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Abstract

This work presents new algorithms and
approaches for extracting definitions from
Czech legislation documents using ad-
vanced Semantic Web technologies and
Large Language Models. It focuses on
the applicability of language models to
the tasks of term extraction, term defini-
tions and subsequent ontology creation.
From a methodological perspective, it
includes techniques such as In Context
Learning and Retrieval Augmented Gen-
eration, leading to improved extraction
and interpretation of legal terminology.
The findings offer important insights into
the applicability of language models to
specific NLP tasks in the area of legal
document analysis and processing, which
is related to the creation of knowledge
ontologies.
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Abstrakt

Tato prace predstavuje inovativni algo-
ritmy a pristupy pro extrakci definic z
Ceskych legislativnich dokumentt s vy-
uzitim technologii sémantického webu a
velkych jazykovych modeli. Zaméruje se
na pouzitelnost jazykovych modeli pro
ulohy extrakce termint, definic termint
a nasledné tvorby ontologii. Z metodolo-
gického hlediska zahrnuje techniky jako
In Context Learning a Retrieval Augmen-
ted Generation, které vedou ke zlepseni
extrakce a interpretace pravni terminolo-
gie. Vysledky obsahuji dtlezité poznatky
o pouzitelnosti jazykovych modeld pro
konkrétni NLP tdlohy v oblasti analyzy
a zpracovani pravnich dokumentt, které
souviseji s tvorbou znalostnich ontologii.

Kli¢ova slova:
extrakce definic, tvorba ontologii, NLP,
LLM, Few Shot RAG, Embeddings, ICL

Extrakce termint,

Pteklad nazvu: Algoritmy pro extrakei
definic v pravnich predpisech
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Chapter 1

Introduction

We present and benchmark novel methodologies for extracting terms and
definitions from Czech legislative documents, which we subsequently use
for building ontologies, leveraging the capabilities of advanced semantic web
technologies and large language models. Our approach involves the adaptation
and enhancement of existing algorithms and methodologies, incorporating
state-of-the-art language embeddings and language model techniques.

. 1.1 Motivation

The motivation behind this work is the integration and use of large language
models for ontology population. The biggest language models have surpassed
everyone’s expectations and have outperformed previous state-of-the-art meth-
ods in many areas of natural language processing in the last months/years.
One of the side objectives of this work is to explore and benchmark the appli-
cability of large language models to the creation of complex fully interpretable
robust knowledge bases. This can be used in the future to potentially improve
the quality of learning/fine-tuning large language models that are currently
being primarily trained on huge text corpora.

However, it is the characteristics of the text corpus itself and its weaknesses
that introduce a very strong bias in the subsequent inference with respect
to the input data. For example, if the model was trained on a dataset that
was skewed towards a recently very popular phenomenon, fake news, it could
infer texts containing concepts that contradict each other [I].

1



1. Introduction

Our work focuses on the controlled semi-automated structuring of infor-
mation provided in input text documents, specifically the laws of the Czech
Republic. Structuring means extraction and subsequent creation of knowledge
- linked databases - ontologies.

B 12 Streamlining and Making Legislation Accessible

Currently, a large portion of Czech legislation is undergoing multiple waves
of digitalization under the initiative Digitdlni Ceskd'| This initiative aims
to create, preserve, mediate, and maintain legislative documents digitally.
Most digitalized legal documents are commonly in PDF format or available
through web portals.

Currently, the web portals of the ministries themselves or those managed
by private entities or communities are the most popular sources/access points
to laws, ordinances, etc. Other kinds of legal documents include decrees,
regulations, directives, and resolutions. The characteristics of input pure
legal text documents from these web sources often include complex language,
legal jargon, and detailed provisions that require accurate interpretation.

One of the most visited portals, which is also the one that we have used in
our work to obtain the text of specific laws, is jwww. zakonyprolids. czl The
main goal of these web interfaces is to provide a simple and quick insight into
the desired legislative documents, which they do very quickly and reliably.
The speed of finding indexed parts of the law based on a user’s full-text
query is a key advantage of these systems compared to physical copies or
persistently stored files.

Despite the fact that access to usually complex and often widespread
sources has significantly advanced recently, it is necessary to mention several
main disadvantages and define areas for improvement both in mediation
and in subsequent forms of searching for information. Let’s define areas of
improvement with list of reasons why should we focus on structuralizing
information into connected ontology? systems:

"https://digitalnicesko.gov.cz/
2Ontology is a structured framework for organizing information that defines a set of
concepts and the relationships between them within a particular domain of knowledge.


www.zakonyprolidi.cz
https://digitalnicesko.gov.cz/

1.3. Legal Term

® Standardization of Formats: Ontologies provide a unified and consistent
way to define and store information. This standardized format includes
not only the legal terms themselves but also the relationships between
them, which is crucial for understanding the context and dependencies in
legal text. Standardization simplifies the exchange and sharing of data
between different systems and platforms.

® Linking with Other Ontologies: Ontologies allow for the creation of links
between different knowledge areas. For example, an ontology of Czech
law can be linked with ontologies from the fields of economics, healthcare,
or education, enabling complex analyses and better understanding of the
connections between different legislations and sectors.

® Integration and Information Retrieval: Thanks to their standardization[34]
and the characteristics of linked data, ontologies can easily be integrated
into a wide range of information systems, including legislative search
engines. Ontologies can also be connected to automated decision-making
processes and systems, which can enhance the efficiency of providing
legal services to customers. Besides searching and informed decision-
making, ontologies can be used for automatic document generation or
even automatic notification of relevant legislative changes.

® Supporting Decision Processes and Compliance: Structured and well-
connected legal information enables organizations to better navigate
legal requirements and enhances their ability to comply with regulatory
demands. For instance, an ontology can automatically identify areas
where regulations might be violated and suggest corrective measures.

® Simplifying Updates and Maintenance: Given that legal regulations are
constantly changing and evolving, ontologies facilitate easier updates
and maintenance of databases, as changes in one document or segment
can be automatically reflected across all relevant areas of the system.

B 13 Legal Term

The building blocks of all laws are legal terms that represent domain-specific
legal principles, processes, rights, obligations and entities. Their recognition
and correct understanding is crucial for subsequent interpretation, as they
precisely define the legal norms that regulate the behaviour and relations
of individuals to the state. Recognizing these entities is the first step to
successfully structuring entire documents.

Now that we have a basic idea of what Legal Term means semantically,
let’s define its syntactic form and representation for the purposes of our

3



1. Introduction

experiments and algorithms. First of all, the stylistics in which each legal
document is written is different. In other words, an object that a domain
expert considers as a Term may be stated, for example, in the nominative,
instrumental or genitive case. This is because Czech, a Slavic language,
is characterized by a rich inflectional system applied to nouns, verbs, and
adjectives. This inflection influences the syntactic and semantic structure
of legal terms and allows them to appear in different forms depending on
grammatical gender, number, genus, and verbal aspect. Additionally, Czech
language’s semantic richness, where multiple words can exist for similar things
and a single word can have multiple meanings, along with common typos,
pose significant challenges for automated text processing. These variations
and complexities, although semantically consistent, complicate the extraction
of legal terms from documents for analysis and application. We propose
multiple approaches for infinitive state conversion later in Chapter 5.1.4. A
term in the infinitive form, whether it is a single-word or multi-word phrase,
represents a class in the ontology. In addition to the identifier (e.g., dopravni-
infrastruktura  transport-infrastructure), which may include an optional
definition, we also aim to extract candidates for terms that are not defined in
the text.

B 1.4 Definition of Legal Term

The secondary principal objective of our work was to propose methodologies
for extracting definitions associated with the previously identified terms. The
definition of a specific term refers to the segment of the original text that
explicitly captures and defines the term’s meaning within a particular domain,
area of law, and, most critically, within the specific phrasing of the legislation.
It is important to note that the precise definition of the same term may vary
across different legal texts. Additionally, for the purposes of this study, we
do not consider indirect definitions or references to definitions of the same
terms in other legislative documents as valid definitions. Example of direct
"Svéprdvnost je zpusobilost nabjvat pro sebe vlastnim prdvnim jedndnim prdava
a zavazovat se k povinnostem (pravné jednat)." vs indirect "Pokud se v tomto
zakoné pouziva pojmu stavba, rozumi se tim podle okolnosti i jeji cast nebo
zmeéna dokoncené stavby.’.



Chapter 2

Methods and Technologies

In this chapter, we explore the various methods and technologies employed in
our work. Each section provides an overview of the specific technologies and
methodologies that are relevant to the tasks of extracting terms, definitions,
and building ontologies from Czech legislative documents. The sections are
organized to first introduce the foundational technologies and then move to
more advanced techniques and their applications.

B 2.1 Semantic Web Technologies

B 2.1.1 RDF(S)

The Resource Description Framework (RDF) is a standard model for data
interchange on the web [35]. RDF extends the linking structure of the web
to use URIs to name the relationship between things as well as the two ends
of the link. This simple model allows structured and semi-structured data to
be mixed, exposed and shared across different applications.

RDF Schema (RDFS) is designed to define schemas over RDF graph data
[33]. Its main purpose is to specify what a class is and to determine the
domain and range of properties. This provides a structured framework for
describing groups of related resources and the relationships between them.

5



2. Methods and Technologies

As a semantic extension of RDF, RDFS plays a critical role in creating
vocabularies and defining ontological structures essential for the Semantic
Web.

B 212 0owL2

Web Ontology Language (OWL) is a comprehensive framework for modelling
complex knowledge structures. In OWL, entities are identified using IRIs.
An ontology is also uniquely identified using an ontology IRI (with versions).
The OWL language allows importing other ontologies, thus enabling their
interconnection and enrichment.

Class: :FatherOfSons
SubClassOf: :hasChild owl:Thing :hasChild :Man.

Figure 2.1: Manchester Syntax Example

OWL provides different syntaxes, including DL, Manchester (Figure ,
and Turtle (Figure syntaxes, each serving specific use cases and pref-
erences. Custom annotations can be assigned to various resources, such as
classes, properties, and axioms, enhancing the expressiveness of the language.

