
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computers

DHT implementation in Java

Bc. Vojtěch Kuzdas

Supervisor: Ing. Peter Macejko
Field of study: Software Engineering
May 2024

May 24, 2024 ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

485044 Personal ID number: Kuzdas Vojtěch Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Science

Open Informatics Study program:

Software Engineering Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

DHT implementation in Java

Master’s thesis title in Czech:

Implementace DHT v Javě

Guidelines:

Design and implement a library for working with distributed hash tables (DHT) in Java. The library will provide a generic
interface for creating, joining, and querying DHT clusters capable of storing and querying data by keys. The library will
also allow switching between different DHT algorithms such as Pastry, Kademlia, and Chord, which differ in the way nodes
are organized and messages are routed.
In the theoretical part of the thesis, a review of existing DHT algorithms and their properties will be carried out. Furthermore,
the gRPC technology that should be used for communication between the nodes of the DHT cluster will be described.
In the practical part of the thesis, a library interface will be designed and implemented to work with the DHT cluster to
initialize, connect, disconnect, insert, retrieve, and delete data according to keys.
The thesis will conclude with an evaluation of the objectives, benefits, and shortcomings of the proposed and implemented
library. Possible directions for further development and improvement of the library will also be proposed.

Bibliography / sources:

Steen M., Tanenbaum A. S., “Distributed Systems”. 2023. ISBN 9081540637
Santoro, N “Design and Analysis of Distributed Algorithms”. Wiley, 2007, ISBN 0471719978
Tel, G. "Introduction to Distributed Algorithms". Cambridge University Press, 2001. ISBN 0521794838

Name and workplace of master’s thesis supervisor:

Ing. Peter Macejko Department of Telecommunications Engineering FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 24.05.2024 Date of master’s thesis assignment: 19.02.2024

Assignment valid until: 15.02.2026

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Peter Macejko
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

May 24, 2024 iv

Acknowledgements
Děkuji Českému vysokému učení technick-
ému za celé dva roky které jsem na její
Fakultě Elektrotechnické strávil. Děkuji,
že se mi zde dostalo kvalitnímu vzdělání v
oboru mého zájmu. Věřím, že znalosti zde
získané, zkušenosti zde nabyté ale i strasti
zde prožité mne učiní lepším vývojářem,
kolegou a hlavně člověkem.

Jmenovitě bych chtěl poděkovat panu
inženýrovi Peteru Macejkovi. Děkuji Vám
za Váš čas, velkou snahu a trpělivost.
Domnívám se, že Vaše snaha diskuto-
vat nad tématem pravidelně se znatelně
podepsala na kvalitě této práce.

Děkuji mé přítelkyni, bez které bych
studium na ČVUT nezapočal.

Děkuji přátelům a mé rodině.

I thank the Czech Technical University
for the two years I spent at its Faculty
of Electrical Engineering. Thank you for
providing me with quality education in
my field of interest. I believe that the
knowledge attained, the experience gained
and the hardships lived here will make me
a better developer, colleague and most
importantly a better person.

In particular, I would like to thank Ing.
Peter Macejko. Thank you for your time,
great effort and patience. I believe that
your efforts to discuss the topic on a reg-
ular basis have noticeably contributed to
the quality of this work.

Thank you to my partner, without
whom I would not have started my studies
at CTU.

Thank you to my friends and my family.

Declaration
Prohlašuji, že jsem předloženou práci
vypracoval samostatně, a že jsem uvedl
veškerou použitou literaturu.

V Praze, 24. května 2024

I declare that I have prepared the sub-
mitted thesis independently and that I
have cited all the literature used.

Prague, 24. May 2024

v May 24, 2024

Abstract
This thesis discusses and describes an im-
plementation of three basic types of dis-
tributed hash table (DHT). The purpose
of this implementation is to use it to illus-
trate and teach distributed systems.

In the first part, the thesis describes the
definition and mechanisms of a distributed
hash table theoretically. Three basic DHT
types are introduced - Chord, Pastry and
Kademlia. The types are also compared.
Next, two commercial solutions that use
the technology are briefly introduced.

The second, mostly practical part, takes
the reader through the process of imple-
menting the selected DHT types. This
part also highlights the pitfalls that can
arise when implementing these systems,
thus complementing the original publica-
tions which introduced these technologies
originally. The three selected DHT types
are further wrapped into a unifying library
that allows the creation, customization,
and management of each DHT type. The
paper concludes with an evaluation of the
results and suggestions for future work.

Keywords: Distributed Hash Table,
Consistent hashing, Chord, Pastry,
Kademlia, Java, gRPC

Supervisor: Ing. Peter Macejko

Abstrakt
Tato diplomová práce pojednává a po-
pisuje implementaci tří základních typů
distribuované hashovací tabulky (DHT).
Smyslem této implementace je využít ji
pro ilustraci a výuku distribuovaných sys-
témů.

Práce v první části teoreticky popisuje
definici a mechanismy distribuované ha-
shovací tabulky. Představujeme zde tři zá-
kladní typy - Chord, Pastry a Kademlia.
Typy jsou taktéž porovnány. Dále jsou
stručně představeny dvě komerční řešení
které technologii využívají.

Druhá, převážně praktická část, čte-
náře provede procesem implementace zvo-
lených typů DHT. Tato část také upozor-
ňuje na nástrahy které mohou vyvstat při
implementaci těchto systémů, čímž dopl-
ňuje původní publikace představující tyto
technologie. Tři zvolené typy DHT jsou
dále obaleny do jednotné knihovny umož-
ňující vytvoření, kustomizaci a správu jed-
notlivých typů DHT. Práce končí vyhod-
nocením výsledků a úvahou nad návrhy
budoucích prací.

Klíčová slova: Distribuovaná hashovací
tabulka, Konzistentní hashování, Chord,
Pastry, Kademlia, Java, gRPC

Překlad názvu: Implementace DHT v
Javě

24. května 2024 vi

Contents
1 Thesis overview 1

Part I
Theory

2 Distributed Hash Tables 5
2.1 What is a Distributed Hash Table 5

2.1.1 DHT space 6
2.2 Chord . 8

2.2.1 Finger table 8
2.2.2 Find successor procedure 9
2.2.3 Node arrival 9

2.3 Pastry . 10
2.3.1 Design . 11
2.3.2 Node state 11
2.3.3 Routing 12
2.3.4 Node arrival 13
2.3.5 Locality 14

2.4 Kademlia . 14
2.4.1 System decription 14
2.4.2 XOR metric 15
2.4.3 k-buckets 15
2.4.4 Lookup 16
2.4.5 Join . 17

2.5 Comparison of different
implementations 17
2.5.1 Node design 17
2.5.2 Topology 18
2.5.3 Distance 18
2.5.4 Parametrization 18
2.5.5 Routing procedure 19
2.5.6 Node join 19

2.6 DHT implementations in practice 20
2.6.1 Riak KV 20
2.6.2 Amazon‘s Dynamo 22

Part II
Analysis and Implementation

3 gRPC 29
3.1 How it works 29
3.2 Core concepts 30
3.3 gRPC in action 31

3.3.1 Importing gRPC via Maven . 31
3.3.2 Java interface 34

4 Chord 37
4.1 Chord node structure 37

4.1.1 Predecessor, Successor and
FingerTable 37

4.1.2 Stabilization routine 37
4.1.3 GRPC server/client 37
4.1.4 LocalData in Treemap 38

4.2 Lifecycle . 38
4.2.1 ChordNode instantiation 38
4.2.2 createRing() 38
4.2.3 join() . 38
4.2.4 leave() . 38
4.2.5 Node failure 39

4.3 Logging levels 39
4.4 Future work 39
5 Pastry 41
5.1 Pastry node structure 41

5.1.1 NodeState 41
5.1.2 GRPC server/client 42
5.1.3 Distance calculator 42

5.2 Leave . 43
5.3 Fail recovery 43
5.4 Future work 43

5.4.1 Whether to wraparound or not 43
5.4.2 Visual representation of Pastry

system . 44
6 Kademlia 45
6.1 KBucket . 45
6.2 RoutingTable 46

6.2.1 Find K closest 46
6.2.2 Array versus Binary tree 46

6.3 KademliaNode 47
6.3.1 Node lookup 47

6.4 Scheduling 47
6.5 Locking . 48
6.6 Parametrization 49
6.7 Future work 49
7 The DHT Library 51
7.1 How to use it 51

7.1.1 Create a bootstrap node 51
7.1.2 Join DHT instance using the

bootstrap node 52
7.1.3 Customizing the network 52
7.1.4 REST API 53

8 Results and Conclusions 55
8.1 Implementation summary 55
8.2 Assessment 55

vii May 24, 2024

8.3 Future work 56
8.4 Conclusion 56

Appendices

A Bibliography 61

B Attachment content 63

May 24, 2024 viii

Figures
2.1 DHT space partitioning 6
2.2 Responsibility transfer 7
2.3 Finger table example 9
2.4 Pastry’s node state 11
2.5 Kademlia identifier space 15
2.6 Kademlia routing 16
2.7 KBuckets 17
2.8 Reconciliation in Dynamo 24

5.1 Pastry identifier space 44

Tables
7.1 DHT Node’s REST endpoint and

its prompted operations. 54

ix May 24, 2024

May 24, 2024

Chapter 1
Thesis overview

In the era of distributed computing, the management and retrieval of data
across a network of interconnected nodes pose significant challenges. Address-
ing these challenges requires robust and scalable solutions, and Distributed
Hash Tables (DHTs) emerge as key components in the design of efficient
distributed systems. This thesis delves into the intricacies of various DHT
implementations.

Aim of the thesis is to not only explain the intricacies of these complex
systems, but to also design a tangible playground for newcomers in form of a
real implementation. The main output of this thesis is a general Distributed
Hash Table interface, with the ability to create a new network or to connect to
an already existing one. This interface can be then used to educate students
and other developers. Furthermore, the interface can also be extended in
future works to make a visual representation of such distributed system,
therefore further facilitate the intuitive learning.

Thesis consists of three main parts. The first part introduces reader into
the topic of distributed hash tables. We start with a general explanation of a
distributed system and characteristics. We then introduce a lookup problem in
context of such systems and present the distributed hash table as a solution to
this problem. Chapters following the problem statement introduce three main
types of DHT: Chord, Pastry and Kademlia. Analysis of each type follows in
order to assess and compare their characteristics. The theoretical part then
concludes with a research of current commercial DHT implementations.

Second part leads the reader through a real process of implementing three
previously described DHTs. It provides further exploration of its concepts
and practical utilizations. Each chapter is followed by a proposal for future
works focused on visualizing the protocol mechanisms in real-time. This
hands-on part also contributes to the scientific and developer community by
further describing each implementation. It not only adresses pitfalls that can
occur during an implementation but also sheds light on topics and details
that were not explained in the original publications.

The final chapter of second part concludes the work and presents its results.
Summarization and assesment of implementation is presented here as well as
suggestions for future work.

1 May 24, 2024

May 24, 2024 2

Part I

Theory

3 May 24, 2024

May 24, 2024 4

Chapter 2
Distributed Hash Tables

A distributed system is a collection of independent computers that appear
to its users as one computer [Tan07]. These systems have become popular
not only because of their simple interface perceivable to the user, but also
because of their high scalability. This, coupled with their ability to distribute
workloads efficiently and provide fault tolerance makes distributed systems a
very attractive choice for many technology companies no matter their size.

Among different architectures of distributed systems, two architectures are
very prominent at the present time: client-server and peer-to-peer. Although
both share similar properties of distributed systems, peer-to-peer architecture
(p2p) aims to eliminate any requirement for separately managed servers
and their associated infrastructure. This characteristic tends to be very
advantageous considering the fact that the performance difference between
personal computers and servers narrows day by day as well as network
connectivity and speed increases [Cou11]. Other authors also point out
increased resilience to single point of failure given by the highly distributed
nature of p2p networks. On the other hand, the implementation of a p2p
system may entail higher degree of complexity.

