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Abstrakt / Abstract

Tato práce představuje metodu Tre-
eLIME pro vysvětlování hierarchic-
kých víceinstančních modelů strojového
učení. Naše metoda natrénuje zjedno-
dušený logistický model pro konkrétní
vstupní vzorek. TreeLIME následně
vytvoří vysvětlení interpretací tohoto
zjednodušeného modelu.

Zjistili jsme, že náš původní logistický
model nebyl dobře interpretovatelný,
protože některé prediktory byly na sobě
částečně závislé. Proto jsme vyvinuli
novou vrstvenou verzi TreeLIME, která
trénuje logistický model pro každou
vrstvu hierarchického víceinstančního
vzorku zvlášť. Optimalizační proces
obou verzí TreeLIME jsme zároveň
vizualizovali, aby bylo snadnější ho
pochopit a ověřit jeho korektnost.

Provedli jsme sérii experimentů a
citlivostních studií pro různé hyperpa-
rametry metody TreeLIME na CAPEv2
[1] datasetu, který obsahuje tisíce skenů
škodlivých souborů ve formátu JSON
rozdělených do deseti tříd dle typu
malwaru.

Výsledky vrstveného TreeLIME se
výrazně zlepšily a byly srovnatelné s
nejlepšími metodami pro vysvětlování
hierarchických víceinstančních modelů
v současné době.

Pro další zlepšení metody TreeLIME
jsme identifikovali problémy s vrstve-
ným přístupem a navrhli další vylepšení
ploché verze TreeLIME pro pokračování
v této práci.

Klíčová slova: vysvětlitelnost; hmil;
malware;

This thesis introduces a method
named TreeLIME to explain hierarchi-
cal multiple-instance machine learning
models. Our method trains a surrogate
logistic regression model for a specific
input sample. Afterward, TreeLIME
generates an explanation by interpreting
the surrogate model.

We discovered that the initial Flat
TreeLIME implementation suffered
from correlations among the surrogate
model predictors. Therefore, we devel-
oped an improved Layered TreeLIME
method, which trains a surrogate model
for each hierarchical multiple-instance
data sample layer. Furthermore, we
visualized the TreeLIME optimization
process to make it more understandable
and verify that it works correctly.

We conducted rigorous experiments
and a sensitivity analysis for various hy-
perparameters of the TreeLIME method
on the CAPEv2 [1] dataset, which con-
tains JSON reports of thousands of
malicious files divided into ten different
malware classes.

The performance of the Layered Tree-
LIME improved dramatically and was
comparable to the current state-of-the-
art methods of explaining hierarchical
multiple-instance models.

To improve TreeLIME further, we
have identified issues in the Layered
TreeLIME approach and suggested
additional improvements to the Flat
TreeLIME for future work.

Keywords: interpretability; hmil;
malware;
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Chapter 1
Introduction into Explainability

This chapter will focus on why explainability is useful, what explainability is, and what
are the most common ways approaches to explainability. The terms explainability and
interpretability are used interchangeably in this work.

1.1 Why do we need explainability?

As we seek to apply machine learning in more complex applications, the underlying
machine learning models have to get increasingly complicated. Complexity allows the
model to understand and solve more complex tasks. On the other hand, complexity
makes the model more difficult to understand. The model’s decision is almost worthless
without explanation in many fields, such as medicine, law, and security. Moreover,
explaining the model’s decision is helpful in virtually any field. Similar conclusions
were made, for example, in [2].

If the model is perfect in every way, we would not need to understand the reasons
behind its decisions. However, the models are often imperfect, for instance, due to flaws
in training data or insufficient variety in training data.

Machine learning models make mistakes, and explainability offers a tool to learn why.
This knowledge is then crucial for fixing those problems.

For example, the model might be highly sensitive to some unimportant features
correlated with an important feature only in the training data but not in the real-
world data. For example, the timestamp of a scan might be correlated with a label
of the sample because, in the training data, some classes were scanned before others.
In these situations, explaining the model is helpful because it presents what the model
is sensitive to. If it is sensitive to the wrong features, we can fix it by, for instance,
removing codependency from training data.

Without any methods to explain the model, the explanation would look like an
enormously long list of mathematical operations with the input data and the model’s
parameters. That is not very helpful for humans.

1.2 Accuracy and explainability tradeoff

As was mentioned in section 1.1, as the models get more complex, they are harder to
interpret. This can be understood as a tradeoff between accuracy and explainability.
The more complex the model is, the more accurate it can get and the less explainable it
is. On the other hand, the less complex the model is, the less accurate it can get and the
more explainable it is. This tradeoff is shown in Fig. 1.1. Accuracy and explainability
tradeoff is further discussed in [3], which features a similar Figure to 1.1.

1



1. Introduction into Explainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 1.1. Visualization of a trade-off between accuracy and interpretability. On the
bottom right are simple models, which are easier to explain, and on the top right are more

complex models, which are harder to interpret. This chart is a reproduction from [4].

1.3 Model-based explanation
Model-based explanation approach uses interpretable models. These models are on
the bottom right of Fig 1.1. We can derive an explanation by looking at the model’s
parameters. For instance, if we have a linear model, we can look at the weights of the
model and their corresponding features to see which are more impactful and which are
less impactful.

This approach limits the model’s complexity, making it unusable for more compli-
cated problems.

1.4 Post-hoc explanation
Post-hoc explanation techniques can be used for any model, but they are most com-
monly used with models from the top left part in Fig. 1.1.

These methods can be divided into black-box and white-box approaches regarding
how we treat the model.

. Black box approach - The method does not access the model’s internal parameters.
It can only observe the model’s input and output. These methods can be used for
any model and are called model-agnostic. For further reading about the Black box
approach see [5].. White box approach - The method can access the model’s internal parameters and
structure. That means it can access, for example, gradients. These methods are
called model-specific, which means they can be used only for specific models or some
defined set of viable model types. For example, one possible white box approach is
presented in [6].

1.5 What is an explanation of the model’s decision?
An explanation of the model’s decision might be a selection of the most essential input
features. For instance, in image classification, the explanation would be a selection of

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6 Consistency

the most essential superpixels out of all superpixels in the image. In other domains, the
explanation should be a small enough subset of the original data to be comprehensible
by humans. Explanations can be consistent or inconsistent.

An explanation might also be an interpretable model or a counterfactual sample, as
we will see in the following sections.

1.6 Consistency

Explanations can be divided into two categories: consistent and inconsistent explana-
tions.

. Consistent explanation - A consistent explanation is classified into the same class as
the original sample. These explanations are preferred because they are less likely to
be misleading.. Inconsistent explanation - An inconsistent explanation is classified into a different
class than the original sample. These explanations are less preferred than consistent
explanations because they could be misleading.

In our work, we will be working only with consistent explanations.

1.7 Difference between global and local explanations

Another two types of explanations are local explanations and global explanations.

. Global explanations - Global explanations can be applied universally to any sample.
Any feature marked as important is important for every input sample. One approach
that uses global explanations was documented in [7].. Local explanations - Local explanations explain the model’s decision in a small neigh-
borhood of the given data sample. This means that features selected as significant are
not important for all input data samples but for similar input data samples that are
in a close neighborhood to the original sample. Many methods use local explanations,
for example, [8–10].

In our work, we will only work with local explanations as our models are too com-
plicated to be explained globally.

1.8 Input data type

We can divide the explanation methods by the input data type they support. Different
methods may be optimal for different data types.

Important for our work are these data types

. Vectors/Matrices - used for example in in [8–9].. Graphs with cycles - used for example in [10].. Trees - used for example in [11].

3



1. Introduction into Explainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.9 Explanation types
Explanation can take different forms and types. The most common explanation types
are:

. Feature importance - This explanation type selects the most important part of the
input. These features had the most significant impact on the model’s decision. For
example, if the model takes images as input, the explanation could be the most sig-
nificant pixels or superpixels [12] of the image. This type was discussed, for example,
in [13].. Counterfactual explanation - This explanation is a new data sample or new data
samples close to the original data sample, which is classified as a different class. This
is an interesting alternative to the classical explanation approach. On one hand,
counterfactual explanations are easy to understand. On the other hand, however,
the amount of information they provide is limited. This method can generate several
different counterfactual explanations to provide more information. Further reading
about counterfactual explanations can be found in [14].. Surrogate model - This method generates a new, simple and interpretable model,
which is called Surrogate model . This surrogate model is approximately similar
to the original model in the local area around the input data sample. Afterward,
the model works as an explanation because of its simplicity and interpretability.
Simple models, which can work as surrogate models, are sometimes called glass-box
models. For example, the explanation method LIME [8] uses a surrogate model as
an explanation.

