
F3 Faculty of Electrical Engineering
Department of Computer Science

Master’s Thesis

Data flow structuralization and
visualization in the scope of
enterprise integration platform

Bc. Marek Mičkal
Open Informatics, Software Engineering

May 2024
Supervisor: Ing. Karel Frajták, Ph.D.

Acknowledgement / Declaration

I would like to express my gratitude
to my supervisor, Ing. Karel Frajták,
Ph.D., and the external examiner, Ing.
Pavel Kostelník, Ph.D., for their profes-
sional guidance and support throughout
the development of this thesis.

I am also thankful to ON Semicon-
ductor for allowing me to pursue my re-
search at their institution. I am par-
ticularly grateful to the entire middle-
ware team for their collaboration and
generously sharing their expertise with
me, which has been instrumental in my
growth and learning.

Lastly, I would like to thank my fam-
ily and friends for their unwavering sup-
port and encouragement throughout my
studies.

I declare that I have completed the
submitted work independently and have
listed all the information sources used
per the Methodological Guidelines on
adhering to ethical principles in the
preparation of university final theses.

In Prague 15. 5. 2024

. .

v

Abstrakt /

Diplomová práce se zabývá tím, jak
vyvinout strukturalizaci pro datové
integrace v rámci specifické integrační
platformy a jak na základě této struktu-
ralizace následně vytvořit vhodný model
vizualizace, který bude použitelný pro
širokou škálu datových integrací im-
plementovaných v rámci platformy.
Tato platforma, součást společnosti ON
Semiconductor, představuje distribuo-
vanou middleware platformu, zahrnující
více než 4000 integrací.

Práce začíná stručným úvodem a
vymezením svých cílů, následovaný po-
drobnou kapitolou metodologie, která
popisuje metody a postupy použity
během vývoje práce. Následně se práce
zabývá diskusí o problémech souvise-
jících s datovými integracemi, čímž
poskytuje základní znalosti nezbytné
pro komplexní porozumění dané proble-
matice.

Další kapitola, věnující se analýze
problematiky úzce spjaté se zadáním,
obsahuje podrobný průzkum, zamě-
řující se na popis samotné platformy,
seznámení s integračním frameworkem
Apache Camel a průzkum existujících
řešení. Následuje kapitola o implemen-
taci, která poskytuje podrobný popis
procesu vývoje, včetně popisu vzniklých
komplikací a nalezených řešení.

Poté práce přináší kapitolu o dosa-
žených výsledcích společně s popisem
vzniklé vizualizace, její vlastnosti a
možnosti, které nabízí. Tato kapitola
také shrnuje a hodnotí tyto výsledky
především na základě uživatelského
testování.

Závěrečná část práce přináší reflek-
tivní závěr práce jako celku, shrnující
hlavní zjištění a navrhující možnosti
pro budoucí výzkum a zdokonalení
existujícího řešení.

Klíčová slova: integrace dat, datové
toky, vizualizace datových toků, vizuali-

zace datových integrací, strukturalizace
datových integrací, distribuovaný mid-
dleware, Apache Camel

Překlad titulu: Strukturalizace a vi-
zualizace datových toků v rámci firemní
integrační platformy

vi

Abstract /

This thesis attempts to develop a
structuralization of data integrations
within a custom integration platform,
subsequently developing a suitable vi-
sualization model to encompass a wide
array of data integrations implemented
within the platform. This platform,
a component of ON Semiconductor,
represents a distributed middleware
enterprise platform encompassing over
4000 integrations.

The thesis begins with a brief intro-
duction and outline of its objectives,
followed by a detailed methodology
chapter delineating the approach em-
ployed throughout the thesis develop-
ment. Subsequently, the thesis delves
into a discussion on the issues rele-
vant to data integration, furnishing
fundamental knowledge crucial for a
comprehensive understanding of the
problematics.

Next, the Problem Analysis chapter
presents a comprehensive exploration,
focusing on describing the platform,
outlining the Apache Camel frame-
work, and surveying existing solutions.
The Flowwing Implementation chapter
provides an in-depth report of the de-
velopment process, including challenges
encountered and solutions devised. It
concludes the development part with a
chapter detailing the results and pre-
senting the implemented visualizations,
their features, and insights from user
testing.

The thesis ends with a reflective con-
clusion, summarizing the essential find-
ings and proposing avenues for future re-
search and enhancement.

Keywords: data integration, data
flow, data flow visualization, data inte-
gration visualization, data integration
structuralization, distributed middle-
ware, Apache Camel

vii

Contents /

1 Introduction 1
1.1 Motivation 1
1.2 Goal 1

2 Methodology 3
2.1 Thesis Structure 3
2.2 Problem Analysis Research . . . 4
2.3 Implementation Methodology . . 4
2.4 Methodology Behind the Design . 4
2.5 User Testing Methodology 4

3 Data Integration 5
3.1 Context of Data Integration . . . 5

3.1.1 Importance of Data In-
tegration 5

3.1.2 Evolution of Data In-
tegration 6

3.1.3 Challenges in Data In-
tegration 7

3.1.4 Semantic and Struc-
tural Discrepancies 7

3.1.5 Deduplication and Da-
ta Quality 8

3.1.6 Privacy 8
3.2 Models of Data Integration . . . 9

3.2.1 Federated Database
System (FDBS) 9

3.2.2 Data Warehouse (DW) . . 10
3.2.3 Mediators 12
3.2.4 Polystore Systems 13
3.2.5 Comparison 13

3.3 Data Platform 14
3.3.1 Data Platform Structure . 14
3.3.2 Data modeling 15

3.4 Key concepts of Data Inte-
gration 16

3.4.1 ETL, ELT and Re-
versed ETL 17

3.4.2 Data Quality 18
3.4.3 API and Services 20
3.4.4 Batch Processing and

Data Streaming 20
3.4.5 Scheduling 20

3.5 Solutions for Data Integration . 20
3.5.1 Service-oriented Archi-

tecture - SOA 20
3.5.2 Microservices 22

3.5.3 Middleware 22
3.6 Notable Integration Platforms . 25

3.6.1 Talend 25
3.6.2 Informatica Power Center . 26
3.6.3 Talend and Informati-

ca Comparison 26
3.6.4 Other Platforms 26

4 Problem Analysis 28
4.1 Onsemi Middleware Platform . 28

4.1.1 Onsemi Middleware
Architecture Overview . . . 28

4.1.2 Onsemi Middleware
Environments 28

4.2 Used Data Integration
Frameworks within the
Platform 29

4.2.1 Generic framework 29
4.2.2 Apache Camel Framework . 29

4.3 Apache Camel 29
4.3.1 The Functional Archi-

tecture of Apache Camel . 30
4.4 Existing Solutions for Data

Flow Visualization 32
4.4.1 MuleSoft’s Anypoint

Platform 32
4.4.2 Oracle Integration

Cloud (OIC) 33
4.4.3 Apache Camel Karavan . . 33
4.4.4 Possible Utilization of

Existing Solutions 34
4.5 Applicable Techniques for

Data Flow Visualization 34
4.5.1 Proposed Technique

for the Generic Framework 34
4.5.2 Alternative Techniques

for the Camel Framework . 35
5 Implementation 37

5.1 Used Technology 37
5.1.1 Development Approach . . 37
5.1.2 Technologies and Tools

used for Implementation . . 37
5.2 Data Flow Visualization for

Generic Framework 39
5.2.1 Architectural overview . . . 39
5.2.2 Backend Model 39

viii

5.2.3 Frontend Model 42
5.3 Data Flow Visualization for

Camel Framework 47
5.3.1 Backend Model 47
5.3.2 Frontend Model 50
5.3.3 Interconnection be-

tween the Models 51
6 Work Results and Evaluation 53

6.1 Data Flow Visualization of
the Generic Framework 53

6.1.1 Initial Screen 53
6.1.2 Key Infromation Card . . . 54
6.1.3 SQL Card 54
6.1.4 SQL Statement Card . . . 55
6.1.5 Connection Forms 55
6.1.6 Properties Card 56
6.1.7 Database to Database

Mapping Card 57
6.2 Data Flow Visualization of

the Camel Framework 57
6.2.1 Structure 58
6.2.2 Properties 58
6.2.3 Database Endpoints 59
6.2.4 Delivery Event Endpoints . 59

6.3 User Testing 60
6.3.1 Methodology 60
6.3.2 Generic Visualization

Testing 61
6.3.3 Camel Visualization

Testing 63
6.4 Evaluation and Contribution . 64

6.4.1 Generic Framework Vi-
sualization Evaluation . . . 64

6.4.2 Generic Framework Vi-
sualization Conclusion . . . 65

6.4.3 Camel Framework Vi-
sualization Evaluation . . . 65

6.4.4 Camel Framework Vi-
sualization Conclusion . . . 65

7 Conclusion 67
7.1 Future Work 68

7.1.1 Advancing the Generic
Framework Visualization: . 68

7.1.2 Advancing the Camel
Framework Visualization: . 68

7.1.3 Scaling User Testing: . . . 68
References 69

A Additional Camel Integra-
tion Visualizations 73

B Abbreviations and symbols 76
B.1 Abbreviations 76

ix

Tables / Figures

3.1 Comparison of Data Integra-
tion Models . 14

3.2 Comparison of Traditional
and Big Data Modeling 16

3.3 Difference Between ETL and
ELT . 18

3.4 ETL, ELT and Reverse ETL
Differences . 19

3.5 Comparison of Batch Pro-
cessing and Data Streaming . . . 21

3.6 Comparison of SOA and Mi-
croservices . 23

3.7 Comparison of Different Pos-
sible Architecture Designs in
Middlewares . 25

3.1 FDBS architecture 10
3.2 DW architecture 11
3.3 DW Top-down Approach 12
3.4 DW Bottom-up Approach 12
3.5 Mediator architecture 13
3.6 Polystore architecture 13
3.7 Industrial Data Platform 15
4.1 Anypoint Studio Integration

Example . 33
4.2 OIC Integration Example 33
4.3 Camel Karavan Integration

Example . 34
5.1 Architectural Overview for

Generic Data Flow Visual-
ization . 39

5.2 Generic Backend Model Ar-
chitecture . 40

5.3 Figma prototype for Generic,
phase I . 43

5.4 Figma prototype for Generic,
phase II . 45

5.5 Figma prototype for Generic,
phase III . 46

5.6 Figma form prototype for
Generic, phase III 46

5.7 Backend model architecture
for capturing Camel integra-
tion structure 48

5.8 Overall Architecture of Cap-
turing XML Structures for
Camel integration 52

6.1 Example of Data Flow Visu-
alization of Generic Frame-
work . 54

6.2 Example of SQL Card Visu-
alization . 55

6.3 Example of SQL Statement
Card Visualization 55

6.4 Example of FTP Conenction
Form . 56

6.5 Example of Properties Card . . . 56
6.6 Example of Mapping Card. 57
6.7 Example of Camel Integra-

tion Flow . 57

x

6.8 Example of Camel Integra-
tion Exception Handling
Configuration 58

6.9 Example of Properties De-
tails within Camel Visualiza-
tion . 59

6.10 Example of SQL Card for
Camel Visualization 59

6.11 Example of Delvery Event
Form for Camel Visualization . 60

xi

Chapter 1
Introduction

1.1 Motivation
In the daily fabric of professional industries, data integration harmonizes disparate
information sources, rendering each data point valuable and essential contributor to the
cohesive functioning of diverse work environments, irrespective of industry distinctions.
That is why data integration is a crucial part of various industries worldwide.

Making such integrations functional and practical can be a complex process. The
data flow begins with obtaining the data from premises, edge devices, the cloud, or
streaming data sources. Then, the data must be transformed to its usable form since
the format of stored data differs from the intended format of the delivered data. Before
the delivery, the whole process must be kept secure and resistant to failures.

Other essential principles of data integration, such as flexibility and scalability, must
be achieved to implement a well-functionally data integration framework. Solutions
like SOA - Service-oriented architecture, ESB - Enterprise service bus, microservices
architecture, middleware, event streaming, enterprise messaging, and more can realize
these principles.

Specific platforms such as Informatica1 or Talend2 embody these concepts to offer
comprehensive data integration solutions. However, it is worth noting that many com-
panies develop custom integration platforms tailored precisely to their unique needs,
allowing them to align their integration strategies closely with their business require-
ments.

The insights gained from data integrations must be accessible to a broader audi-
ence, including non-technical stakeholders. Visualization can help with that. More-
over, visualization helps qualified experts use specific integration platforms smoothly
and effectively.

Topics mentioned above will be further discussed in subsequent chapters, followed by
a chapter focused on the implementation.

1.2 Goal
The primary objective of this thesis is to develop a structured framework for represent-
ing various data integration within corporate software infrastructures. This framework
addresses the critical challenge of maintaining clarity amid heterogeneous data envi-
ronments by providing a standardized approach to visualizing integration flows. By
analyzing existing data integration structures, the thesis seeks to create a visual in-
terface that enhances comprehensibility and facilitates efficient navigation within the
integration platform.

1 https://www.informatica.com
2 https://www.talend.com

1

1. Introduction .
Collaborating with ON Semiconductor Czech Republic, s.r.o., this study aims to delve

into the technological backbone of the company’s integration platform, which boasts
around 4000 active integration flows and handles approximately 5 TB of daily network
traffic.

This thesis will thoroughly analyze data flows within the existing platform, which is
underpinned by technologies such as the Spring framework, Apache Camel, and Hazel-
cast. Building upon this analysis and supplementary research, the thesis aims to create
a structured and standardized framework for representing existing data integrations
within the company’s platform. This methodological blueprint will not only guide the
development of an experimental software solution but will also inform the analytical
process to identify and employ the most apt methods and techniques for such a trans-
formation.

The implementation phase of this master’s project is assessed with a task to harness
the capabilities of automation tools to accurately map and exhibit a significant seg-
ment, if not all, of the integration flows. The universality of the software solution is
paramount. It must cater to the diverse landscape of integration groups and subgroups,
accounting for the nuances of the technologies employed, data formats utilized, and the
various protocols and techniques in play.

The envisaged extension to the existing integration platform is set to augment user
interaction, providing a visual interface for data flows that enhances comprehensibility
and, consequently, could alleviate the workload on the platform’s integration team. As
the platform expands with new data integrations, this tool is anticipated to strengthen
its efficiency and performance.

In its closing, the thesis will evaluate the benefits of the implementation through
testing with an independent user sample, applying a meticulously chosen methodology.
The findings from this evaluation will present the practical benefits and the impact of
the visual and structural enhancements on users’ interaction with the data integration
platform.

2

Chapter 2
Methodology

In this chapter, the thesis delves into the methodologies and strategies meticulously
selected and applied throughout this thesis. The primary aim is to explain the creation
of a visualization representing the data flow within a custom integration platform.

To achieve this, the thesis begins by addressing the overarching challenges associated
with data integration. Subsequently, the thesis meticulously details the journey from
the initial problem analysis through the stages of implementation and culminates in
the presentation of our final results.

This chapter aims to provide a comprehensive overview of the methodological un-
derpinnings that have guided the thesis in achieving its goals, offering readers a clear
insight into the depth of the chosen approach.

2.1 Thesis Structure

The thesis follows a structured approach designed to address the complexities of data
integration visualization systematically. It begins with an introductory chapter 1 that
briefly outlines the problematics and articulates the overarching goal of the thesis.
Followed by this methodological chapter.

The next chapter, Data Integration 3, aims to lay the foundational theories essential
for understanding the complexities of data integration. While this theoretical chapter
offers essential insights, the thesis remains accessible even without a deep dive into this
section.

The subsequent portion of the thesis is dedicated to the comprehensive work taken
to fulfill the thesis goal. Divided into three chapters, this segment logically explains the
process behind crafting the solution. The first of these chapters, 4 Problem Analysis,
initiates the discourse by conducting an in-depth analysis of the identified problematics
and proposing fundamental ideas for addressing it. Following this, the Implementation
chapter 5 delineates the steps taken to translate these conceptualizations into a tangible
product. Finally, the Work Results and Evaluation chapter 6 provides a comprehensive
overview of the developed visualization’s functionalities, aesthetics, and results evalua-
tion. This chapter also underscores the contributions of the visualization, thus serving
as a culmination of the procedural segment of the thesis.

The thesis concludes with a dedicated chapter 7 synthesizing the essential findings
and discussing potential avenues for future research.

Beyond the main body of the thesis, formal requirements such as literature citations,
the thesis assignment, glossary, and additional screenshots of the final visualization are
presented in the References and Appendix sections, respectively.

This meticulous structuring should ensure clarity and coherence throughout the the-
sis, facilitating a comprehensive understanding of the undertaken research.

3

2. Methodology .

2.2 Problem Analysis Research
Two main components were crucial in the research phase outlined in the problem anal-
ysis. Firstly, to investigate the custom integration platform, consultation with experts,
examination of Confluence pages, and code reading were conducted. Secondly, research
on the Apache Camel framework was undertaken, primarily relying on the second edi-
tion of the book Camel in Action - [1].

2.3 Implementation Methodology
An iterative approach was adopted for the implementation methodology, progressing
step by step, with tasks tracked using the Jira system. Throughout the development
process, consultations with other developers were conducted to ensure the delivery of a
suitable product and high-quality code. Knowledge gained during studies was utilized,
from developing the architecture to its implementation.

2.4 Methodology Behind the Design
The design process was iteratively developed and adjusted based on feedback received.
Initial prototypes were created using the Figma tool. The decision was made to pursue
a simple design to accommodate the diverse users worldwide. The color scheme was
selected to align with the company’s branding while creating a visually appealing and
fresh design. The reliable structure provided by Camel Karavan served as a basis for
inspiration, ensuring that the custom Camel integration design incorporated established
principles from a trusted source. Insights from relevant articles like [2] and [3] were
integrated into the methodology to enhance the design process.

2.5 User Testing Methodology
The final testing phase encompassed two distinct user groups, each tailored to the
intended audience for the respective visualizations. However, it is essential to note
that while these visualizations cater to specific user types, they are designed to provide
valuable insights to a wide range of users.

Visualize of Generic integration testing was conducted with users who manage these
integrations but may not possess extensive technical expertise in data integrations. This
testing took the form of task-based scenarios with observation and solicited feedback.

Conversely, the visualization for Camel was tested with experts familiar with the
logic behind their integrations and integration developers. Participants were allowed to
interact with the visualization, provide feedback, and engage in a brief discussion.

Throughout the testing process, careful consideration was given to the subject’s work
environments, and a well-thought approach was employed, drawing upon insights from
the course about psychology in human-computer interaction gained during studies.