This thesis focuses on one of many complexities called the lookup problem
[Ste05]. Assuming that all participants in the network have equal privilege
and no participant has knowledge of the whole network, the lookup problem
asks: Where to store and find a certain item? While Steinmetz provides three
1 possible solutions to the problem, the thesis at hand explores perhaps the
most elegant one, the distributed hash table.

2.1 What is a Distributed Hash Table

The distributed hash table extends the basic functionality of a plain hash
table by distributing key/value pairs across a network of cooperating machines
(nodes). This results in decreased lookup time, as well as an increased amount
of data that can be stored in a DHT. It comes from the fact, that the amount
of data stored is limited by the total sum of space available on the nodes

1Steinmetz compares three approaches: centralized server, flooding search and distributed
indexing.

5 May 24, 2024

2. Distributed Hash Tables..................................

DHT space partitioning assigns ownership of buckets in slots to one particular
machine. Partitioning scheme in the figure corresponds to Chord’s scheme where
each value xi is owned by the first following machine sj to the right (machines are

hashed to the DHT space as well). Source: author

Figure 2.1: DHT space partitioning

participating in the network. DHT also keeps the two basic hash table
operations of put(key) to store and get(key) to retrieve a value [Gho06].

In order for a node to participate in a DHT, it only needs to keep track of
its own data and manage a small number of routing references to other nodes
in the network. Upon a lookup request on any node, the node itself either
retrieves the item from the local hash table or routes the request to other
nodes. The routing request is then propagated through the network until it
arrives at the node that actually stores the item in its local hash table. DHT
are usually very effective at routing. Depending on implementation, it usually
takes O(log N) hops for a message to reach the destination, where N is the
size of the network [Gho06]. Some DHTs are able to route in even less hops.

2.1.1 DHT space

DHT space is defined as a set of all possible IDs of items that a DHT can
manage. This can be viewed for example as 32-bit value range (n-bit in
general) or a set of 232 buckets. Once an item is inserted into a DHT, it is
mapped to a bucket. For many implementations, this mapping happens also
when a new node joins the DHT as we will explain in the following chapters.
Both mappings are result of a global mapping function that the DHT system
uses [Zha13].

DHT space partitioning

In order for DHT to be scalable, it distributes stored values over many
machines participating in the network. Keyspace partitioning is a scheme
which globally assigns ownership of values to given machines. This in turn
allows efficient storage and lookup in decentralized system.

Different DHT implementations do not follow a common general partition-
ing principle. Chord and Pastry use consistent hashing algorithm which stores

May 24, 2024 6

............................. 2.1. What is a Distributed Hash Table

Join of machine s3, value x2 is reassigned to the newly joined machine. Source:
[Rou22]

Figure 2.2: Responsibility transfer

items on circular id space with defined ownership slots [Zha13]. Kademlia
stores items in binary tree structure which implicitly divides stored items
in slots aswell. Then there is also rendezvous hashing, achieving same thing
through different means. It is however helpful to at leat first introduce con-
sistent hashing to get the intuition of keyspace partition since Chord and
Pastry build upon it. We therefore dedicate the following chapter to consis-
tent hashing while Kademlia partitioning will be studied later. Rendezvous
hashing is beyond the scope of this thesis.

Consistent hashing

To map a value to a bucket, we could use a hash function in the form of
h(x) mod n where x is the value and n is the number of machines in the
network. This however wouldn’t scale well if we were to change the number of
machines n frequently. Let us suppose a machine failure and therefore number
n changing to n-1. We would end up with faulty mapping of almost all values.
Consistent hashing algorithm solves this problem by hashing machines to
the same DHT space as values. By placing n machines into the keyspace
we inherently split it into n slots, each slot owned by the node at the end
of the slot. Or rather each value is owned by the first machine found when
traversing the keyspace to the right. If we encouter the end of the space
before reaching the owning machine, we just wrap around the space. The
keyspace is therefore said to be circular [Rou22].

Upon insertion of item x, into a bucket h(x), we traverse the keyspace until
we find a bucket h(s) onto which a node was mapped previously. We then
exclaim that such node s is responsible for managing item x and store it
locally on the node s [Rou22].

This way of item and node mapping yields two very appealing properties
[Rou22]:

7 May 24, 2024

2. Distributed Hash Tables....................................1. We can expect that there is no hotspot in the network and each server
stores roughly 1/n objects2...2. The entire keyspace does not have to be rehashed upon a new node
arrival. Set of items that need to be remapped is the first half of the arc
upon which the node gets inserted. This is again only 1/n fraction of
objects.

2.2 Chord

Chord was one of pioneering DHT implementations proposed in 2001. It’s aim
was to tackle a couple of p2p systems difficult problems, namely load balancing,
decentralization, scalability and availability. To address these problems, it
builds on the concept of circular consistent hashing [Zha13].

Chord’s DHT space is a circle, refered to as Chord ring. IDs for nodes
and values can be computed by applying a hash function. IDs are then
arranged ascendingly in clockwise manner on the Chord ring. Nodes on the
ring maintain specific ranges of data defined by the id of the responsible node
and its predecessor. Ranges are kept in so called finger tables on each node.
These allow for very efficient lookup in O(log n) time complexity where n is
the number of nodes currently online in the DHT [Zha13].

2.2.1 Finger table

To implement consistent hashing in distributed environment, one only needs
to store very little volume of routing information. It should be enough for
a node to only know about it’s immediate successor. This approach on its
own would not be very efficient however. We would need to make n hops in
the worst case to get the correct mapping. To make the lookup faster, Chord
implements additional routing table called finger tables [Sto01].

Each node keeps at most m entries in its finger table, where m is also the
number of bits in key/node identifier. The ith entry (or finger) on any node
A refers to a node B, which is at least 2i-1 further on the identifier circle,
therefore idB >= (idA + 2i-1) mod 2m , where i is positive non-zero integer
less or equal to m.

Let’s briefly consider node with id value of 1 on the Figure 2.3 below. It’s
second entry in finger table refers to a node that is at least 22-1 values further
on the identifier circle. This way there is only little information stored on
each node. Each node also knows more about nodes that are closer rather
than further. Also note that any finger table on its own does not contain
enough information to determine the successor of any possible key [Sto01].

2Assuming the chosen hash function provides random distribution.

May 24, 2024 8

..2.2. Chord

Hypothetical instance of Chord. There are three nodes displayed along with their
respective finger table. Source: [Sto01]

Figure 2.3: Finger table example

2.2.2 Find successor procedure

Finger table is also used in the case that a given node does not know the
successor of a key that is being looked up. Consider key k is being looked
up by node A and node A does not know k’s successor3. In that case, A
will look up from it’s finger table a node X such that idX precedes idk more
immediately then idA. Node A will then require node X to again respond
with id of node that precedes idk more immediately then idX. This way
node A gradually learns of nodes closer to k. Authors of Chord paper call
this algorithm find_predecessor(). Note that find_successor(), which would
return most immediate succeeding node, could be implemented on top of
this algorithm, simply by returning the first successor of the found node
[Sto01].

2.2.3 Node arrival

Chord is able to preserve it’s ability to locate any key even after a node join.
It needs however to also maintain two invariants to preserve it; succesor of
each node must be correctly preserved and for each key k there must be a
node which is its successor, and the node is responsible for key k. Each node
in Chord also keeps a predecessor pointer to its immediate predecessor, which
makes it easier for a node to join [Sto01]. Let us assume that we have a new

3Chord assigns responsibility for a key k to a node N such that idk � idN. The responsible
node is therefore key’s successor.

9 May 24, 2024

2. Distributed Hash Tables..................................
node X joining the network and X knows of a node A in the chord network
in advance.

Initialize finger table of newly joined node

The first couple of steps are very similar to a node joining doubly linked list.
Node X will set its first finger as A’s first finger. Successor and predecessors
are then updated on the neighbouring nodes. Finally, X will initialize its
fingers by traversing the identifier ring forward, potentially asking node A to
find a successor of node that X is unable to find on its own [Sto01].

Update finger table of other nodes

Newly joined node X will then have to be also entered into other finger tables.
This is done by traversing the identifier circle in counter-clockwise manner.
It can be proved, that there has to be only O(log n) nodes updated after a
single node join [Sto01].

Key transfer

Responsibility for keys in the region of X ’s join must be reassigned as the
final step. The nodes that need to be reassigned are those that X is now
succeeding on the identifier circle. Responsibility is transferred from the
current immediate successor of X to X. The joining node therefore only needs
to contact one node [Sto01].

2.3 Pastry

Since the proposal of DHT technology (or consistent hashing to be exact) in
1997 [Kar97], there had been many DHT implementations which set out to
improve upon the technology, be it in terms of better node locality, routing,
security or performance [Sto01], [May02]. Pastry is a DHT implementation
that aims to improve the lookup process in terms of a scalar proximity metric
that the user specifies [Row01].

Authors of Pastry implementation set out to improve upon the ability of a
peer-to-peer network to locate objects and provide efficient routing algorithms
while preserving the common properties peer-to-peer systems [Row01].

Pastry uses a heuristic to guarantee delivery of message in less than
⌈log 2b𝑁⌉ routing hops, where N is the total number of nodes in the network
and b is base of the identifier space. Each node is allowed to do message-
specific computation. Furthermore, nodes are notified upon each node failure,
join or recovery. Global random node id assignment ensures diversified ge-
ography, ownership, jurisdiction etc. Eventual delivery is guaranteed under
the assumption, that no ⌊ |𝐿|

2 ⌋ nodes with adjacent ids fail at the same time,
where |L| is configuration parameter frequently set to 16 or 32 [Row01].

May 24, 2024 10

..2.3. Pastry

Node state of a hypothetical node. Ids are in base 4 format. NodeIds in Routing
table are in a format of prefix - next digit - rest of id. Shaded cell

displays respective digit in the current node’s id. Source: [Row01]

Figure 2.4: Pastry’s node state

2.3.1 Design

For a machine to join Pastry network, it only needs to run the Pastry node
software. Upon joining the network the machine is assigned 128-bit identifier
refered to as nodeId. NodeId then also indicates the position of the machine
in the DHT space [Row01].

The following paragraph summarizes routing which is mostly dependent
on pastry node state described in the next chapter. When routing, nodeId is
perceived just as digit sequence stored in routing table of each node. Numbers
in the sequence are of base 2b. This sequence then determines where to route
incoming messages. Let’s assume a message addressed to node D arrives onto
node A. A looks up its routing table and compares digit sequence of idD with
sequences in the routing table. Node A then forwards the message to a host
X such that idX has longest prefix match out of all hosts with idD. If there
are more hosts with such a match, message is forwarded to numerically closer
id to idA [Row01].

2.3.2 Node state

State of Pastry node is defined as “at the time” configuration of three sets:..1. Routing table..2. Neighborhood set..3. Leaf set

The routing table on each node has exactly log N rows. Let’s assume routing
table RA owned by node A and it’s nodeId idA. An entry on the nth row of
RA holds nodes that share first n digits in its id with idA. On the first row,

11 May 24, 2024

2. Distributed Hash Tables..................................
there would be ids sharing only the first digit, on the second row, there would
be ids sharing the first two digits and so on (there is also 0th row sharing no
common prefix). There are 2b-1 of such entries on each row. The parameter
b is a configuration parameter that determines size of populated portion of
routing table and maximum number of hops. Although there may be many
potential entries with corresponding prefixes in each row, we only fill it with
ids of nodes that are close to node A in terms of chosen proximity metric. If
there is no such node, the entry may be left empty [Row01].

The neighborhood set M contains the set of closest neighbouring nodes
according to a chosen metric. It does not usually participate in routing
although it comes into play when we want to maintain locality properties
[Row01]. Lastly, the leaf set L contains nodeIds that are numerically closest
to the current node. One half of leaf set contains nodeIds larger than current
nodeId and the other half contains node smaller than current nodeId. Leaf
set directly participates in message routing [Row01].

