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Abstract

In recent years, the world of non-coding
RNAs has expanded to reveal the signifi-
cance of a previously little explored class
of molecules — circular RNAs (circRNAs).
They show potential as biomarkers in dis-
ease diagnosis, for example for diabetes,
Alzheimer’s disease and numerous types of
cancer, since they exhibit different expres-
sion levels when comparing transcriptome
of diseased and healthy subjects, have
long half-life and are conserved. How-
ever, determining associations between
circRNAs and diseases experimentally is
a laborious task. For that reason, the
computational approach stands out as a
suitable alternative.

This work formulates the problem of a
circRNA and disease association predic-
tion as a link prediction task on a graph
with nodes representing circRNAs, dis-
eases, miRNAs and genes, with the edges
illustrating associations and interactions
between these entities. A graph neural
network model based on a GraphSAGE
representation learning framework was
designed and implemented to solve the
task. The thesis concludes that graph
neural networks are, in comparison with
the other methods, a suitable approach for
prediction of associations between circular
RNAs and diseases.
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Abstrakt

V poslednich letech se svét nekédujicich
RNA rozsitil a odhalil vyznam dfive méalo
prozkoumané t¥idy molekul — cirkularnich
RNA (circRNA). Ukazuji potencial jako
biomarkery v diagnostice onemocnéni, na-
priklad pro diabetes, Alzheimerovu cho-
robu a fadu typu rakoviny, protoze vy-
kazuji ruzné drovné exprese pri srovnani
transkriptomu nemocnych a zdravych sub-
jekt, maji dlouhy polcas rozpadu a jsou
konzervované. Experimentdlni stanoveni
asociaci mezi circRNA a nemocemi je vsak
pracny tkol. Z tohoto duvodu se vypo-
¢etni pristup jevi jako vhodné alternativa.

Tato prace formuluje problém predikce
circRNA a asociace nemoci jako tlohu
predikce spojeni na grafu s uzly reprezen-
tujicimi cirkularni RNA, nemoci, miRNA
a geny, pricemz hranny ilustruji asoci-
ace a interakce mezi témito entitami. Pro
feSeni tlohy byl navrzen a implemento-
van grafovy model neuronové sité zalo-
Zeny na reprezenta¢nim vyukovém rameci
GraphSAGE. Préace dochazi k zavéru, ze
grafové neuronové sité jsou ve srovnani s
ostatnimi metodami vhodnym pristupem
pro predikci asociaci mezi cirkuldrnimi
RNA a nemocemi.

Klicova slova: grafové neuronové site,
cirkularni RNA, GraphSAGE

Pteklad nazvu: Aplikace grafovych
neuronovych siti na predikci asociaci
circRNA-nemoci
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Chapter 1

Introduction to circRNAs

Francis Crick’s assertion in 1957 that the primary function of genetic material
is to orchestrate protein synthesis through a two-step process: DNA to RNA,
then RNA to proteins [12], marked a transformative era in molecular biology.
This period was characterized by groundbreaking discoveries of various RNA
molecules intricately involved in the synthesis of proteins, including ribosomal
RNA (rRNA), messenger RNA (mRNA), and transfer RNA (tRNA). The
prevailing understanding at the time was that RNAs were linear molecules
terminated with a 5 and 3’ end. This notion shaped the trajectory of
biomolecular research and experiment design and inadvertently obscured an
entire class of RNA molecules: circular RNAs.

Even with the sporadic and serendipitous discoveries of circular RNAs,
they remained disregarded as nonspecific byproducts of the normal splicing
process [13] with no biological relevance for decades. The breakthrough finally
came in 2012 and 2013 with a series of published papers with telltale names:
“Circular RNAs Are the Predominant Transcript Isoform from Hundreds of
Human Genes in Diverse Cell Types” by Salzman et al. [31], “Circular RNAs
are abundant, conserved, and associated with ALU repeats” by Jeck et al. [59],
“Circular RNAs are a large class of animal RNAs with regulatory potency”
by Memczak et al.[52]. These studies identified thousands of circular RNAs,
hypothesized about their regulatory function and described their various char-
acteristics, such as their stability, relative abundance in comparison with their
linear counterparts, and last but not least, conservation across species. These
revelations were made possible mainly thanks to the high-throughput RNA
sequencing and development of circRNA-specific bioinformatics algorithms.

. 1.1 Motivation

The interest in the circRNAs spurred by the findings led to the discovery
of their biological role. The research showed that through interaction with
DNA, RNA and proteins, circRNAs act as regulators of gene expression,
more specifically, by affecting transcription and splicing in nucleus [47] as well
as translation and signaling pathways in the cytoplasm. Overall, circRNAs
play a role in a large variety of physiological and pathological biological
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1. Introduction to circRNAs

processes from cell proliferation and death through cell metabolism to immune
response [48] [8I]. Importantly, numerous studies reported that abnormal
expression and mutation of circRNAs plays a role in development of various
diseases: atherosclerosis [9], cancer [2, [3], neurodegenerative diseases such as
Alzheimer’s disease and Parkinson’s disease [86] and many others. It can be
expected that knowing the involvement of a circRNA in disease development,
progression and resolvement would help us understand the diseases themselves
better. Moreover, this relationship makes circRNAs promising candidates for
disease biomarkers and therapeutic targets.

The progress in the circRNA research comes to fruition, as thousands
of circRNAs have been discovered. However, it is no longer feasible to
experimentally search for possible associations between circRNAs and diseases,
since the experimental methods are laborious and expensive. One of the
very effective alternatives for discovering new associations lies in employing
computational approaches to look for possible candidate associations, which
can be later validated through laboratory experiments. This work will focus
on one of the newer approaches, i.e. graph neural networks.

In the rest of this chapter, various characteristics and functions of circRNAs
contributing to the understanding of the circRNA-disease relationship will be
outlined.

. W) Types of circRNAs

- The term circular RNAs encompasses several types of them, which vastly
differ in their roles, host organism domains, biogenesis and composition. The
following circRNA classification is adopted from the review on circular RNAs
by Lasda et al. [40]:

1. Circular RNA genomes

Genomes of viroids, which are infectious plant pathogens, and hepatitis
delta virus have a form of a circular single-stranded RNA. The loop
structure allows for rolling circle RNA replication, in which multiple
genomic copies are produced from a single initiation event.

2. Circular RNA introns Introns are noncoding sections of an RNA tran-
script, as opposed to exons, which are the sections of RNA transcripts
translated into a protein. After transcription, introns are generally
spliced out of the transcripts in the form of lariats (circles with a tail).

There are multiple classes of circular introns formed by various processes,
namely group I introns, group II introns, circular intronic RNAs and
excised tRNA introns.

Both group I introns and Group II introns are self-splicing ribozymes,
meaning that they catalyze their own excision from RNA precursors.
Furthermore, some members from either of the groups are genetic mobility
elements: while some introns from group I encode homing endonuclease



1.2. Types of circRNAs

that catalyzes intron mobility even between organisms, an intron from
group II can be incorporated back into DNA or RNA by reverse splicing
into a new location. Lastly, circular RNA introns can be found in bacteria,
some archaea, some viruses and some eukaryotes.

Circular intronic RNAs (ciRNAs) are produced by eukaryotic splicing,
which is catalyzed by the spliceosome. For the most part, the lariat
intron created during the splicing is degraded shortly thereafter. However,
certain consensus RNA motifs near the 5’ splice site and branchpoint can
promote conformations that limit debranching. This results in a stable
c¢iRNA molecule composed of only the loop part of the lariat, as the tail
is broken down [87]. Such ciRNAs tend to accumulate in the nucleus and
influence the expression of their parent genes as well as regulate RNA
Pol II transcription [87].

Excised tRNA introns The final intron tRNA processing byproduct in
some archaea.

3. Circular RNA processing intermediate The intermediates in rRNA and
tRNA processing reaction in archaea also take on circular form. The
circularization provides means for rearrangement of the RNA sequence
order by circularization of a linear RNA followed by relinearization at a
different position.

4. Circular noncoding RNA Non-coding RNAs found in archaea [66, [15].

5. Circular RNA spliced exons produced by backsplicing Backsplicing is a
non-canonical splicing process, in which in a downstream splice donor of
a pre-mRNA is joined to an upstream splice acceptor, creating a closed
loop. The products of backsplicing can be seen on the image below.

pre-mRNA

5 il intron1 5 intron 2 2 intron3 n 5

noncanonical splicing canonical splicing

circular RNA types mRNA

@ <> - | | N o
@ intron 2

Figure 1.1: circRNA splicing, taken from [I8]

Although there is a wide range of RNA molecules with a circular structure,
as illustrated by the exhaustive enumeration above, the term circRNAs is
generally used to only refer to the spliced exons of coding genes produced
by backsplicing, as described in the 5" point [4]. The reason for this is that
they hold the the most relevance and significance for the human biology and
are the most researched as well. This work will also rely on this convention
unless specified otherwise.