:FatherOfSons rdf:type owl:Class ;

rdfs:subClass0f [ rdf:type owl:Class ;

owl:intersectionOf ( [ rdf:type owl:Restriction ;
owl:onProperty :hasChild ;
owl:someValuesFrom owl:Thing]

[ rdf:type owl:Restriction ;

owl:onProperty :hasChild ;
owl:allValuesFrom :Man ] )

Figure 2.2: OWL/RDF serialization in Turtle Example. Source:[10]

It also has diverse property expressions. Object Properties in OWL support
characteristics like Functional, Irreflexive, Asymmetric, etc., and they can
be defined in terms of domains, ranges, subproperties, and more. Similarly,
Data Properties in OWL define data properties with characteristics and
relationships like domains and subproperties. Object properties connect
individual entities (e.g., a person to their parent), whereas data properties
link individuals to specific data (e.g., a person to their birthdate).

OWL supports restriction to custom data ranges with standard set op-
erations. This enables the modelling of specific data characteristics and

6



2.2. Large Language Models

constraints. Classes can be defined in terms of their relationships with other
classes, such as subclasses, equivalent classes, disjoint classes, and keys, which
help in creating structured and well-defined class hierarchies.

The OWL language family includes OWL Full, OWL 2 DL, and subsets like
OWL 2 EL, QL, and RL, each with specific features and applications. OWL
2 EL is optimized for rich class taxonomies, OWL 2 QL for large datasets,
and OWL 2 RL offers a rule-based semantic approach.

OWL and its extension OWL 2 offer a powerful and flexible framework for
representing complex knowledge about entities, their interrelations, and their
properties. It supports a range of logical constructs, data types, and syntactic
features, making it suitable for creating detailed, rich ontologies in various
domains. The language’s design ensures that it can satisfy diverse modelling
needs while maintaining logical consistency and providing mechanisms for
efficient reasoning. The process of building ontologies is a task that requires
knowledge of both the language itself and the domain we are modelling. Our
work aims to propose algorithms and methods to facilitate and automate the
creation of OWL ontologies focused on Czech legal structures using modern
NLP methods.

B 22 Large Language Models

Natural Language Processing (NLP), one of the main branches of Artificial
Intelligence (AI), has evolved significantly in the last two decades, moving from
traditional methods based on Statistical Language Models (SLM) to Neural
Language Models (NLM), specifically most commonly the use of Recurrent
Neural Networks (BiLSTM)[41]. Recently, however, the field has experienced
another revolution when pre-trained language models (PLMs) using the easily
parallelizable Transformer architecture combined with training over large
text corpora, BERT [7]. Subsequent experiments with the architecture and
pre-training strategies (Roberta [13] & GPT2 [26]) have demonstrated the
ability to generalize knowledge and the possibility of solving other tasks
using fine-tuning in addition to the task solved during pre-training. Based
on further research and scaling law [9], models that we refer to as Large
Language Models (LLM) with billions of parameters were pre-trained on large
corpora using massive distributed computing power.

In our work, we propose solutions to individual tasks using the ability of
LLM In-context Learning in combination with Retrieval Augmented Genera-
tion.



2. Methods and Technologies

B 2.2.1 In-context Learning (ICL)

Leveraging general knowledge of the largest models for specific language
processing tasks usually requires model alignment. In the case of using open-
source models that have publicly available weights, we can use a fine-tuning
approach.

For closed-source models that we cannot fine-tune, alternative alignment
approaches have been presented [3], without the need for top k layer re-learning
(gradient updates). One such approach is In-context learning, which leverages
the context window size and is based on injecting rules, and instructions
enriched with task demonstrations (few shot examples) into the prompt.

Demonstrations
Circulation revenue has increased by 5% in Finland. \n Positive
Panostaja did not disclose the purchase price. \n Neutral

Paying off the national debt will be extremely painful. ~ \n Negative
The acquisition will have an immediate positive impact. \n

Test input u

!

Prediction = Positive

Figure 2.3: In context learning demonstration consists of k input-label pairs
from the training data (In this case k = 3)[21].

This approach does not require any fine-tune computing power and it
has been shown, that for specific tasks it achieves similar performance as
fine-tuned versions of the same model [6].

Recent research indicates that learning in context acts as an implicit form of
fine-tuning [6]. It’s suggested that Transformer attention mechanisms perform
a kind of dual gradient descent during In-Context Learning (ICL), where
Large Language Models (LLMs) generate meta-gradients from demonstration
examples. These meta-gradients adjust the original model weights, leading to
a meta-tuned model. Comparative studies between learning-in-context and
explicit fine-tuning on real tasks have revealed similarities, supporting the
concept of ICL as a form of implicit fine-tuning.



2.3. Entity Similarity Measures

B The importance of correct in-context demonstrations

Recent experiments have revealed that the exactness of ground truth in
demonstrations is not as crucial for effective ICL[2I]. Replacing labels in
demonstrations with random ones only marginally affects LLMs’ performance
in classification and multi-choice tasks. This highlights the importance of other
elements in demonstrations, such as the label space, input text distribution,
and overall format, in guiding LLMs during ICL.

These findings are particularly important for our subtasks. For example,
in the initial phase of the ontology-building process, we can use non-domain-
specific demonstrations without significant performance hit, and later use the
revised knowledge by a domain expert to further improve the performance.

B 23 Entity Similarity Measures

Entity similarity measures are pivotal in ontology building, especially for
tasks like entity linking. These measures enable the comparison of different
entities, facilitating their accurate categorization and linkage.

B 23.1 Classical Methods

Classical methods, such as the Hamming distance, have long been employed
in entity similarity assessments. These methods are foundational, offering
simple yet effective ways to measure differences between entities based on
their features.

® Hamming Distance: It measures the number of positions at which the
corresponding symbols are different, typically used for strings of equal
length. Given two strings of the same length A and B, the Hamming
Distance H (A, B) is defined as:

n

H(A,B) =) [A; # Bi] (2.1)

=1



2. Methods and Technologies

B Jaccard Similarity: It evaluates similarity and diversity by comparing
the size of the intersection and the union of sample sets. For two sets A
and B, the Jaccard Similarity J(A, B) is calculated as:

_AnB]

J(A, B) = AUl

(2.2)
Note that the element of the set can be arbitrary, e.g. single letter,
n-gram or token.

Levenshtein Distance: Useful for measuring the difference between
two sequences by quantifying the minimum number of single-character
edits required to change one word into the other.

B 2.3.2 Embeddings

Embedding-based methods have significantly changed the way we process,
represent, and most importantly compare words, phrases, sentences, and even
entire chunks of text. By representing entities as vectors in a continuous vector
space, these methods excel at capturing the complex semantic and syntactic
relationships that exist within the language by creating high-dimensional
clusters. Unlike classical methods, embeddings computed using deep unsu-
pervised learning offer an interpretable, easily comparable representation of

language elements.

o
Q & o )
& N
o &

O
& & v\)é‘

N
©
WY N
_\\‘1\ O

PN AR

man — | 0.6 | -0.2 | 0.8 09 | -01 | -09 | -0.7
woman

woman —— [ 0.7 0.3 0.8 | -0.7 01 -0.5 | -0.4 [ ]
man

queen

queen — | 0.8 | -0.1 08 |-09 | 08 | -05 | -09

word Word embedding Visualization of word embedding

Figure 2.4: Comparison of word embeddings in tabular form and their 2 principal
components capturing the highest variance (PCA), demonstrating how words
with similar semantic attributes cluster together in reduced dimensional space
[4].
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2.4. Preprocessing

B State-of-the-Art Embeddings

The latest advancements in embeddings, particularly in multilingual contexts,
have been crucial in enhancing similarity measures. State-of-the-art models
like ada002 offer robust capabilities in processing and understanding multiple
languages, making them invaluable for many tasks such as entity linking.
They excel in capturing contextual meanings and subtle linguistic variations
across different languages. However, these models also come with their own
set of challenges, including the need for extensive computational resources -
usually trained on extensive text corpora, potential biases in training datasets,
and complexities in their interpretability.

B Word2Vec

The idea behind word2vec is one of the most fundamental in the field of
semantic word representation. Its approach of embedding words in a high-
dimensional vector space depending on their context opened up new ways of
understanding and measuring the semantics of language [20][19]. Even though
state-of-the-art methods have now surpassed this approach, the background
idea is still the same, and its reference in many modern tools, such as the
Stanza NLP tool that we use in our work [25], confirms its versatility and
effectiveness.

B 24 Preprocessing

One of the main tasks and objectives of this thesis is to improve the quality
of pre-processing of the input text, which is in the form of Czech law doc-
uments. We have explored and compared state-of-the-art natural language
preprocessing methods to solve the individual tasks described in Chapter (3.
These include tokenization, lemmatization, part-of-speech recognition (POS)
and named entity recognition (NER).

11



2. Methods and Technologies

B 2.4.1 Part-of-Speech Tagging

Part-of-Speech (POS) tagging is one of the fundamental tasks in Natural
Language Processing, which consists of matching word types (e.g., noun, verb,
adjective, adverb, etc.) to individual words in the original text based on the
form and context of the word. This process is essential for further linguistic
analysis such as partial parsing, information extraction, question answering
and other NLP-based applications [14].

Commonly used extraction methods can be based on many principles.
Classical methods are often based on rules or statistical models. Rule-based
methods use a set of predefined rules to categorize words into parts of speech
based on their morphological, syntactic and contextual properties. These
rules can be language-specific and often require deep knowledge of grammar
and syntax.

Another common approach is to use statistical methods that learn prob-
abilistic models from large amounts of textual data. These models can be
based on various machine learning techniques such as hidden Markov models
(HMMs) or transformation-based taggers|14].

In addition to the aforementioned approaches, models based on deep neural
networks have begun to dominate this field with state-of-the-art results. Since
the design and learning of POS tag models for the Czech language is not the
main goal of our work, we chose to use and compare the following approaches.
The first, which is currently used within the TermIT ecosystem, is Morphodita
[32].

B Morphodita

MorphoDiTa is a toolkit that provides morphological analysis of inflectional
languaged', mainly Czech, by automatically clustering word forms into mor-
phological templates [32]. This is achieved without the need for linguistic
knowledge by using a sorting-based method that identifies common stems and
generates templates from word endings. Building a morphological dictionary
in combination with supervised averaging of perceptron taggers effectively

nflectional language changes the form or ending of some words when the way in which
they are used in sentences changes: Latin, Polish, Finnish or Czech are all highly inflected
languages.

12
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determines the possible lemma-tagger pairs. The main advantage is fast
processing and low resource requirements.