4



Chapter 2
Hierarchical Multiple Instance Learning

This work is concerned with the explainability of Hmil models. Therefore, we must
cover what Hmil is and why it is useful. Note that the terms instance and observations
are going to be used interchangeably.

Hierarchical Multiple Instance Learning was introduced in [15] by Tomáš Pevný and
Petr Somol in 2017.

As stated in Mill.jl [15] documentation, Multiple instance learning occurs when the
sample 𝑥 is a set of observations. Due to the properties of a set, the order of the items
does not matter. This implies that all permutations of the same set should be treated
equally. As stated in [11], hmil reflects the structure of data into the model.

The following example illustrates the difference between multiple-instance learning
problems and standard fixed size vector based problems.

We want to analyze an application and predict if it might be dangerous. We decidee
to analyze only the ports opened by the application. The application might not open
any port, or it might open many ports. This would not be easy to represent as a vector
of fixed size. However, representing the open ports as a set without fixed size or any
inherent order of features is a more accurate representation of reality. Therefore hmil
approach will likely yield better results.

To add more complexity to the problem, imagine we want to keep track of every
packet received on that port. Now, we would have a set (ports and their packets) of
sets (set of packets). Fixed-size feature vectors are not suitable for representing this
information. Whereas, hmil natively supports this hierarchical structure.

2.1 Hmill node overview
In Hierarchical multiple-instance learning, we can represent a hierarchy by constructing
a tree of nodes. Nodes can have the three following types:

. Array nodes. Bag nodes. Product nodes

Inner nodes of the tree representation can be either Bag nodes or Product nodes and
leaf nodes are always Array nodes.

2.1.1 Array nodes

Array nodes store information about multiple observations or a single observation.
Array nodes are represented as matrices. Each instance is represented as a column.
Therefore, the number of columns is the same as number of observations.

The number of rows depends on the type of data stored in the observations. It is
depicted in Table 2.1.

5



2. Hierarchical Multiple Instance Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Type of data Data representation Number of rows

Noncategorical scalar Scalar value 1
Noncategorical string N-gram vector Length of the n-gram vector
Categorical variable One hot vector Number of categories
Table 2.1. The table describes the number of rows based on the data type stored in obser-

vations.
The definition of the noncategorical or categorical variable depends on the number

of unique values it has. The threshold can be set manually.

2.1.2 Bag nodes

Bag nodes contain a set of nodes or observations. Children of Bag nodes always have
the same structure. Since leaf nodes cannot be Bag nodes, Bag nodes always have a
child node. Moreover, Bag nodes always have a single child node. Bag nodes carry the
following information:

. Child node - Child node might be an Array node, Product node, or Bag node.. Information about bags of the Bag node - This information maps observations to
different bags

Bag node can contain several bags. The information about bags of the Bag node
includes how many bags it contains and which observations from the child node belong
to which bag.

The following example will illustrate the need for multiple bags in the same Bag
node.

We have a set of atoms, each with a set of bonds. These bonds have some properties,
as illustrated in Figure 2.1.

ProductNode  # 1 obs, 176 bytes                                                                                               
  ├─────── lumo: ArrayNode(1×1)  # 1 obs, 53 bytes                                                                            
  ├─────── inda: ArrayNode(3×1)  # 1 obs, 77 bytes                                                                            
  ├─────── logp: ArrayNode(1×1)  # 1 obs, 53 bytes                                                                            
  ├── mutagenic: ArrayNode(3×1)  # 1 obs, 77 bytes                                                                            
  ├─────── ind1: ArrayNode(3×1)  # 1 obs, 77 bytes                                                                            
  ╰────── atoms: BagNode  # 1 obs, 176 bytes                                                                                  
                   ╰── ProductNode  # 27 obs, 104 bytes                                                                       
                         ├──── element: ArrayNode(8×27)  # 27 obs, 207 bytes                                                  
                         ├────── bonds: BagNode  # 27 obs, 544 bytes                                                          
                         │                ╰── ProductNode  # 68 obs, 56 bytes                                                 
                         │                      ├──── element: ArrayNode(8×68)  # 68 obs, 412 bytes                           
                         │                      ├── bond_type: ArrayNode(7×68)  # 68 obs, 412 bytes                           
                         │                      ├───── charge: ArrayNode(1×68)  # 68 obs, 388 bytes                           
                         │                      ╰── atom_type: ArrayNode(37×68)  # 68 obs, 412 bytes                          
                         ├───── charge: ArrayNode(1×27)  # 27 obs, 183 bytes                                                  
                         ╰── atom_type: ArrayNode(37×27)  # 27 obs, 207 bytes    

Figure 2.1. Representation of a molecule in Mill.jl. Visualization was generated using [16].

The atoms Bag node has only one bag, including all 27 observations. However, the
bonds Bag node has many bags, and each bag corresponds to the bonds of a single
atom.    

julia> ds.data.atoms.bags                                                                                                     
AlignedBags{Int64}(UnitRange{Int64}[1:27])                                                                                    
                                                                                                                              
julia> ds.data.atoms.data.data.bonds.bags                                                                                     
AlignedBags{Int64}(UnitRange{Int64}[1:3, 4:5, 6:8, … 60:62, 63:65, 66:68])

Figure 2.2. This Figure features examples of bag values of different Bag nodes
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2.1.3 Product nodes
Product nodes contain a set of nodes that might have different structures. They can
have multiple named child nodes. This structure is similar to objects in JavaScript or
dictionaries in Python.

2.2 Uses of Hierarchical multiple-instance data
Any JSON or XML document can be represented inside the Mill.jl framework.

A lot of the data transferred on the web is JSON. Moreover, the output of many
software analysis tools, such as [17], is in JSON. Therefore, being able to classify it well
is critical, especially in cybersecurity.

2.3 Mill.jl library
Mill.jl [18] stands for Multiple instance learning library. It is a Julia library specifically
designed to work with hierarchical multiple-instance data.

Mill.jl implements the nodes mentioned in Section 2.1. These nodes can be used to
build complex hierarchical multiple-instance data structures.

Furthermore, Mill.jl also implements model nodes. The Hmil models follow the
structure of the Hmil data sample or data samples. For each Hmil node, Mill.jl has an
according model node. These model nodes form a similar hierarchical structure as the
data sample. Therefore, the process of creating a model is called reflecting.

The final model is a tree structure of connected submodels, where each sub-model
corresponds to the according hmil node.

Mill.jl is stored on GitHub at https://github.com/CTUAvastLab/Mill.jl

2.4 JsonGrinder.jl library
JsonGrinder.jl is a Julia module that converts JSON data to Mill nodes. The conver-
sion can either use default pre-set parameters, which work well for most cases or be
customized for specific demands.

For Example, JsonGrinder.jl includes a default set of rules to determine whether a
variable should be treated as categorical or scalar. These rules can be overridden for
any user-specific reasons.

JsonGrinder.jl is open source and available on GitHub at https://github.com/
CTUAvastLab/JsonGrinder.jl

2.5 Alternative approaches to learning from
Hierarchical multiple-instance data

As was stated in [19] by Tomáš Pevný, alternative approaches for learning from hierar-
chical multiple-instance data are

. Feature engineering - This approach takes the hierarchical multiple-instance data,
selects some features, and converts them to vector, which omits the hierarchical
information. This method is mainly based on the experience of human researchers
[19].
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. JSON/XML/YAML/other formats as an image - This approach converts hierarchical

multiple-instance data to image format, and the convolutional neural network learns
to classify the images into different classes based on different patterns in the image.. JSON/XML/YAML/other formats as a text - This approach strips the data of hierar-
chical information and uses NLP models to classify the text data.

These methods lose information by stripping the hierarchical information from the
data. Furthermore, some require human expertise, therefore, they cannot be automated
easily.

