Czech

Technical
University
in Prague

Department of Computer Science

Environment for evaluation of automated
software tests effectiveness

Bc. Petr Syrovatka

Supervisor: Ing. Feras Abdul Hadi Mustafa Daoud
May 2024

ii

cvuT ZADANI DIPLOMOVE PRACE

CESKE VYSOKE
UCENIi TECHNICKE
V PRAZE

I. OSOBNI A STUDIJNi UDAJE
e N

PFijmeni: Syrovatka Jméno: Petr Osobni &islo: 492281

Fakulta/Ustav: Fakulta elektrotechnicka
Zadavajici katedra/ustav: Katedra pocitactl

Studijni program: Oteviena informatika

Specializace: Softwarové inzenyrstvi
k J
Il. UDAJE K DIPLOMOVE PRACI
\
Nazev diplomové prace:
Prostredi pro vyhodnocovani efektivity automatizovanych testti pro software
Nazev diplomové prace anglicky:
Environment for evaluation of automated software tests effectiveness
Pokyny pro vypracovani:
Navrhnéte a implementujte prostfedi pro vyhodnocovani efektivity automatizovanych testl pro software. Prostfedi se bude
skladat z testovaného open source systému (nebo systému), sady automatizovanych testll, sady aktivnich, historickych
nebo umélych chyb v testovaném softwaru a podpory pro vyhodnoceni efektivity testl. Prostfedi ovéfte tfemi experimenty
vyhodnocujicimi efektivitu automatizovanych testd oproti manualnimu postupu.
Seznam doporucené literatury:
Kuhn, D. R., Kacker, R. N., & Lei, Y. (2013). Introduction to combinatorial testing. CRC press.
Ammann, P., & Offutt, J. (2016). Introduction to software testing. Cambridge University Press.
Nass, M., Alégroth, E., & Feldt, R. (2021). Why many challenges with GUI test automation (will) remain. Information and
Software Technology, 138, 106625.
Jméno a pracovisté vedouci(ho) diplomové prace:
Ing. Feras Abdul Hadi Mustafa Daoud katedra pocitacd FEL
Jméno a pracovisté druhé(ho) vedouci(ho) nebo konzultanta(ky) diplomové prace:
Datum zadani diplomové prace: 01.02.2024 Termin odevzdani diplomové prace: 24.05.2024
Platnost zadani diplomové prace: 21.09.2025
Ing. Feras Abdul Hadi Mustafa Daoud podpis vedouci(ho) ustavu/katedry prof. Mgr. Petr Pata, Ph.D.
k podpis vedouci(ho) prace podpis dékana(ky) D

ll. PREVZETi ZADANI

Diplomant bere na védomi, Ze je povinen vypracovat diplomovou praci samostatné, bez cizi pomoci, s vyjimkou poskytnutych konzultaci.
Seznam pouZzité literatury, jinych prament a jmen konzultantd je tfeba uvést v diplomové praci.

Datum pfevzeti zadani Podpis studenta

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

iv

Acknowledgements

I would like to thank my supervisor Ing.

Feras Abdul Hadi Mustafa Daoud and
doc. Ing. Miroslav Bures, Ph.D. for all
the time and help they provided me while
writing my thesis.

Declaration

I declare that this work is all my own work
and I have cited all sources I have used in
the bibliography.

Prague, May 24, 2024

Prohlasuji, ze jsem predlozenou praci
vypracoval samostatné, a ze jsem uvedl
veskerou pouzitou literaturu.

V Praze, 24. kvétna 2024

Abstract

This thesis aims to assess the effective-
ness of automated software testing, par-
ticularly with the help of Combinatorial
Interaction Testing (CIT), in comparison
with manual testing. The study mea-
sures defect detection rates through ex-
periments that are performed on different
open-source software applications, the effi-
ciency of automated testing, and the prac-
tical implementation challenges of CIT.
The study of the results demonstrates that
the use of automated testing with the help
of CIT improves the effectiveness of defect
detection and increases the efficiency of
testing but also reveals some difficulties
in integration. The results offer useful
recommendations for combining CIT with
existing software development processes
to enhance overall test efficiency.

Keywords: Software testing, Automated
software testing, Combinatorial
Interaction Testing, Test effectiveness,
Defect detection

Supervisor: Ing. Feras Abdul Hadi
Mustafa Daoud

vi

Abstrakt

Cilem této prace je posoudit efekti-
vitu automatizovaného testovani softwaru,
zejména pomoci metody Combinatorial
Interaction Testing (CIT), ve srovnani
s manudlnim testovanim. Studie méii
miru detekce chyb prostrednictvim expe-
rimentt, které jsou provadény na ruznych
open-source softwarovych aplikacich, efek-
tivitu automatizovaného testovani a prak-
tické problémy pri implementaci CIT. Stu-
die vysledkt ukazuje, ze pouziti automa-
tizovaného testovani pomoci CIT zlepsuje
ucinnost odhalovani vad a zvysuje efekti-
vitu testovani, ale také odhaluje nékteré
obtize pfi integraci. Vysledky nabizeji uzi-
te¢nd doporuceni pro kombinaci CIT se
stavajicimi procesy vyvoje software pro
zvyseni efektivity testovani.

Klicova slova: Testovani software,
Automatizované testovani software,
kombinatorické testovani interakci,

detekce defektu, efektivita testovani

Preklad nazvu: Prostredi pro
vyhodnocovani efektivity
automatizovanych testi pro software

Contents

1 Introduction 1
1.1 Definition of Automated Software
Testingoovvii...

1.2 Evolution and Importance of
Automated Testing in Software

Development
1.3 Current Trends and Practices in
Automated Testing...............
1.3.1 Shift-left testing
1.3.2 Test-driven development

1.3.3 Integration with CI/CD Tools
1.4 Challenges in Assessing Test

Effectiveness
1.5 Objectives and Research Questions

2 Theoretical Framework 5|

2.1 Theoretical Models of Software
Quality and Testing
2.1.1 ISO/IEC 25010
2.1.2 Waterfall Model 6]
21.3V-Model [7l
2.1.4 W-Model [7l

2.2 Concepts of Testability and
Test-Driven Development (TDD) ..
2.2.1 Test Driven Development [9|

2.3 Test Coverage Criteria and

Adequacy Models
2.3.1 Test Coverage Criteria.
2.3.2 Adequacy Models

2.4 Frameworks for Evaluating Test
Automation Return on Investment [11]

3 Literature review 13
3.1 Definition and Types of Automated

Software Testing
3.2 Types and Techniques of
Automated Software Testing
3.2.1 Unit Testing...............
3.2.2 Integration Testing
3.2.3 Database Testing
3.2.4 System testing.............
3.2.5 End to End testing.........
3.2.6 Regression Testing
3.3 Automated testing methods
3.3.1 Combinatorial testing
3.3.2 Path based testing
3.4 Benefits and Limitations of
Automated Testing..............

vii

3.4.1Benefits. 18
3.4.2 Limitations 18]
3.5 Factors Affecting Test
Effectiveness 20)
3.6 Metrics for Evaluating Test
Effectiveness 21]
3.7 Validation and Reliability
Measurescooouun.. 23|
3.7.1 False Positive and False
Negative Rates
3.7.2 Test Suite Stability and
Consistency
3.7.3 Reproducibility and
Replicability
3.7.4 Comparative Analysis with
Manual Testing
3.8 Previous Studies on Automated
Test Effectiveness

3.8.1 Comparing the effort and
effectiveness of automated and
manual tests [7]

3.8.2 Increasing the Effectiveness of
Automated Testing [23].........

3.8.3 On the Effectiveness of Unit
Test Automation at Microsoft [26]

4 Methodology 27|

4.1 Research Design and Approach .
4.1.1 Combinatorial test cases

4.1.2 Comparison of manual and
combinatorial generated test cases
4.2 Selection of Test Subjects and Case

Studies i 28|
421 Redmine 29
422TraC. .o 30/
423 Tracks
4.3 Criteria for Selecting Automated
Testing Tools and Frameworks. . ..
4.4 Data Collection Methods 32|
4.4.1 Data collection
442 Redmine 33
4.43Trac. ..o
444 Tracksol 136/
5 Results 39
5.1 Experiment 1 - Redmine.
5.2 Experiment 2 - Trac
5.3 Experiment 3 - Tacks

6 Results Analysis 43
6.1 Effectiveness of Automated Testing
with CIT
6.2 Efficiency and Resource
Utilization
6.3 Limitations and Challenges
6.4 Practical Implications and
Recommendations

HE B

7 Conclusion

A Bibliography

B Used Software
C Code Examples

aEE R E

viii

Figures
1.1 V-model [3
2.11SO 25010 10" Bl
2.2 Waterfall Model [19]
23 W-Model [7]

3.1 Pairwise testing combinations [14]

3.2 Higher degree interactions [14]. .

3.3 Sample Pseudo Code with its
C-program, CFG and Labeled CFG
[16]

3.4 Questions related to benefits of

AST[22]

3.5 Questions related to limitations of

AST[22]

ix

Tables

4.1 Parameters in New Issue Form in
Redmine.............
4.2 Parameters in Time Tracking Form

in Redmine [300
4.3 Parameters in New Issue Form in
TIAC « oot e e [300

4.4 Parameters in New Action form in

Tracks. 31
4.5 Parameters in Configuration of
Tracks........cooiiiiin. .. 31

4.6 Manual test cases for New Issue in

Redmine....................... 33
4.7 Manual test cases for Time

Logging in Redmine.............
4.8 Manual test cases for New Ticket

iNTrac ... 1351

4.9 Manual test cases for New Action

inTracks 136
4.10 Manual test cases for
Configuration of Tracks..........
5.1 Study 1: Summary of time
requirement and test case count of
experiments on Redmine.........
5.2 Study 1: Comparison of defect
detection rate and defect detection
effectiveness of experiments on
Redmine....................... 40

5.3 Study 2: Comparison of defect
detection rate and defect detection
effectiveness of experiments on Trac

5.4 Study 3: Comparison of defect
detection rate and defect detection
effectiveness of experiments on

Chapter 1

Introduction

B 1.1 Definition of Automated Software Testing

Software testing is one of the most crucial phases in the software development
cycle. The IEEE Standard Glossary of Software Engineering Terminology
defines testing as "The process of operating a system or component under
specified conditions, observing or recording the results, and making an eval-
uation of some aspect of the system or component" [1]. Restated, software
testing is used to ensure that the behavior of software is as expected and
meets specified requirements, and the primary goal is to identify defects,
errors, or bugs in the software and to ensure its quality and reliability.

One of the more common approaches to testing is Automated testing. In
automated testing, predefined tests are executed by testing tools or scripts
on the system under test (SUT). Unlike manual testing, where testers must
manually assess the software’s quality, automated testing relies on automation
tools to execute the test more efficiently and repeatedly [9]. This claim will
be one of the main topics of this thesis.

B 1.2 Evolution and Importance of Automated
Testing in Software Development

The evolution of automated testing in software development is highly in-
fluential and reflects the ever-changing nature of the industry. Automated
testing has made remarkable progress and has evolved from basic scripts to
advanced frameworks and tools. Advances in testing methodologies have been
motivated by the need for more efficient and reliable approaches to testing,
given the increasing complexity of software systems and the rapid pace of
development.

In the beginning, automated testing emerged as a solution to the limitations
of manual testing. With the increasing complexity and size of software
systems, the time and effort required for manual testing became unsustainable.
Automated testing solved this problem by offering faster and more reliable
test execution, repeatability, and the ability to cover a much wider range
of test scenarios. The move from manual to automated methodologies was

1. Introduction

a major turning point that allowed development teams to decouple testing
processes and improve the overall quality and reliability of the software.

In today’s software development landscape, automated testing plays a
crucial role, particularly in agile and DevOps environments. The demands
of rapid iterations and continuous integration require testing processes and
methods that are swift, effective, and reliable. Automated testing meets
these demands by providing a framework for efficient and repeatable testing,
ensuring that software changes can be tested comprehensively, repeatedly,
and swiftly during the development process.

Beyond speed and efficiency, the importance of automated testing lies mostly
in its contribution to early defect discovery and overall software stability. By
automating repetitive and labor-intensive testing tasks, developers can focus
on higher-level problem-solving while automated tests consistently verify the
integrity of the software. This accuracy and reliability ultimately translate
into creating robust and stable software.

In summary, the evolution and importance of automated testing in software
development cannot be underestimated. It has become an irreplaceable
component of modern development practices. As technology continues to
advance, the role of automated testing is likely to expand further, shaping the
future of software development by providing efficient, reliable, and scalable
testing solutions.

. 1.3 Current Trends and Practices in Automated
Testing

Software testing is a constantly evolving field, with new approaches being
invented every so often. In this section, approaches with a rise in popularity,
as well as some widely used approaches that are frequently used today, will

be described.