Bl Stanza

On the other hand, multilingual (including Czech) state-of-the-art results
were achieved by Stanford’s NLP Group tool called Stanza, which uses
their UD Models[25]. More specifically their Part-of-speech tagger utilizes a
highway Bidirectional Long Short-Term Memory (BiLSTM) neural network
with inputs from 1) word embeddings (word2vec[19] & fasttext[2]) 2) frequent
word embedding, for all words that occurred at least seven times in the
training set 3) character-level embedding, generated from a unidirectional
LSTM over characters in each word.

B 2.4.2 Named Entity Recognition

Named Entity Recognition (NER) is one of the fundamental NLP tasks that
focuses on identifying and classifying words or phrases in source text into
predefined categories such as names, organizations, places, time elements,
counts, monetary values, and more. In other words, this process involves
extracting structured information from unstructured text, which allows trans-
forming the raw data into a more understandable and analyzable format.

Even state-of-the-art out of the box solutions, such as the aforementioned

At 10 AM tomorrow TiME , | Sarah PERSON | will be meeting with representatives from = Google ora  at their headquarters in ~ Mountain View GPE

to negotiate a  $5 million moNEY contract.

Figure 2.5: Example showing a sentence highlighted with Named Entities[37].

MorphoDiTa [32], are not applicable for the purpose of finding Term Candi-
dates in Czech legislative because in most cases the term does not belong to
any of the pre-defined categories of the model. In our case, we would need
to train our own NER model for which we would need to define individual
classes whose superior meaning would be Legal Term. So the output would
have as a term both e.g. 'budova’ ("building’), which is a physical object, and
for example svépravnost’ (‘capacity’?, which is a term in no way semantically
similar to the term building.

2Legal capacity refers either to the legal capacity of a person to have rights and liabilities
or to the very personality of an entity other than a natural person.
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B Candidate Entity Set Generation and Scoring

Generating and scoring a set of candidate entities in the context of entity
and lexical-semantic pattern linking primarily involves two key steps: 1)
generating a set of candidate entities based on string matching between the
mention of the entity in the text and the representation of similar entities
in the knowledge base, and 2) defining a similarity score for each candidate
entity. This process often uses techniques such as surface form expansion
to identify different variants of an entity, such as abbreviations, that are
contextually relevant to the document being processed [28]. However, a
significant drawback of this approach is its inconsistent performance across
domain-specific datasets and its direct dependence on the quality and scale
of the knowledge base.

B Few Shot RAG for domain-specific Named Entity Recognition

The Few Shot Retrieval-Augmented Generation (RAG) approach for specific
Named Entity Recognition (NER), represents a significant advance in the
field of text analysis. This technique adapts the general RAG framework [11]
to work efficiently with a minimum of training data, which is a crucial feature
given the specialized nature of some domains where large annotated datasets
may not be available [36].

Documents

Embedding

Search

service I
Search index

!

*{ Embedding }—» Vector search LLM Output
Input

Figure 2.6: High-level overview of RAG with vector search[30].

In our case Few Shot RAG is adapted to recognize and classify specific
entities in text, such as Terms and their Definitions. The input is combination
of snippet of Legal Document and few examples demonstrating correctly
tagged Terms in input text. The output demonstrates Few Shot RAG’s
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ability to accurately identify and annotate these specific entities in the text.
This approach not only increases the efficiency of specialized text processing,
but also improves the accuracy of entity recognition in contexts where common
NER models may fail due to the unique linguistic characteristics of domain-
specific language. In addition, the simplicity of this approach allows to bias
the extraction towards more satisfactory and precise results by using specific
examples based on the underlying law document.

For example, when evaluating this approach on construction law documents,
we were able to achieve better results by embedding examples of correctly
identified candidate terms specifically from the construction industry in the
LLM context. The example input/output of this method can be visualized in
Figure 2.7.

Pro tcely tohoto nafizeni se rozumi:
a) aredlem Cast tzemi nellenénad vefejnymi prostranstvimi,
b) blokem ucelend Cast tGzemi, tvofend souborem pozemki,

Pro taclely tohoto nafizeni se rozumi:
a) [TERM:aredlem] cast tUzemi neélenénd vefejnjmi prostranstvimi,
b) [TERM:blokem] ucelena &ast tzemi,

Figure 2.7: Tagged term candidates within the context of the regulatory frame-
work set by the Czech Telecommunication Office [5].

B 2.4.3 Lemmatization

Based on recent breakthroughs in rich context approaches significant improve-
ments were achieved as the algorithms began to better understand context
and morphology, leading to more accurate lemmatization. This was especially
evident in languages with rich inflectional morphology, where the context and
POS of a word significantly affect its lemma - Czech.

Lemmatization, the process of reducing words to their base or dictionary
form (lemma), is crucial for establishing the consistency and semantic accu-
racy of elementary entities within the ontology. Properly formalized classes
and properties enable and simplify the extensibility and linking of ontologies.
However, while building an ontology, especially in legal domains, we often en-
counter multi-word terms (MWTs) - phrases, that often cannot be adequately
expressed in one-word terms. For example, plnd moc or prdva dusevniho
vlastnictvi. These terms have a specific, legally defined meaning that is not

15



2. Methods and Technologies

simply the sum of their parts (prdvo dusevni vlastnictvi). Traditional lemma-
tization approaches process the input text at the level of individual words,
which means that they fail to capture the semantics and therefore are unable
to correctly lemmatize the multi-word term.

To address these problems, there is a growing need not only for lemmati-
zation but also for POS tagging and NER approaches that are specifically
tailored to work with MWTs. Such systems require a deeper level of syntactic
and semantic analysis capable of understanding the nuances of entities at the
phrase level. In this respect, advanced NLP techniques, including context-
aware neural models and algorithms designed to recognize and process MWEs,
are essential. These models use larger contextual windows and syntactic pars-
ing to better capture the relationships between words in a phrase, ensuring
that multi-word legal terms are accurately identified and lemmatized as a
whole, rather than as disjointed individual words.

In our work, we evaluated the aforementioned approach of Few Shot RAG
tailored to the task of candidate term extraction, including MWTs. We de-
signed and formulated domain-specific instructions and examples of correctly
lemmatized candidates. Which allowed us to achieve results presented in
Chapter [4.2. Please note the difference: Lemmatization considers the context
and converts the word better to its meaningful base form good, which is called
Lemma. On the other hand, Stemming is a process that stems or removes
the last few characters from running, often leading to incorrect meanings and
spelling, such as runn.

B 25 LLm Agents and Planners

Even though the fundamental methods presented for utilizing language models
in our task of extracting terms and definitions achieve promising results, as
discussed in the Chapter |6| Results and surpass traditional natural language
processing methods, they have several disadvantages and limitations. This
is particularly true when we focus on one of the main tasks of our work -
ontology building. Large language models have demonstrated exceptional
skill in acquiring patterns and representations from extensive text corpora.
However, their effectiveness in addressing more complex tasks that require
planning several steps and actions is limited. This is particularly evident
when the required actions involve mathematical or physical reasoning [39],
adherence to syntactic rules during source code generation, or the execution
of complex data manipulation operations such as grouping, sorting, or other
analytical transformations.
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Research has shown significant improvement through the integration of the
multimodality concept, which, besides the textual corpus, also incorporates
diverse sources such as images and audio when training the models [15].
However, multimodality alone is insufficient for tasks such as arithmetic,
geometry, chemistry, and mathematical equations. These tasks often demand
specific reasoning abilities or domain knowledge that cannot be acquired by
merely processing multiple data types. Research has shown that orchestrating
actions using a predefined set of tools becomes a way to achieve significantly
better results. Tools are critical components that enhance the capabilities
of Large Language Models (LLMs). They are executable units with defined
functions that allow LLMs to perform various tasks. By utilizing different
tools, LLMs can devise a strategy to accomplish a broad array of objectives.
For instance, we can develop an interface for an LLM agent to access tools ca-
pable of conducting activities beyond text generation, such as performing web
searches, executing code, searching databases, or conducting mathematical
calculations.

In today’s era, the use of tools is the main driving force behind modern
applications leveraging LLMs. The range of applications is vast, from customer
support chatbots to complex financial advisors or psychological assistants for
mental health [29]. One of the leading frameworks implementing the most
empirically validated techniques and strategies is LangChain.

LangChain is an extensive library specifically designed to support the
development of applications utilizing Large Language Models (LLMs). It
facilitates the creation of sophisticated interaction workflows by integrating
various components from multiple modules. In LangChain, an agent is
constructed by combining tools and memory. The core principle of agents
in LangChain involves using an LLM to determine an appropriate sequence
of actions. Based on user input, the agent decides which tools, if any, to
activate. Essentially, an agent in LangChain is a combination of tools and
memory. After executing an action, the agent updates its memory, thereby
maintaining the context of the interaction. This method allows LangChain
to handle more complex and structured interactions, ensuring continuity and
context across different prompts and responses.

In addition to the design of the tools themselves, well-known algorithms
such as divide and conquer for decomposable tasks are commonly integrated.
In particular, task decomposition results in a significant increase in the
solve rate for more complex types of tasks [27]. LangChain is not the only
framework for working with LLM agents; implementations of the Divide and
Conquer or Additional Opinions algorithms can also be found in other popular
frameworks. For example, the framework Auto-GPT [40] has proven to be
a highly competitive contender with very effective performance in handling

17



2. Methods and Technologies

sophisticated and multifaceted tasks.

Planner Plan Code Interpreter
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Figure 2.8: The architecture of TaskWeaver. This figure illustrates the main
components and workflow of the TaskWeaver system, highlighting the interactions
between various modules. Source: [16].

For the purpose of designing algorithms to extract terms and definitions
and to conduct related experiments, we used a simpler framework similar
to TaskWeaver (Figure 2.8). This framework is known as Semantic Kernel.
Semantic Kernel is an open-source software development kit (SDK) designed
to integrate large language models (LLMs) such as OpenAl, Azure OpenAl,
and Hugging Face with traditional programming languages such as C#,
Python, and Java. This framework enables the creation of advanced solutions
for a variety of domains, including natural language processing, decision
making, and information retrieval.

One of the main advantages of Semantic Kernel is its ability to automatically
orchestrate plugins using LLMs. The framework allows to define and chain
plugins that can be used to solve complex tasks. In addition, Semantic
Kernel provides robust scheduling features that allow AI models to create
and execute plans based on a user’s specified goals. This approach facilitates
business process automation and increases Al agent productivity by invoking
existing code [I8][17]. Developed by Microsoft, the Semantic Kernel offers
robustness and reliability, ensuring high-quality performance and production
level guarantees in various applications.

