
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Modern slow DDoS attacks and protection against them

Lukáš Brůna

Ing. Jan Fesl, Ph.D.

Informatics

Information Security 2021

Department of Information Security

until the end of summer semester 2024/2025

Instructions

Distributed Denial of Service (DDos) attacks are the most common type of attack

performed by hackers online. The mutual goal of the attacks is to deny access to a

certain service from all users. One variant of DDoS attacks is the so-called slow DDoS

attacks, which are precarious in that unlike usual DDoS attacks, they do not manifest in

higher network traffic but rather in continuous depletion of the victims' resources.

In the bachelor thesis, focus in detail on the problem of slow DDoS (SDDoS) attacks on

web servers, design and implement an algorithm allowing a reliable detection of SDDoS

attacks and defense against them. In the practical part of the thesis, create a module for

the Apache 2 web server, able to perform active mitigation of detected SDDoS attacks.

Thesis goals (in detail):

1) Explore the current state of research in the field of SDDoS attacks and their impact on

web servers.

2) Identify the characteristics of typical SDDoS attacks.

3) Design and implement an Apache 2 web server module, capable SDDoS attack

detection and mitigation.

4) Perform testing of the created module in order to verify its effectiveness and reliability.

5) Compare the results with the existent SDDoS attack defense methods and evaluate

the contribution of the created module.

Electronically approved by prof. Ing. Róbert Lórencz, CSc. on 26 January 2024 in Prague.

Bachelor’s thesis

MODERN SLOW DDOS
ATTACKS AND DEFENSE
AGAINST THEM

Lukáš Br̊una

Faculty of Information Technology
Katedra informačńı bezpečnosti
Supervisor: Ing. Jan Fesl, Ph.D.
May 16, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Lukáš Br̊una. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Br̊una Lukáš. Modern Slow DDoS attacks and defense against them. Bachelor’s
thesis. Czech Technical University in Prague, Faculty of Information Technology, 2024.

Contents

Acknowledgments v

Declaration vi

Abstract vii

List of abbreviations viii

Introduction 1

1 Introducing the SDDoS attack 2
1.1 The problematics of SDDoS . 2

1.1.1 Specifics of Distributed Denial of Service attacks 2
1.1.2 HTTP communication . 2
1.1.3 How SDDoS attacks work . 3

2 Current state of research in the SDDoS field 7
2.1 SDDoS defense approaches . 7

2.1.1 Off-site defenses . 7
2.1.2 On-site defenses . 8

2.2 Impact of SDDoS on current web servers . 10
2.3 Attack testing tools . 11

2.3.1 slowhttptest . 11
2.3.2 slowloris . 14

3 WebServer Apache2 Module Architecture 15
3.0.1 Creating an Apache module . 15
3.0.2 Hooking into the request handling process 17
3.0.3 A module handler . 17

4 Defense design and implementation 18
4.1 Detection . 18
4.2 Response . 21

4.2.1 Creating logs . 22
4.2.2 Created logging module . 22

4.3 Testing . 23
4.3.1 Simulating a botnet in Docker . 23
4.3.2 Having a reverse proxy . 25

5 Comparison of the results 26
5.1 Testing . 26
5.2 Evaluating the value of the created solution . 28

6 Summary 29

ii

Contents iii

Attachment contents 34

List of Figures

1.1 Web Server Connection Handling [2] . 3
1.2 Example of network traffic during a DDoS attack. The Spamhaus Attack of 2013.

[3] . 4
1.3 Example of network traffic during an SDDoS attack. [4] 4
1.4 Slowloris attack example [8] . 5
1.5 Slow HTTP Post attack example [8] . 5
1.6 Slow HTTP Read attack example [8] . 6

2.1 SDN architecture example [12] . 8
2.2 One connection connected for 400 seconds . 10
2.3 TCP packet during the attack . 12
2.4 An output graph of a successful SDDoS attack using 8 bots with 137 Slow Read

connections each attacking one server for 150 seconds. 13

3.2 Module declaration [30] . 15
3.1 Interaction of Apache Core and Modules [31] . 16

4.1 Apache request-response loop [37] . 19
4.2 TCP Proxy initialization and listen loop . 20
4.3 The code in the sniffing script processing the TCP protocol 21
4.4 An example of the TCP sniffing tool outputting one packet 21
4.5 Configurable script values . 21
4.6 Example of created log files . 22
4.7 Apache module code . 23
4.8 Botnet simulation . 24
4.9 Simple probing script . 25

5.1 Test two script output . 27
5.2 Test six defense script output . 27

iv

This thesis would not be possible without the guidance and support of
my supervisor Ing. Jan Fesl, Ph.D. and the constant encouragement
and mental fortitude of my beloved girlfriend Patricie A. I also want
to express my gratitude towards my family, as my brother is someone
I could always look up to and my parents who always provide the
support one could imagine, making sure I have someone to rely on.
Without these people, this work would not be possible.

v

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular that
the Czech Technical University in Prague has the right to conclude a license agreement on the
utilization of this thesis as a school work under the provisions of Article 60 (1) of the Act.

In Prague on May 16, 2024

vi

Abstract

This thesis is focused on the field of Slow Distributed Denial of Service attacks and their mit-
igation. First, I explain how the most common types of SDDoS attacks function and what is
their impact on current systems. Second section of the thesis is then focused on different possible
defense solutions, how they could be implemented and if they are effective. In the final sections
I choose a solution approach which I design, implement and test successfully.

Keywords SDDoS, DDoS, Slow Reads, Denial of Service, network attacks, Apache, server

Abstrakt

Tato práce je zaměřená na obor útok̊u pomalým odepřeńım služby a obrany proti nim. Vysvětluji,
jak nejčastěǰśı typy těchto útok̊u funguj́ı a jaký maj́ı dopad na aktuálńı systémy. Velká část
práce je poté zaměřena na r̊uzná obranná řeseńı, jak by mohla být implementována a zda-li jsou
efektivńı. Ve finálńıch částech práce si voĺım zp̊usob řeseńı který úspěšně navrhuji, implementuji
a testuji.

Kĺıčová slova SDDoS, DDoS, Pomalé čteńı, odepřeńı služby, śıt’ové útoky, Apache, server

vii

List of abbreviations

CVE Common Vulnerabilities and Exposures
DDoS Distributed Denial of Service

DoS Denial of Service
FPR False-positive ratio

HTTP Hypertext Transfer Protocol
SDDoS Slow Distributed Denial of Service

SDN Software Defined Network
TCP Transmission Control Protocol

viii

Introduction

Distributed Denial of Service attacks are the most prominent type of attacks performed nowa-
days. Their goal is to deny availability of a service to all users at little cost to the attacker, only
needing a botnet or a large amount of systems able to create requests towards the victim. SDDoS
are a subtype of such attacks, their specificity comes from the lack of drastic increases of network
traffic during the attack, opting to deplete the resources of the service instead, this also means
that the attacker is not required to control a botnet as large. While the attack effectiveness is
increased with the botnet size, a successful service denial can be achieved even with only one
system performing the slow attack.

Such a workaround in the principles of the attack was very interesting to me, thus prompt-
ing me to pick the attack subtype as the subject of my thesis. I will focus on explaining the
principles of Slow DDoS attacks and the design and implementation of a web server SDDoS
defense.
SDDoS attacks, however, can vary in their techniques. As I will explain in more detail in the
subsequent chapters, there are three main slow attack types, each with a different approach to
ultimately achieve a denial of service. I will also discuss the efficiency and how they currently
differ in their success in chapter 2.
The main goals of the thesis are to summarize the current state of research in the field of SD-
DoS attacks and their impact on web servers, to identify the characteristics of the three typical
SDDoS attack types in chapter 2. Then in chapter 3, the goal is to design and implement an
Apache2 web server module, able to detect and react to SDDoS attacks, test its efficiency and
reliability. Finally, in chapter 5 compare the results to existing SDDoS defense mechanisms and
evaluate its contribution.

