
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Computer Science

Diploma thesis

Protein engineering with large language
models

Author: Bc. Matouš Soldát
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Abstract

The objective of protein engineering is to design proteins with desired properties.
Directed evolution is an iterative laboratory process of designing such proteins by
iteratively synthesizing new protein variants and evaluating their desired property
with expensive and time-consuming biochemical screening. Machine learning meth-
ods can help select informative or promising variants for screening to increase the
quality of screened variants and reduce the amount of necessary screening. The goal
of this thesis is to suggest an effective way to exploit pre-trained protein language
models in directed evolution. The thesis provides a review of existing pre-trained
protein language models and their application in protein engineering, as well as an
introduction to the application of Bayesian optimization for directed evolution. Af-
terward, three machine-learning-assisted methods for directed evolution are proposed
and compared to classical methods of directed evolution and state-of-the-art machine-
learning-assisted methods. The proposed methods exploit protein sequence represen-
tation extracted from a pre-trained protein language model. The most promising of the
proposed methods, Bayesian optimization in embedding space (BOES), combines the
high-dimensional representation with Bayesian optimization by limiting the effective
number of dimensions to one with a custom kernel. BOES outperforms state-of-the-
art model-regression methods by 17 % with the same screening effort and can save
44 % of the experimental burden in comparison to BO-based methods with a different
informative protein sequence representation.

Keywords: protein engineering, directed evolution, large language models, sequence
embedding, Bayesian optimization

Abstrakt

Ćılem inženýringu protein̊u je návrh protein̊u s požadovanými vlastnostmi. Ř́ızená
evoluce je iterativńı laboratorńı proces návrhu takových protein̊u pomoćı iterativńı
syntézy nových variant protein̊u a vyhodnocováńı mı́ry požadované vlastnosti drahými
a časově náročnými biochemickými experimenty. Metody strojového učeńı mohou po-
moci s výběrem informativńıch a slibných variant k experimentálńımu ověřeńı a t́ım
zvýšit kvalitu objevených variant a sńıžit množstv́ı provedených experiment̊u. Ćılem
této práce je navrhnout efektivńı zp̊usob využit́ı předučených proteinových model̊u
pro ř́ızenou evoluci protein̊u. Práce poskytuje rešerši existuj́ıćıch předučených pro-
teinových model̊u a jejich aplikaćı v proteinovém inženýrstv́ı. Dále poskytuje úvod do
využit́ı Bayesovské optimalizace pro ř́ızenou evoluci protein̊u. Následně jsou navrženy
tři metody pro ř́ızenou evoluci protein̊u asistované strojovým učeńım, které jsou
porovnány s klasickými metodami ř́ızené evoluce i ostatńımi moderńımi metodami
s asistenćı strojového učeńı. Navržené metody využ́ıvaj́ı representaci proteinových
sekvenćı pomoćı předučeného proteinového modelu. Nejslibněǰśı z navržených metod,
Bayesovká optimalizace v prostoru embedding̊u (zkratkou BOES), kombinuje tuto
vysoko-dimenzionálńı representaci s Bayesovskou optimalizaćı pomoćı kernelu, který
snižuje efektivńı počet dimenźı na jednu. BOES překonává moderńı metody regrese
modelu o 17 % při zachováńı stejného množstv́ı provedených experiment̊u a může
ušetřit 44 % nutných experiment̊u ve srovnáńı s metodami Bayesovké optimalizace s
jinou informativńı representaćı proteinových sekvenćı.

Kĺıčová slova: inženýring protein̊u, ř́ızená evoluce, velké jazykové modely, embed-
ding sekvenćı, Bayesovská optimalizace
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1 Introduction

Protein Engineering is a process of designing proteins with desired properties related to
their function such as the protein’s stability, catalytic function, or binding to a specific
molecule [1]. This can be leveraged in industrial applications, environmental applications,
medicine, nanobiotechnology, and other fields [1]. However, due to the combinatorial
nature of protein sequences, the number of possible variants is often too large for an
exhaustive search [1, 2]. To solve this problem, biologists use directed evolution (DE), an
iterative laboratory process of creating new biomolecules of desired properties, that mimics
Darwinian evolution in a controlled environment [3]. During directed evolution, an existing
protein is iteratively mutated producing multiple new protein variants, which are screened
to identify mutations beneficial to the protein’s desired function. The beneficial mutations
are kept and the protein is mutated again in the following iteration.

The wet lab experiments required to synthesize and screen the mutated protein vari-
ants during a DE procedure are expensive and time-consuming [4]. Because of this, the
screening process is a common bottleneck of all DE methods. This motivates the employ-
ment of machine learning methods to minimize the amount of conducted screening while
maximizing the highest obtained fitness. The utilized machine learning methods usually
incorporate information about the already screened variants into a model which predicts
a protein’s fitness based on its sequence [4, 5]. The model is then used to intelligently
select new variants for screening which maximize the predicted fitness and/or minimize
uncertainty in the model [4].

A field of machine learning that experienced massive growth in recent years, both in
the context of protein engineering and in general, are large, pre-trained language models.
These deep neural networks with up to billions of parameters can be trained on enormous
amounts of proteins to generate protein sequences. In the process, the models learn to
represent protein sequences in a highly informative space [5], which captures properties
of the protein important to its structure and function [6, 7, 8]. These models cannot be
trained directly during a DE procedure. The amount of protein variants, which can be
experimentally screened, is far too small relative to the huge amount of parameters in the
model. However, the models’ ability to capture important properties of proteins can be
exploited to provide informative protein sequence embedding to other machine learning
methods [9].

In this thesis, three methods of machine-learning-assisted DE are proposed. All of the
methods employ a pre-trained protein language model as a sequence embedding extractor
and operate in the more informative sequence embedding space instead of exploring the
raw protein sequence space directly. The use of the embedding space also allows for the
definition of a sensible metric of similarity between the protein variants, which is a key
component of all active learning methods. The first proposed method selects variants for
screening to maximize their informativeness and train a two-layer perceptron as a protein
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fitness predictor. After the model is trained, it can be utilized to select additional variants
with high predicted fitness for screening. The second method, termed NSDE, uses the
acquired metric of similarity to construct a sequence similarity network [10] and conducts
a greedy graph search from the original protein to optimize its fitness. The third method
employs Bayesian optimization with a Gaussian process model [11] to not only predict
the protein variants’ fitness but also model the variance of the prediction. By maximizing
the expected improvement of the current maximum in the modeled fitness landscape,
the method strikes a balance between exploitation of known areas of high fitness and
exploration of unknown areas with high uncertainty in the prediction.

The methods are tested on two datasets of protein variants mutated at four positions
and their experimentally measured fitness. The main metric for evaluation of the proposed
methods is the highest fitness identified in screening during the DE procedure relative
to the total amount of conducted screening. This metric is grounded in the practical
application of methods for DE. The methods are compared to each other as well as two
implemented benchmarks. The benchmarks simulate traditional DE procedures which
make no use of machine learning methods. Apart from running the proposed algorithms
from the original wild-type protein, evaluation of robustness to the position of the starting
protein in the sequence space is conducted. The robustness is evaluated by repeating the
experiments with randomly sampled variants serving as the starting protein.

2 Background

Given the interdisciplinary nature of this thesis, a concise introduction to the related top-
ics is in place. In this section, background to directed evolution as a means of protein
engineering is provided, followed by background of large language models with a review
of existing pre-trained protein language models applicable to the task of directed evolu-
tion. Lastly, this section touches upon foundations of active learning and optimization
with expensive data-point evaluation because, as will be made clear, the goal of machine-
learning-assisted directed evolution corresponds closely to the general objective of methods
in these fields.

2.1 Protein Engineering

Protein Engineering (PE) is a process of designing proteins with desired properties related
to their function such as the protein’s stability, catalytic function, or binding to a specific
molecule [1]. Because the properties of proteins are determined by their structure and
structure is encoded in the sequence of amino acids [12], the task of PE translates to
finding a sequence of amino acids with the specified properties/function. However, the
number of possible protein sequences is higher than the number of atoms in the universe
[2] and non-functional proteins dominate the space [13]. Because of this, searching the
space of all possible proteins for the optimal sequence is an NP-hard problem [14]. One
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of the most widespread approaches to solving this issue with a vast range of applications
is a process called Directed Evolution [3, 15].

2.2 Directed Evolution

Directed Evolution (DE) is an iterative laboratory process of creating new biomolecules
of desired properties, which mimics Darwinian evolution in a controlled environment [3].
DE circumvents the problem of the vast protein-sequence space filled with non-functional
sequences [2], which cannot be searched comprehensively, by iteratively mutating an exist-
ing protein (often called the wild-type variant) to improve its function [16]. This process
is inspired by the natural evolution of proteins [13]. It can be viewed as a mutation walk
from the original sequence to the final variant with improved properties in the mutational
space of all possible variants [17]. A DE iteration consists of two main steps: mutagenesis,
in which parent molecule(s) are mutated and/or recombined to create a vast library of
variants, and screening/selection, where variants are selected from the obtained library
to form a new generation of parents with improved properties [3, 15]. Many methods
were designed for the mutagenesis step as well as the screening/selection of variants. The
most commonly used methods are described in more detail in [3]. In sections 2.2.1 and
2.2.2, a brief summary of the main approaches discussed in [3] follows. Each approach
encompasses a variety of related methods.

2.2.1 Mutagenesis

Considering the 20 amino acids commonly found in living organisms, the mutational space
of a protein of length n consists of 20n unique variants. Given that protein lengths are
usually in the order of hundreds of amino acids [18], a library of all possible variants
can never be prepared in practice [16]. Instead, the parent sequence(s) are mutated to
obtain new variants relatively similar to the parent sequence in the context of the whole
mutational space [16]. Mutations are introduced either randomly in the so-called random
mutagenesis or in a more targeted manner denoted as focused mutagenesis. More different
variants can be obtained through multiple iterations of the two steps of DE: mutagenesis
of parent sequence(s) and selection of new parents from the obtained library. Random
single-gene mutagenesis can perform a sparse sampling of the neighboring mutational
space [3]. Such sampling can help identify areas highly correlated to the desired protein
property when little information about the mutational space is known [3]. However, if
some prior knowledge about the mutational space exists, it can be exploited to sample
more informative variants or variants more likely to possess the desired properties. For
example, if certain positions in the sequence are known to be largely influential to the
protein function, targeted mutagenesis can maximize sampling at these positions, and
variants with desired properties can be identified from a much smaller library [3]. Similarly
to the exploitation of prior knowledge, computational modeling and machine learning can
be employed to leverage the information from the already sampled variants to predict
beneficial mutations, further reducing the size of the variant library necessary to identify
the desired variant [3, 4]. The use of machine learning for DE is discussed in more depth
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in section 2.2.3.

2.2.2 Selection / Screening

The two main approaches to obtaining a new set of desirable parents from the library
of variants are selection and screening [3]. In screening, each variant from the library
is tested individually by the means of biochemical or biophysical analytical methods to
determine its fitness. A protein’s fitness is typically defined as a numerical value describing
the desired property of the protein. The best-performing variants in regards to the chosen
fitness function are then selected to be the parents in the next mutagenesis step. Selection-
based methods, on the other hand, impose some selective pressure on variants from the
library to eliminate undesired variants. Only the surviving, more fit, variants remain to
parent the next library in the mutagenesis step. The selection-based methods allow for
a high-throughput approach which enables the assessment of larger libraries of variants
than in screening-based methods. The downside of selection-based methods is that they
are only viable if the evaluated protein function can be linked to the growth or survival of
the host organism [3].

In this thesis, all biochemical experiments will be simulated by reading a fitness value
from an existing dataset of screened protein variants. This simulation corresponds to a
screening approach, where experimental screening of one variant is replaced by reading
the corresponding fitness value from the dataset. However, it is important to remember
that while reading a single fitness value from the dataset is an almost instantaneous task,
the experimental screening it represents is very demanding in both time and financial cost
and is the bottleneck of any machine-learning-assisted DE procedure.

2.2.3 Machine-Learning-Assisted Directed Evolution

Because of the aforementioned cost associated with the screening step of DE, the objective
of machine-learning-assisted directed evolution (MLDE) is to improve the fitness of the
final protein without increasing the amount of carried-out screening. An alternative for-
mulation of the objective is to reduce the number of screened variants necessary to reach
the desired fitness level. MLDE accomplishes this goal by exploiting the information about
all screened variants instead of discarding the low-fitness variants, which is done in tra-
ditional DE procedures. The difference between the traditional DE approach and MLDE
approach is illustrated in figure 1. MLDE methods use the fitness of the screened variants
to fit a model which can be used to predict the fitness of other variants [4]. This model
is then used to intelligently select new variants for screening to maximize the predicted
fitness and/or to reduce uncertainty in the model, which in turn improves prediction qual-
ity in future iterations. A wide variety of models have been applied to MLDE including
simple linear regression models, decision trees/forests, kernel methods, Gaussian Process
models, and deep learning [4]. Yang et al. [4] give a simple, general heuristic and rea-
soning for choosing a model based on the data and specific task. The important point is
that no model is universally optimal for any given task. In this thesis, we will focus on
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Figure 1: Comparison of traditional directed evolution and machine-learning-assisted
directed evolution approaches: Traditional DE discards the low-fitness variants whereas
MLDE incorporates all available information into a predictive model, which is used to
select promising/informative variants in following iterations.

the application of large language models, a class of very large deep learning models which
stem from natural language processing, in MLDE.

2.3 Large Language Models

Natural language processing (NLP) is a field combining artificial intelligence and linguistics
which started in the 1950s [19] with the formulation of the Turing test [20]. Originally, NLP
research focused on the modeling and interpretation of the human language by computers
[19]. However, the conversion of the idea to the biological domain comes naturally, since
most of the data analyzed in bioinformatics (i.e. DNA, RNA, and protein sequences) can
also be interpreted as a language and has been interpreted as such since the structure of
DNA was solved [21]. In recent years, NLP has been increasingly present in bioinformatics
[22] and with the recent boom of large language models (LLMs) spearheaded by ChatGPT,
LLMs have also made their way into bioinformatics. In this section, the background
of LLMs is introduced, followed by a survey of existing LLMs pre-trained on protein
sequences.

Language modeling (LM), a broader term encompassing LLMs, aims to construct a
model of probabilities to predict the next (or missing) token [23], e.g. the next word in a
sentence or an amino acid in a protein sequence. [23] provides a concise description of the
development in LM of which LLMs represent the most recent stage. The first development
stage, statistical language models, are models that predict the next token based on the
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most recent context following the Markov assumption [24]. The following stage are neural
language models, which employ neural networks to characterize the probability of word
sequences and introduce the idea of learning effective features from the data, such as
the well-known word2vec model [25]. Next stage, language models pre-trained on large
datasets, aim to capture the fundamental rules of the language as well as learn to extract
effective features. These general models can then be fine-tuned to perform well on a
specific downstream task providing a solid foundation for different applications. Lastly,
the LLMs are scaled in size, resulting in not only improved performance but also surprising,
so-called emergent abilities. These abilities are not present in a smaller model but can be
observed in larger models (of the same architecture) [26]. An important takeaway from the
development in LM is that the focus has gradually shifted from simple language modeling
to complex task solving via text generation. Currently, LLMs typically refer to language
models that use the transformer architecture [27] and contain up to hundreds of billions
of parameters.