1. Introduction to circRNAs

. 1.3 Characteristics of circRNAs

Many of the characteristics and behaviour patterns of circRNAs derive from
their structure, localization within the cell, biogenesis or length.

Thanks to their circular structure and the ensuing lack of the usual terminal
structures: the 5’ cap and the 3’ polyadenylated tail, circRNAs are intrinsically
resistant to RNA decay by exonucleases, which are enzymes that cleave
nucleotides one by one from either the 3’ or the 5’ end of a polynucleotide
chain. Presumably, this resistance makes circRNAs stable, which is also
confirmed by the experiment by Enuka et al. [19], in which they examined
half-lives of 60 circRNAs and their linear counterparts in mammary cells.
The experiment revealed that the median half-life of investigated circRNAs is
at least 2.5 times longer than the median half-life of their linear counterparts.

CircRNA exhibit tissue specificities and disease specificities. An important
characteristic of circRNAs is tissue specificity. Rybak-Wolf et al. analyzed
29 types or stages of neural cells and tissues [57]. Their study revealed
that different brain compartments produce different sets of highly expressed
circRNAs and that neuronal differentiation is associated with higher circRNA
expression.

CircRNA abundance. The tissue specificity impacts also the expression
levels of circRNAs. CircRNAs are, for the most part, said to be expressed
at levels that are 2-10% of those of their linear counterparts [58, [64], and
that they can in some cases surpass the quantities of their linear counterparts
even 10-fold [64]. However, such generalization does little for illustration of
how much do the expression levels of different circRNAs actually vary. For
instance, study [46] states that the ratio of circRNA level to linear RNA level
in exosomes was 6-fold higher than that in cells. Study [53] concludes that
the ratio of circRNAs with at least as high expression as that of their linear
isoforms is 33.66% for blood samples, compared to 18.45% in cerebellum
samples and only 9.71% in liver samples.

Conservation. Studies show that mammalian circRNAs tend to be conserved
across species. Studying retinal tissues, Chen et al. found that highly
expressed mouse circRNAs are more likely to be conserved between mice and
humans [§]. Furthermore, Xia et al. found multitude of circRNAs conserved
between mouse and fetal human brain, and in small numbers, some were
conserved between adult human heart, liver, skin and lung [78].

Location. While intron-containing circRNAs stay in the nucleus, most
circRNAs are after their biogenesis transported from the nucleus to the
cytoplasm. CircRNAs can be also found in blood [53], saliva [49], plasma [90]
or exosomes [46].

Length. The length of circRNAs ranges from approximately 100 to 4000
base pairs long [63]. In the study of circRNA in exosomes, the median length

4



1.4. Biological Roles of circRNAs

for the 1215 identified circRNAs was 350 nt. Usually, circRNAs contain 1-5
exons [52].

B4 Biological Roles of circRNAs

The main function of circRNAs is regulation of post-transcriptional activity
by acting as microRNA sponges: microRNAs (miRNAs) bind to the comple-
mentary miRNA binding sites on circRNAs, what prevents them from binding
to their intended mRNA targets. In this manner, circRNAs can regulate
gene expression. This function is supported by the fact that circular RNAs
are depleted of polymorphisms at these microRNA binding sites [67]. The
mechanism can be illustrated by the description of the circZNF566/miR-4738-
3p/TDO2 relationship by the Li et al. [45]: overexpression of the enzyme
TDO2 promotes the mobility, migration, invasion, and proliferation of hepato-
cellular carcinoma cells, miRNA miR-4738-3p acts as a tumor suppressor by
directly suppressing TDO2 expression through binding to the 3’ untranslated
region of TDO2 mRNA, and circZNF566 acts as a miR-4738-3p sponge,
attenuating the inhibitory effect of the miRNAs on the expression of TDO2
through this competitive binding.

Furthermore, the circRNAs were shown to also bind RNA-binding proteins,
cell cycle regulatory proteins, and participate in the protein complex assembly,
what enables them to regulate gene splicing, transcription, translation, or
epigenetic regulation. Exceptionally, they even encode small peptides: 46
circRNAs from 37 genes were found to have their corresponding proteins
expressed according to mass spectrometry [7].

The functions of circRNAs can be well illustrated by the following figure,
which depicts roles of circRNAs relating to the pancreatic islet 3 cells:

CircHIPK3 CDR1as CircTulp4 CircGlis3 Ci-Ins2

. O : O .

ﬂsponge ﬂsponge ﬂsponge HRBF‘ HRBP

- e Tl

miR-124-3p ®
miR-29-3p
miR-338-3p
miR-30

& @%%%

Islet cells proliferation Insulin secretion Islet cells apoptosis.

miR-7 miR-7222-3p GMEB1 TDP43

—— Positive regulaton —— Negative regulation

Figure 1.2: The roles and effects of circRNAs on pancreatic islet 5 cells, taken

from [83]

B 1.5 CircRNA Applications

CircRNAs show great potential as disease biomarkers and novel therapeutic
targets as they have tissue-specific expression, long half-life, are conserved,
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1. Introduction to circRNAs

come in high abundances, are released from cells to the circulatory system,
and are associated with all types of diseases: cardiovascular, neurological,
metabolic, or immune diseases [65].

For example, a study [34] investigated the relationship between circRNA
CDRIlas and bile duct cancer by comparing the circRNA expression in 54
paired tumor and adjacent normal tissues of cholangiocarcinoma patients.
The data showed that the overexpression of Cdrlas is associated with the
advanced cancer stage, lymph node invasion, and postoperative recurrence
and lower survival chance. They conclude that cRNA Cdrlas was significantly
upregulated in tumor tissues and suggest it as an independent prognostic
biomarker for patients with bile duct cancer.

CDR1as is not specific only to the bile duct cancer, as it was found to
serve as a mediator in alteration of the tumor microenvironment through its
regulatory role of the TGF-/ signaling pathway and ECM-receptor interaction
[91]. Studies suggest it as a biomarker also for colorectal cancer [73], laryngeal
squamous cell carcinoma [85] or triple-negative breast cancer [61].

The diagnostic landscape of certain diseases poses formidable challenges
even today, in some cases falling short in providing specific diagnostic tests
for a disease. For instance, diagnosing chronic fatigue syndrome is based
on the symptoms and on ruling out other conditions that could be causing
those symptoms. In this context, the possibility of identification of circRNAs
from peripheral blood of chronic fatigue syndrome patients, as shown in [I1],
proves to be extremely advantageous, since it can finally give us means for
more precise diagnostics. Likewise, circRNAs can be used for diagnosing
endometriosis, a chronic gynaecological condition also called ‘missed disease’
due to its unclear aetiology and multitude of shared symptoms with other
diagnoses [30]. A study [79] found a candidate circ_ 0002198 with the AUC
for distinguishing ovarian endometriosis at 0.846.

B 16 Chapter Summary

To summarize, the circRNAs are naturally occurring ribonucleic acids in a
form of a covalently closed loop. Their dysregulation plays a role in multitude
of diseases, mostly through the mechanism of miRNA sponging, when by
binding to the circRNAs are the miRNAs prevented from binding to their
intended mRNA targets.



Chapter 2
Graph Neural Networks Theory

Data encountered in real-world scenarios frequently exhibit a graph-like
structure. To investigate graphs and capture the information encoded in the
graph structure, various graph analysis techniques have been developed. They
can be used to address problems such as predicting potential interactions
between proteins, new drug discovery or analysis of biological pathways.
Graph analysis is closely connected to the concept of graph representation
learning, whose goal is to accurately learn to represent graph nodes, edges
or subgraphs by low-dimensional vectors. The specific problems in graph
analysis fall usually under one of the four tasks defined on graphs: node
classification, link prediction, graph regression, node clustering, or network
classification, with graph neural networks being nowadays a popular approach
to solving such tasks. Some of the current popular GNN architectures are
recurrent graph neural networks, convolutional graph neural networks, graph
autoencoders, and spatial-temporal graph neural networks.

To effective handle and learn from graph-structured data, graph neural net-
works (GNNs) have emerged as a very successful subgroup of machine learning
models. They were motivated by convolutional neural networks (CNNs) and
graph embedding methods, both of which had numerous limitations regarding
their application in graphs. CNNs share many characteristics imperative also
for graph analysis methods, namely, they do a good job at extracting local
spatial features, use shared weights and multiple layers. However, they are
appropriate only for special instances of graphs, such as images, which can
be thought of as fixed-size grid graphs, and are not generalizable to more
complex graphs. The disadvantage of graph embedding methods lay in their
inability to generalize to unseen graphs and absence of parameter sharing
between nodes, meaning that number of parameters increases proportionally
to the number of nodes.