The fundamental concept of the framework is the definition of constructs
that subsequently allow system designers to easily define a set of available
actions using function decorators and class descriptors — semantic kernel
functions and plugins. Behind the scenes, the developed tooling is transformed
into the actual prompts selected by the planners. A planner is considered a
prompt that implements one of the versions of state-of-the-art ReAct patterns.
The distinction between planners most often lies in the format used for the
final plan and its steps (XML, handlebars, etc.) and in the integration of new
tips and tricks for using LLMs for planning. In the case of the Semantic Kernel,
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a plugin can be any snippet of code (e.g., MathPlugin), tooling that allows
additional interaction with the user (e.g., UserInteractionPlugin), a database
access interface, or additional LLM native plugins. One of the advantages is
the capability of parallel execution of subtasks and supplementary tasks with
additional LLM queries.

In the following section, we would like to present specific implementations of
tested planners for our task. It should be noted that the ideas of the individual
approaches demonstrated on the specific implementation in Semantic Kernel
are, however, implementation-independent and reusable anywhere.

B 2.5.1 Action Planner

The action planner is specifically designed to orchestrate complex systems
by selecting the most appropriate plugin for a given user intent. It works by
first identifying the user’s goal and then searching for the available plugins to
find the most suitable one that can fulfill that goal with a single action. This
approach ensures the efficiency and speed of the scheduler and is particularly
useful in situations where quick decision making is critical and actions do
not require sequential or multi-step reasoning. The scheduler uses LLMs to
evaluate and select the plugin and sets the necessary parameters for execution.
Once a suitable plugin is identified, the action planner generates a plan and
immediately proceeds to async execute, thus completing the action without
further iterations or feedback mechanisms. This makes Action Planner an
excellent choice for direct, one-step actions where simplicity and speed are
crucial.

B 2.5.2 Sequence Planner

The Sequence Planner, although no longer supported in favor of more flexible
systems like the Handlebars Planner, was initially designed to facilitate the
orderly execution of tasks by transferring outputs sequentially from one step
to the next. This planner was particularly useful in environments requiring a
linear progression of actions, such as data processing pipelines or automated
task sequences in software development operations. By ensuring that each
step was completed before the next began, the Sequence Planner helped
maintain the integrity and dependency of complex task sequences, providing
a structured approach to automation.
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Figure 2.9: Simplified Stepwise planner ReAct pattern.

B 2.5.3 Stepwise Planner

The Stepwise Planner in Semantic Kernel emphasizes a well known, step-
by-step approach to problem solving, making it ideal for complex scenarios
involving multiple, interdependent processes. This planner employs a neuro-
symbolic architecture, allowing for the dynamic selection and integration of
the most appropriate plugins at each phase of the task. Such capability is
vital in adaptive systems where decision paths may vary based on evolving
data inputs or user interactions. The Stepwise Planner is particularly useful
at managing tasks that require continual learning and adjustment, thereby
optimizing the effectiveness of each step based on the outcomes of previous
actions. This can lead to increased processing times and higher computational
costs, particularly in scenarios with numerous or particularly complex steps.
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Chapter 3

General Architecture

This chapter outlines the architecture and workflow required to achieve the
objectives of the project. Each step in the process is detailed, including inputs,
outputs, and descriptions of each component involved. The architecture is
designed to ensure a systematic and efficient approach to ontology creation
from legislative documents.

. 3.1 Overview

The architecture for extracting definitions from legislative documents and
constructing an ontology consists of several key phases. Each phase is designed
to ensure accuracy, efficiency, and coherence in the ontology development
process and might depend on the results of the previous steps. The high-level
steps include:

1. Text Preprocessing
2. Term Extraction
3. Definition Extraction

4. Ontology Engineering and Validation
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B 32 Text Preprocessing

Inputs:

® PDF or DOCX file

B Manual text insertion
Outputs:
® Cleaned and formatted text ready for processing

Description: Text preprocessing is the foundational step in the workflow. It
involves uploading the legislative document in either PDF or DOCX format
or manually inserting the text. The system processes the text to remove
special characters, hyperlinks, and other non-content elements using regular
expressions and text processing libraries. This ensures the text is in a readable
format, free from noise, and ready for further analysis. This step includes
applying token limits to handle extensive texts effectively.

. 3.3 Term Extraction

Inputs:

® Preprocessed text

® Existing ontology terms (optional)
Outputs:

® List of candidate terms
Description: Term extraction involves identifying potential terms that could
be included in the ontology. This process employs a combination of in-context
learning (ICL) and few-shot examples to extract terms accurately. The input

is the cleaned text, and the output is a list of terms that are forwarded for
domain expert approval or correction.
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. 3.4 Definition Extraction

Inputs:

® List of approved terms

B Legislative context
Outputs:
® Definitions associated with each term

Description: Definition extraction identifies and extracts definitions for the
previously extracted terms. The process involves generating definitions using
ICL and filtering out any terms not explicitly defined in the text. This step
ensures that each term in the ontology is accompanied by a precise and con-
textually accurate definition. To enhance accuracy, the system incorporates
pre-filtering to eliminate terms unlikely to be defined in the text and uses an
index of approved formal definitions from previous extractions as reference
points.

B 35 Ontology Engineering and Validation

Inputs:
B List of approved terms with their definitions
Outputs:

® Turtle/RDFXML/N-Triples source code

®8 Graphical preview
Description: The final phase involves consolidating all extracted terms and

definitions into a coherent ontology. Each step includes manual validation by
domain experts to ensure factual accuracy and correctness.
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Chapter 4

Experiments

This chapter presents the experimental setup, methodologies, and results
of various approaches undertaken to achieve the specified objectives. Each
section presents specific partial experiments, highlighting the effectiveness and
limitations of different techniques, and provides insights into their practical
applications.

B 41 LLMsas POS Taggers

In our work we designed and benchmarked a way of POS tagging utilizing
in-context learning of Large Language Models (LLMs) such as GPT-4. This
tagger, bypassing traditional supervised learning, leverages the model’s exten-
sive pre-training on diverse linguistic data. The method is based on presenting
the LLM with either preselected or dynamically chosen input-output pairs -
a combination of partially tagged and untagged text. This design leverages
the LLM’s ability to infer and classify words into POS classes by recognizing
patterns from the provided examples and applying these patterns to the
untagged words. This supplementary task has been evaluated only on a
small dataset and in any way is not intended as a replacement for already
mentioned state-of-the-art POS Taggers. We evaluated this approach on the
same dataset of 18 sections from construction law as in section Since this
experiment achieved similar accuracy to the Morphodita mentioned above
- except for extreme cases, we did not pursue similar experiments due to
increased response time and to save resources.
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Utilization of pure Part-Of-Speech (POS) tagging for Term Candidate
Extraction is fundamentally insufficient because POS taggers are primarily
designed to categorize words based on their syntactic function (e.g., noun, verb,
adjective), therefore they cannot capture the specific terminologies and phrases
that do not conform to standard POS tagging categories. Challenges such as
the Czech language’s free-word order might further reduce the effectiveness
of pure Part-Of-Speech (POS) tagging for Term Candidate Extraction.

. 4.2 Term Candidates Lemmatization

Another subtask of our work was to propose a suitable approach that would
find for each term its lemmatized form, which we could use as an identifier
(prefLabel or class name). The Czech language has many forms of word
inflection, and therefore this situation occurs very often, for example, instead
of hladinou zdplavy the label of the term should be hladina zdplavy. This
could easily be done using the proposed Lemmatizers, but our terms, as
shown, can be multi-word (phrases). However, the Lemmatizer considers
individual words as separate entities, see Table 4.1l

Original MorphoDiTa Stanza Few Shot ICL
aredlem areal areal areal

budovou budova budova budova

bytem byte byt byt

hladinou hladina zaplava | hladina zaplava | hladina zaplavy
zaplavy

hranici hranice hranice hranice

hrubou podlazni | hruby podlazni | hruby podlazni | hruba podlazni
plochou plocha plocha plocha
charakterem charakter izemi | charakter izemi | charakter tizemi
tzemi

Table 4.1: A selection of examples of term lemmatization by MorphoDiTa,
Stanza, and Few Shot ICL.

. 4.3 Term Candidates Extraction Results

In the evaluation part of the proposed sub-components for term extraction,
we used a part of the Czech Construction Law. More specifically first 18§ of
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TP FP FN Precision Recall F1 Score  Accuracy
32 75 10 0.30 0.76 0.43 0.76 (32/42)

Table 4.2: RAG Term Extraction - benchmarked on 18§ from Zdkon o dzemnim
pldnovani a stavebnim rddu (stavebni zdkon)

Zikon ¢. 183/2006 Sb. Mainly because this law has already been processed
in the existing system, the terms and their definition extracted and revised
by a domain expert. This fact allowed us to directly evaluate the proposed
approach. Due to the time complexity, we limited ourselves to the part of the
law containing the most terms and definitions. Specifically, the basic metrics
can be seen in the Table |4.2. It should be mentioned that we compare the
extracted terms with the existing ones using a Hamming distance equal to
0. Another necessary remark is the dependency on the configuration of the
LLM queries, specifically the guarantee of the deterministic nature of the
results. However, in the case of terms that we consider misclassified, quite
often the term is very close to the correct one. In some cases, however, the
hallucinations of the language model are apparent at first glance - for example,
the incomplete term "dzemnt op...". A large proportion of false positive cases
would need to be verified by a domain expert, but for some, it is clear that it
is in fact not a legal term (e.g. "popripadé republikového viznamu")

B 4.4 Definition Candidate with Zero Shot RAG

If the domain expert accepts some of our term candidates, we can reuse the
same approach to find their potential definitions. This is done again by RAG.
As a result, we need to ask the domain expert to accept/correct the definition
candidate.