2.3.1 Pre-trained Protein Language Models

This section summarizes existing pre-trained protein language models (PPLMs). These
are LLMs pre-trained on large amounts of protein sequence data to predict the next or
missing token (amino acid). Even though the training objective is simple token prediction
the models need to learn complex representations of the input protein sequence to achieve
high accuracy. The learnt representations capture important properties of the protein
such as secondary structure, binding site positions, and the protein contact map [6, 7, 8].
After pre-training, PPLMs can be fine-tuned on a specific task or used to extract infor-
mative embeddings from protein sequences, which contain potentially useful information
for further analysis with other machine learning methods. While PPLMs can be designed
for different applications, this survey focuses mainly on models exploitable as protein
sequence embedding extractors or models exploitable in the selection step of MLDE to
generate protein sequences with statistically higher fitness than random selection.

Evolutionary Scale Modeling (ESM) is a repository of code and weights for PPLMs
from the META Fundamental AI Research Protein Team (FAIR). It provides five main
transformer protein language models, each designed for a different application, as well as
older and/or alternate versions of some models. The models most interesting for usage in
MLDE selection step are ESM-2 [28], a state-of-the-art general-purpose PPLM that can
be used to predict structure, function and other protein properties directly from individual
sequences, and ESM-1v [29], a language model specialized for prediction of variant effects,
that enables SOTA zero-shot prediction of the functional effects of sequence variations.
Checkpoints of different scales are available for the ESM-2 model with 8M, 35M, 150M,
650M, 3B, and 15B parameters. The ESM-1v model is only available in a 650M-parameter-
scaled version. It is also worth mentioning the ESM-1b model [6], which is an older model
with the same architecture as ESM-1v and a common choice in MLDE applications [30, 31].
The two models differ in training data. The ESM-1v model was trained on the UniRef90
dataset [32], while the ESM-1b model was trained on UR50/S [6], a high-diversity sparse
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dataset which uses the UniRef50 [32] representative sequences. Other notable models
from the ESM repository include: ESMFold [28], a SOTA end-to-end single sequence 3D
structure predictor. ESM-IF1 [33], an inverse folding model that can be used to design
sequences for given structures, or to predict functional effects of sequence variation for
given structures and enables SOTA fixed backbone sequence design. And ESM-MSA-1b
[34], a model that can be used to extract embeddings from an MSA and enables SOTA
inference of structure.

The ESM-2 general-purpose model [28] is the largest developed protein language model
to date, lacking only one or two orders of magnitude behind the current largest SOTA
language models of text like PALM (540B parameters) [35] or GPT-4 [36], which has
hundreds of billions to over a trillion parameters. As such, ESM-2 deserves a little more
attention. The model is based on a BERT [37] style encoder-only transformer architecture
and it is trained on protein sequences from the UniRef database [32] with masked-token
prediction training objective and 15 % masking. The differently scaled checkpoints reveal,
among an expected increase in performance, the emergence of protein structure with
increasing model size. This observation validates a previously observed phenomenon that
the pairwise interaction patterns learned by the attention mechanisms of transformer-
based protein language models correspond to protein contact maps [7, 8].

ProtTrans [38] is a suite of six models, each with a different architecture, developed by
Rostlab. It contains two auto-regressive model architectures (Transformer-XL [39], XLNet
[40]), which are decoder-only, and four auto-encoder architectures (BERT [37], Albert [41],
Electra [42], T5 [43]), where T5 uses the original transformer architecture consisting of an
encoder and a decoder, while the other three architectures are encoder-only. Furthermore,
some of the models are available in multiple variants which are trained on different datasets
or have different scales. Three datasets were used to train the models - Uniref50, UniRef100
[32], and BFD (Big Fantastic Database) [44]. For the specific datasets used for each of the
models, see the original paper [38]. t-SNE projections of the obtained protein embeddings
suggested that all of the models captured essential protein properties such as biophysical
amino acid features, protein length, life domains (archaea, bacteria, eukarya, along with
viruses) and to some extent protein function and secondary structure.

RITA [45] is a suite of autoregressive models, developed by a collaboration of Lighton,
the OATML group at Oxford, and the Debbie Marks Lab at Harvard. It features four
models with a common architecture and different scales, having 85M, 300M, 680M, and
1.2B parameters, respectively. The models are trained on the UniRef-100 database [32] as
decoder-only transformer models with no conditioning information. The models’ hyper-
parameters correspond to GPT-3 [46]. The authors compared two positional embedding
techniques, Rotary Positional Embeddings (RoPE) [47] and AliBi [48] in an ablation study
and concluded that RoPE resulted in lower language modeling loss. Three small models
were also pre-trained on different datasets and compared in terms of the transferability
of information learned on each dataset to the others. The UniRef-100 database was con-
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cluded to yield the best results but the authors note that using a combination of several
datasets may be beneficial.

ProGen [49] is a conditional PPLM for controllable protein generation with 1.2B pa-
rameters. It is trained on 280 million protein sequences with conditioning tags which
encode the protein’s annotation such as taxonomic, functional, and locational informa-
tion. These conditioning tags can be used to generate new protein sequences with selected
desirable properties. The model is shown to sample variants from the GB1 library [50]
with statistically higher fitness than a random sampling procedure in a zero-shot setting.
The GB1 library is a challenging dataset consisting of variants of the protein G domain
B1, mutated at four positions with non-linear epistasis. The fitness landscape contains
multiple fitness peaks and is heavily populated by zero-fitness and low-fitness variants.
However, the median fitness sampled by ProGen is still lower than 1.0 (which corresponds
to the fitness of the wild-type variant), while the upper quartile fitness barely surpasses
1.0, revealing that a PPLM alone might not be an exceptionally effective PE solution, but
can be helpful as a sampling tool in a MLDE framework.

ProGen2 [51] is a suite of autoregressive transformers with common architecture. The
individual models differ in scale having 151M, 764M, 2.7B, and 6.4B parameters, respec-
tively. A mixture of Uniref90 and BFD30 [52] datasets was used for pre-training with
next-token prediction language modeling as the learning objective. Unlike its predecessor,
ProGen2 does not make use of conditional tags as inputs, only 24 tokens for amino acids
and two extra tokens to mark the protein’s N-terminus and C-terminus. The authors
evaluate the models’ performance in zero-shot fitness prediction on four different protein
landscapes. An interesting observation in terms of PE is that the largest model may
demonstrate emergent behavior in the identification of the highest fitness variants in the
challenging GB1 dataset, even though the metric used to evaluate the performance on the
GB1 dataset is unclear.

Other PPLMs exist, which were not described in greater detail. A few of the models
are worth at least mentioning. Namely, ProtGPT2 [53] - an autoregressive transformer
model with 738 million parameters aimed to generate de novo protein sequences, and Pro-
teinBERT [54], a PPLM with innovative architecture inspired by BERT which combines
language modeling with a novel task of Gene Ontology annotation prediction.

2.4 Pre-trained Protein Language Models in Protein Engineering

Given the amount of data PPLMs need for training, the models cannot be fine-tuned us-
ing the variants biochemically screened during DE. The screening process is the bottleneck
of DE and the number of screened variants is too low for PPLM training by many orders
of magnitude. Thus, PPLMs are generally employed in DE without additional fine-tuning
on the specific protein’s variants or a family of related protein sequences. There are two
common ways, in which MLDE methods benefit from PPLMs even with no additional
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fine-tuning. Firstly, because of their generative nature, PPLMs can be used to generate
suitable protein variants for screening. PPLM-generated variants have been shown to have
statistically higher fitness than randomly sampled variants [49, 51]. Secondly, represen-
tations of protein sequences can be extracted from hidden layers of PPLMs and used as
embeddings. The representations learned by PPLMs carry useful information about the
function of the variants [6, 7, 8, 38]. Additionally, a distance metric can be defined on the
embeddings, because variants with similar properties can be expected to produce similar
embeddings. A sensible distance metric opens the doors for the employment of a plethora
of active learning methods, which require a metric of similarity between data points to
extrapolate information to unseen data.

The first of the aforementioned uses of PPLMs, sampling of suitable protein variants,
is carried out by masking positions in the protein sequence and letting the PPLM predict
amino acids with high pseudolikelihood at those positions [55]. The goal is to increase the
quality of screened variants and reduce the total amount of screening needed to reach a
variant of satisfactory fitness. It has been shown, that even with no fine-tuning, PPLMs
generate variants with statistically higher fitness than random selection [49]. Additionally,
interpreting the output likelihood of amino acids at a mutation site from a PPLM as
variant fitness can be beneficial to ranking the variants [45, 51]. Hie et al. have used six
PPLMs (ESM-1b and an ensemble of the five ESM-1v models) to evolve clinically relevant
antibodies in a two-round DE [56]. In the first round of an evolution of a wild-type
antibody, all single-residue substitutions with higher computed pseudolikelihood than the
wild type across a consensus of the six models were selected for screening (the antigen-
binding affinity by biolayer interferometry (BLI) was measured). In the second round,
single-residue substitutions with preserved or improved fitness over the wild type were
combined into a second generation of variants for screening.

The second mentioned way to benefit from a PPLM in DE without the need for addi-
tional fine-tuning is to take advantage of the protein representation learned in the hidden
layers of the PPLM and use the model to encode protein sequences into the informative
embedding in combination with other MLDE methods [9]. In the process of pre-training,
the model is trained on a large quantity of unlabeled data to represent protein sequences
in a highly informative space [5], which captures properties of the protein important to
its structure and function [6, 7, 8]. This representation can be used to train a fitness
predictor on a small amount of labeled variants of the target protein [5]. Alternatively,
protein embeddings have been used to construct a manifold of sequence variation from a
sequence similarity network [10], where each sequence is represented by a node and con-
nected by an edge to k-nearest-neighbouring sequences quantified by Euclidean distance
in the model-embedding space [30]. Then each edge is assigned a direction and ”velocity”
based on the language model pseudolikelihood between the two sequences in that edge
and an evolutionary vector field [57] is assembled. The constructed manifold and the
subsequent evolutionary vector field have been previously utilized for fitness landscape
visualization [10] and reconstruction of the evolutionary order of protein mutations [30],
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respectively. The construction of the similarity networks relies on the fact that sequences
with similar embedding can be inferred to have similar properties [5]. Because of this, the
networks can also be used to predict functional mutations usable in DE.

An alternative way to utilize the information from the hidden layers of a PPLM for
prediction of promising protein variants is to exploit the model’s self-attention map instead
of the protein sequence embedding as suggested in [58]. A concatenated sequence of a
protein variant and its binding target is passed to the ESM-1b model, and Promise Score,
a metric quantifying how promising the protein variant is in terms of binding with the
target sequence, is calculated from the extracted self-attention map.

As we have established, most MLDE methods use PPLMs for protein sampling directly,
or to encode proteins into a higher-dimensional embedding. However, Qin et al. have
recently exploited PPLMs further in a novel method, the Actively-Finetuned Protein lan-
guage model for Directed Evolution (AFP-DE) [31]. Apart from employing the PPLM to
sample informative variants for screening and as an embedding extractor, they also use
the already screened variants to train a multi-layer perceptron to predict fitness from the
extracted embeddings. This fitness predictor is then used to select a large number of vari-
ants with high predicted fitness to fine-tune the PPLM sampler / embedding extractor.
The result is an iterative process which continuously improves both the predictive perfor-
mance of the perceptron fitness predictor and the generative performance of the PPLM.
This method cleverly bypasses the unattainable data requirement to fine-tune a PPLM
by using variants with predicted high fitness for fine-tuning, rather than using variants
with biochemically screened high fitness, while also exploiting both of the common uses
of PPLMs in DE: variant sampling and embedding extraction.

2.5 Passive Sampling & Active Learning

A subfield of machine learning where the learning algorithm is allowed to choose the data
for annotation and subsequent learning, often called queries, is called active learning [59].
Active learning methods are typically employed when labeling data is expensive and there
is an incentive to minimize the amount of data that needs to be labeled to train the model.
This corresponds partially to the objective of MLDE. While the goal to minimize labeled
data (i.e. screened variants) is present, the objective of MLDE is to obtain a variant
with the highest possible fitness rather than training the best possible model (i.e. fitness
predictor). With this distinction made, we can label MLDE as an optimization problem
rather than a model regression problem. However, active learning algorithms which employ
regression loss can still aid DE [31]. With a well-trained fitness predictor, a part of the
screening budget can be utilized to screen a number of variants with the highest predicted
fitness after the training is complete. These two stages of a model-regression-oriented
MLDE method are often referred to as the exploration stage and the exploitation stage [4,
31]. This approach allows for the application of active learning methods to MLDE even
though the objectives do not coincide perfectly at first glance.
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Depending on the problem, different active learning scenarios can be distinguished.
The main scenarios considered in the literature are: membership query synthesis, where
the model generates a query de novo, stream-based selective sampling, in which unlabeled
data are sampled sequentially and the model decides whether to query the sampled data
or discard them, and pool-based active learning, where a large pool of unlabeled data is
predefined (or sampled) beforehand and the model selects the best query from the pool
[59]. When applying active learning to protein engineering, we would ideally want to
consider the complete sequence space and choose the best protein variant to be screened.
This approach corresponds to the pool-based active learning with the complete protein
sequence space acting as the pool of possible queries. In full generality, this is not possible
since we have to consider arbitrary sequence length resulting in an infinitely large sequence
space. In practice, however, the task is usually restricted to mutating the wild-type
sequence by substituting amino acids only, with no additions or deletions, resulting in a
finite sequence space. The size of the sequence space is |Σ|l, where |Σ| is the size of the
alphabet (usually the 20 common amino acids are considered [60]) and l is the length of
the wild type sequence. While finite, this space is still much larger than the number of
atoms in the universe even for relatively short sequences of 100 amino acids [2]. Because
of this combinatorial explosion, the task in protein engineering can only be solved as pool-
based active learning when a small amount of influential mutational sites is predefined by
an informed oracle. Only substitutions at these sites are then considered in the active-
learning procedure, to heavily limit the size of the sequence space. If such sites are not
previously identified, we have to limit the pool to a sample from the sequence space or
resort to a membership query synthesis or stream-based selective sampling approach.

In contrast to active learning approaches, passive sampling does not require updating the
trained model and relies entirely on the location of data in the feature space [61]. Passive
sampling methods can be especially useful in combination with active learning approaches
to select the first K samples, which are necessary to build the model as demonstrated in
[61]. The authors combine a simple passive sampling approach, greedy sampling on the
inputs [62], which chooses new samples located farthest away from all previously selected
samples in the feature space, with a similar active learning approach, greedy sampling on
the output [61], which uses the already labeled samples to construct a regression model
and chooses new samples with the maximum distance of their predicted output from the
labels of all previously selected samples.

2.6 Bayesian Optimization

We have established that MLDE is an optimization problem at its core. This hints at
the advantage of methods with an optimization objective rather than a regression, model-
learning approach [63]. Bayesian optimization is a prime candidate because it is very data
efficient, making it an ideal choice in problems where the evaluation of data points is costly
and the objective function space is multimodal [11]. Both of these properties are one of
the key difficulties in exploring fitness landscapes [50, 64].
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Mathematically, Bayesian optimization finds a global maximizer (or minimizer) of an
unknown objective function f

x∗ = argmax
x∈X

f(x) (1)

where X is the design space of interest [11]. In the case of MLDE, X represents the space
of all of the protein’s variants and the objective function f can be viewed as the screening
process which returns a fitness value for the input variant x. Equation 1 then corresponds
perfectly to the objective of MLDE, that is to find the variant with maximum fitness x∗.