This chapter explores the characteristics and essential concepts of graph
neural networks, with focus on their application and advancements related to
link prediction tasks due to the nature of this work.

inductive bias. Inductive bias of a learning algorithm is the set of assump-
tions that can guide the model to a better predictive performance, fewer
parameters and better generalization [60]. Regarding the graph analysis, the

7



2. Graph Neural Networks Theory

characteristics that can be leveraged are the relationships across all graph
components, t.i. edges, nodes, global, preservation of the explicit relationships
- the edges themselves or preservation of graph symmetries (permutation
invariance). Specifically, the graph symmetry should be reflected in the design
of the utilized transformation, so that the order of operations on nodes or
edges would not matter. Therefore, a good graph neural network model has
a relational inductive bias.

. 2.1 Link Prediction

Link Prediction is a task in network analysis, the goal of which is to predict
missing or unobserved links between two nodes in the network given structural
and feature information. Given a graph G(V, E), where V represents the set
of nodes as entities and F represents the set of edges as relationships between
the entities, the predictions are made based on integration of information from
the network structure, node attributes and network’s existing relationships.

Arrar et al. classify link prediction methods in their comprehensive survey
[1] into four categories, namely similarity-based methods, dimensionality
reduction-based methods, machine learning technique-based methods and
other methods. Since this work explores the application of graph neural net-
works for the circRNA-disease association prediction, this work will examine
only GNNs, which are a subcategory of machine learning technique-based
methods.

B 22 Graph Neural Networks

Graph Neural Networks (GNNs) are a class of deep learning methods specif-
ically designed for studying graph-structured data. Sanchez-Lengeling, et
al. [60] defines a GNN as an optimizable transformation on all attributes
of the graph (nodes, edges, global-context) that preserves graph symmetries
(permutation invariances).

An important concept in graph theory is node embedding, which is a
projection of nodes from the original network to a low-dimensional embedding
space in such a way that nodes that are similar in the original network share
embeddings that are proximal in the embedding space.

One key desideratum in the graph neural network design is permutation
invariance with respect to the node ordering, meaning that the output of the
model remains the same when changing the order in which nodes and edges
are processed. This requirement reflects the characteristic of graphs, that, in
general, nodes have no default ordering, and therefore the order of operations
on nodes or edges should not matter. Furthermore, given that graphs are
very flexible structures, graph neural networks also have to address the issue
that nodes have a varying number of neighbours and the graphs themselves
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can be of vastly different sizes. These challenges are addressed by the concept
of neural message passing.

Message Passing Neural Network Framework. Neural Message Passing
provides a framework for spatial graph convolution utilized for modelling
the complex relationships and dependencies in graph-structured data by
propagating information across the graph through a series of message passing
iterations. At each iteration, information is aggregated from neighboring
nodes and combined with the node’s own features to update its representation.
The message passing iteration consists of 3 steps:

® gathering of all the neighboring node embeddings,

B aggregation of all messages from neighboring nodes via an aggregate
function,

® update of the node embedding according to the information aggregated
from the node’s neighbourhood

It can be formularized as follows:

hgﬁl) _ ,y(k) <hq(Lk)’ P ¢(k) (hl(f), hgk), evu)> ,
vEN(U)

where h&k) represents a hidden embedding of a node u, the node represen-
tation is updated based on information gathered from its neighborhood A (u).
) and ¢*) denote arbitrary differentiable functions such as multilayer
perceptrons, with fy(k) representing the update function. @ represents the
aggregation function that is differentiable and permutation invariant, such as
sum, mean or max. e,, denotes an optional feature vector of the edge from
node v to u.

Node embeddings at iteration k=0 are initialized to the input features X,
for all nodes u. After K iterations of message passing, each node’s updated
representation contains information of all neighbors up to K-distance, which
can be thought of as a subgraph representation. We denote these learned
embeddings z, for each node u as:

zu=hE) vuev.

By this iterative message passing from nodes to their neighbours, GNNs
can encode the local neighborhood information of each node into its learned
representation. As a result, the representation of each node will be covering
both the structural information of its neighbourhood and the features of the
node. It’s important to note that the usage of the appropriate aggregation
function guarantees permutation invariance.
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A Basic Graph Neural Network. Utilization of the GNN framework can
be illustrated by the example of a basic graph neural network as defined in
[27] by Hamilton, which itself is a simplification of a GNN model proposed
by Scarselli et al.:

= o (W W, & ).
vEN (u)

k- . .
where WLE,B Iz nge)l oh € RA® xd*Y) represent trainable parameter matrices,

b € R a bias term. The parameters can either shared across the iterations or
trained separately. o denotes an element-wise non-linearity, e.g. a hyperbolic
tangent function (tanh) or rectified linear unit (ReLU) activation function.
The message passing in this basic GNN resembles a standard multi-layer
perceptron (MLP) in the sense that they both rely on linear operations
followed by a single element-wise non-linearity.

Alternatively to the node perspective, GNNs can be also defined by graph-
level equations:

H'=o (AH"YWI )+ HIZOW)

where H' € RIVI*4 denotes the matrix of node embeddings in the GNN at
layer t, A is the graph adjacency matrix. The graph-level definition shows
that a GNN can be implemented using just a few sparse matrix operations.
Regarding the implementation, it is important to also note that it is a common
practise to add self-loops to the input graph. As a result, the aggregation
function combines the messages from the neighbouring node as well as from
the node itself, simplifying the operation, which in turn leads to a decreased
chance of overfitting, but also decreased GNN expressivity due to the inability
to differentiate between the information coming from the node’s neighbours
and the node itself [27].

B 2.2.1 Graph Neural Network Models/Architectures

Graph Convolutional Network. Graph Convolutional Network GCNs utilize
the Kipf normalized aggregation and self-loops. The message passing function
in the GCN model is defined as:

h) =g (W® 3 hi |

The normalization of the features of neighbouring nodes is necessary due
to the fact that nodes can have large differences in the number of neighbours
which could lead to high differences between the feature representations of
nodes, which can in turn cause numerical instabilities and difficulties for
optimization. Normalization by the degree of the nodes reflects the idea that
high-degree nodes are less useful for inferring information as they interact
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with too many other nodes, while the low-degree nodes are assumed to have
more meaningful interactions for extracting patterns.
Alternatively, the GCN can be described on the graph level as follows [37]:

' =g (DTIAD  HOWO)

where
A =A+IN
Duu = ZAU’U

A denotes the adjacency matrix, which is modified by the addition of a
self-connections for each node, resulting in the A matrix. D is the diagonal
node degree matrix of A, w® represents a layer-specific trainable weight
matrix, H ) is a matrix holding feature representations from the ' layer,
H© is set to the input feature vector X, o(-) denotes an activation function,
such as the ReLU(-). This layer-wise propagation rule for neural network
models, presented by Kipf and Welling in 2016, was derived from a first-order
approximation of a localized filter of a spectral graph convolution.

Graph Attention Network. Graph Attention Networks (GATS) are a popular
variant of GNNs that leverage attention mechanisms in the aggregation step
for better feature learning on graphs. The key idea is to assign an attention
weight to each neighbor, which weighs the neighbor’s importance in the
aggregation of information from neighbouring nodes. The first GAT model,
as presented in 2018 by Velickovi¢ et al.[68] defines the attention coefficients
as follows:
ewy = a(Why, Wh,),

where e, the attention coefficient expressing the importance of the features
of node v to the node wu, is computed by a self-attention mechanism a :
RF" x R — R. The coefficients are normalized by the softmax function
across all choices of node v, so that they can be used for comparisons across
different nodes:

exp(euy)
2okeN (u) eTP(euk)

Qyp = Softmazxy(ey,) =

In practice, the paper uses a single-layer feedforward neural network as their
attention mechanism a parametrized by a weight vector a € R2F | treated
with leakyReLU nonlinearity:

erp (leakyReLU(aT[Whu||Whv])>
= oo ep (eakyReLU (@ [Why [Whi]))

Qo

where || denotes the concatenation operation. The aggregation itself is
computed as a linear combination of features of neighbouring nodes and their
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corresponding normalized attention coefficients:

hgk) =0 ( Z auUWhgk_l)) .

veN (u)

To improve the model’s performance and stabilize the learning process
of self-attention, the attention mechanism can be extended to multi-head
attention, which employs K independent attention mechanisms to calculate the
aggregation. These K transformations are then concatenated or averaged to
obtain a new node representation. To enumerate some of the graph attention
networks properties, they are computationally efficient as the computation of
attention coeflicients can be parallelised, localised, storage efficient, have a
fixed number of parameters and can implicitly specify neighbour importances.

