Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Science

Evaluation of recommendations for LLM
prompt engineering

Boris Rakovan

Supervisor: doc. Mgr.Viliam Lisy, MSc., Ph.D.
Field of study: Open Informatics

Subfield: Data Science

May 2024

ii

Acknowledgements

I would like to thank my supervisor,
doc. Mgr.Viliam Lisy, MSc., Ph.D., for
his help, guidance and invaluable advice
during my work on this thesis.

iii

Declaration

I declare that the presented work was
developed independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

During the preparation of this work,
I used ChatGPT tool to interact with
the GPT-4 language model in order to fix
mistakes and reformulate existing texts.
After using this tool, I reviewed and edited
the content as needed and take full respon-
sibility for the content of this work.

In Prague, 20. 5. 2024

"https://chatgpt.com/

Abstract

Prompt engineering is a crucial skill for
the efficient use of large language models
(LLMs). Despite many online resources
offering recommendations on prompt en-
gineering, these guidelines are rarely rig-
orously evaluated or compared against
alternatives. This thesis proposes a rig-
orous methodology for evaluating differ-
ent prompt engineering recommendations
and tests four prevalent recommendations
found in online literature across three
different evaluation tasks from the nat-
ural language processing domain. Ex-
periments are conducted on five state-
of-the-art LLMs (GPT-3.5, LLaMA 7B,
LLaMA 13B, LLaMA 70B and Gemini
1.0 Pro). The contribution of this thesis
is twofold: first, it tests the efficiency of
existing prompt engineering recommen-
dations; second, it introduces a compre-
hensive framework for prompt evaluation
that is easily extensible to various recom-
mendations, evaluation tasks, and LLM
models. We show that none of the four rec-
ommendations consistently impacts the
result quality, indicating LLM users do
not need to strictly adhere to these guide-
lines when designing prompts.

Keywords: natural language processing,
large language models, prompt
engineering, text classification

Supervisor:
MSec., Ph.D.
Prague
Karlovo ndmeésti 13

Faculty of Computer Science

doc. Mgr.Viliam Lisy,

iv

Abstrakt

Prompt engineering je klicovou dovednosti
pro efektivni vyuziti velkych jazykovych
modelu (LLM). Navzdory mnoha online
zdrojum nabizejicim doporuceni ohledné
prompt engineeringu jsou tyto doporuceni
ziidka dikladné otestovany nebo srovnany
s alternativami. Tato prace navrhuje du-
kladnou metodiku pro otestovani rtznych
prompt engineering doporuceni a testuje
¢tyTi ruznd doporuceni nalezend v online
literature napti¢ tfemi riznymi evaluac-
nimi tlohami z oblasti zpracovani priroze-
ného jazyka. Experimenty jsou provadény
na péti state-of-the-art jazykovych mode-
lech (GPT-3.5, LLaMA 7B, LLaMA 13B,
LLaMA 70B a Gemini 1.0 Pro). Pfinos
této prace je dvoji: za prvé, testuje efek-
tivitu stavajicich doporuceni pro prompt
engineering; za druhé, predstavuje kom-
plexni framework pro testovani prompt,
ktery je snadno rozsititelny na rtizna dopo-
ruceni, evaluac¢ni tlohy a modely. Ukaze
se, ze zadné ze ¢ty doporuceni konzis-
tentné neovliviuje kvalitu vysledka, coz
naznacuje, ze uzivatelé LLM nemusi pri
navrhovani promptu striktné dodrzovat
tyto pokyny.

Klicova slova:
jazyka, velké jazykové modely, prompt
inzenyrstvi, klasifikace textu

zpracovani prirozeného

Pteklad nazvu: Vyhodnoceni
doporuceni pro psani dotazi na velké
jazykové modely

Contents
Project Specification 1
1 Introduction 3
1.1 Thesis outline 4
2 Theoretical foundations 5
2.1 Transformer architecture. 5l

2.1.1 Pre-Transformer architectures

(RNNs, LSTMS) ..ot (g
2.1.2 Architecture and training [0]
2.2 Large language models 6
2.2.1 Training process
2.2.2 Selection of LLMs...........)
2.2.3 Applications of LLMs
2.3 Prompt engineering
2.3.1 Prompt template syntax

2.3.2 Existing prompt engineering
recommendations 13

3 Evaluation methodology

3.1 Evaluation tasks 18
3.1.1 Selected datasets........... 19l
3.2 Prompt design
3.3 Model selection 211
3.3.1 Selected LLMs............. 22

3.3.2 Hyperparameter selection . . .

3.4 Execution and evaluation 24l
4 Implementation 25|
4.1 Languages and tools
4.2 Experiment execution

4.3 LLM provider API integration. .

4.4 Caching strategy

4.5 Experiment definition and
tracking oo

4.6 Statistical evaluation methodology

5 Experiments 33

5.1 Instruction context separation . .

5.1.1 TWITTER................ 35!

51.2ARC 136/
513 COSMOS 37
5.2 Instruction itemization 39
521 TWITTER................ 39
522ARC ... 41]
523 COSMOS

5.3 Positive vs. negative formulation

531 TWITTER................ 44
532 ARC
533 COSMOS 47
5.4 Language correctness..........
541 TWITTER................
542 ARC 51
543 COSMOS 53l
5.5 Results discussion. %
5.6 Other observations............ 57

vi

6 Conclusion

6.1 Future steps

A Bibliography

B Attachments

61

65

Figures | Tables

5.1 Accuracies of LLM models for
different prompt variations for the
Instruction Context Separation
experiment on the TWITTER
dataset.,

5.2 Accuracies of LLM models for
different prompt variations for the
Instruction Context Separation
experiment on the ARC dataset. . .

5.3 Accuracies of LLM models for
different prompt variations in the
Instruction Context Separation
experiment on the COSMOS
dataset.

5.4 Accuracies of LLM models for
different prompt variations in the
Instruction Itemization experiment
on the TWITTER dataset........

5.5 Accuracies of LLM models for
different prompt variations in the
Instruction Itemization experiment
on the ARC dataset.

5.6 Accuracies of LLM models for
different prompt variations in the
Instruction Itemization experiment

on the COSMOS dataset.

5.7 Accuracies of LLM models for
different prompt variations in the
Positive vs. Negative Formulation
experiment on the TWITTER
dataset.,

vii

41l

43

45

5.8 Accuracies of LLM models for
different prompt variations in the
Positive vs. Negative Formulation
experiment on the ARC dataset. . .

5.9 Accuracies of LLM models for
different prompt variations in the
Positive vs. Negative Formulation
experiment on the COSMOS
dataset. 48]

5.10 Accuracies of LLM models for
different prompt variations in the

Language Correctness experiment on
the TWITTER dataset. b1l

5.11 Accuracies of LLM models for
different prompt variations in the

Language Correctness experiment on
the ARC dataset.

5.12 Accuracies of LLM models for
different prompt variations in the
Language Correctness experiment on
the COSMOS dataset. 54

B.1 Thesis source code repository
structure. o o 65|

viii

S MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details

~N
Student's name: Rakovan Boris Personal ID number: 483500
Faculty / Institute: Faculty of Electrical Engineering
Department / Institute: Department of Computer Science
Study program: Open Informatics
Specialisation: Data Science
k J
Il. Master’s thesis details
~N
Master’s thesis title in English:
Evaluation of recommendations for LLM prompt engineering
Master's thesis title in Czech:
Vyhodnoceni doporuceni pro psani dotazl na velké jazykové modely
Guidelines:
Prompt engineering is an essential skill for maximizing the effectiveness of large language models (LLMs). Despite a lot
of online resources offering guidance on prompt engineering, these recommendations are often not rigorously evaluated
or compared to alternatives. This thesis aims to critically assess various prompt engineering techniques and methodologies,
compare their effectiveness, and establish a framework for their systematic evaluation.
In this work, the student will:
(1) Conduct a thorough review of existing academic and non-academic resources that offer recommendations for prompt
engineering
(2) Develop a rigorous methodology to test and evaluate at least three distinct prompt engineering recommendations on
appropriate benchmarks
(3) Test the recommendations on suitable LLMs, accessible either through an API or as an open-source project
(4) Analyze the results to determine the effectiveness of each recommendation as well as compare different prompt
engineering techniques
Bibliography / sources:
Liu, P, Yuan, W., Fu, J., Jiang, Z., Hayashi, H. and Neubig, G., 2023. Pre-train, prompt, and predict: A systematic survey
of prompting methods in natural language processing. ACM Computing Surveys, 55(9), pp.1-35.
https://dl.acm.org/doi/full/10.1145/3560815
White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar, A., Spencer-Smith, J. and Schmidt, D.C., 2023.
A prompt pattern catalog to enhance prompt engineering with chatgpt.
https://arxiv.org/pdf/2302.11382.pdf
Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M., Hajishirzi, H. and Zettlemoyer, L., 2022. Rethinking the role of
demonstrations: What makes in-context learning work?
https://arxiv.org/pdf/2202.12837.pdf
Qin, C., Zhang, A., Zhang, Z., Chen, J., Yasunaga, M. and Yang, D., 2023. Is ChatGPT a general-purpose natural language
processing task solver?
https://arxiv.org/pdf/2302.06476.pdf
OpenAl Prompt Engineering Guide. OpenAl, 2023
- J

CVUT-CZ-ZDP-2015.1 Page 1 from 2 © CVUT v Praze, Design: CVUT v Praze, VIC

4)

Name and workplace of master’s thesis supervisor:

doc. Mgr. Viliam Lisy, MSc., Ph.D. Artificial Intelligence Center FEE

Name and workplace of second master’s thesis supervisor or consultant:

Date of master’s thesis assignment: 23.01.2024 Deadline for master's thesis submission: 24.05.2024

Assignment valid until: 21.09.2025

doc. Mgr. Viliam Lisy, MSc., Ph.D. Head of department's signature prof. Mgr. Petr Pata, Ph.D.
k Supervisor's signature Dean'’s signature

[ll. Assignment receipt

The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZDP-2015.1 Page 2 from 2 © CVUT v Praze, Design: CVUT v Praze, VIC

Chapter 1

Introduction

In the most recent years, we have witnessed significant advances in the
field of natural language processing (NLP) and artificial intelligence (AI).
These developments have culminated in the creation of large language models
(LLMs), which are powerful deep learning architectures capable of achieving
human-like performance across a wide range of tasks. One of the key skills in
harnessing the full potential of LLMs is prompt engineering. This technique
involves crafting textual inputs to maximize the effectiveness of these models.
Despite the abundance of online resources offering guidance on prompt engi-
neering, these recommendations often lack rigorous evaluation and are rarely
compared against alternative approaches. The lack of systematic evaluation
makes it challenging for researchers and practitioners to determine the most
effective prompt engineering strategies for their specific use-cases.

In this work, we propose a comprehensive methodology for the evaluation of
diverse prompt engineering recommendations sourced from various channels,
mainly online blogs and articles, and demonstrate this methodology by
evaluating four different prompt engineering recommendations. We will assess
the effectiveness of these recommendations on a set of evaluation tasks from
the text classification and multiple-choice question answering domains. The
evaluation will be conducted on five state-of-the-art LLMs, chosen to represent
a diverse set of models with varying sizes and capabilities: GPT-3.5, LLaMA
7B, LLaMA 13B, LLaMA 70B, and Gemini 1.0 Pro.

3

1. Introduction

. 1.1 Thesis outline

In Chapter [2, we introduce the fundamental theoretical concepts that will be
built upon in the following chapters, including an overview of the transformer
architecture, large language models, and prompt engineering. Chapter |3| will
present the evaluation methodology developed for this work, including the
selection of prompt engineering recommendations, evaluation tasks, models,
and model hyperparameters. Next, in Chapter |4, we will detail the technical
implementation of the evaluation framework, focusing on integration with the
model APIs, the individual steps in the experiment execution and evaluation,
and the statistical methods used during the result analysis. Chapter [5| will
present the results of the conducted experiments, analyze the findings, and
discuss the implications of these results for the field of prompt engineering.
Finally, in Chapter |6, we will summarize the key findings of this work, discuss
the limitations of the study, and outline the possible directions for future
research on the topic.

Chapter 2

Theoretical foundations

This chapter provides an overview of the theoretical foundations that underpin
the subsequent experimental work. It covers essential concepts related to
transformer architecture, large language models, prompt engineering, and a
selection of prompt engineering recommendations.