To solve the problem defined by equation 1 with Bayesian optimization, two things
need to be defined first. One of them is a probabilistic surrogate model over the possible
objective functions which describes the distribution of objective functions f since we do
not know the true shape of the function. The second is an acquisition function that
describes how optimal a new data point x, or more generally a set of data points, is for
evaluation [11]. With these two key ingredients defined, the algorithm starts with the prior
probabilistic surrogate model. The prior model captures our beliefs about the behavior
of the unknown objective function before annotating any data. It is used to select the
first data point, or more generally a set of data points, for evaluation, by computing the
loss of each data point with the loss function. With the new data point evaluated by the
objective function, the posterior surrogate model is updated and the next data point for
evaluation can be selected in the next iteration.

2.6.1 Gaussian Process

One of the most popular surrogate models used in Bayesian optimization is the Gaussian
process (GP) [11, 65, 66]. GP a nonparametric model that is fully characterized by its
prior mean function µ0 : X −→ R and its covariance function k : X ×X −→ R [11, 67]. The
mean function represents our prior expectation for the value of the objective function at
unobserved data points and the covariance function encodes a metric of similarity between
the data. GP has two assumptions. Firstly, for a finite collection of n data points x1:n

1,
the unknown true objective function values f1:n, where fi := f(xi), are assumed to be
jointly Gaussian. In accordance with this assumption, the prior distribution introduced
by the GP is

f1:n|x1:n ∼ N (m,K) (2)

where the mean vector m is defined as mi := µ0(xi) and the covariance matrix K is
defined as Ki,j := k(xi,xj) [11]. This first assumption represents our prior knowledge
about the smoothness of the objective function, which is introduced into the model by the
selection of the covariance function k. Secondly, the (noisy) values y1:n, observed at data
points x1:n, are normally distributed given f1:n [11].

y1:n|f1:n, σ2 ∼ N (f1:n, σ
2I) (3)

1Throughout this thesis x1:n is used as a short-hand notation for {xi}ni=1.

21



This second assumption allows the GP to model noise on the evaluation of the objective
function f characterized by its variance σ2.

In PE, the first assumption can be viewed as the belief that similar proteins have similar
extent of the desired property. This is a reasonable assumption and active learning or
non-exhaustive optimization methods could not be applied to the problem if it did not
hold, since we could not extract information about unobserved proteins from the already
evaluated dataset. As with most active learning approaches, the choice of a good similarity
metric is key. However, defining such a metric on proteins is not trivial. Employing a
sequence distance metric such as the Levenshtein distance [68] on raw protein sequences
might not be ideal, especially for use in DE where all of the mutated variants often only
differ in a handful of amino acids, while their function can be vastly different. With this
thought process, we are coming back to the important advantage that PPLMs provide in
PE, that is a sequence embedding space where a more sensible metric of similarity can be
defined, as discussed in section 2.4.

The second assumption can be understood in the context of PE as the noise present in
the biochemical screening experiments. For the sake of evaluation of proposed PE methods,
the screening process is often replaced by simply reading a fitness value from a previously
measured dataset [49, 51, 9, 31, 63, 69], which understandably has no noise. However, in
practice, any biochemical experiment will introduce noise into the measurement and the
ability to choose the next variants for screening based on the modeled noise might prove
beneficial.

Equation 2 describes the prior distribution p(f1:n) induced by the GP [11]. After n data
points are evaluated and the GP is updated with observations Dn := {(xi, yi)}ni=1, the
posterior distribution of the GP is given by the posterior mean and variance functions:

µn(x) = µ0(x) + k(x)T (K + σ2I)−1(y −m) (4)

σ2
n(x) = k(x,x)− k(x)T (K + σ2I)−1k(x) (5)

where k(x) is a vector of covariance terms between x and x1:n [11]. The posterior mean
µn(x) represents the model’s prediction of the objective function f(x) at the point x and
the posterior variance σ2

n(x) represents the uncertainty of the prediction at the point x
[11]. The posterior functions from equations 4 and 5 are used in each iteration of BO to
compute the value of the acquisition function at each data point and select the optimal
data point xn + 1 (or a set of data points) for evaluation.

2.6.2 Bayesian Optimization in Protein Engineering

In a review of machine-learning-assisted PE methods [65], the authors state that BO can
be beneficial in guiding the exploration-exploitation trade-off [70] based on the selected
acquisition function and that the modeled uncertainty can help improve exploration in
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batched acquisition [71, 72, 73, 74, 75]. They also list two notable acquisition functions
widely used in PE applications. The upper confidence bound (UCB) acquisition function
selects the data point with the largest upper confidence bound for evaluation, prioritiz-
ing data points that are predicted to be both optimized and uncertain [72]. The relative
importance of the prediction and uncertainty can be manually controlled with a weight-
ing parameter [65, 76]. The second notable acquisition function, expected improvement
(EI), selects the data point where the expectation over the possible values of the objective
function is predicted to have the largest improvement over the current best observation
[11, 65, 77]. Similarly to UCB, this approach also strikes a balance between prioritizing
data points predicted to be optimized and unexplored data points where the prediction is
uncertain. Both methods have been shown to be efficient in the number of function eval-
uations required to find the global optimum of multi-modal black-box objective functions
[77, 78, 79].

UCB has been used in GP regression with a structure-based metric of similarity to
provide a probabilistic description of the landscapes for various properties of proteins and
to design a cytochrome P450 [80] variant that is more than 5 °C more thermostable than
P450 variants previously optimized by different methods and 14 °C more stable than the
most stable parent from which it was made [72]. In another work, GP classification and
regression models were trained with UCB on expression and localization data from 218
channelrhodopsin [81] variants [82]. Structural similarity obtained by aligning residue-
residue contact maps of each variant and counting the number of identical contacts were
used as a metric of sequence similarity. In addition to GP regression with UCB crietrion,
in [83], the authors first sampled 20 variants from the sequence space that maximized
the Gaussian mutual information, which they use to fit the GP before the first iteration
of sequential optimization. Lastly, in [76], the authors compare GP trained with UCB to
other methods which model uncertainty differently or do not model uncertainty at all. The
work highlights GP-based methods as particularly useful and shows consistently strong
performance of the GP model as well as a GP fit to multi-layer perceptron residuals [84],
which suggests a relatively straightforward way to introduce uncertainty into a neural
network.

A GP model with the EI acquisition function has been shown to outperform traditional
DE methods in an in silico experiment [69]. The authors selected variants for evaluation in
batches of 19 and used the squared exponential kernel with Euclidean distances computed
from one-hot encoding of the variants at mutated positions. Additionally, before employing
BO, 20 variants were randomly sampled and used to fit the GP model in the first iteration.
The recent optimization framework for protein DE, termed ODBO [63], combines GP
and EI acquisition function with a novel low-dimensional, function-value-based protein
encoding strategy and prescreening outlier detection. A protein variant is represented
by a feature vector, where each amino acid from the sequence is replaced by the mean
or maximum value of the fitness measurements of all variants with the amino acid at
that position. Then, in each iteration, the vector representations are inputted into the
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prescreening via Extreme Gradient Boosting Outlier Detection (XGBOD) [85] which filters
out potential low fitness samples before the BO step. The authors argue that the novel
representation creates a smoother local variable for regression while the prescreening aims
to perform more efficient acquisitions in each iteration.

3 Methods

This section covers datasets used in conducted experiments, proposed MLDE methods and
implemented simulations of traditional DE methods (not assisted by machine learning)
which serve as benchmarks for the MLDE methods. Code for the implemented MLDE
procedures and DE simulation benchmarks, as well as the used datasets, are available
at https://github.com/soldatmat/PELLM. The proposed MLDE methods were imple-
mented in a unified modular framework for in silico DE, which is made available separately
as the DESilico.jl package [86].

3.1 Data

Two datasets were used to evaluate the implemented methods and benchmarks. Each
dataset maps the fitness landscape of a different wild-type protein. The datasets consist
of variant-fitness pairs of (nearly) all possible variants of the wild-type protein mutated
at 4 positions. These positions were selected as largely influential to the structure and
function of the protein. In both datasets, the 20 common amino acids are considered
[60], resulting in 160,000 possible variants (204 for 20 common amino acids at 4 mutated
positions). Not all 160,000 variants are measured in each dataset. The number of missing
variants in each dataset is specified in the following subsections 3.1.1 and 3.1.2. The
fitness of each unmeasured variant is assumed to be zero in all conducted experiments
and benchmarks since the unmeasured variants are considered meaningless to biologists
[9, 31].

3.1.1 GB1 dataset

The GB1 library [50] is a dataset of protein sequences of variants of the protein G domain
B1, mutated at four positions with non-linear epistasis (V39, D40, G41, V54). This means
that all of the variants differ at most in four amino acids from the wild-type protein
and no insertions or deletions are present in the dataset. The dataset contains fitness
measurements for 149,361 of the 160,000 possible variants. The fitness values represent
the binding ability of different GB1 variants to the antibody IgG-Fc and range from 0.0
(minimum fitness, variants with the worst function) to 8.76 (maximum fitness of the variant
with the best function), where a fitness value of 1.0 corresponds to the binding ability of
the wild type protein. The GB1 fitness landscape contains multiple fitness peaks and is
heavily populated by zero-fitness and low-fitness variants. This makes it a challenging
dataset in terms of DE. Only 3,644 of the 149,361 measured variants have a fitness value
of 1.0 or greater.
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3.1.2 PhoQ dataset

The PhoQ dataset [87] consists of fitness values for variants of protein kinase PhoQ ob-
tained by mutating the wild-type sequence at four positions critical to the function of
the protein (A284, V285, S288, T289). The dataset contains fitness measurements for
140,517 of the 160,000 possible variants. The fitness values in the dataset refer to the
phosphatase or kinase activity of different PhoQ variants and range from 0.0 (minimum
fitness, variants with the worst function) to 133.59 (maximum fitness of the variant with
the best function). The wild-type protein kinase PhoQ has a measured fitness of 3.29.
Only 1,659 of the 140,517 measured variants were identified as functional. As such, the
dataset is even more heavily populated by non-functional variants and is considered more
challenging in terms of DE than the GB1 dataset.

3.2 Benchmarks

Two traditional (not assisted by machine learning) DE procedure simulations were imple-
mented to serve as benchmarks for the efficiency of proposed MLDE procedures in future
work. The simulations represent possible DE procedures as they would be carried out in a
laboratory without the help of machine learning with the distinction that the biochemical
tests of fitness are replaced with simply reading fitness data from an already measured
dataset of the fitness of variants of a protein.

3.2.1 Single Mutation Walk

The first implemented procedure simulates a single mutation walk as described in [88].
The procedure starts with a starting protein variant (e.g. the wild-type protein) and
a list of pre-selected mutation positions (typically positions known to be influential to
the protein’s function). In the first round, all possible single amino acid mutations are
tested at each mutation position, and the mutation resulting in the highest-fitness variant
is fixed (the mutated amino acid is fixed at the mutation position and the position is
removed from the list of mutation positions). In consecutive rounds of the procedure, all
possible single amino acid mutations are tested again, but only at the remaining mutation
positions in the list. The procedure ends after n rounds, where n is the number of the
pre-selected mutation positions, because an amino acid is fixed at one position in each
round. Alternatively, the procedure can end prematurely, if there are no single amino acid
mutations which would improve the fitness of the currently mutated protein variant in the
current round. In that case, the current variant is outputted as the result. Unless the
procedure ends prematurely, the number of screened variants N is

N =
n(n+ 1)

2
· (|Σ| − 1) (6a)

where the fraction represents the sum of all positions at which the protein was mutated
during all rounds (n + (n − 1) + ... + 1) and |Σ| is the size of the alphabet. Considering
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the 20 common amino acids [60], |Σ| is equal to 20 and the number of screened variants is

N =
n(n+ 1)

2
· 19 (6b)

The procedure can be interpreted in terms of the two DE steps defined in section 2.2
(mutagenesis and screening) as follows. The mutagenesis step starts with a single sequence
and prepares a library of all single amino acid mutations of the starting sequence. In the
screening step, the fitness of each mutated variant is evaluated and only the highest-scoring
variant is selected to parent the next library in the following iteration with the difference
that the already mutated positions are being gradually fixed until no position remains to
be mutated.

Since the single mutation walk simulation is deterministic for a fixed starting protein
variant, the simulation was run with each of the GB1 variants as the starting variant for
a total of 160,000 runs. During each run of the simulation, 190 variants were screened, as
is evident from equation 6b by substituting n = 4 for the four preselected mutation sites
in GB1.

3.2.2 Recombining Mutations

The second simulation is inspired by a procedure described in [88] as Recombining Mu-
tations in Best Variants, but differs slightly. This procedure, which will be referred to
as Recombination, is not iterative. It starts by sampling m variants from the whole com-
binatorial space over n pre-defined mutation positions. The fitness of all m variants is
tested and top k variants are recombined for a maximum recombinational library size of
kn (maximum, because the library can be smaller if some of the top k variants share amino
acids at one or more positions). The output variant is selected by screening all variants in
the recombinational library. This procedure results in a maximum of N variants needed
to be screened, where

N ≤ m+ kn − k (7)

m represents the initially sampled variants, kn are all variants recombined from the top
k selected parents and −k stands for the k parent variants, which are included in both m
and kn.

The non-deterministic recombination simulation was repeated 160,000 times to obtain
results comparable to the single mutation walk simulation. The maximum value of N
was set to 190 to maintain the same cost of the DE process across both implemented
benchmarks. The number of the top variants which are to be recombined was set to
k = 3, which results in at most 78 (kn − k) newly recombined variants that will be
screened. The choice of k is motivated by striking a balance between resources allocated
to the initial sampling of variants and the newly recombined variants. For N ≤ 190 and
k = 3, equation 7 gives us m = 112. This means that 112 variants can be sampled in the
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initial step of the procedure to guarantee that the total number of screened variants does
not exceed 190.

3.3 Protein Embedding Fitness Predictor

The first proposed MLDE method is based on the AFP-DE procedure but implements
a different exploration stage than the original paper [31]. It employs an active learning
approach with model regression as its objective. The goal is to train a two-layer perceptron
to predict the fitness of variants from their embedding extracted by a PPLM and then
screen a number of variants with the highest predicted fitness. Therefore, in further
sections, this method is referred to as the perceptron-training algortihm. The ESM-1b
model [6] was chosen as the embedding extractor as a common choice in the literature
[30, 31]. The choice is motivated by elimination of potential problems with novel models
where the informativeness of the extracted embeddings for fitness prediction might not
be verified by conducted experiments. The benefit of predicting protein fitness from the
extracted embedding rather than the raw sequence is twofold. Firstly, the embedding
carries additional useful information about the variant’s structure and function learned
during the pre-training of the PPLM [6, 7, 8, 38]. Secondly, the embedding space allows
for a definition of a more sensible and informative metric of similarity between variants
than the raw sequence space.

The algorithm starts with the known wild-type sequence and the chosen pre-trained
LM which will serve as the embedding extractor. In the first stage of the algorithm, 23
variants are passively sampled to obtain an initial dataset of 24 screened sequences. The
passive sampling is carried out via greedy sampling on the inputs [62] which iteratively
selects the variant with maximum distance from all previously selected variants in the
input space. In the context of this method, the distance of two variants in the input space
is understood as the Euclidean distance between the two variants’ extracted embeddings.