Graph Sample and Aggregate (GraphSAGE). GraphSAGE (SAmple and
aggreGatE) [28] is a general inductive framework for node embedding based
on learning how to aggregate feature information from a node’s local neigh-
borhood. The key idea of the approach is that instead of training individual
embeddings for each node, a function that generates embeddings by sampling
and aggregating features from a node’s local neighborhood is trained. Due to
this design, GraphSAGE can predict embeddings of unseen nodes without
needing re-training. Hamilton et al. [28] define the message passing in the
GraphSAGE framework as follows:

mi\),) = AGGREGATE ({h&’“‘”, Vv e N (U)}>
B k—1 (k)
) =& (W - CONCAT (R, mN(w)) ’

where firstly, the messages from neighbouring nodes are aggregated and
afterwards concatenated with the node’s embedding, what keeps the two
information separate rather than mixing them up. The paper examined
three candidate aggregator functions, namely mean aggregator, which is a
rough, linear approximation of a localized spectral convolution [28]; LSTM
aggregator, which has a larger expressive capacity, but since LSTMs are
not inherently symmetric, the framework applies the LSTMs to a random
permutation of the node’s neighbours in order to emulate the permutation
invariance; and lastly the pooling aggregator, which uses a fully-connected
neural network to firstly make a transformation of the embeddings of the
neighbouring nodes and then applies an elementwise max-pooling operation.

Graph Autoencoder. Variational Graph Autoencoder (VGAE) [35] The
main idea of a variational graph autoencoder [36] is that it embeds the input
X to a distribution rather than an embedding vector. From this distribution,
a random sample z can be sampled.

The encoder (inference model) of VGAE consists of two GCN layers. The
inputs consists of an adjacency matrix A and a feature matrix X. The first
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GCN layer generates a lower-dimensional feature matrix. The second GCN
layer generates i and logo?, where z can be calculated as z = ju+ o ¢, where
€ N(0,1). The decoder (generative model) uses an inner product between
latent variables . The decoder output is a reconstructed adjacency matrix
A = 0(22"), where ¢ is a logistic sigmoid function.

Inference Generative

Origin adjacency Layer Layer
matrix
Cross Generative
WM entropy  adjacency matrix
g <
Identity
‘matrix

/ (NxN)
Latent

representa
tion

(NxN)

Figure 2.1: Architecture of a variational graph autoencoder, taken from [32]

B 23 Graph Neural Networks Overview

Graph neural networks perform well at capturing complex patterns encoded
in the graph structure and can therefore leverage both the structural and
functional information of the samples. However, they face computational chal-
lenges when applied to large-scale networks, can be constrained by the limited
memory resources, and may exhibit biases when dealing with imbalanced
node or edge distributions.
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Chapter 3
Related Work

This chapter aims to provide an overview of the computational methods
employed in the deciphering the complex relationship between circRNAs and
various diseases.

While the principles of the methods wildly differ, many of them share
common characteristics, such as they work with heterogeneous graphs. Het-
erogeneous graphs can have nodes and edges of different types, what makes
them better suited for representation of real-world data. The methods also
often use same techniques for feature extraction and the data sources also do
not differ much. However, the approaches themselves are vastly different, and
can be classified into 3 larger groups: network propagation-based methods,
path-based methods, and machine learning methods.

B 3.1 Network propagation-based methods

Biological networks frequently serve as models for depicting relationships
among biological entities. To solve biological network problems, various
network propagation-based methods have been developed. The principle of
the methods is to iteratively diffuse input node data along edges so that
nodes accumulate also information about the structure of the network in their
neighbourhood. This category includes methods based on random walks and
label propagation.

Network propagation can be also viewed as a special case of graph convolu-
tions [69], which is a mathematical operation frequently employed in graph
neural networks.

BRWSP algorithm: Biased Random Walk. BRWSP algorithm [44] con-
structs a heterogeneous network H N by integrating known circRNA-disease
associations, circRNA coexpression similarity network, gene functional simi-
larity network, disease similarity network, circRNA-gene associations, and
gene-disease associations.

The algorithm uses a biased random walk to find paths in the network
between a certain circRNA and a disease. The strategy of selecting the next
node in the walk is controlled by the parameter ¢, by which we can either set
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a preference for selecting nodes within the same community or to exploring
in order to get a macro view of the neighbourhood. The strategy itself is
formalized as follows:

O(¢,v,x)xHN (v,z)

-\ 7
P(ckJrl =2xlep =v, 01 = t) = ZiENei(v) HN(v1)
0, otherwise,

x € Nei(v),x & path,

Ot v, 7) = q, x € Nei(v) and x € Nei(t),
o 1—gq, otherwise,

where P(cky11 = x|cy = v,cx_1 = t) represents the transition probability
of selecting node x as the next node in the biased random walk, with node
v being the currently visited node and node t being the last visited node.
Nei(v) and Nei(t) represent the neighbourhoods of nodes v and ¢, respectively.

The predicted association score for circRNA ¢(i) and disease d(j) is then
calculated as:

azxlen(path;)

len(path;)
score(c(1),d(j)) = > II  Welpath)
path;€all__paths e=1

where score(c(i),d(j)) represents the score for the circRNA-disease pair
association, all_paths = {pathy,paths, ..., path,} represents the searched
paths between circRNA ¢(i) and disease d(j), path; represents the ith searched
path, We(path;) represents the weight of the eth edge in the path;, and lastly,
the parameter « represents a decay factor. The function is designed in a way
that it assigns higher scores to circRNA-disease pairs connected by numerous
paths of shorter length consisting of edges of higher weights.

RWRKNN algorithm: Random Walk with Restart and k-Nearest Neighbor.
Inspired by the application of the random walk with restart (RWR) and k-
nearest-neighbor (kNN) algorithm for identification of drug-target interactions
[41], Xiujuan Lei and Chen Bian applied a similar approach for identification
of novel circRNA-disease associations [42].

The method consists of four steps: contruction of association and similarity
matrices for circRNAs and diseases separately, RWR for each circRNA and
disease, feature weighting and kNN model training.

The random walk with restart performed on association matrices estimates
an affinity score between a circRNA (disease) seed node and all other circRNA
(disease) nodes. The algorithm starts in the seed node and in each iteration,
a random walker either explores a neighbour node with propability 1 — ¢ or
restarts from the seed node with probability c:

p=(1—-c)Wp+cq,

where W is a normalized adjacency matrix, q is the starting vector, and
p represents the steady-state probabilities reached after some iterations.
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Generally, nodes interconnected with the seed node obtain higher scores than
nodes that are further away in the network. The point of restarting is to
prevent the local accumulation of resources in distant subnetworks. The
affinity scores, expressing network topology information, are used to weight
circRNA and disease features.

The kNN model is trained with positive and negative samples of the
weighted features of circRNA-disease pairs and uses Minkowski distance
metric. The algorithm predicts the associations of the sample by looking at
the classes of the k nearest neighbors.

. 3.2 Path-based methods

Path-based methods are concerned with the characteristics of the possible
paths between a certain circRNA-disease pair in a constructed graph. More
specifically, they calculate the association score between the circRNA and the
disease from number of paths between the nodes and the path lengths. [21].

KATZHCDA algorithm. KATZHCDA method [21] construct a heteroge-

neous network by integrating known circRNA-disease associations, circRNA

expression profile similarity, disease phenotype similarity and Gaussian inter-

action profile kernel similarity. The adjacency matrix for the network has a
form

" SC A

A°= [AT SD] ’

where SC' is the circRNA similarity network, SD is the disease similarity
network, and A represents the adjacency matrix of known circRNA-disease
associations.

In this network, the score for a circRNA-disease pair is calculated as
integration of the all the walks of different lengths between the circRNA and
disease nodes:

k
S(e(i), d(§)) = >+ A*(i, )
=1

The parameter « is used to account for the decrease of the significance of
longer walks.

B 3.3 Machine learning methods

The category of machine learning-based approaches employed in predicting
novel circRNA-disease associations is diverse, encompassing methods such
as DWNN-RLS [80], which uses regularized least squares of Kronecker prod-
uct kernel, RWLR [I7] method makes predictions through binary logistic
regression model, and GBDTCDA method [43], which uses gradient boosted
decision trees. This category also contains two larger groups of methods:
matrix factorization-based and deep learning-based methods.

