
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Mobile Android App for Items Giveaway

Tímea Čitbajová

Ing. Marek Suchánek, Ph.D. et Ph.D.

Informatics

Web and Software Engineering, specialization Software

Engineering

Department of Software Engineering

until the end of summer semester 2024/2025

Instructions

Numerous portals, services, and applications are dedicated to offering items for free

pickup. However, they are often integrated into larger platforms, and users frequently

encounter confusion, reliability concerns, and other shortcomings within these services.

The goal of this thesis is to develop a mobile application that will aim for ease of use, i.e.,

giving and receiving items without charge in a reliable and secure way. The development

shall follow software engineering methods:

- Analyze the field of giving or receiving items without charge, use conceptual modeling

methods, and describe key processes.

- Research existing popular solutions and summarize their shortcomings.

- Set requirements for your own solution in the form of a mobile application for the

Android platform and prepare use cases.

- Design an application that meets the specified requirements. Also consider

sustainability and extensibility of the solution while designing it. Choose appropriate

technologies for implementation with regard to requirements, properly justify the choice.

- Implement a prototype application according to the design, document it, and test it.

- Evaluate the resulting solution and describe further possible development.

Electronically approved by Ing. Michal Valenta, Ph.D. on 18 November 2023 in Prague.

Bachelor’s thesis

Mobile Android App for Items Giveaway

Tı́mea Čitbajová

Department of Software Engineering
Supervisor: Ing. Marek Suchánek, Ph.D. et Ph.D.

May 16, 2024

Acknowledgements

I would like to thank my supervisor, Ing. Marek Suchánek, Ph.D. et Ph.D.,
for his expert guidance, help, patience, and valuable advice in the completion
of this work. My deep gratitude also goes to my family and friends, who
supported me both during my studies and throughout this project.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46 (6) of the Act, I hereby grant a nonexclusive autho-
rization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any way
(including for-profit purposes) that does not detract from its value. This au-
thorization is not limited in terms of time, location and quantity. However, all
persons that makes use of the above license shall be obliged to grant a license
at least in the same scope as defined above with respect to each and every
work that is created (wholly or in part) based on the Work, by modifying the
Work, by combining the Work with another work, by including the Work in
a collection of works or by adapting the Work (including translation), and at
the same time make available the source code of such work at least in a way
and scope that are comparable to the way and scope in which the source code
of the Work is made available.

In Prague on May 16, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 T́ımea Čitbajová. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of In-
formation Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Čitbajová, T́ımea. Mobile Android App for Items Giveaway. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology, 2024.

Abstrakt

Táto práca sa zameriava na vývoj mobilnej aplikácie pre Android, ktorá je
navrhnutá na ul’ahčenie darovania predmetov s ciel’om obmedzit’ znečistenie
planéty a prispiet’ k udržatel’nosti. Aplikácia umožňuje použ́ıvatel’om ponúkat’
a prij́ımat’ predmety zadarmo, č́ım prispieva k zńıženiu tvorby odpadu tým,
že dáva jej už́ıvatel’om možnost’ dat’ nový život veciam, ktoré už nepotre-
bujú. Projekt využ́ıva metódy softwarového inžinierstva, vrátane analýzy exis-
tujúcich riešeńı, identifikácie požiadaviek a implementácie pomocou Kotlin
a Jetpack Compose. Práca skúma dizajn a architektúru aplikácie, so zamerańım
na použitel’nost’ a škálovatel’nost’. Výsledkom je funkčná mobilná aplikácia,
ktorá demonštruje potenciál podporovat’ kultúru štedrosti a environmentálnej
zodpovednosti prostredńıctvom mobilných technológíı.

Kĺıčová slova znečistenie odpadom, darovanie većı, mobilná aplikácia, An-
droid, Kotlin, Jetpack Compose

vi

Abstract

This thesis presents the development of a mobile Android application designed
to facilitate the giveaway of items, aiming to address waste pollution and pro-
mote sustainability. The application allows users to offer and receive items
for free, contributing to waste reduction by extending the lifecycle of posses-
sions. The project follows comprehensive software engineering methodologies,
including analyzing existing solutions, identifying requirements, and imple-
menting Kotlin and Jetpack Compose. The thesis explores the design and ar-
chitecture of the application, emphasizing usability and scalability. The result
is a functional mobile app that demonstrates the potential to foster a culture
of generosity and environmental responsibility by leveraging mobile technology.

Keywords waste pollution, Items giveaway, mobile application, Android,
Kotlin, Jetpack Compose

vii

Contents

Introduction 1

1 Goals 2

2 Analysis 3
2.1 Introduction to the problematics 3

2.1.1 Waste pollution . 3
2.1.2 How to deal with the problem 4
2.1.3 Items Giveaway . 5

2.1.3.1 History . 5
2.1.3.2 Thrift shops today 5

2.1.4 Mobile application . 6
2.2 Market research . 6

2.2.1 Olio . 6
2.2.2 Freegle . 7
2.2.3 Thrash nothing . 8

2.3 Requirements . 9
2.3.1 MoSCoW prioritization 9
2.3.2 Functional requirements 9
2.3.3 Non-functional requirements 11

2.4 Use cases . 11
2.4.1 A list of use cases . 11
2.4.2 Diagram of use cases . 14

2.5 Domain conceptual model . 14
2.5.1 User . 15
2.5.2 Post . 15
2.5.3 Image . 15
2.5.4 Location . 16
2.5.5 Conversation . 16
2.5.6 Message . 16

3 Design 17
3.1 Android platform . 17
3.2 Programming language . 17

3.2.1 Java . 17

viii

3.2.2 Kotlin . 18
3.2.3 C++ . 18
3.2.4 C# . 18
3.2.5 Dart . 18
3.2.6 The best choice for the project 19

3.3 Integrated Development Environment 19
3.4 Architecture . 19

3.4.1 MVVM vs MVI . 20
3.4.1.1 MVVM . 20
3.4.1.2 MVI . 21
3.4.1.3 The best UI layer architecture for the project . 22

3.4.2 Clean architecture . 22
3.4.2.1 Domain layer 23
3.4.2.2 Data layer . 23

3.5 Backend . 24
3.5.1 Firebase . 24
3.5.2 AWS . 24
3.5.3 The best choice for the project 25

3.6 Frontend . 25
3.6.1 XML and Fragments . 25
3.6.2 Jetpack Compose . 26
3.6.3 The best choice for the project 27

3.7 User Interface Design . 27
3.7.1 Authentication . 27
3.7.2 Bottom navigation . 28
3.7.3 Other users posts . 28
3.7.4 User’s posts . 29
3.7.5 Messages . 31
3.7.6 Settings and profile . 31

4 Implementation 33
4.1 Kotlin Multiplatform . 33
4.2 Modularization . 33
4.3 Gradle . 34
4.4 Firebase . 36
4.5 Dependency Injection . 37
4.6 Android application . 38

4.6.1 UI layer . 38
4.6.1.1 Navigation . 38
4.6.1.2 View . 41
4.6.1.3 ViewModel . 43
4.6.1.4 Model . 45

4.6.2 Domain layer . 46
4.6.2.1 Domain Model 46
4.6.2.2 UseCase . 46
4.6.2.3 Repository . 48

4.6.3 Data layer . 49
4.6.3.1 Repository implementation 49
4.6.3.2 Source . 49
4.6.3.3 Api . 50

ix

4.7 Documentation . 53
4.7.1 KDoc . 53
4.7.2 Dokka . 54

4.8 Testing . 55
4.8.1 Unit testing . 56

4.8.1.1 JUnit and Mockito 56
4.8.2 User testing . 57

4.8.2.1 Testers . 57
4.8.2.2 Testing scenarios 57
4.8.2.3 Testers feedback 57
4.8.2.4 Changes according to the testers feedback . . . 58

4.9 Continuous Integration/Continuous Delivery 58

5 Evaluation 61
5.1 Results . 61
5.2 Future development . 62

Conclusion 63

Bibliography 64

A Use case coverage 72

B Application screens 73

C Testing scenarios 83
C.1 Registration and Logging in . 83
C.2 Send a message . 83
C.3 Rate user . 84
C.4 Add new post . 84
C.5 Edit post . 85
C.6 Delete post . 86
C.7 Edit profile . 86
C.8 Delete profile . 87
C.9 Log out . 87

D Contents of attachments 88

x

List of Figures

2.1 Illustration of landfill . 4
2.2 Illustration of 3R . 5
2.3 Illustration of Olio application screens 7
2.4 Illustration of Freegle application screens 8
2.5 Illustration of Thrash Nothing application screens 8
2.6 Use case diagram . 14
2.7 Domain model . 15

3.1 Android recommended architecture diagram 20
3.2 MVVM Diagram . 21
3.3 MVI Diagram . 21
3.4 UI layer diagram . 22
3.5 Clean architecture diagram . 23
3.6 Illustration of Jetpack Compose code 27
3.7 Illustration of authentication wireframes 28
3.8 Illustration of Bottom navigation 28
3.9 Illustration of wireframes related to other users’ posts 29
3.10 Illustrations of wireframes related to the user’s posts 30
3.11 Illustration of post managment wireframes 30
3.12 Illustration of conversations wireframes 31
3.13 Illustration of settings and profile wireframes 32

4.1 App division into modules . 34
4.2 Illustration of PostItem component 42
4.3 Illustration of Dokka documentation 55
4.4 Illustration of workflow after every push 59
4.5 Illustration of workflow for deployment 60

A.1 Use case coverage of functional requirements 72

B.1 Login screen . 73
B.2 Create a new account screen . 74
B.3 New account created successfully screen 74
B.4 Home screen . 75
B.5 Post detail screen . 75
B.6 Send message dialog . 76

xi

B.7 My posts screen . 76
B.8 My post detail screen . 77
B.9 My post detail screen . 77
B.10 Pickup mark confirmation dialog 78
B.11 Edit post screen . 78
B.12 Delete post dialog . 79
B.13 Add new post screen . 79
B.14 Message screen . 80
B.15 Message detail screen . 80
B.16 Rate user dialog . 81
B.17 Rating successful dialog . 81
B.18 Settings screen . 82
B.19 Profile screen . 82

xii

Introduction

In today’s consumer-driven world, the rapid turnover of goods has led to sig-
nificant waste and environmental problems. Traditional methods like recycling
are helpful, but they are not sufficient to address the growing waste issue alone.
Therefore, innovative solutions that encourage the reuse of items are essential.

This thesis explores the development of a mobile Android application de-
signed to make it easy for people to give away unwanted items. By providing
a platform for users to offer and receive items for free, the app aims to re-
duce waste and promote sustainability. While physical donation centers and
thrift stores provide avenues for repurposing goods, a mobile app can make
this process more accessible and convenient to a broader audience.

The project employs comprehensive software engineering methodologies,
starting with an analysis of existing solutions to identify their shortcomings
and draw inspiration from their positive aspects. This is followed by defining
the key requirements for the new application. The development process involves
designing and implementing the application, ensuring the final product is user-
friendly, secure, and scalable.

The primary benefit of the application is its ability to reduce waste while
fostering a culture of generosity and environmental responsibility. By making it
easy for users to donate and acquire items, the app encourages people to think
critically about their consumption habits and the potential of their unused
possessions. Additionally, the app aims to build a community of users who are
committed to sustainable living practices.

1

Chapter 1
Goals

The primary goal of this thesis is to develop a mobile application that facilitates
giving and receiving items without charge in a reliable and secure manner.
To achieve this, the thesis will follow a structured approach using established
software engineering methods.

First, the thesis will analyze the current landscape for giving and receiving
items for free, using conceptual modeling methods to describe key processes.
This will be followed by an investigation of existing popular solutions, identi-
fying their shortcomings, such as user confusion and reliability issues.

Based on the insights gained from this research, the thesis will define the re-
quirements for a new mobile application solution for the Android platform.
This step will involve preparing detailed use cases and specifying the necessary
features and functionalities that the application must include. The design phase
will then focus on creating an application that meets these requirements, em-
phasizing user-friendliness, sustainability, and extensibility. The choice of tech-
nologies for implementation will be carefully justified to align with these goals.

Next, the thesis will proceed to implement a prototype of the mobile appli-
cation according to the design specifications. The development process will be
thoroughly documented, and tested.

Upon completing the prototype, the thesis will evaluate the developed so-
lution, describing further possible development and improvements. This eval-
uation will provide insights into the application’s effectiveness in meeting its
goals and identify potential areas for future enhancement.

2

Chapter 2
Analysis

In this section, the discussion will focus on waste pollution and its impacts.
The analysis will explore how the proposed application could serve as a solution
to this global issue. Additionally, the concept of item giveaways and existing
solutions will be analyzed, highlighting how the proposed application improves
upon and fills gaps in current approaches.

2.1 Introduction to the problematics

All living beings produce waste, but due to a large population and industri-
alized ways of living, people generate an amount of waste that exceeds what
nature can handle, sometimes leading to the total destruction of ecosystems.
If solid, liquid, and gaseous wastes are not appropriately managed, treated,
and disposed of, they present considerable dangers to human health and the
environment. [1]

2.1.1 Waste pollution
The difference between waste and pollution is not very significant. However,
waste does not necessarily imply harm, whereas pollution is inherently associ-
ated with destructiveness. For example, oxygen, essential for humans, is also
a waste of photosynthesis but is not considered pollution. On the other hand,
carbon dioxide is a byproduct of hydrocarbon combustion. It is connected
to global warming, and we all know it harms our environment and planet.
Although both are types of waste, we can conclude that not all waste is pollu-
tion. [2]

Humans produce a variety of wastes, including plastics, electronic devices,
food, metals, and textiles [3]. According to the World Bank, humans generate
over two billion tons of waste every year [4]. This waste typically ends up
in landfills, as shown in Figure 2.1, or, more desirably, it is recycled. Unfortu-
nately, recycling is not always an available option. [3]

3

2.1. Introduction to the problematics

Figure 2.1: Illustration of landfill [5]

2.1.2 How to deal with the problem
The three pillars of sustainable living are reduce, reuse and recycle. These
principles are visually represented in the Figure 2.2. This Eco Trio are rules
that guide us to take care of our planet and use things wisely. [6]

Recycling involves collecting waste materials and their transformation into
new products or materials that can be used again [7]. As previously mentioned,
recycling may not always be possible, but doing so with recyclable materials
is far more crucial than some might think. Engaging in recycling efforts does
more than just lessen landfill dependency. It significantly reduces the demand
for new raw materials, along with the energy-intensive extraction, refining,
and manufacturing processes. [8]

Recycling undeniably plays a crucial role in minimizing waste, yet the vol-
ume of waste we generate remains excessive. We often choose convenience
over sustainability. We use disposable cups for our coffee, buy new bags each
time we shop, or purchase items we do not actually need. It is important to rec-
ognize that while recycling offers benefits, it demands energy for its processes,
inevitably resulting in some waste production. This leads to the realization
that reducing our purchases and consumption is a more direct and impact-
ful way to support environmental health. [9] The most effective way to reduce
waste is to not create it in the first place [10].

Another fundamental aspect of sustainable living is reuse. Reuse addresses
issues recycling alone cannot solve. The concept of repurposing items is not
as complex as it might seem. Often, people overlook the potential for items
to serve alternate purposes or to be repaired rather than discarded. Laziness
or a lack of awareness leads to items being thrown away when they could
be given a second life. For example, clothes could be donated to charity
or transformed into cleaning rags instead of being discarded. By exploring ways
to reuse, we can significantly reduce the amount of waste we generate. [11]

4

2.1. Introduction to the problematics

Figure 2.2: Illustration of 3R [12]

2.1.3 Items Giveaway
Firstly, the project will focus on investigating the origins of the concept of item
reuse, examining the role of thrift shops in this context, and discussing how
this aligns with the development of the proposed item giveaway application.

2.1.3.1 History

At the beginning of the 19th century, religious groups and charities began
collecting and selling used clothing to fund their activities. Later in 1930
this initiative laid the roots for what we now commonly call thrift shopping
and started to gain popularity. The Great Depression, a period of economic
difficulty, made thrift shopping popular for people looking for affordable ways
to meet their needs. As thrift stores expanded their offerings beyond just
clothing to include various useful items, their popularity continued to grow. [13]

2.1.3.2 Thrift shops today

Today, thrift stores are like hidden gems, offering various items, from casual
and designer wear to one-of-a-kind fashion pieces, along with working electron-
ics, art, furniture, and so much more. The popularity of thrift shopping in re-
cent years is also tied to a growing awareness of consumerism’s impact and the
importance of sustainability. [13] Indeed, for those with lower income, thrift
stores remain crucial, especially in times of increasing inflation. As technology
progressed and online activity became the norm, several thrift stores adapted
by establishing an online presence, which comes with its own set of pros and
cons.

Individuals can donate items to thrift stores, which is essentially how these
shops stock their inventory. This act is highly beneficial for donors, as it
not only contributes to waste reduction but also helps clear out space in their
homes. [14]

5

2.2. Market research

2.1.4 Mobile application
Donating to thrift stores can sometimes be inconvenient, mainly if the dona-
tion consists of a single item or an item that’s too large, making transportation
to another location challenging. Additionally, there are cases where individuals
may not need the financial return from their donation but still wish to bene-
fit someone else, especially those facing financial difficulties. This motivated
the creation of an application aimed at simplifying these challenges, making
the process of donating items more convenient and accessible for everyone.
Given the earlier discussion on waste pollution, this idea gains even more rel-
evance.