The initial passive sampling is followed by an iterative active-learning procedure via
greedy sampling on the output [61]. The procedure starts by training the fitness predictor
on the 24 passively sampled and screened variants. Then, an iteration of the active-
learning procedure begins by predicting the fitness of all un-screened variants by the fitness
predictor. From the un-screened variants, 24 new variants with maximum difference in
fitness to all previously screened variants are selected for screening. To evaluate the
difference in fitness, predicted fitness is used for the un-screened, candidate variants, and
the true screened fitness is used for the variants already in the training set. An iteration
is completed by screening the selected variants and training the predictor with these 24
newly screened variants.

Lastly, a part of the screening budget needs to be spent on evaluation of variants with
high predicted fitness. The algorithm itself, as any model regression active learning ap-

27



Algorithm 1 Greedy sampling on the input

Input: All variants X
Output: Set of k selected variants

1: procedure InputDistmax(X )
2: Initiate set of candidates C1 ← {xwt} with the wild-type protein
3: for i = 1, 2, . . . , k do
4: Select variant x̂ with maximum distance from variants in Ci

x̂← argmax
x∈X

min
x′∈Ci

d(x,x′)

5: Update set of candidates Ci+1 ← Ci ∪ {x̂}
6: end for
7: return Ck+1

8: end procedure

d : X × X −→ R . . . Distance function between variants.
We use Euclidean distance of the variants’ embeddings.

Algorithm 2 Greedy sampling on the output

Input: Fitness values of screened variants T
Fitness predictor F
Un-screened variants X

Output: Set of k selected variants

1: procedure OutputDistmax(T,F ,X )
2: Initialize set of candidates C1 ← ∅
3: Initialize set of observed fitness values V1 ← T
4: Predict fitness of unscreened variants P ← {(x,F(x))|x ∈ X}
5: for i = 1, 2, . . . , k do
6: Select variant xj with maximum distance from variants in Vi

(xj , y
′
j)← argmax

(xj ,y′j)∈P
min
y∈Vi

|y′j − y|

7: Update set of candidates Ci+1 ← Ci ∪ {xj}
8: Update set of observed fitness values Vi+1 ← Vi ∪ {y′j}
9: end for

10: return Ck+1

11: end procedure
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proach, does not prioritize high-fitness variants for screening but chooses variants that will
be informative to the trained model instead. These two objectives usually do not coincide
as the former pushes more for exploitation, while the latter rewards exploration in the
exploration-exploitation trade-off [70].

Algorithm 3 Perceptron-training method

Input: All variants X
Output: Best screened variant (x, y)

1: Select set of initial variants X0 by InputDistmax (Alg. 1)
2: Initialize set of screened variants D0 ← {(x, f(x))|x ∈ X0}
3: Extract embeddings E0 ← {(H(x), y)|(x, y) ∈ D0}
4: Train predictor G on E0 embeddings with fitness values
5: for i = 1, 2, . . . , n do
6: Select informative variants Xi by OutputDistmax (Alg. 2)
7: Screen selected variants Ci ← {(x, f(x))|x ∈ Xi}
8: Extract embeddings Ei ← {(H(x), y)|(x, y) ∈ Ci}
9: Train predictor G on Ei embeddings with fitness values

10: optional: Train embedding extractor H on m variants with top predicted fitness
11: Update set of screened variants Di ← Di−1 ∪ Ci
12: end for
13: Screen Xp set of p variants with top predicted fitness D ← Dn ∪ {(x, f(x))|x ∈ Xp}
14: return best screened variant (x, y)← argmax(x,y)∈D y

H : X −→ E . . . Embedding extractor, uses PPLM to extract embedding from protein sequence.
G : E −→ R . . . Perceptron network, predicts fitness from sequence embedding.
F : X −→ R . . . Final fitness predictor F = G(H(x)).
f : X −→ R . . . Screening, assigns fitness to a variant.

3.3.1 Fitness Predictor Architecture

The two-layer perceptron trained as a fitness predictor consists of two linear layers and
an activation function. The first layer is a fully connected linear layer with equal number
of input and output features, which corresponds to the size of the sequence embedding
extracted by the chosen PPLM. The used PPLM, ESM-1b, produces embedding with
1280 dimensions, resulting in a 1280× 1280 sized first layer. The second linear layer is a
fitness-prediction head with input size equal to the size of the sequence embedding and
a scalar output. Lastly, a sigmoid function is used for the activation function, since the
fitness values are normalized to 0 to 1 range before training.

3.3.2 Training the Fitness Predictor

The fitness predictor was trained in 5 epochs with a batch size of 1 variant using the L1
regression loss. To update the model’s parameters, the Adam algorithm [89] implementa-
tion from PyTorch [90] with 10−5 learning rate was used. The choice of the optimizer as
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well as the learning rate value was motivated in a different active-learning approach from
the literature, in which the authors also employed a two-layer perceptron fitness predictor
[31].

3.3.3 Fine-tuning the Language Model

In a variation of the proposed algorithm, the PPLM used as a sequence embedding extrac-
tor is actively fine-tuned in each iteration of the active learning procedure. The fine-tuning
takes place after the training of the fitness predictor. The fitness predictor is used to se-
lect the top 8000 variants with the highest predicted fitness (from among the screened
and un-screened variants without distinction) and the embedding extractor is fine-tuned
on these 8000 selected variants. Then, the fine-tuned embedding extractor provides new
embeddings to the fitness predictor before 24 new variants for screening are selected.

The fine-tuning of the embedding extractor is conducted through a masked-language
modeling procedure. The training sequences are masked at the mutation positions of
interest and the model is trained to predict the masked tokens with cross-entropy loss.
The Adam algorithm [89] with decoupled weight decay regularization [91], implemented
in PyTorch [90] as AdamW, is used to update the model’s parameters with 10−5 learning
rate. The training is conducted in one epoch with batches of 10 sequences.

3.4 Neighborhood Search Directed Evolution

The second proposed method termed Neighborhood Search Directed Evolution (NSDE)
takes inspiration from the similarity networks previously used in fitness landscape visu-
alization [10] and reconstruction of evolutionary paths of proteins [30]. The algorithm
starts with the computation of the distance between each pair of variants in the sequence
space. The distance between two variants is defined as the Euclidean distance of their
sequence embedding extracted by a PPLM. A neighborhood of each variant is constructed
by selecting its k nearest neighbors and an oriented edge is constructed from the variant
to all of its neighbors.

The algorithm proceeds as a greedy graph search. The search starts with the wild-type
protein and 9 more passively sampled variants for a total of 10 initially screened variants
in the open set of unexplored variant-fitness pairs. The passive sampling is carried out via
greedy sampling on the inputs [62], identically to the passive-sampling procedure used for
initial training of the perceptron described in section 3.3. In each iteration of the graph
search, the variant with the highest fitness among the variants in the open set is explored.
Exploring a variant consists of two actions. First, the explored variant is removed from the
open set and added to the closed set of already explored variants. Second, all neighbors
of the explored variant, which are not present in either the open set or the closed set are
screened and added to the open set together with their true fitness.
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Algorithm 4 NSDE

Input: All variants X represented in embedding space
Output: Best screened variant (x, y)

1: Compute pair-wise distances between variants dij ← dist(xi,xj)
2: Construct neighborhoods Ni ← {xj |dij ∈ k smallest distances among di·}
3: Select set of initial variants I by InputDistmax (Alg. 1)
4: Initialize open set O ← {(x, f(x))|x ∈ I}
5: Initialize closed set C ← ∅
6: for n = 1, 2, . . . do
7: Select variant with highest fitness (xi, yi)← argmax(x,y)∈O y
8: Screen the neighborhood O ← O ∪ {(x, f(x))|x ∈ Ni \ C}
9: Close the variant C ← C ∪ {xi}

10: end for
11: return highest-fitness variant among variants screened with f

f : X −→ R . . . Screening, assigns fitness to a variant.

3.4.1 Implementation Details of NSDE

The ESM-1b model [6] was chosen as the embedding extractor to unify the embedding
extractors across the proposed methods. The size of the neighborhoods k was set to 16.
The choice of k is motivated in order of magnitude by the values used in [30], where
values of k around 30 to 50 are observed to provide a good balance between robustness
and computational efficiency in different KNN-based analyses. A considerably lower value
relative to the consulted literature was selected to accommodate for the objective of MLDE
to minimize the amount of conducted screening. The analyses in the literature are not
motivated by the minimization of screening effort. With a lower k the algorithm can run
for more iterations with the same screening budget.

3.5 Bayesian Optimization in Embedding Space

The third proposed method, abbreviated to BOES, performs BO in the embedding space
extracted by a PPLM instead of using the uninformative, categorical space defined by
the amino acids at the mutated positions. BOES employs BO with a GP as the fitted
model and EI as the acquisition function. The GP model is defined with zero prior
mean function µ0 : X −→ 0 and Euclidean distance of the variants’ PPLM-extracted
embeddings as the covariance function k (see section 2.6.1). Zero variance σ2 is used for
noise, effectively removing noise from the model, because the experiments are conducted
on a noiseless dataset. The algorithm starts with only the wild-type protein in the set
of observations D1 = {(xwt, ywt)}. In each iteration of BO, the GP is fitted to the set
of observations (already screened variants), the EI acquisition function is evaluated at
each data point (each variant) and the variant with maximal acquisition function value is
selected, screened, and added to the set of observations with its true fitness value.
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A fundamental problem of employing BO in the embedding space of a PPLM, and
the probable reason why this approach is not used widely in the literature, is that BO
struggles with high dimensional input spaces [11, 63]. This is problematic because PPLM
embeddings tend to have a size in orders of 102 to 103, depending on the architecture of
the language model. This means that we are trying to run BO in an input space with
potentially thousands of dimensions. To solve this issue, BOES proposes a custom kernel
to limit the effective number of dimensions to one, so that the surrogate model only fits
one length scale hyperparameter instead of 1280 hyperparameters (1280 is the size of the
ESM-1b embedding). This singular length scale corresponds to the scalar result of the
Euclidean distance computed on the extracted embeddings. For the singular length scale’s

prior distribution, a normal distribution with zero mean and standard deviation σ of
√
1280
3 ,

truncated (and normalized) to [0;∞) interval, is used. The value used for the standard
deviation was chosen so that the diagonal across the high-dimensional embedding space
corresponds approximately to 3σ. Since the embedding space of the used model, ESM-1b,
has 1280 dimensions and the absolute values of the elements in the protein embeddings
rarely exceed 1 (0.3 % of the elements from all GB1 embeddings have absolute values
higher than 1), the size of the diagonal is roughly

√
1280. If we want the diagonal to

correspond to three standard deviations, the standard deviation has to be a third of the
size of the diagonal.

Algorithm 5 BOES

Input: All variants X represented in embedding space
Output: Best screened variant (x, y)

1: Initialize dataset D1 ← {(xwt, f(xwt))} with the wild-type protein
2: Fit the model GP1 given D1

3: for n = 1, 2, . . . , k do
4: Select new variant for screening by optimizing EI

xn+1 ← argmax
x∈X

EI(x;GPn)

5: Screen selected variant Dn+1 ← Dn ∪ {(xn+1, f(xn+1))}
6: Fit the model GPn+1 given Dn+1

7: end for
8: return best screened variant (x, y)← argmax(x,y)∈Dk+1

y

EI . . . Expected Improvement acquisition function.
GPn . . . Gaussian process model fitted to dataset Dn.

f : X −→ R . . . Screening, assigns fitness to a variant.

3.5.1 Implementation Details of BOES

The BOES procedure is implemented with the BOSS.jl package [92]. The model is fitted
with MLE by the NEWUOA algorithm [93] with 20 starts in a multi-start setting and lower
bound on the trust region radius ρend = 10−4. The zero noise variance σ2 is replaced with
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a very small positive value by the BOSS.jl package to ensure numerical stability of the
model. To avoid wasting the screening budget on already screened variants, the value of
the acquisition function computed for each already screened variant is replaced by zero
before the next variant for screening is chosen. This ensures that the screened variants
cannot be chosen again unless the acquisition function value of all variants in the sequence
space is also zero, which is practically impossible. The ESM-1b model [6] is used as the
embedding extractor, same as in the other proposed methods.

3.6 Evaluation of the Proposed Methods

The most important metric in evaluation of MLDE methods is the highest fitness among
the screened variants related to the number of screened variants. This metric corresponds
directly to the objective of MLDE which is to minimize the number of conducted screening
while maximizing the highest observed fitness. This section describes the experiments
designed to compare the performance of the proposed MLDE methods and implemented
DE benchmarks.

3.6.1 Performance on the Wild-type Protein

A straightforward method of evaluation of the proposed methods, which is the most in-
formative in terms of the objective of MLDE, is a simulation of the DE procedure started
from the wild-type protein. This evaluation method represents the practical application
of the proposed MLDE algorithms, where a wild-type protein with a desirable function is
already known and the goal is to find mutations of the protein which improve upon that
function.

The evaluation on the wild-type protein was carried out by running the evaluated MLDE
method with the wild-type protein and its true fitness known at the start of the algorithm.
In the reported results, the wild-type protein is counted as the first screened variant, i.e.
it is also counted towards the screening budget. During the execution of the evaluated
algorithm, the fitness of the best-so-far variant among the screened variants was recorded
after each conducted screening. The result of this evaluation is a non-decreasing fitness
progression of length equal to the number of conducted screening, where the ith element in
the progression represents the fitness of the best-so-far variant among the first i screened
variants. This fitness corresponds to the result which the evaluated MLDE algorithm
would obtain given a screening budget of i screened variants.

This evaluation procedure was conducted with each of the proposed MLDE algorithms
as well as the SMW benchmark on both the GB1 and PhoQ datasets. Note that the re-
combination benchmark, described in section 3.2.2, was not considered for this evaluation
because the procedure revolves around random sampling of variants and the starting pro-
tein plays no role. Furthermore, the procedure is highly non-deterministic and the result
of a single run of the algorithm bears very little information.
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3.6.2 Robustness to the Starting Protein

While the performance on the wild-type protein corresponds the best to the practical use
of MLDE algorithms, comparing the proposed methods based on a single run, albeit in
two different datasets, might not be very informative. The results obtained from such
limited evaluation can be strongly skewed by properties of the specific dataset. Especially
local-search methods, like the SMW benchmark or the proposed NSDE method based
on a KNN-constructed graph, could potentially show wildly different efficiency based on
the relative position of the starting variant, the global optimum, and any local optima in
between in the sequence space.

To ensure that the position of the wild-type protein in the two used datasets is not
unreasonably beneficial to some of the methods and that the methods’ hyperparameters
are not over-fitted to the path from the wild-type variant to the global optimum, a test
of robustness to the starting protein was conducted. This test also gives helpful insight
into the variance in performance of any given combination of DE method and size of the
screening budget, how often a given method be expected to perform significantly better or
worse than usual, and how different are the outlying results from the usual performance
of the method.

The evaluation of the robustness of the proposed methods was carried out as follows.
Each method of DE was run repeatedly with a different variant from the used dataset
serving as the wild-type protein given to the algorithm at its start. For different methods
and benchmarks, all 160,000 variants from the dataset or a smaller sample of variants
were used, based on the computational demand of the considered method. From each
separate run, a non-decreasing progression of the best-so-far fitness was recorded in the
same manner as when measuring performance on the wild type protein, described in section
3.6.1, resulting in a set of nb × nr values where nb is the size of the screening budget and
nr is the number of runs of the evaluated method. For each number of screened variants
from 1 to nb, first quartile, median, and third quartile values among the nr runs were
computed and reported. The starting variant is also counted towards the number of
screened variants, same as in the evaluation of performance on the wild-type protein.