The Hmil approach keeps the hierarchical information and reflects the hierarchy into
the model. Moreover, it can be easily automated as it does not rely on human feature
engineering.
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Chapter 3
ExplainMill

ExplainMill.jl is an open-source library introduced in [11]. The implementation by
Tomáš Pevný, Šimon Mandík and Matěj Račinský is stored on GitHub at https://
github.com/CTUAvastLab/ExplainMill.jl. ExplainMill’s primary focus is to ex-
plain models built using Mill.jl introduced in [18]. This chapter will explain the terms
confidence gap and confidence gap threshold, describe how the masking system
works, and what the explanation process looks like.

3.1 Confidence gap
The confidence gap for a particular class 𝑐 and data sample 𝑥 is the difference in the
model’s final softmax layer between class 𝑐 and class 𝑏, where class 𝑏 is the class with
the highest value in the softmax layer excluding class 𝑐. The model classifies the sample
𝑥 as a class 𝑐 when the confidence gap is positive. When the confidence gap is negative,
the model classifies the sample as the class 𝑏. The higher the confidence gap is, the
more confident the model is in the classification of 𝑥 as 𝑐 and vice versa.

The confidence gap function is implemented in ExplainMill.jl.

3.1.1 Confidence gap threshold
Users can define a 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 or 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒. If the user chooses to define
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒, ExplainMill.jl converts 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 to 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 in the
following way

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 = 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 ∗ 𝑐𝑔

where 𝑐𝑔 is the confidence gap of data sample 𝑥. ExplainMill.jl then guarantees that
the explanation will have a confidence gap at least 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒. Further in this
work, we will reference to the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 as 𝜏.

3.1.2 Confidence gap and explanation size trade-off
The higher the confidence gap we want from the explanation, the larger the explanation
will tend to be, and vice versa. This is generally true, but some exemptions can be
found.

3.2 Masks
ExplainMill.jl introduces the concept of masks. Mask 𝑚𝑘 can be applied to a sample 𝑑𝑠.
This is noted as 𝑚𝑘[𝑑𝑠]. The masked sample is pruned according to the mask values.
The mask can mask individual observations or inner nodes in the tree representations.
The problem of finding a good explanation can be redefined as finding a good mask 𝑚𝑘
for the sample 𝑑𝑠, such that 𝑑𝑠[𝑚𝑘] is a good explanation.

ExplainMill.jl has a function create_mask_structure, which creates a mask 𝑚𝑘
from a data sample 𝑑𝑠. The mask 𝑚𝑘 has a similar structure to 𝑑𝑠, but it is not made
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from Mill nodes but from mask nodes. Representation of a mask of a molecule data
sample from Fig. 2.1 is in Fig. 3.1.
typename(ExplainMill.ProductMask)                                                                                                      
  ├─────── lumo: FeatureMask                                                                                                    
  ├─────── inda: CategoricalMask                                                                                                 
  ├─────── logp: FeatureMask                                                                                                     
  ├── mutagenic: CategoricalMask                                                                                                 
  ├─────── ind1: CategoricalMask                                                                                                 
  ╰────── atoms: BagMask                                                                                                       
                   ╰── typename(ExplainMill.ProductMask)                                                                               
                         ├──── element: CategoricalMask                                                                         
                         ├────── bonds: BagMask                                                                                
                         │                ╰── typename(ExplainMill.ProductMask)                                                        
                         │                      ├──── element: CategoricalMask                                                  
                         │                      ├── bond_type: CategoricalMask                                                  
                         │                      ├───── charge: FeatureMask                                                       
                         │                      ╰── atom_type: CategoricalMask                                                  
                         ├───── charge: FeatureMask                                                                            
                         ╰── atom_type: CategoricalMask        

Figure 3.1. Representation of a mask of data sample featured in Fig. 2.1. Visualization
was generated with HierarchicalUtils.jl [16].

The types of mask nodes will be discussed in the following subsections.

3.2.1 Product masks
Product masks do not mask anything. However, they are necessary for the structure of
the mask tree, as they contain named child masks.

For example, in Fig. 3.1, the root node is a ProductMask, and it contains six child
mask nodes of types FeatureMask, CategoricalMask, or BagMask.

3.2.2 Bag masks
BagMasks can be applied to BagNodes. BagMasks mask individual observations inside
the child node.

3.2.3 FeatureMask
FeatureMasks can be applied to ArrayNodes. FeatureMasks can mask rows. In other
words, specific values an observation can become. However, FeatureMasks cannot mask
out individual observations because observations are represented as columns in ArrayN-
ode.

This mask is primarily used with uncategorical numerical variables.

3.2.4 CategoricalMask
CategoricalMask can be applied to only ArrayNodes. CategoricalMask can mask out
columns, equal to masking out individual observations of ArrayNode. On the other
hand, CategoricalMask cannot mask rows inside ArrayNodes. Therefore, it cannot
mask specific values an observation may become.

This mask is primarily used with categorical variables.

3.2.5 NGramMatrixMask
NGramMatrixMask can be applied to ArrayNodes that store n-grams. This mask is
designed to work with strings and can mask out individual observations which is equal
to masking columns.

10
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3.3 How ExplainMill.jl finds an explanation
To find a good explanation of why model 𝑚 classified input 𝑑𝑠 as class 𝑐.We are looking
for the smallest subset of the sample 𝑑𝑠 such that the model’s confidence gap on the
explanation is positive or is as big as the user defines. Exhaustive search is not possible
in most cases since the number of subsets of a set is 2𝑛, where 𝑛 is the number of items
in the original set.

In a tree with 𝑛 nodes, the number of subtrees is smaller than 2𝑛 because some
subsets are disconnected. The disconnected subsets are called forests. Moreover, any
forest, in our case, would be reduced to the connected part, which includes the root
node, in other words, to a single tree 𝑡. Other trees than the tree 𝑡 in the forest would
be missing their parent node and, therefore, would be pruned out.

Computing the exact amount of subtrees is difficult due to the various branching
factors in each Product node. However, the number will still be quite large, and enu-
merating every subtree will be computationally expensive.

Therefore, ExplainMill.jl implements several heuristics to search faster. They will be
discussed further in this chapter.

ExplainMill.jl separates searching for the explanation into three phases. Each of
these phases is independent of each other and can be configured independently. These
three phases are described in the following subsections.

3.3.1 Subset selection
In this phase, we decide which subtrees we will investigate if they are important. The
possible configurations are:

. Flat search - consider all nodes. Leaf search - consider just leaves and keep paths to the leaves. Level by level search - go level by level - and consider all nodes on that given level,
except the children of previously removed nodes.

3.3.2 Search Type
In this phase, we can decide what search features we will use. Possible search features
are:

. Greedy addition - Greedy addition evaluates all possible nodes to add to the existing
explanation and picks the one with the highest gain of model confidence in the class
we want to explain.. Heuristic addition - Heuristic addition uses some heuristics to rank the importance
of the nodes and chooses the first 𝑘 nodes so that the explanation has an explanation
gap greater than the confidence gap threshold 𝜏.. Random Removal - Random Removal is a process that can be performed after each
addition. It shuffles the existing nodes in the explanation and looks for any node that
can be removed without the model’s confidence dropping below threshold 𝜏. If the
removal is successful, nodes are reshuffled, and the algorithm looks for other possible
removal. If none is found, then the algorithm stops.. Fine Tuning - Fine Tuning adds 𝑙 elements to the explanation greedily. It removes the
elements with the least loss of the model’s confidence in the class we want to explain
until no such can be found without going below the threshold 𝜏. If the same nodes
that were added were also removed, 𝑙 would be increased. 𝑙 starts at one and ends at
𝑚𝑖𝑛(5, 2|𝑆|) where S is the current explanation and |𝑆| is the number of nodes in 𝑆.

11
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3.3.3 Heuristic sub-tree ranking

This phase ranks the available nodes based on heuristic ℎ. These are the available
heuristics implemented in ExplainMill.jl:

. Constant heuristic - Constant heuristic provides a constant heuristic for all nodes. It
is used only as a way to measure the influence of other heuristics.. Gradient heuristic - Gradient heuristic, as stated in [11], reads the model’s gradient
concerning embedding any data sample sub-trees. The higher the absolute value of
this gradient is, the more likely it is an important feature.. Gnn heuristic This method was introduced in [10] and is intended for graph data. This
method was briefly described in Chapter 4. Here, it is used to provide heuristics and
rank the subtrees.. Stochastic Heuristic This heuristic assigns each node a random value. It was devel-
oped to be benchmarked against other heuristics.. Banzhaf heuristic and Shapley heuristic These heuristics are implemented in the pack-
age [20], based on the papers [21–22]. Banzhaf heuristic estimates Banzhaf values
originally introduced in [23]. Whereas Shapley heuristic estimates shapley values
originally introduced in [24]. Either way, the nodes are sorted according to the cal-
culated values, and their ranking is used as a heuristic.
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Chapter 4
Overview of explanation methods

There are many methods for explaining the model’s decision. We will focus only on the
most relevant ones to our work with malware classification.