2.3.3 Routing

The routing procedure is done every time that a message addressed to node
D arrives to a node A. Listing 2.1 describes the whole procedure. Variables
are decribe as such:. Lmin, Lmax – ids of lowest and highest value in leaf set L. R[i][j] – entry on the ith row and jth column. idD[i] – ith digit in D’s nodeId. shl(idD, idA) – returns common prefix lenght of both id

We begin by looking up the recipient of message in the leaf set. If idD is
in range of ids contained in leaf set, we forward the message to a node with
numerically closest id to idD. If there is no such id in the leaf set, we start
looking up the routing table. We try to lookup and forward to a nodeId
which shares the prefix by at least one more digit then the current node.
If there is no such id in the routing table, we forward to an id which has
same prefix length and is numerically closer t to idD than current id idA.
Such routing procedure converges since on each routing the message is either
sent to a node with longer prefix or is at least numerically closer [Row01].

May 24, 2024 12

..2.3. Pastry

Listing 2.1: Pseudocode of Pastry routing procedure. Source: Row01
if(Lmin <= idD && idD <= Lmax) {

// leaf set
forward to L[i], such that:

L[i] is numerically closest to idD
} else {

// routing table
l = shl(idD, idA)
if(R[l+1][idD[l]+1] != null) {

forward to R[l][idD[l]]
} else {

forward to T, such that:
(contains(L, idT) || contains(R, idT) || contains(M,

idT))
&& shl(idT, idD) >= l && |idT-idD| < |idA-idD|

}
}

2.3.4 Node arrival

Initially, a new node needs to inform the network of its arrival as well as
initialize its own state tables. It is assumed that the new node X knows of a
nearby node A which already participates in the network. Some sources refer
to node A as bootstrap node. Node X requests node A to send special „join“
message through the network. Message’s destination is set to id of node X,
therefore it arrives to numerically closest node Z. Nodes along the path of
the „join“ message are requested to send their node state back to node X
[Row01].

Neigborhood set of node X is initialized to A’s neighborhood set since they
are in proximity of each other. X ’s leaf set is initialized to Z ’s leaf set since
its id is closest to X. Initialization of routing table is not so trivial however
[Row01].

Let’s describe the most general case in which A and X share no common
prefix. In this situation there are no ids with a common prefix in row zero
(A0) of A’s routing table. Therefore, entries in A0 are also appropriate for X0.
A1 however contains no entries that would be relevant for X1. Nonetheless
there are relevant entries in B1, where B is a node that the „join“ message
was routed to from A. This is implied by the fact that messages are routed
to a node with at least one more common digit. To fill entries of row X2 we
again lookup the entries in C2 and so on. Once the routing table of node X
is filled, X informs of its state all the nodes in set SX ∈ (MX ∪ RX ∪ LX).
Nodes in this set then update their state accordingly. At this stage, X is
finally able to fully participate in the network [Row01].

13 May 24, 2024

2. Distributed Hash Tables..................................
2.3.5 Locality

As stated above, Pastry DHT was designed to maintain locality. Authors
define this property as following: all routing table entries refer to a node that
is near the present node, according to the proximity metric, among all live
nodes with a prefix appropriate for the entry4 [Row01].

In order to demonstrate maintenance of locality, we will assume Euclidean
proximity metric and that the locality property holds before node’s X arrival
to the network. As mentioned in the previous chapter, new node X knows of
a nearby node A prior to joining. Trivial observation reveals, that entries in
A0 are close to A, A is close to X, and since triangulation holds, entries in A0
are close to X as well. Locality is therefore preserved [Row01].

Now we turn our attention to X1 and B (recall that B is second node
en route of X ’s join request). Entries in B1 are close to B, we don’t know
however how close B to X is. Therefore, it seems that setting X1 to B1 would
not preserve locality. Contrary to this intuition, entries are quite often close.
This comes from the fact that entries in each following row are chosen from
exponentially decreasing set. B1 is consequently an appropriate choice for X1.
The same can be said about each following level [Row01].

2.4 Kademlia

Compared to previous implementations, Kademlia can offer some interesting
properties that other DHTs cannot. These are:.Minimization of config messages. Nodes are able to route through low-latency links. Usage of asynchronous parallel queries

Moreover, Kademlia introduces a novel metric of distance based on exclusive
OR operation. This metric allows for nodes to learn routing information from
messages they receive. Routing itself is done in a similar way as with other
implementations. It first cuts out a sizeable portion of DHT space that the
node of interest does not occupy and converges onto the node in logarithmic
time [May02].

2.4.1 System decription

By default, Kademlia provides 160-bit ID space. Both the nodes and values
have assigned ID from this space. To better ilustrate a Kademlia instance,
authors of Kademlia paper think of it as a binary tree, where each node
keeps references to subtrees which do not contain the given node. A reference
points to a single contact node. This in turn guarantees that any two nodes
can find each other within a Kademlia instance.

4Every routing entry in the DHT must refer to such node. Statement “prefix appropriate
for the entry” simply means that the prefix matching condition is satisfied, thus the entry
not only satisfies prefix matching but the proximity as well.

May 24, 2024 14

.. 2.4. Kademlia

Black dot shows a given node with ID of 0011. Subtrees which do not contain 0011
are circled. Node 0011 must have a reference to a contact node in each of them.

Source: [May02]

Figure 2.5: Kademlia identifier space

When a given node A is trying to locate the target node B, it repeatedly
queries the best node that A knows of to find contacts in successively lower
subtrees.

2.4.2 XOR metric

Unlike from other DHT implementations, sent messages contain ID of the
sender. The recepient thus also receive the information about sender’s
existence. Values are assigned to a node based on distance metric which in
Kademlia, is defined as exclusive bitwise OR (XOR) between two IDs. Couple
of things can be observed from this metric:..1. d(x,y) > 0 if x and y are different nodes..2. d(x,x) = 0..3. d(x,y) = d(y,x), therefore XOR is symmetrical..4. XOR follows the triangle inequality

XOR therefore offers features of distance metric while being cheap and simple.
Note that XOR also captures the distance implied in binary tree.

2.4.3 k-buckets

To route messages, each node in the network must store contact references to
other nodes. These references are stored in n number of k-buckets. The count
of buckets on a node n is the number of bits in ID. System parameter k is
chosen so that the probability of any k nodes failing in a short period of time
is reasonably small. There can be at most k nodes in any k-bucket. The i-th
k-bucket on any node stores references to nodes that have distance (in terms
of XOR metric) in range from 2i to 2i+1. To better illustrate this, consider
origin node 001101 (thick blue line in Figure 2.7) and target node 001100.

15 May 24, 2024

2. Distributed Hash Tables..................................

Given node 0011 is trying to locate node 1110. The best node it knows of is node
101, therefore 101 is contacted first. Following messages are addressed based on
responses from contact nodes. ID space above shows converging onto the target

node. Source: [May02]

Figure 2.6: Kademlia routing

IDs of these nodes differ only in the last bit, therefore XOR distance is 1. If
we consider target node 101101 differing in the first bit, the distance is 32.

2.4.4 Lookup

Kademlia protocol offers 4 distinct RPC calls:..1. PING – probes a node for liveness..2. STORE – prompts a node to store a given value..3. FIND_NODE – returns k nodes that are closest to a target..4. FIND_VALUE – similar to FIND_NODE but recipient returns value if
it received a STORE call for the value previously

Lookup procedure is performed recursively, extracting succesively closer nodes
to the given target on each iteration. Origin node first fetches � number of
nodes that are closest to the target from its point of view. It then sends �
parallel, asynchronous FIND_NODE calls to all the fetched nodes. Each
recipient fetches its � closest neighbors to the target node and sends them
back to the origin node. Out of all nodes the origin has heard of, it again
queries � nodes that have not been queried before. This process repeats until
there are no unqueried nodes coming back from recipients.

May 24, 2024 16

.......................... 2.5. Comparison of different implementations

Visualization of distance of nodes in k-buckets. Source:
https://kelseyc18.github.io/kademlia_vis/basics/3/

Figure 2.7: KBuckets

2.4.5 Join

Just like in implementations presented earlier, a joining node X must know
of a node A already present in the network it wants to join. Upon joining, X
inserts A to its own respective k-bucket, followed by FIND_NODE lookup
with X’s ID as the target ID. Node A will in turn refresh it’s k-buckets that
are further than closest neighbor. Finally, node X fills its own k-buckets as
well as inserting itself into appropriate k-buckets on other nodes.

2.5 Comparison of different implementations

This chapter will summarize the research of various implementations of DHTs
done so far. Analysis delves into diverse aspects, beginning with an examina-
tion of node design, wherein we closely examine the structural characteristics
of individual nodes within the DHT Subsequently, we navigate through the
intricate landscapes of topology, distance metrics, parametrization, routing
procedures, and node arrival mechanisms. By comparing these elements
across different implementations, this chapter illuminates the diverse strate-
gies employed to achieve efficient and scalable distributed hash table systems,
thereby offering valuable insights for the optimization and selection of suitable
implementations in varying contexts.

2.5.1 Node design

After researching each node design, we conclude that the Pastry node may
be the most complex one. Pastry node design harbors three distinct node
reference sets (recall leaf set, neighborhood set and routing table), which can
make it cumbersome for implementation. This design choice, however, seems
to be providing a balance between local and global routing – while routing
table provides links that may be further, neighborhood set contains the closest
links. One should also recall that by “closer” and “further” means in terms
of user specified metric. This scheme, while providing a useful feature, may

17 May 24, 2024

https://kelseyc18.github.io/kademlia_vis/basics/3/

2. Distributed Hash Tables..................................
also introduce some extra work since each node has to compute the metric
for the linked nodes even if the metric is simple ping response time.

Chord node design on the other hand stores only one set of links, the finger
table. This makes it lightweight. Apart from this set, Chord node may store
two extra links for immediate predecessor and successor. There is no notion
of scalar metric as in Pastry as well as no node specific computation.

Lastly, Kademlia nodes also appear to be also lightweight compared to
Pastry. Out of the studied DHTs, Kademlia nodes are the only ones leveraging
parallel asynchronous calls, making them a good match for today’s machines.
The use of parallel asynchronous calls enhances Kademlia’s responsiveness,
allowing nodes to efficiently handle multiple concurrent operations. However,
it’s worth noting that it also introduces a level of complexity that can make
the implementation more challenging.

2.5.2 Topology

Chord network topology can be characterized as a simple circular keyspace.
It maps values onto the keyspace in ascending clockwise order. Values are
then stored based on the range in which they happen to be inserted. This
range is owned by the first succeeding node. This node again marks the
start of the next range owned by first succeeding node of values in this range.
Kademlia and Pastry, however, both form hierarchical tree-like structure.
While Kademlia places nodes onto a literal binary tree, Pastry organizes
nodes based on common prefixes. Some sources refer to this topology as
circle with tree topology. Recall that Pastry node initially looks up nodes in
leaf set, where nodes with numerically closest ids are stored, if no suitable
nodes are found (hierarchical structure), we look up the routing table (circle)
[Elb15, Zha13].

2.5.3 Distance

All DHT implementations revolve around distance metric. The metric ex-
presses the distance between two objects in a distributed system and is
therefore a central part of both the routing and retrieval operation. Different
metrics thus imply different routing strategies. Kademlia takes advantage
of bitwise exclusive OR operation when computing distance. Not only is
this operation very cheap, but it also does not require any other algorithmic
structure. Pastry measures distance between two objects by matching each
digit in their ID. Finally, Chord defines distance from A to B as (idB – idA)
mod 2m where m stands for number of number of bits in the id [Zha13].

2.5.4 Parametrization

Since Chord uses hash function to generate node identifiers, we can pick one
suiting our needs – either one that generates IDs faster or distributes them
evenly.

May 24, 2024 18

.......................... 2.5. Comparison of different implementations

Kademlia offers two parameters which directly influence the efficiency of
routing. The size of k-buckets k should be chosen to reasonably high number
so that there is small probability of any k nodes failing within an hour. Second
parameter is �, a system-wide concurrency parameter. Anytime Kademlia
node is looking up a certain object, it contacts � nodes at once.