4 Results

In this section, the proposed methods are compared to the implemented DE benchmarks
in terms of their performance when started from the wild-type protein and when run from
sampled starting variants with zero or close-to-zero fitness. The former form of evaluation
corresponds to the real application of MLDEmethods while the latter provides more robust
results, more suitable for conclusive statements about the methods’ performance. Figures
5b and 6b relate to the wild type runs and figures 5a, 6a, 7, 8, 9 and 10 all report results
of the sampled runs. Additionally, a visualization of the employed embedding space is
included at the beginning of this section. The visualization serves as a proof of feasibility
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Figure 2: Joint PCA of sequence embeddings from GB1 and PhoQ datasets extracted
with ESM-1b PPLM.

of the proposed methods, which all rely heavily on the informativeness of the extracted
embeddings. As a secondary result, the fitness landscape predicted by BOES is visualized
alongside the original embedding space. The modeled fitness landscape is discussed at the
end of this section.

4.1 Visualizing the Embedding Space

All three of the proposed methods operate on a PPLM-extracted sequence embedding
space instead of using the raw sequences of amino acids. The ESM-1b model [6] was
used as the embedding extractor in each method. The embedding space should provide
a sensible metric of similarity between the variants as well as encode useful information
about the variants’ properties. To ensure that these assumptions hold, the embedding
space was visualized with dimensionality reduction methods.

First, a joint principal component analysis (PCA) was conducted on sequence embed-
dings of all variants from both datasets (GB1 and PhoQ). The goal of this analysis was
to confirm that variants of the two completely different proteins are clearly separable in
the embedding space. The variants are plotted in a two-dimensional space defined by the
first two principal components in figure 2. The results confirm that the two datasets are
easily separable. The first principal component alone accounts for 97.4 % of variance in
the joint distribution and separates the two datasets into two clear clusters.

Next, a PCA was conducted for each datasets separately to visually confirm whether
some expected features of the sequence space, like local maxima and distinguishable areas
with low/high fitness, are present in the embedding space. In both the PCA of the GB1
dataset, in figure 3a, and the PCA of the PhoQ dataset, in figure 4a, the first two principal
components together explain roughly 40 % of the variance. That is a very large portion,
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considering that the ESM-1b embedding space has 1280 dimensions. The large portion of
explained variance warrants that any observations made can probably be generalized to
the high dimensional space to a reasonable extent. The PCA analyses of the standalone
datasets both show one large area with functional variants surrounded by many non-
functional variants. It should be noted that low-fitness variants are also present in the
high-fitness area of the two-dimensional space, even though they are not visible under
the high-fitness variants. These results confirm that the functional variants are situated
together. Furthermore, in the PCA of the GB1 dataset in figure 3a the highest-fitness
variants are situated in the middle of the functional area with decreasing fitness towards
the edges of the graph. These properties are very promising in terms of optimization in
the embedding space.

However, the PCA analyses did not reveal whether the embedding space is capable of
capturing local maxima, which are present in fitness landscapes. To assess this property,
the embedding space of each dataset was visualized with the t-SNE method, which em-
phasizes maintaining low distances between close data points. This way, local clusters of
functional variants should be preserved. The results of the t-SNE method are plotted in
figure 3c for the GB1 dataset and in figure 4c for the PhoQ dataset. Both figures confirm
the presence of local clusters of high-fitness variants. Especially in the GB1 t-SNE plot,
very small amount of variants with very high fitness are situated outside of a few clusters.
The t-SNE analysis also paints a promising picture for the employment of optimization
methods in the embedding space.

4.2 Performance on the Wild-type Protein

The best-so-far fitness progressions obtained through the DE simulations starting from
the wild-type protein are plotted in figures 5b and 6b for the GB1 and PhoQ datasets,
respectively. The vertical axis shows the best-so-far fitness obtained after screening a
number of variants specified by the horizontal axis. The wild-type protein is included in
the graphs as the 0th variant so that the number of screened variants on the horizontal
axis corresponds to an experimental screening budget of a real DE procedure, in which the
wild-type protein is typically known and not counted towards the budget. Each evaluated
method is represented by a single non-decreasing fitness progression starting from the
non-zero fitness of the wild-type protein and increasing as the method identifies protein
variants with higher fitness. From the two implemented DE benchmarks, only the SMW
method is evaluated on the wild-type protein performance, since this form of evaluation
is not sensible for the recombination benchmark method as explained in section 3.6.1.

When comparing the results of the evaluated methods, it is important to note, that the
objective of the perceptron-training algorithm is not directly tied to optimization of the
best-so-far fitness but to training of a fitness predictor. The choice of variants for screening
during the run of the algorithm is motivated by the variants’ informativeness to the trained
model rather than directly by the variants’ quality in terms of fitness. The plotted curves
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(a) PCA with true fitness. (b) PCA with predicted fitness.

(c) t-SNE with true fitness. (d) t-SNE with predicted fitness.

Figure 3: Visualisation of GB1 embedding space extracted with ESM-1b PPLM with
true fitness (a & c) and fitness predicted by GP model trained on 384 screened variants
in BOES run from the wild type protein (b & d).
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(a) PCA with true fitness. (b) PCA with predicted fitness.

(c) t-SNE with true fitness. (d) t-SNE with predicted fitness.

Figure 4: Visualisation of PhoQ embedding space extracted with ESM-1b PPLM with
true fitness (a & c) and fitness predicted by GP model trained on 384 screened variants
in BOES run from the wild type protein (b & d).
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of the best-so-far fitness are recorded before a part of the screening budget would be used
to screen a chosen amount of variants with high fitness predicted by the trained model.
To address this concern, the fitness progressions of the perceptron-training algorithm,
are accompanied by data points that report maximum true (screened) fitness among the
variants already screened for training as well as additional 100 variants with the highest
predicted fitness. The size of the additional screening budget dedicated to screening the
predicted variants is chosen to be similar to budget sizes dedicated to predicted variants
used in literature [31]. These values are reported in intervals of 24 screened variants
because 24 is the number of variants screened between training iterations of the fitness
predictor.

4.2.1 Performance on GB1 Wild-type Protein

The best-so-far fitness obtained with the SMW procedure on the GB1 dataset, plotted
in figure 5b in blue, increases steadily until it plateaus at 3.90 in under 50 variants
screened. Then the fitness stagnates and improves considerably again at between 125
and 150 screened variants with a final result of 5.77 after the 190 screened variants, which
mark the end of the SMW procedure. To continue the procedure with a larger screening
budget, the only option would be to restart the algorithm with the final variant or a ran-
domly sampled variant as the new starting variant. Restarting with a randomly sampled
variant introduces non-deterministic behavior where a single run would carry little infor-
mation, same as with the recombination benchmark. Restarting with the final variant is
a more sensible option but the next run of the restarted procedure would partially search
the same part of the sequence space making it less effective than an initial run. Because of
this, no performance of the SMW benchmark is reported after 191 variants are screened.

The BOES method shows results comparable to the SMW benchmark in approximately
the first 40 screened variants. Then, with an increasingly sized screening budget, BOES
keeps improving the best-so-far variant in an efficient manner, while the result of the
SMW benchmark stagnates. The best-so-far fitness of BOES plateaus at 7.55 around
100 screened variants, after which it takes the method another 150 variants to find the
global fitness maximum. The BOES method clearly surpasses the other evaluated methods
in performance on the GB1 wild-type protein. Only in the task of finding the globally
optimal variant, does the NSDE method more or less tie the number of necessary amount
of conducted screening with BOES.

The performance of the NSDE method with the first 190 screened variants follows the
results of the SMW benchmark relatively closely. Both of the methods yield slightly better
results than the other at different sizes of the screening budget. A considerable advantage
of the NSDE method manifests itself after 190 variants are screened, where the SMW
benchmark stops while the NSDA method continues and finds the global maximum with a
screening budget of 248 variants. That is even slightly smaller screening budget than the
BOES method requires to find the global optimum in the GB1 dataset. However, it is not

39



wise to draw hard conclusions solely from the performance of the method in a single run
from the wild-type protein, even though this conformation of the experiment corresponds
most closely to the real application of MLDE. More conclusive results are provided by the
test of robustness which are discussed in the next section.

The best-so-far fitness progression produced by the perceptron-training MLDE algo-
rithm shows a few sudden, large increases in the reported fitness. With small screening
budget sizes lower than 100 variants, the perceptron training algorithm shows inferior re-
sults to the other proposed MLDE methods and the SMW benchmark. With an increased
screening budget size between 100 and 250 variants, the perceptron-training method
performs on par with the NSDE method, but then it falls short of the other proposed
methods again in terms of locating the global optimum. The fitness curve itself represents
the performance of the algorithm without exploiting the trained fitness predictor further
to suggest extra variants for screening. In this form, the algorithm uses the trained fitness
predictor to select diverse protein variants which helps with efficient use of the screening
budget. The data points which incorporate an additional screening budget dedicated to
predicted variants represent the full version of the algorithm which, in theory, corresponds
better to the objective of DE. However, the results of the additional screening of predicted
variants at the end of the training algorithm suggest that the extra screening budget is
better spent by continuing in the predictor-informed diversity sampling than by screening
a large amount of the variants with high predicted fitness.

4.2.2 Performance on PhoQ Wild-type Protein

All evaluated methods, including the SMW benchmark, performed worse on the PhoQ
dataset than on the GB1 dataset, relative to the maximum fitness in the fitness landscape.
However, some methods performed similarly or better relative to the fitness of the PhoQ
wild-type protein, which is 3.29. When looking at the results in figure 6b, it is important
to remember that the global optimum of the PhoQ dataset is 133.59, whereas the figure
is scaled to fitness range from 0 to 70 for better clarity. This means that even the best-
performing BOES method only achieves approximately half of the globally optimal fitness
in the PhoQ dataset, while both the BOES and the NSDE methods managed to identify
the best variant in the GB1 dataset. The decreased performance consistent across the eval-
uated methods coincides with the expectation that the PhoQ dataset is more challenging
of the two, because of the higher concentration of non-functional variants in the sequence
space. However, both the BOES method and the SMW benchmark achieved much better
results on the PhoQ dataset relative to the wild-type protein’s fitness, yielding an almost
20-times and over 14-times improvement in fitness, respectively. This comparison might
not be conclusive to the difficulty of searching the two datasets, because the best variant in
the GB1 sequence space has only 8.76 times higher fitness than the GB1 wild-type protein,
so such results are infeasible. Nevertheless, it is important to realize that the comparison
between two datasets, where the so-called fitness resembles completely different properties
of a completely different protein is difficult and even though the best-performing method,

40



(a) Performance on sampled starting variants from GB1 dataset.

(b) Performance on GB1 wild type protein: The scattered points report the top fitness among
the training variants specified by the horizontal axis plus 100 additionally screened variants
suggested by the trained perceptron model.

Figure 5: Best-so-far fitness progressions of proposed methods on GB1 dataset.
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BOES, only achieved half of the maximal fitness, all of the methods still produced variants
with multiple-times the functionality of the original, wild-type protein.

Same as when evaluated on the GB1 dataset, the performance of BOES is comparable
to the SMW benchmark with smaller screening budget sizes and surpasses the benchmark
with a larger amount of screened variants. However, the benchmark is surpassed by the
BOES method much later, i.e. with a much larger size of the screening budget, than in
the GB1 dataset. Interestingly, the other two proposed methods, NSDE, and the fitness
predictor, do not show significantly improved obtained fitness over the SMW benchmark.
On the contrary, at approximately 100 screened variants, the SMW benchmark locates a
variant with higher fitness than the two methods manage to locate in the entire run of the
MLDE procedure.

Once again, it is important to note, that this figure is included mainly because it sim-
ulates the real-world application, but the evaluation of the methods by the means of a
single run of the MLDE procedure is not very credible from a statistical standpoint in
the sense that the results cannot be generalized to application to a new, unknown protein
with a good conscience. This is especially true in the PhoQ dataset, where the density
of functional variants is very low and the identification of a single functional variant can
mean a significant difference in the result of the DE procedure, as evident from figure 6b.
However, the outlying results of the evaluated methods obtained through this measure-
ment, which will be made evident by comparison to figure 6a, is an important reminder
of the strong effect of a fortunate or rather unfortunate position of the wild type variant
in the sequence space on the result of any DE procedure.

4.3 Performance on Sampled Starting Variants

The first quartile, median, and third quartile values from among all of the runs conducted
with both of the benchmarks and the NSDE and BOES methods are reported in figures
5a and 6a for the GB1 dataset and PhoQ dataset, respectively. The vertical axis relates to
the aforementioned fitness values and the horizontal axis stands for the number of variants
screened to achieve those results. Same as in the graphs of DE runs from the wild-type
protein, the sampled starting variants are plotted as 0th variants on the horizontal axis so
that the number of screened variants always corresponds to the number of variants selected
by the method, i.e. the experimental screening budget in a real DE procedure. In contrast
to figures 5b and 6b showing the methods’ performance on the wild-type proteins, the
vertical axis starts at 0 rather than the non-zero fitness of the wild-type protein, because
when running the algorithms from randomly sampled starting variants, most of the initial
variants have a fitness value close to zero. For each method, the median achieved fitness
value is plotted as a full, colored line and the interquartile range of the achieved fitness is
filled semi-transparently with the same color.
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(a) Performance on sampled starting variants from PhoQ dataset.

(b) Performance on PhoQ wild type protein: The scattered points report the top fitness among
the training variants specified by the horizontal axis plus 100 additionally screened variants
suggested by the trained perceptron model.

Figure 6: Best-so-far fitness progressions of proposed methods on PhoQ dataset.
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Different methods and benchmarks were repeated different number of times to obtain
the sampled results depending on the given method’s computational difficulty. Both of
the DE benchmarks, SMW and Recombination, were repeated 160,000 times. The SMW
benchmark was run once from each of the 160,000 possible starting variants, whereas the
Recombination benchmark, which does not depend on a starting variant but is highly non-
deterministic, was simply repeated 160,000 times in the same setting. The three proposed
MLDE methods, BOES, NSDE and the perceptron-training algorithm, were each run 200
times from 200 different starting variants. The same sample of starting variants was used
for each of the evaluated methods. The perceptron-training method with the addition of
finetuning of the PPLM is not included in this evaluation at all, because the fine-tuning
process is too computationally demanding for the algorithm to be re-run a reasonable
number of times. The specified number of runs for each benchmark and method was
carried out two times, once for each of the used datasets.

The results of the perceptron-training algorithm run from sampled starting variants are
included separately in figures 7 and 8 for the GB1 and PhoQ datasets, respectively, to
avoid making the figure incomprehensible because the results also include additional about
the prediction performance of the trained perceptron. The SMW benchmark is plotted in
these figures again as a means of comparison of the perceptron method to other methods.

4.3.1 Sampled Performance of SMW Benchmark

For the SMW benchmark, the comparison between the runs from GB1 wild-type protein
in figure 5b and the run from sampled GB1 variants in figure 5a shows a massive decrease
in the median fitness value over the performance on the wild-type protein in the first
50 screened variants. The SMW benchmark, plotted in blue, does not manage to find
any functional variants in any runs in the interquartile range for almost the entire first
50 screened variants. This is a stark contrast to the result obtained from the wild-type
protein, where the SMW benchmark was able to identify a variant with fitness of 3.90,
i.e. almost four times better than the wild-type protein. With increasing budget size, the
median fitness value is consistently lower than the fitness of the wild-type protein run,
but slowly approaches the wild-type protein curve. Only the final results at 191 screened
variants are comparable at 5.77 fitness reached from the GB1 wild-type protein and 5.49
median fitness on the GB1 dataset.