1

Chapter 1

Introducing the SDDoS attack

1.1 The problematics of SDDoS

1.1.1 Specifics of Distributed Denial of Service attacks
Denial of Service is a cybersecurity threat gaining popularity among malicious parties during the
last decade. As the name of the attack suggests, the main disruption caused is by denying the
availability of the victim service / device to users or admins.
It usually achieves this goal by overwhelming the service by an unusually large amount of valid
requests starving the victim of resources / capacity, making it unable to respond to non-malicious
users.

While other attacks may be considered more serious (for example data leaks, privilege esca-
lation due to the damage caused), the simplicity of performing the attack in comparison to the
difficulty in defending against it makes it an easy choice from the hackers’ point of view.

Distributed Denial of Service is a modified DoS utilizing the possibility of attacking from multi-
ple sources while targeting one specific victim system. While this does increase the costs for an
attacker, the effectiveness of attack grows exponentially.

This technique makes it impossible to resolve the attack by simply blocking the malicious ac-
tor and forces the defender to differentiate between valid user requests needing a response and
attacker requests to block.

1.1.2 HTTP communication
The HTTP protocol is a request/response application-level stateless protocol [1]. Most HTTP
communication is initiated by a user agent and consists of a request to be applied to a resource
on some origin server. In the simplest case, this may be accomplished via a single connection
between the user agent and the origin server.
The above mentioned client request begins with a method token. This token can vary according
to what a client intends to do. For the purpose of this thesis, the most important methods are
going to be GET and POST used to either read or upload data respectively.

For a Web Server to craft a response, it must be handled by two thread types, explained with
figure 1.1.

2

The problematics of SDDoS 3

Figure 1.1 Web Server Connection Handling [2]

1.1.3 How SDDoS attacks work
The most common DDoS attacks aim to deny the availability of a service by overwhelming it
with a number of requests so large, it is unable to handle it. That creates a noticeable peak
in the traffic of the victim network, making it easy to detect a system being attacked. But if I
compare the network traffic during DDoS (figure 1.2) and SDDoS (figure 1.3) attacks, I can see
the SDDoS traffic may include a very brief initial peak, but nothing comparable to the DDoS
traffic.
How do SDDoS attacks deny service availability nonetheless?
The answer is rather simple: the amount of requests does not need to be large as long as every
request sent establishes a connection to the service and keeps it alive for as long as possible, thus
taking up space for valid user connections. There are several ways of ensuring the server keeps
the connection alive, all of which I will explain in the text below, but it is important to point out
that while SDDoS is moderately detectable, it is not in fact detected by the usual monitoring
solutions looking for DDoS attack peaks in their traffic data.

The problematics of SDDoS 4

Figure 1.2 Example of network traffic during a DDoS attack. The Spamhaus Attack of 2013. [3]

Figure 1.3 Example of network traffic during an SDDoS attack. [4]

1.1.3.1 Slow HTTP Headers attacks (also known as Slowloris [5])
The most common and one of the first detected slow HTTP attacks, successfully used against
Iranian government servers in 2009 [6].
In the slow header HTTP attack, an attacker starts with a regular HTTP request1, but not
including the “end of headers”2 flag, then waits a certain period of time before it sends an addi-
tional custom request header (e.g., ”X-abcd: 1234”) through the established TCP connection3.
The attacker can send such random custom headers in repetition indefinitely, after waiting a set
period of time.
According to the HTTP specification [1], all clients are allowed to add such headers. This client
behaviour does not only slow down the initial request, in fact, it does not terminate it at all. It
can bind servers resources for any period of time unless countermeasures like maximum request
duration time and other settings are in place [7]. An example of a Slowloris attack is provided
in figure 1.4.

1Slowloris can use both GET and POST methods [5]
2In the example 1.4, it would be “\r\n” that is missing. However, you can find it in 1.5, as that attack does

not utilize slow header sending.
3This is an important factor in defending against Slowloris, see 2.2.

The problematics of SDDoS 5

Figure 1.4 Slowloris attack example [8]

1.1.3.2 Slow HTTP Post attacks
This attack subtype is also called the slow POST attack, as it utilizes HTTP POST requests in the
process, allowing the client to submit a request entity such as form data or file to be uploaded.
Regular behaviour is used for the request header, however, a malicious actor slows down the
transmission of the request entity, or sends a Content-Length header which is deliberately larger
than the actual size of the requested entity. This requires the server to wait for additional data
until timeout. Alternatively, an attacker sends slow chunks of a request entity using the chunked
transfer encoding mode [7]. An example is shown in figure 1.5.

Figure 1.5 Slow HTTP Post attack example [8]

The problematics of SDDoS 6

1.1.3.3 Slow Read attacks
Slow Read attacks differ from the other subtypes in that the attacker is not the one slowly
sending requests / headers but rather forcing the server to slow down its own transfer. The
client-server communication starts with a regular HTTP GET request to send an entity to the
client. However, as soon as the server starts sending the response data, the client4 informs
it of an arbitrarily small5 receive buffer, making the server poll its socket for write readiness
indefinitely [9]. There is a prerequisite for the attack to work, the requested entity must be
larger than the servers send buffer6, otherwise the server sends the data to the kernel send buffer
and forgets about it. While this attack subtype may appear superior, since the initial requests
are indistinguishable from regular and slow client requests, it requires more attacker resources
in comparison since the packets from the server need to be acknowledged and a response sent.
Such issues are not present in the other attack subtypes. [7]

Figure 1.6 Slow HTTP Read attack example [8]

4in this case also the attacker
5in some cases the size of 0
6Server buffer size is usually between 65Kb and 128Kb. [9]

Chapter 2

Current state of research in the
SDDoS field

2.1 SDDoS defense approaches
There are two main approaches to placing a (S)DDoS defense into the system, each coming with
its positives and negatives.

One way to come around the problem is to utilize an off-site solution such as a reverse-proxy or
the technology of Software Defined Networks (SDNs) to name a few. It essentially offloads the
setup of defenses to the network, thus not affecting the server or its admin.
The other approach is to increase the security of the server directly on the machine, for example
by setting up complex firewalls, IP blocking thresholds in server configuration or installing server
modules focusing on security. Designing and implementing one such module is the primary focus
of this thesis, as many of the existing modules unfortunately fall short of being effective. This
approach is admittedly more work for the server administrator than just having an SDN set up,
but if the module manages to provide security without slowing down traffic, it does so without
creating an additional single point of failure.
Now that I have presented the two approaches, let us take a look at some examples.

2.1.1 Off-site defenses
SDN
Even though I mentioned some positives, SDN setups like the one shown in figure 2.1 usually
create a single point of failure, the SDN Controller, which could itself become the target of a
DDoS attack [10] [11]. However, looking past that disadvantage which requires an attacker
to modify his attack, the results SDNs showed in protecting against SDDoS are promising
[7].

7

SDDoS defense approaches 8

Figure 2.1 SDN architecture example [12]

Reverse proxy servers
While reverse proxy servers can improve a systems defense against SDDoS, it is essentially
only offloading the problem to a different server. It can itself become a target of an attack.
However, if the attacker does not target the proxy itself, it can prove to be a great defensive
solution.