2.2 Market research

This section concentrates on analyzing existing solutions. Examining current
solutions is crucial for designing an application that provides improved features
and a more user-friendly interface. The outcomes of this analysis play a sig-
nificant role in establishing the requirements for my application. The selection
of applications was based on identifying the most used apps through searches
on Google [15] and Google Play [16]. Only those available on Google Play,
the official store for Android applications, were chosen. The choice was further
refined based on ratings and download numbers.

2.2.1 Olio
This app [17] stands out as a popular choice for offering items for free.

It displays vital information for each item: name, description, pickup time
and location, along with the posting date to indicate recency. However, the post-
ing time does not guarantee the item’s availability. Users can share listings
with friends and report issues to developers, though the app reveals excessive
user information. Ultimately, the most crucial detail is whether a user is trust-
worthy. The option to “like” items seems unnecessary, and since it does not
function as a way to bookmark them for later, it does not really add any value.
The map view is an effective method to display the items’ proximity to the user.
However, not showing the exact pickup location can be somewhat misleading.
The app limits displayed posts to those within a 25km radius, which can be
limiting. A beneficial aspect is the ability to customize notifications, enabling
users to choose the alerts they receive. While the user interface is aesthetically
pleasing, navigation can be somewhat tricky, as shown in the Figure 2.3.

Olio also includes a section for non-free items, which shifts away from its
purely free giveaway purpose. A positive feature is the karma points given
to users for posting items, which motivates participation. The app includes
badges for achievements like First Request, First Collection, etc., which seem
redundant given the existing motivational feature. The community feature
facilitates communication among users, allowing for exchanging information
or inquiries about the app.

Overall, the app functions well and fulfils its intended purpose, but it can
occasionally be confusing and cluttered with features. It lacks simplicity, which
could greatly enhance user satisfaction.

6

2.2. Market research

Figure 2.3: Illustration of Olio application screens [17]

2.2.2 Freegle
The application [18] allows users not only to make offers but also to submit
requests for items they need. This feature enables individuals to ask for specific
items, and if someone has the item and wishes to donate it, they can contact
the requester directly. However, this may be redundant since those willing
to give away items typically list them as offers.

The application displays basic information for each post, including images,
title, description, and the number of people interested. It also shows a map
with the approximate location for item pickup, which can be helpful, though
it might confuse if the listed time is not indicated as either the pickup time
or the time the post was made. Users interested in an item can contact the of-
ferer via email or, if registered, through the app’s messaging system. Users
can also search for giveaway items on a map, which visually represents how far
they need to travel to pick up items.

Registration is straightforward, but the application prompts users to pro-
vide personal details, which can feel redundant, as seen in the Olio app. In the
settings, users can update their information and set up notifications to be re-
ceived via SMS or email, which may seem outdated.

Additionally, the app includes community subscriptions, primarily based
on location, which act as filters to customize viewing available items in specific
areas.

The app also includes a “Chit Chat” screen where users can engage in ca-
sual conversations and send messages to each other. This feature offers a space
for social interaction among users but is not directly related to the app’s pri-
mary purpose of facilitating item giveaways.

At first glance, the application seems to have an old-school design, as de-
picted in the Figure 2.4. Overall, while the app functions adequately, it could
benefit from improvements in simplicity and the user interface to enhance
the overall user experience.

7

2.2. Market research

Figure 2.4: Illustration of Freegle application screens [18]

2.2.3 Thrash nothing
The design of this application [19], as shown in Figure 2.5, closely resem-
bles that of the Freegle application. It also equally lacks a modern aesthetic.
The app Thrash Nothing offers functionalities similar to those of Freegle, al-
lowing users to add both offers and requests. Each post includes images, a title,
a description, and collection times. Additionally, the app displays the offerer’s
membership duration and other postings, though these details may not suf-
ficiently establish the user’s trustworthiness. Users interested in a post can
bookmark it, share it, or report any issues, but they must be logged in to send
a message to the giver.

Like the community features in the Freegle app shown in Section 2.2.2, this
application also supports groups where users can connect, functioning similarly.

Beyond item exchanges, Thrash Nothing enriches its community engage-
ment by allowing users to share personal stories, as well as read and contribute
to blogs. However, these features, much like those in the Freegle app, do
not directly relate to the primary function of the app.

Nevertheless, this application could benefit from a more streamlined in-
terface and improved visual design to enhance usability and aesthetic appeal,
making it more approachable and enjoyable for users.

Figure 2.5: Illustration of Thrash Nothing application screens [19]

The analysis of existing solutions has highlighted areas for improvement.
A design that is both visually appealing and easy to navigate is crucial in im-
proving user satisfaction. Motivating users encourages regular engagement
with the application, yet it is crucial to maintain a balance without being

8

2.3. Requirements

overly forceful. Considering the personal interaction between users, imple-
menting a rating system is vital for ensuring the safety of participants.

2.3 Requirements

To begin the implementation of the application, it is important to establish
precise requirements to outline the necessary tasks. Carefully considering these
requirements is essential for the success of any software product, especially
given that research indicates a 68 percent failure rate for software projects.
Requirements are typically divided into two categories: Functional and Non-
Functional. [20]

2.3.1 MoSCoW prioritization
The MoSCoW method is a popular project management and software develop-
ment prioritization technique. This acronym stands for four categories of pri-
ority: “Must have”, “Should have”, “Could have”, and “Won’t have,” which
help distinguish the essential features or tasks from those that are less critical.

The simplicity and clarity of the MoSCoW method ensure that all involved
parties easily understand project priorities. Additionally, its flexibility allows
it to be effectively applied across various project types and industries, making
it a universally adaptable tool. [21] Based on [22], we can define the categories
as follows:

• Must have requirements are critical to the project’s success, as they de-
fine its core functionality and purpose. Without meeting these, the project
cannot be successfully executed.

• Should have requirements are significant yet not completely neces-
sary for the project’s development. While the project can succeed with-
out them, they enhance the overall quality and should be included if
feasible.

• Could have requirements are desirable but not essential. They represent
nice-to-have elements that do not impact the project’s core functionality.
Although not critical to the project’s success, it could be implemented if
time and resources allow.

• Won’t have requirements are intentionally omitted from the project
scope. Some project features may be infeasible, too expensive or incon-
sistent with overall goals.

2.3.2 Functional requirements
Functional requirements detail the specific actions and capabilities the soft-
ware system must have. These specify the necessary functions the software
should perform to achieve its goals. They emphasize the features and processes
with which users will engage. Functional requirements ought to be specific,
measurable, and verifiable, ensuring they clearly demonstrate to developers
that the software operates as intended. [23]

9

2.3. Requirements

F1. User registration (Must have): The user can register a new account
for the application.

F2. Login user (Must have): Users can log into the application using
their email and password if registered.

F3. Log out user (Must have): Users can log out of the application when
logged in.

F4. Display other users’ posts (Must have): A list of other users’ posts
for giving items away is shown.

F5. Display current users’ posts (Must have): A list displaying the cur-
rent user’s posts for giving items away is shown.

F6. Display post detail (Must have): The post detail for giving items
away is shown.

F7. Delete post (Must have): Users can delete any of their own posts.

F8. Add a new post for giving away an item (Must have): The user
can add a new post.

F9. Edit existing post (Must have): The user can edit existing post.

F10. Display user profile (Should have): The current user profile is dis-
played to the current user.

F11. User profile update (Should have): The user has the ability to mod-
ify their personal information.

F12. Delete an account (Should have): The user has the ability to delete
their account.

F13. Send messages to other users (Should have): The user can send
a message to another user to show interest in an item via a post.

F14. Display conversations between the current user and other users
(Should have): The user can view a list of all their conversations
with other users.

F15. Display messages between current user and other users (Should
have): The user can display a list of all the messages with other users.

F16. Save other users posts (Could have): The user can save other users’
posts for possible interest in the item.

F17. Display saved posts (Could have): The user can view a list of all
the posts they have saved.

F18. Rate other users (Could have): When exchanging messages with an-
other user, it is possible to rate that user.

F19. Display terms and conditions (Could have): The user can display
the terms and conditions of the application.

10

2.4. Use cases

F20. Mark post reserved (Could have): The user can mark their own
post as reserved.

F21. Mark post picked up (Could have): The user can mark their own
post as picked up.

F22. Display map with pick up location (Could have): The user can
view a map showing the pickup location of an item.

F23. Messaging other than through application (Won’t have): The
user can contact another user through means other than the application’s
messaging system, such as email or phone number.

F24. Selling items for money (Won’t have): The user can sell the items
they offer through the application.

2.3.3 Non-functional requirements
Non-functional requirements describe the software system’s qualities and at-
tributes, focusing not on what the software does but how it performs. While
functional requirements concentrate on the software’s actions, non-functional
requirements address its performance and behavior. These requirements ensure
the software’s overall quality and success, yet they often need more attention
in software development projects. However, they are just as critical as func-
tional requirements because they profoundly affect how effective the final prod-
uct is and how satisfied users will be with it. [23]

N1. Android platform (Must have): The platform of the final product
must be Android.

N2. Extendability (Must have): The application should be designed to be
easily extendable for future development.

N3. Simplicity (Must have): The application should feature a simple
design and be easily navigable.

N4. Modularization (Could have): The application is divided into mod-
ules for better coherence.

2.4 Use cases

A use case explains the interaction between an actor and a system, specifying
the intended functions of an application. It is crucial at the start of a project
as it helps outline the required tasks and identifies user needs. By thoroughly
planning through use cases, time can be saved by preventing the need for
significant revisions after development has begun, ensuring that the software
meets its intended purposes from the outset. [24]

2.4.1 A list of use cases
This section is dedicated to discussing the use cases for this project. Below the
list is a diagram Figure 2.6 that visualizes these use cases.

11

2.4. Use cases

UC1. Registration: Upon opening the app, a new user needs to create
a new account before logging in. To register, the user clicks on the “Reg-
ister” button and must provide their first name, surname, username,
email and password. After entering all the necessary information,
the user clicks the “Create an account” button. If all details are cor-
rectly filled out, the app will confirm the successful creation of the ac-
count. If the registration is unsuccessful, the app will alert the user
to any errors that need to be addressed.

UC2. Log in: Users can log into the application by entering their email
and password for authentication. After filling in both text fields,
the user clicks the “Log in” button. The application will proceed
to the home screen if the email and password are correct. If either
or both credentials are incorrect, the user will receive a notification,
and corrections will be required to proceed.

UC3. Log out: Users can log out of the application if logged in by pressing
a “Log out” button in the Settings section. If the logout proceeds
correctly, the application will display the login screen. However, if
a problem exists, such as a missing internet connection, the application
will notify the user that the logging out was unsuccessful.

UC4. Display other users’ posts: On the home page, a user can view
posts from other users. Each post displays an image, title, a pre-
view of the description, and a ”reserved” badge if marked as such. If
the application successfully loads the posts, they appear on the screen.
If the loading fails, the system notifies the user and allows reloading
the screen.

UC5. Display user’s posts: A user can view a list of their own posts
on a dedicated page within the application. Each post displays an im-
age, title, a preview of the description, and a “reserved” or “picked up”
badge if marked as such. If the application loads the posts successfully,
they appear on the screen. If the loading process fails, the application
will notify the user and offer an option to reload the screen.

UC6. Display other user’s post detail: When a user clicks on any
of the posts on the “Home” screen, the details of the selected post
are displayed. The user can see images, the title, the description,
the pickup time, the pickup location, and the rating of the post’s
owner. If the user is interested in the post, a button will be available
to send a message to the owner of the post.

UC7. Display the user’s post detail: In the “My Posts” screen, selecting
one of their posts allows a user to view its details, including images,
title, description, pickup time, pickup location, and the owner’s rating.
Additionally, there are options to mark the post as reserved or picked
up, accessible through corresponding buttons.

UC8. Edit a post: Users can edit a post they have previously added by
updating the title, description, pickup place, pickup time, and images.
After making the necessary changes, the user must click the “Save

12

2.4. Use cases

changes” button to apply them. If any field is left empty, the user is no-
tified and required to fill it out before the changes can be saved. Once
the changes are successfully saved, the user is redirected to the “My
Posts” screen and receives a notification confirming that the post has
been updated.

UC9. Delete a post: A post can be deleted by its owner by navigating to
the post’s detail page and clicking on the delete button. If the dele-
tion is successful, the user is redirected to the “My Posts” screen and
receives a notification confirming the deletion. If the deletion is un-
successful, the user is notified and remains on the post detail page.

UC10. Add a new post: A new post can be created by navigating to the “My
Posts” screen and clicking on the plus button. It is mandatory to fill
in the title, description, pickup place, pickup time, and images. After
completing the form, the user clicks the button to add the new post.
If the post is successfully added, the application redirects the user
to their posts screen. If the post cannot be added, for instance, if
not all fields are filled in or another error occurs, the user receives
a notification and has the opportunity to correct the mistakes.

UC11. Display all conversations: When a user initiates a conversation
with another user after expressing interest in a post, a new conver-
sation appears in the “Messages” screen. This conversation item dis-
plays the other user’s username, and a preview of the latest message
exchanged.

UC12. Display and send messages: In the “Messages” screen, users can
view their entire conversation history with another user by clicking
on a specific conversation thread. The messages are organized chrono-
logically. To send a new message, a user simply types into the pro-
vided text field and clicks the send button. If sent successfully, the new
message will appear at the bottom of the list of messages. If the user
attempts to send an empty message, a notification will appear, prompt-
ing them to enter text before sending.

UC13. Rate user: When initiating a conversation with another user, there
is an option to rate the other party. Users can assess each other based
on trustworthiness or responsiveness by clicking the “Rate User” but-
ton found within the conversation details.

UC14. View profile: When users navigate to the “Settings” screen, they can
select the “Profile” option to view their personal information. The pro-
file displays details such as first name, surname, and username, which
users can update, although the email used for authentication cannot
be changed. Users can also view their current rating and must click
the “Save changes” button to save any updates made. If a user chooses
to delete their account, they can do so by clicking the designated but-
ton for account deletion. Once the account is successfully deleted,
the user will be automatically redirected to the login screen.

The use case coverage of functional requirements is shown in the Ap-
pendix A.

13

2.5. Domain conceptual model

2.4.2 Diagram of use cases

Figure 2.6: Use case diagram based on [25]

2.5 Domain conceptual model

Before beginning the implementation, it is crucial to develop a domain model,
which is constructed based on the requirements. This model helps organise
and structure the data, representing the key entities and their relationships
within the system. Understanding the problem domain and designing a system
that aligns with user needs and expectations is critical. The model for this
project is shown below in Figure 2.7. [26]

14

2.5. Domain conceptual model

User

id: Int

firstName: String

surname: String

email: String

username: String

rating: Double

Message

id: Int

senderId: Int

sendTime: Date

content: String

Conversation

id: Int

Post

id: Int

title: String

description: String

pickupTime: Date

reserved: Bool

pickedUp: Bool

Image

id: Int

url: String

Location

id: Int

street: String

city: String

zipCode: String

country: String

1
1..*

1 0..*

0..*

2

1 1..*

1..* 1

Figure 2.7: Domain model based on [27]

2.5.1 User
The user entity represents an individual user in the system. Each user has
unique identifier and is characterized by several attributes: first name, surname,
username, email, and rating representing an average of all the ratings received
from other users. In the domain model, the relationship between the user
and post entities is defined such that a user can have zero to many posts (0-
to-N), and each post is associated exclusively with one user. Similarly, a user
can engage in zero to many conversations (0-to-N).

2.5.2 Post
The post entity in the domain model represents an item or offering created by
a user. Each post with an unique identifier includes several attributes: title,
description and pickup time. Additionally, a post can be marked as reserved
or picked up by its owner. The relationship between the user and post en-
tities is crucial, as a post cannot exist without being associated with a user
in the context of this application. This relationship is modelled as an ag-
gregation, indicating that posts are a component of a user but do not define
the user’s entire identity. This modelling approach helps maintain the integrity
of the user entity while allowing for the dynamic management of posts associ-
ated with that user.

2.5.3 Image
Each post must have at least one image, and each can be linked to only one post,
forming a 1-to-N relationship. This relationship is modelled as an aggregation
because each image relies on its associated post for context and relevance within
the system. An image is characterized by a unique identifier and a Uniform
Resource Locator (URL), which specifies its exact location where it is stored.

15

2.5. Domain conceptual model

2.5.4 Location
In the context of an application for item giveaways, the location entity repre-
sents where the item pickup will occur. It is uniquely identified by an identifier
and includes several attributes to specify its precise details: street, city, zip
code, and country. This structured approach ensures that each pickup location
is clearly defined and easily accessible for users arranging to collect an item.
Each location is associated with at least one post and is tied to a specific lo-
cation. This relationship is modelled as an aggregation because, within the
application context, a location does not exist independently without being as-
sociated with a post.

2.5.5 Conversation
The conversation entity represents a dialogue between two users within the sys-
tem. The relationship between the conversation and user entities is mod-
elled as a composition, which underscores the dependency of a conversation
on the users involved. This means that a conversation cannot exist indepen-
dently without associated users. Each conversation must contain at least one
message to be considered valid, establishing a 1-to-N relationship.

2.5.6 Message
The message entity represents a single message sent by a user within a conversa-
tion. It includes several attributes: sender ID, send time, content and a unique
ID. These attributes define the characteristics and ownership of each message.
In the context of this application, a message is inherently linked to a conversa-
tion, emphasizing that messages cannot exist independently outside of a con-
versation. The relationship between the message and conversation entities
is modeled as an aggregation. This modeling choice signifies that while a mes-
sage is a part of a conversation, it is distinct and belongs exclusively to that
specific conversation.

16

Chapter 3
Design

After conducting a thorough analysis, it is time to move forward with the design
of the final application. Armed with a clear understanding of the requirements,
we can now discuss the selected platform, programming language, technologies,
various architectural options for the project and User Interface (UI) design.