Pastry DHT can be customized in terms of minimum simultaneous adjacent
node failures denoted as |L|. Pastry guarantees eventual delivery if there is no
more than ⌊ |𝐿|

2 ⌋ simultaneous node failures. One can also configure the base
parameter b. Base determines the range of values of single ID digit. Routing
table also contains b entries in each row. It therefore directly influence the
connectivity of the network.

2.5.5 Routing procedure

This chapter will describe the routing procedure in each implementation. We
assume a node A looking up destination id d stored on node D.

Recall that in Chord, node D is the most immediate node successor after d
on the chord ring. In case that node A does not know d’s successor, A will
lookup node X, such that idX precedes d more immediately then idA. Node
A then requires X to lookup Y, such that idY precedes d more immediately
then idX. Finnally we converge to D’s predecessor, it’s successor stores d and
we’ve just found it.

Pastry stores d on node D such that idD matches d’s prefix the most out
of all live nodes. Node A will therefore initially lookup its leaf set if d is in
it’s range. It forwards the message to the numerically closest nodeID if d is
in the range. Otherwise A will lookup routing table for id sharing at least
one more digit with d than idA does. If this fails as well, A will lookup id
which shares same amount of digits but is numerically closer to d. Therefore
procedure converges on longer prefix or numerically closer node.

In Kademlia node A will fetch � number of nodes that are closest to d. A
does the lookup from its closest non-empty k-bucket. It then proceeds to
send � parallel asynchronous calls to all fetched nodes. Its recipients then
also fetch the same number of nodes in the same manner, informing A of
nodes closest to d from their point of view. A will then query those nodes
and repeat the process until there are no unqueried nodes coming back from
recipients.

2.5.6 Node join

All implementations require a bootstrap node A (node already participating
in the network) to help newly created node X join the network.

As the first step, Chord node X will copy A’s first finger and update
predecessor and successor. The rest of X’s fingers are initialized by traversing
the chord ring forward. Next step is inserting X into other finger tables which
is done by traversing chord ring backwards. The last step is to reassign items
in the range that had just been split by the join. Particularly those that are

19 May 24, 2024

2. Distributed Hash Tables..................................
now newly succeeded by X. Node X’s successor transfers this responsibility
to X.

In Pastry, newly joined X requests A to send join message through the
network. The destination of this message is set as X thus it arrives to a node
Z which is numerically closest to X. Nodes along the path the send back their
state to X. Node X will then copy A’s neighborhood set and Z’s leaf set. X’s
routing table will fill entry by entry from each node along the path.

After joining Kademlia network, X will appropriately insert A into X’s
k-bucket. X will then initiate FIND_NODE procedure on its own ID, this
will refresh A’s buckets. Finally, X will fill its own bucket as well as insert
itself into other buckets.

2.6 DHT implementations in practice

Although there are almost none commercial DHT libraries currently on the
market per se, there are many products based on DHT technology that
target broader usage in distributed systems market. Following chapter offers
an overview of two such technologies: Riak and Amazon’s Dynamo (not
to get confused with sister project DynamoDB). Overview of Dynamo is
considered to be comprehensive while Riak’s overview does not go in same
depth. Surprisingly, Amazon engineers contributed to the academic domain
by publishing their findings, whereas Riak developers did not. Riak authors
therefore provide just a brief technology overview on their website.

2.6.1 Riak KV

Marketed as NoSQL database5, Riak KV aims to provide a solution for Big
Data applications6. It was created with high availability as a priority and
provides simple key-value pair storage.

Architecture

Riak groups nodes into clusters. Nodes within a single cluster communicate
with each other in order to provide data availability and partitioning. Each
node within cluster is able to serve read and write request.

Clusters of nodes are placed on a common circular hash space called Riak
Ring and just like in Chord, the last value is adjacent to the first. The
ring state is known to all the nodes on the ring. Each time a nodes gets a
request for an object that it does not manage, it forwards the request to the
appropriate node. Upon any node join or failure, the participating nodes
adjust and balance the partitions around the cluster, updating the whole ring

5NoSQL databases, or ”Not Only SQL,” are a class of database systems offering high
scalability and flexibility. Unlike traditional relational databases, NoSQL databases are
schema-less, accommodating unstructured or semi-structured data.

6A ”big data application” refers to software designed for processing and deriving insights
from vast and diverse datasets. These applications employ distributed computing frameworks
to handle large volumes of data

May 24, 2024 20

..............................2.6. DHT implementations in practice

state in turn. Furthermore, each node within a cluster may manage one or
more virtual nodes.

Riak stores key-value pairs in buckets, where key is a binary value uniquely
identifiyng a value whereas value is data associated with key. Riak stores
objects in virtual namespace called buckets. Riak object can therfore be
defined as three-pair combination of those. User can define custom bucket
types with certain properties. This enables the user to manage a group of
buckets since a bucket type inherits its properties [Bas16].

Replication

Consistent hashing distributes data across all nodes uniformly. Upon any
join or failure, consistent hashing remaps only 𝐾

𝑛 keys, where K is number
of keys and n is the number of slots. Scaling can be done with almost no
downtime since data is rebalanced in a non-blocking operation.

Data replication guarantees the presence of multiple data copies distributed
across various servers. By default, Riak distributes three copies, each on a
unique server. This results in high availability with low latency, since if any
of the three replication nodes would fail, the request would still be served by
other two. By simultaneous replication and partitioning, Riak KV creates
horizontally scalable system [Bas16].

Eventrual consistency

Eventual consistency is one of distinct features of NoSQL systems. Eventual
consistency means that a transaction in a distributed system is considered
complete even if not all assigned nodes have confirmed it. Confirmation from
all assigned nodes is therefore not required for the system to acknowledge
the transaction’s completion. This enables greater degree of concurrency as
well as higher data availability. Riak KV could therefore be placed in AP
intersection in CAP theorem7 diagram. Replicas are eventually consistent,
meaning they are always accessible, though not all of them will have the most
recent updates. This creates inconsistent system states [Bas16].

Version conflicts, consistency recovery

Inconsistecy may arise upon a concurrent access to a single object or under a
heavy load. Consistency is achieved whenever Riak receives a lookup request.
It will search for all the object replicas and solve the issue by returning
the most recent version by reading Dotted Version Vector8 stored on each

7CAP theorem asserts that in a distributed system, it is impossible to simultaneously
guarantee Consistency, Availability, and Partition Tolerance.

8Dotted Version Vectors are a concurrency control mechanism in distributed systems,
tracking causality and ordering of events. They efficiently manage conflicts by incorporating
a compact representation of causally-related updates, facilitating accurate reconciliation in
distributed databases.

21 May 24, 2024

2. Distributed Hash Tables..................................
replica. Furthermore, Riak employs two strategies to resolve diverging replicas
[Bas16]:..1. Read & Repair – synchronize all replicas during read operation..2. Active Anti Entropy – detecting divergency by repeatedly comparing

Merkle trees over replicas

2.6.2 Amazon‘s Dynamo

A predecessor project of today’s popular DynamoDB from the same company,
Dynamo was created to be always available since for Amazon;

Even the slightest outage has a significant financial consequences
[DeC07].

Amazon’s platform provides services to other web sites worldwide. This
requires an infrastructure of many servers distributed all around the world.
With system running on such scale it is almost inevitable for any compo-
nent not to fail. At the same time, the platform must provide „always on“
experience. For example, a customer should be able to add new items to
his shopping cart even if a data store was just destroyed by a tornado. The
system therefore required to treat failure as a normal case. Dynamo was
developed to address these requirements. It uses a mixture of well-known
techniques for achieving high scalability and availability [DeC07]:. Data are partitioned and replicated using consistent hashing. Consistency is achieved by quorum-like technique and a protocol for

synchronization of decentralized replicas. Nodes join and leave with no manual administration

Previous work and distinctive features

While there are multiple solutions in peer-to-peer software domain dedicated to
address the problems of distributed data storage, none seemed to fit Amazon’s
needs. Even though Pastry and Chord offers comparable functionality to
Dynamo, their multihop routing procedure was not enough for Amazon’s
needs. Freenet and Gnutella were other similar distributed storage systems.
Search queries of these systems are however implemented by flooding the
network to find nodes on which the data are stored.

Dynamo on the other hand tries to provide „always-writeable“ data store, a
system in which no write is denied. The motivation comes from the fact, that
this could lead to poor customer experience. For example, the platform must
allow the customer to add or delete items from his shopping cart even during
network or node failures. Dynamo was also built under the assumption that
it will be deployed on an infrastructure inside a single administrative domain
where every node is trustworthy. Another requirement was to complete 99.9%
of read/write operations under couple of millisecond. Dynamo therefore avoids

May 24, 2024 22

..............................2.6. DHT implementations in practice

multihop routing typical for Chord or Pastry. Authors describe Dynamo as a
zero-hop DHT where every node tries to store just enough routing information
to be able to route a request to the destination directly [DeC07].

Interface

As many other DHT’s Dynamo offer simple get-put interface:. get(K) – fetches object replicas associated with key K and return object
or list with confliction versions and context. put(K, context, object) – determines the placements of replicas based on
key K and writes replicas to a disk, context is stored with the object
and is later used to check the validity Dynamo applies MD5 hash on
key K in order to generate 128-bit identifier. Identifier is then used to
determine which nodes will manage the key [DeC07].

Partitioning

Dynamo replicates data across multiple nodes to achieve high durability and
availability. Each data item is replicated to N nodes, where N is a configuration
parameter. Replication is managed by a coordinator nodes (node that is
handling the read/write operation). Each node is then responsible for range
of value between itself and N th predecessor.

Data versioning

Dynamo provides eventual consistency, allowing for concurrent updates to be
propagated asynchronously. The put() operation, may return to the client
even before the update was written to all the replicas. This may create a
situation in which subsequent get() returns object without the most recent
changes. The time to propagate changes is finite under no node failure
assumption. When there are failing nodes, updates may not arrive to all
replicas however.

Such scenario can be illustrated on shopping cart application. The cart
application requires that the „add to cart“ operation was never forgotten
or denied. Node failures may introduce divergent versions of same objects
across its replicas. Updates in a network with partitioning and node failures
can therefore create a scenario in which an object has two versions of „sub-
history“ branches which system has to reconciliate. In order to reconciliate
the branches, Dynamo uses vector clocks to capture causal relation between
versions of a given object. A vector clock is a simple node-counter pair. It
allows Dynamo to determine if two sub-versions are on parallel branches or
have causal relation between themselves. If the counter on the first object is
less than or equal to objects on other node, it means that the first object is
an ancestor of other objects and therefore can be forgotten.Otherwise object
changes are in conflict and therefore need reconciliation.

Let’s assume a client initiates the creation of a new object, D1. This
request will be handled by node Sx. Node Sx will therefore write the new

23 May 24, 2024

2. Distributed Hash Tables..................................

Reconciliation in Dynamo, Source: [DeC07]

Figure 2.8: Reconciliation in Dynamo

object across appropriate replicas and increase the counter. The system
now contains object D1, along with its vector clock ([Sx, 1]). The client
subsequently updates D1 again and the request is handled by Sx as before.
Sx therefore updates replicas and increments the counter, resulting in object
D2 with a vector clock of ([Sx, 2]). There are now two objects in the system,
where D1 is the direct ancestor of D2, which can be determined from their
vectors. However, there can be replicas in the system that have not yet seen
D2.

Assume there is another client accessing D2 and updating it. This request
will now be served by a different server, Sy, which creates D3 with a vector
clock in the form of [(Sx, 2), (Sy, 1)]. Next, assume a different client updating
D2 as well but via a different server, Sz. Server Sz will create D4 with a clock
[(Sx, 2), (Sz, 1)]. Currently, there are objects D3 and D4, and in them are
changes that are not reflected in each other. Both versions, therefore, must
be kept and presented to a client for reconciliation.

Finally, assume a client reading both D3 and D4. The read will return
merged context [(Sx, 2), (Sy, 1), (Sz, 1)]. If an update is done via server
Sx, the new data will have a clock [(Sx, 3), (Sy, 1), (Sz, 1)]. Vector clocks,
therefore, may grow a lot if many servers access the same object. This is
not likely in practice, however, since writes are usually handled by a small
number of preferred nodes [DeC07].