17



3. Related Work

B 3.3.1 Matrix factorization-based methods

Matrix factorization-based methods can be used for solving a task of filling
in the missing values of a partially observed matrix. The principle of them
is to find two low-dimensional matrices such that their factorization will
approximate the original, partially observed, input matrix.

iCircDA-MF algorithm. iCircDA-MF method [72] begins with the construc-
tion of the similarity matrix of diseases from disease semantic information and
known circRNA-disease associations, and construction of the similarity matrix
of circRNAs from known associations of types circRNA-gene, gene-disease
and circRNA-disease. In order to take into account not only the known
circRNA-disease associations, our knowledge of which is still limited, but also
consider the likely associations, an alternative circRNA-disease association
adjacency matrix is constructed based on the circRNA and disease similarity
matrices. This step is based on the assumption that similar circRNAs will
be associated with similar diseases. The expanded circRNA-disease associ-
ation adjacency matrix A’ combines interaction profiles for circRNAs and
diseases, where the interaction profiles of circRNAs (diseases) are calculated
as a normalized weighted sum of the interaction profiles of the k£ most similar
circRNAs (diseases) in the original association matrix.

iCircDA-MF algorithm performs the basic non-negative matrix factorization
to predict the non-negative association scores between circRNA-disease pairs.
Specifically, the expanded circRNA-disease association adjacency matrix A’
is decomposed into two low-dimension matrices via optimizing the following
objective function:

mingpllA"—CDT|%2 st C>0,D >0,

where C' is a latent feature matrix of circRNAs, D is a latent feature
matrix of diseases.

Furthermore, the algorithm constraints the latent feature spaces using two
graph regularization terms and employs Frobenius norm regularization term
to avoid overfitting and to enforce the smoothness of target space. The full
objective function of the algorithm is formulated as follows:

minc.p |A — CDT|% + o|CDT|% + B(Tr(CTGCC) + Tr(DTGP D))
s.t. C>0,D >0,

where « and (8 are regularization coefficients. To solve for the low-dimension
latent feature matrices C' and D, Lagrange multipliers and Kuhn—Tucker
conditions are utilized. The predicted circRNA-disease association scores are
then calculated as:

A" =cCcDT
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Bl 3.3.2 Deep learning-based methods

In recent years, deep learning methods, an important subgroup of machine
learning, have emerged as powerful tools for discovering hidden patterns
and associations in numerous areas, including the computational biology.
This category is composed of models and techniques such as convolutional
neural networks (CNN), recurrent neural networks (RNN), or DeepWalk.
The methods based on deep leaning category can be further divided into
sub-categories, such as methods based on neural networks, methods based on
graph learning and methods based on Markov graphs.

CRPGCN. In the IGNSCDA [3§] algorithm from 2022, a graph convolutional
network is designed to obtain the feature vectors of circRNAs and diseases,
and based on them the multi-layer perceptron predicts circRNA-disease
associations.

CRPGCN algorithm. The CRPGCN method [51] from 2021 uses a RWR
algorithm to calculate the similarity between circRNAs and the similarity
between diseases, PCA method is employed for dimensionality reduction
and extracting features, and GCN algorithm is used for feature learning and
calculating the final similarity scores between circRNAs and diseases.

THGNCDA algorithm. The THGNCDA algorithm [26] from 2023 constructs
a triple heterogeneous graph network with nodes representing three different
entities: circRNAs, diseases and miRNAs. The graph network integrates data
from multiple sources, such as known circRNA-disease associations, circRNA-
miRNA interactions, disease-miRNA interactions, disease semantic similarity
based on disease classification from MeSH database, and circRNA sequence
similarity based on the Levenshtein distance between circRNA sequences.

The processed data are used to generate a topological feature embedding
for each circRNA and each disease, and an attribute feature embedding for
each circRNA-disease pair, so that these embeddings capture the relationship
of the entities with other circRNAs, diseases and miRNAs.

The embeddings are processed separately in two paths. The first path
employs a graph neural network to extract information insights to extract
topological features. It contains also a context attention layer for learning
importance of node neighbours. The second path examines the attributes
of circRNA-disease pairs through a multilayer convolutional neural network.
The learnt representations from both paths are integrated to obtain output
association scores of a circRNA-disease pair.

Wang’s method. The method [70] firstly fuses multi-source information
including disease semantic similarity, disease Gaussian interaction profile
kernel similarity and circRNA Gaussian interaction profile kernel similarity.
Secondly, a Convolutional Neural Network architecture is used for extraction
of hidden deep features of the circRNA-disease relationships. The model
of the architecture has a multi-layer neural network structure consisting of
an input layer, a series of alternating convolution and subsampling layers,
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finishing with full connection layer and the output layer. The feature map of
the ith layer, denotes as L;, is formulated as follows:

Li=f(Li.i®W,;+b;),

where f(z) represents the activation function, L;_; is the feature map of
the (i — 1)th layer, W represents the weight matrix of the convolution
kernel of ith layer, b; represents the offset vector and operator ® denotes a
convolution operation. Convolution layers are followed by subsampling layers,
which sample the feature graph. Lastly, an extreme learning machine (ELM),
which is a learning algorithm based on single hidden layer feedforward neural
network model, is used as a classifier to predict circRNA-disease associations.
The ELM with h hidden layer nodes is formulated as follows:

h

0j = Bif (Wi X;+bj)j=1..n,
=1

where o; represents the output for the sample with attribute X;, 3; represents
the output weight for the hidden node, W; - X; is the inner product of W;
and X, b; is the offset of the ith hidden layer node, and n is the number of
samples.

. 3.4 Related Problems

Within the field of bioinformatics, we can find a multitude of similar graph-
based problems, such as predicting protein-protein interactions, analyzing
biological pathways, identifying connections between specific genes and diseases
or drug-target interaction prediction. Some of the even more closely related
problem are miRNA-disease association prediction and circRNA-miRNA in-
teraction prediction, as they both play an essential role in the very mechanism
of circRNA-disease associations.

B 35 Summary

The presented methods approach the problem of circRNA-disease predic-
tion from numerous and vastly different perspectives, sometimes integrating
techniques from different categories together. Multiple of the presented meth-
ods come with several disadvantages, namely network-based and path-based
methods are very dependent on the quality and completeness of the input
interactions, for example KATZHCDA algorithm performs poorly on sparse
matrice, and these methods are biased towards well-studied entities. Further-
more, network-based methods may struggle to scale to large and complex
networks, while path-based methods may not capture all the necessary bio-
logical information just based on paths. This work will in following chapters
focus on graph neural network methods, as it can be still considered as a
fairly novel approach, with a lot of unexplored ground.
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3.5. Summary

The network-based and path-based methods come with several disadvan-
tages, namely they are very dependent on the quality and completeness of the
input interactions and are biased towards well-studied entities. In the study,
KATZHCDA algorithm performs poorly on sparse matrices. Furthermore,
network-based methods may struggle to scale to large and complex net-
works, while path-based methods may not capture all the necessary biological
information just based on paths.
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Chapter 4

Data Sources

. 4.1 Introduction

The exploration of circRNAs has brought deeper understanding of their di-
verse roles in cellular processes and disease pathogenesis. These accumulating
findings motivated establishment of databases, both manually curated and
computationally generated. In this chapter, several important databases
amassing information about circRNA and disease associations will be intro-
duced. Despite recognizing the extensive content of the following databases
and tools, only the relevant functionalities and datasets will be explored in
this work.

. 4.2 Databases

B 4.2.1 CircRNA-disease association Data Sources

CircR2Disease & CircR2Disease v2.0. Circ2Disease [82] is a manually
curated database that holds experimentally supported circRNA-disease as-
sociations found in humans. Precisely, it contains 273 associations between
237 circRNAs and 54 human diseases with additional information, based on
120 studies. In 2022 circRNADisease v2.0 database [20] was released. As of
current date, having reviewed 12,000 published literature, 6,998 associations
were determined, involving 4,246 circRNAs and 330 standard diseases and 12
species.

CircR2Cancer. CircR2Cancer [39] is a manually curated database of associa-
tions between circRNAs and cancers. It contains 1439 experimentally verified
circRNA-cancer relationships, including 1135 circRNAs and 82 cancers.

Circad. Database circad [56] a comprehensive manually curated database
of circular RNAs associated with diseases. It lists 1388 circRNAs related to
with 150 diseases by 1388 associations. The circRNAs span 4 species: human,
mouse, rat and chicken.
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CDASOR. CDASOR [50] is an an algorithm that computes circRNA-disease
association predictions based on sequence and ontology representations and
convolutional and recurrent neural networks. The computed predictions are
freely available.

B 4.2.2 CircRNA-miRNA Association Data Sources

One of the functions of circRNAs is post-transcriptional gene regulation by
sponging miRNAs and binding RNA-binding proteins (RBPs), which then
can no longer bind to an mRNA.

Circinteractome. Circlnteractome (circRNA interactome) [16] web tool uses
the Targetscan prediction tool [25] to predict potential circRNA targets for
miRNAs. The tool can also predict binding of circRNA with RBPs.

B 4.2.3 MiRNA-disease Association Data Sources

HMDD v4.0. The manually curated Human MicroRNA Disease Database
v4.0 (HMDD v4.0) [I4] holds 53530 miRNA-disease associations collected

from published literature. New added associations now also include exosomal
miRNAs and virus-encoded miRNAs.