4.1 LIME

Lime was introduced in [8] in 2016 by researchers at the University of Washington. The
acronym stands for local interpretable model-agnostic explanations.

Assume that 𝑓 is the complex model, and 𝑔 is the simple model used as a local
explanation. The model 𝑔 is sometimes also referred to as a surrogate model.

4.1.1 Interpretable representation of the data

𝑋 is the set of the input data. To provide good explanations, the raw input data 𝑋
needs an interpretable representation of the data 𝑋′. 𝑋′ needs to be simple enough for
humans to understand it. The Lime paper [8] gives these two examples. Assume that
𝑥 ∈ 𝑋 and 𝑥′ ∈ 𝑋′.

. If 𝑥 is a tensor representation of the image, then 𝑥′ might be a vector of boolean
values suggesting the presence or absence of superpixels [12]. (When a superpixel is
absent, it is replaced with a grey color.). If 𝑥 is text embedding, then 𝑥′ might be a vector of boolean values suggesting the
presence or absence of individual words of the original text.

So intuitively, we can think of 𝑥′ as a mask of the presence or absence of some
interpretable components of 𝑥.

4.1.2 Sampling perturbations

We sample instances by choosing a random amount of random non-zero values from 𝑥′.
Other values are set to zero. These instances are called perturbations in [8] and are
labeled 𝑧′. Intuitively, 𝑧′ can be considered as a mask of the interpretable components
of perturbation 𝑧.

Afterward, from 𝑧′, we reconstruct the sample 𝑧 that would correspond to mask 𝑧′.
We can generate 𝑛 perturbations and put them into the set 𝑍 for the reconstructed
perturbations and 𝑍′ for interpretable masks of perturbations.

We will also generate a label for all 𝑧′ ∈ 𝑍′ as 𝑓(𝑧).

4.1.3 Computing the explanation

We solve the following problem and get the explanation 𝑔, where 𝐺 is a set of all possible
surrogate models.

argmin
𝑔∈𝐺

(𝐿(𝑓, 𝑔, 𝜋𝑥) + Ω(𝑔)) (1)
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. 𝐿(𝑓, 𝑔, 𝜋𝑥) is the sum of square differences between the complex model output 𝑓(𝑧)

and simple model output 𝑔(𝑧′) scaled by the proximity to 𝑥 defined by the function
𝜋𝑥

𝐿(𝑓, 𝑔, 𝜋𝑥) = ∑
𝑧∈𝑍,𝑧′∈𝑍′

𝜋𝑥(𝑧)(𝑓(𝑧) − 𝑔(𝑧′))2 (2)

. 𝜋𝑥(𝑧) calculates the proximity of 𝑥 to 𝑧. Different implementations can be used, but
the following function was used in [8]:

𝜋𝑥(𝑧) = 𝑒𝑥𝑝(−𝐷(𝑥, 𝑧)2/𝜎2) (3)

Where 𝐷 can be L2 distance, cosine distance, or other metric, exponentiality means
that the importance of perturbations far from 𝑥 will be close to zero. 𝜎 affects the
width of the radius of proximity.. Ω(g) represents the complexity of the model 𝑔. Two examples were provided:

• If 𝑔 is a decision tree, then Ω(𝑔) might be the depth of the tree.
• If 𝑔 is a linear model, then Ω(𝑔) might be the number of non-zero weights.

A visualization of LIME can be seen in Fig. 4.1.

Figure 4.1. Visualization of the lime algorithm, providing a local explanation. A repro-
duction from [25].

4.2 SHAP

SHAP was introduced in [9] in 2017. SHAP method estimates Shapley values [24]
for each feature based on how much the feature contributes to the model’s output.
The Shapley values are calculated by generating and evaluating many subsets of the
original features. Due to the computationally expensivness of calculating Shapley values
precisely, SHAP estimates them. Shapley value for feature 𝑖 is equal to the feature 𝑖
contribution to the model’s output.
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4.3 GNNExplainer
GNNExplainer was introduced in [10] in 2019. It is a method for explaining Graph
neural networks. Since Hmil data follows a tree structure, it can be seen as a particular
case of a graph network. It works by adjusting the mask of the graph to maximize the
likelihood of a correct classification and to minimize the amount of unmasked nodes.
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Chapter 5
TreeLIME

This chapter will introduce the main contribution of our work, the method TreeLIME.
The name TreeLIME symbolizes that the method applies a technique similar to LIME
[8] on tree data structures. Note that the terms Layered and Level by level are used
interchangeably.

LIME includes the term model-agnostic in its acronym. Our method is model-
specific. Therefore, the LIME in TreeLIME does not stand for the same acronym as
the original LIME [8].

We chose this method because it seemed promising, and we wanted to evaluate it
against other explanation techniques for hierarchical multiple-instance data.

5.1 TreeLIME parameters
TreeLIME supports multiple parameters to customize the explanation method. These
are:

1. 𝗻 - 𝑛 determines how many perturbations will be generated.
2. 𝘁𝘆𝗽𝗲 - 𝑡𝑦𝑝𝑒 can be either Flat or Layered. The type determines whether the method

works level by level or with the entire input 𝑥 in one go.
a) 𝗱𝗶𝗿𝗲𝗰𝘁𝗶𝗼𝗻 - 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 is only relevant when the 𝑡𝑦𝑝𝑒 is Layered. It defines in which

order the layers should be gone through. The two possible values are Up and Down.
In the Up direction, the furthest layer from the root is processed first, and the layer
closest to the root is processed last. When the direction is set to Down, the process
begins with the layer closest to the root and continues processing layers below.

3. 𝗗 - 𝐷 is a distribution which generates perturbation chance 𝛾. Each perturbation
generates its perturbation 𝛾 independently. 𝐷 is always truncated to the interval
⟨0, 1⟩, since 𝛾 is a probability.

4. 𝗱𝗶𝘀𝘁𝗮𝗻𝗰𝗲 - 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 sets the distance function for TreeLIME. Two supported functions
are JsonDiff and Const. If 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is Const, all perturbations’ distance to the
original sample equals constant 1. In other words, the distance between perturbations
is ignored. If 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is JsonDiff, then a function JsonDiff from ExplainMill.jl is
used as the distance metric. JsonDiff counts the differences between the JSON of
the perturbation 𝑧 and the JSON of the original input 𝑥.

5.2 Interpretable representation of the data
TreeLIME, like LIME, uses an interpretable representation for the input data set 𝑋.
For TreeLIME, the interpretable representation of 𝑥 ∈ 𝑋 is a mask 𝑚. The mask 𝑚 is
constructed by the ExplainMill.jl library for the sample 𝑋. This mask is a tree structure
that can mask leaves and inner nodes of 𝑥.
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5.3 Sampling perturbations

The process starts by generating mask 𝑚 to fit the structure of 𝑥 and filling all the
children-masks from 𝑚 with True values. Afterward, TreeLIME takes a set 𝑆 of
children-mask from the mask structure 𝑚. If 𝑡𝑦𝑝𝑒 is Flat, 𝑆 includes all children-
masks with assignable values. That is, all children-masks that are not ProductMasks,
as ProductMask only joins child masks together and does not mask anything by itself.
If 𝑡𝑦𝑝𝑒 is Layered, set 𝑆 includes all children-masks from the mask structure 𝑚 on some
layer 𝑙. ProductMasks are ignored in the layers.

Each children-mask from 𝑆 includes a binary list of some size. If the list has a value
of True on index 𝑖, the corresponding node or observation in 𝑥 is not masked and is
included. If the value on index 𝑖 is False, the corresponding node or observation will
be masked with the value missing. During the evaluation of the Hmil models, missing
values are replaced using various strategies with some default values.