We expect the readers to be familiar with the basics of neural networks,
specifically feed-forward neural networks and recurrent neural networks,
and their training. It is also assumed that readers possess a fundamental
understanding of key concepts in the domain of natural language processing.
For a more comprehensive overview of these topics, we recommend consulting
the books Deep Learning by Goodfellow et al. and Speech and Language
Processing: An Introduction to Natural Language Processing, Computational
Linguistics, and Speech Recognition by Jurafsky et al. . These concepts,
while foundational to the field, are not directly relevant to the core subject of
this thesis, so their detailed explanation is omitted in this chapter.

. 2.1 Transformer architecture

This section provides an overview of the transformer architecture, which
serves as the foundation for large language models.

2. Theoretical foundations

B 2.1.1 Pre-Transformer architectures (RNNs, LSTMs)

Before the advent of transformer architectures, Recurrent Neural Networks
(RNNs) and Long Short-Term Memory (LSTM) networks were prevalent in
NLP. However, these architectures had significant limitations, particularly in
handling long-range dependencies and computational inefficiency due to their
sequential processing nature.

Transformers were introduced in 2017 by Vaswani et al. [3] as a solution to
these shortcomings. Unlike their predecessors, transformers process data in
parallel, significantly improving computational efficiency. This architecture’s
ability to handle long sequences more effectively without losing contextual
information marked a substantial advancement over RNNs and LSTMs.

B 2.1.2 Architecture and training

A key part of the transformer architecture is the self-attention mechanism.
This mechanism allows the model to weigh the significance of different parts of
the input data, providing a more nuanced understanding of the context. Self-
attention contributes significantly to the ability of transformers to generate
more contextually relevant and coherent responses.

The training process for transformer architectures involves multiple layers
of self-attention and feed-forward neural networks. These models are typically
trained on vast datasets, enabling them to learn a wide array of language
patterns and nuances. The training process is resource-intensive but results
in models that exhibit a remarkable understanding of language and context.

B 22 Large language models

Large language models are a class of deep learning models that are primarily
based on the transformer architecture. These models are distinguished by
their immense scale, both in terms of the size of their training datasets and
the complexity of their architecture. The transformer architectures enables
LLMs to process and generate human-like text by learning a conditional
probability distribution over sequences of words. This means that LLMs can

6

2.2. Large language models

predict the likelihood of a word occurring in a text given the preceding and
following words, allowing for the generation of coherent and contextually
relevant language outputs.

A prompt in the context of LLMs is essentially an input text provided
to the model, which serves as a starting sequence or context for the model
to generate text. The prompt acts as an initial set of conditions for the
probability distribution, guiding the model on how to continue the text. By
adjusting the prompt, users can influence the direction and nature of the
generated text, making prompts a crucial aspect of interacting with LLMs.

LLMs stand out primarily for their ability to understand and generate
language with a high degree of fluency and context awareness, thanks to their
ability to process extensive sequences of text. LLMs operate by processing
text input and predicting subsequent text based on the learned conditional
probability distribution. The model evaluates the context provided by the
prompt and any preceding text to predict the most likely next word or
sequence of words. Sampling methods, such as temperature-based sampling,
are used to control the predictability and diversity of the output. A lower
temperature results in more predictable and conservative text generation,
while a higher temperature encourages creativity and variability in responses.
This process enables LLMs to produce responses that are not only relevant
to the given context but also varied and nuanced.

The trajectory of LLM development points toward continued scaling and
the integration of multimodal capabilities. The performance of these models
tends to improve with size, following the scaling law, though with diminishing
returns [4]. Additionally, the exploration of models that can understand and
generate not just text but also images, audio, and other data types, represents
an exciting frontier in Al research.

B 2.2.1 Training process

The training process of LLMs generally involves several distinct stages, though
the specific steps can vary depending on the model:

1. Pre-training phase: The first phase involves training the model on a
large and diverse corpus of text data in an unsupervised manner. This
process uses a transformer-based language modeling approach to learn a
wide range of language patterns, grammar, and contextual understanding

7

2. Theoretical foundations

from unlabeled text data. The goal is to develop a strong foundational
understanding of natural language. After this stage, the model can handle
various tasks such as language modeling, summarization, translation, and
sentiment analysis. The resulting models are often referred to as base
models, foundation models, or completion models. During pre-training,
different variants of stochastic gradient descent, such as Adam [5], are
used to update the model weights.

2. Fine-tuning phase: In this phase, models are often tailored to specific
downstream tasks or domains, such as conversation or chat. This involves
training the model in a supervised fashion on a more specialized dataset
crafted by humans to be relevant to the desired application. This
further optimization of the model parameters enhances its performance
in those specific use-cases. Often, additional post-training techniques
like Reinforcement Learning from Human Feedback (RLHF) [6] are
used. RLHF involves training the model with reinforcement learning
where human feedback is used to reward desirable outputs. This process
involves the following stages:

a. Reward model training: Human evaluators rate model outputs
based on quality. These ratings are used to train a reward model
that scores outputs.

b. Proximal policy optimization (PPO): The scores from the
reward model are used for further fine-tuning through reinforcement
learning, specifically using the PPO algorithm to maximize the
reward.

This further enhances the model’s ability to produce accurate, appro-
priate, and contextually relevant responses. However, not all models
use RLHF; some might use other post-training techniques or none at
all. It is important to note that there are many other LLMs developed
by various organizations, each with their unique features and training
methodologies.

The effectiveness of an LLM in understanding and generating language
highly depends on the quality and diversity of its training dataset. Models are
generally trained on a mixture of publicly available text data and proprietary
sources, aiming to cover a wide range of languages, topics, and styles. However,
the representation of less common languages and dialects can be a challenge,
leading to potential biases or limitations in the model’s performance in those
contexts. Continuous efforts are made by researchers to improve the inclusivity
and representativeness of training data in LLM development.

8

2.2. Large language models

B 2.2.2 Selection of LLMs

In the rapidly evolving landscape of LLMs, numerous models stand out
for their groundbreaking capabilities, scalability, and innovative training
methodologies. This section focuses on a selection of several LLMs developed
by leading organizations in the field, including OpenAT’s GPT series, Meta
ATl’'s LLaMA, and Google’s Gemini model family. The primary reason for
focusing on these models is their relevance to the experiments conducted in
this thesis. These models were chosen to span a diverse selection of sizes,
capabilities, and training approaches, to ensure a comprehensive exploration
of the state-of-the-art in generative Al in the experimental part of this work.

1.

GPT models: The models from GPT series, notably GPT-3.5 and
GPT-4, developed by the scientists from OpenAl organization, have
demonstrated significant advancements in understanding and generating
complex language constructs |7} |8]. The models from this series feature
an increasing number of parameters, which correlates with enhanced
reasoning capabilities and a reduction in errors like hallucinations. The
training process for these models includes extensive pre-training on
diverse datasets, followed by supervised fine-tuning and, in the case of
conversational models, further refinement using techniques like RLHF [8].

LLaMA models: LLaMA is another language model developed by
Meta Al (formerly known as Facebook Al). It showcases capabilities akin
to the GPT series but with distinct variations in training methodologies
and applications [9]. Similarly to GPT, LLaMA models are also pre-
trained on a diverse and large text corpus using unsupervised learning.
For conversational LLaMA models like LLaMA-2-chat, an additional
supervised fine-tuning step is performed on dialogue-specific datasets.
Unlike the GPT models, the models from LLaMA family have been made
partially open-source, allowing for broader research and experimentation.
They are available in various sizes, ranging from 7B to 175B parameters,
which makes them suitable for different computational needs and use-
cases. The smaller models are generally faster and require less computing
power, making them more accessible for experimentation.

Gemini models: The Gemini model family was announced in 2023
as Google’s competitive response to OpenAl’'s GPT-4. The Gemini
models, including the notable Gemini 1.0 Pro, have been designed to
offer advanced capabilities in understanding different forms of data.
Specifically, Gemini Pro is a multimodal model that can can accept text,
image, and video inputs and generate text output. The models from
Gemini family achieved state-of-the-art performance across a wide range
of multimodal benchmarks [10]. The exact details of the training process

9

2. Theoretical foundations

for Gemini models are not known, but similarly to the previous models,
they are expected to involve large-scale pre-training and fine-tuning on
specialized datasets.

B 2.2.3 Applications of LLMs

Large language models have numerous applications across various fields,
leveraging their capability to understand, generate, and interact with human
language. The key use-cases include:

1. Text classification: LLMs can categorize text into predefined classes,
helping in tasks like sentiment analysis or medical report classification.
For instance, in sentiment analysis, LLMs can classify customer reviews
as positive, negative, or neutral, helping businesses gauge customer
satisfaction.

2. Summarization: LLMs can distill long texts into concise summaries.
This is particularly useful in contexts where the practitioners need to
quickly grasp the essence of large volumes of information. For example,
researchers can benefit from automatic summarization of academic papers,
enabling them to efficiently review literature and identify relevant studies.

3. Question answering and chatbots: One of the most impactful appli-
cations of LLMs is the development of chatbots and question-answering
systems. In organizations, chatbots can assist employees by providing
quick answers to common questions, facilitating knowledge sharing and in-
formation access. They can also enhance the customer service by offering
instant responses to customer inquiries, troubleshooting issues, or pro-
viding product information. These use-cases are often coupled with the
implementation of retrieval-augmented generation (RAG) pipelines |11].
In RAG pipelines, relevant context is dynamically retrieved from inter-
nal documentation or knowledge bases based on the user’s query and
included as extra context in the input prompt to the model.

4. Content generation: LLMs can efficiently generate various types of
text, such as articles, marketing materials, and code. Their ability to
produce coherent and contextually relevant text makes them very valuable
for creative but also technical writing tasks. Additionally, LLMs are
effective in proofreading and editing existing content, helping to correct
grammatical errors, improve style, and enhance overall readability. This
is particularly useful for non-native English speakers who seek to refine
their written communication. For example, in this master thesis, GPT-4

10

2.3. Prompt engineering

was used via the ChatGPT! interface to fix mistakes and reformulate
existing texts, ensuring fluency and accuracy in English. It is crucial
to always carefully inspect the outputs produced by LLMs, as they can
sometimes generate hallucinations — statements that appear true but are
factually incorrect. Moreover, LLMs often tend to produce generic text
that lacks substance. Therefore, proactive checking and strict inspection
of the generated output, an approach taken also while writing this thesis,
is essential to maintain the quality and reliability of the content.

As research and development continue, we expect the set of applications
to expand, with LLMs playing an increasingly important role in various
industries and domains of our daily lives.

B 23 Prompt engineering

Prompt engineering refers to the practice of designing and optimizing input
prompts to elicit the most suitable responses from LLMs. This field has
evolved significantly in recent years, mirroring the advancements in LLMs
themselves. It was shown that the quality and structure of the input prompt
can significantly influence the quality of the generated result [12].

There are two main types of prompts:

® System prompt: This is the initial setup or context provided to the
model, often designed by the developers or system designers. It sets the
stage for the model’s operation and can influence its general behavior and
output style. As an example, in a customer service chatbot application,
a system prompt might be, “As a customer service assistant, your goal is
to provide helpful and accurate information in a friendly manner.” This
prompt sets a tone and behavior expectation for the model, guiding its
responses to align with the intended customer service objectives. It is
important to note that some models, like Gemini Pro, do not support
system prompts, and the user must provide the entire context for the
model in the user prompt.

8 User prompt: On the other hand, user prompts are those provided by
the end-users. These prompts are more dynamic and can vary greatly,

"https://chatgpt.com/

11

2. Theoretical foundations

requiring the LLM to adapt and respond accurately to a wide range
of requests and queries. As an example, in a customer service chatbot
application, the user might ask a customer service chatbot, “Can you help
me track my order that was supposed to arrive today?” This prompt is
a typical inquiry that customers might direct towards a customer service
assistant, prompting the model to generate a response that guides the
user on how to track their order or provide an update on the order status.

Effective prompt engineering is crucial for maximizing the quality of the
outputs generated by LLMs. As of now, a plethora of online resources offer
guidance on this practice. However, the quality and effectiveness of these
recommendations vary, which creates a need for a thorough evaluation to
establish best practices in prompt engineering.

Bl 2.3.1 Prompt template syntax

In this thesis, prompt templates are presented in Jinja2 format, which is also
the format used for defining the prompts in the experiments. Jinja2 is a
templating and rendering engine used for writing and managing parametrized
textual templates, and it allows for the inclusion of variables, control struc-
tures, and other dynamic content.

