural languages as used in human-to-
human communication. NLP is closely related to computational linguistics
(CL) — it might be described either as an applied-science counterpart to CL,
or as a subfield of CL when using a broader definition |].

With respect to formal language theory, natural languages can prove
difficult to pin down, and various extensions to the Chomsky hierarchy have
been proposed to account for them |]. Much of NLP research has a more
probabilistic than formal nature, though, and is concerned with tasks like
language modeling and translation between different languages. The quality
of the models can be evaluated either intrinsically using task-independent
probabilistic metrics, or extrinsically by comparing the model’s outputs in
a particular task to a standard (human) output | |. Since language
modeling will only be used in this thesis as a means to the end of generating
knowledge, we will not go into detail on these topics. Instead, a couple
techniques and basic concepts which are traditionally used in NLP and
relevant to our purposes will be introduced here, and some language models
will be mentioned later in different contexts.

B 2.2.1 Tokenization

Tokenization refers to splitting text in natural language into small pieces
which are then treated as “units” of information.

An obvious choice is to tokenize the text into words. In simplified terms, a
word is the smallest grammatically independent unit of language |]. This
definition is not sufficient in theoretical linguistics, i.a. because words can be
further divided into morphemes and it can be ambiguous which morphemes
carry meaning by themselves. In many languages, we may define a word as a
unit of text separated by whitespace from other words, but some languages
don’t use spaces to separate words (e.g. Mandarin Chinese), or use spaces to
separate syllables even inside words (e.g. Vietnamese).

Even when we decide to use words as tokens and words can be parsed
easily in our target language, there are extra considerations such as whether

7

2. Theoretical foundations

to lemmatize the words (essentially remove prefixes/suffixes that only serve a
grammatical purpose) and normalize them (e.g. convert all characters into
lowercase) |].

However, more advanced language models typically use tokens which are
smaller than a word, using algorithms such as byte-pair encoding, which
essentially compresses the text, using tokens either for sequences which are
common in the text, or individual characters when no common sequence is
found.

B 222 TF-IDF

TF-IDF is a technique for analyzing natural language corpora (collections
of documents). It converts a corpus into a sparse matrix of scores, where
the matrix’s two indices represent words and documents, respectively. It is a
traditional alternative to deep learning techniques (see 2.6) which is still very
popular. According to some recently published research, TF-IDF can still
be a more efficient tool for text classification than language models created
using neural networks |]

The input of TF-IDF is a collection of tokenized documents. The tokens
are typically words (terms), though other tokenizations can in principle also
be used with TF-IDF. Let us denote the output matrix of TF-IDF by W.
Then the score for word/term ¢ and document d is simply a multiple of two
values |]

W, .= TF(t,d) - IDF(t), (2.1)

where:

® TF stands for term frequency. In the most simple interpretation, this
is the number of occurrences of word ¢ in document d. However, this
makes value grows quickly with corpus size, so TF is often defined as the
logarithm of the count, with 1 added to the count so that the minimal
value is still 0 = log 1.

m IDF is the inverse document frequency, the ratio of documents in the
corpus that contain word ¢ (hence, IDF is independent of d). Once again,
the value is often logarithmized for large corpora.

Overall, TF-IDF captures both how much a document uses a particular word,
and how unique that word is in the given corpus, with both of these factors
increasing the score for a particular word.

B 2.2.3 Generative and discriminative models

Models which classify languages can be split into two categories | |:

B generative models, which learn to generate text from each class based on
the training data. The classification is then performed by deciding which
class is most likely to generate observed text according to the model. A
simple example of a generative classifier is the Naive Bayes model, which

8

2.3. Classification

only considers the frequencies of words w; in each class and, given a
document d, assigns to that document whichever class ¢ has the highest
posterior probability:

P(e) [T, P(wi | ¢)

Plc|d) = (2.2)

B discriminative models, which only learn how to distinguish between the
classes and cannot generate text. A simple example of such a model is a
logistic regression classifier, see Subsection 2.3.2.

. 2.3 Classification

In statistical learning, all variables belong to one of the following cate-
gories | |:

B Quantitative variables, which are represented by a numerical value, and
can thus in principle take on an infinite number of values.

B Qualitative variables, which are represented by a finite set of categories.

From this distinction arise two fundamental problems of statistical learning:
classification, i.e. predicting the value of a qualitative variable, and regression,
where the output variable is quantitative and continuous | |. These are
the emblematic problems of supervised learning, wherein the value of the
predicted variable is known and can be used for model training, in contrast
with unsupervised learning represented e.g. by clustering (Section 2.5).

If we can assume that each example has exactly one label, then the labels
are commonly referred to as classes |], leading to the following:

® Binary classification: the class is defined by a simple binary label,
marking examples as either positive or negative.

8 Multiclass classification: there are multiple class labels.

However, there are classification problems where each example can have
multiple labels, or no labels at all. In this regard, we can categorize classifica-
tion problems in a different manner:

B Single-label classification: each example belongs to precisely one class.

8 Multi-label classification: each example can have an arbitrary number of
labels.

B 2.3.1 Performance metrics

Performance metrics for classification derive from the basic definitions for
binary classification that can be found in many sources analyzing this topic,
e.g. |]. To evaluate the performance of binary classification, we compare
the predictions of the classifier on a test set with the ground truth and identify
the following based on the positive/negative class:

9

2. Theoretical foundations

® True positives (TP) — examples that are positive and have been classified
correctly,

® False negatives (FN) — examples that are positive, but have been classified
as negative,

® True negatives (FN) — examples that are negative and have been classified
correctly,

® False positives (FP) — examples that are negative, but have been classified
as positive.

These four groups can also be arranged into a confusion matrix. We can
use them to define the following commonly used metrics:

8 Accuracy — the ratio of correctly classified examples.

(TP + TN)

ACC= (TP +TN) + (FP + FN)

(2.3)

B Precision — the ratio of correctly classified examples among all examples
that were classified as positive.

TP

P=——— 2.4
TP + FP (24)

® Recall (or sensitivity) — the ratio of correctly classified examples among
all examples that should have been classified as positive.

TP
= —— 2.
R TP + FN (2:5)
B [F'] score — the harmonic mean of precision and recall.
P-R
F1=2. —— 2.6
P+R (26)

Analogous metrics are also used for multiclass classification, although is
not immediately obvious how to extend the above definitions to multiclass
classification, since there is no single “positive” and “negative” class. The
metrics can be evaluated for each class separately, treating all other classes as
negatives, but this leaves open the question of combining them into a single
metric representing the performance of the classifier on the entire multiclass
dataset. In fact, there are several approaches to calculating performance
metrics for multiclass classifiers. These can be found using the following estab-
lished terminology found in many articles that report classifier performance,

eg | ; E

B8 Micro-averaging — TP, FP, TN, FN are summed up across all classes and
the metrics are calculated from the sums.

10

2.3. Classification

8 Macro-averaging — the metrics are calculated for each class separately
and for each metric, the value is calculated as the metric’s arithmetic
mean across all classes.

8 Weighted averaging — similar to macro-averaging, with the exception
that the means are weighted according to the prevalence of classes in the
dataset.

The accuracy definition for binary classification (Eq. 2.3) is generally not
used for multiclass classification, among other reasons because it results in
a metric that is difficult to interpret. Instead, when considering multiclass
single-label classification, we will define accuracy as

C

ACC =
cC C+F

(2.7)

where C' denotes the count of correctly classified examples and F' the count of
incorrectly classified examples. This is a common way to define accuracy in
this scenario, which is easy to interpret and analogous to binary classification
accuracy.

In fact, when considering single-label classification, micro-averaging col-
lapses the metrics defined by Eqs. 2.4 to 2.6 to a single metric corresponding
to the multiclass accuracy as defined by Eq. 2.7. This is perhaps best ex-
plained by considering all ways in which an example can contribute to the
confusion matrices of the classes:

® Each example is classified either correctly or incorrectly.

If it is classified correctly, it will be counted as a true positive once
and as a true negative n — 1 times.

If it is classified incorrectly, it will be counted as a false positive
once (the class it was incorrectly labeled as), as a false negative
once (the class it belongs to), as as a true negative n — 2 times.

Hence, summing up the counts across all classes and following the notation
from 2.7, we can observe that TP = C' and FN = FP = F. Immediately,
2.4 and 2.5 become 2.7 by substituting the counts, and F1 thus becomes the
geometric mean of two identical values.

B 2.3.2 Statistical learning algorithms

Once we acquire a vectorized representation of the corpus, either directly from
a model or via a dimension reduction method, we will be interested in learning
how to classify the transformed documents into pre-defined categories. While
some dimension reduction methods such as LDA (Subsection 2.4.1) can also
directly be used as classifiers, we may also be interested in other algorithms
that are applicable in a broader range of classification problems and are
known to achieve better results. On a different note, it’s important to try
simple approaches first. On some text datasets, even the simplest classifiers

11

2. Theoretical foundations

can do almost as well as the best — see | |, where the difference between a
Naive Bayes model and the best tested classifier is less then 0.5 %. Another
example of a simple, yet efficient classifier, which can serve as a baseline, is
the K-nearest-neighbor classifier, i.e. simply predicting the most common
class among K nearest neighbors in the training set. See e.g. |], where
on one of the datasets, the F1 score of K nearest neighbors is within 1 % of
the best tested classifier (XGBoost).

[Logistic regression

Logistic regression is an example of a generalized linear model, where the
output Y is related to a linear function of the input variables X1, Xo,..., X,
via a link function 7 |]:

For instance, if n is the identity function, then Eq. 2.8 describes linear
regression. In case of logistic regression, the link function is the logit function

x
=1 . 2.9
@) = tog (1) (2:9)
Following Eq. 2.8, we must apply the inverse of 7 to the right-hand side of
the equation to obtain the expected output. The inverse of the logit function
is the sigmoid function, resulting in

ePot+BL X1+ +BnXn
T 1+ PotBXi+FBuXn
(2.10)
The training of the model can be done by stochastic gradient descent | I,
but commonly used implementations also use more specific solvers for non-
linear problems such as LBFGS.

The above describes logistic regression in the binary classification scenario.
Since the output in Eq. 2.10 is a sigmoid, its value is guaranteed to be
between 0 and 1. We can thus set the output for training to 0 and 1 for
negative and positive class, respectively, and set an evaluation threshold
somewhere between 0 and 1 which determines the highest value which will
be still classified as negative (typically 0.5, but it can also e.g. be lowered to
improve the recall of the positive class).

To generalize the algorithm to a multiclass scenario, either multiple binary
models are trained to detect each class, or a single model is trained using the
cross-entropy loss.

E[Y | Xla---aXn] :J(BO+51X1++Ban)

B Decision trees and ensembling

Ensemble models are models that consist of a set of simpler models (weak
learners). When training an ensemble model, the training data is modified for
each of the weak learners so that their predictions are slightly different. The
prediction of the ensemble model is then made using the aggregate of all of

12

2.3. Classification

the predictions made by the weak learners. Common ensembling techniques
include:

B Bagging, or bootstrap aggregation. Given a dataset of IV samples, M new
datasets are created, where each of them contains N samples. The new
datasets, called bootstrap datasets, consist of samples which are randomly
drawn from the original dataset with replacement (i.e. a bootstrap dataset
can contain duplicate samples from the original dataset). A weak learner
is then trained on each of the bootstrap datasets, resulting in M distinct
models. These learners then act as a committee, where each of the
models has an equal weight in the predictive decision-making — the
individual predictions are averaged for a final prediction in regression,
and determined by majority vote in the case of classification.

B Boosting. The weak learners are trained as a sequence, and instead of
altering the dataset for each model, the objective function J is modified
to give greater weight to examples that have been classified incorrectly
by the previous learner. The learners are also not equal in the committee
— their weight in the committee may decrease with the length of the
sequence, or, like in the case of AdaBoost | |, they may be given
more weight in case their overall accuracy is better.

Ensembling works well with models that have low bias and high variance,
since the variance of the ensemble model can be reduced by averaging the
prediction. An example of such a model is a decision tree — an algorithm
that works by repeatedly splitting the input space into regions until a given
maximum granularity is reached. Decision trees can be used for both clas-
sification and regression []. Fig. 2.1 illustrates a simple classification
tree, partitioning a 2D space into three regions for binary classification. The
prediction is made by traversing the tree from the root all the way to a leaf,
based on the input values of the example, and predicting whichever class
is stored in that leaf. Generally, the prediction in each leaf m is made by
picking the class C; € C which had the highest frequency in the region during
training, i.e.

C(m) = argmax Z lyi = Ci], (2.11)
X;€ERm
where R, is the region represented by node m.

However, this only explains how to make a prediction in an already con-
structed tree, not how to build the tree itself. Building an optimal decision
tree is an NP-hard problem even when the learner is able to query the learned

function, let alone from random examples |]. Therefore, heuristics
and greedy algorithms are used to approximate the optimal tree. Commonly,
a metric known as information gain is employed | ;], which es-

sentially measures the difference in cross entropy that can be achieved by
creating a split using a particular value. An alternative to information gain
is the Gini index.

The two following ensemble models build upon the concepts of bagging
and boosting, respectively, and use decision trees as weak learners. Both of

13

2. Theoretical foundations

X
(21, 22) . ’
1 <0 xz1 >0 '. ° ’
° 0 ° I 0(Cy
Ci x2>0 29 <0 ° e
Cy C1

Figure 2.1: A simple classification tree.

them represent very effective approaches for approximating general functions
that can rival support vector machines.

® A random forest is a kind of ensemble model of decision trees [1,
being essentially a modified version of bagging. The modification lies
in a restriction on the learning of the trees — before each split, a small
subset of the input variables (possibly as small as 1) is chosen at random,
and the tree can only use this chosen subset for the next split. The trees
are thereby forced to make suboptimal decisions, but this also results in

a reduction of correlation between different trees | |, and ultimately
the random forest performs better than a bagging model of decision
trees.

® A gradient boosting machine is similar in principle to boosting, but uses
a differentiable loss function to fit the trees onto the gradient of the loss
function in each iteration, updating the predictions using a learning rate
with respect to the gradient.

B Support vector machine

Assuming a binary classification model which is linear in the feature space
¢(x), meaning that

y(x) = wlp(x) + b (2.12)
The decision boundary is a hyperplane which should separate the two
classes as well as possible. Since many different hyperplanes may achieve
equivalent results on the training set, it may be difficult to decide which of
the possible solutions has the best potential to generalize. To answer this
question, the concept of the margin is introduced, which is the closest distance
between the decision boundary and a correctly classified point |]. Given
the correct labels ¢, € {—1,1} for all training examples n with features x,,,
maximizing the margin means optimizing the criterion

arg max (1 minft, (w76 (x,) + b)]> . (2.13)

wo \JJafl ™

14

2.4. Dimension reduction methods

Classifiers which maximize this margin are commonly called support vector
machines, or SVMs. Since they are forced to place the decision boundary as
far away as possible from the training samples, they typically achieve very
good results. SVMs can also be expressed entirely in terms of dot products
of ¢(z), meaning that they can be trained in a transformed space defined
by a kernel function that satisfies K(x,x’) = ¢(x) - ¢'(x). Many of these
kernel functions, such as the radial basis function, allow SVMs to also solve
non-linear problems with high accuracy.

. 2.4 Dimension reduction methods

Dimension reduction methods are useful for compressing high-dimensional
sparse matrices generated by bag-of-words representation or TF-IDF, as well
as visualizing the results (typically by projecting into 2D).

Popular dimension reduction methods include:

® Principal component analysis (PCA), which finds directions in the in-
put space which capture the most variance of the data. PCA is a
general-purpose method that can be used e.g. directly on a bag-of-words
representation of a document corpus.

® Latent semantic analysis, which is a method similar to PCA in that it
is also based on singular value decomposition of the input, but it is a
method directly adapted to NLP tasks |]

® t-distributed stochastic neighbor embedding (t-SNE), which is especially
suited to visualization and clustering.