B 4.2.4 Gene Related Data Sources

DisGeNET. DisGeNET contains associations of genes and variants with
human diseases. DisGeNET v7.0 holds 1,134,942 gene-disease associations
between 21,671 genes and 30,170 diseases. The database aggregates data
from expert curated repositories, genome-wide association study catalogues,
animal models and the scientific literature.

MiRDB. MicroRNAs are short noncoding RNAs that are involved in the reg-
ulation of gene expression of thousands of gene targets. Database miRDB [71]
contains predicted gene targets computed by a bioinformatics tool MirTarget.
The database, unlike others, primary focuses on mature miRNAs, which are
the ones responsible for the miRNA-mediated gene expression regulation, and
hosts predicted miRNA targets in five species: human, mouse, rat, dog and
chicken.

B 4.2.5 Disease Related Data Sources

Disease Vocabularies. There are three widely used disease vocabularies:
OMIM from the 1960s, MeSH from the 1960s, and DO [62] from the 2003,
all serving different purposes. OMIM (Online Mendelian Inheritance in
Man) serves as an online catalog of human genes and genetic disorders and
traits. Medical Subject Headings (MeSH) is a comprehensive list of controlled
vocabulary used for classification and indexing publications in the National
Library of Medicine, with diseases being on of the categories of MeSH terms.
Disease Ontology (DO), a standardized ontology for human disease, provides
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descriptions of human disease terms, phenotype characteristics and related
medical vocabularies. Across the different vocabularies, some terms have
direct counterparts, some do not.

Il 4.2.6 CircRNA Related Data Sources

CircAtlas 3.0. CircAtlas 3.0 database [77] is a database of circRNAs and
their expression and functional profiles in vertebrates. It contains over 3.1
million circRNAs across 10 species (human, macaque, mouse, rat, pig, chicken,
dog, sheep, cat, rabbit) and various tissues, a rich collection of 2674 circRNA
sequencing datasets, both Illumina and Nanopore. The database employs a
standardized nomenclature scheme for circRNAs and also provides information
of the host gene and circRNA exons.

B a3 Challenges

There is an important question regarding the choice of the data sources -
whether to use data only from manually curated databases with experimentally
verified information or expand the certain information with the more imprecise
computationally generated data. The balance between the two is important.
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Chapter 5
Method

B 5.1 CircRNA-Disease Network Design

In order to let the model capture the intricacies of the circRNA-disease
association, the graph has contain meaningful nodes and edges. Since the
mechanism by which circRNAs relate to diseases often lies in binding miRNAs,
which in turn bind to mRNAs, the addition of nodes representing miRNAs
and mRNAs, i.e. the genes from which they are transcribed, to the graph is
natural. As for the edges in the graph, denoting the interactions between the
nodes, following associations were chosen:

® circRNA-disease
circRNAs bind miRNAs, which in turn bind to mRNAs

® circRNA-miRNA
circRNAs bind miRNAs

® miRNA-gene
miRNA regulates gene expression by binding to mRNAs transcribed
from certain genes

® miRNA-disease
miRNA regulation of gene expression can lead to a disease

® disease-gene
abnormalities in gene expression can lead to a disease

The data for the interactions were taken from the data sources described by
the table below. Regarding the circRNA-disease associations, it was opted for
the CDASOR dataset, because, even though it is computationally generated,
it contains the needed amount of associations.

The resulting network is provided in the figure below.
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Association type Database

circRNA — miRNA circlnteractome
circRNA — disease = CDASOR
disease — miRNA HMDD v4.0

miRNA — gene miRDB
disease — gene DisGeNET
disease — disease disease ontology

Table 5.1: A list of databases for various association types

circRNAs

[ o ©
diseases . . miRNAs
[ J
genes
[
H N
H

Figure 5.1: Illustration of the network design, edges are labelled with the data
sources for the respective interactions

Bl 5.1.1 Data Preparation Challenges

1. Disease vocabularies

There are various popular disease nomenclature systems in use, leading
to the diseases featured in different databases being documented under
different names. While in some cases, the differences between aliases for
one disease lie in capitalization of the first letters or in apostrophes, in
other cases are parts of the names inconsistent, or even the whole disease
names are lacking their equivalents in other disease vocabularies.

2. CircRNA naming
CircRNA naming is not just a problem of the era of circRNA discovery,
but remains an unresolved issue even nowadays, as is explained in
the article "A guide to naming eukaryotic circular RNAs" [5], which
was published in 2023 under Nature. The article brings attention to
the problem that circRNAs are often registered under different names
across different databases. For example circRNA FAM120A is listed as
HSA_CIRCpedia_ 64725 in database CIRCpedia, hsa-FAM120A_ 0006
in circAtlas, hsa_ circFAM120A_ 007 in circBank, and hsa_ circ_ 0001875
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5.1. CircRNA-Disease Network Design

in circBase. They call on applying an intuitive naming scheme, which
according to them should include the prefix ’circ’, host gene symbol, and
exon and intron information.

3. MiRNA naming

Names of miRNAs consist of a varying number of subparts connected by
a dash, e.g. hsa-miR-1200. The first part made of three letters specifies
the species. “hsa” stands for Homo sapiens. For the following part,
to refer to a gene locus and precursor miRNA (i.e. pre-miRNA) of a
miRNA, "mir" is used, while a mature miRNA product is referred to as
"miR".

This has a consequence that effectively one miRNAs may be referred
to by two distinct names: circInteractome keeps mature miRNAs (e.g.
hsa-miR-1289), while HMDDv4 gene locuses (hsa-mir-1289).

MiRNAs with highly similar sequences, differing in a 1 or 2 nucleotides,
as hsa-mir-151a and hsa-mir-151b, are differentiated by a suffix lower
case letter.

Lastly, two diverse loci producing the identical mature miRNA are
distinguished by an additional number separated by a dash, e.g. hsa-
mir-125b-1 vs hsa-mir-125b-1.

B 5.1.2 Data Preprocessing

Names of miRNAs, diseases and circRNAs from different databases are
respectively unified by following techniques:

® unifying diseases

curation of the disease name using the disease ontology IDs
(DOIDs) and disease ontology terms with some manual assign-
ing of DOID of diseases with the best match in the disease
description and conversion between MeSH and DOID ontology
identifiers when possible

® unifying circRNAs

searching for a match in aliases of circRNAs

® unifying miRNAs

not distinguishing between gene loci and mature product made
from the gene by conversion of the name to lowercase

Afterwards, mappings are created for each entity type, that is circRNAs,
diseases, miRNAs and genes, so that each unique entity name is mapped to a
numerical id. A list of edges reflecting the new mappings is created for each
edge type.
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After the data are prepared, we create a HeteroData object and specify 4
types of nodes: circRNAs, miRNAs, diseases and genes, and initialize 5 types
of edges between these node types, along with the reverse edges for each edge
type. The resulting network is described by the tables below.

Edge Type Count

circRNA — miRNA 168 841
circRNA — disease 3221
disease — miRNA 53 530
miRNA — gene 465 741
disease — gene 5 963

Table 5.2: A list of edge types in the network and their counts

Node Type Count

circRNA 5201
disease 2386
miRNA 3112
gene 17658

Table 5.3: A list of node types in the network and their counts

It is important look at the network that arises from the mixture of the five
data sources. It can be seen that the amounts of different types of nodes and
edges are highly imbalanced, what may later negatively affect the learning
process. For example, the dominant miRNA connections with circRNAs might
not be as important as the connections with diseases, and may therefore skew
the circRNA node embeddding.

Below we can see a node degree distribution of circRNA nodes represented
by a histogram. Most of the circRNA nodes have a low degree, with the
highest degree being 317, the a circRNA node has on average 33.1 connections
and the median node has 19 connections.
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Figure 5.2: Node degree distribution of circRNA nodes

On the other hand, diseases have much more imbalanced connections.
Around every forth disease has just one connection, as can be seen on the
graph of degree distribution of disease nodes with the logarithmic y axis
below. On average, a disease node has 26.3 connections, but the median
number of connections is only 3, meaning that diseases are very sparsely
connected.
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Figure 5.3: Node degree distribution of disease nodes

Regarding only circRNA-disease connections, a circRNA has on average
1.34 connections with a disease, or 1 connection in median, while a disease
node has on average 22.2 connections with circRNAs or 5 connections in
median.

B 5.2 Graph Neural Network Model

For the task of link prediction on the graph, a graph neural network based
on GraphSAGE framework was chosen, since it was outperforming other
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architectures in study comparing link prediction models.