4

Chapter 3
Data Integration

This chapter discusses the whole concept of data integration, the platforms for storing
data, and critical concepts necessary for functional data integration. Furthermore, it
provides insight into integration solutions and platforms that use such solutions. The
latter part of this chapter addresses the modern challenge of big data integration.

To clearly understand the discussed problematics, it is essential to know what data
integration is. Data integration is the systematic process of consolidating and trans-
forming data from diverse sources into a unified, cohesive format. The primary goal
is to provide users with seamless and standardized access to various data subjects and
structures. This practice is driven by the need to meet the informational requirements
of various applications and business processes.

3.1 Context of Data Integration
This context serves as a comprehensive introduction, offering a broad overview that
signals the forthcoming exploration of foundational aspects and background to the
reader. This section will delve into the importance, evolution, use cases, and challenges
related to data integration, providing a better understanding of its role in the data
landscape.

3.1.1 Importance of Data Integration
In the modern world, data has become the lifeblood of nearly every aspect of our daily
lives. From personal activities to business operations, we rely on data to advise deci-
sions, drive innovations, and enhance efficiency. Nowadays, data are primarily stored
and processed through electronic platforms. Therefore, effective data management,
which includes data integration, has become essential.

Enterprises and organizations, in particular, navigate extensive volumes of data gen-
erated from various sources, such as customer interactions, transactions, and opera-
tional processes. The challenge lies in collecting this data and, more importantly, in
extracting meaningful insights from it. That is why data integration emerges as a
critical factor in ensuring that businesses can harness the full potential of their data.

To further clarify the importance of data integration, some vital benefits that show-
case its indispensable role in the modern industry landscape follow.. Increased reach and impact

Participating in a data integration project increases the accessibility of one’s data,
allowing it to reach a wider audience and have a more significant impact.[4]

. Clear attribution and credit
A data integration system can be structured to maintain clear attribution of data,
even when results are compiled from multiple sources, ensuring appropriate credit is
given to the data owners.[4]

5

3. Data Integration .
. Error reduction and efficiency

Manual data gathering involves the risk of human errors. In contrast, data integra-
tion minimizes these errors by automating the process, resulting in not only reducing
the burden of double-checking but also enhancing overall efficiency.[5]

. Improvement of data quality
The integration process is designed to identify and address data issues automatically.
Continuous improvements contribute to more accurate data and analysis, ensuring
the organization works with reliable and high quality.[5]

. Accelerated insight time
Data integration facilitates rapid access to information, enabling swift analysis. This
agility is vital for timely decision-making.[6]

. Reduction of data silos1

Data integration combines information from diverse sources and systems, present-
ing a unified perspective. This dismantling of data silos enables organizations to
eliminate redundancies and inconsistencies that typically result from isolated data
sources.[6]

. Data-driven innovation
Integrated data exposes hidden patterns, trends, and opportunities that may remain
unnoticed when operating with enterprise data scattered across disparate systems.[6]

3.1.2 Evolution of Data Integration
The evolution of data integration is a testament to the adaptability and ingenuity in the
face of growing data complexity and technological advancements. From the early days
of manual, labor-intensive processes to the current era dominated by algorithms and
artificial intelligence, data integration has continuously evolved to meet the increasing
demands for efficient and effective data management solutions.

. The First Age: The Years of Humans [7]
In the earliest days of data integration, the process was predominantly manual,
involving significant human effort to integrate data from multiple sources. This
period was marked by structured metadata and rule-based systems, where human
operators played a crucial role in matching, merging, and harmonizing data sources
to achieve a unified data view.[8, 7]

. The Second Age: The Years of Algorithms Assisting Humans [7]
As the digital age progressed, the diversity and volume of data sources expanded.
This era saw the advent of algorithms designed to assist humans in the data inte-
gration process. Information retrieval techniques, graph theory, and early machine
learning approaches provided much-needed support. Conceptual frameworks like
match operators and similarity matrices facilitated more structured and efficient
data integration processes. Mediators and polystore systems emerged to manage the
increasing diversity and volume of data sources, adapting to handle both structured
and unstructured data.[8, 7]

1 Data silo refers to an isolated set of data within a single department from the rest of the organization.

6

. 3.1 Context of Data Integration

. The Third Age: One Algorithm to Rule Them All [7]
The most recent phase in the evolution of data integration has been defined by
the rise of machine learning and deep learning technologies. These technologies
have shifted the paradigm from human-centric to algorithm-driven processes, where
data from an ever-widening array of sources, including unstructured data, can be
integrated with minimal human intervention. Prototypical systems like ADnEV [9]
and PoWareMatch[10] illustrate the potential of combining human insights with al-
gorithmic precision, leveraging deep learning to navigate the complexities of modern
data ecosystems. This era envisions a collaborative ecosystem where deep learning
algorithms and human insights combine to achieve more accurate and efficient data
integration processes.[7]

. The Future of Data Integration
The data integration field is poised for further evolution, driven by the relentless
growth in data complexity and the continuous innovation in computational technolo-
gies. The integration of advanced AI models, such as deep learning and foundation
models, into data integration practices, offers promising avenues for further advance-
ment. Managing data lakes and integrating diverse data types pose ongoing chal-
lenges that require innovative solutions, emphasizing the need for data integration
systems.[7]

Additionally, federated learning emerges as a novel paradigm with the potential
to revolutionize data integration by facilitating collaborative model training across
diverse data ecosystems without compromising data privacy. Integrating federated
learning into data integration practices heralds a future where data integration be-
comes more decentralized, privacy-focused, and inclusive of diverse data types and
sources. This progression promises to enhance the capability of data integration sys-
tems to deliver actionable insights, driving informed decision-making across various
domains.[11]

3.1.3 Challenges in Data Integration

Integrating disparate data sources into a cohesive and functional system presents many
challenges. These obstacles originate from semantic and structural discrepancies among
various data models and contain broader issues related to data organization, quality,
privacy, and infrastructure technology. This section delves into the multifaceted chal-
lenges of data integration, shedding light on the semantic and structural hurdles and the
logistical and procedural issues organizations face in creating integrated data systems.

3.1.4 Semantic and Structural Discrepancies

The challenge of semantic and structural discrepancies in data integration arises from
the diverse nature of data sources, each using different schemas, naming conventions,
and structures. The mappings between data sources and the unified schema are cate-
gorized into three models:

. GAV (Global As View)
GAV approaches define a global schema as a view of the source schemas. It uses local
schemas to describe intermediate schemas. Adjustments in source schemas require
updates in the global schema and mappings, leading to potential maintenance issues
as the number of data sources grows.[12]

7

3. Data Integration .
. LAV (Local As View)

Contrastingly, LAV describes each source schema as a view over the global schema,
easing the integration of new data sources. This flexibility, however, increases
the complexity of query processing, as queries against the global schema must be
reformulated into executable queries against the local schemas.[12]

. GLAV (Global and Local As View)
GLAV combines GAV and LAV advantages, offering a flexible framework for data
integration by accommodating a variety of source schemas and facilitating easier ad-
justments to data environment changes. This approach helps balance GAV’s rigidity
and LAV’s query processing complexity.[12]

To further address this challenge, the LSTM unfolding model is used for efficient
data matching.

. LSTM (Long Short-Term Memory) [12]
LSTM introduces a dynamic approach to addressing the semantic and structural
discrepancies in data integration through advanced data matching techniques. This
method stands out for its adaptability and learning capabilities, essential in recogniz-
ing and reconciling the diverse representations of data entities across various sources.
LSTMs have been successfully applied in various tasks, becoming the most cited
neural network of the 20th century.[12]

A standard LSTM cell comprises several key components: a unit, an input gate, an
output gate, and a forget gate. This structure allows the cell to maintain information
over varying time periods. The three gates within the cell input, cell output, and cell
forge control the information’s flow, enabling it to effectively remember values across
time intervals.[12]

3.1.5 Deduplication and Data Quality
Deduplication directly addresses eliminating redundant data within an integrated
dataset, a process crucial for maintaining data quality and integrity. Deduplication
involves identifying and removing duplicate records that might appear when merging
datasets from various sources. This task is particularly challenging due to discrep-
ancies in data representation across different systems, such as variations in naming
conventions or formats.[12]

There are known methods for matching data, such as blocking approaches. These
methods process all records in the datasets, inserting each record into one or more
blocks, within which all pairs are considered candidate records, which potentially refer
to the same entity. However, they can have a problem in cases like when there are
several records with the same record. This comparison between all records additionally
creates a large search space.[12]

Therefore, article [12] proposes a new method that reduces the search space by relying
on integrating the data in the form of a graph. This makes the search process easier
by searching for records that share the same entity. Followed by a cosine similarity
algorithm to calculate the similarity between the related entities.[12]

3.1.6 Privacy
Maintaining data privacy during data integration involves navigating complex land-
scapes, technological constraints, and organizational policies to protect sensitive infor-
mation from unauthorized access or violations. The General Data Protection Regulation

8

. 3.2 Models of Data Integration

(GDPR) sets out key principles for processing personal data, including purpose limi-
tations (collecting data for specific explicit reasons), accuracy, storage limitation, and
more. These principles directly impact the organization’s IT systems. However, no
single product can address all privacy concerns, so organizations must ensure their
solutions work together to achieve accurate GDPR compliance.[13]

Notable privacy challenges include:

. Limiting Data Ownership and Access
Establishing clear data ownership and access controls helps prevent unauthorized
data sharing. Policies should dictate who can access data, under what circumstances,
and the protocols for sharing data both internally and externally.[14]

. Sensitivity of Aggregated Data
Special attention should be given to the aggregation of data from multiple sources,
which can inadvertently reveal sensitive information.[14]

3.2 Models of Data Integration

This section delves into the crucial milestones in the development of data integration
strategies, tracing the path from federated database systems and data warehouses to
the advent of mediators and the emergence of polystore systems. Each model represents
a critical response to the unique challenges posed by the data landscapes of their time,
reflecting shifts in technology, data management needs, and the overarching goal of
maximizing the value of integrated data.

3.2.1 Federated Database System (FDBS)

FDBS embodies an integration model that unifies a collection of cooperative yet au-
tonomous database components. This model is built on the principle that each partic-
ipating database retains its independence while contributing to a collective repository
accessible through a federated system. The backbone of FDBS is the federated database
management system (FDBMS), which acts as middleware. This system orchestrates the
interaction between disparate databases, facilitating a seamless integration process.[8]

The architecture of FDBS 3.1 is structured around five key schema levels, which
provide a multi-layered approach to data integration:

. Local Schema: Defines the conceptual schema in the native data model of each com-
ponent database.[8]. Component Schema: Translates the local schema into a canonical or common data
model.[8]. Export Schema: Represents a subset of the component schema that’s made available
for federation, incorporating access control mechanisms.[8]. Federated Schema: Aggregates multiple export schema to form a comprehensive
view of the integrated data.[8]. External Schema: Offers customized views of the federated data tailored to specific
user requirements or applications.[8]

9

3. Data Integration .

Figure 3.1. FDBS architecture [8]

An essential aspect of FDBS is its provision of specialized processors that facili-
tate information mapping between the underlying data sources.[8] These processors are
crucial for:. Transforming internal command languages into the local query languages of the re-

spective databases.[8]. Filtering operations based on the access controls defined within the export schema,
ensuring that only permitted actions are executed on a given component.[8]. Constructing the unified view through query decomposition and data merging.[8]
This layered architecture and the sophisticated processing capabilities of FDBS un-

derscore its effectiveness in managing complex data integration scenarios. By main-
taining the autonomy of individual databases while providing a unified access point,
FDBS addresses the challenges of integrating diverse data sources in a distributed and
heterogeneous computing environment.[8]

3.2.2 Data Warehouse (DW)
A data warehouse integrates diverse data sources into a cohesive and structured reposi-
tory under a unified schema.[15] Typically represented by a relational database located
on the mainframe or cloud of an enterprise.[8] Data warehouses are based on four fun-
damental characteristics:. Subject-Oriented: They focus on specific subject areas (e.g., sales, customer interac-

tions), allowing for targeted analysis and efficient data organization.[8]. Integrated: Data warehouses consolidate data from diverse sources, ensuring consis-
tency and compatibility across different data types and locations.[8]. Nonvolatile: Once data is entered into a data warehouse, it remains unchanged.[8]. Time Variant: Data within data warehouses is associated with time stamps, enabling
tracking over defined periods.[8]
These core attributes underscore the DW’s role in facilitating structured, reliable

data analysis across various dimensions of business operations.
There have been many different DW architectures over time. The basic generalized

architecture of DW, depicted in figure 3.2 can be represented by:. Data Sources
The origin points from which data is sourced. This includes:
. Operational Systems: Systems used to process the day-to-day transactions of an

organization, facilitating the management of business operations. [16]
. Flat Files: Systems of files where transactional data is stored, with each file in the

system having a unique name. [16]

10

. 3.2 Models of Data Integration

. Central Warehouse
The main repository for storing data after they are processed and structured for
analysis.

. Platform
Interfaces and tools that enable end-users to perform data analysis, reporting, and
mining, are often supported by online analytical processing (OLAP) engines for mul-
tidimensional analysis.[8]

Figure 3.2. DW architecture [8]

The choice of architecture, ranging from virtual warehouses and data marts to com-
prehensive enterprise warehouses, is tailored to meet an organization’s specific analytical
needs and business requirements.

Another perspective on the architecture of data warehouses focuses on the method-
ologies involved in their construction, highlighting two main approaches: the top-down
approach and the bottom-up approach. This viewpoint examines the strategies behind
building a data warehouse, each with its unique advantages and implications for how
data is integrated, processed, and made available for analysis.

. Top-down Approach
This method starts with establishing a centralized data warehouse as the core repos-
itory, encompassing the entire organization’s data. This central data warehouse then
serves as the foundation from which specific data marts are derived, each tailored
to particular business functions or requirements. This approach ensures consistency
across data marts, providing a unified dimensional view that facilitates comprehen-
sive business intelligence and decision support across the organization. The top-down
approach is lauded for its robustness, making it suitable for large-scale enterprises
undergoing frequent business changes.[15]

Figure 3.3 depicts the structure of the top-down architectural approach, where
the ETL, further described in section 3.4.1, represents the staging process.

11

3. Data Integration .

Figure 3.3. DW Top-down Approach [15]

. Bottom-up Approach
This strategy advocates for starting the data warehouse construction by first devel-
oping individual data marts focused on specific business areas. These data marts
are designed to address immediate analytical needs and provide rapid reporting ca-
pabilities. Over time, these data marts are integrated to form a comprehensive data
warehouse. The bottom-up approach allows for quicker realization of benefits and
offers greater flexibility, making it particularly appealing for organizations looking to
build their data warehousing capabilities incrementally.[15]

Figure 3.4 depicts the structure of the bottom-up architectural approach, where
once again the ETL 3.4.1, represents the staging process.

Figure 3.4. DW Bottom-up Approach [15]

The choice between top-down and bottom-up strategies influences DW architecture’s
design, implementation, and evolution. The top-down approach provides a structured,
organization-wide framework for data integration, promoting consistency and scala-
bility. Contrariwise, the bottom-up approach allows for more agile development and
can be more responsive to specific business needs, facilitating quicker deployment of
analytical capabilities.

3.2.3 Mediators
Mediators provide a virtual view of data stored across different sources, maintaining
the data’s original locations. They utilize a virtual schema that integrates the schemas
from these sources and offer metadata to define the integration schema and the external
schemas related to each data resource in the federation. Mediator architecture employs
data mapping through wrappers for querying and matching data across sources. This
allows a user’s query to be translated into multiple queries suitable for different data
sources, with the results then consolidated and delivered to the end-user.[8]

12

. 3.2 Models of Data Integration

Figure 3.5. Mediator architecture [8]

3.2.4 Polystore Systems

A polystore system is an advanced database framework that provides integrated access
to various data stores through a single interface.[8] It offers a solution to the challenges
posed by big data diversity, enabling interaction with multiple storage models like
NoSQL, RDBMS, and HDFS, sometimes even employing data processing frameworks
to facilitate this interaction.[17] These systems are an evolution of federated databases,
uniquely equipped to manage and query across various data models housed in separate
data stores.[17] This is illustrated in a basic polystore architecture in figure 3.6.

Figure 3.6. Polystore architecture [8]

Polystore systems have been the focus of various academic and corporate research en-
deavors. One notable example is MIT’s BigDAWG architecture. Similarly, Microsoft’s
PolyBase represents another approach to polystore systems, integrating SQL server
parallel data warehouse with Hadoop.[8] The BigDAWG polystore system addresses
the integration of heterogeneous data by balancing location transparency and semantic
completeness, accommodating various databases and data models. It offers a middle-
ware solution that provides a uniform query interface while preserving the unique capa-
bilities of each database. Despite its innovations, BigDAWG, much like earlier systems,
relies on specific adaptations to fully support the semantics of connected databases.[17]

3.2.5 Comparison

FDBS, mediators, and polystore systems share a foundational similarity in their ar-
chitecture. They are all virtual models based on the concept of data virtualization.

13

3. Data Integration .
These systems utilize data virtualization techniques, leveraging wrappers for data ac-
cess and employing query mapping for data retrieval, implying their roots in distributed
database systems.[8]

Within these virtual architectures, the primary distinction arises in how they process
queries. FDBS utilizes federated query agents (FQA) that can act as intermediaries,
storing and executing queries. Mediators take a different approach, using wrappers to
map and merge data across queries. Polystore systems employ diverse query processors
to accommodate the variety and volume of data.[8]

Another notable difference is the extent of support for the data model. FDBS tra-
ditionally supports a single, mainly relational data model. In contrast, mediators and
polystore systems are designed to handle multiple data models, reflecting their adapt-
ability to the diverse nature of contemporary data.[8]

Data warehouses stand apart with their physical architecture, centralizing data stor-
age and relying on the Extract-Transform-Load (ETL) process for data integration.[8]

Table 3.1 summarizes the comparison between the mentioned data model architec-
tures.

Features FDBS DW Mediator Polystore

Architecture Virtual Physical Virtual Virtual

Distribution Distributed Central Distributed Central

Automation Mapping ETL Wrappers Wrappers/
Mapping

Query
Processor

FQA OLAP Mapping
and
Merging

Island, HDFS
bridge
and more

Data Models Single Single Multiple Multiple

Table 3.1. Comparison of Data Integration Models across different system architectures.[8]

3.3 Data Platform
A data platform is a set of technologies incorporating computational, architectural, and
foundational aspects. It transcends a data lake by storing massive, unsorted data and
refining and structuring it into actionable information. Creating a data platform in-
volves establishing a data lake and then constructing the platform to serve applications
with structured, contextualized data. This indicates a shift from merely collecting data
to making it usable and insightful for various applications.