While PCA is an algorithm for finding the best linear subspace, most other
algorithms including t-SNE look for patterns that are only locally linear,
discovering manifolds in the data. This section will focus on dimension
reduction methods relevant to the conducted experiments, namely linear
discriminant analysis, latent Dirichlet allocation and PaCMAP.

B 2.4.1 Linear discriminant analysis

Linear discriminant analysis, or LDA for short, is a method which, besides
being useful for reducing the dimension of the independent variables, can be
also used directly for classification.

LDA is derived from the assumption that each class is a random variable
which follows a multivariate Gaussian distribution [|. Let X € R”
be an n-dimensional random variable, y € R™ be the mean value of X for
a given class y, and X € R™" be the covariance matrix of X. Then the
probability density of y at a given x € X following the multivariate Gaussian
distribution is given by

)= 1 (x—u)TE‘l(fv—ﬂ)) (2.14)

2r)p/2Jder(s) P <_ >

15

2. Theoretical foundations

Furthermore, LDA requires that the covariance matrices 3 be the same
for all classes (i.e. the classes only differ in the mean values). Under this
additional assumption, it can be shown that the optimal decision boundary
is a linear function of X [Jam—+23].

B 2.4.2 Latent Dirichlet allocation

Latent Dirichlet allocation is a generative probabilistic model of a cor-
pus [BNJO3]. Given a fixed number of topics, it transforms a corpus of
documents into a distribution of topics over the documents. For each docu-
ment, the topics are sampled from the Dirichlet distribution and it holds that
they sum up to 1 for each document, which makes them easy to interpret.

To differentiate latent Dirichlet allocation from linear discriminant analysis
(LDA), the former will be referred to as LDiA, following the convention
from [Hap19].

Note that LDiA assumes that the number of words in a document obeys
the Poisson distribution across the corpus. This assumption will likely be
false for our corpus of web page text. However, it is noted by [BNJ03] that
this assumption is not important.

Latent Dirichlet allocation can be visualized as a Bayesian network (Figure
2.2) with the following hidden variables:

B o — topic distribution parameter

® (— topic distribution for a given document, sampled from Dir(«)

z — word distribution for a given topic and document

® [— a matrix of word distribution parameters for each topic and document

o 0 Z woN

M

Figure 2.2: Latent Dirichlet allocation as a Bayesian network using plate notation.
Source: [BNJO3].
Bl 2.4.3 UMAP and PaCMAP

UMAP (Uniform Manifold Approximation and Projection) [MHMIS] is a
popular dimension reduction method, created on a theoretical foundation of

16

2.5. Clustering

topology and category theory with the aim to make the algorithm as universal
as possible. UMAP is indeed suitable for both machine learning applications
and visualization. Practically, the algorithm has two phases: in the first, a
K-neighbor graph is constructed, i.e. a graph where each point is connected
to its K nearest neighbors. Then, a layout of this graph in the projected
space is computed using a force-directed layout algorithm. This basic idea of
the algorithm is similar to older reduction methods such as Isomap | I,
but UMAP’s design makes it both much faster and better at preserving the
global structure of the dataset.

Although UMAP is essentially a universal dimension reduction algorithm,
its output is very sensitive to changes in two hyperparameters, namely the
K neighbors of the neighbor graph, and the minimum distance between two
points in the projected space. Dependency on hyperparameters is generally
a disadvantage in dimension reduction, since it’s typically difficult to deter-
mine the correct values of the hyperparameters for a particular dataset. For
this reason, several new methods have been developed to address UMAP’s
weaknesses. One of them is Pairwise Controlled Manifold Approximation,
or PaCMAP | |. The authors of PACMAP analyze the various mo-
tivations for existing algorithms, note the differences between them (e.g.
comparing the probabilistic origins of t-SNE to UMAP’s topological deriva-
tion), and argue that none of them is essential to the dimension reduction task.
Instead, they focus on explicitly capturing both local and global properties
of the dataset. To this goal, PACMAP distinguishes between 3 types of pairs
of points — neighbors N B, mid-near pairs M N and further pairs F'P, which
are randomly sampled when initializing the algorithm. Each type of pair
contributes a different summand to the overall loss function

(=wnp Y, —I—+wyn P,
(i)eNB 10 + dij (i) EMN 10000 + d;y,
1
+ 2.15
wrp Z 14 dy ()

(i) eFP

The projected space is initialized (either with PCA, or randomly) and
then iteratively optimized with respect to the loss function. The run of the
optimization is split into three phases, where the weights for each type of
pair are different in each phase.

B 25 Clustering

Clustering is a problem in unsupervised learning where, given a dataset of
N observations {x1,X2,...,Xp}, each observation typically being a vector,
the task is to discover groups of observations such that each observation is
similar to other observations in the same group, and much more different
from observations in all other groups. This task is also referred to as data
segmentation |]. Typically, the goal is to output a set partition of the
dataset, so that we may unambiguously define clusters and assign each of the

17

2. Theoretical foundations

observations to exactly one of the clusters (or classify it as noise). However,
some algorithms which are also commonly known as clustering algorithms
take a different approach, focusing on creating a hierarchy in the dataset
(Subsection 2.5.2).

B 25.1 K-means clustering

The K-means algorithm is a nonprobabilistic clustering algorithm [. It
takes the expected number of clusters K as an input argument and represents
these clusters with K vectors, where each of N points in the input space
is assigned to the cluster represented by the vector which is the closest to
that point. More formally, the algorithm performs iterations to minimize the
objective function

N K
J=303 ranlxa — ul? (2.16)

n=1k=1
where r,,;; = 1 if and only if point n belongs to cluster k, otherwise r,, = 0,
and ||x,, — 1z ||? represents the Euclidean distance between the n-th point and
k-th mean vector. (r,j is further constrained so that each point belongs to

exactly one cluster.)

The algorithm itself consists of two steps, which alternate until convergence:

1. Update ry;, so that each point n is assigned to the closest .
2. Set each uy to the centroid of all points currently assigned to cluster k.

The initial © vectors can be chosen randomly, or r,; can be initialized to
assign points to random clusters and the algorithm can start with the latter
step |].

When modifying p, it can be shown that the centroid is the optimal solution
with respect to the current configuration of r,, by taking the derivative of J
(Eq. 2.16) with respect to pug.

K-means clustering is the most popular example of a type of clustering al-
gorithms, sometimes called “partitioning” algorithms []. The common
feature is the pre-defined set of cluster centers, which are shifted around to
optimize the objective function. Another variation on this type of algorithm
is K-medoids, which replaces the centroid calculation with the medoid, es-
sentially restricting the center of the cluster to be one of the points of the
dataset rather than an arbitrary point in space.

B 2.5.2 Hierarchical clustering

Unlike K-means and similar algorithms, hierarchical clustering has no pre-
determined number of clusters. Instead, it works by constructing a tree of
clusters, also called a dendrogram, based on a dissimilarity measure |],
which typically represents the distance between the clusters.

A simple example is an algorithm that, on a dataset of N points, starts
from N clusters, and repeatedly merges the closest two clusters together until

18

2.5. Clustering

a termination condition is met | |. Such an algorithm exemplifies the
agglomerative strategy of hierarchical clustering |], with the opposite
being the divisive strategy, i.e. starting from a single cluster and dividing it
repeatedly. Let G = {iy,i2,...in}, H = {j1,72,- .. Jm} denote the two clusters
whose dissimilarity is being calculated, and d(i, j) the metric used to measure
dissimilarity between points i and j. Once the clusters consist of multiple
points, we may employ multiple approaches to calculate the dissimilarity
between them:

® Single linkage, or nearest-neighbor technique:

dG, H) = min d(i,j) (2.17)

8 Complete linkage, or furthest-neighbor technique:

dG, H) = max d(i,j) (2.18)

8 Group average:

(G, H) = ﬁ S Y d(i) (2.19)

i€G jeH

Each of these strategies can result in very different dendrograms, with sin-
gle linkage and complete linkage being polar opposites, and group average
representing a compromise between them.

The advantage of hierarchical clustering, when compared to K-means
and similar algorithms, is that it can discern clusters of different sizes and
complicated shapes. A disadvantage is that there is no clearly defined output
set of clusters, and it is ultimately up to the user to figure out which clusters
to extract from the dendrogram.

Bl 2.5.3 Density-based clustering

Intuitively, when looking at a scatter plot of points, what people perceive
as “clusters” are usually areas with an increased density of points. To some
extent, this notion can be captured by hierarchical clustering, but not in all
cases, e.g. when one of the clusters has a much higher density than the other,
though they are still clearly separated. To address this counter-intuitive
behavior of clustering algorithms, an entire new type of algorithms arose that
explicitly utilize the density of points in a neighborhood.

An early example of this type of algorithm is DBSCAN [|, an
algorithm which uses a minimal number of points in a neighborhood of size
€ of a point to group the points together into dense regions, with special
conditions for points on the cluster border where density is lower. These
regions are called density-connected regions. The size ¢ and the minimal
number of points in the neighborhood are determined by applying a heuristic
onto the examined dataset, and points that don’t lie within any cluster are
classified as noise.

19

2. Theoretical foundations

An issue with DBSCAN is that the minimal cluster density is a global
parameter. Therefore, if the dataset contains a large cluster which is much
more sparse than the other, much smaller clusters, DBSCAN will not be able
to differentiate between them. HDBSCAN is an algorithm that amends this by
combining DBSCAN’s basic methodology with a hierarchical approach, noting
that DBSCAN clustering can be almost exactly converted to hierarchical
clustering with single linkage in the space of density-connected points |].
A special distance metric, called mutual reachability distance, is defined using
the distance between 2 points and the distance to the k-th nearest neighbor
for each point. A graph of mutual reachability distances between all points is
computed, and a minimal spanning tree of this graph is constructed. The
clusters are created by removing edges from this minimal spanning tree,
proceeding in a divisive fashion to separate a cluster into two each time an
edge is removed.

B 26 Deep learning

Deep learning is a subset of machine learning characterized by the following
properties of used algorithms | |:

® The learning algorithm learns from relatively raw data (e.g. pixelated
images or tokenized text) as opposed to learning from properties of the
data obtained manually by feature extraction (e.g. a variable indicating
whether the image contains a cat, or the sentiment expressed by a
sentence). In fact, the algorithm can learn to extract these features by
itself — this is known as representation learning.

® The algorithm can express a hierarchy of concepts, first extracting simple
concepts from the raw data and then building upon that knowledge to
construct more complicated concepts in the “deeper” parts.

Practically, the basic building block of deep learning is the artificial neuron,
the function of which could be summarized by the following equation

y=g(wix+0), (2.20)

where y € R is the output of the neuron, x € R" is the input, w € R™ are
the weights of the neuron, b € R is the bias and g is an activation function.
(The learnable parameters of the neuron are w and b.)

The neurons are then organized into structures called neural networks. A
common example is a feedforward neural network, where the neurons are
organized into layers such that the neurons in each layer only process the
output of the previous layer, and their output is only passed to the next layer.
This means we the weights w and biases b of each layer’s neurons can be
arranged into a matrix W and vector b, and the network can be expressed
as a series of matrix multiplications and element-wise applications of the
activation function g. For example, a network with two layers computes the
function

y = 92(W2g1(W1x + b1) + b2). (2.21)

20

2.6. Deep learning

This also hints at the reason why g is almost always a non-linear function
in neural networks — if a linear function is used as ¢g; and g9 in Eq. 2.21,
the equation simplifies to a linear equation of x. For instance, substituting
g91(z) = g2(x) = = yields

y = WoWix + Wby + ba. (2.22)

Effectively, this means that the two layers could be replaced by a single layer
with W = WoW; and b = Wb 4 bs, the network would become a linear
classifier, and there would be no point in creating the “layered” structure,
which is very important for achieving the goals of deep learning as outlined
at the start of this section.

The networks are then commonly trained by methods similar to gradient
descent, using the derivative chain rule to calculate the learning step for all
learnable parameters. A lot of the calculations during the evaluation of the
chain rule for each learnable parameter are repetitive. For this reason, the
chain rule expressions are essentially organized into a graph, allowing us to re-
use previously obtained results in a fashion similar to dynamic programming.
This procedure is known as backpropagation and the cached results are known
as backward messages (contrasting with forward messages obtained when
making predictions).

To calculate the gradient, we need a differentiable loss function that can
quantify how wrong the predictions are. A commonly used loss function for
classification is the cross-entropy loss |]

K
(= — Z ty log(ys), (2.23)
k=1

where t is a one-hot vector indicating the true class label. However, a further
problem arises from the fact that a neural network can output any vector of
real numbers. This makes the output unstable and difficult to interpret as a
prediction of a class. To fix this, we attach a softmax layer to the end of the
network, using y to compute p:

_ k) 2.24
P E eolye) (224

This guarantees that the new output vector p sums up to 1 and py € [0, 1] for
all k, making the output easy to interpret as a vector of K probabilities that
indicate the network’s belief that the example belongs to class k. Furthermore,
using a softmax layer with cross-entropy loss makes it possible to simplify
the backward message to a simple element-wise difference between p and t,
making this combination also relatively quick to train.

Feedforward networks are very powerful, but their training quickly becomes
computationally infeasible as the size of the layers is increased and more
layers are added. For this reason, more deliberate network architectures have
been created that restrict the network’s complexity and allow it to focus on
aspects of the data that we want to capture. It’s also crucial to consider how

21

2. Theoretical foundations

the data is actually passed to the network — in other words, how we preprocess
and chunk the data before feeding it to the network as input. This is why
the rest of this section will focus on network architectures and applications
relevant to natural language processing.

B 26.1 Word2Vec and Doc2Vec

Word2Vec is an algorithm that can be used for creating a simple language
model from a corpus, as well as word embeddings — vectors that encode the
word in a Euclidean space with a pre-determined number of dimensions n.
Famously, Word2Vec embeddings can have properties that align with the
language’s semantics — not only are words similar in meaning close to each
other, but directions in the space encode specific changes in meaning and
relationships between the words, e.g. the difference between the vectors of
“Paris” and “France” is very similar to the difference between “Italy” and
“Rome” [].

It could be argued that Word2Vec is not strictly a deep learning algorithm,
because it doesn’t use a layered network structure. Nonetheless, it was
included here because its approach to learning is quite similar — representing
data using vectors, and using gradient descent instead of trying to solve
directly or using more complicated optimization algorithms.

Word2Vec has been most successful with the skip-gram learning technique,
where the algorithm is trained on fixed-length sequences of words from training
data. The aim is to predict the context for a given word, i.e. other words that
are likely to precede and/or follow it in text. This means that it also creates
a model of meaning, since words that are similar will most likely be seen in a
similar context, and thus Word2Vec creates the “semantic” structure in the

embeddings.
Internally, Word2Vec keeps two n vectors for each word w — an input vector
v and an output vector v/ (also known as the context vector |]). Given

an input word wy, the predicted function is the probability that a word wo
from the vocabulary W occurs in its context. Naively, this probability would
be computed as |]

exp(vﬁwOvaI)

2 wew exp(Vi,TVay,)’

p(wo | wr) = (2.25)

i.e. the softmax of the dot products of the input word’s input vector v,,, with
the output vectors v’ of all words. Since the vocabulary W is typically quite
large, this softmax is too expensive to be practical, especially for training.
However, since the denominator in the softmax does not depend on wp, it
can be omitted when maximizing or minimizing p(wo | wr). Furthermore, we
can replace the exponential function with a different monotonously increasing
function that prevents the risk of numerical overflow — the sigmoid function
o is often used in practice for this purpose. In other words,

I?Uaoxp(wO ‘ ’UJ[) = %%X eXp(VQUOTVwI) = III})&OXO'(V;OTVwI) (2'26)

22

2.6. Deep learning

To train the skip-gram model, negative sampling is commonly used. In
each training step, besides maximizing the probability of a word wp in the
current context, K words are selected from the other parts of the corpus at
random and the probability of these randomly drawn negative examples is
minimized at the same time. This leads to minimizing the loss function

K
t=logo(—vy, V) + Zlog o (Vi "V,), (2.27)
i=1

since o is an odd function and the probability itself can replaced by its
logarithm, as is common practice in maximum likelihood estimation. Negative
sampling is visualized in Fig. 2.3.