The results on the PhoQ dataset, plotted in figure 6, confirm the decrease in median
fitness relative to the best-so-far fitness starting from the wild-type protein in the first 50
to 70 variants screened, where the median obtained fitness does not grow substantially.
At 70 variants screened the median fitness shows a more promising increase, comparable
to the result obtained on the wild-type protein, but the final obtained median fitness at
191 conducted screens of 27.37 is significantly lower than the final fitness obtained in run
from the wild-type protein, which is 47.12.
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Overall, the results from both datasets coincide in a very strong effect of the quality of
the starting protein on the resulting fitness in the first 70 screened variants. The results
differ between the datasets in the final fitness after the full procedure consisting of 191
conducted screens, where the evaluation on the GB1 dataset shows very little effect, but the
evaluation on PhoQ datasets shows a very strong negative effect of non-functional starting
protein over the functional, wild type protein on the final result of the DE procedure.

4.3.2 Sampled Performance of Recombination Benchmark

Unlike the SMW benchmark, the median fitness obtained by the recombination benchmark
increases steadily even with small sizes of the screening budget, resulting in much better
median results with less than 100 screened variants and still significantly better median
results with a screening budget of up to 150 variants.

The median and quartile curves produced by the recombination benchmark contain a
single, sharp increase in fitness after 112 screened variants. This graph feature is caused by
the two steps of the recombination algorithm, where 112 variants are randomly sampled
and screened, and than the top 3 highest-fitness variants are recombined into 78 mutants,
as described in section 3.2.2.

Another interesting observation is the very smooth shape of the median and quartile
fitness values reported for the recombination benchmark in comparison to all of the other
evaluated methods. The median and quartile curves of the other methods show many
sharp, stair-like increases and flat plateaus of varying length. These features probably
relate to dominant local maxima specific to the protein’s fitness landscape. For example,
between the screening budget size of 100 to 200 variants, the median curve of the BOES
method shows only one, sharp increase in fitness, while the interquartile range stays ex-
actly the same. This feature most probably relates to a local maximum of 7.55, which the
method identifies consistently in 100 screens, and the global optimum of 8.76 which is
much harder to finally locate for the method. Both steps of the recombination method in-
dividually screen variants in an uninformed manner where the previously obtained results
play no role in the choice of screened variants. In the first step, the method performs ran-
dom sampling and in the second step, the recombined mutants are screened exhaustively.
Because of this, neither of the steps, individually, is affected by the characteristics of the
fitness landscape such as relative positions of local maxima.

4.3.3 Sampled Performance of NSDE Method

On the GB1 dataset, in figure 5, the NSDE method shows a slight decrease in the median
fitness for smaller sizes of the screening budget relative to the obtained fitness starting
from the wild-type protein. However, the decrease in performance relative to the run from
the wild-type protein is much less pronounced than in the SMW benchmark. While the
median fitness of the SMW method stagnates for almost the first 50 conducted screens,
the shape of the median fitness progression curve of the NSDE method looks very similar
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to its performance on the wild-type protein. The median curve only starts close to zero
fitness, because the median fitness of a randomly sampled variant is close to zero, whereas
the wild-type curve starts at the non-zero fitness corresponding to the wild-type protein’s
fitness. This provides the wild-type run with an initial advantage, which dissipates in
approximately 125 screened variants. Moreover, the performance with smaller screening
budgets is not present in results on the PhoQ dataset in figure 6. A conclusion can be
made, that a functional starting protein can boost the performance of NSDE in the initial
iterations but the disadvantage of a non-functional starting variant is effectively negated
by the NSDE method within a reasonably sized screening budget.

A slightly decreased median performance, as opposed to the performance on the wild-
type protein, can also be observed in terms of finding the global maximum of the GB1
fitness landscape. While starting from the wild-type protein, the NSDE method finds
the globally optimal variant in a relatively small amount of conducted screening, the me-
dian fitness progression shows that when considering non-functional starting variants with
close-to-zero fitness, the method rarely finds the optimal variant in under 384 conducted
screens, with the median final fitness value being 7.55, still reasonably close to the 8.76
global optimum. On the PhoQ dataset, however, the NSDE method reports significantly
increased median performance in terms of the final achieved fitness as opposed to the
run from the PhoQ wild-type protein. It can be concluded, that with a reasonably sized
screening budget, the fitness of the starting protein does not have a strong effect on the
final obtained fitness.

4.3.4 Sampled Performance of BOES Method

Unlike the SMW benchmark and the proposed NSDE method, the performance of the
BOES method actually improves when the starting variant is randomly sampled. Com-
parison on the GB1 dataset in figures 5a and 5b shows that the median curve achieves the
same fitness in the first few screened variants and surpasses the wild type curve with in-
creasing screening budget, reaching a fitness of 6.88 with a screening budget of 50 screened
variants, whereas the wild type run only reaches best-so-far fitness 4.65 with the same bud-
get. In terms of the global maximum, the median curve and the wild-type run reach it in
under 200 screened variants and just over 250 screened variants, respectively, marking the
median fitness achieved by runs from randomly sampled starting variants superior once
again. The more robust comparison of the methods run from sampled variants shows a
very clear superiority of the BOES method with an arbitrary size of the screening budget.

Comparison of the wild type and median fitness curve on the PhoQ dataset in figures 6b
and 6a, respectively, does not fully coincide with the observation made on the GB1 dataset.
The BO-based method does not show an increase in performance with the randomly
sampled starting variants over the wild-type protein. However, the comparison does show
only a slight decrease in performance when starting from the non-functional variants. A
more pronounced difference is present with larger screening budget sizes of around 140
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screened variants and more, where the wild-type run reaches a fitness of 64.95, while the
upper quartile fitness value only approaches values close to 60 in around 200 screened
variants.

Another noteworthy observation from figures 5a and 6a is that the interquartile range of
the BO-based method is much smaller than most other methods. It can be concluded that
the method performs well, and potentially even better, with a randomly sampled, often
non-functional starting variant, and is very robust to different positions of the starting
variant in the sequence space. The interquartile range in the PhoQ dataset increases with
larger sizes of the screening budget but is also extremely small in the very efficient, first
50 variants screened.

The interquartile range is significantly increased after the local optimum of 7.55 is
reached in the GB1 dataset around the 100 screened variants and gradually increases after
the first 50 screened variants in the PhoQ dataset. The sudden increase in the GB1 dataset
can be attributed to the variance in number of conducted screens it takes the individual
runs to locate the global optimum, increasing the best-so-far fitness by a considerable
amount as seen on both the median curve in figure 5a and the wild type run progression
in figure 5b. The stair-like quality of the upper quartile range reported on the PhoQ
dataset, plotted in figure 6a, suggests that the increased interquartile range may also be
caused, at least partly, by jumps in best-so-far fitness tied to locating of a significant local
optimum. The method seems to perform exceptionally well, regardless of the nature of the
fitness landscape, during the initial mapping of the sequence space with a small screening
budget. After that, the difficulty of localization of different local optima is highly affected
by the shape of the fitness landscape and both the performance and the robustness to
the position of the starting variant in the sequence space may vary based on the mutated
protein. However, the BO-based shows superior results to the other evaluated methods in
both datasets.

Lastly, a practical comment on the number of screened variants is in place. The sampled
runs of the BOES procedure were ended at 200 screened variants to maintain a manageable
computational time. Inference of a GP model with n data points has time complexity
O(n3) [4, 94] and the model has to be fitted in each iteration of BOES while the dataset
increases by one data point between iterations. This results in vastly slower iterations
at the end of the procedure compared to the initial iterations. In practice, this is not a
limiting factor for BOES since the screening experiments are exceptionally expensive and
time-consuming and the number of screened variants is usually only in the order of tens
or hundreds. Because of this, the run time of an iteration of BOES will never be an issue
in real DE applications. The time complexity is, however, helpful to note for the purpose
of evaluation of the BOES method in repeated runs of the procedure.
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Figure 7: Performance of the proposed perceptron-training method on sampled starting
variants from GB1 dataset: Perceptron prediction represents median and interquartile
range of the top fitness among the training variants specified by the horizontal axis plus
100 additionally screened variants suggested by the trained perceptron model.

4.3.5 Sampled Performance of Perceptron Training

Results of the runs of the perceptron-training algorithm with sampled starting variants
are reported in figure 7 and figure 8 for the GB1 and PhoQ datasets, respectively. The
median fitness values and interquartile ranges plotted in purple represent the performance
of the training algorithm before an additional screening budget is used to screen variants
with high predicted fitness. The training algorithm itself exploits the trained perceptron
to identify diverse variants for screening, exploring the fitness landscape in a more effi-
cient manner, even before exploiting the perceptron to suggest variants with the highest
predicted fitness. The performance of the training algorithm itself on both datasets shows
that with small budget sizes, this form of exploration of the fitness landscape outperforms
the SMW benchmark. For small budget sizes, the median and quartile curves are similar
to the results obtained from the recombination benchmark in the first sampling step of the
algorithm. This observation is sensible since both methods perform some sort of diverse
sampling in the sequence space.

The performance of the complete method with the additional screening of variants which
are predicted to have high fitness is reported in figure 7 and figure 8 in the form of red
interquartile ranges in intervals of 24 screened variants. The prediction performance is

48



Figure 8: Performance of the proposed perceptron-training method on sampled starting
variants from PhoQ dataset: Perceptron prediction represents median and interquartile
range of the top fitness among the training variants specified by the horizontal axis plus
100 additionally screened variants suggested by the trained perceptron model.

recorded in each run as the maximum true fitness from among the variants screened for
training plus 100 variants with the highest predicted fitness. The median and quartile
values across the conducted runs are reported. The maximum fitness is recorded after
each round of training and 24 variants are screened between the rounds, hence the interval
of 24 variants. In the GB1 dataset, the addition of the prediction step improves the results
significantly for small screening budget sizes of up to 150 or 200 variants. For sizes of the
screening budget larger than 275, the prediction step is rarely able to identify any new
variant with improved fitness over the already sampled variants. When exploring the
predictions of the perceptron trained with different-sized training samples, it was evident,
that the best predicted variant slowly improved in subsequent iterations of the algorithm
until approximately the 168-sized training set, after which the predictive ability of the
perceptron usually started to decrease. It seems that in the repeated rounds of training,
the predictor was overfitted and the predictive qualities collapsed. With a more optimal
setting of the training procedure and its hyperparameters, the results of this method with
larger screening budgets could be further improved.

In the PhoQ dataset, the prediction step rarely locates improving variants with any size
of the screening budget used for training. This is indicated by the manner in which the
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plotted ranges of predictive performance follow the results of the sole training algorithm
almost perfectly in figure 8. It is possible, that in the more challenging PhoQ dataset, the
requirements on a functional variant are more restrictive. As a consequence, more training
data are required to train the predictor successfully. In that case, however, the predictor
would have never managed to be trained successfully because a sub-optimal choice of the
training hyperparameters causes the predictor to collapse in prolonged training, as the
results from the GB1 dataset suggest. Another hypothesis is that the requirements on a
functional variant are so complicated in the PhoQ dataset, that the proposed model is
unable to learn them and predict high fitness variants regardless of the size of the training
dataset.

4.4 Final Fitness Distributions

In addition to the median and interquartile fitness curves, the results of the evaluation
of proposed methods on sampled starting variants are also reported as final fitness distri-
butions in figure 9 for the GB1 dataset and figure 10 for the PhoQ dataset. Each figure
contains four violin plots which report the distributions of the highest obtained fitness by
different methods with a screening budget of 50, 100, 150, and 190 variants. These figures
do not depict the gradual increase in the best-so-far fitness as well as the median figures
5a and 6a, but they contain much more detailed information about the distribution of
the final results than a simple interquartile range can provide. The violin plots are able
to report on possible local maxima, which certain methods tend to identify, the entire
range of final results, which one can expect to obtain through a given method, and the
frequency of outlying results with far higher or lower fitness than the interquartile range
might suggest.

4.4.1 Distribution of SMW Results

The results of the SMW benchmark at 50 screened variants in both datasets confirm the
observation that the SMW method almost never yields results with a small screening
budget. However, the result distributions with subsequent screening budgets of 100, 150,
and 190 in the GB1 dataset, plotted in figure 9, provide an interesting insight, which was
not obvious from the interquartile fitness progressions. All three budget sizes show that
while the distributions have very heavy parts around the median mark, which influence
the interquartile range to be relatively small, there are also smaller, but noticeable parts
of the distributions outside of the interquartile range plotted in figure 5a. Specifically,
the distribution at 100 screened variants shows a light, but long tail into higher fitness
values, ending almost at a fitness value of 6, whereas the upper quartile fitness value at
100 screened variants is just over 3. Similarly, the distributions at 150 and 190 screened
variants show noticeable peaks above the upper quartile. On the other hand, the distribu-
tion at 150 screened variants also has a strong tail leading down to 0 fitness and all four of
the distributions show a number of runs which ended with almost zero fitness at all sizes
of the screening budget.
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Figure 9: Results of proposed methods on sampled starting variants form GB1 dataset.

Figure 10: Results of proposed methods on sampled starting variants form PhoQ
dataset.
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The distributions of SMW results on the Phoq dataset, plotted in figure 10, are less
surprising. Apart from confirming the non-feasibility of the method at a screening budget
of 50 variants, the distributions also confirm the presence of a large number of runs that
end with almost zero fitness with any size of the screening budget. As far as any positive
outlying results go, only very small peaks with fitness over the border suggested by the
upper quartile are present with the larger screening budgets of 150 and 190 variants. Apart
from these very small improving peaks and the large number of non-functional results in
all screening budget sizes, the distribution is represented by the interquartile range quite
well.

In conclusion, the detailed distribution of the obtained results reveal two important
properties of the SMW method. First, the method has a significant chance of producing
almost no improvement in fitness and yielding a final variant with very low fitness regard-
less of the screening budget. This property can be attributed to the strictly local means
of exploration of the sequence space, which leads to difficulty in identifying any functional
variants if the starting protein itself does not have very high fitness. The method has
no means of making large jumps in the sequence space or sampling completely unrelated
variants which can be problematic when the starting protein is situated in a part of the
fitness landscape populated by other low-function variants. Secondly, the SMW method
has a very large range of results depending on the starting protein variant on the GB1
dataset. The distribution of results at 150 screened variants shows a significant amount
of results from almost the entire range of fitness values in the dataset. When a larger
screening budget is provided, it might be wise to split the budget into multiple runs of the
procedure from unrelated, possibly sampled, starting variants rather than restarting the
procedure from the final highest fitness variant after the 190 variants are screened.

4.4.2 Distribution of Recombination Results

Result distributions of the recombination benchmark coincide between the two datasets
very closely. Both datasets show no significant peaks outside of the interquartile range
and no extremely long tails of the distribution. Although, it should be noted, that on
the GB1 dataset, the distribution is relatively wider than on the Phoq dataset and also
relatively wider to the distributions of other methods’ results on the GB1 dataset. The
only interesting observation, that can be made on the plotted distributions, is that with
larger screening budget sizes of 150 and 190, the distribution tends to contain small peaks
with improved fitness over the upper quartile in both datasets. These peaks are not very
strong and do not pose any implications for the employment of the method.