B 1.3.1 Shift-left testing

The later a defect is discovered in the development cycle, the more challenging
and expensive it becomes to address. This is why most testing methodologies
are moving away from the waterfall scheme, where the testing is almost at the
end of the development process. Shift-left testing is an approach modifying
the V-model [1.1, in which each phase of the development process has a
corresponding testing phase, and the emphasis is moved on the unit and
integration testing [11]. The V-model itself will be explored more thoroughly
in section [2.1.3l

1.3. Current Trends and Practices in Automated Testing

irem Acceptance
REQUIFEMENtS |-n=m=smssmssmsmmsmmsmcsmnsmnemcemaemecenaacamcamaamaamnenaennas > pt
i i Testing
Engineering
System
Requirements |e--e-e-sceecocemsommmamtmccameecccaceaeans| > svst?m
ineeri Testing
Engineering
Architecture Syster?
Engineering |~ 0 TTTTTTTTTTTTTTTTTImTemmmeees »| Integration
¢ s Testing
Subsystem
Design fr--s-s-ssscsocooees »| Integration
Testing
Coding (SW) . .
Fabrication (Hw) [~ Unit Testing

Figure 1.1: V-model

B 1.3.2 Test-driven development

Test-driven development is a software development process in which the
functional requirements are converted into test cases before the software
is developed. This approach ensures the quality and functionality of the
software during its development, which is a significant advantage over the
approach where tests are created and executed after. This concept will be
further explored in section [2.2

B 1.3.3 Integration with CI/CD Tools

In software development, CI/CD is a practice that combines continuous
integration and continuous deployment. With this approach, developers
use tool-chains that automate building and deploying code stored in shared
codebases. This streamlines the development process and enables the use
of additional tools [10]. Integrating testing tools with this approach enables
a constant quality evaluation with each addition to the software without
the need for programmer interaction. In addition, these tools can execute
tests that cover a wider range of systems in connection, which would be
time-consuming to setup and execute manually.

1. Introduction

B 14 Challenges in Assessing Test Effectiveness

Assessing the effectiveness of software tests poses many challenges, as the dy-
namic nature of software development continually introduces new approaches.
One key challenge lies in defining comprehensive criteria for evaluating test
outcomes, given the diverse range of software applications and their unique
requirements. Additionally, the constantly evolving nature of technology
demands continuous adaptation of testing methodologies, making it difficult
to establish a standardized assessment framework. System complexity further
complicates identifying root causes for defects, making it challenging to isolate
and evaluate issues efficiently. Furthermore, the subjectivity in measuring
testing efforts’ success, such as user satisfaction and stakeholder expectations,
adds another layer of complexity. Navigating these challenges requires a
holistic approach, integrating both technical and non-technical perspectives
to ensure a robust evaluation of test effectiveness in the dynamic landscape
of software development.

B 15 Objectives and Research Questions

The primary objective of this thesis is to evaluate the effectiveness and
efficiency of automated testing using Combinatorial Interaction Testing (CIT)
in comparison to manual testing. This objective is crucial for understanding
the potential of CIT-based automated testing to improve software quality
assurance processes. Specifically, the thesis aims to:

B Assess Defect Detection Rates: Evaluate the capability of CIT-based
automated testing to detect defects in software applications and compare
it with traditional manual testing methods.

8 Measure Testing Efficiency: Analyze the time and resources required
for automated testing using CIT versus manual testing, focusing on the
overall efficiency gains.

® [dentify Practical Challenges and Limitations: Fxamine the practical
challenges encountered when implementing CIT-based automated testing
and identify any limitations that may affect its adoption and effectiveness.

B Provide Recommendations: Offer practical recommendations for inte-
grating CIT-based automated testing into existing software development
workflows, highlighting the balance between automated and manual
testing.

Chapter 2

Theoretical Framework

B 2.1 Theoretical Models of Software Quality and
Testing

B 2.1.1 ISO/IEC 25010

The quality model is the cornerstone of a product quality evaluation system.
It determines which quality characteristics will be taken into account when
evaluating the properties of a software product E

ISO/TEC 25010 is part of the ISO/TEC 25000 series, which encompasses
a set of standards related to software quality. Specifically, ISO/IEC 25010
focuses on the quality model, which defines nine quality characteristics that
are relevant to software products and systems shown in figure 2.1

It’s widely used by organizations, software developers, and quality assur-
ance professionals to assess and improve the quality of software products and
systems. It serves as a valuable reference for establishing quality require-
ments, conducting evaluations, and making informed decisions about software
development.

SOFTWARE PRODUCT QUALITY

FUNCTIONAL PERFORMANCE INTERACTION

SUITABILITY EFFICIENCY COMPATIBILITY CAPABILITY RELIABILITY SECURITY MAINTAINABILITY FLEXIBILITY
FUNCTIONAL TIME BEHAVIOUR | CO-EXISTENCE APPROPRIATENESS | FAULTLESSNESS ‘CONFIDENTIALITY | MODULARITY ADAPTABILITY OPERATIONAL
COMPLETENESS RECOGNIZABILITY CONSTRAINT
RESOURCE INTEROPERABILITY AVAILABILITY INTEGRITY REUSABILITY SCALABILITY
FUNCTIONAL UTILIZATION LEARNABILITY RISK
CORRECTNESS FAULT TOLERANCE | NON-REPUDIATION | ANALYSABILITY INSTALLABILITY IDENTIFICATION
CAPACITY OPERABILITY
FUNCTIONAL RECOVERABILITY ACCOUNTABILITY MODIFIABILITY REPLACEABILITY FAIL SAFE
APPROPRIATENESS USER ERROR
PROTECTION AUTHENTICITY TESTABILITY HAZARD WARNING
USER ENGAGEMENT RESISTANCE SAFE INTEGRATION

INCLUSIVITY

USER ASSISTANCE

SELF-
DESCRIPTIVENESS

is025000.com

Figure 2.1: 1SO 25010 T

Mhttps://is025000.com /index.php/en /iso-25000-standards /iso-25010

2. Theoretical Framework

B 2.1.2 Waterfall Model

The waterfall model was first introduced by Walter Royce in his 1970 article.
Even though there is a wide agreement of problems connected to its use, the
model is still a widely used way of working in software development companies
[20]. One of the most recognized problems is the late detection of defects
in the development process, which causes fixing them to be costly. This is
one of the prevalent advantages of early testing, which has been mentioned
several times in the previous chapter.

The waterfall model used for directing software development runs through
phases of requirements engineering, design & implementation, testing, release,
and maintenance, as seen in the figure |2.2, and between all phases, the
software current documents have to pass a quality check. This approach is
referred to as a stage-gate model. The following list describes each of the
stages of the model [19]:

B Requirements Engineering: During this phase, customer needs are identi-
fied and documented at a high level of abstraction. These requirements
are refined for use in the design and implementation phases, and they’re
stored in a requirements repository. At quality gates, stakeholders’
agreement on requirements, alignment with business strategy, and un-
derstanding of all requirements are verified.

® Design & Implementation: The architecture of the system is designed
and documented, followed by the development. Basic unit testing is
conducted before passing the code to the testing phase. Quality gate
checks include architecture evaluation, adherence to requirements, and
adherence to planned timelines, effort, and scope.

® Testing: System integration is tested for quality and functionality, with
performance measures collected for decision-making. Testing involves
various hardware and software configurations to cater to different cus-
tomer setups. Checklist reviews assess system verification, deviations
from quality gate decisions, handover plans, and meeting customer re-
quirements.

B Release: The product is prepared for shipment, with the finalization of
release documentation and build instructions. Customization options
may be enabled through build instructions. Quality gate checks ensure
customer requirements are met and accepted by the customer and that
quality requirements are delivered on time and fulfilled.

8 Maintenance: After release, ongoing maintenance involves addressing
customer-reported issues and delivering updates for system faults.

2.1. Theoretical Models of Software Quality and Testing

Main Development Project

Requ_lrem.ents Design &. Testing Release Maintenance
Engineering Implementation

[ey R ey

Quality Door Quiality Door Quality Door Quality Door
(Checklist) (Checklist) (Checklist) (Checklist)

Main Product Line

Figure 2.2: Waterfall Model [19]

B 2.1.3 V-Model

The V-Model, also known as the Validation or Verification Model, is a software
development model that emphasizes the relation between each phase of the
development cycle and its corresponding testing phase. It deploys a well-
structured method in which each phase can be implemented using the detailed
documentation created by the previous phase. The model is named "V"
because of its visual representation, which resembles the letter V, as displayed
in figure Its shape comes from the fact that after all the development
stages, which are very similar to the Waterfall Model, each stage has its
corresponding stage, and the most recent stages are the ones that are first
tested. This model is probably the most used model for software development
and testing management [I7]. Even though the V-Model emphasizes testing
than the Waterfall Model, late detected defects may still occur, which is the
reason why more suitable models were introduced.

The W model

Unit
Test

Figure 2.3: W—Modeﬂ

B 2.1.4 W-Model

The W-Model, which was introduced by Paul Herzlich in 1993, attempts to
address and tackle the shortcomings of the V-Model. IT further emphasizes

Zhttps:/ /www.professionalga.com/w-model

7

2. Theoretical Framework

the testing activities in software development. It is called the "W-Model"
because it visually represents the shape of a "W’, suggesting additional testing
activities before and after the traditional V-Model phases. The figure 2.3
displays each stage and their corresponding test stages. In this approach,
each development phase is immediately followed by its test phase so that if
any defects are detected, they are easy and inexpensive to fix [24].

B 22 Concepts of Testability and Test-Driven
Development (TDD)

Software testability is an indefinite metric that describes how well the soft-
ware(software system, modules, design document) supports testing in the
given context. If the testability is high, discovering defects in the system by
means of testing is easier.

The quality of the product remains the main focus of software development,
both in practice and literature. Sticking to quality concepts in development
enhances the efficacy and quality of the resulting software. Given the compet-
itive market and short release cycles, software organizations are discovering
effective ways to monitor and instill ongoing quality. Testability, which reflects
the ease of testing a software product, impacts testing cost and effort. As [25]
suggests, the research consensus indicates that improving the testability of
software has a direct, positive impact on overall quality but that challenges
in defining then, measuring, and assessing software testability remain.

Defining and measuring testability has been a significant challenge, leading
to extensive research efforts aimed at establishing its overall characteristics and
associated measures. Various standards and individual studies have defined
testability in diverse ways, reflecting different purposes and perspectives.
Researchers such as Bache and Mullerburg (1990) [3] approached testability
from perspectives such as test coverage, effort, time, and resources. These
different views have led to the identification of multiple influential factors in
software testability, setting the stage for further exploration in subsequent
research.

Software testability is influenced by various factors, including the extent of
required validation, the testing process, the tools used, and the representation
of requirements. Identifying all potential factors and understanding their
impact across different testing contexts is challenging due to their varying
foundations. Effectively managing software testability requires modeling,
measuring, analyzing, and interpreting its factors, similar to other quality
attributes. This requires the use of software measurement and metrics to
quantify the characteristics of interest in testing.

Software measurement plays a crucial role in software engineering, aid-
ing project managers and engineers in planning and modeling, monitoring
progress, and evaluating software performance. Software metrics, which quan-
tify software characteristics, are fundamental to assessing software quality
throughout its lifecycle. These metrics are often categorized into product,

8

2.2. Concepts of Testability and Test-Driven Development (TDD)

process, and project metrics, with quality measurements commonly associated
with product and process metrics. Product metrics, further classified into
static and dynamic metrics, focus on different aspects of a system. Static met-
rics measure attributes without executing the program, reflecting the internal
quality of the software, while dynamic metrics capture behavior during pro-
gram execution. Static metrics, obtained through static analysis techniques,
include measures like Lines of Code (LOC) and Cyclomatic Complexity (CC),
providing coverage completeness but facing limitations in detecting dynamic
dependencies. Dynamic metrics, collected during runtime, offer direct insight
into system behavior but pose challenges in data collection and computation.
While dynamic metrics have received less attention compared to static metrics,
they offer valuable information for assessing software quality [25].

B 2.2.1 Test Driven Development

As mentioned in section [1.3.2] Test Driven Development is one of the testing
methodologies, that is on the rise. To reiterate, TDD is a software development
style where tests are written before the part of the software, the test should
be evaluated on the basis of the functional expectations, and then the code is
updated to a state that all of the tests pass.

An example of how the tests in TDD are structured is to take a typical
method that takes one input parameter, returns an output value, and throws
an exception in case of a wrong parameter. For such a method, unit tests
would typically cover (1) a valid input parameter resulting in an expected
output and (2) an invalid input triggering the appropriate exception, often
including boundary values. It’s common for the unit test method to be longer
than the method under test. While unit tests may not cover every possible
scenario, they generally focus on expected behaviors with valid inputs and a
few exceptional cases. Additionally, extra unit test methods may be included
for each method when its behavior relies on the object being in a specific
state. In such instances, the unit test initiates with the correct method calls
to ensure the object is in the intended state. After designing the tests, the
actual method is programmed until it passes all of the previously mentioned
tests.

Test-driven development offers several benefits, including reducing the gap
between decision-making and feedback by employing a granular test-then-
code cycle, which results in continuous feedback to developers. It facilitates
early identification of defects, enabling easier and cheaper removal. TDD
encourages the creation of automatically testable code, leading to benefits
such as producing reliable systems, enhancing the quality of testing efforts,
reducing testing time, and minimizing scheduling constraints. Moreover,
TDD test cases establish a comprehensive regression test suite, enabling the
detection of new changes that may break existing functionality and facilitating
seamless integration of new features into the code base through continuous
automated testing [1§].

2. Theoretical Framework

B 23 Test Coverage Criteria and Adequacy Models

Test coverage criteria and adequacy models are fundamental concepts in
software testing. These metrics define the extent to which code is exercised
by test cases, ensuring comprehensive testing. Test coverage criteria focus
on specific code elements like statements, branches, and paths. Adequacy
models provide guidelines for determining when testing is sufficient to ensure
software quality. These models and criteria play a crucial role in software
testing by providing guidelines for creating effective test sets, measuring test
quality, and ensuring comprehensive coverage of the codebase [2§].

B 23.1 Test Coverage Criteria

Test coverage criteria are metrics used to measure the extent to which the
source code of a program has been exercised by a set of test cases. These
criteria define specific aspects of the code that need to be covered during
testing. Common types of test coverage criteria include:

® Statement Coverage: Ensures that each statement in the code is executed
at least once during testing.