3.3.1 Data Platform Structure
A data platform is structured in layers, where data flows from its source to application
use. It begins with the data source layer, producing data in its format through various
sources like sensors or automated measurement systems. The acquisition and collection
layer follows, involving data capture and initial processing, including ETL processes
for cloud applications. Following this, the storage layer holds the raw data, effectively

14

. 3.3 Data Platform

forming the data lake’s foundation. The database layer further refines this data into
business-relevant information through ingestion processes. Lastly, the application layer
utilizes this organized data to address specific business challenges, completing the data’s
journey from raw input to strategic assets.[18] This structure is depicted in 3.7.

Figure 3.7. Industrial Data Platform [18]

3.3.2 Data modeling
Based on data modeling, data platforms are designed and developed. This subsection
showcases the difference between traditional data modeling and big data modeling.. Traditional Data Modeling

Traditional data modeling has been foundational to managing transactional and
analytical processes within organizations. Online Transaction Processing (OLTP)
systems utilize entity-relationship models to handle a large number of transactions
efficiently, optimize for real-time data manipulation, and adhere to the principles of
normalization to avoid redundancy and inconsistencies.[19]

In parallel, online analytical processing (OLAP) systems focus on data analysis
from multiple database applications, prioritizing query performance and the integra-
tion of business metrics. Dimensional modeling serves as a foundational technique
in data structuring, particularly suited for quantitative data analysis. In practice,
dimensional modeling simplifies data by denormalizing it within a central fact ta-
ble, surrounded by various dimension tables. This setup, commonly called the star
schema, facilitates efficient data exploration and analysis across multiple dimensions.
Additionally, the snowflake schema represents a variant of dimensional modeling,
further normalizing dimensions to elaborate the hierarchical structure within each
dimension, allowing for more detailed analytical queries.[19]

Despite their effectiveness in structured environments, traditional data models,
reliant on relational databases, face scalability and performance challenges as data

15

3. Data Integration .
volumes grow. The cost and complexity of scaling these systems, alongside increased
query response times, highlight their limitations in the context of big data.[19]

. Big Data Modeling
The advent of big data, characterized by its volume, velocity, variety, veracity, and
value, necessitates a departure from traditional SQL-based modeling. Big data’s
complexity and the need for faster data delivery demand a more flexible approach,
incorporating procedural or functional languages to handle arbitrary logic beyond
SQL’s capabilities.[19]

This shift is not just technical but also conceptual, moving towards denormaliza-
tion and the integration of historical and real-time data to generate insights. Big
data modeling rejects the hierarchical, siloed structures of traditional models, in-
stead advocating for a democratic usage pattern where data from multiple sources
and of various types is integrated, posing a challenge to the scalability and query
performance of dimensional models.[19]

Big data platforms require robust, scalable data modeling methods to accommo-
date the dynamics of big data, including the need to process data with varying ve-
locities. These methods must balance cost, quality, and performance, ensuring that
data can be efficiently organized, stored, and analyzed to drive strategic decisions
and competitive advantages.[19]

Table 3.2 compares these two approaches to data modeling.

Traditional Data Model Big Data Model

Approach First design then develop First discover then analyze

Usage Pattern Top-down, hierarchical Democratic, distributed

Volume Growth Manageable volume with
steady growth

Massive volume with expo-
nential growth

Main Goal Business Analytics Statistical Analysis, Ma-
chine Learning

Table 3.2. Comparison of Traditional and Big Data Modeling approaches.[19]

3.4 Key concepts of Data Integration
In the scope of data integration, multiple underlying concepts work in concert to en-
able the seamless fusion of data across various platforms and systems. The following
subsections delve into some of the fundamental principles that are instrumental for
a robust data integration strategy. These include the ETL, ELT, and reverse ETL
processes, which serve as the backbone for data movement and transformation. Ad-
ditionally, data quality, APIs, services, batch processing, and scheduling are explored
for their pivotal roles in ensuring that data integration processes are efficient, scalable,
and aligned with business requirements. While the concepts discussed here are crucial,
they represent only a portion of the extensive array of techniques and practices that
underpin a successful data integration framework.

16

. 3.4 Key concepts of Data Integration

3.4.1 ETL, ELT and Reversed ETL

One of the pivotal concepts in data integration involves processing and organizing data
according to the specific requirements of data warehouses. This fundamental aspect is
crucial for the strategic handling and analysis of large datasets collected from diverse
sources. In the subsequent discussion, we introduce the most critical and commonly
employed processes in this domain: ETL (Extract, Transform, Load) and ELT (Ex-
tract, Load, Transform), alongside their innovative counterpart, reverse ETL. These
methodologies serve as the backbone for data integration strategies and also play a
vital role in optimizing data flow, enhancing decision-making processes, and enabling a
more agile response to business needs.

. ETL
ETL is a traditional method where data is first extracted from the source systems,
transformed into a format suitable for the data warehouse, and finally loaded into
the data warehouse. This process is ideal for dealing with structured data and legacy
systems, where transforming data before loading is necessary to ensure it fits the
data warehouse schema.[20]

. ELT
Conversely, ELT modernizes the approach by extracting data from source systems
and loading it directly into the data warehouse before transforming it. This method
is advantageous for handling large datasets and leveraging the computational power
of modern cloud-based data warehouses, allowing for more flexible and timely data
processing.[20]

. Reverse ETL
Reverse ETL differs significantly by making the data warehouse the source, from
which data is extracted, processed to meet the formatting needs of the destination,
and then fed into various applications. This approach distributes data across the
company, making it actionable and accessible in the tools used by marketing, sales,
support, and other teams.[20]

The main differences between ETL and ELT are captured in table 3.3, and the
comparison of those two approaches with their reverse approach is summarized in table
3.4. For a clearer understanding of the methodologies, detailed explanations of each
operation are provided below:

. Extract
Data is thoroughly examined and selectively retrieved from the source database
during this phase. The aim is to gather as much relevant data as possible with
minimal resource expenditure, ensuring the process does not negatively impact the
performance or response times of the source system.[20]

. Transform
This step involves cleaning and refining the data, which may include merging it
with other datasets or utilizing tools and queries to restore it to a usable state. It
encompasses validating records, excluding irrelevant data, and consolidating data
sources to ensure consistency and relevance. Standard practices in this stage include
organizing, deduplicating, standardizing, decoding, and verifying data integrity.[20]

17

3. Data Integration .
. Load

In this stage, the processed data is transferred into the data warehouse. This involves
compiling the transformed data in a structured format that fits a targeted data
repository. Various tools facilitate the integration of extracted and transformed data
into the warehouse, either by automating the insertion of each record or by adding
records to specific database tables through SQL commands.[20]

Parameter ETL ELT

Optimal Use Structured data, legacy
systems, and relational
DBs; transforming data
before loading to data
warehouse.

Quicker, timely data loads,
structured and unstruc-
tured data, and large
datasets; transforming
data as per need.

Privacy Personal Identifiable Infor-
mation can be eliminated
in the Pre-load transfor-
mation step.

Major safeguards for pri-
vacy are required since
data is directly loaded.

Transformations Secondary server performs
the transformations. Pre-
cleaning and heavy trans-
formation are optimal.

Higher speed and effi-
ciency is achieved since
the database compute
performs transformations
for load and transform
simultaneously.

Maintenance High maintenance due to
the presence of multiple
processing servers.

Reduced maintenance bur-
den because of fewer sys-
tems.

Expenses Monetary issues due to
separate servers.

Less Monetary overhead
because of simplified data
stacks.

Compatibility
with Data Lake

Not there with ETL. There with ELT.

Output of Data Structured. Can be unstructured or
semi-structured.

Amount of Data Datasets of Small and
moderate volume.

Datasets of Large volume.

Table 3.3. Difference Between ETL and ELT[20]

3.4.2 Data Quality
As previously highlighted in section 3.1.5, data quality emerges as a challenge within
data integration, but it is also a core concept for quality of data integration. Managing

18

. 3.4 Key concepts of Data Integration

Parameter ETL/ELT Reverse ETL

Synchronization
Mode

There can be full or in-
cremental data extraction.
UPSERT operation to
merge data.

CDC is difficult to apply in
reverse ETL as the ware-
house typically doesn’t
provide a transaction log
or “updated_at” columns.

Data Transforma-
tions

From specific to general.
Extracts data from dif-
ferent specific sources to
then integrates it into a
common destination.

From general to specific,
having to conform to each
business application API.

Data Quality Less data quality overhead
as the destination is the
database/data warehouse.

High data quality over-
head as more validation
and knowledge of the des-
tination are required.

Failures and Job
Re-execution

ETL/ELT jobs are idem-
potent, meaning that no
matter how often you run
them, they should produce
the same results.

Reverse ETL jobs are
not idempotent since the
re-execution might result
in unwanted side effects
as they depend on the
business logic of the desti-
nation.

Table 3.4. ETL, ELT and Reverse ETL Differences[20]

data quality involves establishing strict standards and mechanisms to ensure accuracy,
consistency, and reliability across all data utilized within an organization. Essential to
achieving high data quality are:

. Data Integrity
Implementing policies and technical constraints to maintain data consistency and
prevent invalid data entries (e.g., ensuring numeric fields like salaries are above
zero). Techniques such as functional dependencies and denial constraints can be
applied at the application or database level to enforce these rules universally.[14]

. Testing
Data processing often requires numerous adjustments, making the ability to rapidly
test hypotheses against the data valuable for maintaining relevance and accuracy in
evolving datasets.[14]

. Data Version Control
Managing and documenting data modifications by different organizational actors is
crucial for tracing data changes back to their sources, facilitating a more straightfor-
ward resolution of issues arising from erroneous data updates.[14]

19

3. Data Integration .
3.4.3 API and Services

APIs and services are indispensable for data integration due to their ability to stream-
line the flow of information between different systems and platforms. APIs, acting
as connectors, enable real-time data exchange and manipulation. Services, particularly
those built on a microservices architecture, support this by encapsulating business logic
into discrete units that can communicate over the network, making them highly adapt-
able and easier to integrate with other services and applications. This combination
not only accelerates development cycles but also enhances the robustness and scala-
bility of data ecosystems, making APIs and services critical components in achieving
comprehensive and efficient data integration strategies.

3.4.4 Batch Processing and Data Streaming
The integration of batch processing and data streaming allows organizations to leverage
the benefits of both methods. While batch processing provides a reliable framework for
dealing with large data sets and complex computations, data streaming offers agility
and the ability to react to new information instantly. A summary of the comparison of
those processes is in table 3.5.[21–22]

Modern data architectures often incorporate a hybrid model combining these ap-
proaches, enabling deep analysis of accumulated data while supporting real-time ana-
lytics and responses.[21–22]

. Batch processing: efficiently handles high-volume, repetitive data jobs by accumu-
lating tasks and executing them collectively during off-peak hours. This approach
minimizes human interaction and optimizes computing resources, making it ideal for
tasks like weekly billing, inventory processing, and report generation.[21]

. Data Streaming: caters to the need for low-latency processing of continuously flowing
data. Characterized by its real-time nature, streaming data is pivotal for applications
that rely on immediate data analysis and decision-making. It is beneficial in scenarios
like monitoring brand sentiment through social media, financial fraud detection, or
IoT device management, where timely responses are crucial.[22]

3.4.5 Scheduling
Scheduling in the context of data integration is a critical function that orchestrates the
timing and execution of various data processing tasks. It ensures that these tasks occur
in the correct sequence and at the right time. It enhances the efficiency, reliability, and
scalability of data-driven systems.

3.5 Solutions for Data Integration
This section explores the pivotal architectures and middleware solutions that have
shaped the data integration landscape, discussing their core principles, benefits, and
the challenges they aim to overcome.

3.5.1 Service-oriented Architecture - SOA
Service-oriented Architecture (SOA) is an architectural pattern where services, repre-
senting self-contained and well-defined functions, interact to perform activities or ex-
change data. Initially utilizing technologies like Object Request Broker or Distributed

20

. 3.5 Solutions for Data Integration

Criteria Batch Processing Stream Processing

Data Scope Queries or processing over
all or most of the data in
the dataset

Queries or processing over
data within a rolling time
window, or on just the
most recent data record

Data Size Large batches of data Individual records or micro
batches consisting of a few
records

Performance Latencies in minutes to
hours

Requires latency in the or-
der of seconds or millisec-
onds

Analysis Complex analytics Simple response functions,
aggregates, and rolling
metrics

Table 3.5. Comparison of Batch Processing and Data Streaming[21–22]

Component Object Model (DCOM) based on Common Object Request Broker Archi-
tecture (CORBA) specifications, SOA has evolved with web services as a pivotal con-
nection technology. These web services employ XML to establish robust connections,
ensuring clear communication between service consumers and providers.[23]

The SOA model consists of three primary operations (find, bind, and publish) and
three participants (service requestor, service provider, and service broker), irrespective
of its internal implementation. This framework allows for dynamic interactions between
the entities involved:[23]

. Service Requestor: Initiates discovery and invocation of services to deliver compre-
hensive business solutions capable of operating locally and remotely.[23]. Service Provider: Offers software service interfaces representing business entity ser-
vices or reusable subsystem service interfaces.[23]. Service Broker: Functions as a repository for the published software interfaces by
service providers, facilitating the discovery of services.[23]

These components interact through the operations of publishing (performed by the
service provider to make services available to the broker), finding (performed by service
requestor to locate necessary services through the service broker), and binding (to
establish a connection to the services found).[23]

SOA promotes principles like:

. Modularity: Where services are designed for specific functions, promoting focused
development and easier maintenance.[24]. Flexibility: Enabling systems to adapt through service recombination, enhancing the
ability to meet changing business needs.[24]. Scalability: Supporting growth without significant restructuring, ensuring systems
can handle increased loads efficiently.[24]

Key challenges include:

21

3. Data Integration .
. Service Versioning and Compatibility: Maintaining backward compatibility while

evolving services, ensuring uninterrupted service use.[24]. Service Granularity: Balancing between too coarse or too fine services, optimizing for
efficiency and manageability.[24]. Service Management: Requiring transparent governance for consistency and security,
overseeing service lifecycle and policies.[24]. Data Consistency Across Services: Ensuring accurate and synchronized information,
maintaining integrity in distributed environments.[24]. Service Orchestration: Coordinating multiple services for complex business processes,
enabling seamless integration and functionality.[24]

In SOA, an Enterprise Service Bus (ESB) acts as a central hub that facilitates com-
munication among disparate services, regardless of their underlying technologies. It
routes service requests to the correct destination and transforms them to match the
service’s platform and language requirements.[25]

3.5.2 Microservices
Microservices architecture is an approach that structures applications as collections of
loosely coupled, independently deployable services. Each focused on a specific business
capability. These services communicate through well-defined APIs, promoting agility,
scalability, and maintainability. Microservices often employ individual databases for
each service to enhance autonomy, with API gateways acting as intermediaries to route
external requests efficiently to the appropriate microservice.[24]

Microservices architecture prioritizes principles like:

. Service Autonomy: Each microservice operates independently with its own database,
facilitating rapid development and deployment.[24]. Decentralized Data Management: Allows each service to manage its data store, pro-
moting data ownership and reducing data coupling.[24]. Technology Heterogeneity: Enabling the use of the most suitable technology stack
for each service’s specific needs, fostering efficiency and innovation.[24]

Challenges include:

. Managing the complexities of distributed systems, such as service discovery, network
latency, and load balancing.[24]. Maintaining data consistency across independent services[24]. Orchestrating a cohesive business process from autonomous services[24]. Ensuring comprehensive monitoring and observability requires advanced solutions in
a distributed environment.[24]

Table 3.6 compares service-oriented architecture with microservices architecture.

3.5.3 Middleware
Middleware acts as an intermediary software layer that interfaces between applications
and various data sources. It addresses key challenges such as system heterogeneity,
interoperability, security, and reliability, positioning itself as a crucial component in the
architecture of data platforms. By offering a network-oriented perspective, middleware
simplifies the complex process of data acquisition, transformation, and storage.[27]

Features and characteristics of Middlewares:

22

. 3.5 Solutions for Data Integration

SOA Microservices

Implementation Different services with
shared resources.

Independent and purpose-
specific smaller services.

Communication ESB uses multiple messag-
ing protocols like SOAP,
AMQP, and MSMQ.

APIs, Java Message Ser-
vice, Pub/Sub

Data storage Shared data storage. Independent data storage.

Deployment Challenging. A full re-
build is required for small
changes.

Easy to deploy. Each
microservice can be con-
tainerized.

Reusability Reusable services through
shared common resources.

Every service has its own
independent resources.
You can reuse microser-
vices through their APIs.

Speed Slows down as more ser-
vices are added on.

Consistent speed as traffic
grows. (requires scaling)

Governance flexi-
bility

Consistent data gover-
nance across all services.

Different data governance
policies for each storage.

Table 3.6. Comparison of SOA and Microservices[26]

. Flexibility: Middleware offers adaptability to handle conflicting issues due to the com-
munication between applications and things, supporting different forms of flexibility
essential for varying software or hardware components.[27]. Transparency: It hides complexities and details from both the application and ob-
ject sides, allowing them to communicate with minimal knowledge of each other’s
information. This feature is critical for platform and network transparency, enabling
cross-platform operations and resource location transparency.[27]. Interoperability: Enables meaningful data and service exchanges between applica-
tions on interconnected networks with differing protocols, data models, and configu-
rations.[27]. Reusability: SOA-based middleware allows for the reuse of software and hard-
ware components, making system design and development more efficient and
cost-effective.[27]. Maintainability: Systems, applications, or devices can rapidly return to normal func-
tionality post-failure, requiring well-defined procedures and infrastructures for effec-
tive maintainability.[27]. Adaptability: Indicates how middleware should behave against environmental
changes, reacting both statically and dynamically to provide durability against
long-term system changes.[27]

23

3. Data Integration .
. Security and Privacy: Ensures that data transmission and operations through mid-

dleware are secure, addressing confidentiality, integrity, and availability, alongside
providing privacy protection from unauthorized access.[27]. Connectivity Convergence: Supports diverse hardware and software components in-
teracting through heterogeneous communication platforms, necessitating convergent
connectivity APIs and management.[27]

Middleware designs derive from diverse architectural principles. Establishing a well-
articulated framework is crucial in middleware design, as each architecture possesses
distinct features. Instead of adhering to rigid categorization, middleware architectures
can be distinguished based on various criteria, reflecting their unique attributes.[27]
Down below are listed some of those architectural principles, followed by table 3.7
summary of benefits and challenges for each of the principles.