The syntax for these templates follows the standard Jinja2 conventions,
such as using double curly braces {{ }} for variables and control structures
like {% %2} for loops and conditionals.

Additionally, to enhance readability and indicate where lines are broken
due to the width of the document page, a red arrow symbol (<) is used.

Here is an example of a simple prompt template that showcases these
features:

This is some very long text that instructs the model to
<~ perform a specific task. The task is to choose the
> correct answer to the question from the provided
< choices.

Question: {{ question }}

{% for label, text in choices.items() %}

12

2.3. Prompt engineering

{{ label }}: {{ text }}
{% endfor %}

This template includes two variables, {{ question }} and {{ choices
}}, to display the question and a loop to list the possible choices dynamically.
The choices are provided as a dictionary mapping labels (A, B, C, D) to text
of the choice, and we use the {/% for %2} loop to iterate over the dictionary
items and display the labels and corresponding text for each choice.

Bl 2.3.2 Existing prompt engineering recommendations

This section delves into various existing recommendations for prompt en-
gineering and provides illustrative use-cases associated with each type of
reframing technique. While certain techniques like chain-of-thought prompt-
ing introduced by Wei et al. [13], and few-shot prompting introduced by
Brown et al. [7], have already gained scientific validation and demonstrated
their effectiveness, this section focuses on a different set of recommendations.
We will be mostly concerned with recommendations that were popularized
through different internet articles and blogs and since adopted by many
practitioners, but lack rigorous scientific evaluation. It is important to note
that the recommendations below are most commonly given in the context of
working with models from the GPT family.

1. Instruction context separation: A prevalent recommendation is the
use of delimiters to distinctly separate different parts of the input |14,
15, |16]. This technique involves using specific symbols like triple hash
or triple quotes """ to delineate the instruction from the context
of the prompt. The underlying rationale is to provide a clear structure
and organization to the prompt, potentially helping the model to better
understand and respond to the prompt. This recommendation is most
commonly given in the context of working with models from the GPT
family.

a. Without separation:

Please write a summary of the article, focusing on
< the main points and conclusions.

This is an example article.

13

2. Theoretical foundations

b. With triple hash (###):

Please write a summary of the article, focusing on
<~ the main points and conclusions.

#H##

This is an example article.

c. With triple tuotes ("""):

Please write a summary of the article, focusing on
< the main points and conclusions.

nnn

This is an example article.

nnn

2. Positive vs. negative formulation: Another commonly cited tip is
the preference for positive over negative formulations in prompt construc-
tion [14} 16, |17} |18, 19]. This approach suggests that instead of stating
what the model should not do, it is more effective to clearly state what
it should do. This recommendation stems from the belief that positive
instructions are more direct and easier for the model to interpret and
execute.

a. Positive formulation: This version positively states what the
model should do.

Please write a summary of this article. Make sure to
< focus solely on the main points and conclusions
<~ of the article.

This is an example article.

b. Negative formulation: This prompt specifies what the model
should not do.

Please write a summary of this article. Make sure to
< not include unnecessary details or diverge from
<~ the article’s main points.

This is an example article.

14

2.3. Prompt engineering

3. Instruction itemization: This recommendation advises to turn long
paragraphs with instruction into lists, converting individual sentences
into bulleted statements [19} |1§]. It is believed to help in presenting the
instructions in a clear, structured manner, enabling the model to follow
each requirement with equal attention. One rationale for applying this
recommendation is the belief that LLMs cannot effectively follow long
paragraphs stating multiple requirements due to first instruction bias
(paying more attention to the beginning of the paragraph than the rest
of it) [19].

a. Paragraph instruction: Instructions are provided in a single
paragraph.
Write a summary of the article by identifying the
< main points, highlighting the conclusions, and
—> ensuring brevity and clarity.

This is an example article.

b. Bulleted instructions: Instructions are itemized into bulleted
points.

Write a summary of the article, following these
< guidelines:

- Identify the main points
- Highlight the conclusions
- Ensure brevity and clarity of the summary

This is an example article.

4. Language correctness: This recommendation explores the impact of
grammatical and stylistic correctness on the response quality of a LLM.
Incorrect grammar, inappropriate tense usage, incorrect punctuation,
and awkward phrasing are believed to potentially degrade the quality of
the model’s responses. This perspective is supported by various online
articles that mention the sensitivity of LLMs to the linguistic quality of
the input [17} 20, 21].

a. Correct text:

Select the correct answer by choosing the appropriate
<~ label. Each question has a single correct
—> answer. The possible labels are, for example, A
— , B, C, D, E. Your response should contain only
<~ the letter corresponding to the correct answer
= .

15

2. Theoretical foundations

This is an example question with some choices.

b. Text with errors:

select the corrected answer by choosing the
appropiate label. every questions has a single
correct answer. The possibly labels are for
example A, B, C, D, E. your response should
contains only the letter correspond to the
correct answer.

TEiLd

This is an example question with some choices.

8 Errors:

“select” instead of “Select” at the beginning.

“your” should be capitalized as it starts a new sentence.
“appropiate” instead of “appropriate”.

“every questions” instead of “Each question”, introducing a
grammatical number disagreement.

“contains” instead of “contain”, which introduces a verb agree-
ment error.

“correspond” instead of “corresponding”, which is a verb form
erTor.

Omitted comma after “are” in the list of labels, which is a
punctuation error.

Use of “every” which is less formal and less precise compared
to “Each” in instructional content.

The degree of reframing (the amount of change applied to the original
prompt) varies across the different recommendations, some requiring only
minor algorithmic-like adjustments to the prompt (e.g., instruction context
separation) while others require a complete reformulation of all instructions
(e.g., positive vs. negative formulation). It’s important to note that while
these recommendations are widely discussed and applied within various online
communities, their impact has not been systematically studied or validated
in scientific research. The subsequent sections of this thesis will critically
evaluate these practices, exploring their effectiveness in practical applications
with LLMs.

16

Chapter 3

Evaluation methodology

In this chapter, we present different aspects of the methodology used to eval-
uate the impact of prompt engineering recommendations on the performance
of large language models. This includes both the key factors that influenced
our choices in designing the experiments, and the specific decisions made
regarding the selection of prompt engineering recommendations, benchmarks,
models, model hyperparameters, and more.

As already mentioned in the previous chapters, this work focuses on recom-
mendations that were popularized through different internet articles and blogs,
but lack rigorous scientific evaluation. Moreover, we will be testing relatively
simple recommendations that involve only lightweight changes to the original
prompt, and where the prompt reframing is quite algorithmic. Our focus will
therefore be the evaluation of the four prompt engineering recommendations
described in detail in Section [2.3.2. These four recommendations are:

1. Instruction context separation: This recommendation involves using
delimiters like ### or triple quotes """ to separate the instruction from
the context.

2. Instruction itemization: Advises the conversion of instructions from
long paragraphs into bulleted lists.

3. Positive vs. negative formulation: Suggests the use of positive
formulations in prompt construction over negative ones.

4. Language correctness: Emphasizes the importance of using correct
grammar, punctuation, and spelling in prompts.

17

3. Evaluation methodology

The selected recommendations serve as the basis for our experiments, and
drive the rest of the experiment design decisions.

. 3.1 Evaluation tasks

The first step in our experimental setup is to identify the suitable task domains
and select the benchmarks that will be used to evaluate the impact of the
prompt engineering recommendations.

When selecting a task domain and the specific datasets for evaluating LLMs
in the context of prompt engineering, we considered several criteria:

1. Textual input and output: The core functionality of LLMs revolves
around their ability to process and generate text. Thus, the selected
benchmarks must inherently support textual inputs and outputs. This
requirement automatically excludes tasks like image classification, audio
processing, or any other domain that relies on processing non-textual
data.

2. Task difficulty: While selecting benchmarks, it’s crucial to balance the
complexity of the tasks. Given our emphasis on examining the impact of
subtle, algorithmic variations in prompts, we will opt for tasks that are
relatively simple. The rationale behind this choice is that it ensures that
the tasks allow for minor prompt modifications to have a distinguishable
impact. Our aim is to prevent small variations in prompt engineering
from being overshadowed by the complexity of the task.

3. Evaluation metric: Identifying an appropriate metric is key to evalu-
ating and comparing the outcomes of our experiments. In this work, we
prioritize metrics that are easily computable and directly attributable
to the changes in prompt design. One example of such metric would be
accuracy - a straightforward, computable metric suitable for many text
classification tasks. On the other hand, more sophisticated evaluation
metrics, such as using LLMs as judges (LLM Eval) [22] or human evalu-
ation, are less favorable in this context due to their inherent variability
and the complexity involved in their computation.

4. Dataset size: The dataset should be large enough to provide a repre-
sentative sample for statistically robust evaluation.

5. Dataset availability: The dataset should be publicly available and
well-documented to ensure reproducibility.

18

3.1. Evaluation tasks

In this work, we decided to focus predominantly on different tasks from the
text classification domain, given their relative simplicity and ease of evaluation
compared to other NLP tasks, such as text generation. Specifically, we will
be working with sentiment analysis and multiple-choice question answering
tasks. These tasks involve assigning predefined labels to text, which will allow
us to use clear and easily interpretable evaluation metrics like accuracy.

B 3.1.1 Selected datasets

The three benchmark datasets selected for our study are:

1. Twitter US Airline Sentiment Analysis!| (TWITTER): This
dataset is a collection of tweets about major U.S. airlines from February
2015, where contributors classified the sentiment of tweets as positive,
negative, and neutral. The dataset is publicly available on Kaggle as
both a CSV file and an SQLite database. We selected this classification
task for its simplicity and its popularity within the NLP community.

2. AI2 Reasoning Challenge?| (ARC): Unlike the first dataset focused
on sentiment analysis, the ARC dataset developed by Clark et al.[23]
offers a different challenge in the form of multiple-choice science questions.
The questions are derived from grade-school level exams, and the ARC
dataset is partitioned into easy and hard questions. In our experiments,
we will be working only with the questions from the latter category. The
ARC dataset has been previously used to benchmark models such as
GPT-4 and Llama 2, making it a suitable choice for our evaluation [24,
9].

3. Cosmos QAP| (COSMOS): Cosmos QA is a dataset developed by
Huang et al. [25] and consisting of 35.6K multiple-choice questions that
require commonsense-based reading comprehension. It is distinguished
by its focus on reading between the lines across a diverse range of everyday
topics. Cosmos QA has been leveraged in the evaluation of LLMs and the
exploration of various prompt engineering techniques in past research [19,
26|, which again highlights its relevance in the LLM evaluation domain.

Thttps://www .kaggle.com/datasets/crowdflower /twitter-airline-sentiment
https:/ /allenai.org/data,/arc
3https://wilburone.github.io/cosmos/

19

3. Evaluation methodology

B 32 Prompt design

After selecting a specific prompt engineering recommendation for testing
and the evaluation benchmark, the next step is to design different prompt
variations for the LLM. To simplify the complexity of the prompt design for
the experiments, we will exclusively focus on modifications to the user prompt.
The rationale behind this is that the system prompt is often static or preset
in many real-world applications. Especially in web interface interactions with
chat models, end-users typically do not have access to modify the system
prompt. Therefore, our decision to focus on user prompt modifications
should not significantly diminish the relevance or applicability of our results.
Moreover, we use the same generic system prompt across all experiments,
and add all task-specific instructions to the user prompt. This decision aims
to reduce the impact of the system prompt on the final results, ensuring that
any observed differences are due to the user prompt modifications.

When designing user prompt variations, we start with a baseline prompt
and refine it through several iterations. During this process, we evaluate the
model’s performance using the baseline prompt and a chosen evaluation metric,
noting common error patterns in the outputs. This helps us make minor,
targeted adjustments to the prompt, adding specific instructions to address
these errors. For example, in a classification task, if we observe consistent
misclassifications, we tweak the baseline prompt to improve accuracy in these
cases. We ensure the baseline prompt remains relatively simple to avoid
skewing the experiment’s results, and to allow the modifications in the studied
prompts variations to be more pronounced.

Starting from this baseline, we then develop one or more studied prompts
that include modifications reflecting the tested recommendation. These
prompts are constructed to explore different aspects of the recommendation.
For instance, in the case of the instruction context separation recommendation,
we might design prompts that separate the instructions from the context
in various ways, such as using triple hashes (###) or enclosing the context
within triple quotes (""").