Cloud-based protection
Use a service that can function as a reverse proxy, protecting the origin server. This type of
protection is mainly in pay-walled services1, thus little information about how they operate
is openly available. As such, I will not cover them any further.

Load balancers and content switches
In a similar fashion to increasing the resource capacity of a server, load balancers do improve
the resistance to a smaller SDDoS attack. Nonetheless, when the attacks intensity reaches
the resource limit, it is successful despite the defenses.

2.1.2 On-site defenses
IP blocking thresholds
Too strict of a limitation on the number of connections allowed per IP address can increase
the false-positive ratio (FPR) [13], thus blocking legitimate users2.

physical firewalls
They can be useful with (S)DDoS detection but can do very little to mitigate an attack. The
firewall itself can become overwhelmed during an attack whether it is the target or not.

Web application firewalls (WAF)
WAFs often use device fingerprinting to identify malicious devices that are trying to connect.
It gathers the information about new devices and decides if it is safe to continue the connection
or terminate it and block the IP. [14] It can be effective against smaller attacks.

1There are free plans available which also provide a lot of protection.
2Those needing more connections or even several users using only one connection behind the same proxy

SDDoS defense approaches 9

ModSecurity
As the name suggests, this open-source started as an Apache module, but has since been
expanded to a standalone WAF. [15] It has been transferred to the custodianship of The
OWASP foundation in 2024 [16].

Server modules
My main focus in this thesis are Apache2 modules, an on-site solution requiring a decent
amount of configuration but otherwise coming with no additional costs. They are an extension
to the core server software, either compiled with the server itself or dynamically during
runtime. I will present a few examples below.

2.1.2.1 Examples of Apache2 modules
In the case of Apache Web servers, several modules can be employed to prevent damage from a
Slowloris DDoS attack. [17] These modules include:

Mod limitipconn [18]
“Allows web server administrators to limit the number of simultaneous downloads permitted
from a single IP address.” This module is by design ineffective against the distributed variant
of SDoS.

Mod qos [19]
This module provides the option of various resource management tools and configurations,
giving the option of blocking unwanted requests and managing the servers resources more
effectively.

Mod evasive [20]
This module serves as a tool to detect and block unwanted requests based on their frequency
and amount. If however the attack tool is configured to stay under such set limits, the module
would not detect it as malicious activity.

Mod antiloris [21]
The concept of this module is to hook into connection attempts and count the number of
connections originating from the same remote IP that are in the SERVER BUSY READ
state caused by GET3 method requests. When the count exceeds a defined threshold, the
connection is denied. Despite the information above, the module fails to protect against the
Slowloris attack. The attacker can effortlessly bypass the protection by decreasing the value
of the variable timeout to a value less than the modules expected value. The reason being
that this module protects only against the SERVER BUSY READ attack. Slowloris also
deploys an SERVER BUSY WRITE attack, via the POST method. [22]

Mod reqtimeout [23]
It is one of the modules included by default in Apache HTTP Server v2.2.15 and up, providing
a way to set timeouts and minimum data rates for receiving requests. Should a timeout occur
or a data rate be to low, the corresponding connection will be closed by the server.

In research conducted by Moustis and Kotzanikolaou [22] the testing of these modules separately
or in various combinations4 showed, that server configuration techniques are not adequate by
themselves to effectively protect from a dedicated adversary. If used in combination, the modules
may be successful in repulsing the attack, but the delay in server response showed to be severe
even with a small attack scenario of four bots, indicating that a larger attack would affect the
server.

3explained in 1.1.2
4for example both Mod limitipconn and Mod antiloris

Impact of SDDoS on current web servers 10

2.2 Impact of SDDoS on current web servers
Luckily, the current impact of the SlowLoris and Slow POST attacks is minimal, thanks to the
servers’ ability to recognize that the prolonging of the connection should not keep a timeout
from triggering, thus an attack is denied by the KeepAliveTimeout [24] as long as the number
of connections does not trigger a regular DDoS.

This is not the case with the third presented SDDoS attack type, the Slow Read attack. In
figure 2.2 a stable 400 seconds long connection created by the attack tool can be seen even
though the server does have timeouts configured.

Figure 2.2 One connection connected for 400 seconds

This attack type is in a transport layer attack its core. While there is HTTP communication
not found in other transport layer attacks, the connection prolonging leading to a denial of ser-
vice happens purely with TCP communication, whilst no other HTTP packets are sent.

Even though SDoS is a type of attack first described in 2005 in the ”Programming Model At-
tacks” section of Apache Security [5], the impact of Slow Read attacks prevails heavily in current

Attack testing tools 11

systems. Even the revision of the HTTP protocol HTTP/2 did not introduce any solutions to
the problem5 according to the large security investigation done by the Federal Communications
Commission [25].

The large threat Slow Read attacks pose in comparison to the other two attack types is the
reason why in the rest of the thesis I will focus solely on the Slow Read attack type.

2.3 Attack testing tools

2.3.1 slowhttptest
”SlowHTTPTest is a highly configurable tool that simulates some Application Layer Denial of
Service attacks by prolonging HTTP connections in different ways.” [26]
It is the main attack tool [27] available; by default installed on Kali Linux distributions. It
provides four attack approaches6:

Test mode options
-H slow headers a.k.a. Slowloris (default)
-B slow body a.k.a R-U-Dead-Yet
-X slow read a.k.a Slow Read
-R range attack a.k.a Apache killer

The tool indeed is highly configurable, it provides an extensive variety of options to alter the
attack process.

General options
flag unit description default value
-c connections target number of connections 50
-i seconds interval between followup data in seconds 10
-l seconds target test length in seconds 240
-r rate connections per seconds 50
-s bytes value of Content-Length header if needed 4096
-t verb verb to use in request, default to GET for slow head-

ers and response and to POST for slow body
GET / POST

-x bytes max length of each randomized name/value pair of
followup data per tick, e.g. -x 2 generates X-xx: xx
for header or &xx=xx for body, where x is random
character

32

-f content-type value of Content-type header application/x-www-
form-urlencoded

-m accept value of Accept header text/html;q=0.9,
text/plain;q=0.8,
image/png,*/*;q=0.5

-e x.x.x.x:xx address of proxy to direct all probing traffic into

Since the first 2 attack subtypes are defended against by default timeouts, I will focus on ex-
plaining how the tool creates and operates Slow Read attacks.

5CVE-2016-1546, CVE-2020-9481
6The -R range attack a.k.a Apache killer approach is not in the scope of slow DDoS attacks as it only exploits

a vulnerability of Apache servers as a DDoS attack, the vulnerability has also been patched out. [28]

Attack testing tools 12

Slow Read attack mode specific options
flag unit description default
-k num number of times to repeat same request in the connection. Use time-

out multiply response size if server supports persistent connections
1

-n seconds interval between read operations from recv buffer in seconds 1
-w bytes start of the range advertised window size would be picked from 1
-y bytes end of the range advertised window size would be picked from 512
-z bytes bytes to slow read from receive buffer with single read() call 5

Even though I explained the principle of the Slow Read attack in the previous chapter, I
would like to take a closer look on how the slowhttptest tool implements it.
It can be seen in the tools source code [29] and when running the tool with verbosity level 4,
that it works with 2 different socket types called the “slow socket” and “probe socket”. As the
names suggest, the slow sockets are focused on performing the attack, usually in large numbers,
their amount corresponds to the number of connected connections with the max being the target
set by option -c. However, the probe socket is usually only a single socket focused on normal
requests towards the server. Based on its response (or lack thereof), it determines the availability
of its services.
The slow sockets, on the other hand, inform the server about their very small tcp window size
value (and usually their window size scaling factor of 1) as highlighted in figure 2.3.