® Branch Coverage: Requires that all possible branches in the code are
taken during testing.

® Path Coverage: Ensures that all possible paths through the code are
executed.

® Function Coverage: Focuses on testing individual functions or methods
within the code.

® Decision Coverage: Requires that all possible decision outcomes in the
code are exercised.

B 23.2 Adequacy Models

Adequacy models, also known as test data adequacy criteria, define rules
or guidelines for determining when testing is sufficient to ensure software
quality. These models help assess the effectiveness of test sets and determine
if additional testing is needed. Adequacy models can be used as stopping
rules to decide when testing can be concluded or as measurements to quantify
the degree of adequacy achieved by a test set. Examples of adequacy models
include [28]:

® Statement Adequacy: Ensures that at least one test case covers each
statement in the code.

® Branch Adequacy: Requires that all branches in the code are exercised
by the test cases.

10

2.4. Frameworks for Evaluating Test Automation Return on Investment

® Mutation Adequacy: Involves creating mutant versions of the code and
checking if the test cases can detect these mutations.

® Data Flow Adequacy: Focuses on testing how data flows through the
program to uncover potential issues.

B 2.4 Frameworks for Evaluating Test Automation
Return on Investment

Return on Investment (ROI) is a financial metric used to evaluate the prof-
itability or efficiency of an investment. It is calculated by dividing the
net profit or benefit gained from the investment by the initial cost of the
investment and then expressing the result as a percentage or ratio.

In the context of software development and testing, ROI can be used to
assess the cost-effectiveness of implementing automated testing frameworks
compared to manual testing. By analyzing the return on investment, organi-
zations can make informed decisions about where to allocate resources and
investments to maximize benefits and minimize costs [g].

The most used frameworks for evaluating ROI are: *

® Basic ROI calculation: Utenelits—costs . 100%

costs
The basic ROI calculation is calculated as benefits minus costs divided
by costs, and multiplied by 100 to make it a percent metric. This metric
is very simple, but it can very precisely determine if the investment in
test automation is beneficial.

8 (Cost-Benefit Analysis: Total Benefits — TotalCosts

Cost-benefit analysis (CBA) compares the costs associated with im-
plementing test automation, such as tool acquisition, training, and
maintenance, to the benefits gained from test automation. It quantifies
the financial impact of test automation by subtracting the total costs
from the total benefits to determine the net benefit.

8 Payback Period:

InitialInvestment
AnnualSavingsOr Benefits

The payback period measures the time it takes for the benefits of test
automation to balance out the initial investment. It helps assess the
speed at which the investment in test automation can be recovered. A
shorter payback period indicates a faster return on investment.

Shttps://medium.com /slalom-build /what-is-the-roi-of-my-test-automation-
10ae7bf0d9ed

11

12

Chapter 3

Literature review

B 3.1 Definition and Types of Automated Software
Testing

In software testing, test automation refers to employing distinct software tools
to manage the execution of tests and compare observed outcomes against
expected results, separate from the software under examination [12]. This
approach streamlines the testing process by reducing manual intervention,
enhancing efficiency, and enabling repetitive testing tasks to be performed
automatically and quickly. By automating testing procedures, software teams
can achieve quicker feedback cycles, improve test coverage, and ensure the
reliability and quality of their software products.

B 32 Types and Techniques of Automated Software
Testing

There are many types and techniques of software testing that can be defined,
each with its unique purpose. In this section, we will define many well-used
techniques to understand their importance and purpose better.

B 3.2.1 Unit Testing

Nowadays, almost every programming language has its own library or frame-
work for unit testing. One of the most commonly known is JUnit for Java, or
NUnit for .NET languages, from which the most commonly used is C#. Unit
testing has become one of the pillars of software testing, often even mandated
by development processes [6]. The practice focuses on the smallest testable
code units, such as functions or classes, and tests them in isolation. Using
this approach, we can ensure that the foundation of the software is as reliable
as possible and can be used to build on. Its aim is to be repeatable and fast,
such that the tests can be quickly executed with every addition to the code
and can provide the first check of flawlessness.

13

3. Literature review

B 3.2.2 Integration Testing

Integration testing is the second part of the standard testing stack aside from
Unit testing. This testing methodology is applied at the module level rather
than the statement and function level, as in unit testing. It emphasizes the
interaction of the modules, interfaces, and other connected systems, such
as databases [15], so that the systems’ flawlessness and communication are
ensured. According to [4], almost 40% of software errors can be traced to
module interaction defects discovered during integration. This shows the
importance of integration testing since unit tests won’t discover this type of
defectas, and they can also be challenging to trace when more complex and
broader scope testing methodologies are used.

B 3.2.3 Database Testing

Databases are one of the core parts of the majority of modern software.
They serve as a central repository for software applications to store, manage,
and retrieve data efficiently. By providing a structured data storage and
retrieval framework, databases enable software to access, manipulate, and
process information effectively. Even though databases are usually part of the
software that is tested during Integration testing, with the complexity of the
stored data, databases are often tested separately. Since Databases are tested
individually, this type of testing is usually considered unit testing. When
testing, there are usually 4 data integrity types that need to be verified't

® Entity integrity: testing if the individual data components (tables,
columns) have their own unique identifying primary key

B Referential integrity: ensuring that the relation of data between two or
more tables is correct

® Domain integrity: guaranteeing uniform data types and formats for every
column or row to ensure compatibility during data transfer to other
systems, each with its own interpretation rules, preventing conflicts

® User-defined integrity: ensuring that user-defined rules, which serve
additional needs, are valid

Some modern databases come with the support for database testing, such as
Oracle SQL Developer?, other frameworks for database testing are DbUnit or
SQLUnit,

B 3.2.4 System testing

The IEEE Standard Glossary of Software Engineering Terminology defines
system testing as "Testing conducted on a complete, integrated system to
evaluate the system’s compliance with its specified requirements” [I]. While

"https://katalon.com /resources-center/blog/database-testing
https://docs.oracle.com/cd /E15846_01/doc.21/e15222/unit_ testing. htm#RPTUG45000

14

3.3. Automated testing methods

usually almost at the end of the testing stack, system testing is as important
as other testing types. System testing verifies integration between different
components, identifies defects, and documents test plans and results for
stakeholders’ reference. Ultimately, it plays a pivotal role in ensuring the
software’s quality, reliability, and functionality before end-user deployment.

B 3.2.5 End to End testing

End-to-end (E2E) testing is a software testing approach aimed at evaluating
the seamless flow of functional and data processes throughout an application,
encompassing multiple interconnected subsystems. Often, these subsystems
are developed independently using diverse technologies by distinct teams or
organizations. End-to-end testing ensures the holistic functionality of the
application by scrutinizing its entirety, integrating all constituent components

from inception to completion 3|

B 3.2.6 Regression Testing

In software testing, regression refers to the unintentional introduction of
defects caused by changes in the codebase that appear on previously flawlessly
working software [2]. This phenomenon may appear with the addition of new
features, as well as library upgrades and even fixing other defects. Regression
testing is a term used for repeated execution of existing tests to ensure that
previously developed and tested software still performs as expected, even
after an addition to the code. In the present day, this is often carried out by
tools integrated with CI/CD pipelines.

B 3.3 Automated testing methods

Bl 3.3.1 Combinatorial testing

Combinatorial testing can be used to detect hard-to-find software defects
more precisely than manual test case selection methods. Its strength lies in
the exploration of each n-way interaction between each of the possible values
of each parameter [13], and it can also greatly reduce the number of value
combinations tested.

B Pairwise testing

Suppose we want to test a software application with three parameters, each
with two possible values. If we wanted to test each combination, we would
have 2 % 2 * 2 = 8 combinations. With pairwise (2-way) testing, we can test
its behavior with each possible pair of values with only 4 tests. An example

Shttps: //microsoft.github.io/code-with-engineering-playbook /automated-testing /e2e-
testing/

15

3. Literature review

0s CPU Protocol
1 Windows Intel IPv4
2 Windows AMD IPv6
3 Linux Intel IPv6
< Linux AMD IPv4

Figure 3.1: Pairwise testing combinations [14]

can be seen in figure [3.1, where each pair of three two-value parameters is
present in at least one test case.

Even though pairwise testing does not exhaust all possible combinations,
it is useful for checking for simple yet potentially defective interactions with
fewer tests. Imagine we have a large automation system with 20 controls,
each with 10 possible settings. This would mean that we would have to test
209 combinations, which would be impossible to test. With pairwise testing,
we would test every possible pair of the settings with only a very surprising
180 test cases [14].

B Higher-Degree Interactions

One of the most important thoughts that is discussed in [14] is "Other empirical
tnvestigations have concluded that from 50 to 97 percent of software faults
could be identified by pairwise combinatorial testing. However, what about the
remaining faults? How many failures could be triggered only by an unusual
interaction involving more than two parameters?’. When investigating higher
n-way interactions, progressively fewer faults were discovered. In figure 3.2
we can see that roughly 40 percent of defects in Web server application
were caused by a single value, another 30 percent were caused by two value
interactions, and almost 90 percent were triggered by three or less parameters.
Although pairwise combinatorial testing, the most fundamental form of
this technique, is widely acknowledged and adopted by software testing
practitioners, higher degree n-way testing is on the rise, but its utilization in
the industry remains inconsistent. Nevertheless, the investment in additional
training necessary for implementation proves to be highly beneficial.

B 3.3.2 Path based testing

Path based testing, or basis path testing, is a white-box testing technique
that systematically tests the execution paths within a software application.
It involves identifying and testing different paths or sequences of statements,
branches, and loops in the source code to ensure comprehensive coverage
[21]. Path-based testing is particularly useful for uncovering errors or defects
related to control flow, such as logic errors, missing or incorrect conditions,
and unreachable code. However, achieving complete path coverage can be
challenging, especially in complex software with a large number of possible

16

3.3. Automated testing methods

"~ ————"

(Cumulative percent

- 3

edical devices
rowWser

'eh server
ASA distributed database

|/

25

=

=]

=

1 2 3 4 5 6
Interactions

Figure 3.2: Higher degree interactions [14]

paths. Therefore, path-based testing is often used in combination with other
testing techniques to achieve comprehensive coverage and ensure software
quality. Path testing begins with the creation of a program flow graph, which
serves as a simplified representation of all potential pathways within the
program. This graph comprises nodes to denote decision points and edges to
illustrate the flow of control. By replacing program control statements with
equivalent diagrams, such as in the absence of goto statements, constructing
the flow graph becomes straightforward. Each branch within conditional
statements like if-then-else or case statements is delineated as an individual
path, while loops are represented by arrows looping back to the condition
nodeﬁ. An example of creating a CFG for a pseudo-code or a code written in
C can be seen in figure |3.3.

‘main()
START p
Vasiable y=0 ix:
IEUT X double y=0;
IF x> 0 then 1 prinif('Enter the x valne™;
¥=40 2 scanf(%d", &);
TF x>20 then 3 £60)
4 {
IF x<=30 then
y=y+x-25) 03 >
ELSE & “}‘)-”)
Y=y +50+ (x-30)%0 1 2 .
IF x>=3000 then e .
y=y*0.9 9 y=yH(x-25)*0.5;
e }? else{
END IF
R 12 y=y+50+(x-30)%0.1:
13 #x>=3000)
OUTPUT y i
SThE 14 y=y*09.
15 }
16}
PSEUDO CODE 17 }
18 printf"%d", y);
19}
C-Program for Pseudo code

Figure 3.3: Sample Pseudo Code with its C-program, CFG and Labeled CFG [L6]

“https://ifs.host.cs.st-andrews.ac.uk/Books/SE9/Web/ Testing /PathTest.html

17

3. Literature review

3.4 Benefits and Limitations of Automated Testing

When discussing the usage of automated testing, we have to consider its
positives and negatives in relation to our situation to consider if automated
testing is the correct solution for our application. In this section, we will
discuss the benefits and limitations of automated testing further to explore
its place in the category of software testing. As [22], a literature review of
25 publications, suggests, benefits often originate from stronger sources of
evidence (experiments and case studies), while limitations often originate
from experience reports.

3.4.1 Benefits

Improved product quality: Enhances product quality by minimizing the
number of defects in the software.

Test coverage: Achieves extensive code coverage (e.g., statement, branch,
path) through automation.

Reduced testing time: Decreases the time needed for testing, allowing
more tests to be executed within the same period.

Reliability: Ensures more consistent test results, eliminating variations
caused by different manual testing methods, though it cannot leverage
the tester’s expertise.

Increase in confidence: Boosts developers’ confidence in the system’s
quality.

Reusability of tests: Enables frequent reuse of tests designed with main-
tenance in mind, providing benefits beyond a single execution.

Less human effort: Reduces the need for human intervention, freeing up
resources for other tasks, particularly those focused on defect prevention.

Reduction in cost: Saves costs through a high degree of automation.

Increased fault detection: Enhances the ability to identify a significant
number of defects due to its high fault detection capability.

3.4.2 Limitations

Automation can not replace manual testing: Some testing tasks, especially
those requiring extensive domain knowledge, cannot be easily automated.

Failure to achieve expected goals: Organizations may be attracted to
the quick execution of tests but fail to realize long-term or substantial
benefits.

18

3.4. Benefits and Limitations of Automated Testing

8 Difficulty in maintenance of test automation: Maintaining automated
tests becomes challenging as technology changes and software evolves.

® Process of test automation needs time to mature: Developing the neces-
sary infrastructure and tests for automation takes time, so the benefits
of automation require patience.

8 Fualse expectations: Organizations often have unrealistic expectations
about AST, aiming to cut costs by engaging in unproductive testing
activities.