3.1 Android platform

The Android operating system was initially developed by Android Inc. for dig-
ital cameras. However, in 2005, Google Inc. acquired Android Inc. and redi-
rected its focus towards developing it as an operating system for mobile phones.
Android released the first phone in 2008. By 2012, it had become the most pop-
ular operating system globally, surpassing other platforms in usage and adop-
tion. [28]

Android OS is currently developed for various devices, including smart-
phones, tablets, and smart televisions [29]. New major versions are released an-
nually. The most recent version is Android 14, called “Upside Down Cake”. [30]

New phones equipped with the Android operating system are continu-
ally being produced and are affordably priced for a wide range of consumers.
The consistent updates to the system, along with its broad accessibility, suggest
that Android’s popularity will likely remain strong in the future. [31]

3.2 Programming language

The programming languages chosen for consideration for the project were Java,
Kotlin, C++, C#, and Dart. These were selected because they are among
the top five programming languages for Android mobile development, according
to [32].

3.2.1 Java
Java is globally considered one of the most popular programming languages.
A key benefit of Java is its cross-platform nature, which allows it to operate
on any system equipped with a Java Virtual Machine. This capability ensures
that Java applications can function on various operating systems without re-
quiring modifications specific to each platform.

17

3.2. Programming language

Despite improvements from the Android Runtime, Java still introduces
some performance overhead. Known for its verbosity, Java often requires de-
velopers to write longer code filled with boilerplate, and its syntax lacks the ex-
pressiveness of newer programming languages. These factors can lead to longer
development and testing periods, potentially slowing down the project deliv-
ery. [32]

3.2.2 Kotlin
As previously mentioned, newer programming languages like Kotlin provide
enhanced expressiveness. According to [32], Kotlin, which builds on Java, sim-
plifies coding by reducing the required code volume by approximately 40%
compared to Java. This reduction is primarily due to Kotlin’s more concise
syntax and fewer boilerplate requirements, making it an increasingly preferred
choice for Android developers. Additionally, according to [33], Kotlin is con-
sidered by Google to be the preferred language for Android development, em-
phasizing its growing importance in the mobile application development field
and encouraging developers to adopt Kotlin due to its concise syntax, safety
features, and interoperability with Java.

3.2.3 C++
C++ is known for its exceptional speed, making it well-suited for applications
demanding high performance. It offers extensive capabilities, including precise
control over memory management and manipulation. However, the complex
syntax of C++ requires a deep understanding and can increase the risk of er-
rors.

Additionally, C++ is not inherently supported as a development language
for Android. Developers looking to utilize C++ in their Android applica-
tions must use the Android Native Development Kit (NDK), which enables
the integration of C++ code with Java or Kotlin, allowing for performance
optimizations in critical areas of the application. [32]

3.2.4 C#
Using C# for Android development is similar to using C++ because C#
is also not a native language for Android, necessitating the use of the Android
NDK. Developers often choose C# due to their familiarity with it. Moreover,
they can utilize the extensive debugging and programming tools available in Vi-
sual Studio to accelerate their development process. However, it is important
to acknowledge that C# and Visual Studio are not optimized for mobile app
development. As a result, their features may not be as appropriate for this
purpose as those available in Android Studio’s toolset. Additionally, since An-
droid development with C# is less prevalent, a smaller community of developers
is available for support and guidance when challenges arise. [32]

3.2.5 Dart
Flutter is a robust cross-platform mobile app development framework that
utilises Dart as its programming language [34]. Dart stands out for its speed

18

3.3. Integrated Development Environment

among cross-platform languages, primarily because it is compiled into native
Android code. This compilation enhances performance and enables smooth
animations. A standout feature of Dart is the hot reload capability, which
allows developers to instantly see the effects of code changes in real-time. [32]

However, one significant drawback of Flutter is the large size of the apps
it creates, which could be problematic for users with limited device storage
or in situations where apps are downloaded over mobile networks. While Flut-
ter has made considerable strides in enhancing performance, it still may not
fully replicate the experience of native development. [34]

3.2.6 The best choice for the project
In conclusion, among the programming languages discussed for Android devel-
opment, Kotlin distinctly stands out due to its numerous advantages. Google’s
preference for Kotlin as the primary language for Android underscores its criti-
cal role in mobile app development. This endorsement, combined with Kotlin’s
enhanced safety features and seamless interoperability with Java, makes it
an exceedingly attractive option for developers. Unlike C++ and C#, which
require additional tools like the NDK for Android development, Kotlin works
natively with Android Studio, providing a smoother and more integrated devel-
opment experience. Given these compelling advantages, Kotlin not only meets
the modern demands of Android development but also provides a more efficient
and developer-friendly environment compared to its counterparts. This makes
Kotlin the superior choice for developers aiming to build high-quality Android
applications efficiently.

3.3 Integrated Development Environment

Since the Android development documentation [35] officially recommends An-
droid Studio (AS) as the Integrated Development Environment (IDE), the au-
thor opted to use it for this project. “Based on the powerful code editor and de-
veloper tools from IntelliJ IDEA, Android Studio offers even more features that
enhance your productivity when building Android apps” [35].

This IDE provides an environment that enables developers to create applica-
tions compatible with all Android devices. AS features a versatile Gradle-based
build system, a fast and well-equipped emulator, and provides code templates
that are very helpful for starting new projects. These tools streamline the de-
velopment process, making it more efficient and accessible for developers. [35]

3.4 Architecture

This section will delve into the architecture of the project. According to An-
droid documentation [36], the recommended architecture for mobile applica-
tions involves dividing the structure into three main layers as depicted in Fig-
ure 3.1: the UI layer, the Domain layer (which is optional), and the Data
layer. These recommendations aim to enhance the scalability and testability
of applications while improving overall quality.

19

3.4. Architecture

Figure 3.1: Android recommended architecture diagram by [36]

According to [37], the most commonly used architectures for the UI layer
are Model-View-ViewModel (MVVM) and Model-View-Intent (MVI). Both ar-
chitectures are favoured for their effectiveness in separating concerns and sim-
plifying software applications’ management and scalability.

3.4.1 MVVM vs MVI
MVVM and MVI architectures share common elements: the “M” for Model
and the “V” for View. The Model acts as the data layer, managing business
logic and data operations, while the View is dedicated to the UI layer, handling
the presentation of data and user interactions. This separation ensures that
the data management is independent of the user interface. [38]

3.4.1.1 MVVM

The “VM” in MVVM stands for ViewModel. It maintains the state, represent-
ing the current data condition displayed to the user. The ViewModel is re-
sponsible for managing changes and fetching data as needed. A single View-
Model can manage multiple states, thereby controlling the data-related logic
to keep the UI refreshed with the latest information without directly interacting
with the View. For instance, when a user clicks a button, the View communi-
cates this action directly to the ViewModel via a function call. The ViewModel
then processes this information, interacts with the Model to make necessary
changes, and updates the state accordingly. This arrangement allows the View-
Model to act as a crucial intermediary between the Model and the View,
streamlining data flow and enhancing the efficiency of UI updates. [38]

20

3.4. Architecture

Model

ViewModel

View

State
Events

Data
Data altering

invokes

Figure 3.2: MVVM Diagram inspired by [38]

3.4.1.2 MVI

The “I” in MVI stands for Intent, which represents any intent from the view,
typically triggered by user interactions. This concept is similar to that in
MVVM, with a subtle distinction. In MVI, the view issues an Intent to the View-
Model instead of calling a function directly. For example, when a user taps
on a button, the view issues an Intent to inform the ViewModel that it needs
to handle this action. The ViewModel then processes this information and takes
the necessary actions, similar to the MVVM approach. Essentially, the Intent
acts as a mediator between the view and the ViewModel, facilitating communi-
cation and coordination. Another key difference is in how the state is managed.
In MVVM, individual values each maintain their own separate state, whereas
in MVI, all values are consolidated into a single immutable data object. One
key advantage of this method is the ease with which the handling of Intents
can be modified, enhancing the flexibility and maintainability of the applica-
tion. [39]

Model

ViewModel

View

State
Events

Data
Data altering

invokes

Intent

Figure 3.3: MVI Diagram inspired by [39]

21

3.4. Architecture

3.4.1.3 The best UI layer architecture for the project

According to [40], the MVI adds a new layer of user interactions, resulting
in a better separation of concerns recommended by official Android develop-
ment documentation. In MVI, the application’s entire state is encapsulated
within a single, immutable data object. This means that at any given point,
only one definitive version of the state represents all aspects of the app’s UI
and data. Because all changes to the application must go through a well-defined
cycle of Intents, State updates, and rendering, it becomes much easier to un-
derstand how and why a state changes. Due to these advantages and the rec-
ommendations from the official Android documentation, this project will use
the MVI architecture.

The project’s UI layer architecture design is illustrated in the diagram
shown in 3.4. Each feature includes its own Model, while each screen is as-
sociated with its own View, ViewModel, State, and Intent. This structure will
be consistent across all features.

Feature

Model ViewModel View
State

Events

Data

Data altering
invokes

Intent

Screen

Figure 3.4: UI layer diagram

3.4.2 Clean architecture
While the chosen MVI architecture effectively manages the UI layer, Clean
Architecture is designed to segment the entire application into distinct layers
as depicted in Figure 3.5. [38]

Clean Architecture advocates for implementing design patterns like depen-
dency injection and inversion of control to streamline and organize code more
efficiently. These patterns help decouple the system’s components and layers,
making the architecture more modular and flexible. This approach facilitates
more manageable maintenance and scalability by minimizing dependencies be-
tween application parts. [41]

The author chose this approach due to its popularity, extensibility, and ad-
herence to the principles recommended by the official Android documenta-
tion. This ensures that the architecture aligns well with established best prac-
tices, making it a reliable and forward-compatible choice for Android develop-
ment. [41]

22

3.4. Architecture

Figure 3.5: Clean architecture diagram by [42]

3.4.2.1 Domain layer

“The domain layer is an optional layer that sits between the UI layer and the
data layer” [43]. It consists of domain model, use cases and repository interface.

Domain models are essential components, embodying the real-world con-
cepts, entities, or business logic relevant to the application’s domain. [44]

A use case is a component of the business logic layer, each designed to ful-
fil a single responsibility, representing a distinct action the application needs
to perform. Use cases are typically invoked by view models, enhancing reusabil-
ity when multiple ViewModels require the same functionality. This design
not only aids in making the ViewModels cleaner and more modular but also
improves the readability and clarity of the operations the ViewModel man-
ages. [42]

The Repository Interface plays a crucial role in the architectural design
of an application by defining what data operations are required by the Domain
layer without dictating how these operations should be implemented. This
abstraction is crucial for several reasons. By keeping the interface and im-
plementation in separate layers, the system ensures that changes in the data
management strategy or data source specifics do not impact the business logic
in the Domain layer. This approach applies the loose coupling principle recom-
mended by Android documentation. By applying the principle of dependency
inversion, it separates the domain from the data layer. Testing becomes more
straightforward with use cases depending on interfaces rather than concrete im-
plementations. Since the domain logic depends only on the interface, changing
the underlying implementation can be done with minimal impact on the rest
of the application. [42]

3.4.2.2 Data layer

“While the UI layer contains UI-related state and UI logic, the data layer con-
tains application data and business logic” [45]. This layer consists of repository
implementation and data source interface.

The Repository Implementation component implements the Repository In-
terface from the Domain Layer. It serves as the main point for the rest of the ap-
plication to access data [46]. It also provides interactions between different
data sources, ensuring that the Domain Layer remains unaware of the origins
of the data [47].

Data Source Interfaces provide abstract definitions for data retrieval meth-
ods, enabling repositories to function without detailed knowledge of the actual

23

3.5. Backend

data sources, whether they are local databases, remote servers, or other storage
mediums. This arrangement promotes loose coupling and upholds the depen-
dency inversion principle by isolating data handling from the rest of the system
components. [42]

Data Source Implementations are the concrete realizations of the Data
Source Interfaces that handle direct interactions with the data sources, such
as APIs or databases. These implementations execute the specific data opera-
tions defined by the interfaces, ensuring that data is fetched, stored, and man-
aged according to the application’s requirements. [42]

3.5 Backend

The project has specific needs, including user authentication, storage for post
images, and storage for other data like user profiles, post details, and messages.
This section will explore and decide on an appropriate backend solution to meet
these requirements.

According to [48], a serverless architecture offers enhanced security com-
pared to traditional server-based setups. This approach allows developers
to concentrate more on application development rather than on managing in-
frastructure. It also significantly aids in managing application data, streamlin-
ing operations and reducing overhead. This is why a serverless architecture has
been selected for this project, and Firebase and Amazon Web Services (AWS),
two of the most popular serverless options, will be discussed [49].

3.5.1 Firebase
Firebase, developed by Google, is designed to accelerate and simplify app de-
velopment. It provides various services, including authentication, file storage,
analytics, Crashlytics, and many more. Regarding security, Firebase prioritises
ease of use over complex configurations, which can be advantageous for projects
requiring rapid development and deployment. This approach helps developers
focus more on building features than managing security details, making Fire-
base an ideal choice for smaller projects prioritising rapid deployment and ease
of management. [50]

3.5.2 AWS
AWS, developed by Amazon, is an excellent choice for developers who require
extensive customization options. It offers many services, including file stor-
age, DNS management, data security, and more. While AWS provides robust
authentication services that support numerous identity providers and built-in
tools for specialized needs like game development or media processing, it can
be more complex to learn. This complexity may extend the development time
for smaller, simpler applications. Moreover, AWS is renowned for its com-
prehensive security services, but mastering these can also present a learning
curve. Given these characteristics, AWS is particularly well-suited for applica-
tions that demand a complex infrastructure and can benefit from its scalable
and extensive service offerings. [50]

24

3.6. Frontend

3.5.3 The best choice for the project
As previously discussed, this project requires functionalities such as user au-
thentication, storage for images, and data management. Both AWS and Fire-
base offer these services but with distinct characteristics. With its capabil-
ity to handle complex, highly customizable projects, AWS might be more
than needed for this project’s scope. Firebase, however, is ideal for more
straightforward, smaller-scale projects and provides all the necessary features
without the complexity of AWS. Thus, for its simplicity and direct support
for the project’s requirements, Firebase is the better choice for this project.

3.6 Frontend

Historically, Android applications have relied on Extensible Markup Language
(XML) Views to shape their visual and functional aspects [51]. Jetpack Com-
pose, a new approach to building Android applications, saw its first stable re-
lease in 2021 [52]. This section explores the differences and advantages of both
XML and Jetpack Compose in the context of Android UI development.

3.6.1 XML and Fragments
XML facilitates the creation of UIs in a hierarchical structure and offers a wide
range of components for reusable layouts. This separation of the UI from
the business logic simplifies the process for designers, allowing them to focus
on the aesthetic aspects without interfering with the application’s core func-
tionality. [53]

XML is widely utilized, simplifying the learning process and enabling easier
access to community support. The example of XML code is shown in Listing 1.
AS includes an editor for XML layouts, which streamlines development and as-
sists in creating visually appealing interfaces. Additionally, a wealth of libraries
and frameworks are available to aid development. [53]

The layout editor is a helpful tool for crafting visually appealing user inter-
faces. Instead of manually coding in XML, developers can simply drag and drop
components into the desired positions, streamlining the UI design process. [54]

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical" >

<TextView android:id="@+id/text"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Hello, I am a TextView" />

<Button android:id="@+id/button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Hello, I am a Button" />

</LinearLayout>

Listing 1: Illustration of XML code from [55]

25

3.6. Frontend

To display the UI created in XML, it must be embedded in a fragment,
which is then placed into an activity. For simpler UI designs, using only an ac-
tivity may suffice. In both scenarios, the XML code becomes an integral part
of them. [56]

You can think of an activity as a single screen with its visuals and fragments
as modular sections of that activity. An activity is typically used for navigat-
ing between screens or managing different components of the UI, while frag-
ments are designed to break down complex UIs into smaller, more manageable
parts. [56]

There is considerable criticism directed at fragments and activities due
to their complexity and the challenges posed by managing two separate lifecy-
cles. Many developers encounter issues such as memory leaks, handling config-
uration changes, and difficulties with components that are poorly documented.
These challenges often complicate the development process and can lead to less
stable applications. [57]

3.6.2 Jetpack Compose
Jetpack Compose brings a new era in Android development by eliminating
the need for fragments in a composable application. Compose provides develop-
ers with all the necessary tools for development directly, streamlining the cod-
ing process. This approach reduces the amount of code and enhances stability
by avoiding the complexities and issues traditionally associated with managing
fragments. [57]

“Jetpack Compose is Android’s recommended modern toolkit for building na-
tive UI. It simplifies and accelerates UI development on Android. Quickly bring
your app to life with less code, powerful tools, and intuitive Kotlin APIs” [58].

All code in Jetpack Compose is written in Kotlin, simplifying the devel-
opment process by significantly reducing the amount of code needed. This
makes the coding more direct and intuitive. Components in Jetpack Compose
are fully reusable and independent of any activity or fragment. AS enhances
Jetpack Compose with capabilities such as live previews, enabling develop-
ers to view updates in real time as they modify the code. This functionality
dramatically accelerates the development workflow by removing the necessity
to rebuild the app for each minor adjustment constantly. Jetpack Compose
incorporates aMaterial Design implementation that is fully open to develop-
ers. Material Design presents a thorough design framework that establishes
key guidelines and best practices for developing visually cohesive and func-
tional user interfaces for a variety of applications. This transparency allows
developers to examine how standard components are built, making it easier
to create custom components by understanding and modifying the existing
implementations. Moreover, Jetpack Compose offers robust animation capa-
bilities, which significantly enhance the visual appeal of the user interface,
adding to the overall user experience. The illustration of Jetpack Compose
code is shown in Figure 3.6. [59]

26

3.7. User Interface Design

Figure 3.6: Illustration of Jetpack Compose code from [58]

3.6.3 The best choice for the project
The benefits of Jetpack Compose clearly justify its selection for development
projects. With its promise of less code, fewer complications, and simplified
coding processes, it stands out as an advantageous choice in app development.
In this project, Jetpack Compose will be used for creating an appealing user
interface that aligns with the recommendations of the Android development
documentation and modern development practices.