Figure 2.3 TCP packet during the attack

Sometimes the value of the window size is set to zero, but since that could lead to a simple
detection mechanism for the defender, the attacking socket uses the -z option. Every -n seconds,

Attack testing tools 13

-z bytes of data are read from the receive buffer, allowing the attacking socket to advertise a
window size slightly larger than zero but still small enough for the attack to have impact.

2.3.1.1 An example of a successful SDDoS Slow Read attack
Now I am going to show an example of the attack successfully denying the servers service using a
python script to control a docker simulated botnet described in a later chapter. The slowhttptest
tool generates very informative graphs about how the attack went, however, the tool was designed
as a SDoS tool, not providing the possibility of distributing the attack across multiple devices
while keeping the graph statistics correct. As seen in figure 2.4, the service was not available
for a period of 140 seconds out of 150 seconds the attack was in progress. Which is actually
correct information, however, the information about the number of pending, closed and connected
connections is only corresponding to one attacking container the information was taken from. The
real number of connections attempted is number of attackers * number of connections parameter
(which in this example would be 8 * 137 = 1096).

Figure 2.4 An output graph of a successful SDDoS attack using 8 bots with 137 Slow Read connections
each attacking one server for 150 seconds.

Attack testing tools 14

2.3.2 slowloris
This tool itself is the origin of the Slowloris attack, however it is not generally used for the
attack7. Slowhttptest itself provides an option to use the Slowloris attack type.

7The original website http://ha.ckers.org/slowloris/ where it was published has since shut down.

Chapter 3

WebServer Apache2 Module
Architecture

3.0.1 Creating an Apache module
The main source of my knowledge how to create an Apache 2.4 module comes from the guide
Developing modules for the Apache HTTP Server 2.4 [30], an official development guide provided
by The Apache Software Foundation.

3.0.1.1 What an Apache module is
An Apache module is essentially included in the Apache core [31], either statically loaded in
server compile-time or (if dynamic module loading is allowed) compiled separately and loaded
into the server dynamically using the directive LoadModule [32].

The server core calls module handlers in its registry, while the modules can use the Apache
API to communicate with it. As such, they gain access to important information like request rec
or to the memory pool of the request. [31]

Having such information and resources available to their disposal, these modules provide
a variety of options to extend the features of an Apache server, whether it is for monitoring,
authentication, logging or, as in my case, security.

Figure 3.2 Module declaration [30]

As is mentioned in the guide, a module declaration is necessary in every Apache module. A
module declaration includes mainly:

15

16

Figure 3.1 Interaction of Apache Core and Modules [31]

17

Various configuration handlers
A module can use a configuration file consisting of directives explained below. However, the
configuration file sometimes needs to be context sensitive, hence why multiple handlers are
present in the declaration.

httpd directives
Directives which are simply put a plain-text way to tell the module how to behave in certain
situations. In a declaration a list of the directives to which a module responds is provided.

hook registering function
A function calling listed hook functions, the hooking process is explained in the subsection
below.

3.0.2 Hooking into the request handling process
A hook works essentially like triggering an event which results in event handler execution. The
format of a register hook function is as follows [33]:

ap_hook_phase_name(function_name, predecessors, successors, position);

There are many different phases of request receiving a hook can be called in, with the corre-
sponding phase names: pre config (to do any setup required prior to processing configuration
directives), child init (which is called as soon as the child is started) or quick handler (called
before any request processing, often used by cache modules) just to name a few.
The function name refers to the function called by the request hook function if a hook happens.
The position is one of the five defined values: HOOK REALLY FIRST, HOOK FIRST,
HOOK MIDDLE, HOOK LAST, HOOK REALLY LAST combined with the list of predecessors
and successors creates an order in which the hook functions of the same phase are called.

3.0.3 A module handler
A handler is a function receiving a callback from the hook caller inside the server, with the re-
quest record structure request req as input. This structure is the most essential part of a request
as it contains all of the information about it, including its memory pool, connection, the HTTP
request itself and many other things [34].

An important detail of the handler is its return value, which is either general information to
the server:

General response codes
DECLINED The request will not be handled by this module.
OK The request has been successfully handled.
DONE The request has been successfully handled and the

thread should be closed immediately.

or specific HTTP return codes [35] which will be in the servers response.

Chapter 4

Defense design and
implementation

4.1 Detection
After observing attack data and reading through the blog of the slowhttptest tool author [9], I
have found that the best way to differentiate attack traffic from regular traffic is the
tcp.window.size. As explained in the previous chapter, the attack forces the server to continually
send data by informing it of a very small receive buffer. It does so by setting the tcp.window.size
to extremely small values or to zero.
While it is possible to observe tcp.window.size being zero in normal client traffic, for example
due the client being overwhelmed, it is however extremely unusual for it to appear in most of
the clients responses [36].

There were multiple attempts to read the tcp.window.size in order to be able to react to it. I
will go through each of the below and explain why it ultimately did or did not work in the end.

Module
First attempt to detect the tcp.window.size located in tcp headers was made in the module sys-
tem of Apache2 as it is the main goal of this thesis. I tried to use the apr network io.h library
to connect to the socket in use and extract the data, not yet knowing the data would probably
not be there nevertheless, as explained later.
However, the Apache module system is limited by hooks. As explained above and shown in figure
4.1, hooks only happen in some stages of the request-response loop, but the Slow Read attack
proved to be happening after any of the hooks could intercept it. The malicious communication
is only detectable on the transport layer. So even after connecting to the used socket, I was
unable to extract any useful communication as it was happening at different times than when I
was able to listen to it.

18

Detection 19

Figure 4.1 Apache request-response loop [37]

Flask framework Reverse Proxy
Because I believed time was the issue while listening to the socket, I decided to try a solution
using a reverse proxy. What I hoped this would accomplish is to intercept the incoming packets,
extract the TCP headers with the tcp.window.size included in them and react accordingly in the
proxy itself. Using iptables as shown below, I redirected incoming traffic from port 80 to port
5000.

iptables -A PREROUTING -t nat -i eth0 -p tcp --dport 80 -j REDIRECT
--to-port 5000

At port 5000 I setup a reverse proxy [38] (the code can be found in attachments) to provide com-
munication between the client and the service residing at port 80 without the client being able
to notice a change in traffic. Even though the Flask framework [39] based on which the proxy is
developed was very useful in setting up the forwarding, after using Flask to listen to the socket
and read the data before passing it further, I was only able to extract http packets, stripped from
any other (including TCP) information. This was because the framework is ultimately based on
the application layer and it does not deal with TCP data at all.

Python socket Reverse Proxy
Keeping in mind that I need to focus on the transport layer, I stopped trying to read tcp data
with the Flask framework. Initially, thanks to the online guide from Shanto Roy [40] I created
a TCP proxy using the python socket module, hoping to read unprocessed data from the socket
itself. With the initialization part of the code shown in figures 4.2 I unfortunately found the

Detection 20

socket to only read processed data in the connection, thus missing the searched for TCP headers
again.

To be able to read the transport layer data I needed, I would have to create a socket of type
SOCK RAW instead of SOCK STREAM as in figure 4.2.

Figure 4.2 TCP Proxy initialization and listen loop

I then, however, found out from MSDN documentation [41] and a helpful forum explanation
[42] that to use SOCK RAW socket type you have to give up a TCP connection because raw
sockets are essentially connection-less. For my proxy to work, I need the TCP connection with
the client, thus using the python socket was not an option.