It is worth noting that we use a zero-shot learning approach, where no
examples are provided to the model within the prompt. This approach ensures
that any observed effects are due to prompt modifications and the results are
not skewed by the use of other prompt engineering techniques.

Additionally, it’s important to mention that the user prompt often includes
specifications regarding the desired output format. For instance, in text

20

3.3. Model selection

classification tasks, the model is directed to produce a single class label. This
instruction simplifies response parsing and further emphasizes the influence
of prompt modifications on the model’s output.

The user prompts that were designed for each experiment are displayed in
full detail in the following Chapter |5

. 3.3 Model selection

The choice of LLMs is another critical aspect of our experimental setup. The
models selected for evaluation should be representative of the current state-of-
the-art in the field of generative AI. The aim to test the prompt engineering
recommendations across a diverse set of models, including models of different
sizes, of different architectures and developed by different companies.

Naturally, the models must also be accessible and available for use in our
experiments. Currently, there are two main ways of interacting with large
language models:

1. Deploying an open-source model locally or on a remote server:
This is the most flexible option that offers more customization, but it
requires a significant amount of computational resources, specialized
hardware, and it is more complicated to set up. Moreover, it is not
always possible to use this option, as some models, like GPT-3.5 and
GPT-4, are not available open-source.

2. Accessing the model via a third-party API: This option is more
straightforward and requires less computational resources, but it is less
flexible and more expensive. There are several LLM providers that
host deployed LLMs and offer interacting with them via an API. These
include OpenAl, Anyscale, and all major cloud providers (Google Could
Platform, Amazon Web Services and Microsoft Azure).

In our experimental part, we opted for the latter category (API-available
models), because of the convenience of setup and model availability. The
use of models via third-party provider APIs typically requires registration
on the provider’s website and obtaining the access credentials, typically in
the form of API keys (e.g., OpenAl, Anyscale) or service account credentials
(e.g., Google Cloud).

21

3. Evaluation methodology

This decision also introduces several potential limitations on the extent of
our experimentation, notably:

® Rate limits: API providers almost always impose rate limits on the
number of requests that can be made or number of tokens that can be
consumed within a given time frame. This constraint motivates careful
planning and implementation of our communication with these APIs to
ensure robust and reliable experiment execution, even when facing rate
limits. The following chapter will dive in more detail into the strategies
for managing these rate limits effectively, allowing for the extensive and
reliable execution of experiments despite this restriction.

® Latency: Another important limitation is caused by the nature of
communication with these third-party APIs. Evaluating each of the
samples requires a network round-trip, which often takes hundreds of
milliseconds or even seconds, depending on the model and the load on
the provider’s servers.

®m Cost: The use of third-party APIs can be costly, as all requests are
billed based on the number of tokens consumed. The costs are typi-
cally computed per thousand tokens, and can vary significantly between
different providers and LLMs.

Given that in order to obtain statistically significant results we need to
execute a relatively high number of LLM calls, we have to be mindful of
these limitations. As a consequence, we will generally work only with a
smaller subset of the original dataset. The strategy for selecting this subset
is described in Section [3.4.

It is important to note that in the scope of this work, we will work exclu-
sively with models tuned for chat completion tasks, rather than foundational
completion models. This decision is motivated by the facts that chat models
are more commonly used in real-world applications, are more representative
of the current state-of-the-art in the generative Al domain, and are more
often available via third-party APIs.

B 3.3.1 Selected LLMs

The LLMs we will evaluate in our experiments are as follows:

22

3.3. Model selection

1. GPT-3.5 Turbo (gpt-3.5-turbo-0613)
2. LLAMA models:

a. LLAMA 7B (meta-llama/Llama-2-7b-chat-hf)
b. LLAMA 13B (meta-llama/Llama-2-13b-chat-hf)
c. LLAMA 70B (meta-llama/Llama-2-70b-chat-hf)

3. Gemini Pro (gemini-1.0-pro)

For more information on these models and their architecture, please refer
to Section 2.2.2L It is important to mention that we needed to implement a
robust and resilient communication layer on top of these platforms. This not
only accommodates the diverse communication requirements of each provider
but also addresses potential issues related to API rate limits and network
communication, and provides a unified interface for our evaluation framework.
The implementation of this communication layer is elaborated upon later in
Chapter [4.

Bl 3.3.2 Hyperparameter selection

Choosing the right parameters for the models is key to getting reliable results.
For our experiments, we work with two main hyperparameters: temperature
and max tokens.

1. Temperature: We set this to 0 for all of our experiments, as we want
the model’s answers to be consistent rather than random. While a higher
temperature can make the model’s responses more varied and creative,
which could be useful for some tasks, our experiments, like figuring
out the most likely class label in text classification, need precise and
predictable outcomes.

2. Max tokens: In general, we set the max tokens parameter to a relatively
low value consistent with our tasks’ nature. For text classification
tasks, where the model is generally instructed to output a single label,
we could in theory set this to 1. However, we’ve observed that some
models, specifically LLAMA 7B and LLAMA 13B, sometimes do not
strictly adhere to instructions regarding output format, opting instead
to generate complete sentences. Therefore, we allow for a longer token
output to ensure enough buffer for the generated output to include
the class label. We then use robust parsing algorithms to extract the
predicted classification label from the model’s response.

23

3. Evaluation methodology

. 3.4 Execution and evaluation

The execution phase involves running all the LLMs on a subset of the bench-
mark dataset using all the designed prompt variations. This subset is deter-
mined by random sampling from the original dataset, with a fixed random
seed to ensure the reproducibility of the experiments. The responses gener-
ated by the models are then compared against the ground truth, using the
benchmark-defined metric. Given our focus on text classification tasks, the
evaluation metric we will be dealing with is accuracy. The exact process of
LLM request execution and result evaluation is described in more technical
detail in Section [4.2]

The implemented evaluation framework also incorporates the computation
of confidence intervals and statistical significance of the results. This approach
not only guides our understanding of the reliability of the results but also
helps in selecting an optimal sample size for our experiments. Specifically,
the number of samples in individual experiments is chosen in an iterative way.
First, we run the experiment with a smaller number of samples (e.g., 3000),
and obtain preliminary results. We inspect the results to determine if there is
any observable trend or significant difference between the prompt variations.
If there appears to be any signal in the data, we proceed with a larger sample
size (e.g., 6000), determined by the confidence intervals and chosen so that the
results are statistically significant. This iterative approach ensures that we do
not waste computational and financial resources on experiments that do not
have potential to yield meaningful results. In some cases, like for the ARC
dataset described in Section |3.1.1, the number of samples is constrained by
the dataset size (2500 samples), therefore we always use the entire dataset
for evaluation. In other cases, like for the Gemini Pro model, we need to limit
the number of samples due to the high latency and very strict rate limits
imposed by the API provider. The exact details of the statistical methodology
used to compute confidence intervals and determine statistical significance
will be described in Section [4.6] of the following chapter.

24

Chapter 4

Implementation

In this chapter, we provide a detailed overview of the technical implementation
of our evaluation framework. This includes the specific technologies and
libraries used, details on the integration with LLM API providers, and
different technical aspects of the evaluation framework implementation such
as experiment tracking and caching.

B a1 Languages and tools

The implementation of our evaluation framework is entirely done in Python,
version 3.11. Python’s popularity in the machine learning space, as well as
the extensive availability of specialized libraries, makes it an ideal choice
for this work. We utilized several technologies and libraries to facilitate our
experiments:

® OpenAlI API: This API is used to interact with the ChatGPT family
of models. To interact with the OpenAl API, we utilized the OpenAl

Python SDK, which provides a convenient interface for making requests
to the APL

® Anyscale Endpoints: A managed service that allows interactions with
LLaMA models. Its API is compatible with the OpenAl Python SDK,
enabling us to interact with both APIs using the same code.

25

4. Implementation

® Google Cloud Vertex AI: A suite of machine learning tools that
provides access to a wide range of models, including the LLM models
available on Google Cloud. To interact with Vertex Al service we used
the Google Cloud SDK - a Python library that simplifies the interaction
with different Google Cloud services.

® Pydantic: A data validation and parsing library that simplifies the han-
dling of complex data structures, including their validation, serialization,
deserialization and more.

® Jinja2: A templating and rendering engine utilized for writing and
managing parametrized textual templates. We use Jinja2 to provide a
flexible and clear way to define prompts templates that can adapt to
different inputs.

® Tenacity: A Python library for retrying operations with configurable
backoff and retry strategies. This library is essential for handling transient
network issues and rate limits when interacting with LLM APIs.

® Huggingface datasets: A library that provides easy access to a wide
range of datasets for natural language processing tasks. This library was
chosen to download and preprocess some of the datasets used in our
experiments.

B a2 Experiment execution

To handle the high volume of requests to LLM APIs efficiently, we designed
an optimized execution and evaluation strategy that uses smart concurrency
and batching to optimize the throughput and minimize the execution time.

Initially, a subset of the input dataset of given size is selected through
random sampling. A sampling strategy with a fixed random seed ensures
reproducibility of the experiments by generating a consistent set of samples.
Using the python asyncio library, we evaluate the samples for different models
concurrently by sending requests to the different LLM APIs in parallel. For
example, if the experiment involves evaluating GPT-3.5 and LLAMA 7B
models, the framework will send requests to both APIs concurrently, allowing
the models to process the samples simultaneously, as the rate limits imposed
by the two providers are independent of each other. Without this optimization,
the execution time would be significantly longer, as the request for different
models would be evaluated sequentially. Furthermore, for each model, the
evaluation of the input samples for the model is carried out by introducing
another level of concurrency. The samples are split to batches, taking into

26

4.3. LLM provider API integration

account how strict are the rate limits of the particular API provider on the
number of tokens and requests that can be processed in a given time frame.
The samples in each batch are then sent to the model for processing in an
asynchronous fashion, again using the asyncio library. For example, the rate
limit on the requests per second of the GPT-3.5 is much less strict than that
of the Gemini Pro model, so the framework will fire 10 concurrent requests to
GPT-3.5 and only 5 concurrent requests to Gemini Pro at the same time. This
asynchronous execution strategy allows us to speed up the network-bound
communication, which is often a bottleneck in applications of this nature.

After each batch of samples is processed, and we receive the model’s
responses for that batch, the responses are collected and evaluated against
the ground truth labels provided in the dataset. The evaluation framework
categorizes the results into correct, incorrect and invalid categories. Invalid
responses are those where the model’s output does not match the expected
format, while correct and incorrect responses are determined by comparing
the model’s predictions to the ground truth labels.

The aggregated results for each model and prompt combination are then
analyzed to compute the final accuracy for the given model and prompt
variation. In this step, we also calculate the confidence intervals and statistical
significance to gain insights into the reliability of the results. The results
along with various other metadata are then stored in a structured json format
for further analysis and comparison.

B 4.3 LLM provider API integration

Our experimental framework is designed to interact with multiple platforms
providing access to the LLMs listed in Section |3.3.1.

1. GPT-3.5 Turbo: This model is accessed via the OpenAI API'. To
interact with this API, an API key is created, and the OpenAl Python
SDK is used for communication.

2. LLAMA models: The models from LLAMA family are accessed via
Anyscale Endpoints?, a managed service that allows interactions with
multiple different open-source LLMs.

"https://platform.openai.com/docs/overview
Zhttps://www.anyscale.com/

27

4. Implementation

3. Gemini Pro: This model is accessed through Google Cloud’s Vertex
AJP|service. Setting up this interaction requires creating a Google Cloud
account, enabling the Vertex Al API, and generating IAM service account
credentials for our Python evaluation framework script.

For each of the LLM providers, we implemented a separate class that encap-
sulates the logic for interacting with the respective API. This design ensures
that the codebase is modular and extensible, allowing for easy integration
of new LLM providers in the future. Moreover, each of the implementations
contains custom error handling and retry mechanisms tailored to the specific
rate limits and error codes of the respective APL. By utilizing an exponen-
tial backoff strategy for specific errors, such as network issues or rate limit
breaches, we ensure maximum throughput under given rate limits for our
experiments.

B aa Caching strategy

The motivation behind implementing a smart caching mechanism is clear when
considering the scale and potential costs of our experiments. For instance,
an experiment involving 1000 samples, 3 prompt variations, and 5 different
models would require 15,000 external API calls. Such an undertaking, despite
optimizations, can take hours to execute and incur significant costs ranging
up to tens of dollars.