B [nappropriate test automation strategy: Deciding on the correct strategy
for which test levels to automate and for what purposes is difficult,
leading to suboptimal strategies that fail to maximize AST benefits.

B Lack of skilled people: Effective test automation requires a variety of
skills, including knowledge of test tools, software development, and
domain-specific insights, which may be lacking.

This publication identified an overview of benefits and limitations in a
wide range of related literature and conducted a survey with 115 respondents.
Respondents were primarily composed of quality assurance analysts and
programmers with other roles, such as system architects and designers, as
well as project managers. Their experiences ranged from less than five years
to more than fifteen years. The benefits and limitations were transformed
into statements, with which respondents could rate them in the range of one
to five, with five representing total agreement.

When answering questions related to benefits displayed in figure it is
visible that the benefits of automated software testing that were found in
the literature are strongly supported by the respondents, with at least half
of them agreeing or fully agreeing to 8 out of 9 statements. Limitations in
figure which were presented in a similar manner as the benefits, show
that the limitations are also strongly supported by practitioners [22].

[Rank I Questions related to benefits Answers on Scale’ Medion
[4+3) E 4 3 2 1
B.RI Bé: High reusability of tests makes automated pesting productive 4 53 13 i n 4
30% | 400 | 11% | 3% | 0%
B.R2 BaBE AST enables the repesstability of tests, which gives the possibiliny 1o k1] | 54 m_|é 2 4
do more tests in less time 33 | 5% | B | 6f% T
[B.R3 T BI/B2: AST i|||[|n'-'|=.'\. |rr|||.|u:;[\']_I'_:I'|1I_l h:\. berlar sl coverage, R 55 M T 1 4
B.R4 BEBIBE: AST saves time and costas it can be re-run again and again and | 29 34 13 15 2 14
| | hence is much quicker than manual testing 25% | 7% [1M | 13% | 2%
B.R5 B5: AST provides more confidence in the quality of the product and 25 51 1 16 4 14
increases the ability o meet schadubes 22% | 44% 7% | 145% | 3%
BR6 BT: The investment in application-specific test infrastructure can 13 | ad EL 11 1 4
w.ig1||1ir:|1|':l\. recduce the efforn that autormation requires Tronaw pesiers 115 550 245 1 (K7 %
B.RT BTRE: By having complete automation the cost of AST s deamagcally 22 52 17 10} 4 4
reduced and Favcililales conlineous lesting 195 | 45% | 6% | 17% | 3%
B.RE B4BT: AST requires less effort on the developers side, but canmot find 19| 49 19 |24 4 4
| |_complex bugs as manual testing does 1% | 43% | 16t | 21% [M
B.RY BY: Automated testing facilitates high fault detection] L] 35 i d 1
LI 33% I | 26% | M

"Smcompletely ogree, J=ngree, S=neutral, Z=disngree, |=completely disagros

Figure 3.4: Questions related to benefits of AST[22]

19

3. Literature review

Rank | Questions related to limitations Answers om Scale Median
5 4 13 2 | 1

LR1 | L4: Compared with manual testing, the cost of AS is higher, 41 | &0 _ H | I .' | 4
especially in the beginning of the sulomation process. However, 3Tk | 52% | 1% ke | 1%
auomated software testing can be more productive after a period of | |
time |

LR2 | LAL4: Amomated testing needs extra effort for desigmng and 7 fid 17 fy | 1 4
mainlaining tesl scripls 2% | 56% | 6% 5%

LEY | La/LT: Testers shonld have enllugh technical =kills o buogld I Iﬂ_l 53 | 12)] 4

| suooessful automation) 5% | 6% | 106 | BG

LR4 | L3: Compared with manual testing, AST requires a high investment | 32 56 |12 11 4
1o by toals and train staff o use th il e | 499 | 106 e

LIRS | L5 AST requires less ellort on the developers side, bul cannot Tind | 19 4 | 19 24 +
complex bugs as manual 1esting does 17% | 43% | 17% 21%

LR6 | L3: Most of the testing tools available in the market are 11 40 | 4 3
incompatible and do nod provide what you need or fits in vour 0% | 35% | 26% 1%
SNVIron e, | |

LRET | LI: Avtomated sesting fully replaces manual testing, |] | 1a i | 43 2

1% 3% 14% A 3% | 37%
"S=completely agree, 4=agree. 3=neutral, 2=disagree, 1=completely disagree

Figure 3.5: Questions related to limitations of AST[22]

To summarize what we have found, automated software testing has the
benefits of reusability and repeatability, improves product quality, and has
a lower cost in the long-range view. Its primary limitations are high initial
costs, its higher demand for the technological skill of the staff, and its inability
to find more complex bugs.

3.5 Factors Affecting Test Effectiveness

There are many factors that can influence the effectiveness of software testing.
By considering and optimizing these factors, software development teams
can improve the effectiveness of their testing efforts, ultimately delivering
higher-quality software products.

Test coverage: The degree to which a given test or set of tests addresses
all specified requirements for a given system or component [1]. Higher
test coverage generally results in more effective testing by identifying a
broader range of defects.

Test data quality: The quality and the relevance of the input data used
for testing. Test data fully representing the whole range of possible
inputs improves the likelihood of uncovering defects.

Testing environment: The environment in which the testing is conducted,
including the software, hardware, and network configurations. Ensuring
consistency between testing and production environments enhances the
effectiveness of testing.

Testing Techniques: The methodologies and techniques used during
testing, such as unit testing, integration testing, and system testing.
Utilizing testing techniques appropriate to the software’s characteristics
enhances test effectiveness.

20

3.6. Metrics for Evaluating Test Effectiveness

8 Testing tools and frameworks: The usage of relevant tools can complement
the different types of testing, resulting in a faster generation of tests of
better quality, which can be simpler to update and expand.

B8 Skill and FExperience of Testers: The proficiency and experience of
individuals performing the testing activities can greatly impact the test
effectiveness. Skilled testers can better design test cases, detect and
describe found defects more effectively, and interpret test results.

® Defect Management Process: The process for logging, tracking, and
describing defects identified during testing can greatly improve the sim-
plicity of identifying and fixing the faulty code. An efficient defect
management process ensures that defects are addressed promptly, fur-
ther improving the effectiveness of testing.

B 3.6 Metrics for Evaluating Test Effectiveness

Test effectiveness metrics are essential for assessing the quality and efficiency
of the testing process. They help the testing team evaluate the testing strategy
in different views and find possible shortcomings. All following metrics were
discussed in [5].

m Test Improvement (TI) of Product Quality: Iggg’}

The Test Improvement (TI) metric demonstrates the relation between
the number of weighted defects detected by the test team during testing
(Wprp) and the size of the product release (KCST). It evaluates the
impact of testing efforts on enhancing product quality. A higher TI value
suggests more defects or more significant defects were identified during
testing, leading to improved product quality attributed to the test teams.
® Test Effectiveness (TE) to Drive Out Defects: % * 100%
The Test Effectiveness (TE) metric measures the relation between the
number of weighted defects detected during the product cycle (WT)
and the total number of weighted defects in the product, which is the
combined value of number of defects found during the test cycle (Wrpp,
and the number of weighted defects found in the product after release. It
gauges the efficiency of the test organization in identifying defects before
product release. A higher TE value indicates a greater proportion of
defects or important defects were identified before release, reflecting the
effectiveness of the test organization in driving out defects.

21

3. Literature review

® Test Time (TT) Needed Normalized to Size of Product: 7th51

Test Time (TT) Normalized to the Size of Product measures the time
spent on testing (1) relative to the size of the product release (KCSI).
It indicates the testing process’s efficiency by quantifying the time re-
quired by the test teams to test the product. A lower value suggests that
the test teams need less time to complete testing, reflecting potentially
more efficient testing practices.

® Test Time Over Development Time (TD): % * 100%

Test Time Over Development Time (TD) assesses the ratio of time
spent on testing (77) to the time spent on product development (Tp).
It demonstrates the efficiency of the testing process relative to the
development process. A lower TD value indicates that the test teams
require less time to test the product compared to the time spent by
the development team on product development, potentially indicating
effective testing practices and shorter testing cycles.

® Test Cost Normalized to Product Size (TCS): %

Test Cost Normalized to Product Size (TCS) assesses the cost of testing
(Cr) relative to the size of the product release (KCST). It quantifies the
efficiency of resource or monetary investment in testing per thousand
lines of code. A lower TCS value indicates a lower cost required to test
each thousand lines of code, reflecting potentially more cost-effective
testing practices.

® Test Cost as a Ratio of Development Cost (TCD): % * 100%

Test Cost as a Ratio of Development Cost (TCD) evaluates the ratio
of testing cost (Cr) to the development cost (Cp) of the product. It
highlights the relationship between testing expenditure and product
development investment. A lower TCD value indicates that the test
teams require less cost to test the product compared to the cost incurred
by the development team, suggesting potential cost savings in testing.

® Cost per Weighted Defect Unit (CWD): %TT

Cost per Weighted Defect Unit (CWD) measures the relationship between
the total cost of testing the product (Cr) and the number of weighted
defects found by the test team during the product cycle (Wrp). It
quantifies the cost-effectiveness of the testing process in identifying
defects. A lower CWD value indicates a lower cost of finding one defect
unit, implying a more efficient and cost-effective testing process.

These metrics can help the development and testing team determine the
effectiveness of the testing process and possibly identify parts of the testing
process that can be improved. They can also be used to track the performance
of said teams.

22

3.7. Validation and Reliability Measures

. 3.7 Validation and Reliability Measures

The validation of automated tests and the measures to ensure high reliability
of the testing are one of the core parts of the effectiveness of automated
testing. Without sufficient attention to this part, automated testing can
become ineffective or even fall behind manual testing in various ways’.

B 3.7.1 False Positive and False Negative Rates

Despite its benefits, automated testing is prone to false positives and negatives,
undermining confidence in test results and impeding the development process.
False positives occur when automated tests report issues that do not actually
exist in the software, leading to wasted time and effort in investigating non-
existent faults. On the opposite side, false negatives occur when automated
tests fail to detect genuine defects, allowing potentially harmful errors to
go undetected. To mitigate false positives and false negatives, testers must
create a balance between test coverage and precision, ensuring that tests are
neither overly strict nor overly lenient. Additionally, continuous refinement
of test cases based on feedback from test executions can help reduce false
positives and false negatives over time, enhancing the reliability of automated
testing.

B 3.7.2 Test Suite Stability and Consistency

The stability and consistency of automated test suites are crucial factors in
ensuring reliable test results across different executions and environments.
Test suites that are prone to frequent failures or inconsistencies can disrupt
the development workflow, leading to delays and uncertainty in the software
delivery process. This behavior can either suggest an unstable implementation
or a test quality often described as "flakiness", which means that the test fails
or passes almost randomly with no change to the code. This poses a threat
to the test reliability since a possibly critical defect can be undetected, or
the test can incorrectly fail, which can waste the resources of the testing and
development team by searching for a nonexistent defect.

Several factors can contribute to test suite instability, including changes
in the application codebase, updates to third-party dependencies, and en-
vironmental variations. To enhance test suite stability and consistency,
practitioners adopt practices such as version control for test assets, isolation
of test environments, and periodic maintenance of test cases to address evolv-
ing requirements and conditions. By prioritizing stability and consistency in
test suite design and execution, teams can minimize disruptions and maintain
confidence in the reliability of automated testing.

Shttps://hr-guide.com/Testing _and_ Assessment/Reliability _and_ Validity.html

23

3. Literature review

B 3.7.3 Reproducibility and Replicability

Reproducibility and replicability are one of the essential characteristics of au-
tomated testing that ensure the consistency and reliability of test results over
time. Reproducibility refers to the ability to rerun automated tests and obtain
consistent outcomes, even manually if needed, regardless of when or where
the tests are executed. Replicability, on the other hand, involves the ability
to reproduce test results across different environments or configurations, vali-
dating the robustness of the testing approach. Achieving reproducibility and
replicability requires careful management of test environments, dependencies,
and configurations to minimize variations that could affect test outcomes.
Moreover, documenting test procedures, including setup instructions and test
data requirements, facilitates the replication of test results by other team
members or external testers.

B 3.7.4 Comparative Analysis with Manual Testing

When comparing automated testing with manual testing, it is important to
consider various factors affecting validation and reliability measures. While
manual testing offers flexibility and adaptability in exploring edge cases and
user interactions, it is inherently time-consuming and error-prone, especially
for repetitive or complex test scenarios. In contrast, automated testing
excels in scalability, repeatability, and coverage, enabling complex validation
of software functionality and performance across varying environments and
configurations. However, automated testing may struggle with certain types of
testing, such as exploratory testing or subjective evaluation of user experience.
By combining both automated and manual testing strategies thoughtfully,
teams can leverage the strengths of each approach to achieve a balanced and
effective testing regimen, maximizing the validation and reliability of the
software under development.

24

3.8. Previous Studies on Automated Test Effectiveness

. 3.8 Previous Studies on Automated Test
Effectiveness

In this section, we will cover similar studies conducted on the topic of
Automated Test Effectiveness. Understanding the landscape of previous
studies is essential for contextualizing our own research. We will point out
relevant questions, discuss observed results and possible challenges regarding
automated testing.

B 3.8.1 Comparing the effort and effectiveness of automated
and manual tests [[7]

The paper highlights the significance of automated testing in software de-
velopment, which aims to improve efficiency and reliability by automating
test design and execution. However, it also acknowledges the potential draw-
backs, such as the initial investment and ongoing maintenance required for
automated tests. The decision to automate tests should be accompanied by a
thorough cost-benefit analysis, considering factors like organizational culture,
staff training, and available tools. The study aims to compare the effort and
effectiveness of automated versus manual testing in a multinational orga-
nization’s Java web applications, emphasizing the need for context-specific
analysis in determining the most suitable testing approach.