3.7 User Interface Design

As previously noted, it is crucial for the application to be visually appealing
and easily navigable. Achieving this requires careful and thoughtful design,
ensuring the interface is aesthetically pleasing and user-friendly.

While managing the various aspects of thinking and planning for an app can
be challenging, mobile app wireframing plays a crucial role in turning the vi-
sion into reality. Essentially, a mobile app wireframe is demonstrating how
the app will function. Wireframe is not a complete representation of the app’s
final design but instead focuses on the layout of key screens and interface ele-
ments. This helps in organizing the app’s structure and user flow before moving
into more detailed design phases. [60]

3.7.1 Authentication
When a user launches the application and is not logged in, the Login screen ap-
pears, as shown in Figure 3.7a. Users have two options: If they have an account,
they can enter their email and password to log in, if they do not have an ac-
count, they can click on the register button, which redirects them to the reg-
istration screen, that is illustrated in Figure 3.7b.

27

3.7. User Interface Design

(a) Log in (b) Registration

Figure 3.7: Illustration of authentication wireframes made in [61]

3.7.2 Bottom navigation
If the user is logged in, the application displays a bottom navigation bar divided
into four sections: Home, My Posts, Messages, and Settings as displayed in Fig-
ure 3.8. This navigation bar always remains visible while the user is logged
in. Since a user does not have access to any posts or other app features before
logging in, it makes sense that they cannot navigate within the app during the
authentication process.

Figure 3.8: Bottom navigation

3.7.3 Other users posts
The Home screen appears after successfully logging into the application, as de-
picted in Figure 3.9a. On this screen, a user can view posts from other users.
Each post has a preview that includes one image, a title, and a short descrip-
tion. If an item from a post is reserved, this status is indicated on the post.
Clicking on a post preview opens the post detail screen, shown in Figure 3.9b.

On the post detail screen, a user can view the post’s complete details,
including all images, the full description, and information on the pickup time
and location. If a user is interested in the item, they can click the dedicated
button and send a message to the person offering it. After pressing this button
a dialog appears where user can write the message as shown in Figure 3.9c.

28

3.7. User Interface Design

(a) Home (b) Post detail (c) Send message dialog

Figure 3.9: Illustration of wireframes related to other users’ posts made in [61]

3.7.4 User’s posts
The My Posts screen, displayed in Figure 3.10a, is specifically dedicated to dis-
playing the posts made by the user. Unlike the Home screen, which show-
cases posts from other users, this screen exclusively presents the user’s own
posts. Additionally, posts on this screen can be marked not only as reserved
but also as picked up. This screen also provides the user with the functionality
to create a new post via a dedicated button located at the bottom of the screen.

Similar to the Home screen, clicking on any post on the My Posts screen
will open the post detail screen, that is shown in Figure 3.10b. In addition
to displaying the images, description, and pickup location and time, this screen
also gives the user the option to delete or edit the post. Moreover, users can
mark the post as reserved or picked up, providing full control over managing
their listings.

29

3.7. User Interface Design

(a) My posts (b) My post detail

Figure 3.10: Illustration of wireframes related to the user’s posts made in [61]

To access the screen for adding a new post, which is shown in Figure 3.11a,
users can navigate through the button located in the post detail screen, as pre-
viously mentioned. Users are required to input all relevant information about
the item they wish to give away. Completing the form also involves upload-
ing images by tapping on the dedicated button for image uploads. This step
is crucial to ensure that all necessary details are included, making the post
informative and appealing to potential recipients.

(a) Add new post (b) Edit post

Figure 3.11: Illustration of post managment wireframes made in [61]

30

3.7. User Interface Design

3.7.5 Messages
When a user accesses the Messages section from the bottom navigation, a screen
displaying a list of all the user’s conversations appears. Each conversation entry
shows the username and the last message sent, as illustrated in Figure 3.12a.

Clicking on a conversation reveals its detailed view, depicted in Figure 3.12b.
This screen displays all messages exchanged between the two users in chrono-
logical order. At the bottom of the screen, there is a text field where the user
can type and send new messages. At the top of the screen, the other user’s
username is displayed alongside a rating button. This button allows the user
to rate the other user based on responsiveness and safety.

(a) All conversations (b) Conversation detail

Figure 3.12: Illustration of conversations wireframes made in [61]

3.7.6 Settings and profile
The Settings screen, which is shown in Figure 3.13a, includes a section dedi-
cated to the user’s account management. At the bottom of this screen, there
is a button for logging out. The Settings also provide access to the user’s profile
and the terms and conditions.

The Profile screen, shown in Figure 3.13b, allows the user straightforward
access to modify any personal information as necessary and save the changes
using a button located at the bottom of the screen. Additionally, users can
check their ratings on this screen. Besides updating and checking profile in-
formation, users also have the option to delete their account using a dedicated
button.

31

3.7. User Interface Design

(a) Settings (b) Profile

Figure 3.13: Illustration of settings and profile wireframes made in [61]

32

Chapter 4
Implementation

4.1 Kotlin Multiplatform

Kotlin Multiplatform (KMP) [62] is a technology developed by JetBrains that
allows developers to use Kotlin to create multiplatform applications. With KMP,
developers can write their business logic once in Kotlin and then share it across
both iOS and Android platforms while still allowing for platform-specific imple-
mentations where necessary. This approach reduces the time and effort required
to develop and maintain both apps by sharing common code across platforms.
This helps to ensure consistent behavior and logic throughout the application.

In this project, the domain and data layer were implemented using KMP.
This was accomplished by creating a shared module that contains those layers.
This setup enhances the project’s extensibility, meaning that adding an iOS
version of the app would primarily involve developing the UI layer in another
module. The core logic and data management are already in place in the shared
module, streamlining the expansion to other platforms.

4.2 Modularization

Modularization [63] refers to structuring a codebase into distinct modules, each
designed to perform a specific role or function. Breaking down a large applica-
tion into smaller parts makes it easier to manage. Modules designed to perform
specific functions can be reused across different parts of an application. New
functionalities can be added as new modules without extensive modifications
to existing code.

One of the key advantages of modularization is the reduction in build times.
When changes are made to a particular module, only that module needs to be
recompiled, which can significantly save time, especially in larger applications.

Additionally, modularization helps prevent circular dependencies between
components. Making sure that modules interact through clear, one-way de-
pendencies avoids the complexities and challenges of managing intertwined
relationships between modules.

33

4.3. Gradle

:android:androidApp

:android:home :android:login :android:messages :android:myPosts

:shared

:android:androidShared

:android:settings

Figure 4.1: App division into modules

This modular approach, illustrated in Figure 4.1, effectively divides the ap-
plication into distinct logical units, each handling a specific app function. Such
segmentation improves the ease of maintenance, allows the app to scale effi-
ciently, and may decrease build times since modules can be compiled indepen-
dently.

Additionally, by isolating functionalities into distinct modules, dependen-
cies are reduced, and application components are decoupled. This is crucial
for avoiding circular dependencies and simplifying the app’s testing and debug-
ging.

4.3 Gradle

Gradle [64] is a powerful and versatile build tool used primarily for Java
or Kotlin projects. It automates the process of compiling, packaging, testing,
and deploying applications. AS uses Gradle, an official build tool for Android
projects.

As discussed in Section 4.2, the project is organized into modules, each
equipped with its own build.gradle file. The main module, referred to as the ap-
plication module, is labeled as :android:androidApp in the Figure 4.1 and uti-
lizes a different build.gradle file compared to the other modules categorized
under :android. Given that each build.gradle file specifies dependencies unique
to its module, it is efficient to have a system that manages common depen-
dencies and versions across all modules. To address this, convention plugin
has been implemented. This plugin, stored in the build-logic module, simpli-
fies the setup by centralizing dependency management, reducing duplication
and making it easier to update dependencies across all modules. The library
convention plugin is demonstrated in the Listing 2.

34

4.3. Gradle

class LibraryConventionPlugin : Plugin<Project> {
override fun apply(project: Project) {

with(project) {
project.pluginManager.apply("com.android.library")

extensions.configure<LibraryExtension> {
compileSdk = libs.findVersion(CompileSdk).toIntVersion()
defaultConfig {

minSdk = libs.findVersion(MinSdk).toIntVersion()
}
compileOptions {

sourceCompatibility = JavaVersion.VERSION_11
targetCompatibility = JavaVersion.VERSION_11

}
tasks.withType<KotlinCompile> {

kotlinOptions {
jvmTarget = libs.findVersion(JvmTarget)

}
}

...

configureLibraryDependencies()
}

}
}

}

Listing 2: Illustration of Library Convention Plugin

The application has a settings.gradle file, which is crucial during the ini-
tialization phase as it configures the application’s properties. This file is es-
sential for adding the required plugin and for including all the modules within
the project, as detailed in Listing 3.

pluginManagement {
includeBuild("build-logic")
repositories {

google()
gradlePluginPortal()
mavenCentral()
maven("https://plugins.gradle.org/m2/")

}
}
...
include(":android:androidApp")
include(":shared")
include(":android:home")
include(":android:messages")
...

Listing 3: Illustration of Gradle build file

35

4.4. Firebase

4.4 Firebase

To integrate Firebase [65] into the application, as shown in the [66], the fol-
lowing steps are necessary:

• Create a new project in the Firebase console.

• Register the application using the application ID found in the build.gradle
file of the application module.

• Download and add the configuration file to the project’s application mod-
ule.

• Install the Firebase SDK by adding it to the build.gradle of the application
module.

• Grant internet permissions by adding them to the AndroidManifest file
in the application module, as depicted in Listing 4.

• Initialize Firebase in the MainActivity of the application module as shown
in Listing 5.

• Disable the Google Services plugin in the root build.gradle file as sug-
gested in the [67].

• Add the serializable library to the KMP shared module’s build.gradle file,
along with the necessary Firebase libraries for KMM [68].

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:dist="http://schemas.android.com/apk/distribution">

...

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

...

</manifest>

Listing 4: Illustration of internet permissions in Manifest

class MainActivity : ComponentActivity() {
override fun onCreate(savedInstanceState: Bundle?) {

...
// Initialization code
Firebase.initialize(this)
setContent { ... }

}
}

Listing 5: Illustration of Firebase initialization

36

4.5. Dependency Injection

After this setup the Firebase services are fully available to use in the project
and are shown more in Section 4.6.3.

4.5 Dependency Injection

Dependency injection (DI) is highly recommended by android documentation.
“Implementing dependency injection provides you with the following advan-
tages: reusability of code, ease of refactoring, ease of testing” [69]. Two well-
known DI frameworks for Android are Koin [70] and Hilt [71]. For this project,
Koin was selected due to its simplicity in setup and its non-reliance on anno-
tations, which makes it exceptionally compact.

To setup Koin few steps are required:

• Add Koin dependencies into the KMP shared module’s build.gradle file
and into the library convention plugin.

• Configure Koin modules in each module, as depicted in Listing 6.

• Load Koin modules by initializing Koin in MainActivity with the function
showed in Listing 7.

val homeModule = module {
viewModelOf(::HomeViewModel)
viewModelOf(::SendMessageViewModel)

}

Listing 6: Illustration of Koin module

fun ComponentActivity.initializeDependencyInjection() {
initKoin {

val contextModule = module {
factory<ComponentActivity> {

this@initializeDependencyInjection
}
factory<Context> { this@initializeDependencyInjection }

}

modules(
contextModule,
homeModule,
...

)
}

}

Listing 7: Illustration of Koin initialization function

37

4.6. Android application

After completing the setup, the DI is ready and can be used as demon-
strated in Listing 8. In this example, the HomeViewModel class is initial-
ized with a GetPostsUseCase dependency. This use case is injected into
the HomeViewModel via Koin, illustrating how DI facilitates the management
of dependencies.

internal class HomeViewModel(
private val getPosts: GetPostsUseCase

) { ... }

Listing 8: Illustration of using DI

4.6 Android application

This section covers the implementation of the three main layers of the appli-
cation. First, the UI layer is explored, including details about UI components,
screen navigation, and how ViewModels manage data. Then, the domain layer
is explored, focusing on use cases and repositories. Finally, the data layer
is described, highlighting data sources and API calls.

4.6.1 UI layer
This section covers the Views, ViewModels, and navigation within the ap-
plication. As decided in Section 3.4.1.3, the UI layer implements the MVI
architecture.

4.6.1.1 Navigation

All the module-specific navigation graphs are called in the Root component,
illustrated in Listing 9. These navigation graphs contain the navigation logic
for each module, organizing how the app moves between different screens within
a module. In the beginning, the application checks through a use case if
the user is logged in to determine whether the starting destination should be
the LoginScreen or the HomeScreen.

38

4.6. Android application

@Composable
fun Root() {

...
val startDestination = remember(isUserLoggedIn) {

if (isUserLoggedIn) Destination.Home.HomeGraph.route
else Destination.Login.LoginGraph.route

}
Scaffold(

bottomBar = { BottomBar(navController) },
) { padding ->

Box(modifier = Modifier.padding(padding)) {
NavHost(navController, startDestination = startDestination) {

loginNavGraph(
navHostController = navController,
onNavigateToApp = {

navController.navigate(
Destination.Home.HomeGraph.route

)
}

)
homeNavGraph(navController)
messagesNavGraph(navController)
myPostsNavGraph(navController)
settingsNavGraph(navController)

}
}

}
}

Listing 9: Illustration of Root component

As previously discussed, each module is equipped with its own navigation
graph, as illustrated in Listing 10. This graph outlines the routes connecting
to the module’s various screens.

fun NavGraphBuilder.homeNavGraph(navHostController: NavHostController) {
...
navigation(

startDestination = Destination.Home.HomeOverview.route,
route = Destination.Home.HomeGraph.route,

) {
homeRoute(

onPostClick = { postId ->
navHostController.navigate(

Destination.Home.Post.PostDetail(postId).route
)

}
)
homePostDetailRoute(...)
...

}
}

Listing 10: Illustration of navigation graph

39

4.6. Android application

Each route is defined by a specific destination, as illustrated in Listing 11.
These destinations are implemented as a sealed class and include details
about the route and any necessary arguments.

sealed class Destination(
val route: String,
val arguments: List<NamedNavArgument> = emptyList()

) {
data object Home {

data object HomeGraph : Destination("home")
data object HomeOverview : Destination("home/overview")
data object Post {

data class PostDetail(val postId: String = "") : Destination(
route = "home/post/postDetail/${ postId} ",
arguments = listOf(

navArgument("postId") { type = NavType.StringType },
)

) {
val routeNoArgs = "home/post/postDetail/{postId}"

}
...

}
}
...

}

Listing 11: Illustration of Destination class

The homeRoute function shown in Listing 12, along with the HomeRoot
and HomeScreen, are all defined in a single file. The homeRoute function con-
structs a composable route for a particular screen and is declared as internal
to limit its visibility to within the module. Each screen’s Root composable
is marked private, ensuring it is only accessible within its own file. This
configuration also applies to HomeScreen. This setup prevents the navigation
graph, which manages how screens connect, from modifying the individual
screens’ implementation.

internal fun NavGraphBuilder.homeRoute(onPostClick: (String) -> Unit) {
return composable(route = Destination.Home.HomeOverview.route) {

HomeRoot(onPostClick = onPostClick)
}

}

@Composable
private fun HomeRoot(

onPostClick: (String) -> Unit,
...

) {
...
HomeScreen(...)

}

Listing 12: Illustration of Route function

40

4.6. Android application

This navigation pattern is consistently implemented across all the modules,
providing a well-organized structure that simplifies the process of adding new
screens or modifying navigation details as needed.

4.6.1.2 View

As previously noted, the project utilizes Jetpack Compose to develop the ap-
plication’s UI. This subsection demonstrates the implementation of the screens
using Jetpack Compose.

As mentioned in Section 4.6.1.1, in the application’s architecture, each
screen’s root composable function is marked private to restrict its accessibility
to within its own file. Within these root composables, necessary dependencies
and resources, such as ViewModels and state handlers, are injected. This
function handles the communication between the View and Intents or handles
Actions coming from ViewModel, all explained in Section 4.6.1.3.

@Composable
private fun HomeRoot(

onPostClick: (String) -> Unit,
viewModel: HomeViewModel = koinViewModel(),
errorSnackBarHostState: SnackbarHostState = remember {

SnackbarHostState()
}

) {

...

val state by viewModel.state.collectAsState(
HomeViewModel.ViewState()

)
HomeScreen(

state = state,
errorSnackBarHostState = errorSnackBarHostState,
onIntent = viewModel::onIntent

)
}

Listing 13: Illustration of root composable

The screen composable in the application is also marked as private to limit
its access to just its own file, enhancing encapsulation. This clear division be-
tween UI and business logic means changes to the UI won’t impact the under-
lying business processes.