The risk of losing progress due to unexpected errors, especially towards the
end of an experiment run, calls for a more scalable approach. To mitigate these
risks, we’ve implemented a sophisticated caching mechanism. This strategy
ensures that results from previously executed LLM calls can be retrieved from
cache, eliminating the need to repeat identical calls in subsequent experiment
runs. Such a system is not only cost-effective but also greatly reduces the time
required for experiment runs, ensuring progress is not lost due to transient
failures or manual interventions. This implementation uses the Python pickle
library for serialization and deserialization, storing function results on a local
file system cache based on unique keys generated using a hash function ran
on the function names and arguments. This not only accelerated development
by reusing results from previous identical experiment runs but also reduced
costs by eliminating the need for repeated calls.

3https://cloud.google.com /vertex-ai

28

4.5. Experiment definition and tracking

B a5 Experiment definition and tracking

All the experiments were conducted in a local development environment. A
key part of our evaluation framework is the detailed mechanism for defining
and tracking experiments. The individual experiment definitions are stored as
YAML files, each with a unique name. The specific file with the definition of
the experiment is loaded at the startup of the experiment script, determined
by a parameter passed by the user. This approach ensures reproducibility
and simplifies the process of adding new experiments to the framework in a
straightforward and declarative manner.

An example of such an experiment definition file is given below:

name: "Instruction itemization ARC multiple choice QA"
experiment_type: "INSTRUCTION_ITEMIZATION"
task_type: "ARC_MULTIPLE_CHOICE_QA"
models:
- "meta-llama/Llama-2-7b-chat-hf"
- "meta-llama/Llama-2-13b-chat-hf"
- "meta-llama/Llama-2-70b-chat-hf"
- "gpt-3.5-turbo-0613"
- "gemini-1.0-pro"
prompts:
system: "system.jinja2"
user:
- name: "Baseline"
file: "ii_arc_baseline. jinja2"
- name: "Itemized"
file: "ii_arc_itemized. jinja2"

This YAML structure allows to specify all the experiment parameters,
including the experiment name, type, involved models, and the files containing
Jinja templates for the system and user prompts.

For tracking and analysis purposes, detailed metadata about each experi-
ment run is stored on the local filesystem in json format when the experiment
is completed. The experiment file contains information about the experi-
ment’s name, type, evaluation task, models used, prompts employed, and
the individual result samples obtained from the LLMs and used for manual
evaluation or error inspection. These metadata also include important metrics

29

4. Implementation

such as the number of correct, incorrect, and invalid responses, total samples
evaluated, accuracy, the percentage of invalid responses, and a confidence
interval for the experiment’s metric values. Recommended sample sizes for
future experiments, calculated based on desired margins of error, are also
recorded, allowing for informed decision-making for subsequent runs. Lastly,
this file includes information about the total cost of the experiment, which is
computed based on the number of tokens consumed by the LLMs and the
respective token prices.

. 4.6 Statistical evaluation methodology

Because evaluating different prompt variations on LLMs is relatively expensive
and time-consuming, we cannot run experiments on arbitrary numbers of
samples and have to be more strategic when selecting the sample size. To
establish a rigorous approach for determining the minimum number of samples
necessary for our experiments, we employ statistical methods to compute
confidence intervals for our accuracy metric, based on a preset confidence
level of 95%.

The computation of the confidence interval involves determining the sample
proportion (accuracy) and its standard error. The standard error calculation is
specifically tailored for Bernoulli trials, making it suitable for binary outcomes
like correct or incorrect classifications. The confidence interval is then derived
using the sample proportion, standard error, and a z-score corresponding to
the desired confidence level. This interval provides a range within which the
true accuracy metric of the model is likely to lie with 95% confidence.

Moreover, the framework calculates the required sample size for an experi-
ment, aiming for a specific margin of error, such as 1%. This computation
uses the estimated proportion of success (initial accuracy), the desired margin
of error, and the confidence level to determine the smallest sample size needed
to achieve results within the specified accuracy range. This confidence interval
is crucial for understanding the variability of the accuracy and ensuring that
our experimental findings are reliable within a specific range of precision.
Mathematically, the confidence interval is computed as follows:

4.6. Statistical evaluation methodology

where p is the sample proportion, Z, /s is the Z-score corresponding to the
desired confidence level, and n is the sample size.

The formula for calculating the initial sample size is:

. Zg/gﬁ(l - ﬁ)

n 52

where E represents the desired margin of error, and the other symbols have
the same meanings as in the confidence interval formula.

By implementing and using these statistical formulas, we ensure that any
results obtained from our experiments are statistically significant and reliable.
It is important to note that the methodology described above is only one
of possible approaches to computation of confidence intervals and there are
other, more advanced mathematical methods, that could yield even more
precise results.

31

32

Chapter 5

Experiments

This chapter presents the experimental work carried out to evaluate the
effectiveness of different prompt engineering techniques as outlined in the
previous chapter. A single experiment in this study involves assessing multiple
prompt variations across a set of LLMs from Section |3.3| and a specific
evaluation task. The prompt variations are constructed based on the chosen
prompt engineering recommendation and the evaluation task at hand, as
described in Section [3.2.

In total, 12 experiments were conducted to comprehensively test the four
recommendations listed in Chapter |3l Each of the four recommendations is
tested on three different benchmarks listed in Section [3.1. Each main section
below is devoted to a specific prompt engineering recommendation. Each
subsection is then named after the dataset used in the experiment, and it
includes the used user prompt templates and a table summarizing the results
of the experiment.

The prompt templates use the Jinja2 syntax and contain different place-
holders that are replaced with actual content of the input sample in each
experiment. These template also contain different control structures, such
as loops, that allow for the generation of more complex prompts based on
the input sample. The experiment results for all models are depicted in
a table that displays the accuracies achieved by each model with different
prompt variations, and the confidence intervals for these accuracies given the
confidence level of 95%. Each table then also includes information about the
number of samples used in the experiment for individual models.

33

5. Experiments

It is important to note that we had to constraint our experiments with the
Gemini Pro model to a smaller number of samples due to the limitations of
the model’s API, such as very high response times and very strict rate limits
on the number of requests per minute. As an example, a single experiment
with only the Gemini Pro model on the Twitter dataset with three prompt
modifications and 500 samples took over 12 hours to complete. To this end,
we only evaluated the Gemini Pro model on the Twitter dataset with number
of samples ranging from 500 to 1000, depending on the experiment and the
preliminary results obtained. As a result, we would only be able to detect
very large differences in performance for this model given the statistical power
of the experiments.

As mentioned in Chapter [3, we developed a generic system prompt that
was identical across all experiments:

Your task is to analyze the provided text and produce a
— response based on the instructions.

For models that do not support system prompt (Gemini Pro), we concate-
nated the content of the system prompt with the user prompt and used the
only the resulting user prompt to generate the model’s response.

All the experiments in this chapter were ran between 11th and 20th of May
2024 using the model APIs and versions detailed in Section [3.3|

. 5.1 Instruction context separation

This section describes the experiments conducted to assess the impact of
instruction context separation on model performance. We focus on the use
of two most commonly recommended ways of separation to distinguish the
instruction from the context within the prompt.

34

5.1. Instruction context separation

B 5.1.1 TWITTER

B Prompt templates

1. Baseline:

Classify the tweet below based on its sentiment into one
< of the three following classes: Positive, Negative
< or Neutral.

You must output only a single word that is the class
< label assigned to the tweet.

{{ sample_text }}

2. Hash separator:

Classify the tweet below based on its sentiment into one
— of the three following classes: Positive, Negative
< or Neutral.

You must output only a single word that is the class
< label assigned to the tweet.

###

{{ sample_text }}

3. Triple quote separator:

Classify the tweet below into one of the three following
< classes: Positive, Negative or Neutral.

You must output only a single word that is the class
< label assigned to the tweet.

{{ sample_text }}

35

5. Experiments

B Experimental results

Model Samples Baseline Hash separator | Triple quote separator
LLAMA_T7B 3000 63.1% + 1.5% 64.4% + 1.5% 63.7% + 1.5%
LLAMA_13B 3000 77.4% + 1.3% 78.0% + 1.3% 76.0% + 1.3%
LLAMA_70B 3000 78.9% + 1.3% 78.9% + 1.3% 78.9% + 1.3%
GPT 35 3000 82.5% + 1.2% 82.5% + 1.2% 83.5% + 1.2%
GEMINI_PRO 800 82.9% + 2.6% 81.4% + 2.7% 80.8% + 2.7%

Table 5.1: Accuracies of LLM models for different prompt variations for the
Instruction Context Separation experiment on the TWITTER dataset.

B 512 ARC

B Prompt templates

1. Baseline:

Select the correct answer to the question by choosing the
— appropriate label (e.g., A, B, C, D, E).

Question: {{ input.question }}
{/, for label, text in input.choices.items() %}

{{ label }}: {{ text }}
{% endfor %}

2. Hash separator:

Select the correct answer to the question by choosing the
< appropriate label (e.g., A, B, C, D, E).

#it#
Question: {{ input.question }}
{/, for label, text in input.choices.items() %}

{{ label }}: {{ text }}
{% endfor %}

3. Triple quote separator:

36

5.1. Instruction context separation

Select the correct answer to the question by choosing the
< appropriate label (e.g., A, B, C, D, E).

Question: {{ input.question }}

{/% for label, text in input.choices.items() %2}
{{ label }}: {{ text }}
{% endfor %}

B Experimental results

Model Samples Baseline Hash separator | Triple quote separator
LLAMA_T7B 2500 55.3% + 1.9% 55.0% + 2.0% 54.0% + 2.0%
LLAMA_13B 2500 63.6% + 1.9% 64.6% + 1.9% 64.3% + 1.9%
LLAMA_70B 2500 77.5% + 1.6% 77.2% + 1.6% 77.6% + 1.6%
GPT_35 2500 82.6% + 1.5% 81.5% + 1.5% 80.5% + 1.6%

Table 5.2: Accuracies of LLM models for different prompt variations for the
Instruction Context Separation experiment on the ARC dataset.

B 5.1.3 COSMOS

B Prompt templates

1. Baseline:

Select the correct answer to the question based on the
— information provided in the context by choosing the
<> appropriate label (A, B, C, D).

Context: {{ input.context }}

Question: {{ input.question }}

Options:

37

5. Experiments

{/, for label, text in input.choices.items() %}
{{ label }}: {{ text }}
{% endfor %}

2. Hash separator:

Select the correct answer to the question based on the
— information provided in the context by choosing the
<> appropriate label (A, B, C, D).

#Hit#

Context: {{ input.context }}

Question: {{ input.question }}

Options:

{% for label, text in input.choices.items() %}

{{ label }}: {{ text }}
{% endfor %}

3. Triple quote separator:

Select the correct answer to the question based on the
< information provided in the context by choosing the
<~ appropriate label (A, B, C, D).

Context: {{ input.context }}

Question: {{ input.question 1}}

Options:

{/ for label, text in input.choices.items() %}

{{ label }}: {{ text }}
{% endfor %}

nnn

38

5.2. Instruction itemization

B Experimental results

Model Samples Baseline Hash separator | Triple quote separator
LLAMA_T7B 3000 63.6% + 1.7% 63.6% + 1.7% 60.8% + 1.7%
LLAMA 13B 3000 68.2% + 1.7% 68.3% + 1.7% 67.1% + 1.7%
LLAMA_70B 3000 81.3% + 1.4% 81.8% + 1.4% 81.2% + 1.4%
GPT 35 3000 77.3% £+ 1.5% T1T% £+ 1.5% 77.2% £+ 1.5%

Table 5.3: Accuracies of LLM models for different prompt variations in the
Instruction Context Separation experiment on the COSMOS dataset.

B Results analysis

The results of the experiments evaluating the impact of the instruction context
separation recommendation on different datasets show us several insights.
Across all models and datasets, there were no statistically significant differ-
ences in performance between the baseline and either of the prompt variations
(hash separator or triple quote separator). The confidence intervals overlap,
which indicates that any observed changes in accuracy are within the margins
of error. This suggests that instruction context separation recommendation,
as implemented in the prompt templates, does not significantly affect the
performance of any of the models.

B 52

Instruction itemization

This section describes the experiments conducted to evaluate the impact
of instruction itemization on model performance. We created two prompt
variations for each dataset, one baseline with instructions presented as a
single paragraph and one studied variation with instructions itemized into a
list.