4.4.3 Distribution of NSDE Results

The distribution plots on the GB1 dataset in figure 9 provide an interesting insight into
the results of the NSDE method. The smallest reported screening budget size of 50 already
shows a very slim tail of results of high fitness well outside the interquartile range plotted
in figure 5a. Then, for the larger sizes of the screening budget, an increasingly large
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peak develops at the very top of the fitness scale. The median results in figure 5a prove
that the NSDE method can yield excellent results in 225 to over 350 screened variants.
Furthermore, in the run from the GB1 wild-type protein in figure 5b the method identifies
the global optimum in just under 250 screened variants. However, the plotted result
distributions show that from a considerable amount of starting variants, even though
possibly non-functional, the NSDE method can yield excellent results with a screening
budget of 190, 150, or in some cases just 100 screened variants. The result distributions
on the PhoQ dataset in figure 10 do not show peaks with as high relative fitness as in the
GB1 dataset, but very large peaks with improved fitness are present with screening budget
sizes of 100 and 150, which are still well over the upper quartile fitness value reported in
figure 6a.

While the very high-fitness results are not common enough to rely on the method in
the proposed form to produce them consistently, they show great potential for possible
future improvement in the performance of the method. Firstly, an initial sampling step
is already implemented in the proposed form of NSDE to improve the robustness of the
method to the position of the starting variant in the constructed neighborhood graph.
If the initial sampling step was re-invented, the portion of the runs which fall into the
high-fitness peak of the distribution could increase, making the method’s performance
comparable to the dominant BOES method. An example of an alternative method of
sampling the initial variants could be employing the proposed BO method or a different
active learning approach. Additionally, an improving measure could be implemented in
the NSDE method, which would identify that the method is searching in a close area
around a single local maximum for many iterations. The measure would nudge the search
algorithm to abandon the greedy approach of choosing the highest-scoring variant in the
open set and choose a variant with greater distance in the sequence space instead. This
second improvement would be much trickier to implement in a way, which would not be
helpful in certain runs but decrease the method’s performance more in other cases.

4.4.4 Distribution of BOES Results

Results of the BOES method on the GB1 dataset plotted in the violin graphs in figure 9
confirm once again its superior performance among the other evaluated methods. Even
with a relatively small screening budget of 50 variants, the method almost always manages
to identify a variant with fitness 5 or higher and the distribution only moves upward and
its tails shorten as the screening budget increases. Additionally, with a screening budget
of 150 variants or more, the BOES method is perfectly consistent in the sense that not
a single run was recorded where the method would underperform and fail to identify a
variant with an excellent fitness of 7.55 or higher. Both benchmarks and the NSDE method
can, at least in some cases, fail to perform completely, as evident from the final fitness
distributions. Even with the smallest plotted size of the screening budget of 50 variants, in
the worst recorded, outlying run, the BOES method still managed to find a variant with
almost twice the fitness of the GB1 wild-type protein. Evaluation on the PhoQ dataset in
figure 10 coincides with the observations made on the GB1 protein. Even with 50 screened
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variants, the BOES method identified an improving protein variant in each recorded run
and with larger screening budgets of 100 variants or more, even the worst-case results were
variants with almost 20 fitness, that is approximately 6 times the fitness of the wild type
protein.

An interesting observation, which can also be made on both datasets to some extent,
are the additional smaller peaks at higher fitness in the result distributions. In the Phoq
dataset, the peak at around 65 fitness is not very noticeable until 150 or 190 screened
variants, while in the GB1 dataset, a peak at the fitness of 7.55 is present in all four violin
plots and a peak at the maximum fitness appears from 100 screened variants onwards.
These peaks can be attributed to dominant local maxima in the fitness landscapes and
the four plotted distributions illustrate how the mass of the distribution slowly shifts from
lower-fitness peaks to higher-fitness peaks with increasing size of the screening budget.

4.4.5 Distribution of Perceptron Results

For the perceptron-training method, the violin plots only report on the distributions of the
results obtained through the main, training part of the algorithm without the additional
screening of variants with high predicted fitness. The predictive performance is left out
of figures 9 and 10 since the prediction can only be obtained at screening budget sizes
of multiples of 24. The predictive performance is already reported sufficiently in the
separate graphs of sampled runs of the perceptron-training algorithm in figures 7 and 8.
This means that the violin plots of the result distributions correspond to the median and
quartile values depicted in figures 7 and 8 in purple.

The distributions of the perceptron-training results do not contain any prominent peaks
outside of the interquartile range. The shape of the distributions is similar to the results
of the recombination benchmark, albeit for larger screening budgets, the results of the
perceptron-training algorithm are a bit lower. However, the perceptron-training procedure
still provides a multiple-times improvement over the fitness of the wild-type protein in
both datasets. One strength of the method, which is not evident solely from the median
and quartile fitness values, is that with larger budget sizes, the method always finds a
functional variant of the protein. The only other evaluated method that guarantees a
functional resulting variant is the BOES method. The remaining three evaluated methods
all sometimes finish the DE procedure with zero or close-to-zero fitness when the position
of the starting variant in the sequence space is unfortunate.

4.5 Modelling the Embedding Space

As a secondary result, the fitness landscape modeled by the best-performing BOES method
was visualized alongside the initial PCA and t-SNE plots in figures 3 and 4. All four of the
plots with predicted fitness (figures 3b, 3d, 4b, 4d) show fitness predicted by a GP model
trained on 384 screened variants by the BOES method when initiated with the wild type
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protein. These visual results are not presented to draw any hard conclusions. Rather,
they serve as an insight into the modeling capabilities of the proposed methodology.

The PCA plots in figures 3b and 4b show that BOES was able to model the large area
of high fitness and did not predict high fitness outside of it. Comparison with the original
plots with true fitness shows that the modeled high-fitness area is slightly smaller than the
true high-fitness area or that the fitness decreases more quickly towards the edges. This
suggest that the model is more conservative rather than overly optimistic in its prediction,
which is reasonable given the overwhelming representation of non-functional variants in
the sequence space. Furthermore, the range of predicted fitness values on the PhoQ dataset
in figure 4b is significantly smaller than the range of true fitness values. This is caused
by the fact that BOES did not identify any variants with fitness of 70 or more, as can be
seen in figure 6b.

The visualization of predicted fitness in the t-SNE plots in figures 3d and 4d provides
more interesting insights. Results on both datasets show that BOES was able to identify
multiple local clusters of high-fitness variants. Especially the results on the GB1 dataset in
figure 3d reveal that almost all of the major clusters were identified. The modeled embed-
ding space of the PhoQ dataset also shows many of the local clusters but with considerably
lower fitness than their true peaks. This suggests that many of the areas of high-fitness
variants were explored but the the method might have over-emphasized exploration over
exploitation and failed to locate the peaks with considerably higher fitness. This observa-
tion could prove useful in future fine-tuning of BOES. Exploitation could be emphasized
by a change of acquisition function. However, changes based on this observation should
be applied cautiously. This result might be highly specific to the PhoQ dataset and any
significant change to the balance of exploration and exploitation might prove detrimental
to the method’s performance on different datasets.

5 Discussion

This section relates the obtained results to the literature. Performance of the implemented
benchmarks is compared to their original version in [88] and differences in implementation
are discussed. NSDE and BOES methods are compared to state-of-the-art MLDE methods
with model regression objective to demonstrate the advantage of an optimization-oriented
approach. BOES method is also compared to other BO-based MLDE methods to show the
advantage of the innovative application of PPLM-extracted sequence representation in BO.
Furthermore, options for future development of the proposed optimization methods are
indicated. Lastly, possible reasons for the unideal performance of the perceptron-training
algorithm are discussed and solutions for future improvement are proposed.
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5.1 Benchmarks

The results obtained with the SMW benchmark after the full run of the procedure at
190 screened variants coincide with results reported in literature [88]. The distribution
of the SMW results in figure 9 corresponds perfectly to the reported distribution, which
also shows two dominant peaks and a significant number of runs that fail to identify any
functional variant. The distribution of results of the recombination benchmark after the
full procedure, i.e. at 190 screened variants, has very similar shape to the distribution of
results from the literature. Both the obtained results and the consulted literature show
practically no runs which end with a non-functional variant and both show a similarly
wide distribution with two prominent peaks. However, the distribution in the obtained
results is shifted towards lower fitness values relative to the literature. This discrepancy
also causes the final results of the two benchmarks to show slightly better performance of
the SMW benchmark over recombination while the recombination procedure is reported
to produce better results [88].

A probable explanation of the slightly different obtained results is that an upper bound
of the number of screened variants was used in the recombination procedure, while an exact
number of screened variants was used in the single mutation walk. This implementation
resulted in a smaller average number of screened variants in the runs of the recombination
procedure. In other words, the single mutation walk simulation was provided with more
resources on average making the comparison of the results slightly unfair. The small
disadvantage imposed on the recombination procedure could be removed by adding extra
steps after the procedure in which additional variants would be screened one by one until
the exact number of unique variants was screened. The choice was made not to needlessly
complicate the benchmark method. The comparison of the two benchmarks is not the
goal of their implementation, rather the two benchmarks serve together as a baseline for
evaluation of performance of the proposed MLDE methods.

5.2 Optimization vs Model-fitting Approach

The objective of optimization methods, which is in the context of DE to maximize the
fitness function, corresponds directly to the goal of DE. On the other hand, model-fitting
methods, like the proposed perceptron-training algorithm, define a tangential goal of min-
imizing the predictive error of a trained model. These objectives align to a certain extent.
Both approaches require some extent of exploration of the initially unknown fitness land-
scape. However, an essential component of optimization methods is exploitation of already
discovered regions of high fitness and a balance between the contradictory nature of explo-
ration and exploitation. In contrast, a model-fitting approach does not necessarily have
to emphasize exploitation whatsoever and the trained model has to be exploited after
the training is complete to suggest some amount of variants with high predicted fitness,
which are also screened, wasting additional resources. Common sense suggests that defin-
ing a method with the real objective in mind from the get-go might lead to better use of
resources.
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The two proposed methods with an optimization objective clearly outperform the pro-
posed perceptron-training method. This result is not conclusive by itself since all three
of the methods were implemented in a relatively simple form with limited exploration
of hyperparameters. Further optimization of individual steps of the algorithms, such as
initial sampling in the NSDE method, and grid-search of optimal hyperparameters, such
as the batch size and learning rate, would have to be conducted to draw conclusions
based solely on the methods proposed in this thesis. This is especially true, because the
perceptron-training method arguably needs the additional fine-tuning of the hyperparam-
eters the most since the results suggest overfitting of the trained predictor and collapse of
the predictive performance with large screening budgets.

To address this concern, a comparison with model-fitting methods from the literature
is reported in table 1. The table includes results of the implemented SMW benchmark
to serve as a baseline and the two optimization-oriented methods, NSDE and BOES,
compared to results of several state-of-the-art model-fitting DE methods reported in [31],
which all train a fitness predictor during the DE procedure. A concise description of the
included methods is adapted from [31]:

• MLDE [88] trains an ensemble of shallow neural networks as fitness predictors on
randomly sampled variants.

• ftMLDE, focused training MLDE [9], is a strategy for running MLDE with training
sets designed to avoid holes. The comparison includes ftMLDE with two sampling
strategies, EVmutation [95] and MSA-transformer [34].

• CLADE [96] trains a fitness predictor with high-fitness mutants obtained through a
hierarchical clustering sampling method.

• CLADE 2.0 [97] selects the high-fitness mutants with a scoring function which em-
ploys an ensemble of methods including a PPLM.

• AFP-DE [31] uses a PPLM to sample variants and extract sequence embeddings.
Iteratively trains a fitness predictor with the sampled variants and finetunes the
PPLM with variants with high predicted fitness.

The model-fitting methods are tested with a screening budget of 80 variants with two
different splits between a part of the budget used for training and the rest of the budget
left to screen variants with top-predicted fitness. The first split is 24 training variants and
56 predicted variants and the other is 48 training variants with 32 variants left to exploit
the prediction. SMW and the optimization methods do not split the resources, so the
table contains just a single result for these methods.

With a screening budget of 80 variants, the comparison with state-of-the-art model-
fitting methods shows a clear dominance of the proposed BOES method, while the NSDE
method shows similar results to most of the other methods and is outperformed by BOES
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Table 1: Comparison of proposed optimization methods with state-of-the-art
model-regression methods: Maximum fitness obtained when run from the wild-type
protein with a screening budget of 80 variants is reported. The model-regression
methods split the screening budget between training and consecutive screening of
promising predicted variants (24 + 56 or 48 + 32). The optimization methods screen all
80 variants during the optimization procedure.

and AFP-DE. A comparison in terms of localization of the globally optimal variant in
the GB1 dataset highlights the advantage of optimization-oriented methods even more, as
both BOES and NSDE find the global maximum in approximately 250 screened variants
when started from the GB1 wild-type protein, while the model-fitting AFP-DE method,
which also employs a PPLM, only finds a variant with 96.7 % of the maximum fitness
with 480 conducted screening experiments (384 in training and 96 to screen predicted
variants). That is roughly double the experimental burden. Furthermore, the median
fitness curve of the BOES method suggests that it can often find the globally optimal
variant in under 200 screened variants even when starting from different, non-functional
variants from the GB1 sequence space. The model-fitting methods have the advantage
of providing a fitness predictor at the end of the procedure, which can be useful in other
applications. In the context of DE, however, the objective to obtain maximum fitness with
minimum conducted screening experiments is best fulfilled by the BOES method.

5.3 Bayesian Optimization in Embedding Space

Results from the runs starting from the wild-type protein and the sampled starting vari-
ants conducted on both datasets confirm the superior performance of BOES among the
evaluated methods. Its strength is especially highlighted by the fitness progression from
runs with sampled starting variants on the GB1 dataset in figure 5a and the distribution of
obtained results from the same experiment plotted in figure 9. Results in table 1 also show
that BOES outperforms state-of-the-art model-fitting algorithms. To evaluate the effect
of the informative PPLM embedding and the innovative kernel function used to enable
the employment of BO on the high-dimensional embedding, a comparison to BO-based
DE methods defined on different input spaces is in place.

58



Table 2: Comparison of the proposed BOES method with BO conducted in the original
protein sequence space: Mean of the maximum obtained fitness from multiple runs is
reported. Results of the implemented methods are accompanied by standard deviation.

To confirm a positive effect of the informative input space on the performance of the
BOES method, we first compare the results to a method proposed in [69] which, in its
most simple form, performs BO with a GP model and EI acquisition function directly in
the protein sequence space. The distance between two variants is computed simply from
one-hot encoding of the amino acids at mutated positions. This approach corresponds
to the proposed BOES method in terms of the selected model and acquisition function
and uses a straightforward definition of the input space and kernel function in place of the
embedding space, making it an ideal candidate for evaluation of the effect of the PPLM on
the method’s performance. The average results of the SMW benchmark, BOES method,
and three versions of the method described in [69] are included in table 2. Abbreviation
GP+EI corresponds to the aforementioned simple version of the proposed method and
the other two reported versions introduce two distinct protein fold family regularization
techniques at the expense of performance in terms of fitness. It is important to note that
in all forms of the method from [69], the model is initially trained on 20 randomly selected
variants before the first iteration of BO, which are not counted towards the screening
budget, skewing the comparison in their favor. One last note-worthy distinction between
BOES and the methods reported in [69] is that, unlike BOES, the methods select new
variants for screening in batches of 19.