Three case studies were conducted to compare the effort and effectiveness
of automated versus manual testing approaches within a multinational or-
ganization, focusing on a set of Java web applications. The first case study
evaluated the effort required for both testing methods using predefined test
cases and data, while the second determined the effectiveness in terms of
defect detection within a fixed time period. The third case study assessed
the effort and effectiveness of both approaches in the context of incremental
changes to the system after its release. Results indicated that although
automated testing initially demands more effort, it proves to be more effective
at defect detection, especially when considering regression testing over time.

B 3.8.2 Increasing the Effectiveness of Automated Testing [23]

This paper presents techniques aimed at decreasing the execution time and
maintenance expenses associated with automated regression test suites used
in eXtreme Programming (XP) development. These techniques are crucial as
they facilitate developers’ engagement with testing by minimizing associated
burdens. Strategies outlined include leveraging in-memory databases to
mitigate latency induced by disk-based databases or file systems, as well as
employing frameworks that streamline the setup and teardown processes of
test fixtures, thereby reducing the effort required for test development.

The conclusion of this paper is that the efficiency of a test-first devel-
opment approach correlates inversely with test execution time, which can
be significantly reduced by eliminating disk-based I/O latency. Replacing

25

3. Literature review

disk-based databases with in-memory databases achieves this optimization,
particularly if the application logic operates solely with objects instead of
utilizing SQL for database interactions. Additionally, enhancing the testing
framework can substantially decrease the effort required for test development
and maintenance, although various challenges may arise, all of which are
possible to overcome.

B 3.8.3 On the Effectiveness of Unit Test Automation at
Microsoft [26]

Implementing automated unit testing across a large software development
team can pose technical challenges and consume significant time. However,
a case study involving a team of 32 developers at Microsoft demonstrated
the benefits of transitioning to NUnit automated unit testing framework,
with tests typically written after coding functionality every two to three days.
After a year of utilizing this practice on Version 2 of a product, the team
observed a 20.9% decrease in test defects, albeit at the cost of approximately
30% more development time compared to Version 1. While other industrial
teams have achieved greater defect reductions through iterative test-driven
development practices, these results underscore the value of automated unit
testing, suggesting that even more significant quality improvements may be
realized with iterative test-writing approaches.

26

Chapter 4
Methodology

B 4.1 Research Design and Approach

This work mainly focuses on comparing automated and manual testing in a
wide range of aspects. Manual and automated testing will be conducted in
each of the studies, while time requirements will be tracked. Since automated
testing has a greater time investment, which is one of the points of the
comparison that will be discussed, a fraction of the generated tests will be
programmed. Their time requirements will be used to calculate an average
time to design and program one test. In addition, the time consumed to set
up the testing environment will be tracked to estimate the time required to
test the chosen system under test as precisely as possible. The same procedure
will be done for manual testing, with the change that the test cases will be
designed primitively without the knowledge of combinatorial testing.

Then, for each of the studies, a set of defects will be evaluated against the
conducted tests to evaluate how successful the tests were. The set will consist
of historical, currently present, and artificial defects. Since all of the systems
are public releases already exhaustively tested by their developers, artificial
defects will be the prevalent type, with historical defects as the second most
common occurrence. With artificial and historical defects that are not present
in the system, each will be compared carefully with the conducted tests to
determine if it would have been discovered. Various metrics will be computed
and discussed after estimating each testing technique’s time consumption and
success rate.

Il 4.1.1 Combinatorial test cases

To consistently produce effective test cases through combinatorial testing,
each of the parameters of chosen parts of the applications has to be analyzed to
determine different values that would influence the behavior of the application.
The most straightforward are checkboxes, radio boxes, and select elements
that have no further functionality. To correctly represent these, their values
are put as the possible values for the parameter. There can also be situations
where the values have a deeper effect on the application, which the tester
must consider. A great example is in the new issue form in Trac, where each

27

4. Methodology

value of milestone parameters can have an assigned due date. By taking this
into account, the tests can be more precise, test functionalities that could
otherwise be omitted, and, in case of a defect, help understand the reason for
the error better.

B ACTS

ACTS was used as the tool for generating the combinatorial test cases, as
it is a known standard in software testing. The tool supports n-way and
mixed-strength combinatorial test case generation. For the generating, IPOG
algorithm was used as it is the default and recommended option [27].

B 4.1.2 Comparison of manual and combinatorial generated
test cases

A comparison between manual and combinatorial generated test cases points
to the contrasting approaches to software testing and their respective bene-
fits and limitations. Manual test case creation involves testers creating test
scenarios based on their application knowledge, intuition, and experience.
While manual testing allows for flexibility in exploring complex interactions
and edge cases, it is inherently subjective, time-consuming, and prone to
human error. On the other hand, combinatorial test case generation uses
mathematical algorithms to systematically generate test cases by considering
various combinations of input parameters and their values. This approach
offers scalability, repeatability, and coverage, ensuring comprehensive valida-
tion of software functionality with minimal human intervention. However,
combinatorial testing may overlook certain nuanced scenarios that require
human insight, and its effectiveness heavily relies on the quality of input
parameters and the accuracy of the combinatorial algorithms employed. One
of the most prevalent advantages of manual testing is the quality control of the
user interface. While executing manual test cases, the tester can also check
the application layout and can identify, for example, misaligned elements or
wrong coloring. By combining these two methodologies, organizations can
develop a testing strategy that combines the strengths of manual testing’s
flexibility with combinatorial testing’s efficiency, thereby enhancing their
software products’ overall quality and reliability.

B 2.2 Selection of Test Subjects and Case Studies

The selection of test subjects was primarily on the following criteria: (1) The
System Under Test should be web browser-based since these user interfaces
are the easiest to test; (2) The application should have at least one reasonably
sized input form or configuration form since combinatorial testing is the most
applicable approach in them; (3) The application should be open-source, or
at least with a tracking system with historical and currently occurring defects
so that they could be used with the addition of artificial defects in following

28

4.2. Selection of Test Subjects and Case Studies

experiments. In relation to these criteria, the following three applications
were chosen:

B 4.2.1 Redmine

Redmine!|is an open-source project management web application that has

been a solid option in team collaboration and project tracking since its
inception in 2006 by Jean-Philippe Lang. Built on Ruby on Rails framework,
Redmine helps teams with a comprehensive suite of tools to streamline
project planning, execution, and monitoring. Its features include defect and
ticket tracking, time tracking management, and wiki creation to codebase
management.

In Redmine, two different forms were chosen as test subjects. The first
subject is a form for creating a new Ticket. This form was chosen because of its
many parameters and possibly interesting interaction of different parameters.
The original manual test set created without the knowledge of CIT consisted
of 18 test cases. Out of those, 14 of them were replaced by 21 test cases,
which were generated using CIT, adding to a total amount of 25 test cases.
The form had 10 parameters with a total of 25 different values, which can all
be seen in table 4.1l

Parameter Name | Number of values
Subject
Assignee
Category

Target Version
File
Parent Task
Start Date
End Date
Estimated Time
Total

W W NN W W W N

[\
at

Table 4.1: Parameters in New Issue Form in Redmine

The second one is a form for managing time tracking. It’s the second
largest form in the application, with many historically documented defects
that could be possibly used in this experiment. The approach with test cases
was very similar. 12 manual test cases were created, and 6 were replaced by
9 CIT-generated test cases, totaling 15. This form is smaller, only with 4
parameters and 10 total values, displayed in table |4.2.

"https://www.redmine.org/

29

4. Methodology

Parameter Name | Number of values
Issue 2
Date 3
Hours 3
Project 2
Total 10

Table 4.2: Parameters in Time Tracking Form in Redmine

B 422 Trac

Trad?|is an open-source, web-based project management, issue tracking and
wiki application written in Python. It is primarily used for managing software
development projects but can also be used for other types of projects. Trac
provides a range of features designed to make collaboration among team
members easier and track project progress.

In Trac, a form for creating a new ticket was chosen as the study target. The
choice was made because of the same qualities as in the previous application,
and the form has many parameters with varying value types. As this form is
slightly larger than the forms in Redmine, a total of 30 manual test cases were
created. In this study, 25 of the manual cases were replaced by CIT-generated
ones, of which there were 17. This form has 13 parameters with a total of 34
different values, all described in table 4.3.

Parameter Name | Number of values

Summary
Reporter
Description
Type
Milestone

Version

Priority
Component
File Attached
Keywords
CC
Owner
Severity
Total

NIWINININN O W W W N W N

w
=~

Table 4.3: Parameters in New Issue Form in Trac

*https://trac.edgewall.org/

30

4.2. Selection of Test Subjects and Case Studies

B 4.2.3 Tracks

Tracks®| is an open-source productivity web-based application designed to
help individuals manage tasks, projects, and goals efficiently. It provides
features to organize tasks, set priorities, and track progress toward achieving
objectives. It is written using Ruby with Rails framework.

As in previous applications, a form for creating a new task was chosen as
the first experiment target. The second experiment subject is a configuration
form for the whole application. In the first form, 8 parameters with a total of
23 values were used in combinatorial testing, which can be seen in the table
4.4l

Parameter Name | Number of values

Description
Notes
Project
Context
Tags
Due Date
Show from Date
Depends On
Total

Wl W[| W W WIN DN

DO
w

Table 4.4: Parameters in New Action form in Tracks

A second target for an experiment in this application was its configuration.
Sadly, not every parameter could be tested, as some are time-dependent. In
the end, 6 parameters were chosen to be used in CIT with a total of 14 values,
which are displayed in table |4.5.

Parameter Name Number of values
DueStyle
Show Completed Projects
Show Hidden Projects
Show Hidden Contexts
Go To Project

Show Number Of Completed Actions
Total 14

AN NN NN

Table 4.5: Parameters in Configuration of Tracks

3https:/ /www.getontracks.org/

31

4. Methodology

B 43 Criteria for Selecting Automated Testing Tools
and Frameworks

Selecting the right automated testing tools and frameworks is critical for en-
suring the efficiency and effectiveness of the testing processes. The considered
criteria for experiments in this work were:

8 Compatibility and Support: Ensure that the tool supports the technologies
and platforms on which the SUT was built. If the tool is not outdated
and is frequently updated, it is also a huge plus, mainly in the long-
term view. An additional positive is a possible integration with CI/CD
pipelines.

B Fase of Use and Learning Curve: Choosing a testing tool that is easy
to use and learn is one of the most crucial criteria. It can have a huge
impact on the effectiveness of automated testing.

8 Scripting Language Support: Depending on the experience and preference
of the testing team, choosing a tool with a programming language that
the team is familiar with can streamline test script development and
maintenance.

B Reporting and Analysis: Use of tools that offer reporting and analysis
features to help identify issues, track test coverage, and measure the
effectiveness of your tests.

Cypressﬂ was selected as the testing environment because it is the most
suitable framework for this type of experiment. Cypress is a popular testing
framework commonly used for end-to-end testing of web applications. It
provides a set of tools and libraries for automating web application testing
across different browsers and platforms.

. 4.4 Data Collection Methods

In the realm of software testing, collecting and analyzing data is one of the
most important processes for assessing the quality, performance, and reliability
of software products. In this section, we will describe the parameters of the
different studies conducted, such as the manual and automatic test cases with
examples, and the defects introduced to the experiments.

B 4.4.1 Data collection

Various data had to be collected while conducting all of the following ex-
periments. To reliably maintain and analyze the data, google spreadsheets
were utilized. All of the data can be viewed at this google spreadsheets

“https://www.cypress.io/

32

4.4. Data Collection Methods

document. GitHub has been utilized for version control. All of the testing
scripts used in the studies can be seen at this GitHub repository®. For each
of the experiments, one automated test case is presented as an example in the
appendix. The code is truncated by whitespaces and unimportant comments
to make it more readable.

B 4.4.2 Redmine

The study on Redmine was split into two different parts of the application.
The first experiment revolves around creating a new ticket and editing it. A
total of 18 manual test cases were designed and executed. 14 of them were
replaced by 15 automated test cases designed using CIT. The set of manual

cases can be seen in the table [4.6l

Test case | Name Description

Issl NewlIssueWithMandatory Create new issue with only mandatory fields

Iss2 NewlssueAssignToMe Mandatory, and assign to me

Iss3 NewlIssueWithAttachment Mandatory, and add an attachment

Iss4 NewlssueWithoutSubject Try to create an issue without subject and check failure
Issh NewlssueWithParentIssue Mandatory, and add parent issue

Iss6 EditIssueAddParentIssue Edit an issue by adding parent issue

Iss7 EditIssueAddChildIssue Edit an issue by adding child issue

Iss8 NewlssueWithDueDateInPast Choose due date in past, while start date is today, check failure
Iss9 NewlIssueWithNewCategory Mandatory, create a new category

Iss10 NewlssueWithNewTarget Version Mandatory, create a new target version

Iss11 EditIssueStatus Edit status of a issue

Iss12 EditIssueCloseWithoutChildClosed | Close an parent issue without child issue closed

Iss13 NewlssueDuplicateSubject Mandatory, create a issue with already existing subject
Iss14 NewlssuelnvalidEstimated Time Input invalid estimated time, check failure

Iss1b NewlssueStartDatePast Mandatory, choose start date in past

Iss16 NewlssueStartDateFuture Mandatory, choose start date in future

Iss17 NewlIssueTooBigAttachment Add attachment larger than 5 mb, check failure

Iss18 NewlssueAnyAssignee Mandatory, choose assignee other than the user

Table 4.6: Manual test cases for New Issue in Redmine

The creation and programming of the automated CIT test cases were
pretty straightforward, with the exception of the insertion of dates. Even
though the element taking care of the date is a standard input, because of the
application’s design, the date could not be simply entered, so we had to come
up with a special syntax using invoke() and trigger() functions. This can be
seen in the example code below. Otherwise, the application was easy to use
from the tester’s perspective. Automated test case number 14 is provided
as an example in the appendix |C.1. This test is supposed to create an error
since the ticket’s due date cannot be before the start date, which, in this case,
is the current date. The code has been truncated by comments that are not
important to the work.