TCP sniffer
I abandoned the idea of using a reverse proxy for the solution and opted to focus on the popular
TCP sniffing tool tcdump [43] and the C/C++ network traffic capture library libpcap it uses.
There is a basic packet sniffing tool available [44] which proved to be exactly what I needed,
giving me the ability to read the TCP packets, their headers and therefore the tcp.window.size
while not interfering with the communication. In figure 4.3 the tool packet processing code can
be seen.

Response 21

Figure 4.3 The code in the sniffing script processing the TCP protocol

And in figure 4.4 it can also be seen what the output of the process looks like.

Figure 4.4 An example of the TCP sniffing tool outputting one packet

As already mentioned, if a client sets tcp.window.size to zero a few times, that does not
necessarily mean it is an attacker [36]. The attackers, however, need to send the tcp.window.size
with value zero1 a large amount of times for the attack to be successful. I decided to then count
that amount, if it exceeded a configurable threshold a regular client would not normally exceed
in a certain configurable number of connections, I could confidently mark that source IP address
as an attacker and respond accordingly. It is important to look at the ratio of total number
of connections to the number of malicious packets, if I only set a hard limit for the number of
malicious packets even a regular user could possibly reach that limit given enough time. This
way I ensure that only the real attackers sending too many malicious packets in their short com-
munication are marked. In the script code I named this value RATIO TRESHOLD as seen in
figure 4.5.

Figure 4.5 Configurable script values

Because the tool is written in C language and not C++, for convenience I copied a map like
structure from [45] and used it to associate the amount of small tcp.window.size packets with
the IP address.

4.2 Response
At first it seemed to me that a simple iptables command as such should be enough of a mitigation:

1or very small but non-zero as already mentioned

Response 22

iptables -A INPUT -s <src.ip.address> -p tcp -m conntrack --ctstate ESTABLISHED
-j REJECT

I hoped it would force the server to refuse any other incoming packets from the attacker. However,
that was not the case. While this command does block any future connections from the attacking
IP address, it does not affect existing TCP connections in any way. I found that forcing a TCP
connection to a close without the approval of the client party proved more difficult than I thought
at first.
I ended up not only blocking future connections with the command above but also using the
ss command [46] with the –kill option using the already collected source IP address of the
connection:

ss --kill dst <src.ip.address>

which forcibly closes sockets, thus killing the current TCP connection.

4.2.1 Creating logs
I decided to use the Apache module system in the logging process. My script communicates with
my module through a named pipe. If an attack is blocked, the script sends information to the
module containing the time of the attack, attackers IP address, the number of malicious packets
and the total number of packets received from the address.

4.2.2 Created logging module
Using all the above mentioned knowledge, I created a logging Apache module (mostly seen in
figure 4.7) utilizing the APR library to create logs in the /var/log/apache2 directory.
The log transaction hook is triggered every time Apache is about to log information about a
request. At that point, all the available data provided by our defense script in our named pipe
/var/log attack is read. However, if this module is not running, the defense script can be left
hanging, trying to write into a named pipe with a full buffer. This is a bug which should be fixed
in the future.

Figure 4.6 Example of created log files

As seen in figure 4.6, it takes a little time before the defense script can call the ss –kill
command and for it to successfully kill the socket with the connection. This leads to more
logging of information about the same attack.

Testing 23

Figure 4.7 Apache module code

4.3 Testing

4.3.1 Simulating a botnet in Docker
For a proper simulation of an SDDoS I needed a simulated botnet to attack a server all at once.
For this I chose to create a docker network with a server, a regular user and 8 attacking containers
all responding to commands from the host.
In figure 4.8 I visualised the created docker environment and the communication between the
containers. The visualised Host is not only the host in the sense of the botnet but also the host
of the entire docker environment.

Testing 24

Figure 4.8 Botnet simulation

The user at 173.0.18.14
This is a regular Ubuntu Linux container making usual requests from the server, eventually used
as a probing container.
The server at 173.0.18.41
This is a Ubuntu Linux container running an Apache 2 server, with a functioning Wordpress
application and a MySQL database to make sure a more complex application is functioning
properly even under attack.
The attacking containers at 173.0.18.5-13
These are slowhttptest containers waiting for a command from host to attack the server. I will
later refer to them as bots

The python script to control the botnet as a simulated bot master is included in the attach-
ments, however, the main attacking command is:

slowhttptest -c <#.connections> -X -g -o attack_stats -n 1 -r
200 -u <element.url>

distributed to the bots by the docker utility:

docker exec -it <container.id> sh -c '<command>'

Unfortunately, I was not able to make the -e option of the slowhttptest tool work, which would
direct all probing traffic through a proxy, thus allowing me to check for the services availability
with the script. Without it, the iptables rule to block all incoming traffic from the attackers IP
address also blocks the probing request. This makes the service seem unavailable in the attack
tool graphs even when it is working perfectly well.

Testing 25

To mitigate the tool not working properly, I created a simple bash script of my own residing at
the user container, to check for the availability of the service during the attack. As you can see
in figure 4.9, I used a curl command requesting a large element on the website with the option
–max-time which is essentially just a timeout for the connection, if it times out after 4 seconds,
I can confidently say the service is unavailable.

Figure 4.9 Simple probing script

4.3.2 Having a reverse proxy
While trying to get TCP headers data, one of the approaches was to try and read it while
forwarding the packets through a reverse proxy. While this did not have the desired effect, it
did, however, prove to be extremely effective in defending against the attack by itself. When the
reverse proxy was active, up to 18 000 connections were established to the server without the
service going down, with the possibility of more connections with more resources as my hardware
became the bottleneck. This solution should definitely be looked into, however, it does not fall
into the scope of my thesis.

Chapter 5

Comparison of the results

5.1 Testing
I will run the test with these variable attack parameters:

Number of bots attacking the victim at the same time

Number of connections each bot is trying to establish

Rate of connections per second each bot is creating

The attacks -z option, meaning how much will the bot read from its buffer in order to make
the tcp.window.size slightly larger

For this test, the defense script parameters were:

RATIO TRESHOLD = 0.2
TCP WINDOW SIZE LIMIT = 50

bots # conn / bot # conn rate -z value service up
1 1000 50 5 100%
8 100 10 10 100%
8 1000 100 5 15%

As seen in the table, 8000 total connections proved to be too many for the defense script to
handle. As soon as the amount became unbearable for the server a denial of service occurred
(hence the 15% uptime before all connection have been made). Interestingly, the server did not
try to close the connections at all as the threshold was never reached. That is probably because
establishing all the connections to the server initially sends legitimate packets, thus lowering the
total packet to malicious packet ratio. It does it enough not to be detected before the server
was able to react like in the first test with only one bot. This theory is supported be the next test.

But just to show an example of the script at work with the first test, in figure 5.1 I would
like to show a section of the output the script produced during the second attack of the table
above. First half of the screenshot is the current state of the counting map, where each IP
address shows the amount of malicious packets already sent. In the middle section, there is the
output of the sniffer script which I modified, showing an incoming TCP packet from 173.8.0.7

26

Testing 27

with a tcp.window.size of zero. The lower part shows the script outputs the current ratio of total
packets to malicious packets. Since that ratio is higher than the threshold set, the script kills
the sockets associated to the address and bans all future connections.