. Component-based
This architecture emphasizes loosely coupled, independent components that work
together to complete tasks. Each component addresses a specific problem segment,
aiming for minimal dependency, increased reusability, and simplified troubleshoot-
ing.[27]

. Distributed
Involves networked software and hardware components collaborating to perform
tasks. Characteristics include component concurrency, no global clock, and indi-
vidual component failures not affecting the entire system. Benefits include fault
tolerance, scalability, and flexibility.[27]

. Service-based
Efficient design style, often implemented as stand-alone or through cloud computing
services (PaaS). It focuses on providing and utilizing services over a communication
protocol, though it may not be cost-effective for homogeneous systems or suitable
for applications requiring strict response times or heavy data traffic exchange.[27]

. Node-based
Comprises software components on mobile and sensor networks, processing and
communicating data collected from sensors. This setup, involving streams and
nodes, is well-suited for mobile devices.[27]

. Centralized
Centralizes services in a specific location, with thin-client devices requesting resources
from a central, resource-rich server. It contrasts with distributed architecture, and
failure of the central server can disable the network without an immediate backup.[27]

. Client-server
A classic model where one side requests and the other replies. Roles can be flex-
ible, with devices acting as both client and server. It includes thin client models
(server handles processing and data, clients provide GUI) and thick client models
(servers manage data while clients handle application implementation and GUI), as
well as multi-tier models separating main functions like presentation and application
processing.[27]

24

. 3.6 Notable Integration Platforms

Architecture Benefits Challenges

Component-
based

Reusability, Abstraction
support and Independency

Maintenance, Migration,
Complexity and Compati-
bility

Distributed Resource sharing, Open-
ness, Scalability, Concur-
rency, Consistency and
Fault tolerance

Interoperability, Security,
Manageability, and Main-
tainability

Service-based Reusability, Scalability,
Availability, and Platform
independence

Service discovery, Com-
plex service management,
and Service identification

Node-based Availability and Mobility Security and Manageabil-
ity

Centralized Simplicity, Security, and
Manageability

Scalability, Availability,
and Portability

Client-server Servers separation, Re-
source accessibility, Secu-
rity, Back-up and Recovery

Congestion, Limited scala-
bility, and Single Point of
failure

Table 3.7. Comparison of different possible architecture designs in middlewares[27]

3.6 Notable Integration Platforms

Various platforms offer tailored solutions for data integration to meet diverse organi-
zational needs. Among these, Talend and Informatica stand out as two of the most
popular and widely adopted platforms. However, it is common for companies to de-
velop their custom data integration platforms, aiming to address specific challenges and
integrate seamlessly with their unique IT ecosystems.

3.6.1 Talend

Talend stands out as a comprehensive data integration suite, offering solutions encom-
passing big data analytics and data security. Its Talend Data Fabric provides a unified
collection of all Talend resources, accompanied by top-tier customer support. For those
opting out of cloud solutions, Talend Open Studio offers a web-based alternative with
extensive support for various cloud and on-premise databases and SaaS connectors.[28]

Embracing open-source principles, Talend has been at the forefront of data integra-
tion software since 2005, providing tools for data management, storage, and business
device integration. This open-source tool allows companies to make real-time, data-
driven decisions, enhancing data accessibility and ensuring efficient delivery to the
intended networks. With its downloadable resources, Talend encourages community
engagement.[28]

25

3. Data Integration .
Talend’s approach aligns with the evolving needs of marketing and business strate-

gies, emphasizing the importance of scalable and adaptable solutions for future chal-
lenges.[28]

3.6.2 Informatica Power Center

Informatica Power Center is a versatile ETL tool designed to work with a variety
of legacy database systems. It supports essential data management functions such
as governance, monitoring, master data management, and data masking. Suitable
for on-premise use, Power Center also has a counterpart in the cloud, broadening its
application scope.[28]

Power Center enables the construction of corporate data warehouses, providing pro-
fessionals with the capability to connect to multiple data sources and perform compre-
hensive data processing. It accommodates a range of platforms and offers cloud-based
applications, easing the data integration process for IT professionals. Key features in-
clude real-time data integration, B2B data exchange, and analytics, with support for
Salesforce integration. [28]

The tool’s server, crucial for running data processing campaigns, interfaces directly
with the source data, managing modifications before loading to the target destina-
tion. Noteworthy for its automation and reusability, Power Center allows for efficient
and swift backend data operations, from deletions to complex adjustments. It comes
equipped with functionalities for row-level data operations and handling data across
structured, semi-structured, and unstructured formats, alongside preparing data for
execution. Furthermore, its metadata capabilities ensure that information about appli-
cations and data processes is effectively managed and safeguarded.[28]

3.6.3 Talend and Informatica Comparison

Talend provides both free and commercial data integration tools. It offers the flexibility
of developing intuitive Java code that can run on any Java-compatible platform, making
it accessible and versatile. Talend also allows for precise custom code writing and
offers reusability options for transformations. Its commercial versions support advanced
features like project scheduling and parallel computing, whereas these capabilities are
limited in the open-source version.[28]

On the other hand, Informatica offers its solutions solely on a commercial basis. It is
considered a mature and leading enterprise data integration platform, renowned for its
robustness and extensive automation capabilities, especially in deployment. Informat-
ica facilitates the creation of reusable components and allows parallel processing, where
multiple mapping sessions can run concurrently, optimizing resource utilization. Its
repository manager provides features for data retention and recovery, which Talend’s
open-source version lacks. Informatica, however, does not allow the creation of sub-
folders for organizing objects, unlike Talend, which offers more flexibility in repository
organization.[28]

In terms of pricing, Talend’s free versions and Informatica require payment for single-
and multi-user licenses.[28]

3.6.4 Other Platforms

. StreamSets
StreamSets offers a DataOps platform optimized for the cloud, providing real-time
data integration with a spark-native execution engine and the capability to construct

26

. 3.6 Notable Integration Platforms

data pipelines with minimal coding.[28]

. Blendo
Blendo is a prominent ETL and data integration tool that automates the synchro-
nization and extraction of raw data from various sources, directly loading it into
databases to accelerate business intelligence processes.[28]

. Google Cloud Dataflow
Google Cloud Dataflow, built on Apache Beam, is a fully managed ETL service by
Google that is compliant with data privacy regulations like HIPAA and GDPR and
suitable for both batch and stream processing.[28]

. IBM InfoSphere
IBM InfoSphere, an on-premise ETL tool, enables connections to diverse legacy
database systems and supports data governance, monitoring, and master data
management with a focus on data security.[28]

. AWS Glue
AWS Glue is a managed ETL service that enables serverless data integration us-
ing AWS services, with features like an interactive data catalog, automatic schema
discovery, and serverless ETL pipeline creation with AWS lambda functions.[28]

27

Chapter 4
Problem Analysis

4.1 Onsemi Middleware Platform
The ON Semiconductor Middleware integration platform, initially a monolithic appli-
cation established in 2008, has evolved into a sophisticated microservices-based archi-
tecture and now operates as a distributed middleware system. The platform spans 37
virtual servers, including 17 dedicated to production environment. It expertly manages
approximately 4,000 active integration flows, handling 5 TB of daily network traffic,
making it a vital component of ON Semiconductor’s global infrastructure.

4.1.1 Onsemi Middleware Architecture Overview

The Onsemi Middleware architecture is a complex system comprised of several core
components that collaborate to ensure seamless execution of interfaces. Below is an
overview of the main building blocks:

. MDW Dashboard
The center for user configuration and management, the MDW Dashboard, is where
all interface configurations are conducted. It centralizes setup processes, eliminating
the need for scattered configuration files or system-level adjustments. This consoli-
dation ensures that interface management is streamlined and accessible from a single
control point.

. Runtime Engine
The Runtime Engine orchestrates the execution of interfaces. It carries out the
operations defined within the MDW Dashboard configurations and facilitates com-
munication with the Delivery Engine for outbound processing.

. Delivery Engine
The Delivery Engine, specializing in outbound delivery, transmits files, emails, and
HTTP requests and can also trigger cascading other interfaces. This component
ensures asynchronous deliveries, handles retries, and manages the distribution tokens
associated with each delivery.

. Scheduler
The Scheduler initiates interfaces at predefined intervals based on specific precon-
ditions. It supports a range of preconditions for various sources, including FTP,
database queries, and JMS queues.

4.1.2 Onsemi Middleware Environments

The ON Semiconductor Middleware platform ensures sustainable development and func-
tionality through a structured multi-environment approach:

28

. 4.2 Used Data Integration Frameworks within the Platform

. UE DEV: A development sandbox for internal development and testing, with restricted
access due to potential instability.. UE INT: Used for unit testing and interface development.. UE UAT: The staging ground for all user testing, hosting release candidate versions of
applications, making it the final validation step before production deployment.. UE PRD: The production environment. It operates with the highest performance for
handling all active interfaces and the bulk of data traffic.

4.2 Used Data Integration Frameworks within the
Platform

The ON Semiconductor Middleware platform primarily supports two frameworks for
data integration: the widely adopted Apache Camel and the proprietary framework
known as Generic.

4.2.1 Generic framework
This in-house framework provides less complex integration scenarios, enabling users to
create integrations through a wizard within the Dashboard. It is designed to be user-
friendly, allowing people without programming skills to configure integrations without
deep technical expertise. The Generic framework supports a variety of integration
patterns, including:

. F2F (File to File): Transfers between FTP/SFTP and Samba shares.. F2D (File to Database): File ingestion into databases like Oracle, DB2, MySQL,
MSSQL, PostgreSQL, or any JDBC-compatible system.. D2F (Database to File): Database extractions to file systems over FTP/SFTP with
Samba shares.. D2D (Database to Database): Direct database-to-database transactions.. Pure HTTP requests

The Generic framework is based on configurated properties, where all integration
aspects, from connection parameters to specific operational flags, are defined within
the wizard.

4.2.2 Apache Camel Framework
For more complex and specialized integration requirements, the platform utilizes Apache
Camel, engaging developers to build solutions based on Functional Requirement Docu-
ments (FRD). Apache Camel-based integrations handle complex processes and support
various integration patterns defined within Camel. The Onsemi Middleware develop-
ment team implements these integrations. A dedicated section follows to provide a
deeper understanding of the complexities and capabilities of the Apache Camel frame-
work.

4.3 Apache Camel
Apache Camel represents the pinnacle of integration design within modern software de-
velopment. It is not merely a library or a set of APIs. It is a comprehensive integration
framework grounded in Java renowned for simplifying the development of integration
solutions. By embracing the power of well-established integration patterns, Apache

29

4. Problem Analysis .
Camel provides a standardized pathway for building robust integrations. It boasts an
impressive array of components, over 300, building blocks for creating connections to
many endpoints, including databases, message brokers, web applications, and various
cloud services like AWS and Azure. What sets Apache Camel apart is its capacity to
democratize integration, offering tools that pave the way for both traditional coding
and low-code/no-code approaches.[29] Camel also stands out for implementing Enter-
prise Integration Patterns (EIPs), enabling developers to solve integration problems
efficiently by applying best practices. It can operate standalone or be embedded within
Spring Boot, Quarkus, and cloud environments. Camel supports over 50 data formats,
effectively translating messages across various formats.[30]

The core feature of Camel is its routing and mediation engine. The routing engine
functions by maneuvering messages selectively, where the specific configurations of the
routes dictate the direction and flow. In the world of Camel, these routes are ingeniously
constructed using a blend of Enterprise Integration Patterns and a domain-specific
language, crafting a robust and flexible routing framework.[1]

4.3.1 The Functional Architecture of Apache Camel
This section delineates the fundamental principles underpinning Apache Camel’s archi-
tecture and operational mechanisms. It aims to provide an insightful overview of the
core components and processes that constitute the framework, facilitating a compre-
hensive understanding of its capabilities and functionalities.

. Messaging system
In the domain of Apache Camel, the concept of messaging is abstracted into two
primary entities: message and exchange. Messages are the fundamental data carriers
within Camel’s routing mechanism, allowing systems to communicate through pre-
defined messaging channels. On the other hand, an exchange acts as a wrapper for
these messages during the routing process, embodying the message exchange patterns
(MEPs) and facilitating the interactions between various system components.[1]
. Message

A message in Camel is an entity that encapsulates data intended to be conveyed
from one system to another. It comprises a payload, known as the body, headers,
and optional attachments. The body is a versatile container capable of holding
any content, while headers provide metadata about the message, such as content
encoding and authentication details.[1]

. Exchange
During routing, messages are contained within an exchange, a Camel construct
that not only carries the message but also details about the interaction pattern,
be it one-way (InOnly) or request-response (InOut). Exchanges are enriched with
properties and an ID, enabling robust handling of messages and their corresponding
responses, if applicable. These properties persist for the duration of the exchange,
providing a means to store and access global-level data that may be necessary for
various components and operations within the routing process. In the event of
errors during the message routing, exceptions are captured within the exchange,
ensuring that any issues can be handled gracefully.[1]

. Routes
In the architecture of Apache Camel, routes are fundamental abstractions that guide

30

. 4.3 Apache Camel

the flow of messages. Routes, defined as sequences of processors, enable the creation
of sophisticated messaging applications by providing a clear pathway for message
delivery. By strategically decoupling clients from servers and producers from con-
sumers, routes empower developers to:[1]
. Dynamically determine the destination of messages based on business logic.[1]
. Integrate additional processing steps flexibly within the message flow.[1]
. Develop clients and servers independently, promoting modularity.[1]
. Foster robust design practices by seamlessly connecting systems with distinct func-

tionalities.[1]
. Amplify the inherent capabilities of systems like message brokers and Enterprise

Service Buses (ESBs).[1]
Moreover, every route in Camel has a unique identifier, which is crucial for

activities like logging, debugging, monitoring, and management of the lifecycle of
routes, including their initiation and termination. While a route traditionally has
one input source, Camel’s design also accommodates scenarios where multiple inputs
converge into a single route.[1]

. Domain-Specific Language (DSL)
Apache Camel enhances the development of routing logic by using domain-specific
languages (DSLs), offering a syntax particularly tailored to route construction. The
concept of DSL in Camel is interpreted with a certain latitude, denoting a fluent Java
API that encapsulates methods named after Enterprise Integration Patterns (EIPs).
DSLs in Camel facilitate the wiring of processors and endpoints to forge routes and
provide a high level of abstraction, simplifying the construction of applications within
the Camel ecosystem.[1]

Camel offers a spectrum of DSLs to accommodate developer preferences and
project requirements, including Java DSL, XML DS, Spring XML, YAML DSL,
Rest DSL, Groovy DSL, and Kotlin DSL.[31]

. Processor
In Apache Camel’s routing architecture, the processor is a key element responsible
for manipulating and routing an exchange. Exchanges pass sequentially through
processors, each acting as a node that can process, modify, or route the exchange
based on predefined logic. The flow of exchanges from one processor to another
is determined by the message exchange pattern (MEP) associated with the route,
which dictates whether a response is sent back at the end of the processing chain.[1]

. Components
Components are the primary extension mechanism within Apache Camel, serving as
the backbone for various functionalities, from data transportation to the execution
of domain-specific languages (DSLs). They are identified by a unique name within
a URI and act as factories for endpoints, facilitating the connection between the
Camel route and the external system or resource.[1]

. Enpoints
Endpoints are versatile in functionality, acting as factories for producing and con-
suming message exchanges. They represent the end of a messaging channel where
data is either consumed from or sent to and are configured through URIs to define
how and where messages are transferred. At runtime, Camel resolves these endpoints

31

4. Problem Analysis .
using their URI notation to manage the flow of messages. [1]

. Producers
The producer embodies the entity responsible for sending messages to endpoints.
Tasked with ensuring message compatibility with an endpoint, the producer ab-
stracts the complexities of various transport protocols. This abstraction is pivotal in
Camel, as it simplifies the developer’s task to define the destination endpoint while
the producer manages the intricate details of message delivery.[1]

. Consumers
The consumer represents the service that initiates the messaging process. It is the
receiver of messages produced by external systems, wrapping them in an exchange for
processing within Camel’s routes. As the source of exchanges in Camel, the consumer
is responsible for initiating data flow through the framework.[1]

Camel supports two primary types of consumers:

. Event-driven consumer
The event-driven consumer remains idle until a message arrives, exemplifying an
asynchronous receiver that activates to process incoming data.[1]

. Polling consumer
Conversely, the polling consumer, known as a synchronous receiver, actively seeks
out messages from a source and processes them before polling for more.[1]

4.4 Existing Solutions for Data Flow Visualization

Many integration platforms have solutions designed to simplify and visualize complex
data flows and integrations through low-code approaches. These platforms provide
visual design environments that enable users to create integrations by dragging and
dropping components, reducing the need for extensive coding and making integration
processes more accessible. Below are mentioned some of those platforms.

4.4.1 MuleSoft’s Anypoint Platform

Anypoint platform is a versatile integration solution that connects various applications,
data, and devices within an organization. It is built around Mule, an efficient open-
source integration engine, and promotes an API-led connectivity strategy that helps
businesses seamlessly design, build, and manage their integrations.[32] Anypoint Studio,
the platform’s visual development tool, offers a user-friendly drag-and-drop interface,
making creating and orchestrating integration workflows straightforward and efficient.
Figure 4.1 illustrates the example of Anypoint platform’s integration visualization.

32

. 4.4 Existing Solutions for Data Flow Visualization

Figure 4.1. Anypoint Studio Integration Example [33]

4.4.2 Oracle Integration Cloud (OIC)

Oracle Integration Cloud (OIC) is a comprehensive integration platform that facilitates
low-code application development. It enables users to establish connections between
various applications and systems and then utilize a drag-and-drop tool for integration
construction. OIC provides a mapping tool called the Oracle Mapper, which allows
users to define how data is transferred between systems. Figure 4.2 represents an
example of integration visualization within the platform.

Figure 4.2. OIC Integration Example [34]

4.4.3 Apache Camel Karavan

Karavan stands out in the Apache Camel ecosystem as a potent Integration Toolkit.
It is designed to make the integration process straightforward. With Karavan, users
can visually construct and manage integration pipelines/routes, which enhances under-
standing and control over complex data flows. The toolkit is engineered to work with
Apache Camel runtimes, facilitating direct packaging, image building, and deployment
into Kubernetes environments.[35] An example of data flow in Camel Karavan is de-
picted in Figure 4.3.