The last part of this experiment are the defects. In total 10 defects were
introduced to this experiment, 8 of them were artificial: DueDateBefor-
eStartDateUnchecked, AssignToMeButtonNotWorking, FileUploadNotWork-
ing, NewCategoryNotWorking, ParentTaskWhileOtherAssigneeFails, Start-

Shttps://docs.google.com/spreadsheets/d /
1yZ5_PwGjLzA5JKZTzbSxKBv9970iL3BdzJylEEXZzREY /edit?usp=sharing
Shttps://github.com/Syor/Thesis

33

4. Methodology

DateAndDueDatelnPastFail, EmptyAssigneeFuils and ParentTask WhileEmp-
tyFEstimated TimeFuails , and two of them were reused historical defects: Fsti-
matedHourStringInvalid and DefaultAssigneelsNotSet.

The second experiment was conducted on the part of the application that
is used to track time spent on different tickets. This experiment was the
most straightforward of all. There was the same problem with dates as in
the previous study, but it had already been solved earlier. This application
form is smaller, as can be seen in table 4.2, The 12 manual test cases are
displayed in table |4.7.

Test case | Name Description

Timel BasicTimeLog Log time with only mandatory fields
Time2 LogZeroHours Mandatory, log 0 hours

Time3 LogDecimalHours Mandatory, log hours with decimal point
Time4 TimeLoggedToSubCountsToParent | Check if time logged adds to parent issue
Timeb TryLogNegativeHours Input negative hours, check failure
Time6 LogTimelnFuture Mandatory, choose date in future

Time7 LogTimelnPast Mandatory, choose date in past

Time8 FindByHoursLessEqual Filter existing time logs by less equal
Time9 FindByHoursMoreEqual Filter existing time logs by more equal
Timel0 EditTime Edit time of a time log

Timell EditIssue Edit issue of a time log

Timel2 EditDate Edit date of a time log

Table 4.7: Manual test cases for Time Logging in Redmine

Out of them, 6 were replaced by 9 automated test cases. As an example,
automated test case number 7 is provided in the appendix |C.2|.

Lastly, 4 artificial defects were created, and unfortunately, no histori-
cal defects that could be reintroduced were found. The artificial defects
are: LoggingTimelnPastFails, LoggingNegativeHoursDoesNotFuail, Logging-
ForOtherAssigneeFuails and Logging WithoutlssueFuails

B 443 Trac

The second study was conducted on Trac. In total, 30 manual test cases were
created. Most of them focused on different values of most of the parameters
and few of their combinations, which ought to be explored. The last few were
focused on editing the tickets, such as closing or accepting them. The names
of the test cases were primarily chosen to describe what the test case does
differently than the default and mandatory values, or what the tested process
does. The manual test cases can be seen in the table 4.8,

After analyzing the form and creating the CIT test cases, 17 new test
cases were created that replaced 25 of the manual test cases. The script
programming was reasonably fast since the form was created very well with
regard to testability. The only problem we encountered was already at the
start of the programming. The application login process is handled very
unusually, as opposed to a standard approach, with a small login screen with
two inputs for username and password, the login is handled as an alert popup,
which is really hard to handle with cypress, since the popup is not a part

34

4.4. Data Collection Methods

Test case | Name Description

Ticl Mandatory AndDefault New ticket with mandatory and default values

Tic2 NoSummaryShouldFail Create Mandatory and default with no summary, check failure
Tic3 Default AndMilestoneEmpty Mandatory and default, set milestone to empty

Tic4 Default And VersionEmpty Mandatory and default, set version to empty

Tich Default AndMilestoneOther Mandatory and default, set milestone to other than default
Tic6 Default AndVersionOther Mandatory and default, set verison to other than default
Tic7 MilestoneAnd VersionEmpty Mandatory and default, milestore and version empty

Tic8 MilestoneAndVersionOther Mandatory and default, version and milestone other than default
Tic9 MilestoneWithDueDatePast Mandatory and default, milestone with due date in past
Ticl0 MilestoneWithDueDateFuture | Mandatory and default, milestone with due date in future
Ticll ComponentOther Mandatory and default, set component to other than default
Ticl2 FileAttached Mandatory and default, attach a file

Ticl3 OwnerEmpty Mandatory and default, set owner to empty

Ticl4 ReporterEmpty Mandatory and default, set reporter to empty

Ticld VersionInPast Mandatory and default, set version with past release

Ticl6 VersionInFuture Mandatory and default, set version with future release
Ticl7 PriorityMajor Mandatory and default, set priority to major

Ticl8 PriorityBlocker Mandatory and default, set priority to blocker

Tic19 PriorityCritical Mandatory and default, set priority to critical

Tic20 PriorityMinor Mandatory and default, set priority to minor

Tic21 PriorityTrivial Mandatory and default, set priority to trivial

Tic22 HighSeverity Mandatory and default, set severity to high

Tic23 LowSeverity Mandatory and default, set severity to low

Tic24 NonEmptyKeywords Mandatory and default, add any keywords

Tic25 NonEmptyCC Mandatory and default, add any CC

Tic26 AddCommentToTicket Edit ticket by adding a comment

Tic27 ResolveAsFixed Edit ticket by resolving as fixed

Tic28 ResolveAsInvalid Edit ticket by resolving as invalid

Tic29 ReassignTicket Edit ticket by reassigning to different owner

Tic30 AcceptTicket Edit ticket by accepting it

Table 4.8: Manual test cases for New Ticket in Trac

of the web Document Object Model. This was handled by inputting the
credentials into the web address itself, since it is the way that the popup
actually handles the process. The example code, which was also added as a
command into cypress for easier testing, can be seen below.

Cypress.Commands.add(’trac_login’, (user) => {
cy.visit("http://’ + user.username + ’:’ + user.password +
"@localhost:8123/);

D

The automated testing was conducted using 17 test cases generated with
CIT. Automated test case number 4, provided as an example, can be found
in the appendix |C.3|

The last part of the setup for the experiment is the defects. In total
10 defects were used in this experiment, 7 of them were artificial: Empty-
SummaryPasses, EmptyMilestoneFails, AttachmentWithEmptyOwnerFails,
PastVersionFuils, KeywordsAndCCTogetherFail, MajorPriorityFails and High-
Severity With TrivialFails, and three were based on historical defects: String-
ValueNotResetOnErase, TicketCreationFails and CannotAttachFile.

35

4. Methodology

B 4.4.4 Tracks

In the last application, two different experiments were conducted. The first
experiment was very similar to previous applications conducted on a form for
creating a new action. For this form, 23 manual test cases were created, and
17 of them were replaced by 15 automated CIT-generated cases. The manual

test cases

are displayed in table 4.9.

Test case | Name Description

Actl OnlyMandatoryAndDefault | Create new action with only mandatory and default values
Act2 NoDescription Create new action without description, check falilure
Act3 ActiveProject New action with active project

Act4 HiddenProject New action with hidden project

Actb ActiveContext New action with active context

Act6 HiddenContext New action with hidden context

Act7 ClosedContext New action with closed context

Act8 DuePast New action with due date in past

Act9 DueToday New action with due date today

Act10 DueFuture New action with due date in future

Actll ShowFromPastShouldFail Create new action with show from date in past, should fail
Act12 ShowFromFuture New action with show from date in future

Actl3 ShowFromTodayShouldFail | Create new action with show from date today, should fail
Actl4 OneTag New action with one tag

Actlb MultipleTags New action with multiple tags

Act16 DependsOnExisting New action, add dependency on existing action

Actl7 DependsOnNonexistent New action, try add dependency on nonexistent action
Act18 EditDescription Edit description of action

Act19 EditDue Edit due of a action

Act20 EditFrom Edits show from of a action

Act21 EditContext Edit context of a action

Act22 EditProject Edit project of a action

Act23 DeleteAction Delete an action

Table 4.9: Manual test cases for New Action in Tracks

This form was the easiest to work on, mainly because of the fact, that most
of the input elements had id attributes, which contributed to easier element
querying, and the date pickers were easy to work with. An example of the
automated scripts is the test case number 13 provided in the appendix [C.4l

In this study, 6 defects were compared against the tests, 5 defects were
artificial: ShowFromPast WorksIfDuelsPast, Multiple TagsDontSeparate, Hid-
denContextAndProjectFail, EmptyDescription WorksIfDependent and Notes-
DoNotWork , and one historical defect was reintroduced: ShowFromFuils.

The second experiment was very different from the others since it was
conducted on a configuration form of the application. Only 9 test cases were
created for manual testing, which can be observed in the table [4.10. All of
them were replaced by 8 automated test cases.

The programming of the tests was very straightforward. Since most of the
options required some data to be tested on, a lot of test preparation had to
be done before checking the correctness of the processes. Test case number 13
is provided in the appendix |C.5 as an example. In this experiment, 3 artificial
defects were introduced: ShowHiddenContextAndProjectFails, DuelnFuails,
and GoToProjectsTrueFuils.

36

4.4. Data Collection Methods

Test Case | Name Description

Confl DefaultSetting Default values: due in, all true, positive completed actions
Conf2 DueOn Default values, but due style is due on

Conf3 CompletedProjectsFalse Default values, but show completed projects false

Conf4 HiddenProjectsFalse Default values, but show hidden projects false

Confb HiddenContextsFalse Default values, but show hidden contexts false

Conf6 GoToProjectPageFalse Default values, but go to project page false

Conf7 NumberOfActionsZero Default values, but number of actions shown zero

Conf8 NumberOfActionsNegative | Default values, but number of actions shown negative
Conf9 NumberOfActionsInvalid Default values, but number of actions set to a string

Table 4.10: Manual test cases for Configuration of Tracks

37

38

Chapter 5

Results

In this chapter, we will compare the results of automated testing with the
usage of CIT against manual testing. Each of the studies was conducted
on a different application, which was described in section [4.2. The first two
studies were conducted on input forms of different sizes, which were purposed
to create a particular record in the said application. The third study was
conducted on a configuration form of the main part of the application and a
form for creating a new activity.

In all three studies, we compare the efficiency of automated testing with
CIT against manual testing without CIT. The results point to a significant
increase in effectiveness regarding the number of detected defects and also
in the time saved by implementing automated testing. In the following
sections, the term 2-way means a 2-way strength combinatorial array was
used when designing the automated test cases using CIT, and mized refers
to a combinatorial array with mixed strength. This means that while some
chosen groups of parameters are tested together at a higher interaction level,
others may be tested at a lower interaction level. These terms will also be
used in later sections to discuss the results.

B 51 Experiment 1 - Redmine

This study was conducted for a different yet unreleased publication named
Effectiveness of Combinatorial Interaction Testing in Test Automation - An
Industrial Case Study written by Feras Daoud, Miroslav Bures, Zdenek David
and Petr Syrovatka.

As mentioned in the previous sections, two different forms were chosen as
the targets for the experiment. Summary of the time requirement and test
case counts are provided in the table 5.1, When testing the form for creating
a new issue, the number of test cases increased by 61%, but the hours spent
testing were reduced by 36%. The average time to detect a single defect
reduced significantly from 2.18 hours to 0.56 hours. The smaller form for
logging time tracking had the number of test cases increased by 25%, and
the total number of hours was reduced from 7.25 to 5.35 hours. The average
time to detect a defect in this experiment went from 3.6 hours to 1.3 hours,
which is an almost 65% reduction. Overall, in this study, the average time to

39

5. Results

detect a defect has decreased by more than 70%, from 2.66 to 0.78 hours. In
this study, CIT with mixed strength showed the same results as with 2-way
strength. The results of the experiments can be seen in the table |5.2.

‘ Manual cases ‘ CIT - 2-way ‘ CIT - Mixed
Time Spent on testing in hours
Total time spent on New Issue form 8.75 5.6 5.6
Total time spent on Time Tracking form 7.25 5.35 5.35
Total 16 10.95 10.95
Test case count
New Issue form 18 29 29
Time Tracking form 12 15 15

Table 5.1: Study 1: Summary of time requirement and test case count of

experiments on Redmine

Manual cases ‘ CIT - 2-way ‘ CIT - Mixed

Defects Reintroduced or Present in SUT
Historical defects in New Issue form 2
Artificial defects in New Issue for 8
Artificial defects in Time Tracking form 4
Total 14

Count of Detected Defects
Defects detected in New Issue form 4 10 10
Defects detected in Time Tracking form 2 4 4
Total 6 14 14
Defect detection rate related to time spent

New Issue 2.18 0.56 0.56
Time Tracking 3.6 1.3 1.3
Overall average time to detect one defect 2.66 0.78 0.78

Table 5.2: Study 1: Comparison of defect detection rate and defect detection
effectiveness of experiments on Redmine

B 52 Experiment 2 - Trac

One of the main advantages of automated testing combined with CIT pre-
vailed in this study. To sufficiently manually test an application with many
parameters, multiple similar test cases with only a minor difference have to
be executed, while automated testing with CIT tests all of the parameters
and their combinations in fewer cases and with a capable testing team with a
lesser time investment. As it can be seen in the table 5.3, the number of au-
tomated test cases was reduced to almost half, and the total time investment
decreased by more than a third compared to manual testing. The average
time needed to detect a defect has decreased by 56% while using automated
testing compared to manual testing.