Although Word2Vec is a fairly cheap and effective algorithm for language
modeling, it has several key disadvantages, among others the following:

8 The algorithm understands what words are typically close to each other,
but it doesn’t understand the role that their position plays in their
meaning. To be more precise, the algorithm doesn’t use any positional
encoding, at least in its commonly used variants. Therefore, the contexts
“Gavrilo Princip killed Franz Ferdinand” and “Franz Ferdinand killed
Gavrilo Princip” mean the same thing to the algorithm — it might be
able to distinguish who is the victim based on other contexts, but both of
these sentences will nonetheless appear equally valid when encountered.

8 Word2Vec struggles with words that can have multiple meanings, since
it assumes that each word can be represented with a single vector. For
example, the vector for the word “lead” will ultimately somehow have
to encode the meaning of a heavy metal, a leash, a hint, as well as
leadership.

Both of these are explicitly addressed by more complex architectures, such as
transformers (subsection 2.6.3), which use position encoding to respect the
order of the words in the context, and can use the attention mechanism to
infer the meaning of an ambiguous word from the context.

Word2Vec can also be extended to not only produce embeddings of words,
but also embeddings of sentences, paragraphs or documents. Two modifi-
cations of Word2Vec for encoding longer segments of text, proposed by the
original authors of Word2Vec and originally called Paragraph Vector |],
are now commonly known as Doc2Vec. In both of these variations, the
documents (paragraphs) are treated almost exactly the same as words, being
represented by a vector pair (though the dimension of the document space
does not have to be the same as the word embedding dimension), and used
as input for the softmax classifier. The difference is in how the words are
used together with the documents:

8 In the distributed memory model, the classifier receives context words
from the paragraph together with the paragraph, and predicts a word in
the same context.

23

2. Theoretical foundations

® In the distributed bag of words model, the classifier’s only input is the
paragraph vector. The algorithm is then tasked to predict words from
contexts that are contained within the paragraph. This model is more
similar to the skip-gram model — the only difference is that the input
word vector wy is replaced by the paragraph vector.

(aardvark [ee9]

move apricot and jam closer,

| apricot [@es Wl' -= . . increasing ¢, - W
W < . \
. |
BN “...apricot jam...”
k zebra [eee N ,"-.
9 (aardvark [¢se ‘

7 ', move apricot and matrix apart
! decreasing c

negi W

| jam 1Y) cpDS Iﬁ

C - oo |matrix @99 C) g
|To|stoy

k zebra

L

. . - “move apricot and Tolstoy apart
decreasing ¢ - W

neg2

Figure 2.3: A visualization of Word2Vec skip-gram learning from [JM23].

B 262 LSTM

The downside of approaches such as the skip-gram model is that they can
only capture a sequence of limited length, which is typically quite short.
This means that they are not able to natively model relationships that are
expressed by longer sequences of text than their context window. It’s possible
to help the skip-gram model in this regard by prioritizing negative samples
that are further away in the text from the current context [Mik-+13], but this
doesn’t fix the core issue.

A network architecture for sequences of arbitrary length, which is common
in many fields, is the recurrent neural network, or RNN. RNNs store a vector
commonly denoted by h from the last computation performed by the network.
Fach next step of the sequence with index ¢ is then computed using the saved
state from the previous step, t — 1 [JM23]:

ht = g(Uht_l + WXt)
ye = f(Vhy)

where x; and y; are the input and output of the network at step ¢, g, f are
the activation functions, and U, V, W are matrices of weights. This means
that h; depends on h;_1, which in turn depends on h;_s and so on, and thus
the network can save information from any input in the sequence and keep it
no matter how long the sequence is.

However, experiments have shown that while RNNs can in theory hold
information for an arbitrary number of steps, and will do so when explicitly

(2.28)

24

2.6. Deep learning

trained for a task that requires it, they tend to forget the information very
quickly, only keeping it for a couple of steps |]. LSTM (long short-term
memory) is a network architecture that addresses the problems with RNNs
by adding an extra context vector c¢;, which is also “remembered” throughout
the sequence just like the hidden state hy. However, unlike in the case of
h;, the network contains an explicit mechanism of gates which allows it to
control what is saved into c¢;, and when the information can be forgotten.

® ® ®
t | |

) 4 I\
X © >
@nb>
A lebslll A
J J_>

I |
&) ® &)

Figure 2.4: A schematic showing the flow of information through an LSTM
network and the gates mechanism. The upper stream passed along the sequence
from left to right is the context vector c, the lower is the state h. The symbols
with an orange background in the image depict a layer of neurons followed by
the symbolized function, whereas the ones with red background convey a simple

nn

application of the function with no trainable parameters. The "x" symbol stands
for element-wise multiplication. Source: []

The LSTM contains three of these gates, all of which have the following
features in common:

® The gate takes both the learned state of the sequence h;_; and the
current element of the sequence x; as input. The two inputs are then
multiplied by the gate’s weights and added together or concatenated,
depending on the particular implementation. After that, the sigmoid
function o is applied element-wise to the result, meaning that each
element in the gate output is a number between 0 and 1.

® The gate’s output then acts as a mask or filter, i.e. it is multiplied element-
wise with a different vector, allowing the network to de-emphasize certain
values via the sigmoid outputs.

The gates, which are visualized in Fig. 2.4, are frequently named after
their function in the network:

B Forget gate: This is the leftmost gate in Fig. 2.4. It is the first gate to
access c;_1, removing context that is no longer needed when receiving
X¢ in state hy_; and forwarding the relevant context to the add gate.

® Add gate: This is the gate in the middle of the block in 2.4. x; and h;_1
are first run through an “RNN” embedded in the LSTM unit, using the

25

2. Theoretical foundations

hyperbolic tangent activation function. Then, the output of this block
is filtered by the add gate to sift out all that is not new context, and
added to the output of the forget gate.

B Qutput gate: This is the final gate in the right section of the block. The
output is also used as the state passed to the next step, h;. It is created
by first applying the hyperbolic tangent function to the output of the
add gate, and then filtering it using the output gate, which has the same
inputs as the previous gates, differing only in the learned weights.

Note that the architecture is not standardized and the network can also be
trained successfully with some variations to the structure described above.

See e.g. |] for a description of an LSTM network, where all of the gates
also have access to ¢;_1 besides h;_1 and x;.
LSTMs are also viable in an encoder-decoder setting [|, which is

ubiquitous in language translation, and many other situations where we want
to convert one representation of an example into another. The idea is to feed
the entire input sequence through an LSTM encoder, and use the final state
h to generate the output sequence with a separate LSTM decoder trained
specifically for this task.

B 2.6.3 Transformer models

Transformer models probably need no introduction nowadays, being the
foundation of almost any large model known to the general public. The key
component of the transformer is the attention mechanism, which actually
predates transformers, having been previously used in sequential models
similar to the LSTM network. The transformer removes the sequential
processing and replaces it with a context window with fixed length, reflecting
the original order of the sequence only by applying positional encoding to
the inputs, and using exclusively attention and feedforward networks as
building blocks for its architecture. Despite losing the ability to capture
relationships at arbitrary distance by discarding the recursive part of the
networks, the transformer has been found to be a well performing model since
the early experiments |]. Importantly, the lack of explicitly sequential
processing also has a benefit in making all computations in the transformer
highly parallelizable.

When a sequence enters the transformer, it is first embedded in space in
a similar fashion to a Word2Vec embedding. Then, positional encoding is
applied to these embeddings, which can be done using sinusoid functions.
This allows the transformer to be aware of the sequential nature of the
input text, without forcing the computation itself to be sequential. After
the position encoding, the embeddings are then processed by a sequence of
repeated attention blocks and feed-forward blocks. Finally, softmax is applied
to the output, so that the output can be interpreted as a vector of token
probabilities.

The attention mechanism itself is usually conceptualized as a set of attention
heads, which operate in parallel. Each head has a key matrix K and query

26

2.6. Deep learning

matrix Q, which have the same dimension and store information about the
relevance of the query to the contextual meaning of the key token. These
two matrices are multiplied together to create a kind of “score” that signifies
the influence of the key on the meaning of the query. The scores are then
normalized and multiplied by the walue matrix V to determine how the
embeddings should be updated in this context. This is described by the
famous equation from the original transformer paper

: QKT
Attention(Q, K, V) = softmax (NG) A\ (2.29)
This equation describes a single self-attention head. Crucially, attention
can be used both as self-attention, where the output format is the same, or
cross-attention, whereby attention can transform the data into an entirely
different structure []. The original transformer architecture was an
encoder-decoder model, but the attention mechanism is now also used in

encoder-only models like the BERT family, and decoder-only models like
GPT |].

27

28

Chapter 3

Overview of existing tools

It should be noted that the grouping of the listed tools by utilization is
somewhat arbitrary, as some of them have a broader scope and can be used
for several of the tasks listed in this chapter. If a tool can be used for multiple
tasks, it can be found under the task for which it was deemed most likely to
be useful.

This chapter largely describes non-scientific projects which cannot be cited
very meaningfully, so in those cases, URLs to the relevant webpages are
provided in footnotes instead. The validity of the links was last checked on
May 21, 2024.

. 3.1 Databases

There’s plenty of options available when it comes to storing a knowledge base
and making it available for querying. In an extreme case, even a relational
database could be used, e.g. PostgreSQL offers support for JSON', which
could be used for representing diverse entities without the need to complicate
the database structure in the process. Similarly, a native JSON database like
MongoDB could be used for this purpose — MongoDB in particular even
offers support for querying graphs embedded in its collections?.

Nonetheless, there are also frameworks that explicitly target graph struc-
tures and/or knowledge engineering. Neo4j® is a popular and versatile graph
database. It can be updated and queried using Cypher, which was described
in 2.1.2, and it also has a Java interface that allow programmatic access to
the database. Databases that are built for RDF data include Apache Jena*
and Ontotext GraphDB?’.

https://www.postgresql.org/docs/current/datatype-json.html
Zhttps://www.mongodb.com/resources/basics/databases/mongodb-graph-database
3https://neo4j.com/

“https://jena.apache.org/

Shttps://graphdb.ontotext.com/

29

https://www.postgresql.org/docs/current/datatype-json.html
https://www.mongodb.com/resources/basics/databases/mongodb-graph-database
https://neo4j.com/
https://jena.apache.org/
https://graphdb.ontotext.com/

3. Overview of existing tools

B 32 web scraping

All listed packages and libraries are implemented in Python and intended for
use in Python, unless specified otherwise.

The requests library is a commonly used tool for interacting with websites.
It enables simple execution of most HT'TP methods and easy addition of
headers and cookies to the performed requests. However, it is somewhat im-
practical for web crawling, because it doesn’t offer supports for asynchronous
requests. This has been amended by grequests®, a package that enables
sending requests in batches of a defined size via gevent and allows interaction
with the Request/Response objects which is analogous to requests.

Scrapy’ is a more advanced framework for scraping and crawling. The
algorithm for crawling and extracting the results is defined by the methods
of a Spider object in an automatically generated project directory, while the
framework itself handles the priority queue of the requests and the saving
of the results. The behavior of the crawl can be altered by modifying the
settings.py file of a given project. The output of a crawl may be saved into
common formats such as CSV or JSON without the need to directly modify
the source code (the format is specified when launching the crawl).

The Scrapy developers also provide various plugins that extend the basic
framework, most notably Playwright® support.

Minet’ is a specialized web data mining library.

Crawlee'’ is a scraping and browser automation framework for JavaScript,
built on top of Node.js. It offers similar functionality to Scrapy, providing
an API for building crawlers. It facilitates easy switching between pure
HTML-based crawling and the use of a browser and rendering — this is a
native feature of the framework, making it more flexible for browser-based
scraping than Scrapy.

B 33 Parsing HTML

Many packages for web crawling and/or web content extraction already have
a HTML parser included, so it’s likely that a separate HTML parsing library
will not be required. HTML parsers convert the raw HTML into a DOM"!!
representation, which can then be iterated over or filtered. They frequently
employ standardized selection methods such as CSS selectors or XPath to
allow the user to select elements from the website and iterate over them.
The most popular standalone library for parsing HTML is BeautifulSoup'?,
which understands CSS selectors and is compatible with several parsers such

Shttps://github.com/spyoungtech/grequests
"https://docs.scrapy.org/en/latest/
8https://github.com/scrapy-plugins/scrapy-playwright
“https://github.com/medialab/minet

Onttps://crawlee.dev/

1 Document Object Model, representing the HTML document as a tree of elements.
12https://www. crummy . com/sof tware/BeautifulSoup/bs4/doc/

30

https://github.com/spyoungtech/grequests
https://docs.scrapy.org/en/latest/
https://github.com/scrapy-plugins/scrapy-playwright
https://github.com/medialab/minet
https://crawlee.dev/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/

3.4. Rendering and browser emulation

as Ixml. Parsel'® is a HTML, XML and JSON parser developed as a
part of Scrapy, that can also be used as a standalone library. Compared to

BeautifulSoup it has more support for using standardized selectors defined
by the CSS and XPath standards.

B 34 Rendering and browser emulation

Automated browsers are a widely used tool, common e.g. in web application
testing. It is common for modern websites to be generated at least in part
dynamically, with the browser executing embedded scripts that fetch data
and render more content than is present in the raw HTML. For this reason,
automating browsers can be beneficial in web scraping as well, possibly
retrieving more content and making the crawler less likely to be detected as
a bot.

Traditionally, the most commonly used browser emulator is Selenium',
which can be used via APIs for many common languages including Python
and Java. However, various alternatives to Selenium are gaining traction,
which are built in JavaScript but also available for Python. The most notable
examples are Playwright'®, an open-source engine developed by Microsoft,
and Puppeteer'®.

A downside of using a browser emulator is that rendering pages while
scraping, instead of extracting content from raw HTML using tools described
in Section 3.2, creates significant overhead. For this reason, it might be
beneficial to combine Selenium with other tools and only use it when necessary.
A successful implementation of a crawler integrating Selenium with Scrapy
was reported by [].

. 3.5 Content extraction

To successfully extract knowledge from a website, it will be important to
accurately detect relevant text contained in its pages. Alternatively, we may
state this task as discarding sections of the websites which recur frequently
on a given website, or are not related to the main content of the page (e.g.
advertisement). In literature, such redundant content is often referred to as
boilerplate — hence, content extraction is equivalent to boilerplate removal

[J

Following [|, we may split content extraction tools into three groups:

8 Rule-based methods, which use various heuristics to predict whether a
tag is boilerplate, such as stopwords frequency and detecting clusters of
more intensive text tags in the DOM tree. They are both general and
fast, but sometimes not very accurate.

Bhttps://pypi.org/project/parsel/
Mpttps://www.selenium.dev/
Bhttps://playwright.dev/
Ynttps://pptr.dev/

31

https://pypi.org/project/parsel/
https://www.selenium.dev/
https://playwright.dev/
https://pptr.dev/

3. Overview of existing tools

® Website-based methods, which are more specifically tuned to particular
targets.

® Machine-learning methods, which use more complex approaches, see

[Jor | J

The challenge in extracting text from website is to filter out text that is
largely irrelevant to the website’s actual content, like advertisements and
terms of service. Currently available open-source tools and libraries typically
use heuristics to discern text from boilerplate content, but are unaware of
the semantics of the text.