33

4. Problem Analysis .

Figure 4.3. Camel Karavan Integration Example [36]

4.4.4 Possible Utilization of Existing Solutions

While these platforms offer significant benefits, none can directly integrate with the
Onsemi Middleware due to specific technical and operational requirements. Also, these
are standalone platforms and not pure solutions for data flow visualization that the
thesis aims to achieve. The Generic framework’s custom nature naturally requires a
custom solution for visualization. Even though Camel Karavan offers a visualization
model, its limitation to YAML configurations does not align with Onsemi Middleware’s
extensive use of Java DSL, which enables greater customization and complexity in
integration processes. However, Camel Karavan’s visualization approach could serve as
a design inspiration for the visualization of the Apache Camel framework within the
Onsemi Middleware Platform.

4.5 Applicable Techniques for Data Flow Visualization
As previously discussed, existing solutions for data flow visualization do not bring a
viable way to visualize integrations within the Onsemi Middleware platform. Given the
unique requirements and the complex nature of the platform’s integration processes,
exploring alternative techniques that can be used to fit these needs is essential. This
section will identify various approaches and technologies that could be adapted for data
flow visualization within the Onsemi Middleware platform.

4.5.1 Proposed Technique for the Generic Framework

For the Generic framework within the ON Semiconductor platform, the approach to
data flow visualization is straightforward due to the framework’s property configuration
nature. The primary task involves comprehensively analyzing the Generic framework to
understand its underlying structure and the relationships between various components
and data flows. Based on this analysis, a suitable backend model can be developed
that accurately represents these data flows and their properties. Once established, this
backend model must be effectively exposed to the front end, where it can be utilized to
create dynamic, interactive visualizations.

34

. 4.5 Applicable Techniques for Data Flow Visualization

4.5.2 Alternative Techniques for the Camel Framework

Given the variability, complexity, and dynamic nature of the Apache Camel framework,
it is not feasible to build a straightforward model for visualization. Consequently,
alternative techniques are required to extract meaningful information from the code to
build up a viable structure for effective visualization.

. Static Code Analysis
This method involves parsing the source code of Camel routes to directly extract and
model the data flows and their properties.

Obtaining the object structure is the first stage in the static analysis of the source
code. The appropriate solution for such obtaining can lead to reduced duration of
the entire static analysis process.[37] Some methods for such extraction are described
within the paper [37].

Access to the source code within the platform enables using tools such as GitHub’s
Java parser or other tools to create custom parsing mechanisms for Camel inter-
faces. However, developing a custom parser is a complex task. It requires a deep
understanding of the Camel framework and its specific integrations. Custom parsers
also carry risks of inaccuracies due to the nuances of the code’s functional logic and
variations in coding styles, which could lead to misleading representations.

. Dynamic Tracing
Dynamic tracing offers real-time insights into the operation of Camel routes, captur-
ing live data on system behaviors. This approach involves techniques like:
. Logging

By capturing logs generated during the execution of Camel routes, this approach
provides visibility into the functional aspects of integrations, such as route execu-
tion, data transformations, and error handling.

However, its effectiveness hinges on the thoroughness of logging implemented by
developers. Without consistent and detailed logging practices across all integra-
tions, the completeness and reliability of visualization based on logs alone could
be compromised.[38]

. Network Traffic Analysis
By monitoring the data packets moving through the system, including the REST
API requests and responses analysis, insights into the timing, volume, and direction
of data flows and the status and content of HTTP transactions can be obtained.
However, they lack a deep understanding of the business logic of integrations.

Both logging and network traffic analysis can contribute valuable additional infor-
mation about the integrations. However, neither approach, alone or in combination,
can sufficiently create a structured data flow model. They cannot fully capture
the complexity and interconnectedness of advanced integration patterns and the
business logic embedded within them.

. AI-driven Analysis
Leveraging advanced AI technologies can extract viable information from the code
that could be used to build up a model. Such methods include:
. Pattern Recognition

This method could identify common coding patterns and their variations within
Camel routes, which can help automate understanding of complex code structures.

35

4. Problem Analysis .
. Semantic Analysis

This method could capture the contextual meaning of the code, offering a deeper
understanding of the business logic and functionalities embedded within the routes.

For such analysis, approaches like deep code comment generation can be used
to bring valuable insights.[39]

However, while AI-driven analysis promises sophisticated insights, it comes with
significant risks:
. Reliability Concerns

AI models depend on the quality and variety of data they are trained on. Errors
in model predictions can lead to unreliable visualizations, which misrepresent the
actual operations and interactions within the Camel routes. Such inaccuracies
could reduce trust in the visualization tool, leading to underutilization and limiting
its overall contribution to the project.

. Security Implications
Providing AI models with access to source code might pose security risks, especially
if sensitive or proprietary information is involved. The need to align with company
security policies and protect intellectual property could restrict the feasibility of
implementing AI-driven analysis.[40]

36

Chapter 5
Implementation

This chapter delineates the implementation methodology articulated by the thesis for
constructing and visualizing structural representations of data integrations within the
enterprise’s technological framework. It commences with an exposition of the technolo-
gies pivotal to the implementation, laying the groundwork for the intricate development
narrative. Detailed within are the distinctive strategies and models applied, with a bi-
furcated focus on the Generic and Camel types of integrations, each necessitating a
tailored approach due to their inherent specificities. This segmentation allows for an
in-depth discussion of the code implementation and the adaptation of patterns that
underpin the extended functionality of the platform. The descriptions traverse the ap-
plied coding practices and explain the conceptual models that serve as the backbone for
the visualization techniques employed. By doing so, this section aims to provide a com-
prehensive account of how the research findings and theoretical constructs have been
translated into a functional and scalable extension, illustrating the interplay between
abstract patterns and their concrete implementations within the integration environ-
ment.

5.1 Used Technology
The implementation detailed within this thesis serves as an extension of the existing
integration platform. Therefore, technological compatibility is crucial. The selection of
technologies and development methodologies was carefully aligned with the platform’s
current ecosystem and operational paradigms, aiming to introduce seamless integration.

5.1.1 Development Approach
To effectively manage the complex process of enhancing a sophisticated integration plat-
form, the project employed a development strategy influenced by Agile methodologies.

This approach allowed for more flexibility and adaptability in addressing the complex-
ities involved. This iterative and incremental model facilitated a dynamic development
environment where progress was continuously evaluated and adapted based on ongo-
ing feedback and reflections. Moreover, Agile’s emphasis on customer collaboration
over contract negotiation ensured that the development process remained responsive to
evolving customer needs.[41]

5.1.2 Technologies and Tools used for Implementation
This section outlines the key technologies and tools employed in developing the platform
extension.. Jira

As the cornerstone for task organization and management, Jira facilitated the Agile
project management process, ensuring tasks were clearly defined, organized, and
tracked through to completion.

37

5. Implementation .
. Confluence

Confluence served as the knowledge base for the extension. It housed the documen-
tation, including manuals, development guidelines, and architectural decisions.

. Git
Employed for version control, Git enabled iterative development and management
of the codebase’s evolution. This tool was essential in supporting the Agile-based
workflow adopted by the project.

. Spring Boot Framework
The main framework of the integration platform. The implementation utilized Spring
Boot’s advanced features, such as custom annotations, dynamic bean configuration,
and REST API.

. Java
Java was used as the programming language for backend development.

. Hazelcast
Hazelcast was utilized as an in-memory data grid to store the structures of Camel
integrations.

. Swagger
Swagger offered a user-friendly interface for documenting the developed API end-
points.

. React with TypeScript
The front end was architected using React, enhanced by TypeScript. This combina-
tion ensured the development of reliable and maintainable UI components, creating
extensible visualization.

. Figma
As a design tool, Figma played a critical role in the early stages of development
by enabling the visualization of components. This facilitated early discussions on
functionality and expedited the development process by providing explicit design
references.

. Material-UI (MUI)
Integrated with React, MUI accelerated the UI development process, providing a uni-
form look and feel across the platform with its comprehensive suite of pre-designed
components.

. Storybook
Used as a development environment tool, Storybook streamlined the creation and
testing of UI components, allowing for isolated development and mocking of re-
sponses without needing a back end.

. Camel Karavan
Camel Karavan was an inspiration for designing the visualization for custom Camel
integrations.

38

. 5.2 Data Flow Visualization for Generic Framework

5.2 Data Flow Visualization for Generic Framework

This section is dedicated to the implementation of data flow visualization for the
Generic framework within the ON Semiconductor Middleware platform. It outlines the
complete, straightforward process that began with an in-depth analysis of the Generic
integrations codebase and its integration with the more extensive middleware system.
The section will cover the journey from building the underlying structure to creating a
user-friendly visualization tool for Generic integrations.

5.2.1 Architectural overview

The flowchart serves as an architectural blueprint for the data flow visualization within
the Generic framework. It briefly illustrates the sequence from the existing integration
framework to the user interface where data flow visualization occurs.

Figure 5.1. Architectural Overview for Generic Data Flow Visualization

The process starts with the existing Generic framework, which forms the bedrock of
the current integrations. From this foundation, a structured format for visualization
is derived, encapsulating the essential information in a format conducive to visual in-
terpretation. The subsequent stage involves exposing this structured format through a
RESTful controller, which acts as a channel between the backend logic and the frontend
presentation layer.

The frontend component, which interacts with the controller, creates the visual repre-
sentation of the data flows as part of the user interface. This user interface materializes
the conceptual data structures into tangible, user-friendly visual components, culmi-
nating in an intuitive and accessible depiction of the integration flows.

5.2.2 Backend Model

The backend model for data flow visualization within the Generic framework is a part
of the Dashboard component of the Onsemi Middleware platform. The development
began with a simple model focused on a single factory responsible for generating the
visual flow components, and all varieties of beans were directly wired into a Dashboard’s
configuration. As the implementation progressed, the complexity increased to accom-
modate requirements for a more structured and extensible model. This led to the final
architecture depicted in the figure 5.2.

39

5. Implementation .

Figure 5.2. Generic Backend Model Architecture. VisualFlow
The VisualFlow component serves as the core of the Generic framework’s visualiza-
tion process, and it is ultimately exposed via the controller for frontend processing.

This component is constructed with lists of VisualFlowConnection instances,
which collectively embody the sources and targets of the data flow. These connections
are pivotal in mapping the data journey as it moves through the integration process.

Furthermore, the VisualFlow component also encapsulates delivery actions.
The Delivery Engine, a distinct component of the Onsemi Middleware platform,
specifically handles these actions.

. VisualFlowConnection
The VisualFlowConnection is defined with Java generics to provide flexibility and
type safety. Its abstract nature allows it to be concretely implemented by vari-
ous specific connection types tailored to different data sources and targets. Any
class extending VisualFlowConnection must specify types for ConnectionJndi and
Connection, which are subclasses of the main beans that define a connection to an-
other system. This design ensures support for the various connections and reduces
the casting need.

The connection can be in the form of FtpVisualFlowTargetConnection,
FtpVisualFlowSourceConnection, or SqlLoadableVisualFlowConnection rep-
resented by DbVisualFlowTargetConnection or DbVisualFlowSourceConnection.

Each specific connection class is further configured with property values predefined
in the Generic framework, fitting the requirements of the given integration. To enable
this, a custom spring annotation with an annotation processor has been created to
streamline property injection.

Additionally, the SqlLoadableVisualFlowConnection offers adaptability and the
ability to accommodate customization through VisualFlowCustomizer.

. VisualFlowCustomizer
The VisualFlowCustomizer is a Generic class that injects customizable behavior
into VisualFlowConnection objects. It provides a framework for extending and
modifying the functionality of these connections, tailoring them to the specific needs.

A concrete implementation of the VisualFlowCustomizer is the
LoadSqlsCustomizer, which enriches VisualFlowConnection objects with the ca-
pability to load SQL statements.

40

. 5.2 Data Flow Visualization for Generic Framework

Using the customizer pattern in this context is crucial for maintaining a clean
separation of concerns. It allows for the core VisualFlowConnection logic to
remain uncluttered while still providing the flexibility to introduce new behaviors
or modify existing ones without altering the underlying structure of the connections
themselves. This pattern ensures that the system is both extensible and adaptable
to evolving requirements.

. VisualFlowConnectionFactory
The VisualFlowConnectionFactory is an integral part of the backend model, acting
as the manufacturing hub for the different VisualFlowConnection instances. It uti-
lizes a mapping system to create specific connection types based on the requirements
of the visual flow. The factory maintains a mapping structure (depicted below) us-
ing generics, which allows the factory to handle many connection types and their
respective Java class definitions flexibly.

Map<VisualFlowConnectionType, Map<Class<? extends
ConnectionJndiBean>, Class<? extends VisualFlowConnection>>>

During the application startup, the post-process bean definition registry initializes
this mapping, ensuring that all necessary connections are dynamically created.
Following this initialization, the registration of these bean definitions follows. Thus,
when the visualization process requires a particular type of data connection, the
VisualFlowConnectionFactory can promptly produce the required instances.

. VisualFlowConnectionType
The VisualFlowConnectionType is an enumeration within the visualization archi-
tecture that categorizes the types of connections into distinct source and target types.

. VisualFlowFactory
The VisualFlowFactory, as the primary factory, merges all the necessary elements
comprising a complete VisualFlow component.

It leverages the VisualFlowConnectionFactory to procure the correctly typed
VisualFlowConnection instances. It contains embedded logic that determines the
specific connections needed for any flow based on the context and configuration.

In addition to managing connections, the VisualFlowFactory is also responsible
for incorporating the delivery actions into the VisualFlow. The Delivery Engine,
the platform’s component, processes these actions as a part of an integration.

. VisualFlowConfiguration
The VisualFlowConfiguration is the spring configuration class within the plat-
form’s Dashboard component, producing the instantiation and configuration of es-
sential elements in the visualization architecture.

This configuration class is responsible for setting up the VisualFlowFactory,
VisualFlowConnectionFactory, and the LoadSqlsCustomizer.

Once defined, VisualFlowConfiguration is imported into the main Dashboard
configuration of the Onsemi Middleware platform. This integration is pivotal as it
links the visualization configuration directly with the Dashboard, thereby enabling
the Dashboard to leverage the full suite of visualization tools for representing data
flows.

41

5. Implementation .
5.2.3 Frontend Model

The iterative development of the frontend visualization for the Generic framework was
focused on efficiency and usability.Using this iterative design approach brings benefits
such as rapid improvements, informed decisions, and continuous user feedback, which
leads to increased effectiveness.[3]

The initial step was to design a comprehensive prototype using Figma. This step was
crucial as it laid the groundwork for the visual aspects of the application, providing a
clear blueprint that guided the subsequent coding phase. Finalizing the design elements
upfront ensured a more streamlined and focused development process within the React
framework using TypeScript.[2]

The iterative process cycled through the design, development, testing, evaluation, and
refactoring phases. This methodical approach facilitated the continuous improvement
of the visualization tool, ensuring that each iteration brought it closer to the end goal
of a user-friendly and effective UI. The testing phase involved consultations with fellow
developers to gather feedback and ensure technical feasibility. As the interface matured,
brief user testing was incorporated, providing valuable insights into the user experience
and driving further refinements.

Architecturally, the frontend module was composed of modular React components
that reflected the structure and design of the Figma prototype. The emphasis was on
creating reusable components that could be efficiently organized and repurposed across
the platform, promoting consistency and reducing redundancy.

The list below summarizes the iterative development process in three phases, captur-
ing the main changes throughout the project. The following sections further describe
these phases. They outline the frontend model’s evolution, focusing on its development
rather than delving into the functionalities in detail. These details are described in the
final model in the following thesis chapter, which focuses on work results. Each phase
has its model, depicted in the following figures 5.3, 5.4 and 5.5.

1. Initial Prototyping

. Objective: Create an initial prototype to brainstorm and gather feedback on the
visualization’s appearance and functionality.

. Outcomes:
Established the overall structure of the visualization prototype.
Discussions and received feedback for further refinement.

2. Refinement, Codebase and Testing

. Objective: Enhance the visualization prototype, implement a structured frontend
codebase, and gather feedback from users and developers.

. Outcomes:
Developed functional components in Storybook for the visualization.
Conducted testing sessions with users and developers to gather feedback on the
prototype.
Initiated in-depth discussions based on the feedback received for further refinement.

42

. 5.2 Data Flow Visualization for Generic Framework

3. Finalization and Enhancements

. Objective: Finalize the visualization prototype based on feedback and incorporate
additional enhancements to ensure usability and effectiveness.

. Outcomes:
Finalized the frontend visualization prototype based on feedback from users and
developers.
Additional enhancements were incorporated to improve usability and effectiveness.
Implemented the finalized frontend visualization in an applicable form for inte-
gration within the platform.

. Phase I - Initial Prototyping
The initial prototype presented a simplistic yet functional structure, offering a foun-
dational layout for data flow visualization. This prototype was pivotal for brainstorm-
ing sessions and dialogues to collect insights on the eventual design and requirements
for the visualization tool. This prototype was not meant for the development stage.
It went straight to the testing stage, where discussions were held among develop-
ers of the Onsemi Middleware platform to gather feedback and determine essential
features.

The feedback indicated that while the foundational structure was adequate, the
interaction method needed refinement. The consensus suggested displaying just the
core information with an option to show additional information by some button,
enhancing user engagement and information accessibility. Moreover, the prototype
was revised to include visual representations for database connections, recognizing
their distinct nature, especially the presence of SQL statements. This adjustment
aimed to ensure that the visualization prototype caters to the different characteristics
of each connection type. Additionally, it brought to attention the significance of the
delivery action performed by the Delivery Engine within the data flow visualization.
It was suggested that this element should not be omitted to ensure a comprehensive
representation of the integration process. However, it was collectively decided to
prioritize the development of a functional and streamlined prototype first.

Figure 5.3. Figma prototype for Generic, phase I

43

5. Implementation .
. Phase II - Refinement, Codebase and Testing

This version introduced a refined design to enhance visual appeal and functionality.
The new prototype featured an on-click card next to each connection icon, summa-
rizing the essential information with a detailed modal window for additional data.
For database connections, the prototype showcased a specialized card listing all SQL
statements, with the option to expand and view each in detail with syntax highlight-
ing.

This enriched prototype laid the groundwork for the frontend model structure,
which was developed using Storybook for efficiency. Data obtained from the back-
end controller were used as mock for visualization purposes within the Storybook
environment.