40

5.3. Experiment 3 - Tacks

‘ Manual cases ‘ CIT - 2-way
Time Spent (hours)
Total time spent on New Ticket form ‘ 9.1 ‘ 5.75
Test case count

New Ticket form ‘ 30 ‘ 17

Defects Reintroduced or Present in SUT
Historical defects in New Ticket form 3
Artificial defects in New Ticket form 7
Total 10

Count of Detected Defects
Defects detected in New Ticket form ‘ 7 ‘ 10
Defect Detection rate related to time spent

Overall average time to detect one defect ‘ 1.3 ‘ 0.57

Table 5.3: Study 2: Comparison of defect detection rate and defect detection
effectiveness of experiments on Trac

B 53 Experiment 3 - Tacks

In this study, one of the disadvantages of automated testing prevailed. In
smaller systems under test with fewer parameters, the initial time investment
can be higher than that of manual testing. Although there were fewer
automated test cases than manual ones, the total time spent on automated
testing was slightly higher, by a mere 8%. Yet the automated testing with
CIT has shown its advantage in its effectiveness in detecting more complex
defects. It detected half as many defects, and its average time to detect one
defect decreased by 27% compared to manual testing. A summary of the
data can be seen in the table 5.4

An interesting event also happened during this experiment since an unex-
pected behavior of the application in one of its configurations was discovered,
which could be considered a defect. When configuring the application, one of
the options sets how many already completed actions will be shown on the
main page. While testing a positive value and zero, the application performed
as expected. But when the value was set to a negative integer, the application
unexpectedly accepted the value without a failure or a warning and showed
all of the existing completed actions on the main page. Since no record
of this behavior is a feature found in the application’s documentation, this
behavior will be considered a defect and submitted as a discovered bug to the
issues management system of the application. Similarly, the same parameter
accepted a string value, in which case the application sets the value to zero.
As in the previous case, this is undefined behavior without the application’s
reaction.

41

5. Results

Both of these defects were detected by manual and automated testing. In
this case, it could be discussed that, without the proper technical analysis of
the SUT, manual testers might not test certain parameters with intentionally
wrong values relative to the application. Because of that, the defects could
have been undiscovered while manually being tested.

| Without CIT | CIT - 2-way
Time Spent (hours)
Total time spent on New Action form 6.3 6.6
Total time spent on Configuration 1.8 2.15
Total 8.1 8.75
Test case count
New Issue form 23 15
Configuration 9 8
Total 32 23
Defects Reintroduced or Present in SUT

Historical defects in New Action form 2

Artificial defects in New Action form 5

Artificial defects in Configuration 3

Total 10

Count of Detected Defects
Defects detected in New Action form 4 7
Defects detected in Configuration 4)
Total 8 12
Defect detection rate related to time spent

New Action 1.58 0.94
Configuration 0.45 0.43
Overall average time to detect one defect 1 0.73

Table 5.4: Study 3: Comparison of defect detection rate and defect detection
effectiveness of experiments on Tracks

42

Chapter 6

Results Analysis

In this chapter, we will evaluate the results of the three experiments and
analyze the differences between automated testing using combinatorial in-
teraction testing (CIT) and manual testing. The purpose is to assess the
outcomes based on the efficiency, benefits, and limitations encountered during
the experiments.

B 6.1 Effectiveness of Automated Testing with CIT

The experiments have revealed the positive effect of the use of CIT for
automated testing on the number of defects detected. In the case of the
Redmine experiment, the average time to detect a single defect was reduced
from 2.66 hours in manual testing to 0.78 hours with CIT, showing a significant
gain in efficiency. Similarly, the Trac experiment’s average time to detect one
defect decreased from 1.3 hours manually to 0.57 hours with CIT. This pattern
in various applications suggests the strength of CIT in automation testing
by detecting more defects in less time. Additionally, the number of defects
found can be used to argue that automated testing with CIT provides better
coverage of the software under test. This comprehensive defect detection
can be attributed to the systematic and exhaustive nature of combinatorial
testing, which covers a wide range of input combinations that manual testing
might not have considered.

However, these findings should be interpreted cautiously since the results
may differ from the actual usage of automated testing in real practice. Al-
though the defects introduced in the experiments aimed to be as similar to
real-world scenarios as possible, even with the inclusion of historical defects,
they might be influenced by the writer’s experience, which might not fully
represent the actual situations in software testing.

B 6.2 Efficiency and Resource Utilization

The first and one of the most important benefits of the automated testing,
that is mentioned in the experiments, is the time and human resource savings.
For instance, the total time spent on testing the New Issue form in Redmine

43

6. Results Analysis

decreased from 8.75 hours manually to 5.6 hours with automated testing.
This time efficiency is particularly important in big software projects that
involve frequent releases. It enables the development team to run more tests
in shorter periods, making it an ideal tool for continuous integration and
continuous deployment (CI/CD) practices.

In addition, a crucial long-term benefit of automated tests is that they can
be performed repeatedly with little extra work, unlike manual tests, which
need to be conducted repeatedly by the tester. This reusability helps save
time and ensures that tests are executed consistently, helps eliminate the
different results that may be obtained from different testers, and prevents
possible code regression.

B 6.3 Limitations and Challenges

Despite the many advantages, the experiments also identified some disad-
vantages and difficulties associated with using automated CIT testing. One
notable weakness is the time and resources used to develop the automated
test cases and the required infrastructure. For instance, the amount of time
spent on programming and recording the automated tests for the New Issue
form in the Trac experiment was relatively high, indicating the larger initial
time investment needed.

Nevertheless, it is clear that automated testing will not be able to substitute
manual testing entirely. It is important to note that human intelligence and
intuition are invaluable in certain situations, especially when dealing with
difficult edge cases that may not be easily detected by automation testing.
Manual testing is also important in terms of testing the Ul and UX of the
app, as automated testing might not be able to address some issues. One of
the additional advantages of manual testing is to simulate an inexperienced
user who uses the application incorrectly, possibly inducing other defects that
are undetectable by automated testing.

44

6.4. Practical Implications and Recommendations

B 6.4 Practical Implications and Recommendations

The outcomes of the experiments have several possible implications for the
software development and testing teams. Firstly, incorporating CIT-based
automated testing into the development lifecycle can greatly improve the
detection rate of defects and testing productivity. However, it is suggested
that both approaches be used in parallel to take the best of both approaches.
Automated tests are useful when it comes to running large and frequently
repeated tests, while manual tests can be more effective when it comes to
exploratory testing, finding corner cases, and UI/UX reviews.

Second, it is vital to invest in training and tools for the automation of
testing. To get the maximum benefits and minimize the problems that might
be encountered in the initial stages of the testing process, it is necessary
to make sure that the testing team has the necessary skills to build and
maintain automated tests. Finally, constant reassessment and updating of the
testing process are critical to maintaining a relevant and effective approach
to software testing.

45

46

Chapter 7

Conclusion

This thesis investigated the effectiveness of automated software testing using
Combinatorial Interaction Testing (CIT) compared to manual testing methods.
The studies aimed to assess various aspects such as defect detection rates,
testing efficiency, and practical challenges involved in implementing CIT.
The study was conducted through a series of experiments on three open-
source software systems: Redmine, Trac, and Tracks. The results clearly
demonstrated the advantages of automated testing over manual testing in
several key areas.

Automated testing showed a notably higher defect detection rate than
manual testing. This outcome underscores the ability of automated tests,
with the addition of suitable testing methodologies, to identify more defects
within the same timeframe, enhancing overall software quality. The systematic
nature of automated testing allows for broader and more thorough coverage
of test cases, reducing the likelihood of undetected defects.

The efficiency of the testing process was also significantly improved with
automation. Automated tests executed faster than manual efforts, enabling
more frequent and comprehensive testing cycles. This efficiency reduces the
time-to-market for software products, allows the testing teams to assess the
software quality more frequently, and helps developers identify and address
defects earlier in the development process.

Despite these advantages, implementing automated testing comes with
challenges, such as the initial setup complexity and the need for robust test
management practices. It can be concluded that the best practice for testing
software development projects is a combination of automated and manual
testing techniques. In this way, the testing teams can provide extensive test
coverage, increased reliability, and higher software quality.

47

48

Appendix A
Bibliography

Teee standard glossary of software engineering terminology. IEEFE Std
610.12-1990, pages 1-84, 1990.

Proceedings the eighth international symposium on software reliability
engineering. In Proceedings The Eighth International Symposium on
Software Reliability Engineering, Los Alamitos, CA, USA, nov 1997.
IEEE Computer Society.

Richard Bache and Monika Mullerburg. Measures of testability as a
basis for quality assurance. Softw. Eng. J., 5(2):86-92, apr 1990.

V. R. Basili and B. T. Perricone. Software errors and complexity:
an empirical investigation. Communications of the ACM, 27(1):42-52,
January 1984.

Yanping Chen, Robert L. Probert, and Kyle Robeson. Effective test
metrics for test strategy evolution. In Proceedings of the 2004 conference

of the Centre for Advanced Studies on Collaborative research, pages
111-123. Citeseer, 2004.

Ermira Daka and Gordon Fraser. A survey on unit testing practices
and problems. In 2014 IEEE 25th International Symposium on Software
Reliability Engineering, pages 201-211, 2014.

Ignacio Dobles, Alexandra Martinez, and Christian Quesada-Lépez.
Comparing the effort and effectiveness of automated and manual tests. In
2019 14th Iberian Conference on Information Systems and Technologies
(CISTI), pages 1-6, 2019.

Felix Dobslaw, Robert Feldt, David Michagélsson, Patrik Haar, Francisco
Gomes de Oliveira Neto, and Richard Torkar. Estimating return on
investment for gui test automation frameworks. In 2019 IEEE 30th
International Symposium on Software Reliability Engineering (ISSRE),
pages 271-282, 2019.

Elfriede Dustin, Jeff Rashka, and John Paul. Automated software testing:
Introduction, management, and performance: Introduction, management,
and performance. Addison-Wesley Professional, 1999.

49

A. Bibliography

[10]

[20]

[21]

Badr El Khalyly, Abdessamad Belangour, Mouad Banane, and Allae
Erraissi. A new metamodel approach of ci/cd applied to internet of things
ecosystem. In 2020 IEEFE 2nd International Conference on FElectronics,
Control, Optimization and Computer Science (ICECOCS), pages 1-6,
2020.

Donald Firesmith. Four types of shift left testing. Carnegie Mellon
University, Software Engineering Institute’s Insights (blog), Mar 2015.
Accessed: 2024-Feb-28.

Adam Kolawa and Dorota Huizinga. Automated Defect Prevention: Best
Practices in Software Management. Wiley-IEEE Computer Society Press,
2007.

D Richard Kuhn, Raghu N Kacker, and Yu Lei. Introduction to combi-
natorial testing. CRC press, 2013.

Rick Kuhn, Raghu Kacker, Yu Lei, and Justin Hunter. Combinatorial
software testing. Computer, 42(8):94-96, 2009.

H.K.N. Leung and L. White. A study of integration testing and software
regression at the integration level. In Proceedings. Conference on Software
Maintenance 1990, pages 290-301, 1990.

Dr Madhavi. A white box testing technique in softwre testing: Basis
path testing. Journal for Research, 1(04), 2016.

Sonali Mathur and Shaily Malik. Advancements in the v-model. Inter-
national Journal of Computer Applications, 1(12):29-34, 2010.

E.M. Maximilien and L. Williams. Assessing test-driven development at
ibm. In 25th International Conference on Software Engineering, 20083.
Proceedings., pages 564-569, 2003.

Kai Petersen, Claes Wohlin, and Dejan Baca. The waterfall model in
large-scale development. In Frank Bomarius, Markku Oivo, Péivi Jaring,
and Pekka Abrahamsson, editors, Product-Focused Software Process
Improvement, pages 386—400, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

Kai Petersen, Claes Wohlin, and Dejan Baca. The waterfall model in
large-scale development. In Product-Focused Software Process Improve-
ment: 10th International Conference, PROFES 2009, Oulu, Finland,
June 15-17, 2009. Proceedings 10, pages 386—400. Springer, 2009.

Du Qingfeng and Dong Xiao. An improved algorithm for basis path
testing. In 2011 International Conference on Business Management and
Electronic Information, volume 3, pages 175-178, 2011.

50

[22]

[27]

A. Bibliography

Dudekula Mohammad Rafi, Katam Reddy Kiran Moses, Kai Petersen,
and Mika V. Méantyld. Benefits and limitations of automated software
testing: Systematic literature review and practitioner survey. In 2012 7th
International Workshop on Automation of Software Test (AST), pages
36-42, 2012.

Shaun Smith and Gerard Meszaros. Increasing the effectiveness of
automated testing. In Proceedings of the Third XP and Second Agile
Universe Conference, pages 88-91, 2001.

Andreas Spillner and H Bremenn. The w-model. strengthening the
bond between development and test. In Int. Conf. on Software Testing,
Analysis and Review, pages 15-17, 2002.

Amjed Tahir. A study on software testability and the quality of testing
in object-oriented systems. 2016.

Laurie Williams, Gunnar Kudrjavets, and Nachiappan Nagappan. On
the effectiveness of unit test automation at microsoft. In 2009 20th
International Symposium on Software Reliability FEngineering, pages
81-89, 2009.