Get & Put execution

Get and put operations can be executed by any node in the network. Client
can however choose two strategies to select the node:. 1. Routing the request through a generic load balancer that will select

May 24, 2024 24

..............................2.6. DHT implementations in practice

the node based on load information.. 2. Using partition-aware client library, routing request directly to the
given coordinator. This results in lower latency by skipping potential
forward hop.

To uphold the consistency between replicas, Dynamo uses quorum-like proto-
col. The protocol offers two configurable parametrs R and W, where R is the
minimum number of nodes which must participate in a successful read and
W is the minimum number of nodes which must participate in a successful
write. If R + W > N, then latency is dependent on the slowest replica.
N is therefore set to a smaller value to achieve lower latency. Any time a
coordinator receives put request, it generate the vector clock for new version,
writes it locally and then sends it to N number of close nodes. Write is
succesful once W -1 nodes respond. Get works similarly: upon receival of get,
coordinator requests all version of data for the given key from N close nodes.
It then waits for N number of responses and then returns to the client. If
coordinator receives multiple versions of data, it returns all versions without
causal relation and divergent versions are reconciled [DeC07].

25 May 24, 2024

May 24, 2024 26

Part II

Analysis and Implementation

27 May 24, 2024

May 24, 2024 28

Chapter 3
gRPC

gRPC is cross-platform open source remote procedure call framework created
by Google. Initially created as closed source framework Stubby, Google
released a new open source in the following years. The result is now called
gRPC and is widely used not just by Google, usually as communication
facilitator between microservices. [Con24]

gRPC uses Protocol Buffers1 as Interface Definition Language2 and as
a format for message exchange. gRPC allows client application to directly
invoke a method on a server on completely different machine as if it was a local
object. It is based around a definition of a service and its methods (including
parameters and return types). Server then implements this interface and runs
the gRPC server to handle client calls. Client-side offers a stub object which
provides the same methods as the server. [gA24]

3.1 How it works

The user first defines structures for the data that will be serialized in a proto
file with a .proto file extension. Protocol buffer data are structured as
messages. Each message is a small logical record of information containing
name-value pairs called fields.

Listing 3.1: message.proto
message Person {

string name = 1;
int32 id = 2;
bool has_ponycopter = 3;

}

The second step is to use protoc compiler to generate data access classes
in specified language. gRPC services are defined in proto files as well with
parameters of RPC methods specified as protocol buffer messages[gA24].

1An open source serialization method offering efficient encoding and language inde-
pendence for structured data, widely used in distributed systems and communication
protocols.

2Language or format for definition of interface used for communication between different
software components independent of platform.

29 May 24, 2024

3. gRPC..
Listing 3.2: greeter.proto

// The greeter service definition.
service Greeter {

// Sends a greeting
rpc SayHello (HelloRequest) returns (HelloReply) {}

}

// The request message containing the user's name.
message HelloRequest {

string name = 1;
}

// The response message containing the greetings
message HelloReply {

string message = 1;
}

3.2 Core concepts

Service definition

gRPC offers four types of service methods[gA24].:..1. Unary RPC - the client sends a single request to the server and gets
back a single response..2. Server streaming RPC - the client sends a single request and gets
back a stream from which it reads until there are no more messages.
Preserved message order is guaranteed...3. Clieant streaming RPC - the client writes a sequence of messages and
sends them to server using provided stream, once the client is done, it
will wait for server to read them and return a single response. Preserved
message order is guaranteed...4. Bidirectional streaming RPC - both sides are sending a sequence
of messages using read or write stream. Streams operate independently
and client and server can therefore read or write in any order they like.
Message order is again guaranteed.

May 24, 2024 30

......................................3.3. gRPC in action

Listing 3.3: RPC_modes.proto
service ChordService {

// Unary RPC
rpc FindSuccessor(FindSuccessorRequest) returns

(FindSuccessorResponse){}

// Server streaming RPC
rpc LotsOfReplies(HelloRequest) returns (stream HelloResponse){}

// Client streaming RPC
rpc LotsOfGreetings(stream HelloRequest) returns

(HelloResponse){}

// Bidirectional streaming RPC
rpc BidiHello(stream HelloRequest) returns (stream

HelloResponse){}
}

Using the API

gRPC provides compiler plugins that generate client and server-side code.
Users typically call these APIs on the client side and implement the corre-
sponding API on server-side.

The server-side implements methods declared in server and runds the gRPC
server to handle clients calls. gRPC infrastructure then decodes incoming
requests, executes service methods and encodes the responses.

Client has a local stub object (some languages refer to it just as a client),
which implements the same exact methods as the declared service. Client then
calls these method on stub and wraps method parameters in corresponding
protocol buffer message type. Request is then sent to a server and returns
server’s protocol buffer responses.

3.3 gRPC in action

3.3.1 Importing gRPC via Maven

As stated above, the first step is to declare the service and the request and
response of its method using protocol buffers. The code snippet in listing 3.3
can be used for example.

To generate code in Java environment, we can use Maven’s protobuf-
maven-plugin which will run the protoc compiler with each clean install.
For protobuf-based code generation integrated with the Maven build system,
we can use protobuf-maven-plugin which will run the protoc compiler with
each clean install. To include this plugin in our Java project managed with
Maven build tool, we simply add this plugin into build section of pom.xml,
see listing 3.4.

31 May 24, 2024

3. gRPC..
In order to include gRPC as JAR to a Maven project, we simply list the

required JARs, these are in our case: protobuf-java, grpc-netty-shaded,
grpc-protobuf, grpc-stub. Again, see the rough structure of pom.xml file
in listing 3.4

May 24, 2024 32

......................................3.3. gRPC in action

Listing 3.4: pom.xml
<project>
...

<dependencies>
<!-- Protocol Buffers -->

<dependency>
<groupId>com.google.protobuf</groupId>
<artifactId>protobuf-java</artifactId>

</dependency>
<!--transport-->

<dependency>
<groupId>io.grpc</groupId>
<artifactId>grpc-netty-shaded</artifactId>

</dependency>
<!--a client-server common language-->

<dependency>
<groupId>io.grpc</groupId>
<artifactId>grpc-protobuf</artifactId>

</dependency>
<!--client implementation-->

<dependency>
<groupId>io.grpc</groupId>
<artifactId>grpc-stub</artifactId>

</dependency>
</dependencies>

...
<build>

<plugins>
<plugin>

<!-- Plugin to compile proto file into java files -->
<artifactId>protoc-jar-maven-plugin</artifactId>

...
<configuration>

<!-- The directory to search for proto files -->
<inputDirectories>

<include>src/main/resources</include>
</inputDirectories>
<outputTarget>
...

<!-- The directory to output the generated java files -->
<outputDirectory>src/main/java</outputDirectory>

</outputTarget>
</configuration>

</plugin>
</plugins>

</build>
</project>

33 May 24, 2024

3. gRPC..
3.3.2 Java interface

Creating a server

In order to create a gRPC server (assuming we have generated the Java base
class), we first need to override the generated class alongside the methods we
want to implement. In Java, This is usually done by simply creating a new class
that extends the base class and overrides the methods. See listing 3.5 for ref-
erence. The method findSuccessor constructs a FindSuccessorResponse,
returns it to client upon onNext() invocation and finishes the RPC with
onCompleted() function call.

Listing 3.5: ChordServer.java
public class ChordServer extends

ChordServiceGrpc.ChordServiceImplBase {
@Override
public void findSuccessor(

Chord.FindSuccessorRequest request,
StreamObserver<Chord.FindSuccessorResponse> responseObserver

) {
NodeReference n =

ChordNode.this.findSuccessor(request.getTargetId());
Chord.FindSuccessorResponse r =

Chord.FindSuccessorResponse.newBuilder()
.setSuccessorIp(n.ip)
.setSuccessorPort(n.port)
.build();

responseObserver.onNext(r);
responseObserver.onCompleted();

}
}

Creating a client

To implement the client side which will invoke and consume the server’s
response, we first instantiate a gRPC channel with address on which the
server is running in the format of ip_address:port. Using the channel, we
then create the stub object. The stub object may be blocking or nonblocking.
Since we are dealing with a simple RPC, a blocking stub will suffice. The
request for the server is created next and it is sent to the server using the
stub, by passing it as an argument to the method called on the stub.

May 24, 2024 34

......................................3.3. gRPC in action

Listing 3.6: ChordClient.java
public class ChordClient {

public NodeReference findSuccessor_RPC(NodeReference n_, int
targetId) {
ManagedChannel channel =

ManagedChannelBuilder.forTarget(n_.ip+":"+n_.port).usePlaintext().build();
ChordServiceGrpc.ChordServiceBlockingStub blockingStub =

ChordServiceGrpc.newBlockingStub(channel);

Chord.FindSuccessorRequest request =
Chord.FindSuccessorRequest.newBuilder()

.setSenderIp(this.node.ip)

.setSenderPort(this.node.port)

.setTargetId(targetId)

.build();

Chord.FindSuccessorResponse response =
blockingStub.findSuccessor(request);

return new NodeReference(response.getSuccessorIp(),
response.getSuccessorPort());

}

}

Running a server

To actually run the server is pretty straight forward. First we need to build
it using the provided builder with port on which we want our server to listen
on and provide the instantiated service which we implemented in previous
section. Next, we build() and start() the server. See listing 3.7 which
displays a possible implementation which could be used to run Chord node
as a server.

35 May 24, 2024

3. gRPC..
Listing 3.7: ChordNode.java

public class ChordNode {

private final Server server;

public ChordNode(int port) {
server = ServerBuilder.forPort(port)

.addService(new ChordNode.ChordServiceImpl())

.build();
}

public void start() throws Exception {
server.start();

}

}

May 24, 2024 36

Chapter 4
Chord

4.1 Chord node structure

Implemented node structure mirrors the one introduced by [Sto01]. It was
decided to make one big ChordNode.java class, representing all logic that
an actual Chord node serves rather then splitting the node to its server and
client parts. Although this makes the node class lengthier, it matches the
description of a node since it acts like server and client at the same time. It
should be noted that this violates the GRPC recommended structure.

4.1.1 Predecessor, Successor and FingerTable

A simple NodeReference class was created with purpose to hold a refer-
ence to a single ChordNode instance. Within ChordNode itself, there is
NodeReference representing current’s node predecessor. There is also a list
of NodeReferences representing the FingerTable.

Each NodeReference instance is defined by its ip, port and id, where id is
output of SHA-1 hash of concatenated ip and port. Fields ip and port serve
as GRPC handle for constructing GRPC channels.

4.1.2 Stabilization routine

Each ChordNode has an instance of java.util.Timer on which a stabilization
TimerTask is scheduled. This timer is scheduled to run the stabilization task
after a STABILIZATION_INTERVAL, which is a static variable with default value
of 2 seconds. Stabilization routine is scheduled to guarantee the correctness
of lookups. This is achived when nodes’ successor pointers are kept up to
date [Sto01].

4.1.3 GRPC server/client

As mentioned above, ChordService defined in chord.proto file was not
splitted as per GRPC official recommendation. Both client and server methods
were put into the same class instead to follow the natural logic of single Chord
network node which requests as well as responds to other nodes. ChordNode

37 May 24, 2024

4. Chord..
class therefore contains GRPC Server field which implements all server-side
logic within the same class as client-side logic.

4.1.4 LocalData in Treemap

The data managed by a Chord node instance is stored in a java.util.TreeMap.
This choice of implementation, based on a red-black tree internally, was pri-
marily made for its excellent support of range queries. Specifically, TreeMap
provides the subMap(fromKey, toKey) method, which proves to be highly
effective when a node needs to transfer responsibility for a range of its keys
to a newly joined node.

4.2 Lifecycle

4.2.1 ChordNode instantiation

A ChordNode instance is created by simply calling the constructor and
specifying node ip and port. Since by definition a single Chord node is it’s
own predecessor as well as successor, both are set to the node’s own reference
before any connection with another node is made. FingerTable is also filled
with self reference.