We iterate over every value in every children-mask in 𝑆, and with perturbation chance
𝛾, the initial value of True is overwritten with a False value. The resulting modified
mask is named 𝑧′ to correspond with the LIME notation. From any modified mask 𝑧′,
we can reconstruct a sample 𝑧 using the original sample 𝑥.

However, editing children-masks in 𝑆 might create a parentless observation that, ac-
cording to the mask, should be included, but their parent node should be removed.
Parentless observations are absent in the pruned sample 𝑧 reconstructed from the mod-
ified mask 𝑧′, where 𝑧′ is a mask with parentless observations.

To be consistent with 𝑧 and 𝑧′, we need to remove masking patterns from 𝑧′ that
would correspond to creating parentless observation. This consistency is important for
the TreeLIME method. It ensures that the model is not learning from misleading data.
Lastly, we put all modified masks 𝑧′ into set 𝑍′ and all reconstructed samples 𝑧 into
set 𝑍.

5.4 Generating perturbation chance 𝛾

Perturbation chance 𝛾 is the probability of removing nodes or observations from 𝑥. Per-
turbation chance 𝛾 is drawn from distribution 𝐷 independently for each perturbation.
All supported distributions are in Figure 5.1.
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Figure 5.1. Probability density functions for different distributions 𝐷.

5.5 Computing the explanation
To compute the surrogate model 𝑔, we use logistic regression described in [26] with
lasso regularization, introduced in 1996 in [27].

The surrogate model is trained using GLMNet.jl [28], a Julia wrapper for glmnet
[29–30].

Input data for the logistic regression model 𝑔 are 𝑍′, and the label for 𝑧′ is computed
as 𝑓(𝑧), where 𝑧 is reconstructed from 𝑧′.

Logistic regression with lasso minimizes the following term in Eq. (1).
𝑢

∑
𝑖=1

(𝑦𝑖 − 𝑞𝑖)2 + 𝜆
𝑝

∑
𝑗=1

| ̂𝛽𝑗| (1)

𝑞𝑖 = 1
1 + 𝑒−𝜂𝑖

(2)
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𝜂𝑖 = ̂𝛽0 +
𝑝

∑
𝑗=1

̂𝛽𝑗𝑥𝑖𝑗 (3)

The equations (2) and (3) are a reproduction from Jiří Kléma’s lecture called Gen-
eralized Linear Models, slide number 6 [31]. In the equations, 𝑢 is the number of data
samples, and 𝑝 is the length of individual data samples.

As we can see, lasso minimizes the residual sum of squares plus a penalty for the
sum of absolute values of coefficients. The parameter 𝜆 affects how strong the penalty
for the size of the coefficients will be.

Because the penalty in lasso is the absolute value, it works very well as a feature
selection tool because it tends to assign the coefficient value of zero. This phenomenon
was explained, for example, in [32].

TreeLIME tries all possible lambda values in steps of 0.0005 between zero and the
lambda value, which sets zero to the coefficients 𝛽𝑖. For each lambda, we take the
coefficients 𝛽1, ...𝛽𝑝 and adjust the children masks in 𝑆 according to them. If 𝛽𝑖 is
greater than zero, then the corresponding value in the corresponding children-mask
from 𝑆 will be set to one, otherwise to zero.

In this step, we interpret the surrogate model in the following way: If coefficient 𝛽𝑖
is greater than zero, we want to put the predictor with index 𝑖 into the explanation.
If coefficient 𝛽𝑖 is zero, then we do not want to put the predictor with index 𝑖 into
explanation, as it is not essential according to the model. Finally, suppose coefficient
𝛽𝑖 is negative. In that case, we do not want to put the predictor with index 𝑖 into the
explanation, as it is important according to the model. However, its presence indicates
that the sample is less likely to be the original class. The predictors with negative 𝛽𝑖
would be useful for building a counterfactual sample, which is not the focus of this
work.

Afterward, TreeLIME reconstructs the mask 𝑚𝜆𝑖 from all children-masks in 𝑆. Sub-
sequently, TreeLIME applies the mask 𝑚𝜆𝑖 to the sample 𝑥, runs the pruned sample
through the model, and measures the confidence gap.

After finishing this procedure for every lambda, we have a list of lambdas, a list of
coefficients beta, and a list of confidence gaps.

Next, TreeLIME selects the highest value of 𝜆, which has a corresponding confidence
gap that satisfies the requested relative threshold.

If 𝑡𝑦𝑝𝑒 is Flat, TreeLIME is finished. Otherwise, if the 𝑡𝑦𝑝𝑒 is Layered, the method
increases or decreases 𝑙, depending on the 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, and repeats this process for a new
layer until no layer is left.

5.6 TreeLIME visualization
TreeLIME optimization is visualized in Figures 5.2, 5.3 and 5.4. Figure 5.2 visualizes
the process when 𝑡𝑦𝑝𝑒 is set to Flat. Figures 5.3 and 5.4 visualize layered optimization
in directions Up and Down, respectively.

Figure 5.2 describes the optimization process of TreeLIME in Flat mode, with 200
perturbations and a relative tolerance of 50% of some example sample 𝑥. The process
begins at the top left of both plots. Lambda is set to zero, and nothing has been pruned
from the original sample. The dotted gray line marks the confidence gap of the original
sample, and the original sample 𝑥 is marked with a black dot. The method starts
increasing 𝜆 with steps of 0.0005 until the 𝜆 is high enough that the whole sample is
pruned and contains no leaves. In each step, the method takes the coefficients 𝛽1,...,𝑝 and

19



5. TreeLIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
updates the children-masks according to them. If 𝛽𝑖 is zero or negative, the algorithm
prunes the according node or observation in the according children mask. At the same
time, TreeLIME calculates the confidence gap of the original sample pruned by the
according mask in each step. The algorithm chooses the mask with a confidence gap
above the confidence gap threshold, which pruned the original sample mostly. A gray
dashed line in both plots marks the confidence gap threshold. The 𝜆 and explanation
size corresponding to the resulting mask are marked with a red dot with an orange
stroke. Note that the zero confidence gap is marked with a simple gray line, and when
any point is below this line, the model will classify the explanation as a different class
than the original sample. The purple line changes color to gray when the confidence
gap is below the confidence gap threshold to imply that it is an invalid explanation.

Figure 5.2. This figure describes the optimization process of TreeLIME in Flat mode, with
200 perturbations and a relative tolerance of 50%.

Figure 5.3 describes the Layered optimization of a different input sample 𝑥 in the
direction Up. The process begins at the lowest layer and moves upwards. This sample
𝑥 is from the CAPEv2 dataset [17]. It has three layers. Layers 1 and 2 have roughly
similar sizes, around 103 maskable values, and Layer 3 is much smaller. It has only
around 101 maskable values. The process begins with Layer 3 and optimizes it in the
same way as was described in Figure 5.2. However, the result of this optimization is not
marked with the red dot with the orange stroke Final result but with a blue dot with
the purple stroke Partial result. Some observations on this layer were pruned, and
some were kept. Without making any further changes to Layer 3, the method starts
optimizing Layer 2 similarly. Afterwards, the Layer 3. On each layer, TreeLIME starts
with 𝜆 set to zero and increases it in the same step of 0.0005 until all values on that
layer are pruned.
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Figure 5.3. This figure describes the optimization process of TreeLIME in Layered-Up
mode, with 200 perturbations and a relative tolerance of 50%.

Figure 5.4 describes the Layered optimization of a different input sample 𝑥 in the
direction Down. In the down direction, the algorithm begins with Layer 1, closest to
the root, and then continues with layers below. Optimizing Layer 2 produced only
explanations with a confidence gap below the confidence gap threshold in this example.
That meant nothing was pruned on Layer 2, and the optimization process effectively
skipped Layer 2 and continued with Layer 1. However, how the process tried to optimize
Layer 2 is still visualized in this figure with a light green color.

Figure 5.4. This figure describes the optimization process of TreeLIME in Layered-Down
mode, with 200 perturbations and a relative tolerance of 50%.
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5.7 TreeLIME implementation
TreeLIME was implemented in Julia [33] to be compatible with the ExplainMill.jl [11],
Mill.jl [18], Flux.jl [34], and JsonGrinder.jl [18]. As mentioned, the surrogate model is
trained with [28]. The distributions 𝐷 were implemented in Distributions.jl [35]
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Chapter 6
Experiments

In this chapter, we will analyze how each parameter affects the performance of Tree-
LIME. Finally, we will compare the performance of TreeLIME to other explanation
techniques available in ExplainMill.jl.