Linbin Yu, Yu Lei, Raghu N. Kacker, and D. Richard Kuhn. Acts: A
combinatorial test generation tool. In 2013 IEEFE Sixth International
Conference on Software Testing, Verification and Validation, pages 370—
375, 2013.

Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software unit test
coverage and adequacy. ACM Comput. Surv., 29(4):366-427, dec 1997.

o1

52

Appendix B
Used Software

As advised in the Methodological guideline 5/2023[|, the following software
was used while writing this thesis:

8 Grammarly - style and grammar checkingﬂ
8 Writeful - style and grammar checkingﬁ

® ChatGpt OpenAi - rephrasing and style suggestionﬂ

Thttps://www.cvut.cz/sites/default /files/content /d1dc93cd-5894-4521-b799-
c7e715d3c59e/en/20231003-methodological-guideline-no-52023.pdf

®https://www.grammarly.com/

Shttps:/ /www.writefull.com/

“https://chat.openai.com/

53

o4

Appendix C

Code Examples

Listing C.1: Redmine - New Issue automated test case

it("test case no. 14, () => {
const currentDate = new Date();
const currentDateString = currentDate.toLocaleDateString(’cs—CZ’)

replace(’ ’, ”’) + " " + currentDate.toLocaleTimeString(’cs—CZ’);
//subject — Valid
const subject = "TestCaseNum14 " + currentDateString
cy.get('input[id="issue_ subject"]’).type(subject);
//assignee — Empty (default)
//category — new
const category = "Category " + currentDateString
cy.get(aftitle="New category']’).click();
cy.get('input[id="issue_ category_ name']’).type(category);
cy.xpath(’//p/input[@value="Create"]’).click();
//Target version — New
const version = "1.1 " + currentDateString
cy.get(a[title="New version"]’).click();
cy.get('input[id="version_name"]’).type(version);
cy.xpath(’//p/input[@value="Create"]’).click();
//file — not chosen
//parent task — not chosen
//end date — less than start
const endDate = new Date()
endDate.setDate(currentDate.getDate() — 10)
const dayEnd = endDate.getDate().toString().padStart(2, '0’);
const monthEnd = (endDate.getMonth() + 1).toString().padStart(2, '0’);
const yearEnd = endDate.getFullYear();
const formattedEndDate = ‘${monthEnd}/${dayEnd}/${yearEnd};
cy.get('input[id="issue__due_ date"]’)
.invoke(’val’, endDate.toISOString().split("T’)[0]).trigger ("input’);

//estimated time — wvalid
const estimatedTime = 10
cy.get('input[id="issue_ estimated_hours']’).type(estimated Time);

//————evaluation————

cy.xpath(’//form/input[@value="Create"]’).click();
cy.contains("Due date must be greater than start date").should(’exist’);

55

C. Code Examples

Listing C.2: Redmine - Time Tracking automated test case

it("test case no. 7’, () => {
const currentDate = new Date();
const currentDateString = currentDate.toLocaleDateString(’cs—CZ’)
replace(’ ’, 7) + " " + currentDate.toLocaleTimeString(’cs—CZ’);

cy.get('input[id="time_entry__comments']’)
.type(currentDateString + " test case no. 7");
//project — entered
const project = "Test Project’
cy.get(’select[id="time_ entry_ project_id"]’).select(project);
//issue — entered
cy.wait(500)
cy.get('input[id="time_entry issue id"]’).type(’13’);
//date — future
const date = new Date()
date.setDate(currentDate.getDate() + 10)
const day = date.getDate().toString().padStart(2, '0’);
const month = (date.getMonth() + 1).toString().padStart(2, ’0’);
const year = date.getFullYear();
const formattedDate = ‘${month}/${day}/${year};
cy.get(’input[id="time_entry_spent_on']’)
.invoke(’val’, date.toISOString().split("T”)[0]).trigger(’input’);
//hours — valid
const hours = 10
cy.get(’input[id="time_entry_hours"]’).type(hours);

cy.get('input[value="Create"]’).click();

//————validation————

cy.get(’div[id="flash_ notice"]’).should(’exist’);

cy.contains(currentDateString + " test case no. 7").should(’exist’);

cy.contains(currentDateString + " test case no. 7")
.parent().contains(hours + ":00").should(’exist’)

cy.contains(formattedDate).should (’exist’)

b))

Listing C.3: Trac - New ticket automated test case

it(testcased’, () => {

const currentDate = new Date();

const currentDateString = currentDate.toLocaleDateString(’cs—CZ’)

replace(’ ’, 7) + " " + currentDate.toLocaleTimeString(’cs—CZ’);

//summary valid

const summary = "TestCased " + currentDateString

cy.get(‘input[id="field—summary"]’).type(summary);

//reporter default

//description nonempty

const description = "description";

cy.get("textarea[id="field—description"]’).type(description);

//type task

const type = "task";

cy.get(’select[id="field—type"]’).select(type);

56

C. Code Examples

//milestone WithoutDueDate

const milestone = "milestonel";
cy.get(’select[id="field—milestone"]’).select (milestone);
//version PastVersion

const version = "1.1past";
cy.get(’select[id="field—version"]’).select (version);
//priority blocker

const priority = "blocker";
cy.get(’select[id="field—priority"']’).select(priority);
//component component!

const component = "componentl";
cy.get(’select[id="field—component"]’).select(component);
//keywords empty

//cc nonempty

const cc = "any_ cc';
cy.get('input[id="field—cc"]’).type(cc);

//owner other

const owner = "any_owner"
cy.get('input[id="field—owner"]’).clear().type(owner);
//severity Low

const severity = "Low";
cy.get(’select[id="field—severity"']’).select(severity);
//fileattached false

cy.get(’input|value="Create ticket"]’).click();

//——evaluation——

//summary exists

cy.contains(summary).should(’exist’);

//reporter default

cy.get("td[headers="h_ reporter']’).find(’a’)

.contains(’trac_ admin’).should (’exist’);

//owner other

cy.get("td[headers="h_owner"]’).find(’a’).contains(owner).should (’exist’);

//priority blocker

cy.get("td[headers="h_ priority"]’).find(’a’)
.contains(priority).should (’exist’);

//milestone WithoutDueDate

cy.get("td[headers="h_ milestone"]’).find(’a’)
.contains(milestone).should (’exist’);

//component component1

cy.get("td[headers="h_ component"]’).find(’a’)
.contains(component).should (exist’);

//version PastVersion

cy.get('td[headers="h_ version"]’).find(’a’).contains(version).should (’exist’);

//severity Low

cy.get("td[headers="h_ severity"']’).find(’a’)
.contains(severity).should (’exist’);

//keywords empty

//cc nonempty

cy.get('td[headers="h_ cc"]’).find(’a’).contains(cc).should(exist’);

//description nonempty

o7

C. Code Examples

cy.xpath(’//div]@class="searchable"]/p’)

.contains(description).should (’exist’);
//type task
cy.get(’span[class="trac—type"]’).find(’a’).contains(type).should exist’);

D

Listing C.4: Tracks - New action automated test case

it("test case no. 13’, () => {

const currentDate = new Date();

const currentDateString = currentDate.toLocaleDateString(’cs—CZ’)
replace(’ ’, 7)) + " " + currentDate.toLocaleTimeString(’cs—CZ’);

//description valid

const description = "TestCasel3 " + currentDateString

cy.get(’input[id="todo_ description"]’).type(description);

//notes nonempty

const notes = "Nonempty notes"

cy.get("textarealid="todo_notes']’).type(notes)

//project empty

//context HiddenContext

const context = "HiddenContext"

cy.get(’input[id="todo_ context_name"]’).clear().type(context)

//tags mone tag

const tags = "tagl"

cy.get('input[id="tag_list"]’).type(tags)

//duedate Future

const dueDate = new Date()

dueDate.setDate(currentDate.getDate() + 10)

const dayDue = dueDate.getDate().toString().padStart(2, ’0’);

const monthDue = (dueDate.getMonth() + 1).toString().padStart(2, ’0’);

const yearDue = dueDate.getFullYear();

const formatteddueDate = ‘${dayDue}/${monthDue}/${yearDue}*;

cy.get("input[id="todo_ due']’).type(formatteddueDate)

cy.xpath(’//*[@id="ui—datepicker—div"'] /div[2] /button[2]’).click()

//showfrom empty

//dependsOn empty

cy.get("button[id="todo_new_ action_submit"]’).click();

//——evaluation——

cy.visit("http:/ /localhost /search’)
cy.get("input[id="search"]’).type(description)
cy.xpath(’//#[@id="search—form"] /input[2]’).click()
cy.contains(description).should(exist’)

cy.contains("Due in 10 days").should(’exist’)
cy.contains(’tagl’).should(‘exist’)

cy.get('altitle="View context: > + context + ’"]’).should(’exist’)
cy.xpath(’//div/a[3]/img’).click()
cy.contains(notes).should(’exist’)

o8

C. Code Examples

Listing C.5: Tracks - Configuration automated test case

it.skip(’test case n. 1’, () => {

const due = ’Due in ___ days’

cy.get(’select[id="prefs_due_ style"]’).select(due)

//ShowCompletedProjects false

cy.get(’select[id="prefs_show_ completed_ projects_in_sidebar"]’)
.select(*false’)

//ShowHiddenProjects false

cy.get(’select[id="prefs_show_ hidden_ projects_in_sidebar"]’).select(’false’)

//ShowHiddenContexts false

cy.get(’select[id="prefs_show_ hidden_ contexts_in_ sidebar']’).select(’false’)

//GoToProject false

cy.get(’select[id="prefs__show_ project_on_todo_done"]’).select(’false’)

//ShowNumberOfCompleted positive

const NumberOfCompleted = 5

cy.get('input[id="prefs_show_number_completed"]’).clear()
type(NumberOfCompleted)

cy.get("button[id="prefs_submit"]’).click()

//————evaluation————

cy.visit http:/ /localhost/’)

cy.contains(’Hidden context’).should(’not.exist’);

cy.contains(’Hidden projects’).should(’not.exist’);

cy.contains(’Completed projects’).should(’not.exist’);

//+1 because there is an extra element

cy.get('div[id="completed_ container_items"]’).children()
.should(’have.length.lte’, NumberOfCompleted + 1);

const currentDate = new Date();

const currentDateString = currentDate.toLocaleDateString(’cs—CZ’)
.replace(’ ’, ’) + " " + currentDate.toLocaleTimeString(’cs—CZ);

const description = "TestCaseConfl " + currentDateString

cy.get('input[id="todo_ description']’).type(description);

cy.get('input[id="todo_ project_name"]’).type("ActiveProject")

const dueDate = new Date()

dueDate.setDate(currentDate.getDate() + 6)

const dayDue = dueDate.getDate().toString().padStart(2, ’0’);

const monthDue = (dueDate.getMonth() + 1).toString().padStart(2, ’'0%);

const yearDue = dueDate.getFullYear();

const formatteddueDate = ‘${dayDue}/${monthDue}/${yearDue}‘;

cy.get('input[id="todo_ due"]’).type(formatteddueDate)

cy.xpath(’//#[@id="ui—datepicker—div"]/div[2] /button[2]’).click()

cy.get(’button[id="todo_ new_ action_submit"]’).click();

cy.contains(description).parent().parent().as(’action’);
cy.get(’@action’).contains(’Due in’).should (’exist’)
cy.get("Qaction’).find ("input|class="item—checkbox"]’).click()
cy.url().should(’eq’, "http://localhost/’)

99

	Introduction
	Definition of Automated Software Testing
	Evolution and Importance of Automated Testing in Software Development
	Current Trends and Practices in Automated Testing
	Shift-left testing
	Test-driven development
	Integration with CI/CD Tools

	Challenges in Assessing Test Effectiveness
	Objectives and Research Questions

	Theoretical Framework
	Theoretical Models of Software Quality and Testing
	ISO/IEC 25010
	Waterfall Model
	V-Model
	W-Model

	Concepts of Testability and Test-Driven Development (TDD)
	Test Driven Development

	Test Coverage Criteria and Adequacy Models
	Test Coverage Criteria
	Adequacy Models

	Frameworks for Evaluating Test Automation Return on Investment

	Literature review
	Definition and Types of Automated Software Testing
	Types and Techniques of Automated Software Testing
	Unit Testing
	Integration Testing
	Database Testing
	System testing
	End to End testing
	Regression Testing

	Automated testing methods
	Combinatorial testing
	Path based testing

	Benefits and Limitations of Automated Testing
	Benefits
	Limitations

	Factors Affecting Test Effectiveness
	Metrics for Evaluating Test Effectiveness
	Validation and Reliability Measures
	False Positive and False Negative Rates
	Test Suite Stability and Consistency
	Reproducibility and Replicability
	Comparative Analysis with Manual Testing

	Previous Studies on Automated Test Effectiveness
	Comparing the effort and effectiveness of automated and manual tests 8760848
	Increasing the Effectiveness of Automated Testing smith2001increasing
	On the Effectiveness of Unit Test Automation at Microsoft 5362086

	Methodology
	Research Design and Approach
	Combinatorial test cases
	Comparison of manual and combinatorial generated test cases

	Selection of Test Subjects and Case Studies
	Redmine
	Trac
	Tracks

	Criteria for Selecting Automated Testing Tools and Frameworks
	Data Collection Methods
	Data collection
	Redmine
	Trac
	Tracks

	Results
	Experiment 1 - Redmine
	Experiment 2 - Trac
	Experiment 3 - Tacks

	Results Analysis
	Effectiveness of Automated Testing with CIT
	Efficiency and Resource Utilization
	Limitations and Challenges
	Practical Implications and Recommendations

	Conclusion
	Bibliography
	Used Software
	Code Examples