41

4.6. Android application

@Composable
private fun HomeScreen(

state: HomeViewModel.ViewState,
errorSnackBarHostState: SnackbarHostState,
onIntent: (ViewIntent) -> Unit,

) {
BaseScreen(

title = "Home",
isLoading = state.loading,
errorSnackBarHostState = errorSnackBarHostState,

) {
PostsList(

posts = state.posts,
onPostClick = { id ->

onIntent(ViewIntent.OnPostClicked(id))
},

)
}

}

Listing 14: Illustration of screen composable

The PostItem component is shown in Figure 4.2. Constructing these com-
ponents is straightforward and intuitive.

Figure 4.2: Illustration of PostItem component

Jetpack Compose makes it easy to create attractive components with its
variety of built-in tools like Rows, Columns, Cards, Texts, Images and much
more. This allows developers to design appealing user interfaces efficiently.

The PostItem from HomeScreen or MyPostsScreen is made out of built-in
ElevatedCard, inside of it is a Row and inside of it is an Image, Column with
Text and a custom component ReservedCard as shown in Listing 15.

42

4.6. Android application

@Composable
fun PostItem(

post: Post,
...

) {
ElevatedCard(...) {

Row {
...
Image(...)
Column(...) {

Text(...)
...
Row(...) {

if (post.reserved && !post.pickedUp) {
ReservedCard()

}
...

}
}

}
}

}

Listing 15: Illustration of PostItem component code

All the screens of the application are shown in Appendix B.

4.6.1.3 ViewModel

Every ViewModel in the application is structured to include a State, Intent,
and Action, as illustrated by the BaseViewModel shown below in Listing 16.
Each ViewModel in the application extends this BaseViewModel class, incor-
porating its State, Intent, and Action elements.

Each ViewModel includes a State, which encapsulates the current UI state.
The update function is utilized to modify this state in response to UI events,
such as user input in a text field. This ensures that the UI accurately reflects
the latest user interactions and system changes.

The Intent serves as a directive from the UI, signaling the ViewModel to per-
form certain operations. The launchOnIO function is designed to handle tasks
that involve network communication or other I/O operations. These tasks
are executed on the Dispatchers.IO coroutine dispatcher, backed by a pool
of threads optimized for such operations. This setup allows for efficient man-
agement of I/O tasks without blocking the UI, which runs on the main thread.

The Action component is responsible for instructing the UI to execute spe-
cific actions based on the decisions made by the ViewModel. For example,
if a user presses a button to navigate back, the ViewModel captures the In-
tent, which then processes and determines the appropriate course of action.
The launchViewAction function emits these actions, which the UI handles.
This function operates on the main thread (using Dispatchers.Main), ensur-
ing that interactions with the UI are smooth and responsive.

43

4.6. Android application

interface State
interface Intent
interface Action

abstract class BaseViewModel<S : State, A : Action, I : Intent>(
initialState: S,

) : ViewModel() {

private val stateFlow = MutableStateFlow(initialState)
val state: Flow<S> = stateFlow

private val _viewAction = MutableSharedFlow<A>()
val viewAction = _viewAction.asSharedFlow()

protected fun update(body: S.() -> S) {
stateFlow.value = body(stateFlow.value)

}

protected fun launchViewAction(viewAction: A) {
viewModelScope.launch(Dispatchers.Main) {

_viewAction.emit(viewAction)
}

}

protected fun launchOnIO(
block: suspend CoroutineScope.() -> Unit,

) = viewModelScope.launch(Dispatchers.IO) { block() }

abstract fun onIntent(intent: I)

val currentState: S get() = stateFlow.value
}

Listing 16: Illustration of BaseViewModel

For example, consider the HomeViewModel shown in Listing 17. When the
screen is initialized, it triggers the OnViewInitialized intent, which prompts
the ViewModel to load the necessary data. Additionally, if a user taps on a post,
the OnPostClicked intent is activated, leading to an action that navigates
the user to the post’s detailed view.

The user interface is designed to only display information and relay user
interactions back to the ViewModel through Intents. It remains completely
decoupled from the business logic, focusing solely on rendering the UI based
on the state provided by the ViewModel. Intents, such as OnViewInitialized
and OnPostClicked, serve as the primary means of communication between
the View and the ViewModel. They describe the user’s intended actions, en-
abling the ViewModel to handle necessary state changes and actions accord-
ingly.

This clear division of responsibilities supports the principle of separation
of concerns, ensuring that the UI layer focuses exclusively on user interactions
and visual presentation, while the ViewModel efficiently handles logic and state
management.

44

4.6. Android application

internal class HomeViewModel(
private val getCurrentUserId: GetCurrentUserIdUseCase,
private val getOtherUsersPosts: GetOtherUsersPostsUseCase

) : BaseViewModel<ViewState, ViewAction, ViewIntent>(ViewState()) {
override fun onIntent(intent: ViewIntent) {

when (intent) {
is ViewIntent.OnViewInitialized -> onViewInitialized()
is ViewIntent.OnPostClicked -> onPostClicked(intent.id)

}
}
private fun onViewInitialized() { loadData() }
private fun loadData() {

launchOnIO {
update { copy(loading = true) }
....
update { copy(loading = false) }

}
}
private fun onPostClicked(id: String) {

launchViewAction(ViewAction.PostClicked(id))
}
sealed interface ViewIntent : Intent {

data object OnViewInitialized : ViewIntent
data class OnPostClicked(val id: String) : ViewIntent

}
sealed interface ViewAction : Action {

data class PostClicked(val id: String) : ViewAction
data class ShowError(val error: String) : ViewAction

}

data class ViewState(
val loading: Boolean = false,
...

) : State
}

Listing 17: Illustration of HomeViewModel code

4.6.1.4 Model

In the context of MVI and many modern app architecture patterns, the term
“Model” can sometimes be confusing because it does not strictly refer to the
data model in the traditional sense. Instead, it often encompasses the overall
domain logic, including state management and the business logic affecting this
state. The ViewState is part of the Model, but the Model also includes the Use-
Cases that encapsulate the business logic, but those are shown in the next
section. While the ViewState is technically managed within the ViewModel,
it represents the state part of the Model in MVI architecture terms. It holds
the data needed by the UI at any given moment—such as whether data is being
loaded or an error message if something goes wrong.

45

4.6. Android application

4.6.2 Domain layer
This layer contains Domain Models, UseCases and Repositories. Each of them
will be shown in an example and is implemented for everything needed for this
application to function.

4.6.2.1 Domain Model

As previously noted, domain models are crucial elements that encapsulate real-
world concepts or entities. Each model is implemented as a data class con-
taining the necessary values. For instance, the Login domain model is illus-
trated in Listing 18.

data class Login(
val email: String,
val password: String,

)

Listing 18: Illustration of Domain Model

4.6.2.2 UseCase

In the Section 3.4.2, UseCases were discussed as a part of clean architecture.
They help ViewModels interact with relevant data. Each UseCase handles
a specific action that the app needs to perform.

Each UseCase extends a base UseCase interface and is categorized into one
of four types based on its function: UseCaseResult, UseCaseResultNoParams,
UseCaseFlowResult and UseCaseLocal. All types include an invoke operator
that executes the UseCase.

The UseCaseResult requires a parameter. For instance, as shown in List-
ing 23, this UseCase accepts all necessary registration details as a parameter.
The outcome of executing a UseCaseResult is encapsulated in a Result, which
indicates whether the operation was successful or provides an error with a mes-
sage if it failed. The structure of this type of UseCase is detailed in Listing 19.

interface UseCaseResult<in Params, out T : Any> {
suspend operator fun invoke(params: Params): Result<T>

}

Listing 19: Illustration of UseCaseResult

The key difference between UseCaseResult and UseCaseResultNoParams
is that one requires parameters, while the other does not. The implementation
of the UseCaseResultNoParams interface is detailed in Listing 20.

46

4.6. Android application

interface UseCaseResultNoParams<out T : Any> {
suspend operator fun invoke(): Result<T>

}

Listing 20: Illustration of UseCaseResultNoParams

The third type, UseCaseLocal, is designed for local operations, such as com-
municating events between screens. The code of this type is shown in Listing 21.
This UseCase might be used to notify a screen about an event on another
screen, like informing a user that a post has been successfully deleted after
they are redirected back to the list of their posts. UseCaseLocal does not
return a Result since its main function is to relay information to the user, not
to handle data operations that require success or error states.

interface UseCaseLocal<out T : Any> {
suspend operator fun invoke(): T

}

Listing 21: Illustration of UseCaseLocal

The UseCaseFlowResult, whose structure is shown in Listing 22, is used
for retrieving data with Flow - an asynchronous data stream. It is particularly
useful for continuously receiving data, such as messages from other users. This
use case needs to be collected in the ViewModel since it operates as a Flow.

interface UseCaseFlowResult<in Params, out T : Any> {
suspend operator fun invoke(params: Params): Flow<Result<T>>

}

Listing 22: Illustration of UseCaseFlowResult

Implementing a UseCase involves extending the appropriate UseCase inter-
face based on its functionality. For example, RegisterUserUseCase and its
implementation shown in Listing 23 extends a specific interface tailored for re-
ceiving parameters. It takes a Params object that encapsulates all the neces-
sary registration details. The primary operation within this UseCase is to call
the registerUser method from the AuthRepository, which handles the reg-
istration process.

47

4.6. Android application

interface RegisterUserUseCase
: UseCaseResult<RegisterUserUseCase.Params, Unit> {
data class Params(

val email: String,
val password: String,
val firstName: String,
val surname: String,
val username: String

)
}

internal class RegisterUserUseCaseImpl(
private val repository: AuthRepository,

) : RegisterUserUseCase {
override suspend fun invoke(
params: RegisterUserUseCase.Params

): Result<Unit> =
repository.registerUser(

email = params.email,
...

)
}

Listing 23: Illustration of Registration Use Case

4.6.2.3 Repository

A repository is responsible for handling all necessary functions related to a spe-
cific functionality. For instance, an AuthRepository manages all authentica-
tion functions such as loginUser and registerUser, as illustrated in List-
ing 24. As discussed in the design chapter, adhering to the principle of de-
pendency inversion helps keep the domain and data layers separate. UseCases
in the domain layer only interact with the repository interface without being
aware of its specific implementation, which is detailed in the data layer. This
approach ensures a clean separation of concerns and enhances the system’s
modularity.

interface AuthRepository {
suspend fun loginUser(

email: String,
password: String

): Result<Unit>

suspend fun registerUser(...): Result<Unit>
}

Listing 24: Illustration of AuthRepository

48

4.6. Android application

4.6.3 Data layer
This subsection describes the Data layer, building on the details provided
in the design chapter. The Data layer is responsible for storing application
data and managing business logic. It includes the implementation of Reposi-
tories, as well as data Sources, APIs, and their implementation.

4.6.3.1 Repository implementation

The RepositoryImpl serves as an implementation of the Repository interface,
designed to keep the Domain Layer isolated from any knowledge of where its
data originates. This architectural separation enables the repository to gather
data from various sources, including local caches and remote sources. In the case
of the AuthRepositoryImpl shown in Listing 25, a remote source is injected,
providing the necessary data.

internal class AuthRepositoryImpl(
private val source: AuthRemoteSource,

) : AuthRepository {
override suspend fun loginUser(

email: String,
password: String

): Result<Unit> =
source.loginUser(

email = email,
password = password

)

override suspend fun registerUser(
email: String,
password: String,
firstName: String,
surname: String,
username: String

): Result<Unit> =
source.registerUser(

email = email,
password = password,
firstName = firstName,
surname = surname,
username = username

)
}

Listing 25: Illustration of AuthRepositoryImpl

4.6.3.2 Source

The Source interface and its implementation are crucial for managing data
interactions between the application and external APIs. This component is re-
sponsible for retrieving data from specific API implementations and transform-
ing it for use within the application. For instance, it converts data transfer
objects (DTOs) into domain objects that are suitable for the application’s

49

4.6. Android application

internal processes. Conversely, the Source also prepares and formats data
from the application into payloads suitable for transmission back to the APIs.
PostRemoteSource and its implementation are shown as an example in List-
ing 26.

internal interface PostRemoteSource {
suspend fun getOtherUsersPosts(userId: String): Result<List<Post>>
suspend fun getUsersPosts(userId: String): Result<List<Post>>
suspend fun getPost(id: String): Result<Post>
suspend fun deletePost(id: String): Result<Unit>
suspend fun addPost(...): Result<Unit>

suspend fun updatePost(...): Result<Unit>
}

internal class PostRemoteSourceImpl(
private val api: PostApi,

) : PostRemoteSource {
override suspend fun getOtherUsersPosts(userId: String)
: Result<List<Post>> =

api.getOtherUsersPosts(userId).map { dto ->
dto.map { post -> post.toDomain() }

}

...

override suspend fun updatePost(...): Result<Unit> =
api.updatePost(...)

}

Listing 26: Illustration of PostRemoteSource

4.6.3.3 Api

APIs serve as the primary point of communication between the application
and external systems, in this case, Firebase. They establish a controlled gate-
way for data exchange, ensuring that the application can securely and efficiently
fetch and send data. Specifically, they facilitate communication with Firebase
Authentication, Firebase Firestore, and Firebase Storage services. An exam-
ple of this setup is demonstrated in the PostApi shown in Listing 27, with its
implementation illustrated in Listing 28.

50

4.6. Android application

internal interface PostApi {
suspend fun getPosts(): Result<List<PostDto>>
suspend fun getOtherUsersPosts(userId: String): Result<List<PostDto>>
suspend fun getUsersPosts(userId: String): Result<List<PostDto>>
suspend fun getPost(id: String): Result<PostDto>
suspend fun deletePost(id: String): Result<Unit>
suspend fun addPost(images: List<File>, post: PostPayload): Result<Unit>
suspend fun updatePost(

postId: String,
post: UpdatePostPayload,
restOfImages: List<String>?,
deletedImages: List<String>?,
newImages: List<File>?,

): Result<Unit>
}

Listing 27: Illustration of PostApi

internal class PostApiImpl(
private val db: FirebaseFirestore,
private val storage: FirebaseStorage,

) : PostApi {
override suspend fun getPosts(): Result<List<PostDto>> { ... }

...

private suspend fun uploadFile(file: File): String { ... }

private suspend fun deleteFile(fileName: String) { ... }
}

Listing 28: Illustration of PostApiImpl

Firebase services are comprehensively documented and offer robust func-
tionality. Specifically, Firestore provides powerful filtering functions that allow
for sophisticated collection querying. However, Firestore also presents certain
limitations. For example, when a document within a collection contains a sub-
collection, it is impossible to fetch both the document and its subcollection
simultaneously because it must be retrieved in a separate operation. This can
be restrictive in scenarios where nested data structures are involved.

For example, when fetching users’ posts, as demonstrated in Listing 29,
the .get() method is utilized to retrieve data, and the equalTo function is ap-
plied for filtering users’posts. Upon successful data retrieval, a Result marked
Success is returned, containing all the fetched data. Conversely, in the event
of an error, a Result marked Error is returned along with an error message.

51

4.6. Android application

override suspend fun getUsersPosts(userId: String): Result<List<PostDto>> {
try {

val userResponse = db.collection("posts").where {
"user_id" equalTo userId

}.get()
return Result.Success(

userResponse.documents.map {
(it.data() as PostDto).copy(id = it.id)

}
)

} catch (e: Exception) {
return Result.Error(e.message ?: "Unknown Error")

}
}

Listing 29: Illustration of getUsersPosts API call

Firebase Storage provides reliable and straightforward methods for storing
and retrieving data. In this application, Firebase Storage is explicitly uti-
lized to store images associated with posts. After a successful image upload,
the URLs of these images are stored within the corresponding Post object
in the Firestore. An example of an image upload is detailed in Listing 30.

private suspend fun uploadFile(file: File): String {
try {

val storageRef = storage.reference.child(
"images/img_${ Timestamp.now().nanoseconds}${

Timestamp.now().seconds
} .png"

)
storageRef.putFileResumable(file).collect { progress ->

when (progress) {
is Progress.Running -> println(

"Upload is running: ${
progress.bytesTransferred

} /${
progress.totalByteCount

} "
)
is Progress.Paused -> println("Upload is paused")

}
}
val downloadUrl = storageRef.getDownloadUrl()
return downloadUrl

} catch (e: Exception) {
println("Upload failed: ${ e.message} ")
throw e

}
}

Listing 30: Illustration of uploadFile to Firebase Storage

52

4.7. Documentation

Firebase Authentication provides a comprehensive suite of functions. This
project utilizes the functionalities for registration, login, and logout. These
functions are easy to set up. For instance, as demonstrated in Listing 31,
the login process only requires calling .signInWithEmailAndPassword(). This
function checks if the user is registered and, if so, logs the user in.

override suspend fun loginUser(data: LoginPayload): Result<Unit> {
try {

auth.signInWithEmailAndPassword(
email = data.email,
password = data.password,

)
return Result.Success(Unit)

} catch (e: Exception) {
return Result.Error(e.message ?: "Unknown Error")

}
}

Listing 31: Illustration of loginUser to Firebase Authentication

4.7 Documentation

Documentation is crucial in software development for several reasons. It en-
hances onboarding and collaboration by helping new team members understand
the system quickly. Documentation improves maintainability, supports debug-
ging, and ensures consistency across the codebase. Overall, well-documented
code is easier to manage, update, and use, reducing maintenance costs and im-
proving software quality. [72]

4.7.1 KDoc
KDoc [73], which extends Javadoc, is the official documentation format for Kotlin
code. It uses Markdown syntax alongside special tags and annotations to de-
scribe the structure and behavior of Kotlin programs. Tools like Dokka, shown
in Section 4.7.2, can parse KDoc to generate documentation in formats like Hy-
perText Markup Language (HTML). Below in Listing 32 is shown how a class
might be documented using KDoc.