Firstly, an embedding layer is used to generate shallow embeddings for the
initial feature representations for all nodes in the network, since the features
are not specified explicitly, as all the information from data sources was used
in the graph structure. Secondly, an encoder comprising of two layers of the
GraphSAGE operator [28] separated by a ReLU unit and a dropout layer
are used to generate node embeddings in a latent space. During the message
passing, the GraphSAGE operator calculates the new node embedding value
as a linear combination of the transformed current node representation and
the mean of the neighbouring nodes representations:

w; = Wiz; + Wo % Mean;en(;); (5.1)

frerv () = max(0, x}) (5.2)

The decoder is defined as the inner product between the embeddings of
diseases and circRNAs. Finally, to predict potential associations, the decoder
output is feeded into the sigmoid function:

g = U(Zdiszg;rc) (53)
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Figure 5.4: GNN model design

The design of the network can be seen in the provided figure below and
the code for the model is provided in the appendix.

B 5.2.1 Loss function

The loss function assessing the quality of the trained embeddings is binary
Cross entropy.

BCE(y,)) = —ly-log(j + (1 —y) - log(1 — )],
where 7 is the predicted probability and y the ground truth.
B 5.2.2 Implementation

The implementation of the proposed approach is built on top of the PyTorch
Geometric, a library [24] designed for writing and training graph neural
networks applicable in a wide range of problems dealing with structured
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data. This popular library leverages the widespread adoption of PyTorch and
offers various methods for deep learning on graphs working upon the message
passing interface with message and update functions and multiple pooling
operations. It is especially efficient on sparse graphs, as its dedicated GPU
scatter and gather kernels can operate on all edges and nodes in parallel.
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Chapter 6

Results and Discussion

. 6.1 Results

In order to evaluate the performance of the proposed graph neural network
model, three different approaches, with each one illustrating a different
perspective, were considered.

B 6.1.1 General Evaluation

The algorithm was trained and tested on ten different splits of the input
data. The table below lists the evaluation metrics from the first five runs,
and averages of the metrics after five and ten runs. The selected metrics are
area under the curve (AUC), area under the precision-recall curve (AUPRC),
accuracy (ACC), recall (REC) and precision (PRE).

When evaluating a binary classification task, we might have different
intentions or goals, and therefore face trade-offs between sensitivity and
specificity, or identifying correctly one class better at the expense of the
other. In our case, we might want to either choose whether we put more
importance on identifying more predictions even at the price of being incorrect,
so that the possible associations can be then measured experimentally, or if
want to focus on choosing only the most probable associations at the price
of not identifying some, so that we can save money on doing unnecessary
experiments with uncertain results. It could be said that the recall metric,
which measures how often a model correctly identifies positive instances out
of all the actual positive instances, reflects the first intention. On the other
hand, the precision metric, which measures the proportion of true positives
among positive predictions, is suitable for measuring for the second preference,
as it measures how often are the positive predictions correct.

In cases of the imbalanced dataset, as happens also in this work, since the
negative edges are samples with a ratio 2:1 to positive edges, it is recommended
to use the precision-recall curve instead of the usual ROC curve (receiver
operating characteristic curve). The precision-recall curve plots precision
against recall, so the approach inherently focuses on the performance within
the positive class, and the larger number of negative instances won’t skew
our perception of the model performance.
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Fold AUC AUPRC ACC REC PRE

1 0.9464 0.8962 0.9555 0.9193 0.9457

2 0.9146 0.8392 0.9296 0.8696 0.9150

[H] 3 0.9340 0.8601 0.9410 0.9130 0.9102
4 0.9503 0.8739 0.9493 0.9534 0.9003

5 0.9092 0.8468 0.9306 0.8447 0.9412

average (5)  0.9309 0.8632 0.9412 0.9000 0.9225
average (10) 0.9304 0.8623 0.9408 0.8994 0.9220

Table 6.1: Results from five evaluation metrics: Area Under the Curve (AUC),
Area Under the Precision-Recall Curve (AUPRC), Accuracy (ACC), Recall
(REC), Precision (PRE)

As for the results themselves, it can be seen that the AUC is consistently
above the 0.90 level, which is generally accepted as a very good performance,
and is trailed by the AUCPRC metric, which is a little bit behind. The lower
values for the AUPRC in comparison with AUC are expected, since it can be
argued that it is easier to predict the negative class as the model is feeded
more negative than positive edges. Accuracy can be explained analogously.
As was discussed above, the AUCPR, most likely, better reflects the actual
performance of the model than the AUC, with values just bellow 0.90.

Considering the two outlined possible intentions of the task, the second one
(aiming for a high proportion of true positives among positive predictions),
which is reflected by the precision metric, seems to be more successfully
handled by the model than the first intention. The average precision hovers
at 92% and the average recall at 90%.

B 6.1.2 Training Splits

The input data is split in a way that circRNA-disease edges in training data
are not included in validation and test data. Afterwards, the circRNA-disease
edges in training data are split once again: between edges designated for
message passing and edges designated for supervision. Different ratios of
splitting were tested to evaluate, whether it has any effect on the performance
of the model. The results are displayed in the table below. Training split of
10% represents usage of 10% for supervision and 90% for message passing.

The results display only little differences between different ratios used for
splitting the circRNA-disease edges in the training data for message passing
and supervision. However, a weak pattern can be seen, as the performance
across all metrics seems to increase with the increasing proportion of edges
assigned to supervision. On one hand, this might possibly be a sign of
overfitting, on the other hand, a higher amount of training data is always for
the benefit of the model.
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Training Split‘ AUC AUPRC ACC REC PRE

10% 0.9430 0.8935 0.9537 0.9109 0.9483
30% 0.9474 0.9071 0.9589 0.9130 0.9618
50% 0.9565 0.9140 0.9634 0.9358 0.9541
70% 0.9616 0.9206 0.9668 0.9461 0.9541
90% 0.9601 0.9198 0.9661 0.9420 0.9559

Table 6.2: Results from the training splits evaluation, evaluated with five
evaluation metrics: area Under the Curve (AUC), area under the precision-recall

curve (AUPRC), accuracy (ACC), recall (REC), precision (PRE)

B 6.1.3 Case Study

To further evaluate the performance of the model, a "case study" was con-
ducted for a deeper analysis of the model predictions in a context. Given
associations predicted as positive from a test dataset (scored by the dot
product of the respective circRNA and disease embeddings) the top 10 predic-
tions for false positives outcomes were examined further. False positives are
outcomes where the model incorrectly predicts the positive class. The reason
for this is to investigate the nature of such incorrect predictions — whether
the circRNA-disease pairs are not related at all, which would mean that the
model generates embeddings that do not reflect reality well, or whether the
circRNA-disease pairs are at least somewhat similar. Also, the mechanisms
behind the associations identified as genuine by studies outside of the input
dataset are provided in the table below and described in a higher detail
subsequently below it.

rank disease circRNA mechanism
1 breast cancer AFF2 miRNA sponging
2 leukemia (AML) circAF4 no evidence
3 bladder carcinoma circFARSA miRNA sponging
4 colon cancer circBC048201 no evidence
5 lung cancer circ_ CCSER1 no evidence
6 liver fibrosis circBRIP no evidence
7 cancer hsa_ circ_ 0000479 miRNA sponging
8 bladder carcinoma circ_ CDR1 miRNA sponging
9 lung cancer circIPO11 no evidence
10 brain ischemia circ  ERC1 no evidence

Table 6.3: A ranked list of associations predicted by the model that were marked
as false positives based on the input dataset

The predicted associations listed in the table are further examined below,
following the same order of appearance as in the table:
1. breast cancer — AFF2: circ-AFF2 can sponge miRNA-638, which can

affect chemoresistance in breast cancer patients [89]
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2. acute myeloid leukemia — circAF4: while it was shown that circRNA
circAF4 regulates MLL-AF4 fusion protein expression and thus can
inhibit mixed lineage leukemia progression [29], there is not a documented
link to acute myeloid leukemia

3. bladder carcinoma — circFARSA: circFARSA expression is upregulated
and has oncogenic functions in bladder cancer by sponging miR-330 [23]

4. colon cancer — circBC048201: paper [33] describes how circBC048201
acts as a sponge for miR-1184, while a separate study [6] documents how
the miR-1184 regulates the proliferation and apoptosis of colon cancer
cells

5. lung cancer — circ_ CCSERI1: no evidence

6. liver fibrosis — circBRIP: study [22] discovers that circBRIP performed
well at distinguishing NSCLC lung cancer from benign pulmonary dis-
eases, but a link to liver fibrosis was not found

7. cancer — hsa_ circ_0000479: hsa_ circ_ 0000479 promotes tumor progres-
sion by sponging miR-370-3p which regulates MSH2 expression [75] and
also regulates ovarian cancer progression via sponging miR-942, which
in turn regulates EPSTI1 expression [76]

8. bladder carcinoma — circ_ CDR1 Cdrlas sensitizes bladder cancer to
cisplatin by upregulation of APAF1 expression by sponging miR-1270
[34]

9. lung cancer — circIPO11: the circIPO11 has been only linked to other
types of cancer, namely colorectal cancer [54] and liver cancer [55]

10. brain ischemia — circ_ ERC1: no evidence was found for this pair, however,
study [88] found that a circRNA from a Ercl gene is dysregulated in rat
brains during intracerebral hemorrhage, which is another type of stroke,
but the two conditions are interconnected as hemorrhagic events can
lead to ischemic damage

From the top 10 predicted associations marked as false positives, 4 were
directly found to be proved by studies outside of the input data, and
another 5 were found to be plausible candidates, since either associations
with closely related diseases has been proved, or separate studies were
found for the circRNA-miRNA interaction and miRNA-disease associa-
tion. It can be concluded that the model manages to predict novel (not
seen in the input data) associations between circRNAs and diseases.