B 521 TWITTER

B Prompt templates

1. Baseline:

39

5. Experiments

Given a tweet, your task is to classify its sentiment

Tweet:

R S R

into one of three classes: Positive, Negative, or
Neutral. Output only one of the following class
labels that best fits the tweet’s sentiment: "
Positive", "Negative", "Neutral". Do not include
any additional text or commentary in your response.
For tweets containing offensive language, personal
attacks, or inappropriate content, classify them
based on the sentiment of the context. If a tweet
does not contain clear sentiment or is primarily
informational (e.g., about flight delays), classify
it as "Neutral". Keep your response concise,
focusing solely on providing the class label.

{{ sample_text }}

2. Itemized:

Instructions:

Tweet:

C_)

(ﬁ
s

—

(_>
(SN

(N
—

(ﬁ

Given a tweet, your task is to classify its sentiment

into one of three classes.

Output only one of the following class labels that best

fits the tweet’s sentiment: "Positive", "Negative
", "Neutral".

Do not include any additional text or commentary in

your response.

For tweets containing offensive language, personal

attacks, or inappropriate content, classify them
based on the sentiment of the context.

If a tweet does not contain clear sentiment or is

primarily informational (e.g., about flight delays)
, classify it as "Neutral".

Keep your response concise, focusing solely on

providing the class label.

{{ sample_text }}

40

B Experimental results

5.2. Instruction itemization

Model Samples Baseline Itemized

LLAMA_7B 5000 61.7% £ 1.4% | 71.2% + 1.3%
LLAMA_13B 5000 73.1% + 1.2% | 68.1% + 1.3%
LLAMA_70B 5000 75.0% £ 1.2% | 74.9% + 1.2%
GPT _35 5000 80.0% + 1.1% | 77.0% + 1.2%
GEMINI__PRO 500 73.9% + 3.9% | 73.9% + 3.9%

Table 5.4: Accuracies of LLM models for different prompt variations in the
Instruction Itemization experiment on the TWITTER dataset.

M 522 ARC

B Prompt templates

1. Baseline:

Select the correct answer by choosing the appropriate
<~ label. Each question has a single correct answer.
<> The possible labels are for example A, B, C, D, E.
> Your response should contain only the letter
< corresponding to the correct answer.

Question: {{ input.question }}
{% for label, text in input.choices.items() %}

{{ label }}: {{ text }}
{% endfor %}

2. Itemized:

Instructions:

Select the correct answer by choosing the appropriate
— label.

- Each question has a single correct answer.

- The possible labels are for example A, B, C, D, E.

- Your response should contain only the letter

< corresponding to the correct answer.

41

5. Experiments

Question: {{ input.question }}

{% for label, text in input.choices.items() %}

{{ label }}: {{ text }}

{% endfor %}

B Experimental results

Model Samples Baseline Itemized

LLAMA_7B 2500 55.5% £ 1.9% | 51.8% + 2.0%
LLAMA_13B 2500 62.8% £+ 1.9% | 61.6% + 1.9%
LLAMA_70B 2500 76.2% £ 1.7% | 73.2% + 1.7%
GPT_35 2500 82.8% £ 1.5% | 82.2% + 1.5%

Table 5.5: Accuracies of LLM models for different prompt variations in the
Instruction Itemization experiment on the ARC dataset.

B 523 COSMOS

B Prompt templates

1. Baseline:

Select the correct answer by choosing the appropriate
< label. The selection should be based on the

information provided in the context. Each question
has a single correct answer. The possible labels

contain only the letter corresponding to the

N
N
— are for example A, B, C, D, E. Your response should
N
(SEEN

correct answer.

Context: {{ input.context }}

Question: {{ input.question }}

Options:

{/ for label, text in input.choices.items() %}

{{ label }}: {{ text }}

42

{% endfor %}

2. Itemized:

Instructions:

5.2. Instruction itemization

- Select the correct answer by choosing the appropriate

— label.

- The selection should be based on the information
< provided in the context.
- Each question has a single correct answer.
- The possible labels are for example A, B, C, D, E.
- Your response should contain only the letter
< corresponding to the correct answer.

Context: {{ input.context }}

Question: {{ input.question }}

Options:

{% for label, text in input.choices.items() %}

{{ label }}: {{ text }}

{% endfor %}

B Experimental results

Model Samples Baseline Itemized

LLAMA_T7B 5000 65.3% + 1.3% | 80.1% + 1.1%
LLAMA_13B 5000 68.1% + 1.3% | 67.8% + 1.3%
LLAMA_70B 5000 78.7% + 1.1% | 81.2% + 1.1%
GPT_35 5000 76.5% + 1.2% | 77.6% + 1.2%

Table 5.6: Accuracies of LLM models for different prompt variations
Instruction Itemization experiment on the COSMOS dataset.

B Results analysis

in the

For the TWITTER dataset, LLAMA__ 7B showed a significant improvement in
accuracy with itemized instructions (9.5%), while LLAMA_13B and GPT 35

43

5. Experiments

showed a significant decrease (5%, 3%). The performance of LLAMA_70B
and GEMINI_PRO remained roughly unchanged. In the ARC dataset,
LLAMA_ 70B showed a significant decrease in accuracy with itemized in-
structions (2.9%), while the other models showed only minor changes that
are not statistically significant. For the COSMOS dataset, LLAMA_7B
and LLAMA_ 70B showed significant improvements in accuracy with item-
ized instructions (14.8%, 2.5%), while LLAMA_ 13B and GPT_ 35 showed
no significant changes. This results indicates that itemization may not be
uniformly beneficial for different tasks and models, sometimes enhancing
performance and sometimes degrading it. All in all, the impact of instruction
itemization appears to vary significantly across different models and datasets.
This indicates that there is likely no clear, consistent pattern in how instruc-
tion itemization affects LLM performance. The observed, seemingly random
differences in results and the overall inconsistency of the results could be
caused by several other factors that will be discussed later in this chapter.

B 53 Positive vs. negative formulation

This section describes the experiments conducted to evaluate the impact of
positive vs. negative formulation on model performance. We created two
prompt variations for each dataset, one with a positive formulation and the
other with a negative formulation.

B 531 TWITTER
B Prompt templates

1. Baseline:

Given a tweet, your task is to classify its sentiment
into one of three classes: Positive, Negative, or
Neutral. Output only one of the following class
labels that best fits the tweet’s sentiment: "
Positive", "Negative", "Neutral". For tweets
containing offensive language, personal attacks, or
inappropriate content, classify them based on the
sentiment of the context instead of refusing to
classify them. If a tweet does not contain clear

TLILLLLd

44

5.3. Positive vs. negative formulation

— sentiment or is primarily informational, classify
<~ it as "Neutral". Keep your response concise,
< focusing solely on providing the class label.

Tweet:

{{ sample_text }}

2. Negative:

Given a tweet, your task is to classify its sentiment
into one of three classes: Positive, Negative, or
Neutral. Do not output anything else other than the
class labels that best fits the tweet’s sentiment:
"Positive", "Negative", "Neutral". Don’t refuse to
classify tweets that contain offensive language,
personal attacks, or inappropriate content and
classify them on the sentiment of the context. If a
tweet does not contain clear sentiment or is
primarily informational, don’t classify it as "
Positive" nor "Negative". Avoid outputting
information other than the selected class label,
keeping the response concise.

R U

Tweet:

{{ sample_text }}

B Experimental results

Model Samples Baseline Negative

LLAMA_7B 3000 80.4% + 1.4% | 79.0% + 1.5%
LLAMA_13B 3000 80.4% + 1.4% | 79.0% + 1.5%
LLAMA_70B 3000 83.9% + 1.3% | 84.3% + 1.3%
GPT_35 3000 77.0% £ 1.5% | 77.8% + 1.5%
GEMINI_PRO 500 74.9% + 3.8% | 75.8% + 3.8%

Table 5.7: Accuracies of LLM models for different prompt variations in the
Positive vs. Negative Formulation experiment on the TWITTER dataset.

45

5. Experiments

B 532 ARC

B Prompt templates

1. Baseline:

Select the correct answer to the question by choosing the
—> appropriate label. Each question has a single
< correct answer. Your response should contain only
— the letter corresponding to the correct answer.

Question: {{ input.question }}

{% for label, text in input.choices.items() %}
{{ label }}: {{ text }}
{% endfor %}

2. Negative:

Select the correct answer to the question by choosing the
—> appropriate label. Remember, there should never be
<~ more than one correct answer. Your response should
— not contain anything other than the single letter
< that corresponds to the correct answer. Do not
< include any additional characters or explanations.

Question: {{ input.question }}
{% for label, text in input.choices.items() %}

{{ label }}: {{ text }}
{% endfor %}

46

B Experimental results

5.3. Positive vs. negative formulation

Model Samples Baseline Negative

LLAMA_7B 2500 77.4% £ 1.6% | 79.0% + 1.6%
LLAMA_13B 2500 77.4% + 1.6% | 79.0% £+ 1.6%
LLAMA_70B 2500 92.4% + 1.0% | 92.6% + 1.0%
GPT_35 2500 82.8% £ 1.5% | 81.2% + 1.5%

Table 5.8: Accuracies of LLM models for different prompt variations
Positive vs. Negative Formulation experiment on the ARC dataset.

B 533 COSMO0S

B Prompt templates

1. Baseline:

in the

Select the correct answer to the question by choosing the
—> appropriate label. The response should be based
< solely on the provided context. Each question has a
<~ single correct answer. Your response should
< contain only the letter corresponding to the
< correct answer.

Context: {{ input.context }}

Question: {{ input.question }}

Options:

{/, for label, text in input.choices.items() %2}

{{ label }}: {{ text }}

{% endfor %}

2. Negative:

Select the correct answer to the question by choosing the
<> appropriate label. The response should not be
< based on anything but the provided context.

—> Remember, there should never be more than one

— correct answer. Your response should not contain

47

5. Experiments

< anything other than the single letter that
< corresponds to the correct answer. Do not include
<~ any additional characters or explanations.
Context: {{ input.context }}
Question: {{ input.question 1}}
Options:
{/, for label, text in input.choices.items() %}

{{ label }}: {{ text }}
{% endfor %}

B Experimental results

Model Samples Baseline Negative

LLAMA_T7B 3000 81.2% + 1.4% | 84.0% + 1.3%
LLAMA_13B 3000 81.2% + 1.4% | 84.0% + 1.3%
LLAMA_70B 3000 90.9% £ 1.0% | 91.1% + 1.0%
GPT_35 3000 76.9% £ 1.5% | 76.6% + 1.5%

Table 5.9: Accuracies of LLM models for different prompt variations in the
Positive vs. Negative Formulation experiment on the COSMOS dataset.

B Results analysis

In general, the differences in performance between the baseline and the nega-
tive prompt formulations are negligible and not statistically significant. This
is true across all models and datasets. For example, the TWITTER dataset,
LLAMA_ 7B and LLAMA_ 13B showed slight decreases in accuracy with the
negative formulation, while LLAMA_70B, GPT_35, and GEMINI_PRO
showed slight increases. On the other hand in the ARC dataset, LLAMA_ 7B
and LLAMA_ 13B showed minor improvements with the negative formulation,
while LLAMA__70B showed a minimal increase and GPT__35 showed a slight
decrease. The confidence intervals for all these changes overlap, indicating
that these differences are not statistically significant and could be attributed
to a random variability. Owverall, the results suggest that the impact of
positive versus negative formulation is not consistent across different models
and datasets.

48

5.4. Language correctness

B 54 Language correctness

This section describes the experiments conducted to evaluate the impact of
language correctness on model performance. Two categories of errors were
introduced to the prompts:

® Grammatical errors: These errors include incorrect verb forms, noun-
number agreement mistakes, and other common grammatical issues that
can occur in written English.

B8 Idiomatic errors: These are errors typically made by non-native speak-
ers and include incorrect word order, misuse of prepositions, and other
errors that affect the natural flow of English.

We created three prompt variations for each dataset, one without errors,
one with grammatical errors, and the other with idiomatic errors.

B 541 TWITTER
B Prompt templates

1. Baseline:

Given a tweet, your task is to classify its sentiment
into one of three classes: Positive, Negative, or
Neutral. For tweets containing offensive language,
personal attacks, or inappropriate content,
classify them based on the sentiment of the context
instead of refusing to classify them. If a tweet
does not contain clear sentiment or is primarily
informational, classify it as "Neutral". Keep your
response concise, providing only the selected class
label.