53

4.7. Documentation

/**
* A group of *members*.
*
* This class has no useful logic; it's just a documentation example.
*
* @param T the type of a member in this group.
* @property name the name of this group.
* @constructor Creates an empty group.
*/

class Group<T>(val name: String) {
/**
* Adds a [member] to this group.
* @return the new size of the group.
*/

fun add(member: T): Int { ... }
}

Listing 32: Example of commentary using KDoc format from [73]

4.7.2 Dokka
Dokka [74] is a documentation generation tool developed by JetBrains, the
creators of Kotlin. It parses KDoc annotations to produce documentation
in various formats, including HTML and Markdown. Designed to integrate
seamlessly with Kotlin’s build tools and IDEs, Dokka supports multi-module
projects, making it suitable for this project.

Integrating Dokka with Kotlin’s build system, particularly Gradle, is straight-
forward. The plugin must be added to the build.gradle file of each module that
requires documentation. Additional configurations can be customized to meet
specific needs, such as modifying visibility levels or adding custom pages. Below
in Listing 33 is shown how was Dokka configured in the project’s build.gradle
files.

tasks.withType<DokkaTaskPartial>().configureEach {
dokkaSourceSets {

configureEach {
documentedVisibilities.set(

setOf(
DokkaConfiguration.Visibility.PUBLIC,
DokkaConfiguration.Visibility.INTERNAL,
DokkaConfiguration.Visibility.PRIVATE,

)
)
suppressInheritedMembers.set(true)

}
}

}

Listing 33: Illustration of Dokka configuration

54

4.8. Testing

Team members gain access to comprehensive documentation of all compo-
nents, including private and internal APIs that are crucial for understanding
the system’s inner workings but are not exposed externally. This inclusivity en-
sures that developers can fully grasp the functionality and interactions within
the application.

Setting suppressInheritedMembers to true ensures that inherited mem-
bers are not documented repeatedly across subclasses unless they are overrid-
den. This approach significantly reduces clutter in the documentation, mak-
ing it easier to identify unique features and behaviors of each class. It helps
to highlight what is specifically implemented in a subclass, as opposed to what
it inherits, enhancing clarity for developers navigating the documentation.

Running ./gradlew dokkaHtmlMultiModule, after configuring Dokka ap-
propriately, generates a comprehensive HTML documentation. This docu-
mentation is stored in the root build directory and is structured to provide
a clear and accessible overview of the project’s codebase. The structure of this
documentation, as illustrated in Figure 4.3, allows developers to find relevant
information quickly, facilitating better understanding and more efficient use
of the codebase.

Figure 4.3: Illustration of Dokka documentation

4.8 Testing

Testing is vital in software development as it ensures that applications are reli-
able, secure, and user-friendly. It helps catch bugs early, reduces development
costs, and supports continuous improvement. Ultimately, thorough testing
is critical for delivering high-quality software that meets both user expecta-
tions and business goals. [75]

55

4.8. Testing

4.8.1 Unit testing
Unit tests are a form of software testing that focuses on individual components
or sections of code within an application to ensure they function correctly. De-
velopers typically write and run these tests during the coding process to verify
that each specific function or module performs as intended. By testing these
smaller parts independently before integrating them into the broader system,
unit tests help catch issues early, simplifying debugging and enhancing overall
software quality. [76]

4.8.1.1 JUnit and Mockito

JUnit [77] and Mockito [78] are essential tools for unit testing in Java and Kotlin
projects. JUnit is used for setting up and executing tests, providing annota-
tions to define and manage test methods, and assertions to verify the code’s
correctness. Mockito, on the other hand, is used to mock class dependen-
cies, allowing the creation of mock objects and the specification of their be-
haviors, which is crucial for testing classes in isolation from their actual de-
pendencies. An example of a unit test using JUnit and Mockito is shown
in the LoginViewModelTest in Listing 34.

class LoginViewModelTest {
private lateinit var loginUseCase: LoginUseCase
private lateinit var viewModel: LoginViewModel

@Before
fun setUp() {

val testDispatcher = StandardTestDispatcher()
Dispatchers.setMain(testDispatcher)
loginUseCase = mock()
viewModel = LoginViewModel(loginUseCase)

}

@After
fun tearDown() { Dispatchers.resetMain() }

@Test
fun loginSuccess() = runTest {

val loginData = Login("user@mail.com", "password")
whenever(loginUseCase(loginData)).thenReturn(

Result.Success(Unit)
)
...
val action = viewModel.viewAction.first()
assertTrue(action is LoginViewModel.ViewAction.LogIn)

}
...

}

Listing 34: Illustration of a unit test

56

4.8. Testing

To ensure that tests run consistently and predictably the setUp method pre-
pares the testing environment by using a StandardTestDispatcher to manage
coroutine execution. It also mocks the loginUseCase to simulate functionality
without actual implementation and initializes the LoginViewModel with this
mock. The tearDown method resets Dispatchers.Main to prevent cross-test
interference.

The @Test annotation is essential in JUnit, indicating which methods are
test cases. It ensures that each test method is executed independently, main-
taining test isolation and straightforward error tracking.

In test methods, assertions are critical for verifying that the code behaves
as expected. They check conditions to ensure the actual outcomes match
the anticipated results, validating the code’s performance during testing.

4.8.2 User testing
User testing can be performed after completing the application’s implementa-
tion. This method evaluates a product by having real users test it, allowing
designers and developers to observe how it is used in practice. This helps find
problems and gather ideas for solutions, improving how we understand the way
users interact with the product and what changes are needed. [79]

4.8.2.1 Testers

Five testers were selected for user testing: one is a mobile app developer,
two are software engineering students, and the remaining two are individuals
from non-IT backgrounds. This diverse mix provides the author with a broad
spectrum of user perspectives.

4.8.2.2 Testing scenarios

The scenarios outline specific situations or tasks users might perform when
interacting with the application, ensuring that the application’s features work
as intended. There are nine scenarios, each testing a different application
feature, detailed in Appendix C. These scenarios cover the most important
and critical parts of the application. By following these testing scenarios,
testers can systematically evaluate the application’s behavior, identify any is-
sues, and ensure a smooth and reliable user experience.

Before providing the testers with step-by-step instructions, certain condi-
tions needed to be met for each scenario, such as being logged into the appli-
cation or having registration information. These prerequisites were managed
in advance and given to the testers at the beginning of the testing session. Once
everything was prepared, the author gave the testers step-by-step instructions
and guided them throughout the testing process.

4.8.2.3 Testers feedback

The testing process went smoothly, with no issues encountered. Testers appre-
ciated the simplicity and intuitiveness of the application, noting that the color
scheme is calming and well-suited to the app’s purpose. They particularly liked
that the app allows for seamless communication between users without needing
any external tools.

57

4.9. Continuous Integration/Continuous Delivery

However, two testers—one a mobile app developer and the other with a non-
IT background—identified a couple of potential issues. They pointed out that
once a post is marked as picked up, it cannot be deleted, which could lead
to a cluttered and chaotic interface if the user has a lot of posts. This restric-
tion was initially intended as a way to archive posts, but it may need reconsid-
eration. Additionally, all testers suggested that an alert should be added when
marking a post as picked up since this action cannot be undone and the post
will be hidden from other users. The mobile app developer also highlighted
a potential flaw in the user rating system. They observed that users can rate
others multiple times consecutively. This could result in a disproportionate
number of ratings from a single user, potentially skewing the overall ratings
and diminishing their reliability, especially if other users rate infrequently.

4.8.2.4 Changes according to the testers feedback

Based on the feedback from the testers, the author made appropriate changes
to the application.

The ability to delete archived posts was added to prevent the interface
from becoming cluttered and chaotic. When marking a post as picked up,
a confirmation dialog was added to ensure users do not perform this action
accidentally and are aware that it cannot be undone, causing the post to be
hidden from other users.

The issue with the user rating system was addressed by allowing users
to rate each other only once after initiating contact through a post. This
change helps ensure that ratings remain reliable and are not disproportionately
influenced by a single user. The author considered the scenario where a user
might send a message through the same post again instead of using the di-
rect messaging feature to be an edge case that would only occur occasionally.
Therefore, the new rating system provides more controlled and accurate user
ratings.

4.9 Continuous Integration/Continuous Delivery

This project uses GitHub for version control and tracking and managing changes
within the project. It incorporates both Continuous Integration (CI) and Con-
tinuous Deployment (CD) through GitHub Actions.

The ”Compile and Test on Push” workflow, shown in Listing 35, acti-
vates upon any new push to the repository. This workflow automatically
runs unit tests to validate changes, helping to identify errors. It also com-
piles the project, ensuring that new changes integrate well without causing
disruptions in the build process.

58

4.9. Continuous Integration/Continuous Delivery

name: Compile and Test on Push

on: push

jobs:
build:

runs-on: ubuntu-latest
steps:

- uses: actions/checkout@v3
- uses: actions/setup-java@v3

with:
distribution: 'temurin'
java-version: '17'

- name: Setup Gradle
uses: gradle/gradle-build-action@v2

- name: Make gradlew executable
run: chmod +x ./gradlew

- name: Execute Gradle command - Run unit tests
run: ./gradlew test

- name: Compile Sources
run: ./gradlew compileDebugSources

Listing 35: Illustration of Compile and Test

After every code push to GitHub, the results of the compilation and tests
are automatically displayed in the GitHub Actions workflows, as shown in Fig-
ure 4.4.

Figure 4.4: Illustration of workflow after every push

The “Deploy Test Build” workflow shown in Listing 36, facilitates the CD
of new application test versions to testers. Initiated manually through GitHub
Actions, this workflow allows developers to launch deployments whenever nec-
essary.

59

4.9. Continuous Integration/Continuous Delivery

name: Deploy Test Build

on:
workflow_dispatch:

inputs:
release_notes:

type: string
required: false
description: 'Notes'

jobs:
build:

name: Building and distributing app
runs-on: ubuntu-latest
steps:

...
- name: Execute Gradle command - assembleDebug

run: ./gradlew assembleDebug

- name: Upload Artifact to Firebase App Distribution
uses: wzieba/Firebase-Distribution-Github-Action@v1
with:

appId: ${{ secrets.FIREBASE_APP_ID }}
serviceCredentialsFileContent:

${{ secrets.CREDENTIAL_FILE_CONTENT }}
groups: testers
file:

android/androidApp/build/outputs/apk/debug/androidApp-debug.apk
releaseNotes: ${{ inputs.release_notes }}

Listing 36: Illustration of Test Deploy

During the initiation process, developers can input release notes detailing
the updates included in the test build.

When deploying a new test version for testers, after initiating the workflow,
the running job and its results are displayed in the GitHub Actions, as depicted
in Figure 4.5. After the app is built and tested successfully, the APK is up-
loaded to Firebase App Distribution. Testers then receive an email to download
the app for testing.

Figure 4.5: Illustration of workflow for deployment

60

Chapter 5
Evaluation

In this final chapter, the author evaluates the results of the application and ex-
plores possibilities for its future development.

5.1 Results

In the analysis, waste pollution and its solutions were introduced. The explo-
ration of a mobile app as a means to improve our planet’s health and encourage
humane behavior was discussed. This led to a market research phase that high-
lighted the positives and potential inspirations for the app. Based on this, both
functional and non-functional requirements were established, followed by use
cases to demonstrate the app’s functionality and a domain model to define
the entities and their relationships.

The choice of Kotlin, along with Jetpack Compose, proved to be an excellent
approach for this project. Kotlin’s modern language features, strong commu-
nity support, and seamless integration with Android Studio and official Android
documentation made development efficient and enjoyable. Jetpack Compose,
Google’s modern toolkit for building native UI, pairs perfectly with Kotlin, al-
lowing for clear and readable code. This combination simplifies and accelerates
UI development by reducing boilerplate code and providing a more intuitive
syntax.

Using clean architecture with MVI made the application highly extend-
able, with each part easily replaceable. This approach ensures maintainability
and scalability, aligning well with established best practices for Android devel-
opment. Clean architecture promotes separation of concerns, making the code-
base easier to manage and evolve.

Using Firebase was straightforward and beneficial. It offered a wide range
of technologies, such as real-time databases, authentication, and analytics, en-
hancing the application’s quality and security. Firebase also facilitated the de-
ployment of test versions, making future development and testing more effi-
cient. Firebase’s services are well-documented and widely used in the industry,
supporting rapid development and iteration.

The final application is both functional and tested. All issues identified dur-
ing testing were addressed. The application meets all the Must have and Should
have requirements, and most of the Could have requirements were implemented.
The display of terms and conditions was not implemented due to the need

61

5.2. Future development

for legal consultation, and features like saving posts and displaying a map
with the pickup location were not implemented due to time constraints.

The result of this thesis is a mobile application for the Android platform
that simplifies the process of giving away items. According to testers, it is well-
colored and easy to navigate, which are important attributes for a successful
mobile application.

5.2 Future development

The application works well, but there are several areas where improvements
could enhance the user experience.

As mentioned in the results, the feature to save posts still needs to be
implemented. This could be a valuable addition, encouraging users to engage
with the application more frequently. Users could save posts they are interested
in but not ready to decide on, allowing them to revisit these posts later.

Integrating a map to show pickup locations could significantly improve user
experience. Not only would it provide a visually appealing element, but it
would also make it clearer for users to see where they need to go to pick
up an item. This feature could be particularly helpful for users unfamiliar
with the location, as it would provide a visual reference.

Adding notifications for messages could also enhance the application’s func-
tionality. Allowing users to receive notifications when they have new messages,
with settings to control these notifications, could improve the application’s
overall quality.

Additionally, implementing notifications for new posts near the user could
be another useful feature. This would alert users to new opportunities in their
vicinity, making the application more dynamic and engaging. However, it is
crucial to include settings for this notification feature to allow users to cus-
tomize their preferences, as not everyone may want to receive these alerts.

Furthermore, the application is easily extendible to iOS because the do-
main and data layers are implemented using Kotlin Multiplatform, allowing
for a shared codebase across both platforms.

62

Conclusion

The main goal of this thesis was to develop an application that enables users
to donate items they no longer need. This initiative benefits the donors by
decluttering their space, aids those in need by providing them with valuable
items, and, on a broader scale, contributes positively to environmental conser-
vation and the health of our planet.

The thesis included analysis, research, setting requirements, designing the
application, implementing, and evaluating the final product.

The analytical phase introduces the issue of waste pollution, establishing
its importance. It explains how people dispose of items and why a mobile app
for donating items is a viable solution. Research on existing apps with similar
focuses identifies their pros and cons, providing a detailed overview of possible
improvements and features that the app could adopt and adapt.

Insights from analyzing existing applications define the functional and non-
functional requirements for the project. These requirements transform into
concrete use cases, providing clear scenarios of how the application should
function from the user’s perspective. Based on these use cases, a domain model
was developed to structure the main entities and their relationships, which
are essential for the design and implementation of the application.

The design phase focuses on choosing the language and architecture, con-
sidering sustainability and extensibility. It discusses the Android platform
and identifies the most appropriate data storage solutions for this project.
Technologies are selected to develop an attractive user interface, and a user
interface design is created using wireframes.

In the implementation phase, the project structure and specific technologies
are detailed. The description covers the individual components of the three-
layer architecture and the division of the overall application into modules. It
explains how dependency injection is handled, how Gradle is set up, and how
Firebase technology is utilized. The project documentation and unit tests
are also detailed. In addition to unit tests, user tests are performed.

The results of the project are summarized, highlighting both successes
and areas for improvement and discussing potential future developments for the
application. The project successfully accomplished all of its goals.

63

Bibliography

[1] Econation. Waste and pollution — Hazardous Waste — Econation. https:
//econation.one/waste-and-pollution/, (Accessed on 04/19/2024).

[2] University of Calgary. Pollution vs waste - Energy Education. https:
//energyeducation.ca/encyclopedia/Pollution_vs_waste, (Accessed
on 04/19/2024).

[3] Meuresiduo Solucoes Tecnologicas LTDA. How Much Do We
Waste? A Data-Driven Guide to Waste and Landfills. https:
//www.meuresiduo.com/blog-en/how-much-do-we-waste-a-data-
driven-guide-to-waste-and-landfills/, (Accessed on 04/19/2024).

[4] Atlas Disposal. The Pollution Problem and What We Can do
About it. https://atlasdisposal.com/blog/the-pollution-problem-
and-what-we-can-do-about-it/, (Accessed on 04/19/2024).

[5] HWH Environmental. All About Landfills: Uses, Types, and
More. https://www.hwhenvironmental.com/landfills-101/, (Accessed
on 04/21/2024).

[6] Earth How. The 3 R’s - Reduce, Reuse, and Recycle. https://
earthhow.com/reduce-reuse-recycle/, (Accessed on 04/19/2024).

[7] Citizens Information Board. Reducing waste. https://
www.citizensinformation.ie/en/environment/waste-and-
recycling/reducing-waste/, (Accessed on 04/20/2024).

[8] The Waste and Resources Action Programme. Why is recycling
important? https://www.recyclenow.com/how-to-recycle/why-is-
recycling-important, (Accessed on 04/20/2024).

[9] Business Waste Ltd. How to Reduce Waste — Ways of Reducing
Waste. https://www.businesswaste.co.uk/reduce-waste/, (Accessed
on 04/21/2024).

[10] United States Environmental Protection Agency. Reducing and Reusing
Basics. https://www.epa.gov/recycle/reducing-and-reusing-basics,
(Accessed on 04/21/2024).