The testing phase began with feedback from developers, who suggested eliminating
the boxes around sources and targets for a cleaner interface. They recommended
integrating the feature as a new tab within the interface section of the Dashboard,
making the close button redundant. Furthermore, it was advised that editing features
should be visibly deactivated or omitted, as this functionality was beyond the scope
of the visualization tool and reserved instead for potential future development.

Two independent users also tested the visualization. The aim was to capture
the users’ natural interaction with the module and their independent input on the
visualization’s features without prior guidelines or instructions.

Taking an impulsive approach, the first participant navigated quickly through the
various components. They expressed a positive view of the visualization, appreciating
its novelty and the refreshing aspect it added to the platform. When prompted to
locate the information they commonly sought, the participant could find the details
important to them, such as the directory for the FTP and the SQL statement for the
database. They showed interest in understanding other information presented in the
visualization, but these eventually did not serve him any use.

The second participant, initially uncertain without specific instructions, asked
about the intended actions to be taken. After being encouraged to explore the
interface freely, it was observed that the user’s cursor did not change upon hovering
over interactive elements, which was noted for further enhancement. The partic-
ipant appeared to be perplexed by the information displayed and did not engage
with it meaningfully. Moreover, one of their integrations hinged on delivery actions,
rendering the current visualization inadequate for their needs. This highlighted the
importance of representing delivery actions within the visualization, which was vital
for users with similar integration setups.

The evaluation of this user testing yielded some actionable insights, notably the
necessity of cursor indication changes on hover to enhance user interaction cues. How-
ever, the more significant realization was the need to reassess how detail is displayed
within the visualization.

The feedback was gathered from a limited and specific group of users, suggesting
that extended user testing might be time-consuming and potentially contentious due
to the diversity of the user base’s needs. Some users with a technical orientation
demand detailed insights, while others prefer a straightforward overview that simply
maps the data flow from source to target by names alone. This note is not merely
speculative but was corroborated by insights from the integration Architect of the
Onsemi Middleware platform.

This distinction among users’ expectations has implications for designing a visual-
ization tool. It implies that the future development of this tool must strike a balance

44

. 5.2 Data Flow Visualization for Generic Framework

between offering depth of detail and maintaining clarity for those who seek simplic-
ity. Therefore, another discussion with developers was held based on the last model
developed.

Figure 5.4. Figma prototype for Generic, phase II

. Phase III - Finalization and Enhancements
The last prototype marks the final form of the visualization. This prototype was
additionally enhanced with minor adjustments and similar components. These en-
hancements did not necessitate the creation of a new Figma prototype and were
included directly in the implementation. Additionally, the whole color scheme was
shifted to fit the company’s scheme.

An in-depth evaluation of its predecessor formed the design of this model. Discus-
sions with developers indicated that navigating the previous model required excessive
clicks to access key information. A new concept for displaying additional information
was proposed. This concept involved introducing forms linked to specific connections
within the flow. These forms are designed to present detailed information about the
connections and are formatted to accommodate future features, enabling users to
edit this information directly.

The development stage of this prototype introduces new changes. Names of connec-
tions are visibly displayed beneath their icons, offering an immediate understanding
of the flow’s structure at a glance. The FTP connection has been optimized to re-
veal two crucial pieces of information with a single click. Alternately, clicking on a
database connection now triggers a modal with SQL statements right ahead. Both
these windows offer the option to display newly designed forms tailored for that spe-
cific connection. Example of such form is depicted for database connection in figure
5.6. The model newly supports the delivery actions that mirror the approach of the
FTP connection component. They present essential information upfront and provide
a customized form for each action. For users who desire deeper information, the
sufficient properties of Generic integration are now organized in a separate card.

These modifications have culminated in the final product for the Generic frame-
work. The results and implications of this prototype are further discussed and eval-
uated in the subsequent chapter 6.

45

5. Implementation .

Figure 5.5. Figma prototype for Generic, phase III

Figure 5.6. Figma form prototype for Generic, phase III

46

. 5.3 Data Flow Visualization for Camel Framework

5.3 Data Flow Visualization for Camel Framework

The development process for the structuralization and visualization of the Camel frame-
work integrations presented a multifaceted challenge, markedly distinct from the more
straightforward path navigated for the Generic framework. Due to Camel integrations’
dynamic and heterogeneous nature, establishing a robust method for capturing their
intricate structure was critical yet proved to be a complex undertaking. This thesis sec-
tion details the complicated process of developing a system capable of interpreting and
visualizing the various Camel integrations. The subsequent creation of a correspond-
ing frontend model also entailed navigating many possibilities presented by Camel’s
comprehensive set of components.

The entirety of this development process, replete with its inherent challenges and in-
novative solutions, is documented in the subsequent discourse, encapsulating the essence
of rendering custom Camel integrations into a visually coherent and functional form.

5.3.1 Backend Model

When embarking on the development of the backend model for the Camel framework,
the process commenced with an exploration of static code analysis. This technique was
applied to the codebase of several Camel integration implementations to determine the
feasibility of constructing a structured model. The tool for trying out the static analysis
was the Java parser provided by com.github.javaparser. Initially, the results were
auspicious when applied to individual integration instances, indicating the potential for
extracting a coherent structure.

However, as the static analysis was extended across various implementations, it be-
came evident that crafting a universal parser capable of accommodating all the potential
variations in implementation would be a very complex task that could still be incapable
of handling all the possible implementations. This realization necessitated the pursuit
of an alternative path.

Search for alternatives unearthed the possibility of leveraging the legacy native XML
representations of Camel routes. Initially, these XML representations were crafted to
define Camel routes, not to extract information from running Camel code. Nonethe-
less, they offered an unexplored avenue for structuring the Camel integrations at a
foundational level.

Given that these XML-defined routes encompass the entirety of the data flows within
Camel integrations, the essence of what this thesis aims to visualize can be satisfied.

With this new approach, a backend architecture was developed to utilize the legacy
XML. This architecture aimed to interpret the XML route definitions into a structured
model that could serve as the backbone for the desired data flow visualization within
the Camel framework. This approach promised a less demanding and more reliable
path to achieving the thesis’s goals and set the stage for the following complex process.

The architecture for the backend model within the platform and the logic behind it
are depicted in figure 5.7 and described in the text below.

47

5. Implementation .

Figure 5.7. Backend model architecture for capturing Camel integration structure. Architecture Description
As discussed in previous section 4.1.1, the Runtime Engine is one of the platform’s pri-
mary applications. Additionally, the platform incorporates custom libraries, namely
the Class Interf library and the Inject library, which are part of the process behind
capturing the Camel structure.
. Class Interf Library

The Class Interf library prescribes the Java interfaces. This library defines
two primary interfaces for Camel structure capture: the CamelXmlTracker and
the CamelXmlHolder. The CamelXmlTracker interface encapsulates the logic
to extract the XML structure from running integrations. The CamelXmlHolder
interface manages the storage of the tracked XMLs and ensures their persistence
and accessibility.

. The Inject Library
The Inject library provides an implementation of the logic required for capturing
the XML structure of running Camel integrations. This implementation is repre-
sented by Spring Bean, constructed based on a newly created configuration with
Spring conditionals. These conditionals are the presence of integrationContext and
the identification of the integration as a Camel integration, ensuring that the bean
is wired at the appropriate time and only when necessary.

To prevent errors during various integration runs, all additional Camel depen-
dencies required for this implementation should used with the option of scope
provided. This approach avoids direct wiring of Camel to the Runtime Engine,
which could lead to errors during other integration runs. By using the provided
scope, these dependencies are available only at compile time. Subsequently,
these dependencies should be provided within the Deployed integration that the
Runtime Engine executes.

. Runtime Engine
The Runtime Engine houses the implementation of the CamelXmlHolder class,
with the logic for storing the extracted structure. Additionally, it controls the
entire execution of integrations. This management is handled within the En-
gineRun class, where the new feature of capturing the structure is triggered. The
EngineRun class utilizes the Tracker implementation from the Inject library to
facilitate this functionality.

48

. 5.3 Data Flow Visualization for Camel Framework

. Deployed Integration
The Deployed integration represents a container that holds the integration along
with all its dependencies. This container is loaded by the Runtime Engine, enabling
the execution of the integration within the platform.

Even though the architecture and strategy were precisely designed, numerous chal-
lenges emerged throughout the development process. The notable challenges encoun-
tered and their respective resolutions are outlined below.. Spring contexts

The initial challenge arose due to the absence of the CamelXmlHolder bean within
the integration spring context. In the Onsemi Middleware’s platform architecture,
integrations operate within their own integration spring context. However, accessing
the CamelXmlHolder bean within this context must be retrieved from the application
context.

Furthermore, since the CamelXmlHolder bean creates a Hazelcast map to store
XMLs, it needs to be instantiated as a singleton within the application context.

To address this challenge and ensure the class is accessible within the integration
spring context, a solution in the form of custom @DefaultBeans annotation was
applied. The @DefaultBeans annotation acts as a plugin system, allowing for the
creation of bean definitions for each DefaultBean passed from the parent context.
Through this approach, the CamelXmlHolder bean was instantiated within the ap-
plication context and made accessible within the integration spring context, meeting
the requirements for singleton instantiation and context accessibility.

. Dependencies
The next challenge emerged from Maven dependencies. As previously mentioned in
the architecture, dependencies necessary for extracting routes in XML format were
utilized within the Inject library with a provided scope. However, this approach led
to an exception, likely due to the Runtime Engine’s inability to correctly locate the
appropriate provided class within the Deployed integration container.

This issue likely arised from class identification based not only on the class itself
but also on the classLoader through which it was loaded. Consequently, the Run-
time Engine failed to identify the correct class when later provided by the Deployed
integration container.

The implementation of the CamelXmlTracker was reworked to utilize Java reflec-
tion to resolve this issue. Java reflection is an API used to modify the behavior
of methods, classes, and interfaces at runtime. While reflection is not considered a
best practice, it serves as a viable solution for addressing dependency issues within
custom platforms.

. Effecting integration run
The next challenge arose during the integration run process. Capturing the routes
necessitated performing this capture during the interface run. The routes are stored
in a field called routes in the integration’s Camel context, which is populated at a
specific time. To avoid polling this field, another field containing the route definitions,
based on which the routes are dynamically created during the Camel integration run,
was utilized instead.

However, extracting information from the route definitions resulted in the def-
initions deleting themselves after being used, leading to the failure of the entire
integration run.

49

5. Implementation .
This issue was resolved by implementing a simple solution, creating a deep copy of

the route definitions and working with the copy instead. This ensured that the origi-
nal definitions remained intact and accessible throughout the integration run process.

. DSL usage
Another challenge appeared due to insufficient information in the extracted XML
structure. This issue arised from the use of the Java DSL for Camel integration.
Custom usage of this DSL allows for the introduction of new logic, such as creating
custom classes to store endpoints.

However, this custom approach led to a problem during the structure extraction:
the parser could not read these custom classes, which excluded vital information
about the integration.

Additional parsing for such endpoints was introduced to enhance the exported
XML. This enhancement ensured that crucial information about the endpoints
was sufficiently captured and included in the extracted XML structure, thereby
improving the overall completeness.

. Usage of multiple Camel versions
While testing the capture process, a new challenge arose concerning using different
versions of Camel. Within the platform, multiple versions of Camel are employed for
integration purposes, and these versions may have variations in their APIs used for
extracting the XML structure.

Therefore, logic was implemented to determine the appropriate version and the
appropriate use of reflections to select the corresponding API for valid extraction.
This approach ensured compatibility with different Camel versions across various
integrations within the platform.

Moreover, this challenge highlighted the importance of injecting correct depen-
dencies for Camel integrations within the platform. As the APIs varied between
different dependencies, ensuring that the correct dependencies were added to all
existing interfaces in the appropriate versions became necessary. This task could
be managed through an appropriate database update of the existing integrations to
ensure compatibility across the platform.

. Services
During testing, another challenge emerged related to integrations representing ser-
vices. By nature, the services start and do not end until they are stopped. This
forces the capture to start right before the service starts.

Therefore, modifications were made to the CamelXmlTracker to support running
in its thread. With this enhancement, the Tracker was configured to continuously poll
for the Camel context of the interface to be loaded. Once the context was detected,
the Tracker would execute the capture process, ensuring that the integration structure
was captured appropriately, even for services.

5.3.2 Frontend Model

This section describes the development of the frontend part, which commenced after the
backend model successfully captured the integration structure for various integrations.
No Figma prototype was necessary as the desired visualization structure was based on
the open-source Camel Karavan. Although Camel Karavan did not contain the same

50

. 5.3 Data Flow Visualization for Camel Framework

components as those in the captured XML structure, its overall visualization structure
served the same purpose and thus inspired the frontend development.

While there were multiple options for working with the XML structure obtained from
the backend, such as creating a React component for each element and then assembling
the visualization, the nesting structure of the XML suggested a more straightforward
approach. Thus, the chosen method involved traversing the XML and dynamically
building the components. A classic Depth-First Search (DFS) algorithm was chosen for
this traversal.

To handle the diverse components efficiently, an optimal implementation led to a com-
ponent generator. This generator dynamically creates components based on provided
parameters, with the option for specialized behavior if needed. These unique behaviors
include extracting additional information from the component’s body, setting different
styling for its child components, visually interconnecting with other components, or
displaying extra information beyond just properties. For instance, the display of extra
information involves making requests to the backend to parse and decode SQL state-
ments or to resolve information about delivery actions. This dynamic approach ensures
that the front end can adapt to various integration scenarios and can be easily extended
by new components.

To effectively capture the entire flow of integration within Camel, a straightforward
layout was chosen. This decision stems from the complexity of Camel integrations,
often composed of multiple routes. Each route is positioned adjacent to one another,
allowing for a clear visualization of their interconnections. Moreover, each route has
its configuration. This configuration remains consistent throughout the routes within a
specific integration. In the visualization, this configuration is extracted from the routes
and positioned at the beginning on the left for logical purposes. The following chapter
6 provides further details for a comprehensive understanding of the visualization and
its features.

From a technological perspective, React and TypeScript, along with Storybook, were
once again leveraged, mirroring the approach used to visualize the Generic template.
When selecting icons for components, careful consideration was given to their respective
functions. Icons were sourced primarily from the Karavan project and Google Fonts
page. The open-source React X-arrows library was employed for visual interconnections
between components. In order to ensure consistency, some elements of the Generic
visualization were reused.

5.3.3 Interconnection between the Models

This section delves into the interconnection between the frontend and backend mod-
ules, providing insight into how the entire visualization is created within the Onsemi
Middleware platform. A diagram 5.8 is provided below to explain this connection.

51

5. Implementation .

Figure 5.8. Overall Architecture of Capturing XML Structures for Camel integration

This diagram simplifies the depiction by focusing solely on the two main applica-
tions of the platform. Including libraries and additional applications would introduce
unnecessary complexity for what it aims to describe.

The process begins with the Dashboard application triggering the execution of a
specific integration on the Runtime Engine. The Runtime Engine excludes the entire
execution process here, including the capture of the XML structure, as detailed in the
previous backend model section 5.3.1. The captured structure is stored in a Hazel-
cast map and can be accessed through the service when the controller needs to access
it. The controller exposes an REST API that is responsible for accessing this stored
information.

Additionally, the Dashboard encapsulates the frontend module, which is responsi-
ble for the final visualization based on the obtained structure from the Runtime En-
gine’s API. This interaction occurs through a redirected request facilitated by the
DashboardSwaggerClient and passed to the RuntimeEngineSwaggerClient. The fron-
tend module also utilizes the DashboardSwaggerClient to send additional requests to
the backend to resolve more information.

To clarify, while the term redirect request is used, the actual process is more nuanced.
Direct API requests from the Dashboard’s frontend to other applications are not feasible
due to browsers blocking cross-domain requests. Instead, clients are managed on the
backend, replicating necessary endpoints through the application. In this case, the
Dashboard has its own REST API for obtaining the Camel XML structure. During
this request, the RuntimeEngineClient is employed to send a request to the Runtime
Engine. Subsequently, the response is handled in the backend and passed as a response
to the original request.

52

Chapter 6
Work Results and Evaluation

This chapter provides a comprehensive summary of the work results, offering insights
into the final visualizations for the Generic and Camel frameworks. It focuses exclu-
sively on presenting the final visualizations and their features, omitting the detailed
results of the backend model, which are discussed in the Implementation chapter 5.

The chapter also incorporates feedback from platform developers and integration spe-
cialists through dialogue sessions to ensure a thorough evaluation of the contributions.
Additionally, testing and reviews conducted by a select group of users further enrich
the assessment of the delivered solutions.

6.1 Data Flow Visualization of the Generic Framework
This section provides an overview of the final visualization for the Generic framework,
offering screenshots accompanied by brief descriptions to illustrate the key features and
layout of the visualization.

6.1.1 Initial Screen
The initial screenshot 6.1 offers an overview of the entire integration flow, which is
incorporated into the existing platform as a tab.. While dark information cards are not
visible by default, users will typically encounter a similar interface where connection
names are listed under corresponding icons, making it easy to identify each connection
type, such as FTP or database connections. For delivery actions like FTP delivery,
specific connection names are included, while icons for email and HTTP actions are
self-explanatory.

In the provided example, the integration progresses from an FTP connection to a
database, incorporating email file delivery and HTTP requests. This should be under-
stood by the user at first glance.

53

6. Work Results and Evaluation .
Figure 6.1. Example of Data Flow Visualization of Generic Framework

6.1.2 Key Infromation Card

The main information cards serve as key elements within the visualization, offering users
quick access to essential details without navigating through multiple components. These
cards are available for all delivery actions and FTP connections, providing users with
relevant information at a glance. However, the database connection behaves differently,
as it primarily lists SQL queries, which are considered the primary information for its
component.

In the provided example 6.1, these cards are depicted as dark gray panels visible next
to the FTP connection or email delivery icons. Upon clicking on the respective icon,
users trigger the display of the corresponding card.

Each card is precisely designed to present users with the most sought-after informa-
tion for that particular component. For FTP connections or deliveries, this includes
details such as directory paths and file patterns, while for email deliveries, it includes
sender details, recipient addresses, and email subjects. Similarly, for HTTP requests,
the target URL is prominently displayed.

These cards offer a streamlined viewing experience by presenting crucial information
directly on the visualization canvas, eliminating the need to search for key information
within many details. The card can be closed only by clicking on the icon again, a
deliberate design choice aimed at allowing users to view the entire flow with details
opened from multiple connections.

Moreover, each card features additional buttons that allow users to access more
detailed information if desired. The ’Properties’ button enables users to view properties
associated with the Generic framework configuration, while the ’Connection’ button
directs users to a comprehensive form listing all relevant connection information.