TEILLLELL

Tweet:

{{ sample_text }}

49

5. Experiments

2. With grammatical errors:

Given a tweet, your tasks are classyfy its sentiment into
one of three classes: Positive, Negative, or
Neutral. For tweet containing offensives languages,
personal attacking, or inappropriates content,
classifies them based on the sentiments of the
contexts instead of refused to classify. If a tweet
does not contained clear sentiments or is
primarily informations, classifies it as "Neutral".
Keep you response concise, providing only the
selected class labels.

TLLLLLLL YL

Tweet:

{{ sample_text }}

13

® Incorrect verb forms: “classyfy”, “classifies”, “contained”, “classi-

fies”

® Noun-number agreement: “tasks”, “offensives languages”, “senti-
ments”, “informations”

® Miscellaneous: “Keep you response concise” should be “Keep your
response concise”

3. With idiomatic errors:

Give tweet, task you is classify sentiment into three
classes: Positive, Negative, or Neutral. Tweets
with offensive language, attack personal, or
content not appropriate, classify on sentiment from

context instead deny to classify. If tweet not
having clear sentiment or mainly for information,
put as "Neutral". Keep response short, give only
label class chosen.

TILLL !

Tweet:

{{ sample_text }}

® Incorrect word order: “Give tweet, task you is classify sentiment”,
“give only label class chosen”

® Misuse of prepositions: “classify on sentiment”, “instead deny to
classify”

® Inconsistent verb tenses and forms: “not having clear sentiment”,
“put as Neutral”

50

B Experimental results

5.4. Language correctness

Model Samples Baseline With grammatical errors | With idiomatic errors
LLAMA_7B 5000 81.3% + 1.1% 79.8% + 1.1% 80.8% + 1.1%
LLAMA_13B 5000 81.3% + 1.1% 79.8% + 1.1% 80.8% + 1.1%
LLAMA_70B 5000 83.2% + 1.0% 82.5% + 1.1% 82.4% + 1.1%
GPT_35 5000 75.1% + 1.2% 69.6% + 1.3% 66.1% + 1.3%
GEMINI_PRO 1000 73.5% + 2.8% 72.9% + 2.8% 70.6% + 2.8%

Table 5.10: Accuracies of LLM models for different prompt variations in the
Language Correctness experiment on the TWITTER dataset.

B 542 ARC

B Prompt templates

1. Baseline:

Select the correct answer by choosing the appropriate
< label. Each question has a single correct answer.
< The possible labels are, for example, A, B, C, D, E.
<~ Your response should contain only the letter
< corresponding to the correct answer.

Question: {{ input.question }}

{% for label, text in input.choices.items() %}

{{ label }}: {{ text }}

{% endfor %}

2. With grammatical errors:

select the corrected answer by choosing the appropiate
label. every questions has a single correct answer.
The possibly labels are for example A, B, C, D, E.
your response should contains only the letter
correspond to the correct answer.

>

(%
<_>
(_>

Question: {{ input.question }}

{% for label, text in input.choices.items() %}

{{ label }}: {{ text }}

{% endfor %}

o1

5. Experiments

question has.”

labels.”

Verb form errors: “contains” should be “contain,

should be “corresponding.”

3. With idiomatic errors:

Capitalization errors: “select” should be capitalized.
Spelling errors: “appropiate” instead of “appropriate.”

Singular/plural mismatches: “every questions has” should be “every

Adjective/noun mismatches: “possibly labels” should be “possible

P

correspond”

Choosing the correct answer by selecting label
< appropriate. Every question single correct answer
< has. Labels possible are, for example, A, B, C, D,
— E. Only letter corresponding to answer correct your
< response should contain.

Question: {{ input.question 1}}

{/ for label, text in input.choices.items() %}

{{ label }}: {{ text }}

{% endfor %}

® Inverted syntactic structure: “selecting label appropriate” should
be “selecting the appropriate label.”

® Incorrect verb placement and form: “Every question single correct
answer has” should be “Each question has a single correct answer.”

® Misuse of prepositions and word order: “Only letter corresponding
to answer correct your response should contain” should be “Your
response should only contain the letter that corresponds to the
correct answer.”

B Experimental results

Model Samples Baseline With grammatical errors | With idiomatic errors
LLAMA_ 7B 2500 77.6% £ 1.6% 76.3% + 1.7% 76.1% + 1.7%
LLAMA 13B 2500 77.6% + 1.6% 76.3% + 1.7% 76.1% £ 1.7%
LLAMA 70B 2500 92.3% + 1.0% 92.4% + 1.0% 91.6% + 1.1%
GPT_35 2500 82.8% + 1.5% 81.9% + 1.5% 82.3% + 1.5%

Table 5.11: Accuracies of LLM models for different prompt variations in the
Language Correctness experiment on the ARC dataset.

52

5.4. Language correctness

B 543 COSMOS
B Prompt templates

1. Baseline:

Select the correct answer to the question based on the
< provided context by choosing the appropriate label.
<~ Each question has a single correct answer. The
< possible labels are A, B, C, D. Your response
< should contain only the letter corresponding to the
< correct answer.

Context: {{ input.context }}
Question: {{ input.question }}
Options:

{% for label, text in input.choices.items() %}
{{ label }}: {{ text }}
{% endfor %}

2. With grammatical errors:

select the corrected answer to question based on provided
<> context by choosing the appropiate label. every
< questions has a single correct answer. The possibly
<> labels are A, B, C, D. your response should
< contains only the letter correspond to the correct
) answer.

Context: {{ input.context }}

Question: {{ input.question }}

Options:

{% for label, text in input.choices.items() %}

{{ label }}: {{ text }}
{% endfor %}

53

5. Experiments

3. With idiomatic errors:

Choosing correct answer to question based on provided
— context by selecting label appropriate. Every
<~ question single correct answer it has. Labels
— possible are A, B, C, D. Only letter corresponding
<~ to answer correct your response should contain.

Context: {{ input.context }}

Question: {{ input.question 1}}

Options:

{% for label, text in input.choices.items() %}

{{ label }}: {{ text }}
{% endfor %}

The errors in this section are similar to those in the ARC dataset and their
descriptions are omitted.

B Experimental results

Model Samples Baseline With grammatical errors | With idiomatic errors
LLAMA_ 7B 5000 83.4% + 1.0% 83.9% + 1.0% 81.7% + 1.1%
LLAMA_13B 5000 83.4% + 1.0% 83.9% + 1.0% 81.6% + 1.1%
LLAMA_70B 5000 91.0% + 0.8% 90.4% + 0.8% 90.0% =+ 0.8%
GPT 35 5000 77.4% + 1.2% 77.0% + 1.2% 76.5% + 1.2%

Table 5.12: Accuracies of LLM models for different prompt variations in the
Language Correctness experiment on the COSMOS dataset.

B Results analysis

Across all models and datasets, the introduction of grammatical and idiomatic
errors generally results in slight decreases in performance, but these changes
are mostly not statistically significant.

For the TWITTER evaluation task, GPT__35 shows significant decreases in
accuracy with both grammatical and idiomatic errors (5.5%, 9%), indicating

o4

5.5. Results discussion

a potential sensitivity to language correctness. However, for other tasks,
GPT 35 shows only minor changes that are not statistically significant. Sim-
ilarly, GEMINI__PRO shows a slight decrease in performance with idiomatic
errors (2.9%), but this decrease is not statistically significant due to the
wide confidence interval caused by the smaller sample size for this model.
Moreover, the LLAMA models also show only minor changes in performance.

Overall, the results suggest that the impact of language correctness is
generally minor and inconsistent across different models and datasets.

. 5.5 Results discussion

The results across all models and datasets show that none of the four prompt
engineering recommendations significantly and consistently impacts the qual-
ity of the results.

Specifically:

® Instruction context separation: No statistically significant differences
in performance were observed between the baseline and the variations
using hash separators or triple quotes.

® Instruction itemization: Mixed results were observed, with some mod-
els showing improvements and others showing decreases in performance.
Overall, there was no clear, consistent pattern indicating a significant
impact.

® Positive vs. negative formulation: Differences in performance
between positive and negative formulations were negligible and not
statistically significant.

® Language correctness: Introduction of grammatical and idiomatic
errors generally resulted in slight decreases in performance, with a signif-
icant decrease for GPT __35 on the TWITTER dataset. However, other
changes were mostly not statistically significant.

Despite the seemingly random behavior of the models, we conducted
multiple sanity check experiments to ensure there are no bugs in the evaluation
framework that could affect the results. The first sanity check experiment

55

5. Experiments

was performed on the COSMOS dataset, where we constructed two prompt
variations: a baseline variation identical to the baseline in Experiment [5.4.3|
and a second variation where we intentionally left out the context part of the
prompt, so that the model lacks the context necessary to answer the question.
As expected, the performance of all the models dropped significantly to
around 40%, which is less than half of the correct predictions for the baseline
for all models. As a next sanity check, we took the baseline prompt from
Experiment [5.1.1) and constructed a variation where the entire text from the
instructional part of the prompt was reversed (characters written from end to
beginning). As expected, the accuracy of all models on this task dropped to
0%. This means that we can be confident there are no bugs in the evaluation
process and the seemingly random results might be caused by other factors,
such as the ones described below.

The different accuracies observed for the same model and similar baseline
prompts across datasets can be attributed to the experiments being run at
different times with different random seeds, resulting in different subsets
of samples from the original dataset. The impact of prompt engineering
recommendations can differ greatly among various datasets, highlighting the
importance of optimizing prompts for each dateset separately. This finding
is consistent with the previous research that has shown the importance of
dataset-specific prompt engineering [19]. Similarly, the differences in the
effectiveness of prompt engineering recommendations across models could
be attributed to different sensitivity of models to different types of prompts,
indicating that prompt engineering should be tailored to the specific model
being used.

As a practical consequence, our findings suggest that users of LLMs do not
need to spend unnecessary time trying to strictly adhere to these guidelines
when designing prompts. This can save time and allow for faster experimen-
tation with different prompts and models.

Several factors could explain why no significant signal was found in the
results:

8 Task complexity: For more complicated tasks, such as multiple-choice
question answering that involves context, questions, and answer options,
the impact of minor, algorithmic-like changes to the prompt, might
be less pronounced. The relative ratio of the number of tokens in the
instruction part to the number of tokens in the context part is lower,
possibly making these modifications less important for the model.

® Differences in the nature of evaluation tasks: The different nature
of individual evaluation tasks and the varying abilities of models to

56

5.6. Other observations

solve them effectively could also contribute to the inconsistency in the
results. For instance, simpler tasks like sentiment classification might
be more sensitive to prompt modifications than more complex tasks like
multiple-choice question answering.

B8 False generalization assumptions: Many of the prompt engineering
recommendations have been originally devised for foundational comple-
tion models like GPT-2 or GPT-3. However, they may not be as relevant
for models like GPT-3.5, which have undergone additional training steps
such as supervised fine-tuning and reinforcement learning from human
feedback described in detail in Chapter [2. These additional training
steps may possibly make the models more robust to minor prompt modi-
fications, reducing the impact of these recommendations. Moreover, as
already mentioned, the majority of the prompt engineering literature
available online is focused on models from the GPT family, likely due
to their public availability via ChatGPT, and the general popularity
of the models. Very few online articles mention prompt engineering
recommendations for other models, such as those from the LLAMA or
Gemini series. It is thus questionable how well these recommendations
generalize to other models.

Another speculation is that the results might be more pronounced for
other text-based tasks such as code generation or summarization, where the
quality of the result depends more on the actual instructions given to the
model. However, these tasks are harder to robustly evaluate due to the
lack of inherently computable metrics. In the evaluation tasks we focused
on, especially multiple-choice question answering, it can often be obvious
for the model what to do even without specifying detailed instructions, as
there are not many possible ways to interpret the prompt that contains a
context, question and a set of answer options. This lowers the value of the
instructional part of the prompt which was the subject of our modifications,
although some preliminary experimentation omitted from this chapter showed
that the model still benefits from the instructions to some extent.

. 5.6 Other observations

Throughout the experiments, we encountered several additional observations
that are worth noting. These observations provide insights into the behavior
of the LLMs, the challenges encountered, and the broader implications for
working with these models.

o7

5. Experiments

Firstly, it was challenging to make the models output the answers in the
specified format (e.g., a single word corresponding to the class label). This
difficulty likely arises from the conversational fine-tuning they underwent,
which generally causes the models to output full sentences. Consequently,
we had to develop more robust response parsing algorithms to extract the
actual answer for comparison with the expected sample answer. Notably,
we observed that GPT-3.5 is much more likely to follow the instructions
regarding the expected answer format than other models, and the adherence
of LLAMA models to these instructions increases with the model size.