. 6.2 Discussion

This section will assess the overall performance of the proposed model and
general suitability of the graph neural network approaches for the task of
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predicting circRNA-disease associations, and outline possibilities for future
research in this topic.

B 6.2.1 Evaluation of the Proposed Model

Regarding the implemented model, based on the provided evaluation, it can be
concluded that it performs well in the assigned task, reaching AUCPRC of 86%
on average. Its main contributions lie in that firstly, it integrates numerous
interactions, namely circRNA — miRNA, circRNA — disease, disease — miRNA,
miRNA — gene and disease — gene. These interactions and associations are
used for the graph construction itself, so the information encoded in them
is not distorted by any pre-proccesing technique. Secondly, it employs the
graphSAGE operator, which has not been used in any of the found related work
on circRNA-disease association prediction, but outperforms other operators on
general link prediction tasks. Thirdly, it is built upon the Pytorch Geometric
Framework, meaning it is easily customizable and flexible, as well as optimized
for efficient graph operations.

B 6.2.2 Limitations of the Model

The model presented in this work has multiple limitations.

Firstly, this work views the problem at hand under the supervised training
setting. However, this setting does not really fit the problem, since the
training data samples are in fact positive & unlabeled rather than positive
& negative. For this reason, the approach in this work inherently leads to
mislabelling. While there are some available graph neural network approaches
for positive unlabeled learning for graph data, such as a method based on
a GAT developed by Wu et al. from 2021 [74], these methods deal with
unlabeled nodes, with the research regarding unlabeled links remaining very
limited.

Secondly, the model does not use any explicit feature vectors for the
initialization of the hidden states of nodes, since all the information from the
datasets was utilized for building the graph itself. Additional possibilities, were
considered, but found lacking in one way or another. For example, calculation
of similarities between pairs of circRNAs would be suitable for interconnecting
the most similar circRNAs together. However, the existing methods either
employed Levenshtein distance between two circRNA sequences for measuring
their similarities, which is inherently flawed since the most of the circRNA
sequences has no effect on their interactions, and it is the miRNA binding
sites that make all the difference; or other methods calculated similarities
between circRNAs based on their interaction profiles with diseases, relying on
the premise that similar circRNAs interact with similar diseases. The notion
can be presumed to be based on the fact that similar circRNAs will contain
the same binding sites and will therefore interact with the same diseases,
which us consequently once again leads to the fact, that miRNA binding sites
and interactions with miRNAs are crucial knowledge.
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Thirdly, GraphSAGE operator itself has a few limitations. It predomi-
nantly captures local structural information, therefore it will miss global
structural patterns. Furthermore, the number of sampled neighbours is a
static parameter, which might not be ideal when we have some nodes with
many neighbours and some with only few neighbours, as in our case.

Fourthly, inherently, the performance of the model is heavily influenced
by the known circRNA-disease associations. Incorrect associations in the
training data may distort the real patterns that we are looking for.

B 6.2.3 Future Work

In future work, more sources of biological information could be incorporated
into the edges of the graph as well as the feature vectors of the nodes for
the initialization of the hidden states, for example, circRNAs similarities
and disease similarities. For a disease similarity measure, Wang’s method
[10] could be used, which is based on the hierarchical structure of a disease
ontology. For the circRNA similarities could be calculated from the circRNA
expression profiles.

Furthermore, methods for positive unlabelled learning based on graph
neural networks, such as [74], should be investigated regarding its possible
application for not just this problem, but for the link prediction tasks within
the field of bioinformatics.

Lastly, taking into account possible incorporation of new data, a graph
attention module could be incorporated for the purpose of assigning different
weights to different neighbours.
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Chapter 7

Conclusion

CircRNAs are small molecules that have been found to be dysregulated dur-
ing multitude of diseases and thus show potential as disease biomarkers or
therapeutic targets. Exploring associations between circRNAs and diseases
experimentally is expensive and time-consuming, and therefore the compu-
tational approaches are employed in the task. The purpose of this thesis
was to investigate the application of graph neural network on the problem of
predicting these circRNA-disease associations.

The work on the thesis was broken down into several steps, which can
be also seen to be reflected in the composition of the thesis. Firstly, the
biological meaning and mechanisms behind the circRNA-disease associations
were inquired into, since such knowledge is imperative for understanding and
design of the methods employed in solving the problem. Secondly, having
studied the graph neural networks, the main concepts and essential models
were introduced in the second chapter of the thesis. Thirdly, existing methods,
which fall into three large categories: network propagation-based methods,
path-based methods, and machine learning methods, have been explored
and representative methods from the respective categories were presented.
After that, it was searched for data sources containing relevant data about
interactions and characterization of circRNA and diseases.

Having collected all the necessary information, the problem was formulated
as a link prediction task on a graph and a graph neural network was designed
for association prediction. The model based on the graphSAGE framework
was implemented upon Pytorch Geometric library.

The evaluation of the model performance shows that the model reaches the
AUC of 0.92 and the AUCPR of 0.86 on average. It is important to mention
that the model also managed to predict associations that were outside of
information included in the input data.

The performance of the model could be further improved with the addition
of other biological information, such as knowledge of similarities between dif-
ferent circRNAs and similaries between different diseases themselves. Another
proposed improvement for the future work is to employ positive unlabelled
learning based on graph neural networks.
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Appendix A
GNN Model

class GNN(torch.nn.Module):
def __init__(self, hidden_channels_f, hidden_channels_s,
output_channels, dropout=0.2):
super ) .__init__Q)

self.convl = SAGEConv(hidden_channels_f, hidden_channels_s)
self.conv2 = SAGEConv(hidden_channels_s, output_channels)
self.dropout = dropout

def forward(self, x: Tensor, edge_index: Tensor) -> Tensor:
x = F.relu(self.convl(x, edge_index))
x = F.dropout(x, p=self.dropout)
x = self.conv2(x, edge_index)

return x

# the classifier applies the dot-product between source and
destination node embeddings to derive edge-level predictions:
class Classifier(torch.nn.Module):
def forward(self, x_circRNAs: Tensor, x_diseases: Tensor,
edge_label_index: Tensor) -> Tensor:
# Convert node embeddings to edge-level representations:
edge_feat_circRNA = x_circRNAs[edge_label_index[0]]
edge_feat_disease = x_diseases[edge_label_index[1]]

# Apply dot-product to get a prediction per supervision edge:
return (edge_feat_circRNA * edge_feat_disease).sum(dim=-1)

class Model(torch.nn.Module):
def __init__(self, hidden_channels_f, hidden_channels_s,

output_channels) :

super().__init__Q)

self.circRNA_emb =
torch.nn.Embedding(data["circRNA"] .num_nodes,
hidden_channels_f)

self.disease_emb =
torch.nn.Embedding(data["disease"] .num_nodes,
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A. GNN Model

def

hidden_channels_f)

self .miRNA_emb = torch.nn.Embedding(data["miRNA"].num_nodes,
hidden_channels_f)

self.gene_emb = torch.nn.Embedding(datal["gene"].num_nodes,
hidden_channels_f)

self.gnn = GNN(hidden_channels_f, hidden_channels_s,
output_channels)

self.gnn = to_hetero(self.gnn, metadata=data.metadata())
self.classifier = Classifier()

forward(self, data: HeteroData) -> Tensor:

x_dict = {
"circRNA": self.circRNA_emb(datal["circRNA"] .node_id),
"disease": self.disease_emb(data["disease"].node_id),
"miRNA": self.miRNA_emb(data["miRNA"] .node_id),
"gene": self.gene_emb(data["gene"] .node_id)

}

# ‘x_dict‘ holds feature matrices of all node types
# ‘edge_index_dict‘ holds all edge indices of all edge types
x_dict = self.gnn(x_dict, data.edge_index_dict)
pred = self.classifier(
x_dict["circRNA"],
x_dict["disease"],
data["circRNA", "acd", "disease"].edge_label_index,

return pred
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