Compared to the topics which have been discussed earlier in Chapter
2, the existing research is rather difficult to make sense of — the articles
unfortunately don’t provide their actual implementation of the algorithms
to the public and the commonly utilized and tested libraries are completely
unrelated to them. Examples of articles that claim to use more advanced
content extraction methods include: |], where position of an element on
the screen is encoded into a hash code and then the elements are processed
using the hashcode and empirical formulas; and | |, where a combination
of K-nearest neighbors and a genetic algorithm is utilized.

The package boilerpy3!” provides an easy-to-use interface for content
extraction. It includes several Extractor objects tuned for different tasks. It
is a relatively simple library without advanced NLP functions, nonetheless, it
can compete with the other listed libraries for the task of article extraction,
as reported by the authors of Trafilatura. boilerpy3 originated as a Python
port of the Java library Boilerpipe, which is also still available.

jusText'® is an example of a more complex package specializing in content
extraction. It has rich support for detecting many different natural languages
and its authors provide a web frontend where one may visualize its output for
a given webpage and target natural language. jusText has also been ported
to other languages such as C++ and Java.

Trafilatura'” is a complex package for acquiring textual information from
the web, encompassing crawling and scraping, content extraction and even
text embedding for an advanced analysis.

All of the above methods assume that we want to extract text content and
use machine learning methods to extract knowledge from that text. However,
there are also tools that web developers can use to embed structured data
into the HT'ML source code. This data is not shown to the end user — instead,
it is provided to transfer information to crawlers and other scripts that visit
the webpage. Schema.org?’ and Open Graph’!' are the most common
protocols used for this purpose. RDFa and Microdata are extensions to HTML
syntax that allow this embedding of structured data.

https://github.com/jmriebold/BoilerPy3
8https://github.com/miso-belica/jusText
¥nttps://trafilatura.readthedocs.io/en/latest/
2nttps://schema.org/

*mttps://ogp.me/

32

https://github.com/jmriebold/BoilerPy3
https://github.com/miso-belica/jusText
https://trafilatura.readthedocs.io/en/latest/
https://schema.org/
https://ogp.me/

3.6. Topic detection

B 36 Topic detection

The scikit-learn®’ library contains implementations of many algorithms
mentioned in sections 2.3 and 2.4. Many of these implementations are directly
intended for text analysis and can be used with other freely available Python
libraries like nltk?.

Several Python packages combine multiple tools, such as the pretrained
models above and clustering algorithms, and aim to provide a unified pipeline
for topic modeling from text corpora. These include BERTopic?* and
Top2Vec, which is described below in Subsection 3.6.1.

The Universal Sentence Encoder (USE) | | is a family of pretrained
models, using deeper architectures to create embeddings from sentences of
text. It also encompasses multilingual models [|, which can assess

similarity of text in different languages and supports 16 common natural
languages, including Spanish, Chinese or Arabic.

There are many popular pretrained models based on the BERT architecture,
like RoBERTa | . In topic modeling, a popular BERT variant is
SBERT | |, which is available in both Top2Vec and BERTopic.

GloVe? and FastText?C are word embedding methods that can be used
instead of the Doc2Vec model described in Subsection 2.6.1.

B 3.6.1 Top2Vec

Top2Vec is a Python package integrating the entire process of extracting
topics from a corpus of text, as well as a composite algorithm for discovering
topics from raw documents |]. It is probably best understood as a
sequence of the following three operations:

1. The documents are tokenized, and all documents and words are em-
bedded into a shared vector space. This means either that a model
is trained/finetuned on the corpus, or that the embeddings are simply
retrieved from an existing model.

2. Dimension reduction is applied to the embedding space. This is essentially
a preprocessing step, making topic modeling easier than in the original,
high-dimensional space.

3. In the reduced space, clustering is performed on the document vectors.
The document clusters are then interpreted as topics, with the centroid
of a particular cluster defined as the topic vector. Words that are the
closest to the topic vector are taken to best represent the themes inside
this topic. For each document, a topic distribution can then be calculated

Znttps://scikit-learn.org/stable/
Bhttps://www.nltk.org/
*nttps://maartengr.github.io/BERTopic/index . html
Bhttps://nlp.stanford.edu/projects/glove/
Zonttps://fasttext.cc/

33

https://scikit-learn.org/stable/
https://www.nltk.org/
https://maartengr.github.io/BERTopic/index.html
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/

3. Overview of existing tools

based on the document’s closeness to the topic vectors, yielding a more
nuanced view of the document’s content than the initial cluster hierarchy.

In the first phase, the Top2Vec package supports either training a Doc2Vec
model, or using a pre-trained model. The Doc2Vec implementation is imported
from Gensim | |, and the continuous bag of words variant of the algorithm
is used (see Subsection 2.6.1). Since this variant of Doc2Vec does not train
word vectors, which are needed for the interpretability of Top2Vec result,
the word vectors are trained separately on the same data, which is enabled
by the Gensim implementation. Gensim also implements the distributed
memory model of Doc2Vec, but this can only be used by editing the Top2Vec
source code. As for pre-trained models, the package offers easy access to some
models available through TensorFlow, namely Google’s Universal Sentence
Encoder and SBERT. A custom pre-trained model can also be used, but it
must be ensured that it accepts the documents as a simple list of strings,
returning an iterable of vector embeddings for each of the input documents.
For example, Gensim’s Doc2Vec has an infer_vector function that allows
it to embed a document it has not been trained on, but it assumes that the
documents passed to it are already tokenized. This means that in order to
use infer_vector, the documents first have to be preprocessed:

from top2vec_modified.Top2Vec import (
Top2Vec,
default_tokenizer as tokenize

)

from gensim.models.doc2vec import Doc2Vec, TaggedDocument

def embed_batch_doc2vec(docs: list[str], doc2vec: Doc2Vec):
return [doc2vec.infer vector(tokenize(i)) for i in docs]

doc2vec = Doc2Vec.load("doc2vec test.model")
documents = ["doc 1", "doc 2"]

top2vec = Top2Vec(
docs=documents,
embedding_model=embed_batch_doc2vec

In the second phase, Top2Vec uses UMAP (see Subsection 2.4.3). The
package does not support the use of other dimension reduction methods.
Likewise, clustering is also done using a single algorithm — HDBSCAN, which
is briefly described in Subsection 2.5.3.

34

3.7. LLMs and Al search engines

B 3.7 LLMs and Al search engines

Several companies are currently developing and operating experimental search
engines which use large language models to analyze and summarize the
retrieved results and answer questions in natural language based on the
results. However, in this case, the details of the implementation (e.g. how
the results are indexed and preprocessed, how the LLM retrieves the results
from the database of the operating company) are confidential and not much
is disclosed about the inner workings of the engine. Therefore, we cannot
directly draw inspiration from the methods used by these engines. Instead,
they can be used as a baseline for assessing the efficiency of classifying the
businesses and other tasks.

Examples include Perplexity.ai’’ and Phind?®. LLM services are also
almost always available via an API.

Various online services also offer a range of different models, including
state-of-the-art large models, allowing for comparisons between them. These
include the LMSYS Chatbot Arena® and HuggingChat*’.

Large models whose weights are openly available can also be run locally.
Large communities exist which are dedicated to running open-source LLMs
and building tools that facilitate the deployment of LLMs by non-professionals.
The Ollama project®' has a wide range of available models and is relatively
user-friendly.

B 3.8 Workflow management systems

When creating a pipeline or ensemble consisting of several models from
different sources, there will inevitably be many compatibility issues due to
different expected input/output formatting or due to the utilization of entirely
different frameworks or even programming languages by the constituent
models. Some tasks, such as tracking loss during training or visualizing the
results of the model, are predictably going to be a necessity in almost all
models, and they should therefore be made as easy and convenient as possible.
What’s more, the deployment of the resulting system is in practice also
frequently tasked to the same team that designs and trains the model — a 2021
survey found that 40% of ML professionals are simultaneously responsible for
both models and infrastructure |].

What arises from this is a set of tasks that are not strictly related to
machine learning proper, but are nonetheless a necessary component of the
development process, focusing on reliability, scalability, and managing the
lifecycle of the product. This area is often called MLOps, an analogy to the
DevOps of software development | ;].

https://www.perplexity.ai/
2https://www.phind. com/search?home=true
Pnttps://chat.lmsys.org/
30nttps://huggingface.co/chat/
3mttps://ollama. com/

35

https://www.perplexity.ai/
https://www.phind.com/search?home=true
https://chat.lmsys.org/
https://huggingface.co/chat/
https://ollama.com/

3. Overview of existing tools

The most common software in this domain is MLflow>?, alternatives for
building pipelines include Spotify’s Luigi®** or Apache Airflow®!. Gerapy®’
is a framework for managing crawlers written using Scrapy.

32nttps://mlflow.org/
33nttps://github.com/spotify/luigi
34nttps://airflow.apache.org/
3nttps://github.com/Gerapy/Gerapy

36

https://mlflow.org/
https://github.com/spotify/luigi
https://airflow.apache.org/
https://github.com/Gerapy/Gerapy

Chapter 4
Methodology

In this chapter, we will define the problem we aim to solve in our experiments
and propose several approaches towards achieving that goal.

. 4.1 Problem statement

In general the inputs and the expected outputs of the experiments are the
following:

® Input: a set of merchants (businesses), where each merchant has an
assigned URL that should represent it to the user, and a target category.

® QOutput: a prediction of the merchant’s category.

The URLs in the input data are selected by human workers. It is preferable
that the URL of the business lead directly to the website of the merchant.
However, in case the merchant doesn’t operate its own website, the URL
may also lead to the entry of the merchant on a website that aggregates
information about businesses, or to the merchant’s profile on a social media
site.

The input category labels are also determined by human specialists. When-
ever possible, we will use the manually created labels as the ground truth for
our experiments. This means that we will be dealing mostly with supervised
learning and classification.

Additionally, there is a hierarchy of tags that are associated with each
category. For instance, once we know that a merchant belongs to the category
Food And Drink, we may further classify it with tags Restaurant, Cafe, and
so forth. If we choose the tag Restaurant, we can once again add tags that
are the children of this tag, like Czech Restaurant, Asian Cuisine and so on.
The hierarchy is visualized in Appendix B and will be formally described as
part of the knowledge base proposal. Using this entire tag hierarchy would
amount to a more complex multilabel classification problem that could be
decomposed in a recursive fashion as indicated by the example. However,
in order to solve the deeper levels of the hierarchy, we need to first learn to
distinguish the top-level categories, so this is what we will prioritize.

37

4. Methodology

Given this information, the expected procedure of the experiment is as
follows:

1. Crawl the websites of the businesses provided in the URL links and
collect the contained information.

2. Process the content of the websites to extract relevant information /features.

3. Train the model on this content, either directly utilizing the provided
labels, or using an unsupervised approach.

4. Make the predictions using the model.

Alternatively, we may use an external source of knowledge to categorize
the business without processing the content of the website. Both of these
approaches will be elaborated upon in this chapter.

Additionally, due to the focus of this thesis, we will propose a knowledge
base for storing the extracted predictions, demonstrate the creation of a
knowledge base and insertion of the predictions.

B 42 Main pipeline

As already foreshadowed by the theoretical introduction, we expect to mainly
use the text content of the websites and natural language processing meth-
ods. In particular, it appears that a valid approach might be to extract
sequence embeddings from a language model and then train a classifier on
the embeddings.

Even though the website content might be retrievable from some publicly
available datasets such as Common Crawl, we prefer to do the crawling
ourselves. This is because for our use case, the data should be as up-to-date
as possible, and some small business websites might not be contained even
within large crawls.

The data flow in the proposed pipeline is visualized in Figure 4.1. Note
that there are two events that may make the pipeline unable to output a
category prediction for a given business: either the website is unreachable, or
all of the website’s content is rejected by the text extraction algorithm (it
may only contain images, or a text in an unaccepted language). Furthermore,
an important feature of the pipeline is that the categories (i.e. the labels
of the input URLs) only enter the pipeline at the very end when training
the classifier, and all steps until that point can be considered unsupervised
learning. In other words, the processing of the extracted document corpus is
almost identical to Top2Vec (see also subsection 3.6.1), with the exception
that Top2Vec is unsupervised all the way to the end — it learns the categories
(topics) by applying clustering to the embeddings of the documents, rather
than by recognizing patterns in the embeddings using provided labels. Lastly,
much like in Top2Vec, “model training” can in principle be replaced with
getting the document embeddings from a pretrained model, though this will
obviously have an impact on the quality of the embeddings.

38

4.2. Main pipeline

The prediction will be made entirely using data acquired using web scraping
and the known URLs for each merchant, without using other information like
MCC codes which is also available for the payment data.

The steps of the pipeline could be described in more detail as enumerated
below:

1. For each merchant, perform a shallow crawl (see Section 4.3) of the
merchant’s domain. Save all reached webpages to local storage.

8 Exclude all merchants whose domains were not reached by the
crawler.

2. Extract the text from all saved HTML pages and perform boilerplate
removal using a text extractor. Output a single document of non-
boilerplate text for each domain.

® Exclude all merchants that have no text left after the boilerplate
removal.

3. Create a high-dimensional embedding of the documents corresponding
to the merchants’ domains.

4. Apply a dimension reduction (manifold learning) algorithm on the set of
embeddings to create a less sparse embedding.

5. Split embedded documents into training and test set. Train a classifier
on the training set and evaluate performance on the test set.

The first and second step require flagging a part of the input data as
undecidable and removing it from the training data. It’s likely not possible
to avoid excluding some of the input data due to various random factors —
e.g. the domain name may become invalid or there may also be errors in the
input data itself.

The scale of the input data will require dealing with hundreds of thousands
of input URLSs, which can easily result in a number of saved HTMLs pages in
the order of magnitude of millions or more. Even when restricted to smaller
datasets, managing the saved HTML files may be surprisingly difficult. Several
aspects of storing the data should be considered:

® Compression: HTML can be compressed quite well, common formats
such as gzip and zip should suffice to reduce the memory consumption
of the stored data, while not slowing down access significantly.

® Organization: It is inconvenient to deal with folders that contain
hundreds of thousands of items, so some degree of hierarchy is necessary.

B Referencing: URLs contain characters that cannot be used in the name
of a file, so a different way to refer to a locally saved HTML page must
be defined.

39

4. Methodology

B a3 Scraping algorithm

The motivation for this naive scraping procedure is that most business websites
contain a page describing the history and nature of the business (usually titled
“About Us” or similar). This page is usually the most useful for determining
the business’s category, and is typically reachable from the root page of the
domain. The text contained in such a page is especially crucial if the business
doesn’t offer its products/services online, and it is also of particular interest
since the utilized text extractors are biased towards longer text that contains
entire sentences.

For each URL, the algorithm simply accesses the root of the URL’s domain,
saves the pages, then retrieves all pages in that domain that are reachable
from from the root pages and saves them, too. The parsing procedure is
summarized in the provided pseudocode, where:

® EXTRACT_DOMAIN_ROOT is a string function (regular expression) which
converts the URL into the domain name (e.g.
https://www.tesco.com/special-offers/ into tesco.com),

® SAVE_FILE simply stores the raw HTML locally, though there are some
caveats such as that the URL usually cannot be used as a file name —
see Subsection 5.1.1 for a more detailed discussion.

Input: list of urls U
Output: locally stored files containing raw HTML
forall url € U do
domain <~ EXTRACT_DOMAIN_ROOT Curl);
htm| <— HTTP_GET (domain);
SAVE_FILE(html);
forall link € CSS_SELECT (html, "a: :attr(href)") do
if link € domain then
link_html < HTTP_GET (link);
SAVE_FILE(link_html);
end
end

end

The scraping algorithm has some issues, such as that the root page of the
domain can in principle contain any number of links. This means that in some
cases, the algorithm crawls through hundreds of pages from one domain, while
in other cases, it only retrieves a few pages. This could be partly remedied in
the future by modifying the crawler so that it doesn’t abandon the domain
until it saves a fixed number of pages or exhausts all links. However, in
practice, it often happens either that the crawler is regardless blocked by the
website after making a number of requests which is deemed suspicious, or
that the domain only contains a small number of pages anyway.