Another limitation stems from the careful fine-tuning steps engineered
by researchers to minimize the risk of producing harmful or inappropriate
content. For example, in the language correctness experiment on the Cosmos
dataset, the LLAMA 7B model generated the following response to a sample
containing derogatory language:

“I cannot provide a response to that question as it contains harmful
and derogatory language. The use of such language is not acceptable
and promotes a negative and disrespectful attitude towards individu-
als. It is important to treat others with respect and dignity, and to
communicate in a way that is respectful and appropriate. Instead,
1 suggest rephrasing the question in a respectful and appropriate
manner.”

In general, we observed that the tendency of the model to refuse to solve a
task because of inputs that could be deemed inappropriate decreased with
the size of the model. This suggests that larger models are more robust in
correctly perceiving the context in which the inappropriate language appears.

We also noticed a broader issue with the replication of results in the
LLM research domain. Academic literature related to LLM benchmarking,
particularly in the area of prompt engineering, sometimes suffers from low
reproducibility. One contributing factor is the poor quality of accompanying
codebases, which frequently suffer from disorganized code, a lack of experiment
tracking tools, and poor software design skills. Additionally, the reported
metrics in some literature are often not detailed enough and are aggregated
across multiple experiments or datasets without clear descriptions of the
computation methods. Asan example, the work by Mishra et al. [19] illustrates
most of the above problems.

Another finding is that benchmarking with LLMs is inherently challenging,
not because of the complexity of the experiments themselves, but due to the

o8

5.6. Other observations

nature of communication with the models and the reliability of the third-
party services. This underscores the importance of implementing robust
communication mechanisms with retrying and caching. Without such logic in
place, conducting experiments on this scale would be infeasible. Furthermore,
the cost aspect stemming from the decision to interact with models via third-
party APIs also cannot be ignored. Redoing the same LLM calls multiple
times due to the failure of the benchmarking script caused by temporary
network or rate limit errors would quickly add up to a significant cost.
The total expenditure for all experiments conducted while working on this
thesis was around $70, of which approximately $35 was spent on the final
experiments described in this chapter. The latency and cost aspects were
the most significant contributors to the inability to perform experiments
on a larger scale, which might have helped uncover patterns that were not
apparent in the experiments conducted.

In summary, these observations highlight the practical challenges and
considerations when working with large language models.

99

60

Chapter 6

Conclusion

In this work, we developed a comprehensive evaluation framework to assess
the effectiveness of different prompt engineering recommendations for large
language models. Through a detailed survey of existing literature, we identi-
fied four prevalent prompt engineering recommendations: instruction context
separation, instruction itemization, positive vs. negative formulation, and
language correctness. We used these to conduct a series of 12 experiments,
testing the performance of five different LLMs across three evaluation tasks
within the sentiment analysis and multiple-choice question answering domains.

The results of our experiments consistently showed that none of the four
prompt engineering recommendations significantly and consistently impacted
the quality of the model outputs. These findings suggest that users of LLMs
fine-tuned for chat completion may not need to adhere strictly to these
prompt engineering guidelines, potentially saving time and effort in designing
prompts. Our results also underscore the importance of considering specific
tasks and models when applying prompt engineering techniques, as the impact
of these techniques can vary. While the evaluated recommendations did not
demonstrate significant benefits in our experiments, this does not rule out
their potential usefulness in other contexts. Further research is necessary to
explore these hypotheses and better understand the conditions under which
prompt engineering can be most effective.

We hope that the empirically-driven techniques and findings presented in
this work will pave the way towards more effective and practical prompting
techniques in the future.

61

6. Conclusion

B 6.1 Future steps

At last, let us identify some future research directions.

Firstly, we could extend the evaluation scope to different prompt engineering
recommendations that were not studied in this work, which focused only on
four of the most commonly appearing recommendations. For instance, it
would be interesting to investigate how the split between the system prompt
and the user prompt affects model performance and adherence to instructions.
Another interesting way of future research would be to study the effectiveness
of framing prompts as questions versus statements. Some hypotheses suggest
that models may respond differently to a question format (e.g., “What are the
causes of ...?7”) compared to a declarative statement format (e.g., “Describe
the causes of ...”). Furthermore, we could explore combinations of different
recommendations to discover any synergistic effects that might improve model
performance.

Another compelling next step would be to conduct the experiments with
larger volumes of data, potentially using entire datasets, to uncover patterns
that were not apparent with only subsets of them. Next, we could extend the
set of evaluated LLMs to include not only chat models but also foundational
completion models like GPT-2 or GPT-3. This would help test the hypothesis
that additional training steps, such as supervised fine-tuning, make the chat
models more robust to minor prompt modifications. Lastly, we could run
the experiments on more complex evaluation tasks, such as those from code
generation or math reasoning domains, to assess the effectiveness of prompt
engineering recommendations in these areas.

In spite of the remarkable progress in generative Al in recent years, there is
still much work to be done for those of us who aspire to build #ruly intelligent
systems that could be considered artificial general intelligence.

62

1]

Appendix A

Bibliography

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

Daniel Jurafsky and James H. Martin. Speech and Language Processing:
An Introduction to Natural Language Processing, Computational Lin-
quistics, and Speech Recognition. 1st. USA: Prentice Hall PTR, 2000.
ISBN: 0130950696.

Ashish Vaswani et al. Attention Is All You Need. 2023. arXiv:
[03762 [cs.CL].

Jared Kaplan et al. Scaling Laws for Neural Language Models. 2020.
arXiv:[2001.08361 [cs.LGIL

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. 2017. arXiv: [1412.6980 [cs.LG].

Long Ouyang et al. Training language models to follow instructions
with human feedback. 2022. arXiv: |[2203.02155 [cs.CL]}

Tom B. Brown et al. Language Models are Few-Shot Learners. 2020.
arXiv: [2005.14165 [cs.CL].

OpenAl “Introducing ChatGPT”. In: (2022). URL: https://openail
|com/blog/chatgpt.

Hugo Touvron et al. LLaMA: Open and Efficient Foundation Language
Models. 2023. arXiv: [2302.13971 [cs.CL]L

Gemini Team et al. “Gemini: A Family of Highly Capable Multimodal
Models”. In: (2023). arXiv: 2312.11805 [cs.CL]L

Patrick Lewis et al. Retrieval-Augmented Generation for Knowledge-
Intensive NLP Tasks. 2021. arXiv: [2005.11401 [cs.CL]k

63

http://www.deeplearningbook.org
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2005.14165
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2005.11401

A. Bibliography

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

Xavier Amatriain. Prompt Design and Engineering: Introduction and
Advanced Methods. 2024. arXiv: [2401.14423 [cs.SE]l

Jason Wei et al. Chain-of-Thought Prompting Elicits Reasoning in
Large Language Models. 2023. arXiv: |2201.11903 [cs.CL]\

Jessica Shieh. “Best practices for prompt engineering with OpenAI API”.
In: (2023). URL: https://help.openai.com/en/articles/6654000~
|[best-practices-for-prompt-engineering-with-openai-api.

Dair AL “Prompt engineering guide”. In: (2022). URL: https://githubl
lcom/dair-ai/Prompt-Engineering-Guide|

Akash Takyar. “Bridging the Al-human communication gap: A guide
to prompt engineering”. In: (2023). URL: https://www.leewayhertz|
|com/prompt-engineering/|

Xin Cheng. “Large language models and Prompt Engineering”. In:
(2023). URL: https://billtcheng2013.medium. com/large-language-
models-and-prompt-engineering-1ffd381c10c5,

Emiliano Viotti. “Prompt Engineering 101 - I: Unveiling Principles and
Techniques of Effective Prompt Crafting”. In: (2023). URL:
hackernoon.com/prompt-engineering-101-i-unveiling-principles-
land-techniques-of-effective-prompt-crafting,

Swaroop Mishra et al. Reframing Instructional Prompts to GPTk’s
Language. 2022. arXiv: [2109.07830 [cs.CL]|

Mihail Eric. “A Complete Introduction to Prompt Engineering For
Large Language Models”. In: (2022). URL: https://www.mihaileric|
|com/posts/a-complete-introduction-to-prompt-engineering/|

Ansdrew Cantino. “Prompt Engineering Tips and Tricks with GPT-3".
In: (2021). URL: https://blog.andrewcantino.com/blog/2021/04/
|21/prompt-engineering-tips-and-tricks/|

Lianmin Zheng et al. Judging LLM-as-a-Judge with MT-Bench and
Chatbot Arena. 2023. arXiv: [2306.05685 [cs.CL]l

Peter Clark et al. “Think you have Solved Question Answering? Try
ARC, the AI2 Reasoning Challenge”. In: ArXiv abs/1803.05457 (2018).
URL: https://api.semanticscholar.org/CorpusID: 3922816/

OpenAl et al. GPT-4 Technical Report. 2024. arXiv:
[cs.CL]

Lifu Huang et al. Cosmos QA: Machine Reading Comprehension with
Conteztual Commonsense Reasoning. 2019. arXiv:[1909.00277 [cs.CL]\

Srijan Bansal et al. Few-shot Unified Question Answering: Tuning
Models or Prompts? 2023. arXiv: [2305.14569 [cs.CL]|

64

https://arxiv.org/abs/2401.14423
https://arxiv.org/abs/2201.11903
https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-openai-api
https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-openai-api
https://github.com/dair-ai/Prompt-Engineering-Guide
https://github.com/dair-ai/Prompt-Engineering-Guide
https://www.leewayhertz.com/prompt-engineering/
https://www.leewayhertz.com/prompt-engineering/
https://billtcheng2013.medium.com/large-language-models-and-prompt-engineering-1ffd381c10c5
https://billtcheng2013.medium.com/large-language-models-and-prompt-engineering-1ffd381c10c5
https://hackernoon.com/prompt-engineering-101-i-unveiling-principles-and-techniques-of-effective-prompt-crafting
https://hackernoon.com/prompt-engineering-101-i-unveiling-principles-and-techniques-of-effective-prompt-crafting
https://hackernoon.com/prompt-engineering-101-i-unveiling-principles-and-techniques-of-effective-prompt-crafting
https://arxiv.org/abs/2109.07830
https://www.mihaileric.com/posts/a-complete-introduction-to-prompt-engineering/
https://www.mihaileric.com/posts/a-complete-introduction-to-prompt-engineering/
https://blog.andrewcantino.com/blog/2021/04/21/prompt-engineering-tips-and-tricks/
https://blog.andrewcantino.com/blog/2021/04/21/prompt-engineering-tips-and-tricks/
https://arxiv.org/abs/2306.05685
https://api.semanticscholar.org/CorpusID:3922816
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/1909.00277
https://arxiv.org/abs/2305.14569

Appendix B

Attachments

Name ‘ Description

experiments/ | Source definitions of the conducted experiments.
src/ Source code of the evaluation framework.
tests/ Unit tests for the evaluation framework.
.example.env | Example environment file.
pyproject.toml | Poetry project configuration file.
README.md | Project README file.

Table B.1: Thesis source code repository structure.

This thesis has one attachment - a compressed archive that contains the
source code of the evaluation framework used to conduct the experiments.
Table lists the directories and files in the root directory of the archive
along with their short description.

65

	Project Specification
	Introduction
	Thesis outline

	Theoretical foundations
	Transformer architecture
	Pre-Transformer architectures (RNNs, LSTMs)
	Architecture and training

	Large language models
	Training process
	Selection of LLMs
	Applications of LLMs

	Prompt engineering
	Prompt template syntax
	Existing prompt engineering recommendations

	Evaluation methodology
	Evaluation tasks
	Selected datasets

	Prompt design
	Model selection
	Selected LLMs
	Hyperparameter selection

	Execution and evaluation

	Implementation
	Languages and tools
	Experiment execution
	LLM provider API integration
	Caching strategy
	Experiment definition and tracking
	Statistical evaluation methodology

	Experiments
	Instruction context separation
	TWITTER
	ARC
	COSMOS

	Instruction itemization
	TWITTER
	ARC
	COSMOS

	Positive vs. negative formulation
	TWITTER
	ARC
	COSMOS

	Language correctness
	TWITTER
	ARC
	COSMOS

	Results discussion
	Other observations

	Conclusion
	Future steps

	Bibliography
	Attachments