Comparison in table 2 decidedly confirms a positive effect of employing BO in the
embedding space over the original sequence space. The results show that BOES outper-
forms all three versions of the method with a one-hot encoding-based kernel function. A
conclusion about the strength of the boost in performance provided by the informative
embedding space would not hold much weight if based on this comparison only, since the
method defined [69] has an advantage of 20 randomly screened variants. To measure the
effect quantitatively, it would be ideal to implement a new BO-based method with a kernel
function defined on the raw sequence space and other parts of the procedure identical to
BOES to control as many variables in the comparison as possible.

5.4 Other Informative Input Spaces in BO of Proteins

The conducted comparison to a BO-based method defined on the original sequence space
proves the positive effect of the innovative input space qualitatively. Howevr, a comparison
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Table 3: Comparison of the proposed BOES method to BO conducted with a different
informative sequence representation: Mean of the maximum obtained fitness from
multiple runs is reported with the standard deviation.

to another state-of-the-art BO-based method with a different, yet also informative, input
space can help assess the performance of the proposed method quantitatively. The ODBO
framework [63] employs BO for PE in combination with a novel encoding of amino acids
based on the fitness of observed variants with the specific amino acids at the specified
mutation position, as described in section 2.6.2. In table 3, results of the BOES method
with a screening budget of 50 variants are compared to a classical BO procedure with a
GP model and the positional amino-acid encoding of variants and to a trust region BO
procedure (TuRBO) with the same model and encoding.

A fundamental difference between the two novel methods of sequence-space representa-
tion for BO is that the positional amino-acid encoding proposed in [63] requires an initial
dataset of screened variants in which each amino acid appears at each mutation site at
least two times, while the PPLM-extracted embedding space requires no screened variants
for its construction. The original paper presents a solution to this obstacle in the form
of an initial sampling algorithm, which for the GB1 dataset constructs an initial set of
40 variants. This means that while each of the BO procedures compared in table 3 is
provided with a screening budget of 50 variants, the construction of the encoding that
precedes the two procedures from [63] requires an additional 40 screening experiments,
which the BOES method saves in comparison.

Results in table 3 reveal that all three compared BO-based methods are extremely
similar in performance with BOES outperforming the other classical BO method, labeled
NaiveBO, and the trust region variant slightly outperforming BOES. It should be noted
that a trust region variant of BOES could also be implemented, which would most probably
improve the original BOES method’s performance. Similarly, the authors of the compared
BO method [63] propose two additional improvements: prescreening outlier detection via
XGBOD [85] and employing a BO procedure robust to outliers [98]. The variant of the
authors’ method with these improvements outperforms BOES, but the improvements can
also be combined with BOES. Adding the prescreening outlier detection step requires a set
of already screened variants. To circumvent this, the outlier detection could be enabled
after a certain number of BOES iterations. Additionally, the XGBOD method could be
replaced with an unsupervised outlier detection method in the initial iterations of BOES.
A version of BOES with these two improvements can be expected to yield similar results to
the full version of ODBO [63] while saving screening costs on the construction of sequence
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representation, based on the comparison of the un-improved versions of the methods.

5.5 Lowering Search Effort of NSDE

Results in figures 5a and 6a show that the NSDE method can achieve great fitness compa-
rable to the proposed BOES method. However, the best-so-far fitness obtained by NSDE
increases slower in regards to the number of screened variants. Furthermore, comparison
to state-of-the-art model-regression methods for MLDE in table 1 shows comparable re-
sults of NSDE to most of the methods, with the exception of AFP-DE [31], even in its
current form. Lowering the search effort of NSDE while maintaining great final results
could result in performance competitive to the BOES method.

As a graph-search approach, NSDE could benefit from standard methods to lower the
search effort. A simple standard method is a common heuristic algorithm for graph explo-
ration named beam search. It implements a pruned version of breadth-first search which
can be used in applications, where an exhaustive graph search is infeasible [99]. In NSDE,
beam search would be implemented by discarding all but the k (e.g. 2 or 3) top-scoring
variants from the open set after each round of screening. Then, neighborhoods of all k
variants would be screened in the next iteration. This way, the size of the open set would
always be k. This approach could help the method traverse the sequence space more
quickly by limiting the number of variants from an area around a single local maximum
that would be kept in the open list. Beam search and its variants have been widely used
in NLP for decades to approximate the exact search of the full output space[99, 100,
101]. This makes beam search an ideal candidate for experimentation since the nodes
of the graph searched in NSDE represent sequence embeddings extracted from a PPLM,
marking a similar application.

A more innovative variant of NSDE could employ the proposed BOES method for the
initial sampling of variants instead of the currently employed greedy sampling on the inputs
[62]. The uncertainty sampling conducted by BO guarantees that a good portion of the
screening budget will be used to sample variants evenly from the entire sequence space.
This makes BO a sensible option for an initial, diverse sampling algorithm. Furthermore,
the results in figures 6a and especially 5a suggest that the BOES method can obtain
variants of very high quality in a small number of screened variants. Additionally, the
results of NSDE in figure 5 suggest that the presence of a high-fitness variant in the set of
starting variants could help NSDE in identifying a top-quality variant much faster. This
notion is supported by the large interquartile range of the best-so-far fitness when NSDE
is started from different variants, plotted in figure 5a. The fact that NSDE locates the
global optimum in under 250 screened variants when started from the functional wild-type
protein, as shown in figure 5b, also supports the hypothesis. A screening budget of 40 to
50 variants dedicated to initial sampling through BOES could be a good starting point
for future experimentation.
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Lastly, the PPLM employed as an embedding extractor during the construction of the
neighborhood graph could also be exploited to lower the search effort. Instead of screening
all neighbors of the variant with the highest fitness in the open set, we could screen the
neighbors one by one in the order defined by the pseudolikelihood assigned to the neighbors
by the PPLM. As soon as a variant with higher fitness would be screened, the rest of the
un-screened neighbors could be ignored and the search would continue from the new,
higher fitness variant. Alternatively, the open set of screened variants could be replaced
with an open set of the un-screened neighbors of all screened variants. Variants from the
open set would be screened in the order defined by a score combining the pseudolikelihood
assigned by the PPLM and the true, screened fitness of their highest-scoring screened
neighbor. This approach would strike a balance between the verified information obtained
through the screening experiments and the cheap prediction from the pre-trained model.
However, the definition of the score introduces an influential hyperparameter, whose value
would be critical to the performance of the method.

5.6 Future Development of the Fitness Predictor

The proposed perceptron-training algorithm produced results with observable improve-
ments over the DE benchmarks in certain areas. For small budget sizes, it outperforms
the SMW benchmark while producing comparable results to the recombination bench-
mark and for larger budget sizes it guarantees to identify a functional variant whereas the
benchmarks, especially SMW, have shown to sometimes fail to find any improving variants
on both datasets. However, the overall performance of the perceptron-training algorithm
is the weakest among the proposed methods.

There are several possible areas of improvement, which probably all contribute to the
suboptimal performance of this method. Firstly, the algorithm and its version with PPLM
finetuning contain a large number of hyperparameters and choices which require a compre-
hensive exploration. A few alterations were tested with no strong effects on performance,
but a grid search of all the different combinations of choices could not be conducted in
the span of this thesis. The following recapitulation of considered options and hyperpa-
rameters should be viewed as a suggestion for future continuation of development for the
method. In the context of the fitness predictor itself, single-layer and two-layer percep-
tron architectures were tested, for the loss function, L1, L2, and a fitness-weighted L1 loss
were considered, and learning rates from 10−3 to 10−6 were tried at some point during
the development. Additional key hyperparameters of the training, which were not exper-
imentally explored, include the number of epochs of the training in each iteration of the
algorithm and the batch size used for training data. Finally, it would be interesting to
experiment with re-training on the screened variants from past iterations, possibly with a
differently weighted loss for differently aged training data to simulate a simple attention
mechanism.
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Secondly, the results suggest that the addition of fine-tuning to the algorithm decreased
the predictive performance rather than helping to train the predictor more efficiently.
Most of the aforementioned hyperparameters and options for training of the predictor also
apply to the finetuning of the used PPLM, where very little exploration of the different
settings was conducted. Additionally, it has been suggested in literature, that a number
of protein sequences from an unrelated dataset could be included with the variants of the
engineered protein during the fine-tuning, which should serve as regularization to prevent
the collapse of the model [31]. This could be the answer to the observed negative effect of
fine-tuning on the performance of the implemented method.

Lastly, only one method of both the initial passive sampling and the consecutive ac-
tive sampling was explored. Both of the used methods are relatively simple, which is a
good choice for the initial version of the method to limit the already large number of
hyperparameters and other choices. However, in the future development of the method,
more complex methods of sampling could yield better results. For example, the employed
PPLM used as an embedding extractor can be exploited further for the sampling of vari-
ants [55, 56, 31]. Alternatively, an active sampling method which prioritizes variants with
high predicted fitness could replace the sampling procedure by maximizing distance on the
output to boost the number of high fitness variants in the training dataset. However, all
of these developments, which would further complicate the method, should probably only
be considered after fine-tuning most of the hyperparameters mentioned before at least to
some extent.

5.7 Embedding Extractor Model

In terms of the embedding extractor, a different PPLM, the Progen2 model [51], was
originally selected instead of the currently suggested ESM-1b model [6]. The perceptron
fitness predictor was tested extensively on the embeddings extracted by Progen2. It was
concluded that the Progen2 embedding is uninformative and unfit for the prediction task,
because in no tested configuration did the perceptron fitness predictor show any significant
predictive performance. Even when trained on the whole dataset, or a large amount of
embeddings from filtered, high-fitness variants, the fitness predictor always universally
predicted a fitness value close to the mean of the training dataset. Afterward, the ESM-
1b model was chosen as a replacement for its widespread use in MLDE-related literature.

In the future, employing different PPLMs as embedding extractors in each of the three
proposed methods could yield interesting results. Especially larger models than the used
ESM-1b model could be an interesting prospect for experimentation since the LLMs are
known to show emergent abilities with an increasing number of parameters, which do
not manifest in smaller models at all [26]. It should be noted, that a smaller version
of the Progen2 model was used in most of the conducted experiments. Because of the
aforementioned emergent abilities, employing a larger checkpoint of the Progen2 model
could, in theory, yield results. Experimenting with a different PPLM, however, is probably
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more advisable. The ESM repository, which includes the used ESM-1b model, hosts a
wide range of models which could serve as an initial point of exploration. Namely, the
general-purpose ESM-2 model [28], which in its largest version contains 15B parameters,
seems like the most logical next step in experimentation with different PPLMs if technical
limitations allow for its employment. With more limited resources, the ESM-1v model [29]
could be employed as the newer, less explored version of the ESM-1b model. Alternatively,
the review of existing PPLMs in section 2.3.1 can provide a guiding hand in selecting a
different model outside of the ESM family.

6 Conclusion

In this thesis, a concise introduction to machine-learning-assisted directed evolution (MLDE)
as an approach to protein engineering was provided and the basic concepts of large
language models, passive sampling, active learning, and Bayesian optimization were de-
scribed. A review of existing pre-trained protein language models (PPLMs) was conducted
as well as of their applications in in-silico active learning of proteins. The use of the PPLMs
as informative embedding extractors was suggested as the primary, most effective way to
exploit them in directed evolution. The informative embedding provides active learning
and optimization methods with a sensible metric of similarity between variants, which is
essential to effective selection of screened variants. Three methods employing a PPLM as
an embedding extractor were proposed and evaluated in silico on two datasets of protein
variants with known screening outcomes. The performance of the proposed methods was
compared to state-of-the-art methods for MLDE and two simulated classical approaches to
directed evolution, which do not employ machine learning. The main metric of evaluation
was the number of screened variants relative to the fitness of the final protein.

From the three proposed MLDE methods, Bayesian optimization in embedding space
(BOES) shows the most potential. The BOES method outperforms state-of-the-art model-
fitting methods. Moreover, the novel representation of the input space based on the se-
quence embeddings extracted by a pre-trained protein language model (PPLM) has been
shown to significantly improve the performance of Bayesian optimization (BO) over opti-
mization on the original protein sequence space. The BOES method produces extremely
similar results to other state-of-the-art BO-based methods which employ different infor-
mative representations of the input space while saving screening costs on its construction.
This can mean either saved resources on experimental costs or more resources for additional
iterations of DE, yielding better results with the same number of conducted screening in
total. For future development, we suggest combining the innovative input space repre-
sentation proposed in this thesis with three improvements to the standard BO procedure
suggested in [63]. We order the suggestions based on their effect on the performance of
the ODBO method [63]. Firstly, conducting prescreening outlier detection via Extreme
Gradient Boosting Outlier Detection [85] in later iterations. Secondly, implementing a BO
procedure robust to outliers based on [98] and finally, employing trust region BO.
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The second proposed optimization method, NSDE, performs a greedy search in a neigh-
borhood graph based on the similarity of protein sequence embedding extracted from vari-
ants by a PPLM. Testing on the GB1 dataset shows that NSDE is capable of identifying
the globally optimal variant in under 250 screened variants, outperforming state-of-the-art
model-regression MLDE methods. However, the necessary amount of screened variants to
identify a high-fitness variant varies greatly between runs with sampled, non-functional
starting variants. The method seems to waste resources on over-exploring of areas around
local maxima which can lead to slow progression through the sequence space. Three sug-
gestions for lowering the search effort of NSDE in the future have been proposed. The first
option is to explore standard methods applicable to graph-search algorithms. Beam search,
a common heuristic algorithm, was suggested as a starting point. The second option is to
exploit other methods discussed in this thesis. The proposed BOES method could replace
the passive sampling at the start of the NSDE algorithm. During the initial sampling, BO
would strike a balance between even exploration of the sequence space and identification
of functional variants. This would provide NSDE with a functional variant present in the
initial open set more regularly than the passive sampling. Finally, the PPLM used as an
embedding extractor could be exploited further to help dictate the order in which variants
in the open list are explored based on the variants’ pseudolikelihood.

The last implemented method is based on AFP-DE procedure [31] but implements a
different exploration stage. Unlike BOES and NSDE, this method employs regression of
a fitness predictor model as its objective rather than directly optimizing maximum fitness
among the screened variants. Because of the tangential objective, a number of variants
with high predicted fitness have to be screened additionally after the training procedure.
The fitness predictor consists of a PPLM sequence embedding extractor and a perceptron
which predicts fitness from the informative embedding. In the exploration stage proposed
in this thesis, the trained fitness predictor is exploited to maximize the diversity in fitness
values in the constructed training set. In a variant of the implemented algorithm, the
PPLM fitness predictor is also fine-tuned in each iteration on a large number of variants
with high predicted fitness. The predictive performance of the predictor collapses with a
larger screening budget, suggesting an unideal setting of hyperparameters in the training
procedure. In the future, the current implementation of the method requires a wider explo-
ration of the hyperparameters, possibly by grid search. Additionally, the original AFP-DE
paper suggests including a number of unrelated protein sequences in the fine-tuning step
to prevent a collapse of the PPLM [31]. The alternative version of the fine-tuning step
could improve the predictive performance of the trained fitness predictor, whereas the
results of the current fine-tuning step suggest a negative effect. Lastly, after the training
procedures of the fitness predictor itself and the PPLM will have been optimized, further
experimentation with different initial passive sampling and consecutive active selection
of training variants is in place. Either the PPLM can be exploited further for sampling
of variants or a more complex active selection method can be implemented which would
prioritize variants with high predicted fitness to boost their representation in the training
set.
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