40

4.4. Alternative approaches

. 4.4 Alternative approaches

In order to explore strategies that are different from the proposed pipeline,
we may substitute parts of the pipeline, or the entire pipeline, in the following
ways:

8 Using prompt engineering. In particular, we might feed the extracted
text as a prompt to an LLM, together with instructions asking it for a
category prediction. Advanced techniques for enhancing prompts such
as RAG are not directly applicable, as the documents extracted from
websites are typically quite long, spanning tens of thousands of characters.
This is not suitable for prompting a model, since the attention mechanism
of the transformers can typically only keep track of several thousand
tokens. Therefore, before feeding the document to a prompt, its text must
be made more concise while preserving as much relevant information as
possible.

8 Using LLM embeddings for classification. This basically amounts to
replacing the embedding model with an LLM and testing the quality of
the embeddings.

® Using existing knowledge bases. In order to do this, we will need to
match the categories and businesses onto resources present in existing
knowledge bases. The optimal use case would be to transfer the knowledge
into our knowledge base directly, in case both the business and the
category are present in the source knowledge base. If this is not viable,
we might use the annotations and descriptions from the source to help
with describing the category hierarchy, e.g. for the prompt engineering
example above.

41

4. Methodology

Websites

Web crawling

ebsite reachable

Text extraction

Model training

»| Classifier training

Figure 4.1: A flowchart of the classification experiment pipeline.

42

Chapter 5

Experiments

Unless specified otherwise, all experiments were run on a PC with the following
specifications:

® OS: Debian GNU/Linux 11 (bullseye) x86_ 64
® CPU: AMD Ryzen 5 5600X (12) 3.7GHz

® GPU: NVIDIA GeForce GTX 980 Ti

B 51 Implementation

Three datasets were created from scraped data, each in a different target
language. An English-language dataset was created using businesses oper-
ating in the UK. Similarly, a German-language dataset was compiled from
businesses operating in Germany. For the Spanish language, the dataset
includes businesses across several Spanish-speaking countries.

The businesses are divided into 25 categories, which are heavily imbalanced.
In general, most of the analysis was done on the English and German datasets,
because there were some issues with the Spanish dataset, which will be
discussed later. See Appendix B for properties of the retrieved datasets and
categories.

The crawlers were implemented using Scrapy. A sample Scrapy spider can
be found as crawler.py in the attachments. The spiders for all datasets were
essentially the same, only differing in the input data. The spider can be exe-
cuted by creating a Scrapy project (scrapy startproject project_name),
moving the crawler.py file into the spiders directory of the project, and
then running scrapy crawl crawler. The settings.py of the project can
be in the default state, though there are some changes to the settings that
should be considered:

® DEFAULT_REQUEST_HEADERS - changing the Accept-Language header to
reflect the target language.

® AUTOTHROTTLE_ENABLED — set to True to prevent the crawler from getting
blocked for sending too many requests at once.

43

5. Experiments

® SCHEDULER_PRIORITY_QUEUE
— set to scrapy.pqueues.DownloaderAwarePriorityQueue to help the
crawler not get stuck on domains that respond very slowly.

® DUPEFILTER_CLASS — set to scrapy.dupefilters.BaseDupeFilter to
disable filtering duplicate requests, as this is unnecessary for this purpose
and it slows the crawler down when it has already visited a large number
of pages.

The crawler uses a custom package for storing the data into a defined folder.
This package will be described in Subsection 5.1.1.

I also tried Scrapy with the Playwright extension, unfortunately the Play-
wright engine was not reliable and didn’t finish crawling the entire dataset.

B 5.1.1 Pipeline management

No integrated MLOps environment like MLflow has been used. This allows
more control over the experiments, though it also means that building the
pipeline takes a bit more effort and caution. After some experiments with
storing data in ways that were found to be impractical, a simple package
for managing the scraped datasets was created. The package was written in
Python 3.9.2 and it has no external dependencies except jusText, which is
the default boilerplate removal tool. It can be found in the attachments in
the sterojos_svp_scraping_tools folder.

The package requires the user to specify a folder where the dataset is saved.
It is assumed that a folder contains only one dataset. Examples of using the
package can be found in the readme file and in the experiment examples. The
data is stored in zip archives which are located in the folder. Gzip was also
tested for storing HTML, with zip appearing to be the better option since it
allows for easy creation of archives that can contain a large number of files.

Internally, when a page is added to the dataset, it is first written into an
in-memory buffer. Once this buffer exceeds a user-defined maximum number
of pages, the entire buffer is written into a zip archive and emptied. However,
it was discovered experimentally that some websites send HTML files that
are so tremendous that they will cause a normally reasonable buffer size to
explode in memory. For this reason, the memory size of the buffer is also
estimated and the buffer is saved if the memory size exceeds a threshold, even
if the maximum buffer size has not been reached.

Inside the dataset folder, the pipeline creates two subfolders, which store
the extracted corpora and trained models, respectively. The extracted corpora
are much smaller than the original HTML datasets, so they are stored as
single files.

The list below contains a summary of the functionality of the classes
included in the package. The first three are especially interesting for storing
data and building models that interact with the pipeline.

B ScrapeDatasetWrapper — Implements both reading from and writing
into a scraped dataset. It takes in a folder path as one of its input

44

5.1. Implementation

arguments, assuming that the provided folder contains only one dataset.
It can also read the archives and retrieve raw HTML for a given URL or
domain. The output files are written into zip archives with fixed-length
random strings as file names. Additionally, each of the produced archives
contains a CSV file that maps the URLs to the file names.

B TextClassificationPipeline — Feeds the data from a dataset defined
by the wrapper to a model and trains the model. Internally, it uses a
Python context manager to ensure that the model and the dataset are
deleted after the pipeline finishes.

® TextClassificationModel — An abstract class defining the interface
that must a model must implement to interact
with TextClassificationPipeline.

B ScrapeTextExtractor — Connects the dataset with input merchants and
categories, retrieves text for a given merchant using a boilerplate remover
(jusText by default), determines the success rate of the scraping and
detects suspicious cases.

B BaseSequentialModel — Implements some of the functionality of the
abstract TextClassificationModel, assuming that the phases of the
model form a simple sequence.

® PipelineMetadataHandler — Saves data about already existing models
into a JSON file located in the __models subfolder of the dataset folder.
The data can be later “queried” using patterns that the model must
satisfy (type, parameters, used extractor etc.) using the find_models
method which functions similarly to the MongoDB find command.

The script example_experiment.py in the attachments demonstrates the
integration of a model into the pipeline code on the example of classifier
using TFIDF + Naive Bayes. This example should be runnable on the
attached artificial data. It should also be possible to run the Top2Vec pipeline
using top2vec_experiment.py, though this requires the modified Top2Vec
package.

The implementation of BaseSequentialModel uses string names to identify
the phases and requires the user to manually specify which model parameters
influence which phases. This was done to simplify the integration with existing
modifications to the Top2Vec code, but it could have been done in a cleaner
way, e.g. by defining a decorator for a phase function and automatically
collecting the parameters of decorated functions using Python’s inspect
module.

B 5.1.2 Testing the implementation

When the pipeline is initialized, it first verifies that all of its components
(including the model) can be initialized, and whether the model can be loaded
from an existing file to skip some phases. However, this assumes that the

45

5. Experiments

implementation of the pipeline itself is correct, i.e. it can gauge the errors
and perform all operations properly.

Given that the pipeline contains several components that take a longer
time to complete on a real dataset, it is crucial to first create tests verifying
that all components are functioning properly and that they can be integrated
into the pipeline successfully.

Testing the pipeline can be a challenging task, as its execution depends on
the properties of the dataset. In particular, the text extraction, which is the
first step in the pipeline, can potentially discard the entire dataset if it does
not seem like valid data. This means that if the testing dataset is designed
incorrectly, it is not possible to test the later steps of the pipeline.

The module utils.py in the package contains functions that generate
random text documents and faux HTML datasets. These functions are
designed with the following goals in mind:

® The generated text should be “similar enough” to some natural language
to fool an extractor into not marking them as boilerplate. (The provided
functions can bypass boilerplate removal by the jusText extractor by
being sufficiently similar to English-language text.)

® The documents should have a basic HTML structure, so that the ability
of the extractor to transform HTML documents into a text corpus is
verified.

® The documents should be tagged with “URLs” like in a real scraped
dataset.

B The generated text should have various “topics”, where each segment
(paragraph) of the text is generated from the vocabulary of a single topic.

® The topics that are used in a particular document should be determined
by the domain of the document’s URL. This ensures that the entire
domain can be assigned to a particular topic (which is what we are trying
to accomplish with real websites).

Using these functions and the unittest module from the Python standard
library, several tests were implemented. The tests target the basic functionality
of the pipeline components and the pipeline itself, and can be found in the
tests folder in the attachments.

B 5.1.3 Proposed modification to the Top2Vec package

Top2Vec provides a unified and consistent interface to discovering topics
from corpora, building upon Gensim’s implementation of Doc2Vec, UMAP,
and TensorFlow’s repository of pre-trained models. For this reason, we have
decided to build upon Top2Vec’s solution to the problem, rather than create
a new one from scratch. However, some issues with the package have been
identified:

46

5.1. Implementation

® The package doesn’t treat internal variables consistently — some (e.g. high-
dimensional document vectors) are stored as the object’s attribute
and can thus be loaded from a saved instance, while others (e.g. low-
dimensional vectors produced by dimension reduction) only have a local
scope, despite being less memory-consuming in some cases.

8 The Top2Vec object has no interface to only run a part of the algorithm,
making it effectively impossible to use a loaded instance to skip the earlier
phases, or to save an unfinished model for future use. The entire algorithm
runs inside the constructor of the Top2Vec class and isn’t structured in a
way that would allow to re-run a part of the algorithm e.g. by calling a
method of the object. This is quite limiting, since the preprocessing the
documents and generating embeddings can take hours, and a new model
that only tweaks a downstream operation cannot be created without first
re-running the earlier, expensive steps.

To improve the utilization of the package during the experiments, it was
modified in the following ways:

® The Top2Vec class was modified to save almost all variables as attributes
to the instance of the object. This was done partly to be able to recover
the values of these variables from a saved model, but also because the
model has many parameters and by saving these parameters as attributes,
we avoid having to pass them as parameters to internal functions later.

® Identifiable “phases” of the algorithm (e.g. tokenization, discovering
topics...) were moved to separate functions whenever this wouldn’t
require drastic changes to the structure of the class itself.

® The default parameters were moved to a config file Top2Vec.yaml.

® A new class method Top2Vec.run() was created. This method general-
izes the existing constructor of the Top2Vec class and could potentially
replace it. The most important change is that besides being able to
run from a corpus, the model can also build upon an existing instance,
provided that the parameters match.

Top2Vec doesn’t provide support for dimension reduction methods other
than UMAP, but this can be amended quite easily. The ability to use PaACMAP
instead of UMAP was also added to the package. Switching between PaCMAP
and UMAP can be done using the use_pacmap parameter, which is False by
default.

All changes made to the package can be found in the attached diff file
Top2Vec.diff. Alternatively, the modified package can be retrieved from
a GitHub fork of the package'. The name of the package was changed to
top2vec_modified, so that it can be installed alongside the official version
of the package.

https://github.com/sterojos/Top2Vec — The attached diff was generated by com-
paring commits 7403993 and eb3cf3e. The source top2vec version is 1.0.34

47

https://github.com/sterojos/Top2Vec

5. Experiments

Top2Vec was integrated into the code of the pipeline with the attached file
top2vec_experiment.py, in particular the Top2VecModel class.

. 5.2 Results

This section discusses the results with respect to the feasibility of using
the embeddings for classifying the merchants into the pre-defined categories.
Results from the alternative approaches to classification can be found in
Section 5.4. See appendix C for more figures illustrating the properties of the
datasets.

B 5.2.1 Dataset properties

In the early experiments, three main approaches to the dimension reduction
were tested on the UK dataset:

® using a traditional bag-of-words representation and a Bayesian model,
i.e. latent Dirichlet allocation,

® using embeddings from a pretrained model — Universal Sentence Encoder
from Top2Vec,

B training a custom Doc2Vec model of the dataset using Top2Vec.

In all cases, the jusText extractor was used to convert the HTML dataset
into a corpus.

The success of the classification is directly dependent on properties of
the manifold of documents resulting from the dimension reduction of the
document embeddings. Figure 5.1 shows an example of a reasonably good
result acquired from Latent Dirichlet allocation (LDiA) embedding of the UK
corpus. Compare to Figure 5.2, which shows a PCA projection of Doc2Vec
embeddings of this corpus. Linear methods generally cannot capture the
complexity of the data in lower dimensions. The combination which achieved
best classification results was the Trafilatura extraction on the German-
language dataset.

It was found that manifold learning methods can also help to increase
separation between clusters in the data. In figure 5.3, nearest neighbors in the
high-dimensional space are connected by a line in the PACMAP-reduced space.
It is apparent that PaCMAP did a lot of work to “unravel” the manifold into
a shape that preserves its local properties. However, this does not mean that
the dataset is distorted, as such extreme transformations are only done when
necessary and this is caused by the high noise in the data. When the nearest
neighbor graph is constructed on an artifically separated dataset, it’s visible
that the separation between the clusters is preserved.

The jusText extraction appeared rather error-prone at first, seemingly
including script and JSON files in the extracted text. From the 20 most
common bigrams in the extracted corpus, only 2 could plausibly appear so

48

5.2. Results

20

10 |

—20+

~20 ~10 0 10 20

Figure 5.1: PaCMAP projection of LDiA document embedding of the UK
dataset, extracted using jusText. The points are colored according to the 25
distinct categories.

frequently in text — (“,”, “and”) and (“of”, “the”), while the rest seemed to
come from structured files — e.g. (“:”, “{”) or (“matchLevel”, “”"”). Searching
for suspicious keywords such as matchLevel, matchedWords in the corpus
reveals that they come exclusively from the prada.com domain. It appears
that these keywords come from a JSON data file sent by prada.com, which
is unusually enclosed in a <pre> tag. jusText assumes that a long <pre> tag
with a sufficient ratio of stopwords is not boilerplate, and the JSON file also
includes nested text which probably contains enough stopwords. The domain
prada.com was omitted from the set of successfully scraped domains, but it
was found that this did not significantly affect the quality of the embeddings.
Later, it was also verified that the corpora obtained using different extractors
(trafilatura, boilerpy3) also contains the bad data from prada.com, and in
the German dataset, a similar inspection of bigrams didn’t reveal anything
suspicious.

Scraping was tested on UK businesses, where it was determined that only
about 50% of businesses had a unique domain that contained non-boilerplate
text in the HTML. Many merchants are concentrated on a small set of domains
such as facebook.com, maps.google.com, to each of which several hundreds

49

5. Experiments

0.3 F

0.2F

0.1r

0.0

—0.1r

—0.2+

—0.3r

03 02 01 0.0 0.1 0.2 0.3 0.4

Figure 5.2: PCA projection of Doc2Vec document embedding of the UK dataset,
extracted using jusText. The points are once again colored by category.

of merchants are linked. For now these merchants will be ignored. Moving
forward, a different approach will need to be employed for these domains.

Scraping inexplicably failed for about 500 domains, most of which appear
to be normally accessible. This might be due to a missing header or cookies.
Unfortunately, it is slow to keep track of cookies when crawling a large number
of domains.

For many websites, the connection was refused due to missing headers.
This could probably be avoided by using different headers imitating a human
user.