6.1.3 SQL Card

The SQL card, accessible for database connections, opens as a modal in the center of
the screen upon clicking the respective component icon. This design choice was made
to accommodate the more extensive content of the card without distracting from the
overall flow visualization.

Within the card, all SQL statements performed on the present database are listed
along with their names, allowing users to select and view details about specific state-
ments by clicking on them. Additionally, the card incorporates short informational
statements.

At the bottom of the card, three action buttons are provided. The first allows users
to close the card, while the second provides access to the properties associated with
the Generic framework configuration. The third option enables users to access a form
containing all relevant details about the database connection.

An example of an SQL card is presented in figure 6.2.

54

. 6.1 Data Flow Visualization of the Generic Framework

Figure 6.2. Example of SQL Card Visualization

6.1.4 SQL Statement Card

The SQL Statement Card is opened after clicking on a specific SQL statement in the
previous tab. It provides users with the exact SQL statement visualized with highlights
to make the statement more readable.

An example is presented in figure 6.3.

Figure 6.3. Example of SQLStatement Card Visualization

6.1.5 Connection Forms

The custom connection forms, accessible by clicking the connection buttons associated
with each connection and Delivery Action, provide users with a detailed overview of the
respective connection properties. These modal windows also appear in the middle of the
screen. While some components of the forms are shared among different connections,
they have been reused.

An example of the FTP form is depicted below 6.4. The form design consolidates
related information to enhance user orientation throughout the form. Each form encap-
sulates all the essential information about the connection, including details related to
the file system, encryption, custom properties, and more. While the fields of all forms
are not explicitly mentioned here, they will be included in the user manual in the form
of the Confluence page.

It is important to note that these forms are developed solely for visualization purposes
in the context of this thesis, and therefore, users cannot save the information they edit.

55

6. Work Results and Evaluation .
However, they have been designed in a way that allows for future expansion to enable
setting connection details directly within the visualization.

As a result, the save button is disabled, and the other button closes the form.

Figure 6.4. Example of FTP Conenction Form

6.1.6 Properties Card

The properties card, as mentioned earlier, displays the properties related to the Generic
framework configuration. This card is available for FTP and database connections.
While it may not provide significant value to many users, it can be helpful for some.

An example of such a card for an FTP connection is shown below 6.5.

Figure 6.5. Example of Properties Card

56

. 6.2 Data Flow Visualization of the Camel Framework

6.1.7 Database to Database Mapping Card
In the case of integrating data from database to database, the visualization provides
options to display mapping on columns based on the SQL statements. This card opens
by clicking the head of the arrow.

An example of a mapping card is in the figure 6.6.

Figure 6.6. Example of Mapping Card

6.2 Data Flow Visualization of the Camel Framework
The core feature of the Camel framework visualization is the representation of the flow
structure. Due to the diverse components in various integrations and the underlying
complexity of the Camel framework, this description provides a concise overview. A
synoptic integration example is depicted in figure 6.7 to highlight the key features, with
additional examples available in the appendix.

Figure 6.7. Example of Camel Integration Flow

57

6. Work Results and Evaluation .
6.2.1 Structure

The visualization primarily consists of routes framed in blue and optional configura-
tions, commonly exception handling configurations, framed in orange at the beginning.

These routes are filled with Camel components that are further framed by their
context. Each component can be hovered over to display a tooltip providing relevant
information. This tooltip informs the user of the available actions upon clicking the
component, such as showing properties, SQL details, delivery events, or indicating when
no additional information is available. An example of such tooltip is depicted in the
example 6.7.

The configurations are also formed from components, but they usually represent some
sort of error handler. In the example provided, the configuration consists of an error
handler, enabling users to examine the type of exception thrown. Another screenshot
6.8 shows configurations may consist of multiple handlers and include components like
logs.

Figure 6.8. Example of Camel Integration Exception Handling Configuration

6.2.2 Properties

An example of how the properties display for components that allow this option is
demonstrated in figure 6.9 on the mentioned log component from 6.8.

58

. 6.2 Data Flow Visualization of the Camel Framework

Figure 6.9. Example of Properties Details within Camel Visualization

6.2.3 Database Endpoints

A window similar to that used in the Generic framework visualization is employed for
displaying SQL details, with additional properties provided, as shown in figure 6.10.

Figure 6.10. Example of SQL Card for Camel Visualization

6.2.4 Delivery Event Endpoints

Similarly, the option to display a delivery event closely resembles the functionality of
displaying the FTP Connection form depicted in figure 6.4. However, in this case, the
event may be associated with multiple delivery actions, offering users the option to
navigate through the actions. Figure 6.11 showcases example of such form.

59

6. Work Results and Evaluation .

Figure 6.11. Example of Delvery Event Form for Camel Visualization

6.3 User Testing
The user testing phase was initiated to comprehensively evaluate the resulting visual-
ization, assessing its strengths, weaknesses, and areas for improvement. This endeavor
aimed not only to discern the contribution of the visualization but also to propose future
developments or simple adjustments that could enhance the overall user experience.

6.3.1 Methodology

The chosen methodology for testing the Generic visualization and the Camel visualiza-
tion varied slightly due to their distinct natures. However, despite these differences, each
testing session followed a similar approach. Users were informed at the outset that they
were not the subject of testing and that their capabilities of answering any question or
completing a given task were not measured. They were encouraged to freely share their
thoughts and opinions throughout the session, including any negative feedback, with
the assurance that this feedback would not affect the thesis rating. This conversation
aimed to ensure that users felt comfortable sharing their honest impressions.

Testing took place in the natural environment of the company, typically in a small
meeting setting, with a sweet treat of appreciation offered as gratitude for their par-
ticipation to maintain a relaxed atmosphere. This choice follows the commonly known
recommendations for user testing, also mentioned in [42]. Each session lasted between
20 to 45 minutes, with testing for the Camel visualization often being longer. Af-
ter each session, users were asked to summarize their thoughts and feelings about the
visualization and ask any additional questions they wanted.

The chosen methodology aligns with the Informal Walkthrough method, emphasiz-
ing intuitive user interaction. This approach involves conducting test sessions within
real-world usage contexts, incorporating task-free exploration periods and optional pre-
defined scenarios, and it necessitates the availability of a functional prototype.[42]

60

. 6.3 User Testing

6.3.2 Generic Visualization Testing

For the testing of the Generic visualization, five users of the platform were selected
based on recommendations from the integration architect, who possesses extensive ex-
perience with such users. The users were chosen in this manner to align with the
recommendations mentioned in [42], which suggest selecting real and possible users.
Therefore, four real users and one possible user were selected. The [42] also mentions
that about 80% of usability issues can be discovered with five users. Each user was pre-
sented with two visualizations of their custom integration to simulate their future usage.
The testing approach involved allowing the users to freely explore the first integration
without providing any prior information about the visualization. Their interactions and
comments were observed and documented. In the second integration, users were given
a basic description of the present components, similar to the one in the user manual,
that will be accessible to all users. Users were assigned two simple tasks during this
phase to locate specific information within the integration.

A brief summary of each user’s session follows.

. Participant I.
The participant began briefly contemplating their observations, mentioning their
familiarity with the integration by name and their ability to discern the connections.
This indicated a solid understanding on the part of the participant. They explored
the integration more thoroughly by interacting with the icons and arrows. Although
they encountered some readability issues, the participant attributed this to forgetting
their glasses and speculated that using a laptop screen instead of their usual monitor
might have contributed to the problem. This suggested a need to verify the clarity
of the visualization across various resolutions.

The participant did not focus much on the property card but dedicated time to
studying the information within the forms. They shared common challenges expe-
rienced when using such integrations and proposed enhancements to address these
issues within the visualization. One suggestion was to incorporate an existence check
for the directory field in the FTP connection (as the participant owned only such
FTP integrations) because the integration fails when the specified directory does not
exist, requiring them to search for this information within the logs, which they found
inconvenient. Another proposal was to introduce a test button to identify problems
with a connection in case of integration failure.

During the second part of the testing, the participant swiftly located the requested
information despite clicking through some cards multiple times.

In their final feedback, the participant expressed appreciation for the visualiza-
tion, noting its value in immediately displaying connections without the need to
navigate through tabs as usual, which sometimes loaded slowly. They highlighted
the potential time-saving aspect of this feature. They reiterated the usefulness of the
option to test the connection, emphasizing its benefits for themselves and their team.

. Participant II.
The second participant initially struggled with being given the freedom to explore
and immediately sought guidance on what to do. They were encouraged to interact
with various elements, read the provided information, etc. The participant noted
some design preferences throughout the exploration, such as preferring a classic X
instead of a close button. However, they did not express many opinions and instead
focused more on recalling and understanding the integration, inquiring about certain

61

6. Work Results and Evaluation .
aspects of the integration logic. They experimented with text copying and right-clicks
and appreciated the colored visualization of the SQL statements.

During the task phase, they successfully located the intended information without
encountering any difficulties.

This participant also displayed curiosity about the Camel visualization, indicating
a willingness to learn about it despite lacking prior knowledge. They were keen to
grasp the useful information that could be gleaned from such a visualization.

Their feedback highlighted the ease and speed of finding information in the
visualization, expressing appreciation for this aspect. They suggested incorporating
the name, considering their use of certain conventions, might enhance their experi-
ence. However, this acknowledgment is not directly relevant to the testing, as the
integration’s name would be visible to users on the platform.

. Participant III.
The third participant exhibited a higher level of technical expertise. They nav-
igated through the visualization swiftly, examining each element by clicking and
right-clicking on various components. The participant observed several unexpected
behaviors in the visualization, such as the inability to close certain cards by clicking
outside of them. They remarked that the connection button felt more like an acti-
vation of an action rather than a typical button, expressing a preference for showing
information cards on hover instead of click, which they found to be more intuitive.
Additionally, they provided detailed feedback on the connection forms, expressing
confusion over some naming conventions and space distribution for certain elements.
They encountered difficulty with the save button initially, as they did not immedi-
ately recognize it as disabled, strongly recommending a change in its appearance.

This participant also did not encounter any problems when given the task of finding
some information. Only the naming conventions confused them a little.

Despite this, the user had a clear vision with many notes on enhancing the
visualization overall. They noted that they like how fast they can orient within the
integration and that this overall integration readability is their main point.

. Participant IV.
This participant took a deliberate approach to exploring the visualization, appearing
to reflect each component, which they later shared during the session. Their method
led to more of a discussion-based testing approach rather than mere observation.
The participant encountered some difficulty in closing certain cards, particularly the
modal window for the SQL card. They speculated about the overall structure and
suggested improvements they would like to see, unaware that opening the cards would
provide the desired information. Overall, this user appeared enthusiastic about the
visualization, highlighting many aspects they appreciated. They particularly praised
the overall structure, the design, and the visualization of SQL statements.

A minor complication occurred during task completion and was attributed to the
participant mishearing instructions. However, during the task, they suggested that
displaying the file delivered by email could be more valuable than the email subject.
Additionally, they gently proposed that the form for listing custom properties offer
the option to display all properties without paging through them.

In their final feedback, this participant expressed excitement about the future use
of the feature.

62

. 6.3 User Testing

. Participant V.
The last participant also opted to take a methodical approach to explore the visual-
ization, carefully considering each step. However, despite reminders to do so, they
did not express many opinions or share their thought process. Therefore, there was
not much to describe because pushing them out of their comfort zone is not good
practice.

After exploring, the participant did not struggle to find any requested information
within the second integration.

Overall, it seemed this participant was looking for information that was not present
in the visualization. Their final feedback mentioned missing the mapping in their
database-to-database integration. Except that, this participant did not share more
feedback.

6.3.3 Camel Visualization Testing
Two integration developers were selected as participants for the testing of Camel visu-
alizations. Similar to the testing of the Generic visualization, users were encouraged to
interact with the visualization freely. However, in this case, the testing sessions were
more structured as discussions rather than purely observational.

The testing process tended to be longer due to the complexity of the tested integra-
tions and the increased number of questions posed by the users throughout the testing
sessions.

Below, key points from each discussion are highlighted. Due to the nature of the
testing, which involved more discussion about the Camel integration than the final
product, only select aspects are described.

. Participant I.
The first participant began by analyzing the overall structure of the visualized inte-
gration, aiming to map the entire process to what is happening in the code of that
integration. They noted multiple ways some components can be defined in code and
how they map to the visualization. Here, they suggested that they would prefer some
components to be embedded within clickable details rather than in the entire flow.
The participant struggled with the logic behind the orange frame for the visualiza-
tion, but after an explanation of its purpose, they acknowledged it. They noted that
they struggled with the arrows rendering over the text and suggested providing visi-
bility when two routes are interconnected. They recommended adding more specified
names for components that represent endpoints to see the main flow of the whole
integration right away. The participant clicked through all components to see which
component was capable of visualizing what, noting that some information did not
bring anything but acknowledging that this was due to the dynamic nature of Camel.

In the end, they noted that they liked this tool for getting some initial information
about the integration without looking for and exploring the source code. Despite
that, they still prefer the code because they are used to it, and they can fully under-
stand what’s going on within the integration. They also noted that the visualization
of large complex integrations gets confusing but stated that this is not the problem
of the visualization, as such code is also confusing. They noted that they also saw
some complicated integration in the OIC platform, which was confusing, clarifying
the visualization problem for complex integrations.

. Participant II.
The second participant also took the approach of slowly exploring the visualization.

63

6. Work Results and Evaluation .
Throughout the exploration, they expressed that they really liked the visualization
for SQL endpoints. With the delivery event endpoints, they noted that they did not
spot that it was a delivery event endpoint in the tooltip. Therefore, they suggested
adding a description or a different icon for SQL and delivery event endpoints. Par-
ticipant took multiple pauses throughout the exploration, thinking about possible
adjustments and what could be embedded in the code to show more information in
the visualization. Here, the participant came up with the idea of utilizing custom
naming for the components’ identifiers. They noted that using this logic during de-
velopment could bring some additional information to the visualization. They also
thought about the convention in the query naming, but here, they concluded that
this information likely would not get into the visualization.

During further exploration, the participant suggested renaming some parts of the
form to fit the old convention. They also proposed a feature that highlights the route
based on a click on the interconnection from the previous route to provide faster
orientation within the structure. In the final feedback, the participant stated they
liked the visualization, and they would use this feature as the first tool for analysis
so they do not need to download the whole code repository. They also noted it
could help find mistakes within the integration faster in some cases, but they need
some time to get used to this feature and understand its capabilities by using it. The
participant added that it would be great if the visualization could display more details
about some components, as in the case where lambda is used, and the expressions
are not readable, but if they were, it would be really helpful.

6.4 Evaluation and Contribution
In this section, the thesis comprehensively evaluates the results obtained from the
Generic framework and Camel framework visualizations, as assessed through user test-
ing sessions. The findings are summarized to highlight each visualization’s strengths,
weaknesses, and overall contribution. Through this evaluation, the thesis aims to draw
insights into the effectiveness of the visualizations in meeting user needs and identify
areas for further enhancement.

6.4.1 Generic Framework Visualization Evaluation

Based on the testing sessions for the Generic visualization, the pivotal findings follow:

. User Engagement and Understanding
Participants demonstrated varying levels of engagement and understanding while
exploring the visualization. Some quickly grasped the connections and flow of the
integration, while others encountered challenges with readability and navigating the
interface.

. Feedback on the Design
Participants provided valuable feedback on the interface design, highlighting areas
for improvement such as readability, button clarity, and the intuitiveness of certain
features like closing modal windows.

. Value in Simplifying Workflows
Participants appreciated the visualization’s ability to provide a clear overview of
integration flows. They acknowledged its potential to save time and simplify work-

64

. 6.4 Evaluation and Contribution

flows by providing quick access to information about integrations.

. Suggestions for Enhancement
Participants provided valuable insights into potential enhancements for the visu-
alization. While some suggestions were more like personal preferences, such as
implementing hover-over effects instead of on-click interactions, others highlighted
crucial improvements. These included enhancing readability for certain buttons,
improving the clarity of closing modal windows, and incorporating a mapping feature
for database-to-database integrations. The mapping feature was deemed crucial, so
it was incorporated into the thesis development.

. Overall Positive Feedback
Despite some challenges, participants generally had a positive impression of the vi-
sualization, noting its potential to enhance user interaction and efficiency within the
integration platform.

6.4.2 Generic Framework Visualization Conclusion
The testing sessions provided valuable insights into the strengths and areas for im-
provement of the Generic visualization. While participants appreciated its potential to
streamline workflows and provide a clear overview of integration flows, there were sug-
gestions for enhancing the interface design and usability. Overall, the feedback aligns
with the goal of the visualization, which is to help users navigate integration flows
and provide an understandable visualization of the data pathways. These insights will
inform further refinements to the visualization, ensuring it effectively meets the needs
and expectations of users within the integration platform.

6.4.3 Camel Framework Visualization Evaluation
Based on the testing sessions for the Camel visualization, the pivotal findings follow:

. Potential Use
The visualization tool demonstrated its value by providing quick insights into Camel
integration structures without requiring users to delve into source code. Users
appreciated its utility for initial analysis and error detection, particularly for gaining
a high-level understanding of integrations.

. Proposed Enhancements
Suggestions for improvement included enhancing component visibility, adding de-
scriptions or icons for different endpoint types, and providing customization options
such as custom naming for identifiers. Users also proposed features like highlighting
routes based on interconnections.

. User Familiarization
One user explicitly noted the need for familiarization with the tool, which was re-
flected in the slow exploration of both participants during the visualization explo-
ration. This suggests a learning curve for users to fully utilize its capabilities.

6.4.4 Camel Framework Visualization Conclusion
The visualization tool effectively aligns with its goal of aiding navigation within Camel
integration structures. Users found it valuable for gaining initial insights and detecting

65

6. Work Results and Evaluation .
errors without extensively investigating the code. However, it became evident that
while visualization is a valuable tool, it does not fully replace the necessity of code
investigation for comprehensive understanding. A new idea emerged from the testing
to enhance the tool’s functionality by integrating static code analysis. By extracting and
embedding additional information from the integration code, such as custom naming
conventions and detailed component descriptions, the visualization could better capture
the complexities of integrations and further streamline analysis processes.