64

https://econation.one/waste-and-pollution/
https://econation.one/waste-and-pollution/
https://energyeducation.ca/encyclopedia/Pollution_vs_waste
https://energyeducation.ca/encyclopedia/Pollution_vs_waste
https://www.meuresiduo.com/blog-en/how-much-do-we-waste-a-data-driven-guide-to-waste-and-landfills/
https://www.meuresiduo.com/blog-en/how-much-do-we-waste-a-data-driven-guide-to-waste-and-landfills/
https://www.meuresiduo.com/blog-en/how-much-do-we-waste-a-data-driven-guide-to-waste-and-landfills/
https://atlasdisposal.com/blog/the-pollution-problem-and-what-we-can-do-about-it/
https://atlasdisposal.com/blog/the-pollution-problem-and-what-we-can-do-about-it/
https://www.hwhenvironmental.com/landfills-101/
https://earthhow.com/reduce-reuse-recycle/
https://earthhow.com/reduce-reuse-recycle/
https://www.citizensinformation.ie/en/environment/waste-and-recycling/reducing-waste/
https://www.citizensinformation.ie/en/environment/waste-and-recycling/reducing-waste/
https://www.citizensinformation.ie/en/environment/waste-and-recycling/reducing-waste/
https://www.recyclenow.com/how-to-recycle/why-is-recycling-important
https://www.recyclenow.com/how-to-recycle/why-is-recycling-important
https://www.businesswaste.co.uk/reduce-waste/
https://www.epa.gov/recycle/reducing-and-reusing-basics

Bibliography

[11] Sherman, R. Before You Recycle, Choose to Reuse. https:
//content.ces.ncsu.edu/before-you-recycle-choose-to-reuse, (Ac-
cessed on 04/21/2024).

[12] GREEN LIFE. Reduce, Reuse, Recycle - GREEN LIFE - Be Ecofriendly.
https://gulsheenkbhatia.altervista.org/reduce-reuse-recycle/,
(Accessed on 04/21/2024).

[13] Kazmi, F. The history of thrift shopping: Exploring the origins and evolu-
tion of the thrift industry. https://goodfair.com/blogs/nonewthings/
he-history-of-thrift-shopping-exploring-the-origins-and-
evolution-of-the-thrift-industry, 2023, (Accessed on 04/21/2024).

[14] ThriftCart. Where do thrift stores get their inventory? https:
//download.thriftcart.com/where_do_thrift_stores_get_their_
inventory, (Accessed on 04/21/2024).

[15] Google LLC. Google. https://www.google.com/, (Accessed on
05/15/2024).

[16] Google LLC. Android Apps on Google Play. https://play.google.com/
store/games?hl=en&gl=US, (Accessed on 05/15/2024).

[17] Google LLC. Olio — Share More, Waste Less - Apps on
Google Play. https://play.google.com/store/apps/details?id=
com.olioex.android&hl=en_US, (Accessed on 04/21/2024).

[18] Google. Freegle - Apps on Google Play. https://play.google.com/store/
apps/details?id=org.ilovefreegle.direct&hl=en_US, (Accessed on
04/21/2024).

[19] Google LLC. trash nothing! - Apps on Google
Play. https://play.google.com/store/apps/details?id=
com.trashnothing.app3&hl=en_US, (Accessed on 04/21/2024).

[20] Gorbachenko, P. Functional vs Non-Functional Requirements. https://
enkonix.com/blog/functional-requirements-vs-non-functional/,
2021, (Accessed on 04/22/2024).

[21] Lucas DevSamurai . Understanding the MoSCoW prioritization. https:
//community.atlassian.com/t5/App-Central/Understanding-the-
MoSCoW-prioritization-How-to-implement-it-into/ba-p/2463999,
2023, (Accessed on 04/22/2024).

[22] ActiveCollab Team. MoSCoW Method of Prioritization. https:
//activecollab.com/blog/project-management/moscow-method, (Ac-
cessed on 04/24/2024).

[23] Kvartalnyi, N. Functional Vs. Non-Functional Requirements: Why
Are Both Important? https://inoxoft.com/blog/functional-vs-
non-functional-requirements-why-are-both-important/, 2023, (Ac-
cessed on 04/22/2024).

65

https://content.ces.ncsu.edu/before-you-recycle-choose-to-reuse
https://content.ces.ncsu.edu/before-you-recycle-choose-to-reuse
https://gulsheenkbhatia.altervista.org/reduce-reuse-recycle/
https://goodfair.com/blogs/nonewthings/he-history-of-thrift-shopping-exploring-the-origins-and-evolution-of-the-thrift-industry
https://goodfair.com/blogs/nonewthings/he-history-of-thrift-shopping-exploring-the-origins-and-evolution-of-the-thrift-industry
https://goodfair.com/blogs/nonewthings/he-history-of-thrift-shopping-exploring-the-origins-and-evolution-of-the-thrift-industry
https://download.thriftcart.com/where_do_thrift_stores_get_their_inventory
https://download.thriftcart.com/where_do_thrift_stores_get_their_inventory
https://download.thriftcart.com/where_do_thrift_stores_get_their_inventory
https://www.google.com/
https://play.google.com/store/games?hl=en&gl=US
https://play.google.com/store/games?hl=en&gl=US
https://play.google.com/store/apps/details?id=com.olioex.android&hl=en_US
https://play.google.com/store/apps/details?id=com.olioex.android&hl=en_US
https://play.google.com/store/apps/details?id=org.ilovefreegle.direct&hl=en_US
https://play.google.com/store/apps/details?id=org.ilovefreegle.direct&hl=en_US
https://play.google.com/store/apps/details?id=com.trashnothing.app3&hl=en_US
https://play.google.com/store/apps/details?id=com.trashnothing.app3&hl=en_US
https://enkonix.com/blog/functional-requirements-vs-non-functional/
https://enkonix.com/blog/functional-requirements-vs-non-functional/
https://community.atlassian.com/t5/App-Central/Understanding-the-MoSCoW-prioritization-How-to-implement-it-into/ba-p/2463999
https://community.atlassian.com/t5/App-Central/Understanding-the-MoSCoW-prioritization-How-to-implement-it-into/ba-p/2463999
https://community.atlassian.com/t5/App-Central/Understanding-the-MoSCoW-prioritization-How-to-implement-it-into/ba-p/2463999
https://activecollab.com/blog/project-management/moscow-method
https://activecollab.com/blog/project-management/moscow-method
https://inoxoft.com/blog/functional-vs-non-functional-requirements-why-are-both-important/
https://inoxoft.com/blog/functional-vs-non-functional-requirements-why-are-both-important/

Bibliography

[24] Mishra, A. Designing Use Cases for a Project. https://
www.geeksforgeeks.org/designing-use-cases-for-a-project/,
2022, (Accessed on 04/25/2024).

[25] Nishadha. Use Case Diagram Relationships Explained with Exam-
ples. https://creately.com/blog/diagrams/use-case-diagram-
relationships/, 2022, (Accessed on 04/24/2024).

[26] Chursin, O. A Brief Introduction to Domain Modeling. https:
//olegchursin.medium.com/a-brief-introduction-to-domain-
modeling-862a30b38353, 2017, (Accessed on 04/25/2024).

[27] Bandarupalli, K. Domain Model Using UML. https://
www.techbubbles.com/softwarearchitecture/domain-model-using-
uml/, 2009, (Accessed on 04/25/2024).

[28] The Editors of Encyclopaedia Britannica. Android — Definition,
History, & Facts. https://www.britannica.com/technology/Android-
operating-system, 2024, (Accessed on 04/29/2024).

[29] BasuMallick, C. Android OS: History, Features, Versions, and
Benefits. https://www.spiceworks.com/tech/tech-general/articles/
android-os/, 2024, (Accessed on 04/29/2024).

[30] endoflife.date. Android OS. https://endoflife.date/android, 2024,
(Accessed on 04/29/2024).

[31] Morgan, C. The Rise of Android: From Obscurity to the Top. https:
//www.socialmediatoday.com/content/rise-android-obscurity-top,
2014, (Accessed on 04/29/2024).

[32] Trogrlic, I. 5 best languages for Android app development.
https://decode.agency/article/android-app-development-best-
languages/, 2023, (Accessed on 04/29/2024).

[33] Gircenko, G. Kotlin vs. Java: All-purpose Uses and Android Apps. https:
//www.toptal.com/kotlin/kotlin-vs-java, (Accessed on 04/29/2024).

[34] Nayak, S. K. Exploring the Disadvantages of Flutter for Mobile App
Development. https://shivamkumarnayak.medium.com/exploring-
the-disadvantages-of-flutter-for-mobile-app-development-
9b3703b270b, 2023, (Accessed on 04/29/2024).

[35] Google LLC. Meet Android Studio — Android Developers. https://
developer.android.com/studio/intro, (Accessed on 05/02/2024).

[36] Google LLC. Guide to app architecture — Android Develop-
ers. https://developer.android.com/topic/architecture, (Accessed
on 05/04/2024).

[37] Lackner, P. What Is the Best Architecture for Android Apps?
https://www.youtube.com/watch?v=cnU2zMnmmpg, 2022, (Accessed on
05/03/2024).

66

https://www.geeksforgeeks.org/designing-use-cases-for-a-project/
https://www.geeksforgeeks.org/designing-use-cases-for-a-project/
https://creately.com/blog/diagrams/use-case-diagram-relationships/
https://creately.com/blog/diagrams/use-case-diagram-relationships/
https://olegchursin.medium.com/a-brief-introduction-to-domain-modeling-862a30b38353
https://olegchursin.medium.com/a-brief-introduction-to-domain-modeling-862a30b38353
https://olegchursin.medium.com/a-brief-introduction-to-domain-modeling-862a30b38353
https://www.techbubbles.com/softwarearchitecture/domain-model-using-uml/
https://www.techbubbles.com/softwarearchitecture/domain-model-using-uml/
https://www.techbubbles.com/softwarearchitecture/domain-model-using-uml/
https://www.britannica.com/technology/Android-operating-system
https://www.britannica.com/technology/Android-operating-system
https://www.spiceworks.com/tech/tech-general/articles/android-os/
https://www.spiceworks.com/tech/tech-general/articles/android-os/
https://endoflife.date/android
https://www.socialmediatoday.com/content/rise-android-obscurity-top
https://www.socialmediatoday.com/content/rise-android-obscurity-top
https://decode.agency/article/android-app-development-best-languages/
https://decode.agency/article/android-app-development-best-languages/
https://www.toptal.com/kotlin/kotlin-vs-java
https://www.toptal.com/kotlin/kotlin-vs-java
https://shivamkumarnayak.medium.com/exploring-the-disadvantages-of-flutter-for-mobile-app-development-9b3703b270b
https://shivamkumarnayak.medium.com/exploring-the-disadvantages-of-flutter-for-mobile-app-development-9b3703b270b
https://shivamkumarnayak.medium.com/exploring-the-disadvantages-of-flutter-for-mobile-app-development-9b3703b270b
https://developer.android.com/studio/intro
https://developer.android.com/studio/intro
https://developer.android.com/topic/architecture
https://www.youtube.com/watch?v=cnU2zMnmmpg

Bibliography

[38] Lackner, P. MVVM vs. MVI - Understand the Difference Once and
for All. https://www.youtube.com/watch?v=b2z1jvD4VMQ&t=263s, 2024,
(Accessed on 05/03/2024).

[39] Ankiersztajn, M. MVI Architecture Explained On Android.
https://blog.stackademic.com/mvi-architecture-explained-on-
android-e36ee66bceaa, 2024, (Accessed on 05/03/2024).

[40] Pathak, A. MVVM to MVI: A Guide to Migrating Your Android Architec-
ture. https://medium.com/@myofficework000/mvvm-to-mvi-a-guide-
to-migrating-your-android-architecture-8d3cb5bb9f06, 2023, (Ac-
cessed on 05/03/2024).

[41] Bahramitooran, T. Benefits and Challenges of Applying
Clean Architecture to Existing Software Projects. https:
//medium.com/@tannazbahramitooran/benefits-and-challenges-of-
applying-clean-architecture-to-existing-software-projects-
b8b4ff98c5df, 2023, (Accessed on 05/04/2024).

[42] My, N. T. Clean Architecture for Android App - Reasoning
Process. https://engineering.dena.com/blog/2023/06/clean-
architecture-for-android-app-reasoning-process/, 2023, (Ac-
cessed on 05/04/2024).

[43] Google LLC. Domain layer — Android Developers. https:
//developer.android.com/topic/architecture/domain-layer, (Ac-
cessed on 05/04/2024).

[44] Mishra, A. Understanding Domain Objects, Entities, DTOs, and Models
in C#. https://medium.com/@mishraabhinn/understanding-domain-
objects-entities-dtos-and-models-in-c-207bb5c1d97c, (Accessed
on 05/05/2024).

[45] Google LLC. Data layer — Android Developers. https://
developer.android.com/topic/architecture/data-layer, (Accessed
on 05/04/2024).

[46] Google LLC. Data layer — Android Developers. https://
developer.android.com/topic/architecture/data-layer, (Accessed
on 05/05/2024).

[47] Reppas, K. Clean Architecture in Android VS. Official Documenta-
tion. https://www.youtube.com/watch?v=tOejplwuw3M, 2023, (Accessed
on 05/05/2024).

[48] Pham, Q. Firebase vs AWS: Exploring the Core Features, Pros and Cons.
https://www.orientsoftware.com/blog/firebase-vs-aws/, 2023, (Ac-
cessed on 05/03/2024).

[49] Kuten, A. AWS vs Firebase: The Key Differences. https:
//cloudvisor.co/blog/aws-vs-firebase/, 2023, (Accessed on
05/05/2024).

67

https://www.youtube.com/watch?v=b2z1jvD4VMQ&t=263s
https://blog.stackademic.com/mvi-architecture-explained-on-android-e36ee66bceaa
https://blog.stackademic.com/mvi-architecture-explained-on-android-e36ee66bceaa
https://medium.com/@myofficework000/mvvm-to-mvi-a-guide-to-migrating-your-android-architecture-8d3cb5bb9f06
https://medium.com/@myofficework000/mvvm-to-mvi-a-guide-to-migrating-your-android-architecture-8d3cb5bb9f06
https://medium.com/@tannazbahramitooran/benefits-and-challenges-of-applying-clean-architecture-to-existing-software-projects-b8b4ff98c5df
https://medium.com/@tannazbahramitooran/benefits-and-challenges-of-applying-clean-architecture-to-existing-software-projects-b8b4ff98c5df
https://medium.com/@tannazbahramitooran/benefits-and-challenges-of-applying-clean-architecture-to-existing-software-projects-b8b4ff98c5df
https://medium.com/@tannazbahramitooran/benefits-and-challenges-of-applying-clean-architecture-to-existing-software-projects-b8b4ff98c5df
https://engineering.dena.com/blog/2023/06/clean-architecture-for-android-app-reasoning-process/
https://engineering.dena.com/blog/2023/06/clean-architecture-for-android-app-reasoning-process/
https://developer.android.com/topic/architecture/domain-layer
https://developer.android.com/topic/architecture/domain-layer
https://medium.com/@mishraabhinn/understanding-domain-objects-entities-dtos-and-models-in-c-207bb5c1d97c
https://medium.com/@mishraabhinn/understanding-domain-objects-entities-dtos-and-models-in-c-207bb5c1d97c
https://developer.android.com/topic/architecture/data-layer
https://developer.android.com/topic/architecture/data-layer
https://developer.android.com/topic/architecture/data-layer
https://developer.android.com/topic/architecture/data-layer
https://www.youtube.com/watch?v=tOejplwuw3M
https://www.orientsoftware.com/blog/firebase-vs-aws/
https://cloudvisor.co/blog/aws-vs-firebase/
https://cloudvisor.co/blog/aws-vs-firebase/

Bibliography

[50] amangfg. Firebase vs AWS: Top Differences. https://
www.geeksforgeeks.org/firebase-vs-aws/, 2024, (Accessed on
05/03/2024).

[51] Shokoya, A. XML LAYOUT VS JETPACK COMPOSE, WHICH IS
BETTER? https://medium.com/@MeenoTeK/xml-views-or-jetpack-
compose-which-is-the-best-option-for-your-next-project-
ccf38573a82, 2023, (Accessed on 05/02/2024).

[52] Bellini, A.-C. Android Developers Blog: Jetpack Compose is now
1.0: announcing Android’s modern toolkit for building native
UI. https://android-developers.googleblog.com/2021/07/jetpack-
compose-announcement.html, 2021, (Accessed on 05/02/2024).

[53] Raza, S. A. XML vs Jetpack Compose: Choosing the Best UI Approach for
Android. https://aliraza112.medium.com/xml-vs-jetpack-compose-
choosing-the-best-ui-approach-for-android-463d56aca983, 2023,
(Accessed on 05/02/2024).

[54] Google LLC. Develop a UI with Views — Android Studio
— Android Developers. https://developer.android.com/studio/
write/layout-editor, (Accessed on 05/02/2024).

[55] Google LLC. Layouts in Views — Android Developers. https:
//developer.android.com/develop/ui/views/layout/declaring-
layout, (Accessed on 05/02/2024).

[56] Ahire, V. When to use Fragments VS Activities in Android
App? https://www.tutorialspoint.com/when-to-use-fragments-vs-
activities-in-android-app, 2023, (Accessed on 05/02/2024).

[57] Saumell, J. Compose (UI) beyond the UI (Part I): big changes.
https://proandroiddev.com/compose-ui-beyond-the-ui-part-i-
big-changes-bfe824ee8ed4, 2021, (Accessed on 05/02/2024).

[58] Google LLC. Jetpack Compose UI App Development Toolkit - Android
Developers. https://developer.android.com/develop/ui/compose,
(Accessed on 05/02/2024).

[59] Google LLC. Why Compose — Jetpack Compose — Android Develop-
ers. https://developer.android.com/develop/ui/compose/why-adopt,
(Accessed on 05/02/2024).