On the Spanish dataset, Top2Vec with Universal Sentence Encoder failed to
converge unless results from Catalonia (top-level domain . cat) were excluded.
This is probably because the local businesses use the Catalan language instead
of Spanish, which is similar enough to Spanish for the boilerplate remover to
accept it as Spanish text, but distinct in more advanced vocabulary which the
Universal Sentence Encoder does not recognize. Generally, the quality of the
Spanish data was lower and the dataset was smaller. Some embeddings of the
Spanish corpus can be found in Appendix C together with other visualizations.

50

5.2. Results

20+

10 -

—10

720 =

~20 ~10 0 10 20

Figure 5.3: Visualization of the dimension reduction performed by PaCMAP
on the LDiA document embedding of the UK dataset. Each point is connected
with a line to the point which was its nearest neighbor prior to the dimension
reduction.

B 5.2.2 Comparison of classifiers and extractors

Tables 5.1 and 5.2 show the results of different classifiers and extractors on
standard Top2Vec embeddings (Doc2Vec + UMAP with 5 output dimensions).
In both cases 70 % of the dataset was used as training set and 30 % as test
set.

In the tables, MF1 stands for micro-averaged F1 score and WF1 is the
weighted average F1 score. The weighted F1 score is usually very similar to
the accuracy, as is evident from the German data. For this reason, it is not
reported for the English data.

As part of the early experiments, I tried to use train a feedforward neural
network to classify the high-dimensional LDiA embeddings of the jusText-
extracted UK dataset (depicted after reduction in Figure 5.1). There was
an issue with overfitting on the training data, but I was able to mitigate
this by adding dropout to the network, in the end reaching an accuracy of
63.94 %. At the time I believed that this was a bad result, but seeing the
performance of Top2Vec embeddings, the issue was clearly in data quality,

o1

5. Experiments

jusText Trafilatura
Classifier ACC | MF1 | WF1 || ACC | MF1 | WF1
LDA 48.6 | 23.0 | 44.0 60.3 | 31.1 | 56.3

Logistic regression (LBFGS) || 49.8 | 24.8 | 45.7 || 62.7 | 34.3 | 59.2

Logistic regression (SAG) 53.8 | 30.2 | 49.9 || 62.9 | 34.1 | 59.4

Random forest 66.8 | 48.7 | 66.1 69.9 | 55.6 | 69.5
RBF-kernel SVM 61.7 | 36.4 | 59.3 63.4 | 32.3 | 59.5
5-NN 66.7 | 52.0 | 66.4 || 70.0 | 57.8 | 69.7

3-NN 65.9 | 49.7 | 65.8 67.5 | 53.6 | 67.5

TF-IDF + Naive Bayes 24.1 | 0.02 | 0.10 0.26 | 0.03 | 0.13

Table 5.1: Results for various classifiers on the German dataset, using a custom
Doc2Vec model and the UMAP dimension reduction.

jusText boilerpy3 Trafilatura
Classifier ACC | MF1 || ACC | MF1 || ACC | MF1
LDA 56.8 | 31.1 || 58.1 | 32.2 || 57.9 | 35.2

Logistic regression (LBFGS) || 59.0 | 34.8 || 56.2 | 28.9 | 58.3 | 31.5

Logistic regression (SAG) 59.3 | 36.1 || 56.4 | 29.5 || 59.6 | 32.2

Random forest 66.2 | 46.7 65.5 | 45.7 66.5 | 49.8
RBF-kernel SVM 61.8 | 35.7 || 60.1 | 28.3 || 63.7 | 37.7
5-NN 65.8 | 49.1 || 65.8 | 46.5 || 66.6 | 49.5

3-NN 62.7 | 46.8 || 62.7 | 45.0 || 63.5 | 45.3

Table 5.2: Results for various classifiers on the English dataset, using a custom
Doc2Vec model and the UMAP dimension reduction.

and this might be a viable alternative — both LDiA and a simple feedforward
network consume much less time than Doc2Vec. The training can be found
in a Jupyter notebook in the attachments as 1dia_nn_training.ipynb.

. 5.3 Discussion

In an ideal world, much of the work done in this thesis would not be needed,
as web developers would be able to use already established ontologies such
as Schema.org or OpenGraph to embed the relevant structured data directly
into the source code of their websites. However, even though the use of
these ontologies is quite widespread, it is not nearly frequent enough for the
construction of a knowledge base covering the businesses in a given country.

The embedding space tends to be remarkably complex regardless of the
employed language model. This has several consequences:

® Clusters discovered in the data by algorithms such as HDBSCAN do not
directly correspond to categories, though some of them might represent
subsets of categories. This will be elaborated upon in Subsection 5.4.3.

® Linear algorithms fail to learn anything useful from the data. In par-

52

5.4. Alternative approaches

ticular, algorithms like PCA can’t find helpful subspaces, and linear
classification algorithms typically don’t converge.

B (Classifiers allowing more complexity, such as kernel SVMs and neural
networks, easily overfit on the training data.

Nonetheless, the categories were deliberately not simplified to investigate
the possibility of fully automating the categorization process using supervised
learning from already categorized businesses. Note that the human labels,
while verified, can also contain some mistakes.

In a practical setting, since K-NN performs well on this data, classification
might be reasonably reliable using the following classification process:

® For each document in the test set, retrieve K (e.g. 3) documents from
the training set which are the nearest neighbors.

® Return a category prediction C if all K neighbors have class C. If the
categories of the neighbors don’t agree, return “unknown”.

This way, we might maximize the precision of the classification, sacrificing
some accuracy. Since we are looking for knowledge about the websites, it’s
more important to be precise than to cover all cases.

B 5.4 Alternative approaches

I also tried some of the experiments outlined in Section 4.4. In this section, I
will describe the limitations and results.

B 5.4.1 Extracting tag descriptions from existing knowledge
bases

Two open knowledge bases that contain structured general knowledge were
investigated for this purpose, Wikidata? and DBpedia®. While DBpedia
is a project based on automated extraction of knowledge from Wikipedia
articles, Wikidata is a knowledge base that can be linked to Wikipedia, but
is a separate project that contains a mixture of procedurally generated and
human input.

The idea is to match our categories onto Wikidata resources, and use the
descriptions provided with these resources to help create a more specific
prompt or sequence for embedding. The motivation is that models often
struggle to distinguish between some categories where the difference is not
immediately obvious in all cases, such as “Groceries” and “Food And Drink”.

However, experiments showed that this method of creating category de-
scriptions is unreliable, not because of being wrong, but because of being
incomplete. A simple client, wikidata_fetcher.py (found in the attach-
ments), was made to retrieve descriptions of categories from Wikidata. Some

Zhttps://query.wikidata.org/
3https://dbpedia.org/sparql

53

https://query.wikidata.org/
https://dbpedia.org/sparql

5. Experiments

Wikidata ID label description
Q180846 supermarket large form of the traditional grocery
store

Q864440 health food store | type of grocery store that primarily
sells health foods, organic foods and
local produce

Q2024419 online grocer e-commerce service that sells retail
foodstuffs and other household supplies

Q7361709 convenience store | small store that stocks a range of ev-
eryday items

Q11914717 colmado type of grocery store specific to
Barcelona

Q27676067 Amazon Go chain of grocery stores operated by

Amazon.com

Q107452610 | grocery store bus | bus used as a mobile grocery store

Q111593675 | social supermarket

Table 5.3: Direct subclasses of “grocery store” in the Wikidata knowledge base
as of March 2024.

top-level categories were manually matched onto closest Wikidata equiva-
lents. Note that this experiment was done in March 2023 and the Wikidata
knowledge base changes dynamically, much like Wikipedia.

Table 5.3 shows an example of resources that are considered direct subclasses
of a grocery store in Wikidata. Note that while some of these might be useful
to explain what different types of businesses are considered grocery stores,
others (“store in Barcelona”) might actually be counterproductive. Some
other examples were even worse — either the generic concept barely had any
subclasses and businesses attached to it, or many of them refer to very specific
concepts particular to a location or culture.

DBpedia reliably extracts basic information about a given subject, but
doesn’t process the content of the articles very deeply. Contrary to initial
expectations, it seems that DBpedia might actually be the better candidate
for a reliable knowledge base to extract data from. Compared to Wikidata,
it has much better annotations and correct tags for companies, although
the ontology doesn’t always work in an expected way. Utilizing an external
knowledge base with a more complex ontology leads to a more complex
solution of the problem of entity matching, which is out of the scope of this
thesis.

B 5.4.2 Using LLMs for text classification

I attempted to use large pretrained models for text classification. There are
essentially two straightforward ways this could be done: either by means of
prompting a model with instructions and, hopefully, retreiving the prediction
from a sensibly formatted answer, or by extracting embeddings of documents
from the model, and then leveraging the meaning encoded in the embedding

o4

5.4. Alternative approaches

space to perform the classification itself using a simpler model.

I ran some LLMs locally to see how much they are capable of, and also to
what extent such tasks are computationally manageable. I used 7B models,
which are typically the “smallest LLMs” available, so the results might not
be entirely relevant for larger models.

B Text classification by prompting

In order to fit the most relevant text from each document in the corpus into
a prompt, I used TF-IDF to create scores for words, and then selected the
sentences from the text which had the highest average TF-IDF score across
all words which are not stopwords (i.e. very common words like is, he). There
are issues with this approach, since can alter the ordering and disturb the
overall flow of the text. However, text gathered from business websites rarely
tells a coherent story.

I tested two models locally in this way, namely LLaMA 2 and Mistral, via
Ollama. The models were tasked to classify the text into one of the predefined
categories and were informed that the text comes from the website of the
business and that they ought to use it to help them make their decision. The
experiments can be found in the prompting folder in the attachments.

One positive outcome of this experiment is that both models understood
the assignment and didn’t lose track of the context, despite being given the
instructions at the very beginning of the lengthy prompts.

A minor issue is that they tended to sometimes respond with short sentences
when they were told to only reply with the category name, but their responses
were predictable enough that the category name could very likely be extracted
with a regular expression. A worse problem with the responses is that they
sometimes were invalid, i.e. they contained a hallucinated category not
provided as an option.

Unfortunately, the quality of the LLaMA 2 responses was very low and
could even be influenced by changing the category which was given as an
example of a “correct response” (the model responded to the example by
being significantly biased towards this category). The Mistral model appeared
to understand the task better, but the accuracy of its responses was still quite
low.

Note that this exercise shouldn’t be understood as portraying poor reasoning
skills by the models. The categorization is sometimes not entirely obvious, and
the models were only given a list of category names without any clarification.
When the businesses are categorized by humans, they are given prior training
that aims to disambiguate some common edge cases to preserve the regularity
in the category system.

On a related note, the Perplexity service seemed like a good tool for the task,
giving reasonable predictions when presented only with a list of categories
and a URL". For this reason, I also tested the Perplexity AI Sonar model,

4For instance, the Cider clothes store was classified correctly despite the confusing name
in this conversation.

55

https://www.perplexity.ai/search/httpswwwshopcid-Categorize-this-ydFjlfSRQbeevZIqbcmB.Q

5. Experiments

available through an API, via the Perplexity Labs®. Since this model should
have access to the Internet, I only provided the links to the websites to see if
the model can gather the information itself. However, the model got lost in
the conversation often and had similar issues to LLaMA2. That being said,
there is now a LLaMA 3-based model in the same API which might work
better.

B Using LLM embeddings for text classification

Since Mistral seemed to be a reasonably good model for the task based on the
prompting experiment, I also tried to extract embeddings of the documents
from the model and use it just like the other embedding models. Unfortu-
nately, the embeddings were found to be of worse quality than the Doc2Vec
embeddings, comparing using K-NN classifier after dimension reduction (this
only reached about 40% on Mistral embeddings). The Mistral embeddings
can be seen visualized in the usual manner in the appendix. They can be
generated via Ollama like this:

from langchain_community.embeddings import 0OllamaEmbeddings
documents: list[str] = ["doc 1", "doc 2"]

embedder = OllamaEmbeddings(model="mistral")
embeddings = embedder.embed_documents(documents)

Later, I tried to acquire document embeddings on the English dataset
from LLaMA 3, seeing that it is now the state-of-the-art model for English.
Unfortunately, the GPU used for the experiments ceased to function during
the generation of these embeddings, and was therefore no longer available for
further experiments.

B 5.4.3 Using clustering to categorize businesses

The aim of this experiment was to explore how the human-made category
labels are related to the topics obtained using Top2Vec (i.e. HDBSCAN).
First, the Jaccard index J was computed for all topic-category pairs across

the dataset:
_ |ANnB|

- |AUB|

Then, for each topic, a best category match was found as the category with
the highest Jaccard score with respect to the topic. Analogously, a best topic
match was found for each category.

Then, for each document, it was evaluated whether this document is
matched “as expected”, i.e. the topic of the document is the topic match
for the category of the document, and the category of the document is the
category match for the document’s topic. A visualization of this in the

J(A, B)

(5.1)

*https://labs.perplexity.ai/

56

https://labs.perplexity.ai/

5.5. Creating a knowledge base

PaCMAP-reduced space can be found in the appendix. This relationship
would perhaps be better visualized as a bipartite graph, but this would be
challenging to depict properly and fit onto a page since the topics outnumber
the categories by 62 to 25.

More importantly, we should try to answer the question of whether it is
possible to use the topics to assign the documents to a category, since this is
the way one might practically utilize the topics to accelerate the assignment
of categories to a large corpus of documents. Table 5.4 is an attempt to
answer this question. For a selection of large topics (i.e. topics that contain
many documents), the similarity to the closest category was evaluated as the
fraction of documents in the topic that belong to the closest category. The
most similar words to the topic were retrieved from Top2Vec to illustrate the
meaning of that topic.

From Table 5.4, it appears that if there is a good category match, the words
most similar to that topic match the category quite well, even if this is not
immediately obvious. Here, it is worthwhile to investigate the tag hierarchy
which is described in Section 5.5. For example, the topic represented by words
“djs, gigs, ...” might evoke a night club, not “Food And Drink”®. In the tag
hierarchy, there is a “Night Club” tag under the “Freetime” category, but
there is also a “Bar” tag under the “Food And Drink” category. In fact, the
“Bar” tag has a much higher prevalence than the “Night Club” tag (9777 to
29). Therefore, we can probably attribute this topic to the “bars” present in
the input data.

There are also some topics that don’t clearly correspond to any category,
but this can likely be attributed to the noisiness of the data. If better
embeddings could be acquired, categorizing the businesses “en masse” by
assigning whole topics to categories might be a helpful tool to speed up
the categorization process if no data is yet available for a given country or
language. However, this would also be risky, since having no input data, there
would be no way to assess the quality of the embeddings.

B 55 Creating a knowledge base

To demonstrate the usage of the models’ predictions in a knowledge base, 1
used Ontotext GraphDB, which is a graph database compliant with RDF
and SPARQL standards. The tag tree, which is visualized in Figure B.1
located in the appendices, was converted into an RDF representation. This
representation can be found in the knowledge_base folder in the attachments.
Besides describing the hierarchy, the RDF files contain some extra information,
such as how many merchants belong to a tag in the TapiX database, and a
couple Wikidata IDs of the categories which were matched onto Wikidata
resources.

5The reasoning behind this, as explained by a specialist, is that spending inside music
clubs is dominated by drinks, so this is the correct category to assign to most payments
that happened inside a music club.

o7

5. Experiments

Topic size | Most similar words Most similar category | Similarity
215 ales, beers, lagers, beer, pub Food And Drink 0.930
202 timber, decking, cladding,| House And Garden 0.870
flooring, roofing

201 djs, gigs, anthems, music, Food And Drink 0.789
dancefloor

159 hotel, rooms, overlooking, en- Travel 0.596
suite, guests

149 bakers, cakes, cake, patisserie, Groceries 0.505
baked

147 wardrobe, outfit, jeans, flatter- Fashion 0.725
ing, fatface

134 brasserie, dishes, menus, ram- Food And Drink 0.934
say, restaurant

126 flapper, pm, am, ormsby, sat Food And Drink 0.541

118 recruitment, candidates, re-| Professional Services 0.853
cruit, candidate, roles

105 noodles, rice, curry, tofu, spices Groceries 0.479

95 automate, workflow, spread- Digital Services 0.627
sheets, zoho, pipedrive

95 smugmug, foregoing, hellofresh, Food And Drink 0.262
therein, flickr

86 governance, leadership, glan- Food And Drink 0.234
bia, stakeholders, shareholders

Table 5.4: Examples of large topics discovered by Top2Vec and their closest
category matches.