. 4.5 Definition Candidate Extraction Results

Further experiments of the proposed approaches concern the extraction of
potential definitions from already found and approved terms. A significant
difference between the process of extracting term candidates and definition
candidates lies in the very nature of the extracted entity. In the case of a
term, it is a lemmatized word or phrase. In the case of a definition, however,
it is very often a coherent piece of text that must directly reflect the legal
text. It is the very semantic exactness and correlation to the original text
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that is one of the biggest challenges of this task and the most important
metric for comparing different approaches. Our proposed approach allows
extracting a definition either as part of the original text - just marking the
area in which the definition is most likely to be found, in which case accuracy
is guaranteed at the cost of the necessary subsequent reformulation by a
domain expert. The second tested alternative is to use the full potential of
RAG in combination with ICL and leave the formulation of the definition in
its complete and closed form to the LLM, see Appendix [A.3|

B 4.6 Initial Ontology

As a result of the previous steps, we have approved terms and their definitions,
in addition, we also keep information about the source file (part of the law).
The next step is the integration of the new terms into the ontology and their
subsequent linking. Since at this point, the ontology is empty, we do not
have to check whether the term or similar term is already in the ontology.
We only need to insert it according to our schema. This includes creating
appropriate persistent identifiers, one of which is the URI of the concept
itself. Since our work builds on an existing system, we follow the already
established conventions, see the appendix [A.2l

B a7 Ontology Extraction Results

Finally, we have done experiments extracting the atomic ontologies themselves.
It should be noted that the input of this component can be data from the
already mentioned parts of the extraction pipeline, or data from an existing
system. The evaluation of the results in this case is not as straightforward
as in the previous experiments. Since in the current situation we cannot
compare the quality and complexity of the extracted and built ontology with
an existing one, we have no choice but to verify the correctness by judgment.
The following process of creating a complex final ontology is linking the
extracted subsets of Atomic Ontologies. This is the goal of our work in the
near future.
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. 4.8 Code Generation

Another approach on how to automatically generate ontologies is direct source
code generation. This approach is based on the use of language models to
generate code based on its specification and description in natural language
query. The advantage of this approach is undoubtedly the speed and efficiency
of the inference compared to the human resource requirements. Recently, this
has been a very popular topic, even though the quality of the generated code
can be very inconsistent and often requires revision and manual correction by
the end user [I2]. Another big concern in generating source code is security
[38] [23], which is out of the scope of our work.

We decided to explore this area and conduct experiments with direct source
code generation of atomic ontologies in N-Triples, RDF /XML and Turtle
formats. These three formats are among the most popular ones [31] and
each of them has different characteristics that have an impact on the token
inference. Let us first describe each format to give an overview of their
advantages and disadvantages. For each of them, we will also give an intuition
for why the format should be more suitable for the language model or vice
versa.

N-Triples is one of the most basic and simplest formats for serializing RDF
data. Each statement is on a single line and consists of a subject-predicate-
object triple terminated by a period. These characteristics (assumptions) and
standardizations are what make it suitable for machine processing - it is very
easy to parse. However, its excessive simplicity is also a major drawback,
as it is less human-readable, especially when it contains more complex data
structures. For the purpose of direct ontology snippet generation, this format
is particularly suitable because of its syntactic simplicity, which minimizes
generation errors. Another advantage is the ease of incrementation, due to
the complete independence of the rows, which also allows incremental testing.

RDF /XML, on the other hand, is a much more syntax-rich format, allowing
the representation of more complex data structures, which is what we need
in the case of more complex ontologies. A major advantage is the popularity
of the XML format, which often facilitates rapid integration into existing
systems and libraries. However, the complexity of the syntax significantly
complicates processing and, from the perspective of generation using language
models, the actual inference time and the number of tokens consumed.

Turtle is one of the many formats that are very readable and easily modi-
fiable by humans. Another advantage based on good readability is ease of
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maintenance and sustainability. The conciseness and clarity of the syntax,
however, require the use of special characters and forms of truncation (and
prefixes) which result in significantly higher error rates when using language
models [8].

B 4.8.1 Format Comparison Conclusions

When we look at how different formats perform in generating ontologies using
language models, we see differences in error rates and how many tokens they
use. The Turtle format, which is easy to read and modify, makes the most
mistakes during automatic generation because it uses special characters and
shortcuts that are easy to get wrong. On the other hand, N-Triples, although
very straightforward because it uses one line for each data point, ends up using
more tokens, which isn’t efficient for storing complex information. However,
its simple structure reduces the chance of making errors. RDF/XML is
somewhere in between; it can handle complex information well because it uses
XML, but this also makes it harder to process, affecting both the number of
tokens used and how often errors occur.

B 4.8.2 Naive Code Generation Conclusion

Our initial experiments with direct code generation for ontologies demon-
strated a very high error rate, with mistakes occurring in more than 95%
of cases - model gpt3.5-turbo, turtle format with missing semicolons as the
most common issue. This level of inaccuracy indicates that this method is
not suitable for our specific task of creating ontologies. The high frequency of
errors made it clear that continuing to test this approach would be inefficient,
particularly in terms of using up computational resources - inference tokens.
Before transitioning to a completely different approach, we modified the
initial code generation component to include a feedback loop from subsequent
parsers. As detailed in the next section 4.9, this adjustment effectively re-
duced syntax errors. However, it came at the cost of a significant increase in
the number of tokens consumed and the response time.
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B 4.9 Code Generation With Feedback Loop

From the experimental results of the proposed algorithm for extracting terms
and definitions in the previous chapter - code generation, it is evident that
the use of the LLMs for direct generation of the source code of the ontology
itself in any of the above mentioned formats from the input legal document
is inappropriate due to the very high error rate - common syntax mistakes,
not just semantically incorrect ontology.

Therefore, in further experiments, we modified the previous design and
introduced an error feedback loop. This is the idea of integrating an already
existing component in our system validating the syntax of the generated code
into the ontology extraction/generation process itself, see Figure |4.1. The
first step is identical to the previous proposal - ontology generation from
input text using the principle of in-context learning and few-shot prompting.
The second step is validation of the generated code.

Validation of source code syntax in any format is performed using existing
parsers implemented in commonly used libraries for RDF/XML or turtle
data. Specifically, we used the rdflib library for N-Triples and Turtle, and
the owlready?2 library for validating RDF/XML data. Both of these libraries
support catching error messages. Error messages, in addition to the source
code itself, most often contain a brief description of the syntax error and a
reference to a specific line - error line.

It is the description of the error message and the reference to a specific line
in the input file that we used as feedback for the next generation cycles (see
Figure 4.1). This change led to a very significant improvement in the quality
of the resulting extraction (ontology source code), reducing the error rate
from approximately more than 95% to range between 25% to 30%. However,
the remaining cases became stuck in a loop, presenting an unresolved issue.
This was tested on atomic ontologies no more than 1000 tokens long.

However, it is necessary to point out the disadvantages of this approach.
One of the main drawbacks is the significant increase in total response time -
each error correction step requires another LLM call, leading to chained calls
due to the high error rate of the trivial approach. In our experiments, this
resulted in a several-fold increase in response time. Given the chosen LLM
models, we also noted an increase in the number of inferred tokens, which in
turn led to higher spending.
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Input Context

Code Generation Flow
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rdflib ttl parser (line + message)
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Ontology

Figure 4.1: Diagram demonstrating implemented code generation with error
feedback loop.

In the next steps of our system design, given these results and considering
all the drawbacks, we backed away from this approach and proposed an
alternative extraction algorithm. Instead, we have shifted our focus to an
orchestration approach, where the decision-making process is handled by
the model, and the actual implementation is executed using existing Python
libraries. This method allows for more controlled and error-free ontology
creation.
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Chapter 5

Proposed Solution

In this chapter, our goal is to consolidate knowledge about the state-of-the-art
methods and models, and most importantly, the results of previous experi-
ments discussed in Chapter 4. The primary objectives are term extraction,
definition extraction, and subsequent ontology engineering. Additionally, we
incorporated SubClass extraction and optional ObjectProperty extraction
processes to facilitate the construction of more complex ontologies. We pro-
pose two suitable approaches: OntoBuilder and OntoAssistant. To ensure
the factual accuracy of the entities integrated into the ontology, we mandate
domain expert review and potential corrective actions after each step.

. 5.1 OntoBuilder

The first approach involves OntoBuilder - a collaborative tool wrapped into
a web application. It contains separate flows designed for the dynamic
extraction, approval, and subsequent integration of entities into the developing
ontology.

B 5.1.1 Overview

The process is divided into five distinct phases: Upload/Preprocessing, Term
Extraction, Definition Extraction, SubClass Extraction, and, optionally, Ob-
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Figure 5.1: Data flow diagram of the proposed application. The diagram outlines
the main extraction components and their interactions, illustrating the flow of
data through various stages of processing within the system.

jectProperty Extraction. This sequence culminates in the final revision of the
ontology and a graphical preview.

B 5.1.2 Text Preprocessing

In the first step of the proposed algorithm, it is necessary to specify the input
text region from which we want to extract Term Candidates. The proposed
system allows two approaches

® uploading a PDF/DOCX file

® manual text insertion

Manual text insertion is a simpler option, but it does not allow convenient

34



5.1. OntoBuilder

work with larger documents. However, an advantage of this option is the
unnecessity of text preprocessing, because we assume that the inserted text
is already in readable form (no special characters, no headers/footers, correct
encoding, etc.).

The second option is to upload a PDF or DOCX file. After successfully
uploading the file to the server, the system reads the content of the document
and saves it in a persistent text format. The basic steps of rule-based text
preprocessing are then applied using regular expressions. Most files contain
additional special characters, hypertext links, image objects, or text unrelated
to the content itself (page footer in small font). For this purpose, we use
available libraries that allow us to retrieve, in addition to the content itself,
metadata about font size, tags and other features.

Due to the models used, we also introduced an upper limit on the number
of tokens to avoid input contexts that are too long. A token is a part of a
word. Specifically, in our work we use the encoder cl100k_base, which is used
by the chosen models. For the purpose of testing of the proposed components,
we chose a limit of 2000 tokens. The amount of text that can fit into 2000
tokens varies greatly based on the characteristics of the text itself. In the case
of the Czech language, the number of tokens per word is 2.11 times higher
than the English [24]. In the case of the test scenario on the construction
law, this is approximately 4000 characters or 2 standard pages.

B 5.1.3 Existing Ontology

One of the main advantages of working with open data is its ease of integration
and extensibility. To preserve this advantage within the proposed system, we
allow the domain expert to upload his own ontology. Specifically, an ontology
containing an already non-trivial set of pre-validated terms represented as
OWL Classes, optionally with definitions. In the current version of the
proposed solution, our focus is limited to utilizing pre-existing terms. However,
future iterations will extend reusability to the text of the definitions themselves.
This extension will involve comparing the definitions using the cosine distance
of embeddings against generated definitions. For terms, this process is
relatively straightforward due to the establishment of a normalized format
for the class identifiers representing each term.