4.2.2 createRing()

As per Chord’s protocol specification, there should be a ring created first
when starting a new Chord DHT instance. The createRing() method should
be therefore called on a bootstrap node, onto which other nodes join.

The method takes no arguments and should be called on an instanti-
ated ChordNode. After invoking the method, GRPC server is started on
ChordNode’s ip and port. ChordNode then starts stabilization thread invoked
periodically. Stabilization involves fixing of random finger, checking for newly
joined successor or potentially starting failure recovery sequence.

4.2.3 join()

After being instantiated, a node can join a running Chord ring by contacting
a node already present in the ring. Upon joining, the node starts its GRPC
server and initializes its neighbors and FingerTable with the assistance of
the contacted node. It then requests existing nodes to insert the current
node into their FingerTable. Subsequently, the node prompts its successor to
transfer responsibility for the respective keys to the current node. Finally,
the node initiates its stabilization thread.

4.2.4 leave()

The leave operation is analogous to join operation. First we stop the stabi-
lization thread. Departing node will then prompt its immediate neighbors to

May 24, 2024 38

...................................... 4.3. Logging levels

update their respective successor and predecessor. Given departing node X,
X will set its.X.s.p to X.p and.X.p.s to X.s,

where s is successor and p is predecessor. Finally, node X will transfer
responsibility for its keys to its successor.

4.2.5 Node failure

Check for node failure occurs as part of every scheduled stabilization procedure.
The GRPC call for successor’s predecessor is sanitized for unavailable server
state, which occurs upon GRPC server failure (successor’s server failure).
When this exception occurs, current node tries to find new online successor
by traversing around the Chord ring, predecessor by predecessor. This chain
call, initiated on node I, stops when predecessor of current node encounters
predecessor which is offline as well. Let’s refer to such predecessor as P. Since
predecessor of P is the node that failed in the first place, P sets its new
predecessor to node I and sends back its own address for node I to set P
as initial node’s new successor. Note that each predecessor along the way is
prompted to modify its finger table entries to account for the failed node,
thus replacing the failed node with its own address.

4.3 Logging levels

During implementation of Chord, the SLF4J was chosen as the main logging
library. It was decided to split various events into three logging levels,
depending on the abstraction layer of DHT system. First, there is INFO
level, which when specified as the root level, logs information about the main
DHT methods which are put(), get() and delete(). Then there is DEBUG level,
logging useful information about Chord-specific procedures like createRing(),
join(), moveKeys(), leave() and similar. Lastly there is TRACE level which is
the most granular level, logging everything else which can be mainly used for
developer’s debugging purposes. Note when lower level is specified as root, it
logs all levels above this one too.

4.4 Future work

When it comes to future endeavors, there lies a promising avenue for the
visualization of steps encompassed within the debug-level procedures. Vi-
sualization can significantly aid in comprehending the intricate workings
of Chord-specific operations such as createRing(), join(), moveKeys(), and
leave().

By creating visual representations of these procedures, developers can gain
deeper insights into the inner workings of the Chord protocol. Visualizations

39 May 24, 2024

4. Chord..
can shed light onto relationships and interactions between Chord nodes an
therefore facilitate a clearer understanding of system behavior.

Moreover, visualizations can serve as invaluable educational tools, helping
newcomers grasp the fundamental concepts of distributed hash tables and
Chord-based systems more intuitively.

May 24, 2024 40

Chapter 5
Pastry

5.1 Pastry node structure

The intial intention was to make Pastry implementation fairly similar to
Chord. Later it was however decided to diverge from this idea since Pastry
node structure is a bit more complex than Chord, especially considering the
routing structures. All of these had to be locked to prevent concurrent access.
To make the access to routing structures easier to work with, aside from
big PastryNode.java class, another one was created, the NodeState.java,
acting as a simple wrapper for the routing structures. This logical functionality
split is congruent with previous Pastry protocol explanation where NodeState
represented the routing structures as well.

5.1.1 NodeState

Each Pastry node has it’s own NodeState with four main arrays representing
the three sets of node references: upLeafs, downLeafs, neighborSet and finally
routingTable which is a 2-dimensional array. Each array had to be locked
to prevent concurrent access which could be made for example by GRPC
spawning two threads to serve two concurrent requests. The main purpose of
NodeState.java class was to make it easier to synchronize access of Pastry
node to its routing structures. The class therefore uses single ReentrantLock
upon each operation on the routing structures.

During the implementation, an attempt to outsource the tedious lock-
ing and checking for presence of each individual node references within
the routing structures was made: plain Java’s ArrayLists were replaced by
Collections.synchronizedSortedSet(). As the name may suggest, the
collection promises unique sorted items with thread-safe access by default.
Our expectation was to sort by metric that can be chosen and define unique-
ness of node by ip an port, therefore not keeping two nodes of same ip and port
in the set. To use the collection however, required implementing Comparable
interface for node references. Usage of this collection was in the end rejected
for two main reasons:..1. NeighborSet sorts nodes according to the metric, whereas LeafSet sorts

41 May 24, 2024

5. Pastry..
nodes according to numerical distance. This cannot be achieved using
single Comparable...2. Comparable interface requires the ordering to be consistent with equals()
method. This would be violated by our requirement to uniquely identify
node by ip and port combination.

5.1.2 GRPC server/client

Also similar to the Chord protocol implementation, the primary class PastryNode.java
incorporates both the GRPC client and server functionalities. There is a
couple of important GRPC services implemented:. join(). forward(). notifyExistence()

As the name suggests, join service is used when new node is joining the
network. The bootstrap node A routes the request to the node Z which is
numerically closest to the joining node. Nodes along the way of join call
fill the response with their node state. Joining node will then use these to
initialize its own node state.

Note that GRPC requires a pair of request and response for a successful
RPC. When joining occurs, the initial request is propagated to the node Z
and only then the response is created, which is again propagated back to the
initiating node. Node states from each intermediate nodes are inserted into
the response on the way back.

Forward RPC is identical in terms of propagating request/response objects
through the network. Difference however being, that forward service is meant
for routing values, not nodes. The destination node Z therefore stores the
value, since it has the closest id to the value, and intermediate nodes only
forward the response back without any ”enrichment” of the response.

Finally notifyExistence serves as presence notifier after joining the network.
Node notifies whole network about its presence. It does so by requesting
known nodes (discovered during join) for their known nodes until there are
nodes that have not yet been notified. Notified node may decide to split its
local data and send it to the requestor if there are keys that are closer to the
requestor then the notified node.

5.1.3 Distance calculator

By default, Pastry node works with no distance metric set. Implementation
however offers the user to make his own distance metric by implement-
ing the DistanceCalculator interface. The implementation comes with
CoordinateDistanceCalculator which when used prefers routing table can-
didates that are closer according to X/Y coordinates. That in turn makes
Pastry choose route that is ”good” with respect to the metric. User can also
experiment with other included distance calculators.

May 24, 2024 42

.. 5.2. Leave

5.2 Leave

Anytime a node decides to leave the network, it transfers responsibility over
keys to its closest leafs. One can observe that the closest upLeaf and closest
downLeafs are indeed valid nodes for responsibility transfer since these nodes
are the closest in terms of id to the departing one and therefore will also be
the closest nodes in terms of id to the keys it stored.

5.3 Fail recovery

Fail detection was implemented as mentioned in the paper, where node is
considered failed when its immediate neighbors can no longer communicate
with the node. Stabilization thread is therefore spawned every 5 seconds
(default value) that checks the liveness of each neighbor. If neighbor is
unavailable, it is unregistered from the node state and new appropriate node
is found.

5.4 Future work

5.4.1 Whether to wraparound or not

During our work a seemingly important discussion had arisen when com-
paring Chord and Pastry: whether Pastry ”does or doesn’t do wraparound”.
Following sentences aim to shed light on this question.

The question most probably stems from Chord’s description of its network
topology. As even the authors state [Sto01] Chord would probably work
even without the fingertable, just with predecessor and successor references,
although not very efficiently. Let us therefore suppose a very trivial Chord
network in which no node keeps a fingertable. In such a network, when placing
an item (station or value) into the network, we walk around the network,
eventually finding the right spot. During the walk, we may encounter a
station that has the highest id among all the stations in the network. Given
the case that we still have not found the right place to insert our item, we
will continue our walk toward the next station which will be a station that
has the lowest id among all the stations. At this moment we have effectively
did a wraparound.

With the notion of wraparound defined, let’s ask another question: what
does a wraparound mean, in a a mesh-like network? Note that in Pastry there
is no notion of successor nor predecessor. Does wraparound in Pastry mean a
reroute from highest id node to lowest id node? What about from highest
to the second lowest? And at what point does wraparound become a plain
reroute? Answers to these questions should illustrate the pointlessness of
such questions. Whether Pastry does or does not do a wraparound probably
matters not. With this logic, we come to a conclusion that the wraparound

43 May 24, 2024

5. Pastry..

Rough sketch of Pastry system. Line represents the id number line. Circles on the
line represent values stored in Pastry DHT. Color of a node signifies the owner of

the value. The owner of a given value is the node whose id is numerically closest to
the value’s id. Source: author

Figure 5.1: Pastry identifier space

is most likely a question of semantics. Nonetheless a question of semantics
which should be made clear when explaining to a colleague or student.

Lastly, one should also observe, that there is no wraparound for storing
values. Not even in the ”from highest to lowest id” sense. Values are simply
stored on the numerically closest nodes. Therefore it makes no sense for
highest id value to be stored on lowest id node or vice versa.

5.4.2 Visual representation of Pastry system

With the wraparound question ’answered’, we would like to propose a sketch
of the Pastry system focused on positions of stored values relative to their
owning machines. Contrary to plenty drawings of Chord system in which
the ring represents id number line but also the true connection between
neighboring nodes, the line in our sketch represents only the id number line.
Although this sketch is similar to a disconnected Chord drawing, we are of the
opinion that this can still be used to facilitate the understanding of Pastry
protocol. Moreover potential future works with ambitions of visualizing the
Pastry system would still benefit from at least some representation of values
and nodes within the system. The figure 5.1 shows proposed sketch of the
system.

Future work aimed at visualizing the Pastry protocol may also benefit
from the implementation presented here. We conclude that a single extra
node may serve as a central visualizing unit which could draw out each RPC
made by a node in the network, similarly as was described in previous Chord
chapter. Visualizing Pastry however may be more complex because of the
intricacies presented by node’s routing structures. Therefore, extra steps
should be taken not just to visualize the calls but also changes in the routing
structures.

May 24, 2024 44

Chapter 6
Kademlia

The process of implementing the Kademlia DHT followed a ”bottom-up”
approach: KBucket.java was created as the first testable unit of code and
RoutingTable containing K number of buckets followed. Both classes con-
tained a good amount of complex yet testable mechanisms (compared to
Pastry’s routing table) for us to design some simple unit tests. These unit
tests may actually provide some basic understanding of Kademlia’s confusing
routing table.

Consistently with previous implementations, KademliaNode.java contains
the logical unit of Kademlia network node. It was again split into server-client
GRPC sides within a single class.

6.1 KBucket

KBucket.java is a simple class containing ArrayDeque of references to other
Kademlia nodes. ArrayDeque is used to provide fast access to the first and
the last element in the bucket. Single KBucket preserves most recently seen
order of nodes by inserting them to the tail/end of the ArrayDeque as they
come. In case an already contained node is encountered and is to be inserted,
it is removed from the ArrayDeque and reinserted to the tail/end of the
ArrayDeque. The least recently seen nodes are dropped if bucket is full.

Since our implementation treats routing table as an array, rather than
binary tree, all 160 KBuckets are initialized upon KademliaNode creation as
well as scheduled for refresh at the same time (will be explained in greater
detail later).

KBucket also offers a toStream() method which converts the ArrayDeque
into a Java stream. Java functional stream interface comes very handy when
selecting the K closest nodes to a given ID.