6.1 CAPEv2 dataset
This chapter’s experiments explained classifications of the Avast-CTU Public CAPEv2
dataset [1]. This dataset includes 48,976 scans of malicious programs from the software
CAPEv2 [17]. The malicious programs are classified into ten different families. These
are:

. Adload - adware. Emotet - banking and other information-stealing Trojan. HarHar - drive encryption ransomware. Lokibot - information-stealing Trojan. njRAT - remote access Trojan. Qakbot - banking Trojan. Swisyn - remote access Trojan. Ursnif - banking Trojan. Zeus - banking Trojan

6.2 Experiment environment
All experiments run as Slurm [36] jobs on the Czech Technical University Research
Center for Informatics cluster on the upgraded AMD nodes from 2021 equipped with
AMD EPYC 7543. GPU acceleration was not used.

6.3 Information about the experiments
We produced a classifier 𝑓 using the Mill.jl library and trained it to classify malware
scans into one of the ten malware families. The classifier 𝑓 achieved a classification of
86.1% percent on test data. The implementation of the training process was based on
the example script in [17], where the hyperparameter search was already conducted,
which resulted in using 32 neurons in the penultimate layer. Given more time for
training, higher accuracy could be achieved, but because the main focus of this work
was improving TreeLIME to match the current state-of-the-art approaches.

Furthermore, the model was trained with a drop-out ratio of 1 original sample to 9
subsamples with the same label. Subsamples were created from the original samples by
applying random masks. Drop-out makes the model more used to the small samples.
Otherwise, the model never sees the small subsamples in the training process, and
therefore, the model could behave unexpectedly when classifying the small subsamples.
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The Gnn and Grad heuristics were not tested on this dataset because of implemen-

tation issues that were not directly connected to this work. Unfortunately, we did not
have the capacity to resolve those issues. However, in experiments on smaller datasets,
mutagenesis, device id, and hepatitis from [11], Grad and Gnn heuristics system-
atically showed worse performance than Shapley and Banzhaf heuristics.

6.4 Experiments evaluation criteria
Our evaluation of the criteria is the smallness of the explanation and the amount of
time the method took to create the explanation. Smaller explanations are easier to
understand and give more dense information about the model. Therefore, the explana-
tions are more valuable. A shorter time to produce the explanation makes the method
more practical.

In [37] are the following metrics to evaluate how good the explanation method is:

. Stability - Stability is a metric that determines how similar the explanations are when
explaining the same sample on similar models with almost identical performance.
Small changes in the training process, such as a random forest model with 100 or
101 trees, should not significantly affect the explanation.. Robustness - Robustness is a metric that determines how sensitive a model is to
minor changes to the input data sample 𝑥. Remarkably, small changes to 𝑥 should
not lead to significant differences in explanations.. Effectiveness - The first two metrics could be fulfilled by an explanation method that
always returns the same explanation to every sample 𝑥 and every model 𝑓. Therefore,
the article [37] introduced the metric effectiveness. Effectiveness determines how
important the explanation is to the model’s 𝑓 classification. The model’s decision
should change if the explanation is removed from 𝑥.

All the mentioned metrics cannot be evaluated for a single explanation but for an
explanation technique that performs many different explanations.

These metrics were not implemented in this work because implementing TreeLIME
was more challenging than we initially anticipated, and we had to overcome many prob-
lems. As a result, we would need more time to evaluate all these metrics. Nonetheless,
explanation size and time are essential in the real-world applicability of this method.

6.5 Evaluation of distance
The method LIME [8] uses the distance between the reconstructed perturbation and
the original sample as the weight of observation when training the surrogate model. We
tried to implement something similar by using JsonDiff as a metric function. JsonDiff
calculates 𝑑, which is the number of differences (the number of missing elements in
JSON 𝑎 which are present in JSON 𝑏 plus the number of missing elements in JSON 𝑏
which are present in JSON 𝑎) in the original sample and the reconstructed perturbation.
The 𝑑 is inverted and used as a weight of the perturbation mask inside the surrogate
model.

As shown in Figure 6.1 and 6.2, the use of JsonDiff had a negligible impact on
performance. In Figure 6.3, we can see that computing JsonDiff makes TreeLIME run
longer. We concluded that JsonDiff provides an equal amount of misleading information
(the difference between weight:67 and weight:68 is the same as between weight:67
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and weight: No data) as helpful information, therefore as calculating JsonDiff takes
time, it should be omitted.

We were unaware of any other metric that could be used for the distance from
perturbation to the original sample.

Figure 6.1. This Figure compares a Flat TreeLIME with a constant distance function and
a Flat TreeLIME with a JsonDiff distance function.

Figure 6.2. This Figure compares a Layered TreeLIME using a constant distance function
and JsonDiff as a distance function.
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Figure 6.3. This Figure compares a Flat TreeLIME with 1000 perturbations using a con-
stant distance function and JsonDiff as a distance function regarding time.

6.6 Evaluation of the TreeLIME mode

TreeLIME supports three different modes. They are described throughout Chapter 5.

TreeLIME modes are:

. Flat

. Level by level - Up (Sometimes referred to as Layered - Up)

. Level by level - Down (Sometimes referred to as Layered - Down)

The Figures 6.4, 6.5 and 6.6 present interesting results. Overall, Flat TreeLIME has
the weakest performance. The TreeLIME mode Level by level - Down performs usually
the best. Moreover, TreeLIME in mode Level by level - Up performs slightly usually
worse and sometimes slightly better than Level by level - Down, but still a lot better
than the Flat mode.

The reasons for the worse performance of Flat TreeLIME are described in 7.1. The
Down mode could perform better than the Up mode because the upper layers prune
more than the lower layers, and therefore, it is efficient to prune more first and then
work with already pruned layers.
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Figure 6.4. This Figure compares a Flat TreeLIME, Level by level - Down TreeLIME, and
Level by level - Up TreeLIME with 200 perturbations and a relative threshold of 50%.

Figure 6.5. This Figure compares a Flat TreeLIME, Level by level - Down TreeLIME, and
Level by level - Up TreeLIME with 400 perturbations and a relative threshold of 50%.
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Figure 6.6. This Figure compares a Flat TreeLIME, Level by level - Down TreeLIME, and
Level by level - Up TreeLIME with 1000 perturbations and a relative threshold of 50%.

Figure 6.7. This Figure compares a Flat TreeLIME, Level by level - Down TreeLIME, and
Level by level - Up TreeLIME with 1000 perturbations and a relative threshold of 50%

regarding time.

Figure 6.7 shows that the Level by level - Down TreeLIME is the fastest method.
This could also be because it prunes at the beginning of the process. Therefore, it
prunes the most overall.

6.7 Evaluation of the Distribution 𝐷
Perturbation chance 𝛾 is drawn from the distribution 𝐷 for each perturbation indepen-
dently. It determines how likely a node or observation in sample 𝑥 will be pruned.
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Perturbation chance 𝛾 affects the size of perturbations. If 𝛾 is close to zero, the
perturbations will be similar to the original sample and only miss a few nodes or ob-
servations. On the other hand, if 𝛾 is close to one, most of the sample will be pruned,
and the perturbation will be more similar to the empty sample with few extra leaves
or nodes.

All tested distributions are visualized in Figure 5.1. Results from the experiments
focused on distribution 𝐷 are in Figure 6.8 for the Flat TreeLIME, in Figure 6.9 for
Layered TreeLIME in Up mode, and in Figure 6.10 for Layered TreeLIME in Down
mode.

Neither Flat nor Layered TreeLIME performs well when 𝐷 generates values close to
zero. The methods might not even create a perturbation that is classified differently
in these cases. Therefore, the surrogate model does not have access to any helpful
information. However, even if they generate perturbations that are classified differently,
the information in that perturbation for the surrogate model is that when these few
nodes or observations are removed, the label changes, so, therefore, they should be
excluded from the explanations. However, that leaves the explanation to be very large.
This sampling would be more suitable for generating counterfactual examples mentioned
in section 1.9, where we look for the slightest change to the original sample so that the
model classifies it differently. When looking for an explanation, it is more suitable
to use distribution leaning towards one because those perturbations carry more prune
than keep information. Whereas perturbations generated with 𝛾 closer to one carry
more keep than prune information.