Figure 5.1 Test two script output

For the next test, I reduced the ratio threshold from 20% to 10% with leaving the attack
parameter unchanged, in order to test my theory. The script parameters then were:

RATIO TRESHOLD = 0.1
TCP WINDOW SIZE LIMIT = 50

bots # conn / bot # conn rate -z value service up
1 1000 50 5 100%
8 100 10 10 100%
8 1000 100 5 100%

As visible in figure 5.2 the script was able to react much faster (after 5 malicious packets already),
in fact even faster than the attacking tool was to start sending packets from all the bots, we see
only two bot IP addresses detected so far (with 173.18.0.14 being my probing user).

Figure 5.2 Test six defense script output

This next test is meant to show how much the RATIO TRESHOLD affects the ability of the
server to react to the attack.
Even a single attacking bot can take the service down as the ratio never reaches 50%. Like
before, the service up-time is not 0% due to the slow connection rate, thus the service keeps

Evaluating the value of the created solution 28

responding to the probe during the initial phase of the attack.
RATIO TRESHOLD = 0.5
TCP WINDOW SIZE LIMIT = 50

bots # conn / bot # conn rate -z value service up
1 1000 50 5 20%

5.2 Evaluating the value of the created solution
I was unable to create an Apache module which would itself be the defense solution due to the
nature of the attack essentially focusing on the transport layer of the network. This means an
Apache module system working primarily on the application layer was defensively ineffective, so
I opted to create a logging system to the defense script.
With that in mind, I would like to evaluate the created defense script. While the script needs more
testing to be done, especially testing for false positives, the tests done so far proved the script to
be a viable defense solution against the Slow Read DDoS attack. With the high configurability
of its sensitivity to attacks in the RATIO THRESHOLD and TCP WINDOW SIZE LIMIT pa-
rameters, I believe it to be a flexible enough solution to eventually compete with other SDDoS
solutions, given enough time and work to make it safe for production deployment.

Chapter 6

Summary

The goals of this thesis were to explore in detail the current state of research in the field of
SDDoS attacks and their impact on the web servers, both of which I have successfully done in
chapter 2. In this chapter, I have also accomplished the second goal of the thesis which was
to identify the characteristics of a typical SDDoS attack. I have explained in detail both the
differences and similarities of the three most common SDDoS attack subtypes. I also explained
the principles of how each of them perform their communication leading to denial of service and
evaluated their current impact on servers. This led me to focus in detail on the Slow Read attack
subtype in later chapters, as its impact was by far larger compared to the other two.
My next goal was to design and implement an Apache 2 web server module, capable of SDDoS
attack detection and mitigation. I have not accomplished this goal as I found out the Slow Read
attack is at its core a transport layer attack. This made the Apache module system - which
works mostly on the application layer - very ineffective in defense solutions.
However, I have utilized the Apache module in creating a logging mechanism for a defense script.
After a long process of trying to detect the attack I was successful with a script based on the
C/C++ network traffic capture library libpcap, just like the very popular tool tcpdump. The
script is able to successfully mark users as attackers based on the ratio of their total communi-
cation to malicious communication.
I then accomplished my next goal by performing testing of my solution with a docker container
simulation including a botnet and a server running a functioning Wordpress application with a
MySQL database. It proved to be an effective and flexible solution configurable by its parame-
ters.
My final goal of the thesis was to compare the testing results with the existent SDDoS attack
defense methods and evaluate the contribution of the created solution. I have not compared the
testing results to other attack defense methods but I have evaluated the solution to be a success
and even though further testing is needed, it could prove to be an essential tool in the defense
against the Slow Read DDoS attack.

29

Bibliography

1. NIELSEN, Henrik; MOGUL, Jeffrey; FIELDING, Larry M Masinterand Roy T.; GETTYS,
Jim; LEACH, Paul J.; BERNERS-LEE, Tim. RFC 2616 - Hypertext Transfer Protocol –
HTTP/1.1. 1999. Available also from: https : / / datatracker . ietf . org / doc / html /
rfc2616. (Accessed on 03/25/2024).

2. Understanding Threads, Processes, and Connections (Oracle iPlanet Web Server 7.0.9 Per-
formance Tuning, Sizing, and Scaling Guide). Copyright 2010 Oracle Corporation. Available
also from: https://docs.oracle.com/cd/E19146-01/821-1834/geeie/index.html.
(Accessed on 04/04/2024).

3. Top 10 DDoS Attacks - SOCRadar® Cyber Intelligence Inc. Copyright 2024 SOCRadar.
Available also from: https : / / socradar . io / top - 10 - ddos - attacks/. (Accessed on
04/06/2024).

4. DEOLINDO, Vińıcius M.; DALMAZO, Bruno L.; SILVA, Marcus V.B. da; OLIVEIRA, Luiz
R.B. de; B. SILVA, Allan de; GRANVILLE, Lisandro Zambenedetti; GASPARY, Luciano
P.; NOBRE, Jéferson Campos. Using Quadratic Discriminant Analysis by Intrusion Detec-
tion Systems for Port Scan and Slowloris Attack Classification. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). 2021, vol. 12951 LNCS, pp. 188–200. isbn 9783030869694. issn 16113349.
Available from doi: 10.1007/978-3-030-86970-0_14.

5. RSNAKE. GitHub - XCHADXFAQ77X/SLOWLORIS: Slowloris HTTP DoS RSnake. 2016.
Available also from: https : / / github . com / XCHADXFAQ77X / SLOWLORIS/. (Accessed on
04/04/2024).

6. ZDRNJA, Bojan. Slowloris and Iranian DDoS attacks - SANS Internet Storm Center.
2009. Available also from: https://isc.sans.edu/diary/Slowloris+and+Iranian+
DDoS+attacks/6622. (Accessed on 03/25/2024).

7. LUKASEDER, Thomas; MAILE, Lisa; ERB, Benjamin; KARGL, Frank. SDN-Assisted
Network-Based Mitigation of Slow DDoS Attacks. [N.d.]. Available also from: http://uni-
ulm.de/in/vs.

8. SHEKYAN, Sergey. Owasp KS slowDoS.pdf. 2012. Available also from: https://owasp.
org/www-pdf-archive/Owasp_KS_slowDoS.pdf. (Accessed on 04/04/2024).

9. SHEKYAN, Sergey. Are you ready for slow reading? — Qualys Security Blog. 2012. Available
also from: https://blog.qualys.com/vulnerabilities-threat-research/2012/01/
05/slow-read. (Accessed on 04/06/2024).

30

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616
https://docs.oracle.com/cd/E19146-01/821-1834/geeie/index.html
https://socradar.io/top-10-ddos-attacks/
https://doi.org/10.1007/978-3-030-86970-0_14
https://github.com/XCHADXFAQ77X/SLOWLORIS/
https://isc.sans.edu/diary/Slowloris+and+Iranian+DDoS+attacks/6622
https://isc.sans.edu/diary/Slowloris+and+Iranian+DDoS+attacks/6622
http://uni-ulm.de/in/vs
http://uni-ulm.de/in/vs
https://owasp.org/www-pdf-archive/Owasp_KS_slowDoS.pdf
https://owasp.org/www-pdf-archive/Owasp_KS_slowDoS.pdf
https://blog.qualys.com/vulnerabilities-threat-research/2012/01/05/slow-read
https://blog.qualys.com/vulnerabilities-threat-research/2012/01/05/slow-read

Bibliography 31

10. ELIYAN, Lubna Fayez; PIETRO, Roberto Di. DoS and DDoS attacks in Software Defined
Networks: A survey of existing solutions and research challenges. Future Generation Com-
puter Systems. 2021, vol. 122, pp. 149–171. issn 0167-739X. Available from doi: https:
//doi.org/10.1016/j.future.2021.03.011.