45 May 24, 2024

6. Kademlia ..
Listing 6.1: Find K closest using the java stream interface

public List<NodeReference> findKClosest(BigInteger targetId) {
return buckets.stream()

.filter(b -> !b.isEmpty())

.flatMap(KBucket::toStream)

.sorted(Comparator.comparing(node ->
targetId.xor(node.getId())))

.limit(K_PARAMETER)

.collect(Collectors.toList());
}

6.2 RoutingTable

The RoutingTable.java represents the Kademlia binary tree. It does so
by storing list of 160 KBuckets, each bucket indexed by the position of the
highest non-zero bit of XOR distance between owner of the table and the
target id. Observe that this corresponds to the correct bucket since the first
non-zero bit of XOR distance marks the position of the first prefix mismatch.

6.2.1 Find K closest

While the structure of the table and the indexing of buckets seems elegant,
finding the K closest nodes in terms of XOR distance proves to be less
so. To return a whole bucket given by XOR distance is trivial. There are
however cases when the bucket is not full and we have to scan the whole
routing table since neighboring bucket don’t necessarily contain closest nodes
[Maz17b, Mul24].

6.2.2 Array versus Binary tree

Note that this array-like routing table implementation does not correspond to
binary tree implemented as an array. Whereas binary tree may more closely
resemble the true protocol described in the final versions of Kademlia paper,
array-like structure was actually used in the pre-print version for sketches
of proof [Maz17a]. We therefore conclude that array-like structure does not
violate the correctness of protocol.

It should be noted, that actual runtimes will differ between both structures.
The decision to use array-like routing table rather than binary tree version
came from the fact that it is easier to implement as well as to use. Easier
implementation comes from the fact that there is no need for bucket splitting
when dealing with highly unbalanced trees. Increased ease of use comes from
the fact, that when we try to find K closest and given bucket is not full, we
have to scan the whole routing table. This would mean traversing the whole
tree. ArrayList however offers quite elegant solution, especially when we use
java streams as in listing 6.1.

May 24, 2024 46

...................................... 6.3. KademliaNode

6.3 KademliaNode

The KademliaNode.java represents a single node in the network. Aside from
the central node lookup procedure, it provides the usual DHT API methods.
Each of the DHT API method is implemented using asynchronous GRPC
stub on top of node lookup procedure. It initially finds K closest nodes
using the node lookup followed by K number of asynchronous put/get/delete
requests to these nodes. GRPC’s asynchronous stub provides onNext()
and onError() callback methods. These were implemented to decrement
java.util.concurrent.CountDownLatch upon response receival. The latch
will then block the main thread until it reaches zero, effectively synchronizing
threads until all K responses arrive back.

6.3.1 Node lookup

Since the explanation of node lookup in the original Kademlia is not very
clear, we decided to implement a helper class Shortlist.java to reduce the
cognitive load. Shortlist represents the list of all responses from FIND_-
NODE RPC. Recall that response to FIND_NODE RPC consists of K
closest nodes from recipients perspective. Shortlist keeps track of already
queried, yet unqueried and offline nodes. Node lookup itself was implemented
to asynchronously query alpha unqueried nodes while Shortlist contains
unqueried nodes. Once Shortlist contains only queried nodes, Shortlist is
prompted to return K queried online nodes closest to given ID.

Listing 6.2: Node lookup procedure using Shortlist structure
private List<NodeReference> nodeLookup(BigInteger id) {

Shortlist SL = new Shortlist(routingTable.findAlphaClosest(id));
while (SL.hasUnqueried()) {

// a round of alpha FIND_NODE RPCs
multicastFindNode(SL, id, joiningNode);

}
SL.getOffline().forEach(routingTable::remove);
return SL.getKBestQueried(id, K_PARAMETER);

}

6.4 Scheduling

Compared to Pastry and Chord, Kademlia required more sophisticated ap-
proach when it comes to scheduling tasks. We therefore decided to use
java.util.concurrent.ScheduledThreadPoolExecutor to handle sched-
uled tasks. These tasks can be categorized into three groups:. RepublishTask - when a node is prompted by user to insert a value into

the DHT, it regularly republishes it onto K closest

47 May 24, 2024

6. Kademlia ..
. ExpireTask - when a node is prompted by other node to store a value, it

will expire the value after specified duration if it is not republished. RefreshTask - this task is initially scheduled on all 160 buckets, a node
will refresh otherwise unaccessed bucket after specified duration

To store a value, user picks a node and calls a put method on it. This node
now becomes original publisher of the value and schedules the republish
procedure in intervals of specified duration.

ExpireTask occurs if a node that previously received store request for a
particular value does not receive it again. Node removes the value from its
local data after specified duration.

Node will refresh a given bucket if there was no traffic on the bucket after
specified duration. RefreshTask generates a random id from within the bucket
and prompts a node lookup on it [May02]. This will refresh the entries
within the bucket with the responses that come back, potentially removing
unresponsive nodes.

6.5 Locking

As well as with Pastry and Chord, Kademlia also employs some form of
locking to prevent concurrent access. There are two ReentrantLocks: one
in the routing table preventing concurrent editing of any buckets, second in
the node class, preventing concurrent access to local data and task executor.
Since ReentrantLock requires lengthy try-lock blocks, we decided to make
a ’lockWrapper’ method. This method accepts a Runnable interface, which
in java can be a function. Lockwrapper itself calls puts runnable.run() in
between the try-lock blocks, effectively locking all structures used in the
runnable. This mechanism was later reused to also work on get() method of
the DHT interface to lock a java Supplier. Note that Supplier is a Runnable
that returns a value.

May 24, 2024 48

..................................... 6.6. Parametrization

Listing 6.3: Example of lockWrapper use
private void lockWrapper(Runnable action) {

lock.lock();
try {

action.run();
} finally {

lock.unlock();
}

}

public void delete(String key) {
BigInteger keyHash = getId(key);
if(routingTable.getSize() == 0) {

lockWrapper(() -> localData.remove(keyHash));
} else {
...
}

}

6.6 Parametrization

Aside from alpha and K parameters, our implementation also lets the user to
specify the length of node id. Note that configuring this affects the number
of buckets each node has in its routing table. Durations of all scheduled tasks
is configurable as well, since the default values presented in the original paper
don’t make much sense for educational use.

6.7 Future work

Future works with ambitions of vizualizing Kademlia protocol based on our
implementation can again take an advantage from a single central node. This
node would have to be specified globally, the same way as K, alpha and other
parameters are. Each peer node would then be obligated to notify the central
node about an RPC it has made. Central node would then again draw out
each RPC that the peer sent.

49 May 24, 2024

May 24, 2024 50

Chapter 7
The DHT Library

The final part of our implementation comprised of designing a wrapper library
around the three implementations. This library offers common API of Chord,
Pastry and Kademlia under a single and easy to use interface.

Designed library contains simple interface class DHTNodeInterface.java.
It requires the implementing class to override the basic put, get and delete
functions as well as couple more for initialization, join and leave. The second
class DHTNode.java represents abstract node of a chosen implementation.
Not only can DHTNode act as Chord, Pastry or Kademlia node, it also offers
the user the ability to statically customize parameters of each type of DHT.
After statically defining custom settings or keeping the defaults, user can then
initialize a node of the desired type by inserting type enum into DHTNode
constructor.

Finally, the library itself contains unit tests as well. These can give the
user additional hints as to how to use the library.

7.1 How to use it

7.1.1 Create a bootstrap node

In order to create for example a bootstrapping Chord node, user will input the
Chord node type1 and an ip & port combination to the DHTNode constructor.
This in itself however won’t create a DHT instance. To create one, the library
requires user to call init() function on a given bootstrap node. This call
will then start a GRPC server on the specified port, in effect initializing a
single-node DHT of specified type. This is a minimal working DHT. The user
can then create more nodes and make them join the bootstrap node. Note
that all nodes in a single DHT must have the same type!

1Type of node is an enum.

51 May 24, 2024

7. The DHT Library.....................................
Listing 7.1: How to use the DHT

DHTNode bootstrap = new DHTNode(DHTType.Chord, "localhost", 8000);
bootstrap.init();

DHTNode joiner = new DHTNode(DHTType.Chord, "localhost", 8001);
joiner.join(bootstrap.getIp(), bootstrap.getPort());

7.1.2 Join DHT instance using the bootstrap node

To join an existing DHT, user has to know a contact within a network. Since
we have an already running one, we can specify it’s ip & port combination
in the join() function and connect via this node. Observe that even though
the listing 7.1 runs the node on the local environment, user is able to specify
arbitrary remote ip address.

7.1.3 Customizing the network

So far we have shown how to create a Chord DHT with no configuration.
Nodes initialized without prior settings use a default configuration. Chord
nodes are run by default with m parameter set to 16 and stabilizeInterval set
to 2 seconds. These parameters can be customized however. To do so, one
only has to call static method setCustomChordSettings() which takes both
arguments as input. The m parameter determines the node id space. There
are 2m ids in a given Chord instance. The stabilizeInterval is the number of
milliseconds after which a node runs stabilize routine. This routine checks
whether node’s successor is online and updates a random finger.

Pastry and Kademlia nodes can be constructed almost identically to the
code presented in listing 7.1. The only difference is the type enum. Pastry and
Kademlia also offer the user to customize their id space and other parameters.
Pastry node allows for customization of three parameters:. idBase - allowed values are 4 and 16. leafSize - 8, 16 or 32. distanceCalculator - accepts classes of DistanceCalculator interface

User can customize the base of Pastry node ids to be in base 4 or 16 by setting
the idBase argument. Recall that the base of Pastry ids directly influences
the size of routing table row. LeafSize denotes the size of leafSet. Setting
the value as 16 for example will reserve 8 slots for upleafs and 8 slots for
downleafs.

LeafSize also denotes the L parameter from the original paper [Row01].
The user should therefore only expect eventual delivery under the assumption,
that no 𝑙𝑒𝑎𝑓𝑆𝑖𝑧𝑒

2 nodes with adjacent ids fail at the same time!
Finally, the distanceCalculator is an interface which aims to define a

metric that should be biased during routing. The library itself contains

May 24, 2024 52

...................................... 7.1. How to use it

pre-implemented metrics which can be utilized. There is for example Co-
ordinateDistanceCalculator which biases euclidean distance2. The other
noteworthy calculator is the ZeroDistanceCalculator, which always returns
zero, therefore equalizing all distances. This in effect negates the metric rout-
ing bias. The user is free to implement his own metric by implementing the
DistanceCalculator interface.

Kademlia’s settings offer double the amount of Pastry parameters. There
are 6 parameters in total, three of which are duration intervals:. k - accepts values in range <1, 20>. alpha - accepts values in range <1, 10>. idLength - accepts values in range <4, 160>. refreshInterval - no bounds. republishInterval - no bounds. expireInterval - no bounds

The k and alpha arguments correspond to the k and alpha arguments
from the original paper. k sets the size of k-buckets whereas alpha is the
concurrency parameter.

The idLength argument represents the number of binary bits of id. The
original Kademlia paper talks about 160-bit length id [May02]. Since this is
very unwieldy, the length was made configurable during the implementation.
It stayed this way because it is very hard to identify nodes of such lengths in
the debug console.

The refreshInterval parameter denotes the duration after which an otherwise
unaccessed bucket will be refreshed. Refresh means picking a random node
from within a bucket and looking it up in order to update contacts in the
given bucket [May02].

RepublishInterval corresponds to the duration after which the publisher
republishes his keys. ExpireInterval denotes the duration after which a key is
removed from a given node.

7.1.4 REST API

A simple REST API was designed in order to make node deployment and
testing easier. The DHT library contains Main.java class which can be run
from commandline or IDE. The class takes two integer arguments: DHT and
REST endpoint ports.

To run a minimal working two-node DHT instance, user will start two
instances of this class, each instance with two ports specified. Suppose the
user runs the first instance with DHT port set to 8080 and REST port set
to 8081. Further suppose the second instance is started similarly with DHT
port set to 8090 and REST port set to 8091.

2The coherency of DHT interface goes against deviations which different nodes of different
DHT types have. One such deviation is setting XY coordinates on each pastry node. Since
only Pastry node constructor deviated from others, it was decided to set random XY
coordinates to such nodes when using the library. Curious user can however bypass the
DHT library and use the Pastry XY coordinate constructor directly.