[60] Simic, P. Everything you need to know about mobile app wire-
framing. https://decode.agency/article/mobile-app-wireframing/,
2021, (Accessed on 04/30/2024).

[61] Protoio Inc. Proto.io - Prototyping for all. https://proto.io/, (Accessed
on 05/02/2024).

[62] JetBrains s.r.o. Kotlin Multiplatform for Cross-Platform Develop-
ment. https://www.jetbrains.com/kotlin-multiplatform/, (Accessed
on 05/14/2024).

68

https://www.geeksforgeeks.org/firebase-vs-aws/
https://www.geeksforgeeks.org/firebase-vs-aws/
https://medium.com/@MeenoTeK/xml-views-or-jetpack-compose-which-is-the-best-option-for-your-next-project-ccf38573a82
https://medium.com/@MeenoTeK/xml-views-or-jetpack-compose-which-is-the-best-option-for-your-next-project-ccf38573a82
https://medium.com/@MeenoTeK/xml-views-or-jetpack-compose-which-is-the-best-option-for-your-next-project-ccf38573a82
https://android-developers.googleblog.com/2021/07/jetpack-compose-announcement.html
https://android-developers.googleblog.com/2021/07/jetpack-compose-announcement.html
https://aliraza112.medium.com/xml-vs-jetpack-compose-choosing-the-best-ui-approach-for-android-463d56aca983
https://aliraza112.medium.com/xml-vs-jetpack-compose-choosing-the-best-ui-approach-for-android-463d56aca983
https://developer.android.com/studio/write/layout-editor
https://developer.android.com/studio/write/layout-editor
https://developer.android.com/develop/ui/views/layout/declaring-layout
https://developer.android.com/develop/ui/views/layout/declaring-layout
https://developer.android.com/develop/ui/views/layout/declaring-layout
https://www.tutorialspoint.com/when-to-use-fragments-vs-activities-in-android-app
https://www.tutorialspoint.com/when-to-use-fragments-vs-activities-in-android-app
https://proandroiddev.com/compose-ui-beyond-the-ui-part-i-big-changes-bfe824ee8ed4
https://proandroiddev.com/compose-ui-beyond-the-ui-part-i-big-changes-bfe824ee8ed4
https://developer.android.com/develop/ui/compose
https://developer.android.com/develop/ui/compose/why-adopt
https://decode.agency/article/mobile-app-wireframing/
https://proto.io/
https://www.jetbrains.com/kotlin-multiplatform/

Bibliography

[63] Google LLC. Guide to Android app modularization — Android Devel-
opers. https://developer.android.com/topic/modularization, (Ac-
cessed on 05/14/2024).

[64] Gradle Inc. Gradle Build Tool. https://gradle.org/, (Accessed on
05/14/2024).

[65] Google LLC. Firebase — Google’s Mobile and Web App Development
Platform. https://firebase.google.com/, (Accessed on 05/14/2024).

[66] Ugaz, C. How to implement Firebase Firestore in Kotlin Multiplatform
Mobile (KMM) with Compose-Multiplatform. https://medium.com/
@carlosgub/how-to-implement-firebase-firestore-in-kotlin-
multiplatform-mobile-with-compose-multiplatform-32b66cdba9f7,
2023, (Accessed on 05/05/2024).

[67] Google LLC. Configure your build — Android Studio — An-
droid Developers. https://developer.android.com/build, (Accessed on
05/05/2024).

[68] GitLive. GitHub - GitLiveApp/firebase-kotlin-sdk: A Kotlin-first
SDK for Firebase. https://github.com/GitLiveApp/firebase-kotlin-
sdk?tab=readme-ov-file, (Accessed on 05/05/2024).

[69] Google LLC. Dependency injection in Android — Android Developers.
https://developer.android.com/training/dependency-injection,
(Accessed on 05/05/2024).

[70] Koin & Kotzilla. Koin - The pragmatic Kotlin Injection Framework - de-
veloped by Kotzilla and its open-source contributors. https://insert-
koin.io/, (Accessed on 05/14/2024).

[71] Google LLC. Dependency injection with Hilt — Android Developers.
https://developer.android.com/training/dependency-injection/
hilt-android#hilt-and-dagger, (Accessed on 05/14/2024).

[72] Gec. The Crucial Role of Documentation in Coding: A De-
veloper’s Guide. https://medium.com/@gecno/the-crucial-role-of-
documentation-in-coding-a-developers-guide-16c6a741bed8, 2024,
(Accessed on 05/14/2024).

[73] JetBrains s.r.o. Document Kotlin code: KDoc — Kotlin Documen-
tation. https://kotlinlang.org/docs/kotlin-doc.html#kdoc-syntax,
2024, (Accessed on 05/11/2024).

[74] JetBrains s.r.o. Introduction — Kotlin Documentation. https://
kotlinlang.org/docs/dokka-introduction.html, 2024, (Accessed on
05/11/2024).

[75] Khatri, M. F. Beyond Bugs: Exploring the Depths of Software Testing.
https://medium.com/@iamfaisalkhatri/beyond-bugs-exploring-
the-depths-of-software-testing-6a3b7057060e, 2023, (Accessed on
05/14/2024).

69

https://developer.android.com/topic/modularization
https://gradle.org/
https://firebase.google.com/
https://medium.com/@carlosgub/how-to-implement-firebase-firestore-in-kotlin-multiplatform-mobile-with-compose-multiplatform-32b66cdba9f7
https://medium.com/@carlosgub/how-to-implement-firebase-firestore-in-kotlin-multiplatform-mobile-with-compose-multiplatform-32b66cdba9f7
https://medium.com/@carlosgub/how-to-implement-firebase-firestore-in-kotlin-multiplatform-mobile-with-compose-multiplatform-32b66cdba9f7
https://developer.android.com/build
https://github.com/GitLiveApp/firebase-kotlin-sdk?tab=readme-ov-file
https://github.com/GitLiveApp/firebase-kotlin-sdk?tab=readme-ov-file
https://developer.android.com/training/dependency-injection
https://insert-koin.io/
https://insert-koin.io/
https://developer.android.com/training/dependency-injection/hilt-android#hilt-and-dagger
https://developer.android.com/training/dependency-injection/hilt-android#hilt-and-dagger
https://medium.com/@gecno/the-crucial-role-of-documentation-in-coding-a-developers-guide-16c6a741bed8
https://medium.com/@gecno/the-crucial-role-of-documentation-in-coding-a-developers-guide-16c6a741bed8
https://kotlinlang.org/docs/kotlin-doc.html#kdoc-syntax
https://kotlinlang.org/docs/dokka-introduction.html
https://kotlinlang.org/docs/dokka-introduction.html
https://medium.com/@iamfaisalkhatri/beyond-bugs-exploring-the-depths-of-software-testing-6a3b7057060e
https://medium.com/@iamfaisalkhatri/beyond-bugs-exploring-the-depths-of-software-testing-6a3b7057060e

Bibliography

[76] pp pankaj. Unit Testing - Software Testing. https://
www.geeksforgeeks.org/unit-testing-software-testing/, 2024,
(Accessed on 05/11/2024).

[77] JetBrains s.r.o. Test code using JUnit in JVM – tutorial — Kotlin
Documentation. https://kotlinlang.org/docs/jvm-test-using-
junit.html, 2023, (Accessed on 05/13/2024).

[78] Szczepan Faber and friends. GitHub - mockito/mockito: Most popular
Mocking framework for unit tests written in Java. https://github.com/
mockito/mockito, (Accessed on 05/13/2024).

[79] Omniconvert. What is User testing? Definition. https:
//www.omniconvert.com/what-is/user-testing/, 2024, (Accessed
on 05/13/2024).

70

https://www.geeksforgeeks.org/unit-testing-software-testing/
https://www.geeksforgeeks.org/unit-testing-software-testing/
https://kotlinlang.org/docs/jvm-test-using-junit.html
https://kotlinlang.org/docs/jvm-test-using-junit.html
https://github.com/mockito/mockito
https://github.com/mockito/mockito
https://www.omniconvert.com/what-is/user-testing/
https://www.omniconvert.com/what-is/user-testing/

Acronyms

AS Android Studio. 19, 25, 26, 34

AWS Amazon Web Services. 24, 25

CD Continuous Deployment. 58, 59

CI Continuous Integration. 58

DI Dependency injection. 37, 38

HTML HyperText Markup Language. 53–55

IDE Integrated Development Environment. 19, 54

KMP Kotlin Multiplatform. 33, 36, 37

MVI Model-View-Intent. xi, 20–22, 38, 45

MVVM Model-View-ViewModel. xi, 20, 21

NDK Native Development Kit. 18, 19

UI User Interface. 17, 19, 20, 22, 23, 25, 26, 38, 41, 43–45

URL Uniform Resource Locator. 15

XML Extensible Markup Language. 25, 26

71

Appendix A
Use case coverage

Figure A.1: Use case coverage of functional requirements

72

Appendix B
Application screens

Figure B.1: Login screen

73

Figure B.2: Create a new account screen

Figure B.3: New account created successfully screen

74

Figure B.4: Home screen

Figure B.5: Post detail screen

75

Figure B.6: Send message dialog

Figure B.7: My posts screen

76

Figure B.8: My post detail screen

Figure B.9: My post detail screen

77

Figure B.10: Pickup mark confirmation dialog

Figure B.11: Edit post screen

78

Figure B.12: Delete post dialog

Figure B.13: Add new post screen

79

Figure B.14: Message screen

Figure B.15: Message detail screen

80

Figure B.16: Rate user dialog

Figure B.17: Rating successful dialog

81

Figure B.18: Settings screen

Figure B.19: Profile screen

82

Appendix C
Testing scenarios

C.1 Registration and Logging in

For this testing scenario, the tester needs to have a valid e-mail address.

Steps:

1. Launch the application and wait for the Login screen to appear.

2. Click on the Register button.

3. Enter the required information into the fields.

4. Click the Create an account button.

5. If any fields are incomplete or contain errors, an error notification will
appear. Correct any issues and click the button again to proceed.

6. Once registration is successful, a confirmation screen will display, featur-
ing a Continue button. Click this button and wait to be redirected back
to the login screen.

7. Enter e-mail and password that was used in registration.

8. Click the Log in button and wait for the home screen to load.

C.2 Send a message

For this test scenario, the tester must be logged in and located on the Home
screen.

Steps:

1. Select any post and click on it to view its detail.

2. Once the post detail is fully loaded, scroll to the bottom of the screen
and click on the Contact user button.

3. When the dialog appears, type your message into the provided field.

4. Click the Send button to dispatch the message.

83

C.3. Rate user

5. Once the message has been successfully sent, a dialog will appear dis-
playing a success message along with a Continue button. Click on this
button to proceed.

6. Click the Back button to return to the Home screen.

7. Click the Messages tab from the bottom navigation bar.

8. After the screen is loaded verify that the message you sent appears at the
top of the conversations list.

9. Open the top conversation and check if the initial message you sent is
displayed.

10. Type a new message in the field.

11. Click on the Send button.

12. Confirm that the new message appears at the end of the conversation
history.

C.3 Rate user

For this test scenario, the tester must be logged in and located on the Home
screen.

Steps:

1. Click the Messages tab from the bottom navigation bar.

2. After the screen is loaded open the conversation on the top of the list.

3. Locate and click on the button with a star symbol in the header of the
screen. Wait for the rating dialog to appear.

4. Select the last star in the row to give the highest rating, and then wait for
a success dialog to confirm the rating has been successfully submitted.

5. Click on the Continue button and verify that you are redirected back to
the conversation detail screen.

C.4 Add new post

For this test scenario, the tester must be logged in and located on the Home
screen.

Steps:

1. Tap on the My Posts tab located in the bottom navigation bar and wait
for the posts to load.

2. Select the first post from the list and wait for the post detail to load.

3. Locate the button with a plus symbol in the header of the screen and
click on it, then wait to be redirected to the Add New Post screen.

84

C.5. Edit post

4. Enter “title” in the Title field.

5. Type “description” into the Description field.

6. Fill in “pickup time” in the Pickup Time field.

7. Input “pickup place” in the Pickup Place field.

8. Select at least one picture from the phone’s library to include with the
post.

9. After ensuring all information is entered, click the Add post button. If
any fields are left incomplete or no picture has been added, an alert will
notify you to provide the missing information. Once all fields are correctly
filled, you will be automatically redirected back to the My Posts screen.

C.5 Edit post

For this test scenario, the tester must be logged in and located on the Home
screen.

Steps:

1. Tap on the My Posts tab in the bottom navigation bar and wait for the
posts to load.

2. Select the first post from the list and wait for the post detail screen to
load.

3. Locate the button with an edit symbol in the screen’s header. Click on
this button and wait to be redirected to the Edit Post screen.

4. OOnce the Edit Post screen is displayed, update the title of the post to
“Updated Title” and the pickup time to “Today”.

5. Delete the first picture listed in the post.

6. AAdd a new picture by clicking on the button marked with an image
symbol.

7. After updating the information and managing the images, click on the
Save changes button. Wait to be redirected back to the post detail screen.
Before saving, make sure all fields are correctly filled. If any errors occur,
such as missing mandatory information or an upload issue, verify that
the system displays an error message.

8. On the post detail screen, click the Reserved toggle button.

9. Verify that the Reserved mark appears below the image.

10. Click the Picked up toggle button.

11. Check that the Picked up mark is displayed below the image, replacing
the Reserved mark.

12. Confirm that the Delete and Edit buttons are no longer present in the
header.

85

C.6. Delete post

C.6 Delete post

For this test scenario, the tester must be logged in and located on the Home
screen.

Steps:

1. Click on the My Posts tab in the bottom navigation bar and wait for the
posts to load.

2. Select the first post from the top of the list and wait for the post detail
screen to load.

3. In the header of the screen, locate the button marked with a delete sym-
bol. Click on this button and wait to be redirected back to the My Posts
screen.

4. If an error occurs during the deletion process, verify that an error message
is displayed.

C.7 Edit profile

For this test scenario, the tester must be logged in and located on the Home
screen.

Steps:

1. Tap on the Settings tab in the bottom navigation bar and wait for the
Settings screen to load.

2. Click on the Profile button and wait for the Profile screen to load.

3. Update the Username field to “changedusername”.

4. Change the First Name to “changedname”.

5. Modify the Surname to “changedsurname”.

6. Click on the Save changes button. Upon successful update, a success
message should be displayed. If an error occurs, ensure that an error
message is shown.

7. Navigate back to the Settings screen using the button in the top left
corner.

8. Click on the Profile button again and wait for the Profile screen to load.

9. Confirm that the changes have been saved by verifying that the Username
is “changedusername”, First Name is “changedname”, and Surname is
“changedsurname”.

86

C.8. Delete profile

C.8 Delete profile

For this test scenario, the tester must be logged in and located on the Home
screen.

Steps:

1. Click on the Settings tab in the bottom navigation bar and wait for the
Settings screen to load.

2. Select the ”Profile” button and wait for the Profile screen to load.

3. Click on the Delete account button. Upon successful deletion, confirm
that the user is redirected to the Login screen. If an error occurs, verify
that an error message is displayed.

C.9 Log out

For this test scenario, the tester must be logged in and located on the Home
screen.

Steps:

1. Click on the Settings tab in the bottom navigation bar and wait for the
Settings screen to load.

2. Click on the Log out button and wait to be redirected to the Login screen.
If any errors occur during this process, ensure that an error message is
displayed.

87

Appendix D
Contents of attachments

readme.txt the file with CD contents description
src..the directory of source codes

mobile app..................................implementation sources
thesis...............the directory of LATEX source codes of the thesis

text...the thesis text directory
thesis.pdf............................the thesis text in PDF format

extra..the extra attachments
screenshots.......................the screenshots of the application
videos the videos of the application

88

	Introduction
	Goals
	Analysis
	Introduction to the problematics
	Waste pollution
	How to deal with the problem
	Items Giveaway
	History
	Thrift shops today

	Mobile application

	Market research
	Olio
	Freegle
	Thrash nothing

	Requirements
	MoSCoW prioritization
	Functional requirements
	Non-functional requirements

	Use cases
	A list of use cases
	Diagram of use cases

	Domain conceptual model
	User
	Post
	Image
	Location
	Conversation
	Message

	Design
	Android platform
	Programming language
	Java
	Kotlin
	C++
	C#
	Dart
	The best choice for the project

	Integrated Development Environment
	Architecture
	MVVM vs MVI
	MVVM
	MVI
	The best UI layer architecture for the project

	Clean architecture
	Domain layer
	Data layer

	Backend
	Firebase
	AWS
	The best choice for the project

	Frontend
	XML and Fragments
	Jetpack Compose
	The best choice for the project

	User Interface Design
	Authentication
	Bottom navigation
	Other users posts
	User's posts
	Messages
	Settings and profile

	Implementation
	Kotlin Multiplatform
	Modularization
	Gradle
	Firebase
	Dependency Injection
	Android application
	UI layer
	Navigation
	View
	ViewModel
	Model

	Domain layer
	Domain Model
	UseCase
	Repository

	Data layer
	Repository implementation
	Source
	Api

	Documentation
	KDoc
	Dokka

	Testing
	Unit testing
	JUnit and Mockito

	User testing
	Testers
	Testing scenarios
	Testers feedback
	Changes according to the testers feedback

	Continuous Integration/Continuous Delivery

	Evaluation
	Results
	Future development

	Conclusion
	Bibliography
	Use case coverage
	Application screens
	Testing scenarios
	Registration and Logging in
	Send a message
	Rate user
	Add new post
	Edit post
	Delete post
	Edit profile
	Delete profile
	Log out

	Contents of attachments