66

Chapter 7
Conclusion

The primary objectives of this thesis were successfully achieved. A structured frame-
work for representing various data integrations within corporate software infrastructures
was developed, addressing the critical challenge of maintaining clarity amid heteroge-
neous data environments. This framework was realized by creating structural represen-
tations for two main groups of integrations: those based on the Generic framework and
those utilizing the Camel framework. A standardized visualization of the data flow was
also created for each structuralization, ensuring extensibility and ease of understand-
ing. Furthermore, the entire process and implementation were thoroughly documented,
facilitating future extensions and modifications. Through user testing, it was confirmed
that the final product provides a clear visualization of data flows and significantly aids
users in navigating their integrations more efficiently. The thesis also presented general
information about the world of data integration, allowing readers to understand the
discussed problematics.

During the problem analysis, it became evident that while existing solutions for the
visualization of data flows exist, they are often embedded within specific platforms.
Thus, the development of a new, tailored solution was deemed necessary. The analysis
revealed expected challenges, particularly in the case of the more intricate Apache
Camel framework, which necessitated a more sophisticated approach. Several challenges
emerged throughout the implementation process, including integrating the new features
with the existing logic within the platform.

The user testing proved valuable, providing essential insights into the contribution
of the new visualization features. While the Camel framework visualization may not
fully replace code examination, its primary purpose was to visualize the structure of
data flows within Camel integrations. In this regard, it successfully met its objective,
providing users with a clear overview of integration structures. However, further en-
hancements may be necessary to fully harness its potential, particularly in facilitating
deeper insights and analysis. For the Generic framework visualization, promising re-
sults were observed, as it facilitated easy navigation within integrations, potentially
reducing queries to the integration development team and improving understanding
among users.

As a result, the contribution of the less complex visualization for the Generic frame-
work appears more significant, enhancing the platform’s usability. Conversely, the
contribution of the more complex visualization for the Camel framework is diminished,
mainly due to its dependence on understanding the Apache Camel framework, restrict-
ing its usage to developers rather than standard platform users.

In the end, the thesis developed two new frameworks for the platform in an extensible
manner, allowing for various ways to enhance their features. Some suggestions for
extensions are discussed below.

67

7. Conclusion .

7.1 Future Work
Building upon the user testing feedback, the following enhancements are proposed for
the future development of the system:

7.1.1 Advancing the Generic Framework Visualization:
Expanding on the proposed solution, adding a testing button for connections within
the Generic visualization component offers users a straightforward means to verify
connection accessibility. This feature addresses the need for real-time connection status
checks, necessitating the development of backend logic capable of accurately testing
various connection types. This logic already exists, but it is unreliable, which was also
why this feature was not implemented in the first place.

Moreover, the existing structure for the connection form lays the groundwork for
seamless integration with the backend, enabling users to make modifications directly.
Implementing additional validation checks, such as directory existence verification,
could enhance data integrity and user confidence in the system.

7.1.2 Advancing the Camel Framework Visualization:
Further exploration of the Camel framework’s capabilities reveals opportunities for en-
hanced developer insight and integration understanding. Leveraging static code anal-
ysis to extract essential information, or piece of code itself, directly from the codebase
empowers developers to gain deeper insights into integration components.

Furthermore, exploring experimental approaches, such as employing AI algorithms
for code analysis, offers a promising avenue for comprehensive integration insights.
However, it is crucial to develop custom AI solutions aligned with stringent company
security policies to mitigate potential risks.

Additionally, analyzing outgoing and ongoing requests associated with integrations
offers valuable real-time information, particularly in dynamic environments. This fea-
ture aids developers in understanding integration behavior. However, this leads to more
real-time visualization than structural visualization.

7.1.3 Scaling User Testing:
Expanding the scope of user testing to encompass a broader audience is essential for
gathering diverse perspectives and comprehensive feedback. Engaging a larger user base
ensures that proposed enhancements align with various use cases and user requirements.
Incorporating feedback from a diverse pool of users facilitates iterative refinement of
features, ultimately enhancing the overall usability and effectiveness of the system.

68

References

[1] C. Ibsen, and J. Anstey. Camel in Action. Manning, 2018. ISBN 9781638352808.
[2] Miftah Santoso. Implementation Of UI/UX Concepts And Techniques In Web

Layout Design With Figma. 2024, Vol 6 279. DOI 10.47233/jteksis.v6i2.1223.
[3] James Lewis, and Jeff Sauro. USABILITY AND USER EXPERIENCE: DESIGN

AND EVALUATION . In: 2021. 972-1015. ISBN 9781119636083.
[4] A.H. Doan, A. Halevy, and Z. Ives. Principles of Data Integration. Elsevier Science,

2012. ISBN 9780123914798.
[5] Dataversity Digital LLC. The Fundamentals of Data Integration.

https://www.dataversity.net/the-fundamentals-of-data-integration/.
Accessed: 2024-01-21.

[6] Data integration.
https://www.ibm.com/cloud/learn/data-integration. Accessed: 2024-01-21.

[7] Roee Shraga, and Avigdor Gal. One Algorithm to Rule Them All: On the
Changing Roles of Humans in Data Integration. Computer . 2023, 56 (4), 102-109.
DOI 10.1109/MC.2023.3240449.

[8] Shashank Shrestha, and Subhash Bhalla. A Survey on the Evolution of Models of
Data Integration. International Journal of Knowledge Based Computer Systems.
2020, 8 (1 and 2), 11–16.

[9] Roee Shraga, Avigdor Gal, and Haggai Roitman. ADnEV: cross-domain schema
matching using deep similarity matrix adjustment and evaluation. Proceedings of
the VLDB Endowment. 2020, 13 1401-1415. DOI 10.14778/3397230.3397237.

[10] Roee Shraga, and Avigdor Gal. PoWareMatch: a Quality-aware Deep Learning
Approach to Improve Human Schema Matching. 2021.

[11] Jan-Philipp Awick, Gerrit Schumann, and Jorge Marx Gómez. Exploring Feder-
ated Learning for Data Integration: A Structured Literature Review. In: 2023 In-
ternational Conference on Big Data, Knowledge and Control Systems Engineering
(BdKCSE). 2023. 1-8.

[12] El Abassi Merieme, Amnai Mohamed, Choukri Ali, Yossef Fakhri, and Gherabi
Noreddine. A survey on the challenges of data integration. In: 2022 9th Interna-
tional Conference on Wireless Networks and Mobile Communications (WINCOM).
2022. 1-6.

[13] Mouna Rhahla, Sahar Allegue, and Takoua Abdellatif. Guidelines for GDPR com-
pliance in Big Data systems. Journal of Information Security and Applications.
2021, 61 102896. DOI https://doi.org/10.1016/j.jisa.2021.102896.

[14] ElKindi Rezig, Mike Cafarella, and Vijay Gadepally. Technical Report: An
Overview of Data Integration and Preparation. 2020.

[15] GeeksforGeeks. Data Warehouse Architecture and Database Management System
Topics.

69

http://dx.doi.org/10.47233/jteksis.v6i2.1223
https://www.dataversity.net/the-fundamentals-of-data-integration/
https://www.ibm.com/cloud/learn/data-integration
http://dx.doi.org/10.1109/MC.2023.3240449
http://dx.doi.org/10.14778/3397230.3397237
http://dx.doi.org/https://doi.org/10.1016/j.jisa.2021.102896

References .
https://www.geeksforgeeks.org/data-warehouse-architecture/. Available
online: Accessed on 20 March 2024.

[16] JavaTpoint. Data Warehouse Architecture.
https://www.javatpoint.com/data-warehouse-architecture. Accessed:
2024-03-22.

[17] Leonardo Azevedo, Renan Souza, Elton de F. S. Soares, Raphael Thiago, Julio
Tesolin, Ann Oliveira, and Marcio Moreno. A Polystore Architecture Using Knowl-
edge Graphs to Support Queries on Heterogeneous Data Stores.

[18] Sylvain Lacroix, Emeric Ostermeyer, Julien Le Duigou, Florent Bornard, Sylvain
Rival, Marie-France Mary, and Benoit Eynard. Lessons learnt in industrial
data platform integration. Procedia Computer Science. 2023, 217 1660-1669.
DOI https://doi.org/10.1016/j.procs.2022.12.366. 4th International Conference
on Industry 4.0 and Smart Manufacturing.

[19] Jayesh Patel. An Effective and Scalable Data Modeling for Enterprise Big Data
Platform. In: 2019 IEEE International Conference on Big Data (Big Data). 2019.
2691-2697.

[20] Bharat Singhal, and Alok Aggarwal. ETL, ELT and Reverse ETL: A business
case Study. In: 2022 Second International Conference on Advanced Technologies
in Intelligent Control, Environment, Computing and Communication Engineering
(ICATIECE). 2022. 1-4.

[21] Amazon Web Services, Inc.. What is Batch Processing?
https://aws.amazon.com/what-is/batch-processing/. Accessed: 2024-04-02.

[22] Amazon Web Services, Inc.. What is Streaming Data?
https://aws.amazon.com/what-is/streaming-data/. Accessed: 2024-04-02.

[23] Sultan T. Alanazi, Nibras Abdullah, Mohammad Anbar, and Ola A. Al-Wesabi.
Evaluation Approaches of Service Oriented Architecture (SOA) - A Survey. In: 2019
2nd International Conference on Computer Applications and Information Security
(ICCAIS). 2019. 1-6.

[24] Albert Stec. Microservices vs. Service-Oriented Architecture.
https://www.baeldung.com/cs/microservices-soa-differences. Accessed:
2024-04-02.

[25] Amazon Web Services, Inc.. What is SOA (Service-Oriented Architecture)?
https://aws.amazon.com/what-is/service-oriented-architecture/. Ac-
cessed: 2024-04-02.

[26] Amazon Web Services, Inc.. What’s the Difference Between SOA and Microser-
vices?
https://aws.amazon.com/compare/the-difference-between-soa-microserv
ices/. Accessed: 2024-04-02.

[27] Amirhossein Farahzadi, Pooyan Shams, Javad Rezazadeh, and Reza Farahbakhsh.
Middleware technologies for cloud of things: a survey. Digital Communications and
Networks. 2018, 4 (3), 176-188. DOI https://doi.org/10.1016/j.dcan.2017.04.005.

[28] J Sreemathy, R Brindha, M Selva Nagalakshmi, N Suvekha, N Karthick Ragul, and
M Praveennandha. Overview of ETL Tools and Talend-Data Integration. In: 2021
7th International Conference on Advanced Computing and Communication Sys-
tems (ICACCS). 2021. 1650-1654.

[29] Guilherme Camposo. Cloud Native Integration with Apache Camel: Building Agile
and Scalable Integrations for Kubernetes Platforms. 2021. ISBN 978-1-4842-7210-7.

70

https://www.geeksforgeeks.org/data-warehouse-architecture/
https://www.javatpoint.com/data-warehouse-architecture
http://dx.doi.org/https://doi.org/10.1016/j.procs.2022.12.366
https://aws.amazon.com/what-is/batch-processing/
https://aws.amazon.com/what-is/streaming-data/
https://www.baeldung.com/cs/microservices-soa-differences
https://aws.amazon.com/what-is/service-oriented-architecture/
https://aws.amazon.com/compare/the-difference-between-soa-microservices/
https://aws.amazon.com/compare/the-difference-between-soa-microservices/
http://dx.doi.org/https://doi.org/10.1016/j.dcan.2017.04.005

. .
[30] Apache Camel. The Apache Software Foundation.

https://camel.apache.org/. Accessed: 2024-04-08.
[31] Apache Camel. The Apache Software Foundation.

https://camel.apache.org/manual/dsl.html. Accessed: 2024-04-10.
[32] Rajender Reddy Vangala. INTEROPERABILITY NEXUS: AN IN-DEPTH EX-

AMINATION OF CROSS-PLATFORM INTEGRATION FRAMEWORKS, UN-
VEILING COMPARATIVE ARCHITECTURES AND PERFORMANCE DY-
NAMICS. INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMU-
NICATION ENGINEERING AND TECHNOLOGY . 2020, 11 57-72.

[33] Inc. Salesforce. Anypoint Platform.
https://www.mulesoft.com/platform/studio. Accessed: 2024-04-16.

[34] Oracle. Using Integrations in Oracle Integration Generation 2.
https://docs.oracle.com/en/cloud/paas/integration-cloud/integration
s-user/img/hello_world.png. Accessed: 2024-04-15.

[35] Marat Gubaidullin. KARAVAN INTRODUCTION IN 4 MINUTES .
https://camel.apache.org/blog/2023/01/karavan-intro/. Accessed: 2024-
04-15.

[36] Marat Gubaidullin. KARAVAN DESIGNER PREVIEW RELEASE 0.0.10.
https://camel.apache.org/blog/2022/02/camel-karavan-0.0.10/. Ac-
cessed: 2024-04-15.

[37] Rafał Wojszczyk, Aneta Hapka, and Tomasz Królikowski. Performance analy-
sis of extracting object structure from source code. Procedia Computer Science.
2023, 225 4065-4073. DOI https://doi.org/10.1016/j.procs.2023.10.402. 27th In-
ternational Conference on Knowledge Based and Intelligent Information and En-
gineering Sytems (KES 2023).

[38] Prabhat Pokharel. Information Extraction Using Named Entity Recognition from
Log Messages. 2018.

[39] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. Deep code comment generation
with hybrid lexical and syntactical information. Empirical Software Engineering.
2020, 25 DOI 10.1007/s10664-019-09730-9.

[40] David Elliott, and Eldon Soifer. AI Technologies, Privacy, and Security. Frontiers
in Artificial Intelligence. 2022, 5 826737. DOI 10.3389/frai.2022.826737.

[41] Samar Al-Saqqa, Samer Sawalha, and Hiba Abdel-Nabi. Agile Software Devel-
opment: Methodologies and Trends. International Journal of Interactive Mobile
Technologies (iJIM). 2020, 14 246. DOI 10.3991/ijim.v14i11.13269.

[42] Sirpa Riihiaho. Usability Testing. In: The Wiley Handbook of Human Computer
Interaction. John Wiley Sons, Ltd, 2018. 14. ISBN 9781118976005.
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118976005.ch14.

71

https://camel.apache.org/
https://camel.apache.org/manual/dsl.html
https://www.mulesoft.com/platform/studio
https://docs.oracle.com/en/cloud/paas/integration-cloud/integrations-user/img/hello_world.png
https://docs.oracle.com/en/cloud/paas/integration-cloud/integrations-user/img/hello_world.png
https://camel.apache.org/blog/2023/01/karavan-intro/
https://camel.apache.org/blog/2022/02/camel-karavan-0.0.10/
http://dx.doi.org/https://doi.org/10.1016/j.procs.2023.10.402
http://dx.doi.org/10.1007/s10664-019-09730-9
http://dx.doi.org/10.3389/frai.2022.826737
http://dx.doi.org/10.3991/ijim.v14i11.13269
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118976005.ch14

Appendix A
Additional Camel Integration Visualizations

73

A Additional Camel Integration Visualizations .

74

. .

75

Appendix B
Abbreviations and symbols

B.1 Abbreviations

AWS Amazon Web Services
API Application Programming Interface
B2B Business-to-business
BMS Building Management System
ERP Enterprise Resource Planning
ESB Enterprise Service Bus
ETL Extract-Transform-Load process

FDBMS Federated Database Management System
FDBS Federated Database System
FQA Federated Query Agents

HDFS Hadoop Distributed File System
IBM International Business Machines
JMS Java Messaging Service
MIT Massachusetts Institute of Technology

NoSQL Not Only SQL
OLAP Online Analytical Processing
OLTP Online Transaction Processing
PaaS Platform as a Service
PLM Product Lifecycle Management

RDBMS Relational Database Management System
SOA Service-oriented architecture

ADnEV Cross-domain schema matching using deep similarity matrix adjust-
ment and evaluation

BigDAWG Open source project from researchers within the Intel Science and
Technology Center for Big Data

PoWareMatch Quality-aware Deep Learning Approach

76

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt
	Abstract
	Contents
	Tables/Figures
	Introduction
	Motivation
	Goal

	Methodology
	Thesis Structure
	Problem Analysis Research
	Implementation Methodology
	Methodology Behind the Design
	User Testing Methodology

	Data Integration
	Context of Data Integration
	Importance of Data Integration
	Evolution of Data Integration
	Challenges in Data Integration
	Semantic and Structural Discrepancies
	Deduplication and Data Quality
	Privacy

	Models of Data Integration
	Federated Database System (FDBS)
	Data Warehouse (DW)
	Mediators
	Polystore Systems
	Comparison

	Data Platform
	Data Platform Structure
	Data modeling

	Key concepts of Data Integration
	ETL, ELT and Reversed ETL
	Data Quality
	API and Services
	Batch Processing and Data Streaming
	Scheduling

	Solutions for Data Integration
	Service-oriented Architecture - SOA
	Microservices
	Middleware

	Notable Integration Platforms
	Talend
	Informatica Power Center
	Talend and Informatica Comparison
	Other Platforms

	Problem Analysis
	Onsemi Middleware Platform
	Onsemi Middleware Architecture Overview
	Onsemi Middleware Environments

	Used Data Integration Frameworks within the Platform
	Generic framework
	Apache Camel Framework

	Apache Camel
	The Functional Architecture of Apache Camel

	Existing Solutions for Data Flow Visualization
	MuleSoft's Anypoint Platform
	Oracle Integration Cloud (OIC)
	Apache Camel Karavan
	Possible Utilization of Existing Solutions

	Applicable Techniques for Data Flow Visualization
	Proposed Technique for the Generic Framework
	Alternative Techniques for the Camel Framework

	Implementation
	Used Technology
	Development Approach
	Technologies and Tools used for Implementation

	Data Flow Visualization for Generic Framework
	Architectural overview
	Backend Model
	Frontend Model

	Data Flow Visualization for Camel Framework
	Backend Model
	Frontend Model
	Interconnection between the Models

	Work Results and Evaluation
	Data Flow Visualization of the Generic Framework
	Initial Screen
	Key Infromation Card
	SQL Card
	SQL Statement Card
	Connection Forms
	Properties Card
	Database to Database Mapping Card

	Data Flow Visualization of the Camel Framework
	Structure
	Properties
	Database Endpoints
	Delivery Event Endpoints

	User Testing
	Methodology
	Generic Visualization Testing
	Camel Visualization Testing

	Evaluation and Contribution
	Generic Framework Visualization Evaluation
	Generic Framework Visualization Conclusion
	Camel Framework Visualization Evaluation
	Camel Framework Visualization Conclusion

	Conclusion
	Future Work
	Advancing the Generic Framework Visualization:
	Advancing the Camel Framework Visualization:
	Scaling User Testing:

	References
	Additional Camel Integration Visualizations
	Abbreviations and symbols
	Abbreviations