The set of terms already existing in the ontology is embedded in the term
extraction flow by injecting them into the prompts themselves. At the same
time, the system part of the prompts is dynamically modified so that existing
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Figure 5.2: Flowchart draft of the ontology enrichment process. The diagram
illustrates the steps for extracting and validating candidate terms against an
existing ontology, including user interactions for term validation and propagation
of accepted terms into the ontology.

terms are ignored in the first extraction step.

An alternative approach involves extracting all terms initially and then
performing filtering at the output stage of the term extraction, prior to
approval and propagation to the ontology. However, this method is less
efficient as it results in unnecessary inference of tokens, thereby increasing
costs.

B 5.1.4 Term Extraction

Based on experiments with classical methods for extracting entities declared
as candidate terms and evaluation of state-of-the-art methods for entity
extraction, we decided to use a modified ICL approach. The input of the
pipeline for term candidate extraction is a preprocessed input chunk that has
been revised and approved by the domain expert in the previous step. We
also assume that it is part of a legal document containing legal terms. In
the case of using the Ontology Enrichment option, the input is also a list of
existing terms. The output of the Term Extraction flow is a list of candidates
that is forwarded for approval or correction.

The main component of the Term extraction pipeline is the extraction
prompt itself, which consists of several parts:
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5.1. OntoBuilder

B Task Description

The key to the success of any interaction with a language model is an accurate
and structured task description. In our case the main objective is to identify
concepts representing a Legal Terms and return them as a list of candidates.
It is worth to mention that we observed significant increase in quality of the
responses with more specific description - e.g. input is section of Czech Legal
Document and extracted terms will be represented as owl2 classes in next
steps.

Another tested and common practice is the detailed specification of instruc-
tions, guidelines or step by steps, which is represented by a list of actions that
should be followed. Based on experiments, we have finalized and specified the
following instruction categories Class Identification, Nomenclature, Precision,
Exclusivity, Structure, Handle No Candidates, Exclusion. The full prompt is
given in the attached materials.

B Few Shot Examples

As already mentioned in the theoretical section introducing in context learning,
research has shown that examples, including the solution, have a significant
impact on the quality of the output. For the purpose of term extraction, one
sample example is a pair of input text and a list of domain expert approved
terms. We store the examples in the Azure Al Search, see section [6.1], index
during the use of the application. In addition to the mentioned pair, the
content of a particular entry is the embedding (vector field) of the input text
and the identifier of the user who approved the term.

Subsequent retrieval is based on the similarity of the embedding of the input
text to previously embedded contexts. We chose the Hierarchical Navigable
Small World (HNSW) search algorithm and the cosine distance similarity
metric. This is the most common combination and chosen as the default in
the framework we used. Due to the very small set of matched entities, we did
not observe any differences when using Exhaustive K-Nearest Neighbors. It
should be mentioned that the main objective of our work was not to compare
and benchmark the different retrieval methods or embedding comparison
metrics. A set of mostly 3 to 5 sample examples that were most similar to
the input is then formatted and dynamically embedded in the system part of
the prompt.
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This step contributed significantly to the improvement of the extraction
quality and robustness in our case. In addition to the quality of the extracted
data itself, this approach allows the user to dynamically adjust the level of
granularity of the extracted terms. This aspect is particularly important when
dealing with complex legal texts, where it may be necessary to adjust the level
of granularity of the extracted information according to the specific needs
of the user. Consider the following legal text as an example: (1) V tomto
zakoné se rozumi: m) verejnou infrastrukturou pozemky, stavby, zarizent, a
to: 1. dopravni infrastruktura, napriklad stavby pozemnich komunikact, drah,
vodnich cest, letist a s nimi souvisejicich zarizent; In this context, the LLM
can identify the following terms as relevant legal terms: verejnd infrastruktura
(public infrastructure) and dopravni infrastruktura (transport infrastructure).
This selection reflects the higher level of granularity that a user might prefer
if they have requested more general categories of terms in the past. However,
the flexibility and dynamic granularity settings also allow the extraction of
more detailed terms such as pozemek, stavba, zarizent, drdha, vodni cesta,
letisté, etc. This approach, based on few-shot prompting, allows the model to
adapt to user preferences based on previous interactions and context.

B Existing Terms

The last part of the system prompt is the existing terms contained in the
uploaded ontology. At the same time, the system dynamically modifies the
system prompt instructions to ignore the already existing most similar terms.

B Infinitive Form

The next part of this pipeline takes care of the subsequent formatting. Again,
we used ICL approach. But this time the main objective is completely different
from the previous step. The input is a list of extracted candidates, for which
we cannot guarantee any formatting style, infinitive or lemmatized form, etc.
The system prompt contains instructions and information about the input
terms itself, in addition to static examples of lemmatization, conversion to base
form, and formatting. The output is a list of terms in the form corresponding
to the identifiers of specific concepts - e.g. wastewater-treatment-plant.

The entire extraction process is wrapped into a single instance of Prompt
flow, allowing for isolated deployment. A major advantage of encapsulating
this component in a separate endpoint is the integration into other systems
and endpoints.

38



5.1. OntoBuilder

B 5.1.5 Definition Extraction

Similar to the term extraction, we proposed the following approach to extract
definitions based on previous experiments. We tried both the approach of
labelling parts of the original text and direct definition formulation using
LLM. Due to the very high consumption of inference tokens and the similar
quality of the output, we opted for the direct definition formulation approach.

B Task Description

This means that this pipeline again takes as input part of the text from the
legislative document and a set of existing approved terms. The main goal
is to recognize if any of the terms are defined in the context and formulate
the appropriate definition. The output is a set, it can be empty, which
corresponds to a scenario where the context does not contain an unambiguous
legal definition of either of the terms, of term-definition pairs.

B Pre-filtering

The initial version of the proposed extraction algorithm had one major
drawback. In the case where the user required working at a very low level of
term extraction granularity - the input term set contained many terms that
were not defined in the text - hallucinations and unsubstantiated definitions
occurred very often. In order to eliminate this problem as much as possible,
we implemented a component before the actual definition extraction process
that uses LLM to filter the terms that are not defined in the text.

The task is again solved using ICL, where the main goal is to identify in the
input list of terms those that are not directly defined in a particular context
and filter them out for the purpose of definition extraction.

B Few Shot Examples

In order to improve the quality of the definition extraction results, we created
an index storing the approved formal definitions from previous extraction
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iterations. This time the structure of the index is different, but the principle is
the same. Again, the input context is compared with embeddings of contexts
already stored in the index, and the output of the query is a set of terms
including their formal definitions. This means that a set of terms extracted
from the most semantically similar region of the text is always dynamically
inserted into the prompt. At the same time, the examples, in addition to
providing information about what the user has previously considered to be a
definition and what not, contain useful information about the wording and
stylistics of the definition itself.

At the end of the definition extraction is postprocessing, which takes care
of checking and possibly removing model hallucinations, for example in term
identifiers, or treating error outputs.

B 5.1.6 SubClass Extraction

Since the approach of the OntoBuilder algorithm is directly tied to the
design and definition of the extraction steps and the revision interaction with
the domain expert, it is not entirely straightforward to integrate the full
expressiveness of OWL. In other words, if we wanted to extract from the
input text, in addition to terms represented as ontology classes and definitions
as ontology class labels, relations between single entities, we are not allowed
to do so. Therefore, we decided to enrich the ontology creation steps at least
with the extraction of parent-child relationships and experimentally in the
5.1.7 section also with Object Properties.

The task of SubClass relation extraction again requires a legislative context
and a set of found terms as input. Similar to the previous steps, we empirically
developed and modified system instructions to achieve the desired objective.
In particular, we focused on introducing the context of the task performed,
describing and specifying the subClassOf relations - transitivity, directionality,
equivalence. As in the case of definitions, it was necessary to modify the
task description for the scenario where there is no parent-child relationship
between the entities in the input text.

Bl 5.1.7 Object Property Extraction

An additional component is to find candidates for Object Properties. The
input is a set of approved candidates for terms and legislative context. The
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main goal of this flow is to find potential candidates for Object Properties. For
this part too, we applied modified ICL methods and customized the system
prompt as follows. The main goal is to find the set of entities that we identify
with ObjectPropertyName. In addition to the identifier, each entity must
contain a Domain and Range class, which are references to existing classes in
the ontology representing specific terms. Next, a short label explaining the
nature of the relationship. The last part is optional InversePropertyName if
the relationship is bidirectional.

. 5.2 OntoAssistant

The OntoAssistant represents a collaborative, chat-based approach to the
extraction of terms and definitions, and their subsequent incorporation into
ontologies. This method was developed as a fully alternative approach to
OntoBuilder, primarily due to the latter’s limitations, including its inability
to integrate user feedback effectively. The deterministic nature and occasional
inconsistencies of OntoBuilder highlighted the need for an approach that
could reiterate certain steps based on feedback from domain experts, with
modified instructions and objectives. Unlike OntoBuilder, which follows a
strictly defined scenario path, OntoAssistant allows for adjustments that are
not generalizable within a standard architectural framework.

In the current version, we have designed two sets of tools. The first set
enables the planner to communicate with the user and inquire about necessary
details through the User Interaction Plugin. This plugin facilitates three
functions: Ask For Context, Ask For Confirmation Or Correction, and Ask
To Continue. The first function allows the planner to ask for the input text
where terms and definitions are to be searched (currently not linked to an
upload/storage component). This process can also accommodate specific
user needs, such as identifying terms through their abbreviations instead of
full phrases. The second function enables the correction and confirmation of
candidate terms to be propagated into the ontology. This interactive step
also allows for further specification of post-processing adjustments to the
found terms. The Ask To Continue (see Figure 5.3) function is designed to
facilitate continuous enrichment of the ontology, where a Yes/No response
from the user decides whether to jump to the first step — querying for context
specification or terminate.

The second set of tools is designed for manipulating entities within the
ontology through the Ontology Plugin. This involves straightforward get,
set, and delete operations mapped onto the syntax used by the owlready2
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Figure 5.3: Partial hierarchy of designed tooling - semantic kernel plugins.

Python library. To reduce the planner’s necessary steps and decrease response
times, functions such as AddTerm and AddDefinition were introduced. These
functions streamline the process by correcting identifier formats and managing
issues related to the potential absence of non-existent objects.