11. MOUSAVI, Seyed Mohammad; ST-HILAIRE, Marc. Early detection of DDoS attacks against
SDN controllers. In: 2015 International Conference on Computing, Networking and Com-
munications (ICNC). 2015, pp. 77–81. Available from doi: 10.1109/ICCNC.2015.7069319.

12. YU, Shanshan; ZHANG, Jicheng; LIU, Ju; ZHANG, Xiaoqing; LI, Yafeng; XU, Tianfeng. A
cooperative DDoS attack detection scheme based on entropy and ensemble learning in SDN.
Eurasip Journal on Wireless Communications and Networking. 2021, vol. 2021, pp. 1–21.
issn 16871499. Available from doi: 10.1186/S13638-021-01957-9/FIGURES/12.

13. HIRAKAWA, Tetsuya; TAKATA, Toyoo. The Trade-Off Between the False-Positive Ratio
and the Attack Cost of Slow HTTP DoS. In: 2021, pp. 225–237. isbn 978-3-030-57810-7.
Available from doi: 10.1007/978-3-030-57811-4_21.

14. WAF DDoS: Why WAF and DDoS – A Perfect Prearranged Marriage. Copyright 2024
Radware. Available also from: https://www.radware.com/cyberpedia/application-
security / why - waf - and - ddos - a - perfect - prearranged - marriage/. (Accessed on
04/07/2024).

15. GitHub - owasp-modsecurity/ModSecurity. 2024. Available also from: https://github.
com/owasp-modsecurity/ModSecurity. (Accessed on 04/03/2024).

16. BLANKENSHIP, Harold. Trustwave Transfers ModSecurity Custodianship to OWASP —
OWASP Foundation. 2024. Available also from: https://owasp.org/blog/2024/01/09/
ModSecurity.html. (Accessed on 04/03/2024).

17. What is a Slowloris Attack? — NETSCOUT. Copyright 2024 NETSCOUT. Available also
from: https://www.netscout.com/what-is-ddos/slowloris-attacks. (Accessed on
03/28/2024).

18. JAO, David. mod limitipconn.c. Copyright 2002 David Jao. Available also from: https:
//dominia.org/djao/limitipconn.html. (Accessed on 03/28/2024).

19. mod qos. Copyright 2007-2024 Pascal Buchbinder. Available also from: https : / / mod -
qos.sourceforge.net/. (Accessed on 03/28/2024).

20. ZDZIARSKI, Jonathan. GitHub - jzdziarski/mod evasive: Apache mod evasive module. 2017.
Available also from: https : / / github . com / jzdziarski / mod _ evasive. (Accessed on
03/28/2024).

21. mod antiloris download — SourceForge.net. 2013. Available also from: https://sourceforge.
net/projects/mod-antiloris/. (Accessed on 03/28/2024).

22. MOUSTIS, Dimitrios; KOTZANIKOLAOU, Panayiotis. Evaluating security controls against
HTTP-based DDoS attacks. IISA 2013 - 4th International Conference on Information, In-
telligence, Systems and Applications. 2013, pp. 165–170. isbn 9781479907717. Available
from doi: 10.1109/IISA.2013.6623707.

23. mod reqtimeout - Apache HTTP Server Version 2.4. Copyright 2024 The Apache Software
Foundation. Available also from: https://httpd.apache.org/docs/2.4/mod/mod_
reqtimeout.html. (Accessed on 03/28/2024).

24. core - Apache HTTP Server Version 2.4. Copyright The Apache Software Foundation 2024.
Available also from: https://httpd.apache.org/docs/2.4/mod/core.html. (Accessed
on 05/05/2024).

25. COMMISSION, Federal Communications. fcc.gov. 2023. Available also from: https://www.
fcc.gov/sites/default/files/CSRIC8-Report-SecurityVulnerabilitiesMitigationsHTTP2-
0623.docx. (Accessed 28-03-2024).

https://doi.org/https://doi.org/10.1016/j.future.2021.03.011
https://doi.org/https://doi.org/10.1016/j.future.2021.03.011
https://doi.org/10.1109/ICCNC.2015.7069319
https://doi.org/10.1186/S13638-021-01957-9/FIGURES/12
https://doi.org/10.1007/978-3-030-57811-4_21
https://www.radware.com/cyberpedia/application-security/why-waf-and-ddos-a-perfect-prearranged-marriage/
https://www.radware.com/cyberpedia/application-security/why-waf-and-ddos-a-perfect-prearranged-marriage/
https://github.com/owasp-modsecurity/ModSecurity
https://github.com/owasp-modsecurity/ModSecurity
https://owasp.org/blog/2024/01/09/ModSecurity.html
https://owasp.org/blog/2024/01/09/ModSecurity.html
https://www.netscout.com/what-is-ddos/slowloris-attacks
https://dominia.org/djao/limitipconn.html
https://dominia.org/djao/limitipconn.html
https://mod-qos.sourceforge.net/
https://mod-qos.sourceforge.net/
https://github.com/jzdziarski/mod_evasive
https://sourceforge.net/projects/mod-antiloris/
https://sourceforge.net/projects/mod-antiloris/
https://doi.org/10.1109/IISA.2013.6623707
https://httpd.apache.org/docs/2.4/mod/mod_reqtimeout.html
https://httpd.apache.org/docs/2.4/mod/mod_reqtimeout.html
https://httpd.apache.org/docs/2.4/mod/core.html
https://www.fcc.gov/sites/default/files/CSRIC8-Report-SecurityVulnerabilitiesMitigationsHTTP2-0623.docx
https://www.fcc.gov/sites/default/files/CSRIC8-Report-SecurityVulnerabilitiesMitigationsHTTP2-0623.docx
https://www.fcc.gov/sites/default/files/CSRIC8-Report-SecurityVulnerabilitiesMitigationsHTTP2-0623.docx

Bibliography 32

26. slowhttptest — Kali Linux Tools. Copyright OffSec Services Limited 2024. Available also
from: https://www.kali.org/tools/slowhttptest/. (Accessed on 04/16/2024).

27. SHEKYAN, Sergey. GitHub - shekyan/slowhttptest: Application Layer DoS attack simula-
tor. 2022. Available also from: https://github.com/shekyan/slowhttptest. (Accessed
on 04/16/2024).

28. Apache Killer. Copyright 2024 Radware. Available also from: https://www.radware.
com/security/ddos- knowledge- center/ddospedia/apache- killer/. (Accessed on
04/16/2024).

29. slowhttptest/src/slowhttptest.cc at master · shekyan/slowhttptest · GitHub. 2022. Avail-
able also from: https : / / github . com / shekyan / slowhttptest / blob / master / src /
slowhttptest.cc. (Accessed on 05/08/2024).

30. Developing modules for the Apache HTTP Server 2.4 - Apache HTTP Server Version 2.4.
Copyright 2024 The Apache Software Foundation. Available also from: https://httpd.
apache.org/docs/2.4/developer/modguide.html. (Accessed on 05/06/2024).

31. 3.3 Extending Apache: Apache Modules (G). 2004. Available also from: http://www.fmc-
modeling.org/category/projects/apache/amp/3_3Extending_Apache.html. (Accessed
on 05/06/2024).

32. How to use Apache2 modules — Ubuntu. 2023. Available also from: https://ubuntu.com/
server/docs/how-to-use-apache2-modules. (Accessed on 05/06/2024).