We will also need to convert the outputs of the pipeline into RDF. The
pipeline stores the models’ predictions into the __models subfolder of the
dataset folder, where they are stored in a compressed CSV file together with
the serialized model. These predictions can be converted to RDF using the
provided example script, prediction_to_rdf.py, as follows:

python3 prediction_to_rdf.py -i results.csv.gz -o merchants.ttl

Thus the raw data from the predictions is correctly included into the RDF
graph of the tag tree. The script requires the rdf1ib Python library, which
was also used for all other RDF processing.

I created a new repository in GraphDB (Figure 5.4) and inserted all of the
RDF files into this repository Figure 5.5. Then, I ran an example SPARQL
query in the repository, which can be found in Appendix D. This query
estimates the most likely number of merchants in the repository that should
have a given tag, using the relative frequency of the tags in the given categories
according to the counts included in the tag tree, and the number of merchants
with a given category in the extracted repository. Then, the tags are sorted
by this expected number of occurences, so that the tags that are expected to

o8

5.6. Further steps

be most frequent appear on top. The result of the query is in Figure 5.6.

GraphDB | _
Create GraphDB repository

@ Import

Repository ID* category-sample
@ Explore Repository description Knowledge Base Example

[Read-only

{-} sParaL

Inference and Validation
Monitor

Ruleset RDFS-Plus (Optimized) M

{D} =2 Disable owl:sameAs
Repositories [Enable consistency checks
lemmemiEeEs [0 Enable SHACL validation » SHACL options
My Settings

Indexing
Connectors _

Entity ID size @® 32-bit O 40-bit
Cluster
[Enable context index
Plugins
Enable pr: ite list ind

e nable predicate list index
Autocomplete O Enable full-text search (FTS) index

Figure 5.4: Creating a repository in GraphDB.

B 5.6 Further steps

I believe the solution of data storage and model training is satisfactory for
now. Moving forward, what would probably require the most work is the
text extraction, because the existing solutions are not satisfactory even for
(mostly) small websites that this was tested on, judging by the accuracy
achieved by the classifiers when comparing e.g. to [RBP24]. The issue is
that this is also the part of the process that is the least covered by existing
research, so it’s difficult to determine what could improve the performance
reliably. Replacing the plain HTML crawler with a headless browser might
not be a top priority, since in this specific case the content we’re looking for
is usually not dynamically generated (websites that were scraped successfully,
but had no valid content were rare).

As far as further development of the package is concerned, below are some
encountered issues and ideas for improvement.

B Text extraction is not parallelized by default. This could be amended
using Python’s native multiprocessing library. However, compared to
the other parts of the pipeline such as training Doc2Vec models, text
extraction is a relatively fast process.

B The URLs and categories supplied to the extractor have to have a very
rigid structure (CSV file with gzip compression and correct order of
columns).

99

5. Experiments

Import o
User data Server files
‘@’ Explore
£y Upload RDF files <§> Get RDF ¢
{+} sParaL
Monitor & Import . Reset status Remove
& merchants.ttl
{é} Setup o) .
® Help &gpix-categories.ltl

< tapix-ontology.ttl

@

&, tapix-tags.ttl

@

Figure 5.5: Importing Turtle files into GraphDB.

® Lambda expressions cannot be used as the extractor, because the name
of a lambda function is internally <lambda> instead of the name of the
variable in which it is stored.

B Since the package uses the name of the module to identify the func-
tions/model classes, these have to be imported from a module with a
specific enough name. If these components are defined directly in the
script running the pipeline, __main__ is used as the module name, which
could lead to confusion.

® The package doesn’t utilize any databases, instead using file hierarchies
and ZIP archives for storage. This was not an issue as far as the
experiments for this thesis are concerned, but it could nonetheless be
problematic when scaling to significantly larger datasets.

® Python’s native csv exporter doesn’t seem to be entirely reliable, some-
times apparently inserting NUL bytes into the files that make the files
impossible to decode for the native CSV reader (while other CSV readers
can still read them).

60

5.6. Further steps

Filter query Showing results from 1 to 420 of 420. Query took 0.1s, minutes ago.

category : tag $ expected_tag_count 3

1 txc:FoodAndDrink txtRestaurant "64.529090932645843319641530" s deciml
2 txc:Groceries txt:GroceriesOther *41.698962701390421540493770" s decimal
3 txc:FoodAndDrink txt:Drinking "39.043542473668527899051485" x5 decimal
4 txc:FoodAndDrink txt:Bar "36.985632667867183147856445" 4 decimal
5 txcTravel txtAccommodations "29.678014422270669126276870" *sddecimal
6 txcTravel txtHotelsAndGuesthouses "27.933255072949857454299786" <4 decimal
7 txc:FoodAndDrink txt:Cafe *19.610669914106932334917440" *sd decimal
8 txc:Car txt:GasStation *15.182768418916176172113043" s decimal
9 txcHouseAndGarden txt:HouseholdEquipment "14.955647477881190394117242""xsd decimal
0 txc:ProfessionalServices txt:ServicesMix *14.466618894064254150245318" s decimal

Figure 5.6: Result of the GraphDB query.

61

62

Chapter 6

Conclusion

In this thesis, we investigated multiclass text classification on corpora ex-
tracted from websites of businesses. A Python package was created for storing
and managing large HTML datasets. Using the package, datasets were cre-
ated from scraped websites. Web scraping and HTML boilerplate removal
was applied to several thousands of websites. The datasets were analyzed
with respect to pre-determined ground truth categories in the following way:

Embeddings of the text from the websites were obtained using various
language models.

Quality of the embeddings was assessed by training classifiers on the
pre-determined categories.

In the embedding space, categories were compared to groups of documents
discovered using clustering.

The Top2Vec package was modified to allow running from an existing instance
to save time when training many classifiers on the same model.

Based on the findings of this thesis, key features of the solutions to the
problem that should be prioritized include:

Explainability: Using manifold learning methods is extremely helpful
for visualizing the embeddings. The quality of the model can be as-
sessed visually, which can reveal more about the model than a simple
classification score.

Efficiency: Training a Doc2Vec model is quite fast even on a CPU,
and is surprisingly effective on noisy datasets. In comparison, even a
large model can produce bad embeddings, when the documents are not
preprocessed properly.

Tailor-made models: Even simple models such as latent Dirichlet alloca-
tion seem to have the potential to be equivalently effective to pre-trained
models.

Dataset preprocessing: Text extracted from many different websites is
unpredictable and noisy when compared e.g. to datasets of news articles.

63

6. Conclusion

This means that simple techniques such as TF-IDF fail to process the
text. However, those same simple techniques could potentially be used
to analyze the dataset and improve its quality.

While customizing the solutions for this particular problem seems to be the
best path forward, making too many assumptions about the datasets should
be avoided'.

In the future, extracting other information from the websites might also be
of interest, e.g. brand name, name of the legal entity, or locations of physical
points of sale.

"http://www.incompleteideas.net/IncIdeas/BitterLesson.html

64

http://www.incompleteideas.net/IncIdeas/BitterLesson.html

Bibliography

[Ang20] Dimo Angelov. “Top2Vec: Distributed Representations of Topics”.
In: (2020).

[Baa+07] Franz Baader et al., eds. The Description Logic Handbook. The-
ory, implementation, and applications. Second edition. Title
from publisher’s bibliographic system (viewed on 05 Oct 2015).
Cambridge: Cambridge University Press, 2007. 1601 pp. ISBN:
9780511711787.

[BHN23] Anas Bodor, Meriem Hnida, and Daoudi Najima. “From Devel-
opment to Deployment: An Approach to MLOps Monitoring
for Machine Learning Model Operationalization”. In: Nov. 2023,
pp. 1-7. bor: 10.1109/SITA60746.2023.10373733.

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learn-
ing. Information Science and Statistics. New York, NY: Springer
Science+Business Media, LLC, 2006. 758 pp. 1SBN: 8132209060.

[Blu20] Andreas Blumauer. The knowledge graph cookbook. Recipes that
work. Ed. by Helmut Nagy. 1st edition. Wien: edition mono/monochrom,
2020. 256 pp. 1SBN: 3902796707.

[BNJO3] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. “Latent
Dirichlet Allocation”. In: J. Mach. Learn. Res. 3.null (Mar. 2003),
pp. 993-1022. 18SN: 1532-4435.

[Bor23| Mitchell Borchers. “Active learning in E-Commerce Merchant
Classification using Website Information”. MA thesis. Charles
University, Faculty of Mathematics and Physics, June 2023. URL:
http://hdl.handle.net/20.500.11956/181873.

[Cer+18] Daniel Cer et al. “Universal Sentence Encoder”. In: (Mar. 2018).
DOI: 10.48550/ARXIV.1803.11175.

[CMS13] Ricardo J. G. B. Campello, Davoud Moulavi, and Joerg Sander.
“Density-Based Clustering Based on Hierarchical Density Esti-
mates”. In: Advances in Knowledge Discovery and Data Mining.
Ed. by Jian Pei et al. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2013, pp. 160-172. 1SBN: 978-3-642-37456-2.

65

https://doi.org/10.1109/SITA60746.2023.10373733
http://hdl.handle.net/20.500.11956/181873
https://doi.org/10.48550/ARXIV.1803.11175

6. Conclusion

[DE19]

[Dev+18]

[DS23]

[Est+96]

[EVW16]

[Fas08]

[G+23]

[Gan23]

[GBC16]

[Gral3|

R. Kanniga Devi and G. Elizabeth Rani. “A Comparative Study
on Handwritten Digit Recognizer using Machine Learning Tech-
nique”. In: 2019 IEEFE International Conference on Clean Energy
and Energy Efficient Electronics Circuit for Sustainable Devel-
opment (INCCES). 2019, pp. 1-5. DOI: 10.1109/INCCES47820.
2019.9167748.

Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding”. In: (Oct. 2018). por:
10.48550/ARXIV.1810.04805.

Cagdag Dogan and Sinan Sarica. “Comparison of Classifiers for
Text Classification in an E-commerce Service”. In: 2023 14th
International Conference on Electrical and Electronics Engineer-
ing (ELECO). 2023, pp. 1-5. DOI: 10.1109/ELEC060389.2023.
10415941.

Martin Ester et al. “A density-based algorithm for discovering
clusters in large spatial databases with noise”. In: Proceedings
of the Second International Conference on Knowledge Discovery
and Data Mining. KDD’96. Portland, Oregon: AAAI Press, 1996,
pp- 226-231.

Meng Joo Er, Rajasekar Venkatesan, and Ning Wang. “An online
universal classifier for binary, multi-class and multi-label classi-
fication”. In: 2016 IEEFE International Conference on Systems,
Man, and Cybernetics (SMC). IEEE, Oct. 2016. boI1: 10.1109/
smc.2016.7844809.

Ralph W. Fasold, ed. An Introduction to Language and Lin-
guistics. 1. publ., Repr. Cambridge [u.a.]: Cambridge University
Press, 2008. 540 pp. I1SBN: 9780521612357.

Devaraja G et al. “A Comparative and Analytical Study of Text
Classification Models using Various Metrics and Visualizations”.
In: 2023 OITS International Conference on Information Technol-
ogy (OCIT). IEEE, Dec. 2023. DOI: 10.1109/0cit59427.2023.
10430972.

S. Ganeshmoorthy. “Classification of Web Pages: A Compar-
ison of Recent Machine Learning Techniques”. In: 2023 7th
International Conference on Electronics, Communication and
Aerospace Technology (ICECA). 2023, pp. 595-602. DOIL: 10 .
1109/ICECA58529.2023.10394818.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learn-
ing. http://www.deeplearningbook.org. MIT Press, 2016.

Alex Graves. “Generating Sequences With Recurrent Neural
Networks”. In: (Aug. 2013). DOI: 10.48550/ARXIV.1308.0850.

66

https://doi.org/10.1109/INCCES47820.2019.9167748
https://doi.org/10.1109/INCCES47820.2019.9167748
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.1109/ELECO60389.2023.10415941
https://doi.org/10.1109/ELECO60389.2023.10415941
https://doi.org/10.1109/smc.2016.7844809
https://doi.org/10.1109/smc.2016.7844809
https://doi.org/10.1109/ocit59427.2023.10430972
https://doi.org/10.1109/ocit59427.2023.10430972
https://doi.org/10.1109/ICECA58529.2023.10394818
https://doi.org/10.1109/ICECA58529.2023.10394818
http://www.deeplearningbook.org
https://doi.org/10.48550/ARXIV.1308.0850

[Hap19]

[Has17]

[Jam-+23]

[Jan+20]

[IM23]

[JR12

[KCO04]

[KST23]

[Kub17]

[LAK20]

[LG90]

6. Conclusion

Hannes Max Hapke. Natural Language Processing in Action.
Understanding, analyzing, and generating text with Python. Ed.
by Cole Howard and Hobson Lane. Shelter Island, N.Y.: Manning
Publications Co., 2019. 1619 pp. 1SBN: 9781638356899.

Trevor Hastie. The Elements of Statistical Learning. Data mining,
inference, and prediction. Ed. by Robert Tibshirani and Jerome
H. Friedman. Second edition. Springer Series in Statistics. De-
scription based on publisher supplied metadata and other sources.
New York, NY: Springer, 2017. 1745 pp. 1SBN: 9780387848587.

Gareth James et al. An Introduction to Statistical Learning.
With applications in Python. Springer texts in statistics. Cham,
Switzerland: Springer, 2023. 607 pp. 1SBN: 9783031387463.

Valentina Janev et al., eds. Knowledge graphs and big data pro-
cessing. LAMBDA Big Data Analytics Summer School. State-
of-the-art survey. The lectures were presented at the LAMBDA
Big Data Analytics Summer School (the first edition was held
in Belgrade during June 17-19, 2019; the second edition was
held online during June 16-17, 2020) - Acknowledgments. Cham:
Springer, 2020. 207 pp. ISBN: 9783030531980.

Dan Jurafsky and James H. Martin. Speech and Language Pro-
cessing (3rd ed. draft). 2023. URL: https://web.stanford.edu/
~jurafsky/slp3/.

Gerhard Jéager and James Rogers. “Formal language theory:
refining the Chomsky hierarchy”. In: Philosophical Transactions
of the Royal Society B: Biological Sciences 367.1598 (July 2012),
pp- 1956-1970. 18SN: 1471-2970. DOI: 10.1098/rstb.2012.0077.

Graham Klyne and Jeremy J. Carroll. Resource Description
Framework (RDF): Concepts and Abstract Syntaz. W3C. 2004.
URL: http://www.w3.org/TR/2004/REC-rdf - concepts -
20040210/ (visited on 03/15/2015).

Caleb Koch, Carmen Strassle, and Li-Yang Tan. “Properly Learn-
ing Decision Trees with Queries Is NP-Hard”. In: (July 2023).
DOI: 10.48550/ARXIV.2307.04093.

Miroslav Kubat. An Introduction to Machine Learning. Springer
International Publishing, 2017. 1SBN: 9783319639130. poOI1: 10.
1007/978-3-319-63913-0.

Jurek Leonhardt, Avishek Anand, and Megha Khosla. “Boiler-
plate Removal using a Neural Sequence Labeling Model”. In:
(2020) DOI: 10.48550/ARXIV.2004.14294.