Given that this component is still in the experimental stage of develop-
ment, access to domain experts has not been enabled. Therefore, no partial
observations or results are reported in subsequent chapters. Given that this
is an auxiliary task designed as an alternative to established and tested
methods and components, its experimental nature does not interfere with the
achievement of the main objectives of this thesis.
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Results

Since automatic validation of the correctness and completeness of the created
ontologies is almost impossible due to the open world assumption and the state
of open data in the Czech legislation, we decided to directly contact domain
experts who, in addition to their knowledge in the specific domain, have
experience with open data. In order to run a series of manual test scenarios,
we designed the architecture and integrated the OntoBuilder approach into
the web application.

B 6.1 web App for Domain Experts

B Prompt flow - Extraction Components

The term, definition, subclass and object property extraction components
are implemented and wrapped in separate Microsoft prompt flow instances.
Prompt flow is an integrated suite of development tools aimed at optimizing
the comprehensive development cycle of large language model (LLM)-based
artificial intelligence applications. This suite covers the stages from ideation,
prototyping, testing, and evaluation to production deployment and monitoring.
By simplifying prompt engineering, Prompt flow facilitates the creation of
LLM applications that meet production quality standards. The organization
and connection of the individual steps by means of the Directed Acyclic Graph
(DAG) allows you to work clearly and very efficiently with different variants
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of the solution. A great advantage is the possibility of simple encapsulation
of the flow in a docker image or direct deployment in the form of an inference
REST api endpoint. For testing purposes, we call individual flows directly
from the backend of the web application.

B Streamlit - Web App

The web interface for our project was developed utilizing the open-source
Streamlit framework. Streamlit is renowned for facilitating rapid development
of simple web applications using Python. It is currently one of the most
prominent tools available for creating and deploying web applications without
requiring any expertise in backend or frontend technologies. For our purposes,
we developed a multi-page application that guides a domain expert through a
step-by-step process of extraction and ontology engineering. The application
consists of the following pages:

Home Page

Context Input Page

Term Extraction Page

Definition Extraction Page

SubClass Extraction Page

ObjectProperty Extraction Page

Ontology Preview Page

The Home Page provides the domain expert with essential information regard-
ing the application’s functionality and usage. The extraction process starts
on the Context Input Page, where the user can either upload and preprocess
a legal document or manually input text. Additionally, there is an option to
upload an existing ontology to be enriched with new entities.

The subsequent extraction process is carried out through the aforementioned
components. The interactive user interface is designed to facilitate easy
revision and modification of the extraction results. It includes multi-choice
forms, checkboxes, and text fields for correcting definitions, among other
functionalities.
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Figure 6.1: OntoBuilder Web Application - Term Extraction Page. Interface
enabling domain experts to test and validate the proposed ontology extraction
and engineering solution step-by-step.

In the final step, users are redirected to the Ontology Preview Page, where
they are presented with a visual preview of the ontology generated using
WebVOWL technologyﬂ see Figure . Users can also inspect the ontology
source code in Turtle format. The final ontology can be downloaded, or users
can return to the Context Input Page to start a new extraction iteration,
thereby enriching the ontology with information from a new context.

B Azure Al Search - Index & Retrieval

To efficiently and dynamically adapt the components for term extraction
and definition extraction, we store user-approved outputs from previous
application runs. For effective indexing and subsequent searching, employing
techniques mentioned in subsection we utilized services available on
Microsoft Azure. Specifically, we used their Azure Al Search service, which
allows for the storage of data structures and corresponding embeddings. The
advantage of this service lies in its configurable search system; in our case,
we utilize vector search based on the cosine distance of specific contexts.

1|https ://service.tib. eu/webvow1/|
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Figure 6.2: Result ontology preview with WebVOWL, verejnd infrastruktura
(public infrastructure) as the parent class with subclasses: dopravni infrastruk-
tura (transport infrastructure), obéanské vybaveni (civic amenities), technickd
infrastruktura (technical infrastructure), and verejné prostranstvi (public spaces).
The side panel provides detailed information about the selected node.

B MongoDB - History & User Management

In addition to cloud services for indexing and subsequent searching, our appli-
cation also uses one of the available NoSQL database offerings. Specifically,
we use MongoDB to store the history of interactions with the application.
Keeping records of each step is crucial for processing feedback. The recorded
extraction results, manual adjustments, timestamps, and any error messages
have enabled us to effectively fix issues and improve the quality of the results.

B 6.1.1 Token Usage and Inference Costs

The web application is hosted and publicly available using the free services
of the Streamlit Community Cloud. Streamlit Cloud is an ideal choice due
to its generous free resources, seamless setup of CI/CD pipelines, and native
integration with the library itself. An alternative solution, which we have not
utilized at this time, is the deployment of the application as an Azure Web
Application service. Because, for our purposes, the hardware available in the
free version is insufficient, and we would need to use higher paid tiers.

We host the mentioned Azure services within the available free tiers,
resulting in zero hosting infrastructure costs. Undoubtedly, a significant
advantage of the chosen type of infrastructure is the seamless upscaling
capability if needed.
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During the experiments, development, and subsequent testing of the pro-
posed solution, we used OpenAl models gpt-3.5-turbo and gpt-4-turbo. Some
simpler sub-components use the cheaper and faster model. On the other hand,
for the main components, the choice is left to the user through settings in
the web interface, with the default being gpt-4-turbo. The total consumption
of chat completion and embedding tokens (model text-embedding-ada-002)
was 4.9 million tokens, resulting in costs ranging from 25 to 30 USD.

B 6.2 Testing

In this section the goal is to present the design, steps, and results of manual
testing by domain experts. As previously mentioned, due to the collaborative
components and open solution assumption, we opted for evaluation by po-
tential future users instead of partial and potentially incomplete automatic
validation. The primary objective was to verify the functionality and us-
ability of the collaborative extraction of terms and definitions through the
OntoBuilder web application. For this purpose, we contacted domain experts
from the Institute of Planning and Development of Prague (IPR Prague),
who were provided with access and instructions for using our application.
Additionally, we prepared an expected walkthrough of the application in the
form of a sample testing scenario, which was designed to demonstrate the
required outputs, metrics, and feedback for the testing.

The test scenario consists of parts focused on individual components pre-
sented in section 5.1, Primarily, it involves questions concerning residual or
missing candidates, correctness of formulation, necessity of manual adjust-
ments, factual accuracy, overall quality assessment of the extraction, and
verbal feedback. For simplicity in testing and subsequent test evaluation, we
defined quantitative metrics as categorical, allowing testers to choose from
five values: none, few, moderate, many, numerous (e.g., Were there any terms
missing that were contained in the text?). When evaluating the test results,
these categorical values were mapped to a scale from 0 to 1 (worst 0, 0.25,
0.5, 0.75, 1 best). In addition to these metrics, we kept track of the overall
rating and subjective impression of the quality of individual parts on a scale
of 0 to 10, also remapped to 0 to 1. Lastly, we allowed testers to comment
on specific parts of the system and verbally describe any deficiencies. In the
final step of our testing process, we focused on the practical benefits of the
system, specifically examining its effectiveness in facilitating workflow and
speeding up the transformation of input text into an ontological structure, as
compared to a purely manual approach.
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Below we present the average results from a total of six testing scenarios
done by two domain experts. A primary advantage of manual testing is that
it does not require a ground truth for results. However, the drawback is its
time-consuming nature. Experts need to be introduced to the application,
familiarized with its controls and expected usage. "Additionally, experts must
allocate time to understand the testing objectives and to proceed through the
test scenarios. For these reasons, even a seemingly small number of scenarios
took testers between one to two hours to complete.

B Term Extraction

We assessed the quality of term extraction in our testing scenarios using the
following specific questions:

® Were any terms present in the context omitted in the extraction?
® Were any terms extracted that were not present in the context?

B Were any of the extracted terms in an incorrect form?

What was the proportion of correctly extracted terms without the need
for manual adjustments?

What is the overall quality rating of the Term Extraction?

All subsequent results were scaled to a range of 0% to 100%, where 0% always
represents the worst quality, accuracy, or correctness of the output. On the
other hand, 100% indicates perfection, reflecting the best possible outcome
achieved. For instance, if a tester answered "none" to the question of whether
any of the extracted terms were in an incorrect form, the output is 100%.

In the case of checking for missing/extra terms, testers more often encoun-
tered extra terms than missing ones, with specific instances recorded at 87.5%
and 79.17%, respectively. They also noted that the form of the extracted
terms was correct in all scenarios, including conversion to their base forms,
achieving a 100% accuracy. In four out of five cases, the testers did not
need to make manual adjustments to the outputs, declaring them correct
and proceeding to the next steps. The average overall rating and subjective
impression of the quality of the term extraction component from the input
legislative text was 85%. The most common critique in the verbal feedback
category related to the excessive candidates (false positives). Additionally,
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6.2. Testing

testers provided feedback on the application’s usability, noting that the al-
phabetical ordering of candidates does not match the order in which they
appear in the context, which slows down subsequent checking and correction.

I Definition Extraction

The subsequent area of testing was focused on the evaluation of extracted
definitions. We assessed the quality using the following specific questions:

Were there any missing definitions that were actually contained in the
context?

Were there any additional definitions extracted that were not actually
contained in the context?

What proportion of extracted definitions are directly supported by the
context?

What proportion of definitions were factually correct without the need
for manual corrections?

What is the overall quality rating of the Definition Extraction?

The feedback on the definition extraction process was highly positive. Specif-
ically, testers noted no missing or unnecessary definitions, achieving 100%
accuracy in both categories. Minor hallucinations and inaccuracies were
observed in only one testing scenario, affecting the response rate for the
third question to 93.33%. Similarly, factual inaccuracies necessitated manual
intervention in 3,33% of cases. Despite these minor issues, they did not
influence the overall and subjective rating of quality for this component, as
both testers across all scenarios provided the maximum possible rating of
100%. Verbal feedback underscored the system’s effectiveness, noting, It
delivers very good results and significantly reduces manual labor required for
definition extraction.

B SubClass Extraction

The final mandatory component for testing involved the extraction of parent-
child relationships. Given that the testers were not required to ensure that

49



6. Results

the input text had to contain entities between which this relationship existed,
we asked this question separately for each scenario. If testers responded
negatively, indicating that no such entities existed within the context to
define this relationship, they could skip testing this component. On the
other hand, if they responded positively, they were further queried with these
questions:

® What proportion of the existing SubClass relationships was accurately
identified?

® What is the overall quality rating of the SubClass relationship extraction?