53 May 24, 2024

7. The DHT Library.....................................
Once both instances are started, nodes per each instance are running but are

not initialized. In order to initialize a node, user will send GET request to it’s
REST endpoint. In this case, it would be on http://localhost:8081/init
and similarly for the second node at 8091. After both nodes are started, the
user can prompt a node to connect to a running node by sending a GET
request to http://localhost:8091/join/localhost/8080. This request
will make the second node join the first. The REST API allows the user to
prompt the node to do the standard DHT node operations. These include
for example value storage, retrieval, deletion and many other. Refer to the
Table 7.1 for an overview of all operations which can be prompted on a node’s
REST port.

This REST API also allowed for validation of the implementation in a
virtual environment. For each three of the implementations tested (Chord,
Pastry, Kademlia), there were six nodes deployed with eight key-value pairs
stored. Value storage was then validated through get requests sent on various
nodes in the network. Finally, the node leave, shutdown and failure simulation
was validated in the test scope as well.

Table 7.1: DHT Node’s REST endpoint and its prompted operations.

URL Operation

http://{nodeIP}:{restPort}/put/{key}/{val} Store a key-value pair

http://{nodeIP}:{restPort}/getLocalData Retrieve all stored key-
value pairs on the node

http://{nodeIP}:{restPort}/get/{key} Retrieve the value for the
given key

http://{nodeIP}:{restPort}/delete/{key} Delete the key-value pair
for the given key

http://{nodeIP}:{restPort}/shutdown Shut down the node

http://{nodeIP}:{restPort}/fail Simulate a node failure

http://{nodeIP}:{restPort}/leave Remove the node from the
network

May 24, 2024 54

Chapter 8
Results and Conclusions

8.1 Implementation summary

After designing and implementing three different types of DHT, we observed
a certain pattern which the process followed. The process usually involves
two main steps. First is defining the routing structure that the node of given
DHT type uses. In our case this was the finger table, node state and list of
buckets. Following the routing structure’s design, the heart of the protocol
can be implemented - the actual routing algorithm.

The routing procedure seems to be the most challenging one. Future
developers are highly advised to construct many test cases to validate their
implementation. Our experience proved, that seemingly correct routing
procedure may not actually properly converge in a network of many nodes.

As soon as both, the routing structure and algorithm are designed, all three
main methods from the DHT usually only build on top of these. All three
methods prompt the routing procedure to return some number of nodes of
interest. Recall that these nodes are characterized by some form of closeness
to a given key. As soon as the routing procedure returns, we can directly
invoke put(), get() or delete() RPCs on these nodes to store, retrieve or delete
a given value.

Although routing procedure and routing structure are two main points of
DHT implementation, there are also other details as well. The next most
important perhaps is the synchronization of routing structure and other local
data stored on the node. To make the implementation simpler, we used
ReentrantLock on each local data access. This surely leads to a bottleneck
when processing, but also trivially ensures there is no concurrent editing.

8.2 Assessment

Author believes that the presented implementations have been designed and
tested successfully. Furthermore, each implementation mirrors the described
one quite precisely, although there are some details that have been missed
out. In particular, these is no successor list in Chord, which allows for more
effective fail recovery or caching of nodes in Kademlia. Lastly, Kademlia

55 May 24, 2024

8. Results and Conclusions..................................
diverges from original binary tree structure of routing table by using an array
of buckets.

During the implementation, there also seemed to be a difficulty in scaling
out each implementation in local environment. After extensive testing, we
came to a conclusion that this is probably not caused by local resource
exhaustion, but rather some sort of race condition. This intuition comes from
the fact, that the designed library crashes when greater number of nodes are
connected but seems to run fine when we introduce a little delay between the
presence-notifying calls after a new node joins a network.

The author is furthermore confident of correctness since there is a great
amount of unit and integration tests designed in each of the three imple-
mentations. This however does not guarantee correctness on itself. Each
DHT most probably contains various edge cases that have not been covered.
Furthermore, implementation presented here has never been deployed nor
stress-tested.

Nevertheless, the author believes the main goal of this thesis, the designing
and developing a DHT for educational purposes, had been achieved success-
fully. On top of that, the library also provides various logging levels which
the user can configure for more fine grained event notification. This may
provide the user with better understanding the hidden mechanisms of the
system. On top of that the author also strived for clear code documentation,
plenty of times even quoting the authors of original papers in the code itself.
The author would also like to encourage any future users of the DHT library
to set break points in the code itself and step through each of the mechanisms
implemented, or to set custom logging messages through out the code.

8.3 Future work

Future works may directly build on top of the one presented here. These
works may for example extend the current project with visual and animated
elements representing the identifier space as well as processing of RPCs sent
between the stations. As discussed in previous chapters, we propose a simple
solution, in which one extra central node connects to the network and orders
other nodes to notify the extra node every time it sends an RPC.

We imagine that there are other works which may benefit from the pre-
sented project as well. These may include a distributed file-sharing system for
example. Recall that the implementations presented, stores simple string val-
ues on the nodes. There is however a possibility to extend this implementation
to also store files or data blobs in general.

8.4 Conclusion

As with many complex systems with plenty of moving parts, distributed
systems may be overwhelming at a first glance. Nevertheless, even the most
complex systems are usually made of simple atomic building blocks which

May 24, 2024 56

..8.4. Conclusion

are just built on top of each other. To explain and illustrate the building
blocks first and only then continue with advanced topics seems like a natural
way one can learn a given subject. This thesis was also presented in such
approachable way. It introduced the reader to a concept of consistent hashing,
continuing with metric heuristic and finishing of with an array of k buckets.
The thesis not only introduced the reader to the topic in theoretical way but
also showed how to implement such system from scratch. Author believes that
the work at hand will greatly contribute to academic and software developer
community by educating future readers or users of results presented here.

57 May 24, 2024

May 24, 2024 58

Appendices

59 May 24, 2024

May 24, 2024 60

Appendix A
Bibliography

[Bas16] Basho, Technical overview of riak kv enterprise, Tech. report, Basho,
2016.

[Con24] Wikipedia Contributors, grpc, https://en.wikipedia.org/wiki/
GRPC, 2024, Accessed: 2024-02-23.

[Cou11] George Coulouris, Distributed systems: Concepts and design,
Addison-Wesley, 2011.

[DeC07] Giuseppe DeCandia, Dynamo: amazon’s highly available key-value
store, ACM SIGOPS Operating Systems Review (2007).

[Elb15] Waleed Elbreiki, A comparative study of chord and pastry for the
name resolution system implementation in information centric
networks, NETAPPS2015, 2015.

[gA24] gRPC Authors, Java basics, 2024, Accessed: 2024-02-23.

[Gho06] Ali Ghodsi, Distributed k-ary system: Algorithms for distributed
hash tables, IEEE transactions on parallel and distributed systems
(2006).

[Kar97] David Karger, Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the world wide web,
ACM Transactions on Computer Systems (1997).

[May02] Petar Maymounkov, Kademlia: A peer-to-peer information system
based on the xor metric, International Conference on Distributed
Computing Systems, 2002.

[Maz17a] David Mazières, Implementing find node on torrent kademlia rout-
ing table, https://stackoverflow.com/questions/30654398/
implementing-find-node-on-torrent-kademlia-routing-
table, 2017, Accessed: 2024-04-21.

61 May 24, 2024

https://en.wikipedia.org/wiki/GRPC
https://en.wikipedia.org/wiki/GRPC
https://stackoverflow.com/questions/30654398/implementing-find-node-on-torrent-kademlia-routing-table
https://stackoverflow.com/questions/30654398/implementing-find-node-on-torrent-kademlia-routing-table
https://stackoverflow.com/questions/30654398/implementing-find-node-on-torrent-kademlia-routing-table

A. Bibliography.......................................
[Maz17b] , Is there a clearly documented consensus in

plain english that describes maymounkov’s kademlia?,
https://stackoverflow.com/questions/47507317/is-there-
a-clearly-documented-consensus-in-plain-english-that-
describes-maymounk/47517428#47517428, 2017, Accessed:
2024-04-21.

[Mul24] Brian Muller, K closest neighbours, issue 28, https:
//github.com/bmuller/kademlia/issues/28, 2024, Accessed:
2024-04-21.

[Rou22] Tim Roughgarden, Cs168: Lecture #1: Introduction and consistent
hashing, 2022.

[Row01] Antony Rowstron, A scalable and fault-tolerant router for large-
scale peer-to-peer networks, Computer networks (2001).

[Ste05] Ralf Steinmetz, Peer-to-peer systems and applications, Springer,
2005.

[Sto01] Ion Stoica, Chord: A scalable peer-to-peer lookup service, ACM
SIGOPS Operating Systems Review (2001).

[Tan07] Andrew S. Tanenbaum, Distributed systems: Principles and
paradigms, John Wiley & Sons, 2007.

[Zha13] Hong Zhang, Distributed hash table: Theory, platforms, and appli-
cations, Springer, 2013.

May 24, 2024 62

https://stackoverflow.com/questions/47507317/is-there-a-clearly-documented-consensus-in-plain-english-that-describes-maymounk/47517428#47517428
https://stackoverflow.com/questions/47507317/is-there-a-clearly-documented-consensus-in-plain-english-that-describes-maymounk/47517428#47517428
https://stackoverflow.com/questions/47507317/is-there-a-clearly-documented-consensus-in-plain-english-that-describes-maymounk/47517428#47517428
https://github.com/bmuller/kademlia/issues/28
https://github.com/bmuller/kademlia/issues/28

Appendix B
Attachment content

attachment/
DHT/src/

main/
java/

chord/............................Chord DHT source code
pastry/..........................Pastry DHT source code
kademlia/.....................Kademlia DHT source code
dht/.........................The DHT library source code
proto/......................Proto compiler generated files

resources/
chord.proto Chord gRPC service definition
pastry.proto..............Pastry gRPC service definition
kademlia.proto Kademlia gRPC service definition
dht.properties.................DHT custom settings file
logback.xml...................Logging level configuration

test/java/
chord/......................................Chord DHT tests
pastry/....................................Pastry DHT tests
kademlia/...............................Kademlia DHT tests
dht/...................................The DHT library tests

assignment.pdf Official thesis specification
chord.pdf................................The original Chord paper
pastry.pdf...............................The original Pastry paper
kademlia.pdf The original Kademlia paper

63 May 24, 2024

	Thesis overview
	Theory
	Distributed Hash Tables
	What is a Distributed Hash Table
	DHT space

	Chord
	Finger table
	Find successor procedure
	Node arrival

	Pastry
	Design
	Node state
	Routing
	Node arrival
	Locality

	Kademlia
	System decription
	XOR metric
	k-buckets
	Lookup
	Join

	Comparison of different implementations
	Node design
	Topology
	Distance
	Parametrization
	Routing procedure
	Node join

	DHT implementations in practice
	Riak KV
	Amazon‘s Dynamo

	Analysis and Implementation
	gRPC
	How it works
	Core concepts
	gRPC in action
	Importing gRPC via Maven
	Java interface

	Chord
	Chord node structure
	Predecessor, Successor and FingerTable
	Stabilization routine
	GRPC server/client
	LocalData in Treemap

	Lifecycle
	ChordNode instantiation
	createRing()
	join()
	leave()
	Node failure

	Logging levels
	Future work

	Pastry
	Pastry node structure
	NodeState
	GRPC server/client
	Distance calculator

	Leave
	Fail recovery
	Future work
	Whether to wraparound or not
	Visual representation of Pastry system

	Kademlia
	KBucket
	RoutingTable
	Find K closest
	Array versus Binary tree

	KademliaNode
	Node lookup

	Scheduling
	Locking
	Parametrization
	Future work

	The DHT Library
	How to use it
	Create a bootstrap node
	Join DHT instance using the bootstrap node
	Customizing the network
	REST API

	Results and Conclusions
	Implementation summary
	Assessment
	Future work
	Conclusion

	Appendices
	Bibliography
	Attachment content