Douglas Lenat and R. V. Guha. “CYC: A Midterm Report”.
In: AI Magazine 11.3 (Sept. 1990), p. 32. DOIL: 10.1609/aimag.
v11i3.842. URL: https://ojs.aaai.org/aimagazine/index.
php/aimagazine/article/view/842.

67

https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/slp3/
https://doi.org/10.1098/rstb.2012.0077
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
https://doi.org/10.48550/ARXIV.2307.04093
https://doi.org/10.1007/978-3-319-63913-0
https://doi.org/10.1007/978-3-319-63913-0
https://doi.org/10.48550/ARXIV.2004.14294
https://doi.org/10.1609/aimag.v11i3.842
https://doi.org/10.1609/aimag.v11i3.842
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/842
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/842

6. Conclusion

[Liut19]

[LM14]

[Mak+21]

[MG22]

[MHM18]

[Mik+13]

[Mit13]

[Mot+-08]

[Olal5]

[Ras16]

[RBP24]

Yinhan Liu et al. “RoBERTa: A Robustly Optimized BERT
Pretraining Approach”. In: (July 2019). DO1: 10.48550/ARXIV.
1907.11692.

Quoc V. Le and Tomas Mikolov. “Distributed Representations
of Sentences and Documents”. In: (May 2014). DOI: 10.48550/
ARXIV.1405.4053.

Sasu Makinen et al. “Who Needs MLOps: What Data Scien-
tists Seek to Accomplish and How Can MLOps Help?” In: 2021
IEEE/ACM 1st Workshop on AI Engineering - Software En-
gineering for AI (WAIN). IEEE, May 2021. po1: 10. 1109/
wainb2551.2021.00024.

Beatriz M. A. Matsui and Denise H. Goya. “MLOps: a guide to
its adoption in the context of responsible AI”. In: Proceedings
of the 1st Workshop on Software Engineering for Responsible Al
ICSE ’22. ACM, May 2022. DOI: 10.1145/3526073.3527591.

Leland McInnes, John Healy, and James Melville. “UMAP: Uni-
form Manifold Approximation and Projection for Dimension
Reduction”. In: (Feb. 2018). DOI: 10.48550/ARXIV.1802.03426.

Tomas Mikolov et al. “Efficient Estimation of Word Representa-
tions in Vector Space”. In: (Jan. 2013). DOI: 10.48550/ARXIV.
1301.3781.

Tom M. Mitchell. Machine Learning. [Nachdr.] McGraw-Hill in-
ternational editions. New York [u.a.]: McGraw-Hill, 2013. 414 pp.
ISBN: 0071154671.

Boris Motik et al. OWL 2 Web Ontology Language: Structural
Specification and Functional-Style Syntax. Last Call Working
Draft. (to be published, may be superseded). W3C, 2008. URL:
http://www.w3.0rg/2007/0WL/draft/owl2-syntax/.

Christopher Olah. Understanding LSTM Networks. 2015. URL:
https://colah.github.io/posts/2015-08-Understanding-
LSTMs/ (visited on 03/28/2024).

Sebastian Raschka. Python Machine Learning. Unlock deeper
insights into machine learning with this vital guide to cutting-
edge predictive analytics. Ed. by Randal S. Olson. Open source
community experience distilled. First published: September 2015.
Birmingham: Packt Publishing open source, 2016. 425 pp. ISBN:
9781783555130.

Federica Rollo, Giovanni Bonisoli, and Laura Po. “A Compara-
tive Analysis of Word Embeddings Techniques for Italian News
Categorization”. In: IEEE Access 12 (2024), pp. 25536-25552.
ISSN: 2169-3536. DOI: 10.1109/access.2024.3367246.

68

https://doi.org/10.48550/ARXIV.1907.11692
https://doi.org/10.48550/ARXIV.1907.11692
https://doi.org/10.48550/ARXIV.1405.4053
https://doi.org/10.48550/ARXIV.1405.4053
https://doi.org/10.1109/wain52551.2021.00024
https://doi.org/10.1109/wain52551.2021.00024
https://doi.org/10.1145/3526073.3527591
https://doi.org/10.48550/ARXIV.1802.03426
https://doi.org/10.48550/ARXIV.1301.3781
https://doi.org/10.48550/ARXIV.1301.3781
http://www.w3.org/2007/OWL/draft/owl2-syntax/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://doi.org/10.1109/access.2024.3367246

[RG19]

[RS10]

[9923]

[TSLO00]

[Tsu21]

[TWW22]

[UL18]

[Vas+17]

[VGE1S]

[Vuk15]

[Wan+20]

6. Conclusion

Nils Reimers and Iryna Gurevych. “Sentence-BERT: Sentence
Embeddings using Siamese BERT-Networks”. In: (Aug. 2019).
DOI: 10.48550/ARXIV.1908.10084.

Radim Rehtifek and Petr Sojka. “Software Framework for Topic
Modelling with Large Corpora”. English. In: Proceedings of the
LREC 2010 Workshop on New Challenges for NLP Frameworks.
http://is.muni.cz/publication/884893/en. Valletta, Malta:
ELRA, May 2010, pp. 45-50.

Bhuvi Sangam and Savita Sangam. “An Ensemble model to ana-
lyze the sentiments of Textual Data for Monitoring and Compre-
hending Racist Views”. In: 2023 6th International Conference on
Advances in Science and Technology (ICAST) (2023), pp. 187—
190. URL: https://api . semanticscholar . org/ CorpusID:
268254694.

Joshua B. Tenenbaum, Vin de Silva, and John C. Langford.
“A Global Geometric Framework for Nonlinear Dimensionality
Reduction”. In: Science 290.5500 (Dec. 2000), pp. 2319-2323.
ISSN: 1095-9203. DOI: 10.1126/science.290.5500.23109.

Junichi Tsujii. “Natural Language Processing and Computational
Linguistics”. In: Computational Linguistics 47.4 (Dec. 2021),
pp- 707-727. 18SN: 0891-2017. DOI: 10.1162/coli_a_00420. URL:
https://doi.org/10.1162/coli%5C_a’5C_00420.

Lewis Tunstall, Leandro von Werra, and Thomas Wolf. Natural
language processing with Transformers. Building language ap-
plications with Hugging Face. Ed. by Leandro Werra, Thomas
Wolf, and Aurélien Géron. First edition. Beijing: O’Reilly, 2022.
1383 pp. 1SBN: 9781098103217.

R. Uma and B. Latha. “Noise elimination from web pages for
efficacious information retrieval”. In: Cluster Computing 22.56
(Mar. 2018), pp. 14583-14602. 1sSN: 1573-7543. DOI: 10.1007/
s10586-018-2366-x.

Ashish Vaswani et al. “Attention Is All You Need”. In: (June
2017). DOI: 10.48550/ARXIV.1706.03762.

Thijs Vogels, Octavian-Eugen Ganea, and Carsten Eickhoff.
“Web2Text: Deep Structured Boilerplate Removal”. In: Lecture
Notes in Computer Science. Springer International Publishing,
2018, pp. 167-179. por: 10.1007/978-3-319-76941-7_13.

Aleksa Vukotic. Neo4j in Action. Ed. by Nicki Watt et al. Includes
index. - Description based on print version record. Shelter Island,
NY: Manning Publications, 2015. 11 pp.

Yingfan Wang et al. “Understanding How Dimension Reduction
Tools Work: An Empirical Approach to Deciphering t-SNE,
UMAP, TriMAP, and PaCMAP for Data Visualization”. In:
(2020). DOT: 10.48550/ARXIV.2012.04456.

69

https://doi.org/10.48550/ARXIV.1908.10084
http://is.muni.cz/publication/884893/en
https://api.semanticscholar.org/CorpusID:268254694
https://api.semanticscholar.org/CorpusID:268254694
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1162/coli_a_00420
https://doi.org/10.1162/coli%5C_a%5C_00420
https://doi.org/10.1007/s10586-018-2366-x
https://doi.org/10.1007/s10586-018-2366-x
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.1007/978-3-319-76941-7_13
https://doi.org/10.48550/ARXIV.2012.04456

6. Conclusion

[Wu+20]

[Yan+19]

[YC21]

[Zen-+21]

[ZW21]

Hejing Wu et al. “Data Analysis and Crawler Application Imple-
mentation Based on Python”. In: 2020 International Conference
on Computer Network, Electronic and Automation (ICCNEA).
2020, pp. 389-393. por: 10.1109/ICCNEA50255.2020.00086.

Yinfei Yang et al. “Multilingual Universal Sentence Encoder for
Semantic Retrieval”. In: (July 2019). po1: 10 .48550/ARXIV .
1907.04307.

Yadavendra and Satish Chand. “Multiclass and Multilabel Clas-
sification of Human Cell Components Using Transfer Learning
of InceptionV3 Model”. In: 2021 International Conference on
Computing, Communication, and Intelligent Systems (ICCCIS).
IEEE, Feb. 2021. DOI: 10.1109/icccis51004.2021.9397165.

Kaisheng Zeng et al. “A comprehensive survey of entity alignment
for knowledge graphs”. In: AT Open 2 (2021), pp. 1-13. 1SSN: 2666-
6510. DOI: https://doi.org/10.1016/j.aiopen.2021.02.002.
URL: https://www.sciencedirect.com/science/article/
pii/S2666651021000036.

Hao Zhang and Jie Wang. “Boilerplate Detection via Seman-
tic Classification of TextBlocks”. In: 2021 International Joint
Conference on Neural Networks (IJCNN). IEEE, July 2021. poI:
10.1109/1jcnnb2387.2021.9534308.

70

https://doi.org/10.1109/ICCNEA50255.2020.00086
https://doi.org/10.48550/ARXIV.1907.04307
https://doi.org/10.48550/ARXIV.1907.04307
https://doi.org/10.1109/icccis51004.2021.9397165
https://doi.org/https://doi.org/10.1016/j.aiopen.2021.02.002
https://www.sciencedirect.com/science/article/pii/S2666651021000036
https://www.sciencedirect.com/science/article/pii/S2666651021000036
https://doi.org/10.1109/ijcnn52387.2021.9534308

Appendix A

Attachments
/
| _Top2Vec.diff git diff — changes made to Top2Vec
| scraping_tools..................... package for scrape processing
sterojos_svp_scraping_tools package source code
TeStS . e tests for the package
Lg,sample_dataset small artificial dataset for testing
| extraction
pipeline_datasetcoiiiiiinn.... larger artificial dataset
crawler.py............. sample Scrapy spider using the package
example_experiment.py................ simple pipeline example
top2vec_experiment.py........... Top2Vec pipeline integration
run_top2vec_experiment.py..........covuueun. example of usage
ldia_nn_training.ipynb......... training a neural net on LDiA
| knowledge_base
tapix-categories.ttl...... RDF description of knowledge base
tapix-ontology.ttl
tapix-tags.ttl
wikidata-fetcher.py .. Wikidata client for describing categories
prediction-to-rdf.py......... script for adding new merchants
| prompting........... prompting LLMs with TF-IDF filtered dataset

llama-categories-tfidf.ipynb
mistral-categories-tfidf.ipynb
category_prompt.txt

71

72

Appendix B

Dataset properties

Figure B.1: Visualization of the TapiX category tree made using the Walrus
graph visualization tool.

73

B. Dataset properties

11152

Food And Drink |

11100

| 723

Groceries |

1361

Professional Services |

| 427

Car 221

303

Travel 2 302
House And Garden *% 289

Digital Services 916
Financial Services 1169

Fashion *:| 159

Freetime *:| 122
Consumer Goods T 113

Categories

Beauty 180

Sport =63
Bills And Household 159

Health *l:l 52

Culture *D 44

Pets |

Electronics |
Income
Shopping Online
Children

Atm

=] e [T

= RN OW 00—

Investments -
Drugstore |

Business Expenses -

I [

\V)

0

| |
200 400

|
600

|
800

| |
1000 1200 1400

Count of extracted websites in category

= English = German

Figure B.2: Distribution of categories in the English-language and German-

language datasets.

74

Appendix C

Document embedding visualizations

20

10 t

-10 / A

-20

~30 20 ~10 0 10 20 30

Figure C.1: Visualization of the dimension reduction performed by PaCMAP
on an artifically separated dataset. Each point is connected with a line to the
point which was its nearest neighbor prior to the dimension reduction.

75

C. Document embedding visualizations

—~10F

-20 —15 —10 -5 0 5 10 15

Figure C.2: PaCMAP reduction of the Doc2Vec embeddings of the Spanish-
language dataset, extracted using jusText, with points colored by true category.

20 -

10 -

—10 3

—20

—15 —10 =5 0 5 10 15 20

Figure C.3: PaCMAP projection of Doc2Vec document embedding of the German
dataset, extracted using Trafilatura. The points are colored by true category.

76

C. Document embedding visualizations

e

-10 -5 0 5 10

Figure C.4: PaCMAP reduction of the Multilingual Universal Sentence Encoder
embeddings of the Spanish-language dataset, extracted using jusText, with points
colored by true category.

10

ot

—10

Ty

-10 -5 0 5 10 15 20

Figure C.5: PaCMAP reduction of the Mistral 7B embeddings of the UK dataset,
extracted using jusText, with points colored by true category.

77

C. Document embedding visualizations

10

ot

—10

—20

—10 -5 0 10 15 20

ot

Figure C.6: PaCMAP projection of Doc2Vec document embedding of the UK
dataset, extracted using jusText.

3 4 5 6 7 8 9 10

Figure C.7: Matching Top2Vec topics onto human-labelled categories. A docu-
ment is marked with black if the topic of the document is the best found match
for the category of the document, and vice versa. If either of these doesn’t apply,
the document is marked with red.

78

Appendix D

SPARQL query for testing the knowledge
base

prefix txo: <http://www.tapix.io/tapix-ontology/>

select 7category 7tag 7expected_tag_count

where
{
{
select
7category
?total_count
(count (7merchant) as ?retrieved_count)
where {
?merchant a txo:Merchant;
txo:hasCategory 7category .
?category a txo:Category .
?7category txo:hasMerchantCount
7?total_count
b
group by 7category 7total_count
order by desc (7retrieved_count)
}

bind(?retrieved_count / 7total_count as 7count_ratio)
?category txo:hasChild+ 7tag .

7tag txo:hasMerchantCount 7tag_count

bind(?tag_count * 7count_ratio as 7expected_tag_count)

3

order by desc(?expected_tag_count)

79

	Introduction
	Theoretical foundations
	Knowledge graphs
	RDF and OWL
	Cypher

	Natural language processing
	Tokenization
	TF-IDF
	Generative and discriminative models

	Classification
	Performance metrics
	Statistical learning algorithms

	Dimension reduction methods
	Linear discriminant analysis
	Latent Dirichlet allocation
	UMAP and PaCMAP

	Clustering
	K-means clustering
	Hierarchical clustering
	Density-based clustering

	Deep learning
	Word2Vec and Doc2Vec
	LSTM
	Transformer models

	Overview of existing tools
	Databases
	Web scraping
	Parsing HTML
	Rendering and browser emulation
	Content extraction
	Topic detection
	Top2Vec

	LLMs and AI search engines
	Workflow management systems

	Methodology
	Problem statement
	Main pipeline
	Scraping algorithm
	Alternative approaches

	Experiments
	Implementation
	Pipeline management
	Testing the implementation
	Proposed modification to the Top2Vec package

	Results
	Dataset properties
	Comparison of classifiers and extractors

	Discussion
	Alternative approaches
	Extracting tag descriptions from existing knowledge bases
	Using LLMs for text classification
	Using clustering to categorize businesses

	Creating a knowledge base
	Further steps

	Conclusion
	Bibliography
	Attachments
	Dataset properties
	Document embedding visualizations
	SPARQL query for testing the knowledge base