33. Converting Modules from Apache 1.3 to Apache 2.0 - Apache HTTP Server Version 2.5.
Copyright 2023 The Apache Software Foundation. Available also from: https://httpd.
apache.org/docs/trunk/developer/modules.html. (Accessed on 05/06/2024).

34. Apache2: request rec Struct Reference. date unknown. Available also from: https://nightlies.
apache.org/httpd/trunk/doxygen/structrequest__rec.html. (Accessed on 05/06/2024).

35. HTTP response status codes - HTTP — MDN. date unknown. Available also from: https:
//developer.mozilla.org/en-US/docs/Web/HTTP/Status. (Accessed on 05/06/2024).

36. TCP Series #4: The TCP Receive Window and everything to know about it. 2017. Available
also from: https://accedian.com/blog/tcp- receive- window- everything- need-
know/. (Accessed on 05/15/2024).

37. 3.3 Extending Apache: Apache Modules (G). 2004. Available also from: http://www.fmc-
modeling.org/category/projects/apache/amp/3_3Extending_Apache.html. (Accessed
on 05/15/2024).

38. 0XE2D0. Flask-Reverse-Proxy/proxy.py at main · 0xe2d0/Flask-Reverse-Proxy · GitHub.
2022. Available also from: https://github.com/0xe2d0/Flask-Reverse-Proxy/blob/
main/proxy.py. (Accessed on 05/15/2024).

39. Welcome to Flask — Flask Documentation (3.0.x). Copyright 2010 Pallets. Available also
from: https://flask.palletsprojects.com/en/3.0.x/. (Accessed on 05/15/2024).

40. ROY, Shanto. Write a Reverse Proxy Server in Python: Part 1 (Reverse Proxy Server)
- Roy’s Blog. 2021. Available also from: https://shantoroy.com/network/write- a-
reverse-proxy-server-in-python/. (Accessed on 05/15/2024).

41. TCP/IP raw sockets - Win32 apps — Microsoft Learn. 2022. Available also from: https:
//learn.microsoft.com/en- us/windows/win32/winsock/tcp- ip- raw- sockets-
2?redirectedfrom=MSDN. (Accessed on 05/15/2024).

42. LEBEAU, Remy. c++ - Connect function in raw socket? - Stack Overflow. 2016. Available
also from: https://stackoverflow.com/questions/41369086/connect-function-in-
raw-socket. (Accessed on 05/15/2024).

https://www.kali.org/tools/slowhttptest/
https://github.com/shekyan/slowhttptest
https://www.radware.com/security/ddos-knowledge-center/ddospedia/apache-killer/
https://www.radware.com/security/ddos-knowledge-center/ddospedia/apache-killer/
https://github.com/shekyan/slowhttptest/blob/master/src/slowhttptest.cc
https://github.com/shekyan/slowhttptest/blob/master/src/slowhttptest.cc
https://httpd.apache.org/docs/2.4/developer/modguide.html
https://httpd.apache.org/docs/2.4/developer/modguide.html
http://www.fmc-modeling.org/category/projects/apache/amp/3_3Extending_Apache.html
http://www.fmc-modeling.org/category/projects/apache/amp/3_3Extending_Apache.html
https://ubuntu.com/server/docs/how-to-use-apache2-modules
https://ubuntu.com/server/docs/how-to-use-apache2-modules
https://httpd.apache.org/docs/trunk/developer/modules.html
https://httpd.apache.org/docs/trunk/developer/modules.html
https://nightlies.apache.org/httpd/trunk/doxygen/structrequest__rec.html
https://nightlies.apache.org/httpd/trunk/doxygen/structrequest__rec.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://accedian.com/blog/tcp-receive-window-everything-need-know/
https://accedian.com/blog/tcp-receive-window-everything-need-know/
http://www.fmc-modeling.org/category/projects/apache/amp/3_3Extending_Apache.html
http://www.fmc-modeling.org/category/projects/apache/amp/3_3Extending_Apache.html
https://github.com/0xe2d0/Flask-Reverse-Proxy/blob/main/proxy.py
https://github.com/0xe2d0/Flask-Reverse-Proxy/blob/main/proxy.py
https://flask.palletsprojects.com/en/3.0.x/
https://shantoroy.com/network/write-a-reverse-proxy-server-in-python/
https://shantoroy.com/network/write-a-reverse-proxy-server-in-python/
https://learn.microsoft.com/en-us/windows/win32/winsock/tcp-ip-raw-sockets-2?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/windows/win32/winsock/tcp-ip-raw-sockets-2?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/windows/win32/winsock/tcp-ip-raw-sockets-2?redirectedfrom=MSDN
https://stackoverflow.com/questions/41369086/connect-function-in-raw-socket
https://stackoverflow.com/questions/41369086/connect-function-in-raw-socket

Bibliography 33

43. Home — TCPDUMP & LIBPCAP. 2024 The Tcpdump Group. Available also from: https:
//www.tcpdump.org/. (Accessed on 05/15/2024).

44. HARGRAVE, Vic. GitHub - vichargrave/sniffer: Example code from my Develop a Packet
Sniffer with libpcap blog. 2022. Available also from: https://github.com/vichargrave/
sniffer. (Accessed on 05/15/2024).

45. Implementation on Map or Dictionary Data Structure in C - GeeksforGeeks. 2023. Available
also from: https://www.geeksforgeeks.org/implementation-on-map-or-dictionary-
data-structure-in-c/. (Accessed on 05/15/2024).

46. ss(8) - Linux manual page. 2023. Available also from: https://man7.org/linux/man-
pages/man8/ss.8.html. (Accessed on 05/15/2024).

https://www.tcpdump.org/
https://www.tcpdump.org/
https://github.com/vichargrave/sniffer
https://github.com/vichargrave/sniffer
https://www.geeksforgeeks.org/implementation-on-map-or-dictionary-data-structure-in-c/
https://www.geeksforgeeks.org/implementation-on-map-or-dictionary-data-structure-in-c/
https://man7.org/linux/man-pages/man8/ss.8.html
https://man7.org/linux/man-pages/man8/ss.8.html

Attachment contents

readme.txt .. basic description of the content
script

sniffer............................The executable of the defense script implemetation
src

attack gen.py.....................................source code of the attacking script
flask proxy.py.. source code of the flask proxy
apache module

Makefile ... apache module makefile
mod antiSDDoS.cpp.....................apache module implementation source code
mod antiSDDoS.lo......................apache module implementation source code
mod antiSDDoS.la......................apache module implementation source code
mod antiSDDoS.o.......................apache module implementation source code
mod antiSDDoS.slo.....................apache module implementation source code

defense script
sniffer.c.........................source code of the defense script implementation
sniffer.o.........................source code of the defense script implementation
Makefile...defense script makefile
README.md........The readmefile of the sniffing tool the defense script is based upon

thesis..zdrojová forma práce ve formátu LATEX
text...text práce

thesis.pdf...text práce ve formátu PDF

34

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Introducing the SDDoS attack
	The problematics of SDDoS
	Specifics of Distributed Denial of Service attacks
	HTTP communication
	How SDDoS attacks work

	Current state of research in the SDDoS field
	SDDoS defense approaches
	Off-site defenses
	On-site defenses

	Impact of SDDoS on current web servers
	Attack testing tools
	slowhttptest
	slowloris

	WebServer Apache2 Module Architecture
	Creating an Apache module
	Hooking into the request handling process
	A module handler

	Defense design and implementation
	Detection
	Response
	Creating logs
	Created logging module

	Testing
	Simulating a botnet in Docker
	Having a reverse proxy

	Comparison of the results
	Testing
	Evaluating the value of the created solution

	Summary
	Attachment contents