Figure 6.8. This Figure compares a Flat TreeLIME method with 200 perturbations, rela-
tive threshold 50%, and different distributions 𝐷.

29



6. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 6.9. This Figure compares a Layered-Up TreeLIME method with 200 perturbations,
relative threshold 50%, and different distributions 𝐷.

Figure 6.10. This Figure compares a Layered-Down TreeLIME method with 200 pertur-
bations, relative threshold 50%, and different distributions 𝐷.

6.8 Evaluation of the number of perturbations 𝑛
The number 𝑛 defines how many perturbations are going to be generated. Generating
an explanation with 200 perturbations took one to two minutes, and 1000 perturbations
took five to thirteen minutes on the CAPEv2 dataset, as shown in Figure 6.14. As these
times seem manageable, we evaluated 𝑛 equal to 200, 400, and 1000.

Figures 6.11, 6.12, and 6.13 showcase how the number of perturbations affects dif-
ferent modes of TreeLIME. Flat mode performed much better with 400 perturbations
over 200, but the performance stayed generally similar with 1000 perturbations. On the
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other hand, in the layered modes, the explanation size decreased overall with increasing
𝑛 as was expected.

Figure 6.11. This Figure compares a Flat TreeLIME method with different numbers of per-
turbations regarding explanation size. Relative threshold is 50%, and 𝐷 is 𝑇 𝑟(𝑁(1, 0.2)).

Figure 6.12. This Figure compares a Layered-Up TreeLIME method with different num-
bers of perturbations regarding explanation size. Relative threshold is 50%, and 𝐷 is

𝑇 𝑟(𝑁(1, 0.2)).
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Figure 6.13. This Figure compares a Layered-Down TreeLIME method with different num-
bers of perturbations regarding explanation size. Relative threshold is 50%, and 𝐷 is

𝑇 𝑟(𝑁(1, 0.2)).

Figure 6.14. This Figure compares a Flat TreeLIME method with different numbers of
perturbations regarding time. Relative threshold is 50%, and 𝐷 is 𝑇 𝑟(𝑁(1, 0.2)).

6.9 Evaluation of the required relative tolerance
Required relative tolerance limits the lowest confidence gap the explanation can have.
Figures 6.15, 6.16, and 6.17 show how the TreeLIME, Bazhaf heuristic and Shapley
heuristic explanation methods are affected by the relative tolerance.

To conclude the results from Figures 6.15, 6.16, and 6.17. All TreeLIME meth-
ods with high relative tolerance perform significantly worse than Banzhaf or Shapley
heuristics with high relative tolerance.
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The Layered TreeLIME with high relative tolerance performs almost as poorly as
Flat TreeLIME with high relative tolerance. The reasons why Layered TreLIME is
sensitive to high relative tolerance are discussed in section 7.3.

Figure 6.15. This Figure compares how relative tolerance affects TreeLIME with 200 per-
turbations.

Figure 6.16. This Figure compares how relative tolerance affects Banzhaf heuristic with
200 perturbations.
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Figure 6.17. This Figure compares how relative tolerance affects the Shapley heuristic with
200 perturbations.

6.10 Comparison of the best TreeLIME method to
other methods.

In this section, we will compare the best versions of TreeLIME against other methods
already implemented in ExplainMill.jl.

Figures 6.18, 6.19 and 6.20 showcase Layered TreeLIME with different numbers of
perturbations, and Figures 6.21, 6.22 and 6.23 are featuring Flat TreeLIME with varying
numbers of perturbations.

Although TreeLIME is comparable to the current state-of-the-art methods, it is no-
ticeably worse. The reasons TreeLIME did not perform at the same level as Shapley or
Banzhaf are discussed in Chapter 7.
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Figure 6.18. This figure compares ExplainMill.jl methods in Level by level mode with 200
perturbations against Layered TreeLIME with 200 perturbations.

Figure 6.19. This figure compares ExplainMill.jl methods in Level by level mode with 400
perturbations against Layered TreeLIME with 400 perturbations.

Figure 6.20. This figure compares ExplainMill.jl methods in Level by level mode with 1000
perturbations against Layered TreeLIME with 1000 perturbations.
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Figure 6.21. This figure compares ExplainMill.jl methods in Flat mode with 200 pertur-
bations against Flat TreeLIME with 200 perturbations.

Figure 6.22. This figure compares ExplainMill.jl methods in Flat mode with 400 pertur-
bations against Flat TreeLIME with 400 perturbations.
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Figure 6.23. This figure compares ExplainMill.jl methods in Flat mode with 1000 pertur-
bations against Flat TreeLIME with 1000 perturbations.
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Chapter 7
TreeLIME analysis

This chapter will analyze the weak points of the TreeLIME method.

7.1 Flat TreeLIME analysis

Flat TreeLIME had a significantly worse performance than Shapley or Banzhaf heuris-
tic. The following text will analyze why.

ExplainMill.jl uses a system of the mask to prune a sample. However, these masks
are not independent of each other. Masking elements higher in the hierarchy affect the
elements lower in the hierarchy. This problem is illustrated on datasets with smaller
samples than CAPEv2 [17] to be easier to visualize. Figure 7.1 is a mask of the sample
from the mutagenesis classification problem. Next to each mask is the size of the mask.
Product masks do not have any size next to them, as their size is always zero. They do
have the ability to mask their children. Product masks only group the children’s masks
and serve to construct the necessary hierarchy.

Mask in Figure 7.1 has three levels. Masks on the same level have the same distance
from the root. Table 7.1 describes each child’s mask level.

typename(ExplainMill.ProductMask)                                                                                                      
  ├─────── lumo: FeatureMask: (1,)                                                                                                     
  ├─────── inda: CategoricalMask: (1,)                                                                                                 
  ├─────── logp: FeatureMask: (1,)                                                                                                     
  ├── mutagenic: CategoricalMask: (1,)                                                                                                 
  ├─────── ind1: CategoricalMask: (1,)                                                                                                 
  ╰────── atoms: BagMask: (27,)                                                                                                        
                   ╰── typename(ExplainMill.ProductMask)                                                                               
                         ├──── element: CategoricalMask: (27,)                                                                         
                         ├────── bonds: BagMask: (68,)                                                                                 
                         │                ╰── typename(ExplainMill.ProductMask)                                                        
                         │                      ├──── element: CategoricalMask: (68,)                                                  
                         │                      ├── bond_type: CategoricalMask: (68,)                                                  
                         │                      ├───── charge: FeatureMask: (1,)                                                       
                         │                      ╰── atom_type: CategoricalMask: (68,)                                                  
                         ├───── charge: FeatureMask: (1,)                                                                              
                         ╰── atom_type: CategoricalMask: (27,)        

Figure 7.1. Sizes of masks of mask featured in Fig. 3.1. Next to each mask is the size of
the mask in brackets. The size corresponds to how many observations or nodes the mask

can prune or keep.
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Masks in Layer 1 size Masks in Layer 2 size Masks in Layer 3 size
FeatureMask 1 CategoricalMask 27 CategoricalMask 68
CategoricalMask 1 BagMask 68 CategoricalMask 68
FeatureMask 1 FeatureMask 1 FeatureMask 1
CategoricalMask 1 CategoricalMask 27 CategoricalMask 68
CategoricalMask 1
BagMask 27
Table 7.1. This table describes the layer for each mask in 7.1. The colors are used to

highlight the dependencies of the masks.

The Table 7.1 highlights the dependencies between masks. These dependencies are
caused because there are multiple ways to prune a node or observation. The following
dependencies are in the mask 7.1:

. All green masks in all Layers and the blue BagMask in Layer 1 are independent. Any
other values do not restrict them. They can freely have True or False values.. The blue and purple masks in Layer 2 depend on the blue BagMask in Layer 1. If
the blue BagMask has a True value on index 𝑖, then the blue CategoricalMasks can
have free values of True or False on index 𝑖. However, if the blue BagMask has a
False value on index 𝑖, then the blue CategoricalMasks also have False values on
index 𝑖. That is because if they had a True value on index 𝑖. This mask would be
misleading for the model because the according label would be generated with that
observation pruned due to BagMask on Layer 1. However, the model would believe
that the True value in Layer 2 had some impact on the label, but it did not.. The purple BagMask depends on the blue BagMask in a more complicated manner.
The purple BagMask has 27 bags, and each of those bags is dependent on a different
index in the Blue BagMask. So if the blue BagMask contains a False value on index
𝑖, all values in bag 𝑖 of the purple BagMask must be False. Otherwise, the mask
would be misleading.. Lastly, all purple CategoricalMasks depend on the purple BagMask, which, as men-
tioned, depends on the blue BagMask.