The testing results were mostly positive, with correct outputs reported at 88%
and 86%, respectively. Testers commented on occasional missing instances of
one of the descendants and also on additional relationships that could not be
directly classified as parent-child relationships, noted A pertinent hierarchical
relationship was identified accurately, and an additional irrelevant relationship
was proposed but subsequently rejected.

B 6.2.1 Other

Finally, we asked domain experts for feedback regarding the speed of ontology
creation processes with basic entity types, from downloading specific legisla-
tion to the final ontology version, when conducted manually versus using our
methods. The primary objective of this inquiry was to determine whether the
algorithms integrated into a collaborative user environment could save time
for open data experts and enhance their workflow efficiency. In all tested
scenarios, both testers reported that the OntoBuilder application enabled
them to achieve the same results faster than they would manually.

Metric Time

Fastest Time  4m 30s
Longest Time 13m 54s
Avg. Time 9m 19s

Table 6.1: Summary of Test Scenario Completion Time

Through the application’s history tracking feature, we monitored the time
it took to process text segments from documents (each containing up to 2000
tokens) throughout the step-by-step ontology development . The process

2Testers chose not to engage with the optional task of extracting ObjectProperties.
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6.2. Testing

varied in duration: the quickest completion took 4 minutes and 30 seconds,
whereas the longest took 13 minutes and 54 seconds, with an average of 9
minutes and 19 seconds per scenario, see Table 6.1. Please note, these times

exclude the periods spent getting familiar with the application, configuring
its settings, and managing the contexts.
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Chapter 7

Conclusion

In the introductory section of our work, we familiarized ourselves with se-
mantic web technologies, including the most commonly used formats and
techniques, with a particular focus on ontology creation. However, to begin
working on term and definition extraction, we needed to familiarize ourselves
with the legal texts themselves, particularly their structure and characteristic
properties. This enabled us to set objectives and tasks for subsequent research
in the field of extracting and structuring knowledge from unstructured text.

We explored classical NLP techniques to assess their suitability for extract-
ing structured ontological descriptions and definitions in the Czech language.
This exploration involved evaluating various models and methods to handle
the complexities of the Czech language’s inflectional morphology. Based
on the research of existing systems utilizing these methods and the active
movement transitioning from classical methods to metalearning approaches
using large language models, we decided to research the applicability of LLMs
for our tasks. We tested and familiarized ourselves with both basic and
advanced techniques, which we subsequently used to design our solution.

The experimental results indicate that for the specific requirements of our
task, employing and adapting Large Language Model (LLM) methodologies
yielded superior outcomes compared to traditional approaches. At the same
time, we concluded that direct generation of source code is unsuitable due
to the rich syntax of the formats. Furthermore, we tested an orchestration
approach, which we subsequently applied in many of the designed OntoBuilder
extraction components.
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7. Conclusion

Based on the survey of state-of-the-art methods and techniques designed
for natural language processing using large language models, and subsequent
experiments with the Czech language, specifically Czech law, we proposed an
algorithm or rather set of procedures, modifications of existing techniques, and
developed an end-to-end collaborative system intended for domain experts
for the extraction of terms, definitions, and subsequent ontology creation.
A detailed description of the individual components for the subtasks of
extraction, post-processing, and propagation in the form of classes and their
descriptions into the ontology is above in Chapter [5.1| OntoBuilder.

Another major task of our work was to verify the functionality and per-
formance of the proposed techniques. For this purpose, we created a web
application designed for direct interaction with the user, a domain expert. It
contains components for uploading and manipulating legislative documents.
Additionally, it contains an interface for correcting and approving identified
candidates for legislative terms, as well as for editing and correcting the defi-
nitions of approved terms. Lastly, it also includes supplementary components
for the extraction of subclasses and properties. To enhance user experience,
we integrated a visual representation of the created ontology in the form of a
graph view and a preview of the source code. The entire process is parame-
terized, allowing the user to modify it via settings. The designed architecture
significantly improved the quality of extraction by reusing examples from
previously completed runs.

Through manual testing in the form of test scenarios provided to domain
experts, we verified the quality of the proposed procedures and identified
their shortcomings. The test results are presented in Chapter 6.2 Testing.
Validation was conducted on multiple predefined scenarios and documents
from the field of construction law and other contexts chosen by the testers
themselves. During the development and our testing, we worked with parts
of laws 183/2006 (Building Act), 128/2000 (Municipalities Act), 197/2004
(Fisheries Act), and 304/2013 (Public Registers of Legal and Natural Persons
Act), which were at least partially processed within the Semantic Dictionary
of Terms|[22].

The very positive feedback from testers, whether regarding the quality of
extraction, the simplicity of application usage, or the benefits of saving and
accelerating their work, as well as pointing out shortcomings, motivated us to
make improvements and conduct further research. Based on this, in Chapter
5.2| OntoAssistant, we proposed an additional alternative solution, which,
unfortunately, has not yet been tested and is still in the experimental phase.

In future improvements, we aim to expand the expressivity and take ad-
vantage of using the OWL language. Specifically, we see potential in utilizing
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7. Conclusion

collaborative LLM reasoners for linking existing ontologies. Additionally, our
goal is to integrate the OntoAssistant approach into the web application and
proceed with the subsequent testing process.
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Appendix A

B A1 Semantic Chunking Example

Original
CAST PRVNI
OBECNA CAST HLAVA I
PREDMET UPRAVY A JEJI ZAKLADNI ZASADY Dil 1
Soukromé pravo § 1

(1) Ustanoveni pravniho fadu upravujici vzédjemna prava a povinnosti osob
vytvareji ve svém souhrnu soukromé pravo. Uplatnovani soukromého prava
je nezavislé na uplatnovani prava vetrejného.

(2) Nezakazuje-li to zdkon vyslovné, mohou si osoby ujednat préva a
povinnosti odchylné od zakona; zakdzana jsou ujednani porusujici dobré
mravy, vefejny poradek nebo pravo tykajici se postaveni osob, véetné prava
na ochranu osobnosti.
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Extracted Chunk 1

CAST PRVNI OBECNA CAST HLAVA I PREDMET UPRAVY A JEJI
ZAKLADNI ZASADY Dil 1 Soukromé pravo § 1 (1) Ustanoveni pravniho
radu upravujici vzajemnd prava a povinnosti osob vytvareji ve svém souhrnu
soukromé pravo. Uplatnovani soukromého prava je nezavislé na uplatnovani
prava verejného.

Extracted Chunk 2

CAST PRVNI OBECNA CAST HLAVA I PREDMET UPRAVY A JEJI
ZAKLADNI ZASADY Dil 1 Soukromé prévo § 1 (2) Nezakazuje-li to zédkon
vyslovné, mohou si osoby ujednat prava a povinnosti odchylné od zdkona;
zakazana jsou ujedndni porusujici dobré mravy, verejny poradek nebo pravo
tykajici se postaveni osob, véetné prava na ochranu osobnosti. This way if
chunks 1 and 2 would be processed separately, the important information
about chunk 2 belonging to CAST PRVNI etc is not lost.

. A.2 Term Data Class

class Term(BaseModel):
uri: HttpUrl
label: Label
definition: Optional[Definition] = None
subTerms: Optional[List[SubTerm]] = None
glossary: Optional [HttpUrl] = None
vocabulary: Optional [HttpUrl] = None
state: Optional [HttpUrl] = None
types: Optional[List[str]] = None
parentTerms: Optional[List[ParentTerm]] = None
altLabels: Optional[List[Label]] = None
hiddenLabels: Optional[List[Label]] = None
description: Optional[Description] = None
sources: Optional[List[str]] | Optionall[str] = None
notations: Optional[List[str]] = None
examples: Optional[List[str]] = None
exactMatchTerms: Optional[List[Dict[str, Any ]]] = None
related: Optional[List[HttpUrl]] = None
relatedMatch: Optional[List[HttpUrl]] = None
properties: Optional[Dict] = None
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A.3. Definition Candidate Examples

This example shows the data structure from the TermIT system that is
currently used to store all properties. For our work we only need a subset of
the properties mentioned, but for the sake of linking and data exchange we
try to use existing conventions.

B A.3 Definition Candidate Examples

B Input Chunk

CAST TRETI - UZEMNI PLANOVANT

HLAVA 11T - NASTROJE UZEMNIHO PLANOVANT

Dil 3 - Uzemné planovaci dokumentace

Oddil 3

Uzemni plan

§43

(2) V tizemnim planu lze vymezit plochu nebo koridor, v némz je rozhodovani
o zménach v izemi podminéno smlouvou s vlastniky pozemku a staveb, které
budou dotéeny navrhovanym zdmeérem, jejimz obsahem musi byt souhlas s
timto zdmérem a souhlas s rozdélenim nakladi a prospéchii spojenych s jeho
realizaci (dale jen ,,dohoda o parcelaci“), zpracovinim tzemni studie nebo
vydanim regulac¢niho planu..."

[ | Input Term

dohoda o parcelaci

B Extracted Definition Candidate
Smlouva s vlastniky pozemkt a staveb, které budou dotéeny navrhovanym

zamérem, jejimz obsahem musi byt souhlas s timto zamérem a souhlas s
rozdélenim nakladi a prospécht spojenych s jeho realizaci.

| ! Example Output of Atomic Ontology
Extraction

@prefix : <http://www.example.com/ontology/czech-legal#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
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@prefix owl: <http://www.w3.org/2002/07/owl#>
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

:StavebniZamér a owl:Class ;
rdfs:label "stavebni zamér"Qcs ;
rdfs:comment "Stavebnim zamérem se rozumi podle okolnosti stavba,
"zména dokoncené stavby, terénni dprava, zarizeni nebo ddrZba."Qcs

:Stavba a owl:Class ;
rdfs:label "stavba'"@cs ;
rdfs:subClass0f :StavebniZamér .

:ZménaDokoncenéStavby a owl:Class ;
rdfs:label "zména dokonlené stavby'"Qcs ;
rdfs:subClass0f :StavebniZamér .

:TerénniUprava a owl:Class ;
rdfs:label "terénni dprava'"Qcs ;
rdfs:subClass0Of :StavebniZamér .

:Zarizeni a owl:Class ;
rdfs:label "zarizeni"Qcs ;
rdfs:subClass0f :StavebniZamér .

:0drzba a owl:Class ;

rdfs:label "dadrzba"@cs ;
rdfs:subClass0f :StavebniZamér .
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