For example, if the blue BagMask contained a False value on index 𝑖, this forces two
more False values in the blue CategoricalMasks. Assuming that the bag with index 𝑖
has a size of three. Three more forced False values would be in the purple BagMask.
Moreover, they would force three False values in each of the purple CategoricalMasks.
To summarize, one False value in the blue BagMask could force 14 other values to be
False. Depending on the bag size with index 𝑖 in purple BagMask, it could be more
or less. The average bag size in the purple BagMask is 68 ÷ 27 ≈ 2.5.

Flat TreeLIME tries to explain this sample by taking all masks from all layers and
putting them into a flat binary vector of ones. This vector has a size of 1 + 1 + 1 + 1 +
1+27+27+68+1+27+68+68+1+68 = 360. It iterates over all items in this vector,
and with perturbation chance 𝛾, it overrides the item from True to False. Then, it
sets zero to all items with a parent with a zero to remove parentless observations. Even
though this pruning is necessary to remove incorrect representations of masks, it also
introduced relationships and correlations between the predictors.

Regression with correlated predictors performs poorly, and the resulting coefficients
are unsuitable for interpretability. Doc. Ing. Jiří Kléma, Ph.D. in [32] on slide 13 states
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that: “Correlations among predictors cause problems, the variance of all coefficients
tends to increase, sometimes dramatically, interpretations become hazardous...”

Figure 7.2. This figure is blurred in Apple Preview or PDF readers with enabled image
smoothing. For optimal reading experience, use Adobe Acrobat Reader or turn off im-
age smoothing in your preferred PDF reader. This figure visualizes correlation matrices

between the predictors used in logistic regression.

In Figure 7.2, all correlation matrices are visualized as heatmaps due to their size.
The top left plot shows the correlation matrix for Flat TreeLIME. We see that the
correlation between the same predictors is always one, which creates the yellow diag-
onal line from the lower left corner to the top right corner. However, there are more
correlation patterns in this plot. These correlation patterns result from ensuring that
the final mask does not have parentless observations and is, therefore, non-misleading
for the model. Other plots do not have any correlation patterns other than the diagonal
line, which is expected. Also, we can see that the sum of the number of predictors in
Layers 1, 2, and 3 matches the number of predictors in the Flat TreeLIME. Note: The
number of predictors is not 360 because different sample 𝑥 was chosen, but the figure
would be highly similar for any sample 𝑥.

Flat TreeLIME does not perform well due to the correlations and dependencies be-
tween the predictors, making the coefficients 𝛽 unsuitable for interpretability.
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7.2 Layered TreeLIME analysis

Layered TreeLIME performed significantly better than Flat TreeLIME, however, Shap-
ley and Banzhaf heuristics still performed noticeably better. In this section, we will
analyze why.

Figure 7.3. Example of Layered TreeLIME failing to find a small explanation.

Figure 7.3 Layered TreeLIME found an explanation with the number of leaves ≈ 102.
We know that a smaller solution exists, which can be found using more advanced Search
types mentioned in 3.3.2, such as Random Removal explained in 1.9. So why TreeLIME
have not found it? We believe the optimization path, defined in subsection 7.2.1, has
additional restrictions.

7.2.1 TreeLIME optimization path

TreeLIME optimization graph 𝐺 contains a vertex for every mask parameters setting
TreeLIME evaluated. For example, in Figure 7.3, every point scattered in the plot, no
matter its color, would be a single vertex in 𝐺.

There is an edge between any two vertices 𝑢 and 𝑣 only if TreeLIME evaluated 𝑢 and
𝑣 in the same layer one directly after the second or if TreeLIME has chosen 𝑢 as the
best point from a given layer and vertex 𝑣 is the first vertex in the next layer.

The TreeLIME optimization path for Figure 7.3 is the connected line from the point
labeled as Original sample to the point labeled as Final result, which is in the
case of Figure 7.3 drawn behind the point labeled as Partial result. Hence, the only
thing visible is the orange stroke of the point Final result. Note: The TreeLIME
optimization path can include points below the confidence gap threshold and points
generated inside different layers. Therefore, it might be represented with multiple
colors in the plots.

For this work, the TreeLIME optimization path shall be defined as a path from the
vertex representing the original sample to the vertex representing the resulting mask
setting returned by TreeLIME. Path in the graph is a series of distinct vertices, and
because the graph 𝐺 is a tree, there is always a single TreeLIME optimization path.
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7.2.2 TreeLIME optimization path restrictions

In Flat TreeLIME, the only restriction on the TreeLIME optimization path is that the
last point has a confidence gap above the confidence gap threshold. This restriction
is necessary to achieve the target result. The TreeLIME optimization path of Flat
TreeLIME does not add any further restrictions.

However, Layered TreeLIME adds some additional restrictions to the TreeLIME op-
timization path. These restrictions are that each transition from a layer to a different
layer has to happen on a point with a confidence gap above the confidence gap thresh-
old. For 𝑛 layers, this adds 𝑛 − 1 additional restrictions. These additional restrictions
make it more difficult for layered TreeLIME to provide smaller explanations. It is pos-
sible that the optimization path leading to a better explanation does not include these
𝑛−1 points above the confidence gap threshold. When 𝑛 is small, we could try a brute-
force method of starting the next layer from each point of the previous layer. However,
as the number of layers increases, the number of combinations increases exponentially.
Therefore, it is not a practical approach.
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Chapter 8
Conclusion

In this chapter, we will draw the main conclusions from this work.

8.1 Future work based on TreeLIME analysis
Flat TreeLIME has problems with dependencies and correlation among predictors but
does not have problems with multiple restrictions on its optimization path. Layered
TreeLIME has problems with additional restrictions on the optimization path, but it
has no dependencies or correlations among its predictors.

Removing the issues of Layered TreeLIME seems very difficult. However, resolving
issues with Flat TreeLIME seems more straightforward. We would need to develop a
masking system that cannot mask a single node or observation in two or more ways. It
would probably look like a leaf masking method. This method would probably be used
only inside TreeLIME as ExplainMill.jl masking offers more features such as:

. Masking an entire bag. Masking a feature in every bag. Masking only some features in some bags

The new masking system would support only the last of these three properties. There-
fore, it would not be applicable in most ExplainMill.jl use cases where more sophisti-
cated masking is necessary.

Unfortunately, due to time constraints, we were not able to implement the new mask-
ing system, partly because the issues became apparent only in later stages of develop-
ment and were not noticeable on initial smaller datasets like mutagenesis, hepatitis
and device_id from [11], where Flat TreeLIME performed well.

8.2 Conclusion
To conclude, this thesis introduced a new method for explaining Hmil models called
TreeLIME. The TreeLIME method was heavily tested on the CAPEv2 dataset [1] and
showed disappointing performance. This work analyzed the method, revealed the under-
lying issues, and proposed an improved Layered TreeLIME version. Layered TreeLIME
had a comparable performance to the current state-of-the-art methods. Lastly, this
thesis described how the TreeLIME method could be further improved in future work.
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Appendix A
Used AI software

The following AI software was used:

. Grammarly - Grammarly without any generative AI features was used to correct the
grammar and improve the sentence structure of this thesis.. GitHub Copilot - GitHub Copilot was used to speed up the development by generating
easy-to-understand lines or very short snippets of Julia code that were manually
modified to fit into the current context.. Large language models - No large language model was used to generate or rephrase
any part of the text of this thesis.

45



Appendix B
Source code

All the source code developed for is open source and available on GitHub in two repos-
itories:

. MyExplainMill - MyExplainMill is a fork of ExplainMill further modified to fit the
needs of this thesis. TreeLIME is implemented inside MyExplainMill. MyExplainMill
is available at https://github.com/ondraveres/MyExplainMill. myscripts - The repository myscripts stores all the code for running experiments,
training models, plotting visualizations and everything else, which was developed
for this thesis. This repository was originally based on folder scripts in code for
the article [11]. The repository myscripts is available at https://github.com/
ondraveres/myscripts
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