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Abstract

This thesis presents the design and implementation of a Zeek extension that enables organiza-
tions with existing Zeek implementations to leverage the capabilities of the NEMEA system.
Despite Zeek’s comprehensive network monitoring capabilities, compared to NEMEA, it does
not natively support Python, which can be used for machine learning analysis. To overcome
such shortcomings, the project introduces a plugin that facilitates the export of extended flow
statistics to NEMEA, similar to the IPFIXprobe flow exporter. The main challenge is integrating
the extension with Zeek’s core C++ API and NEMEA framework libraries, which is necessary
for an effective individual packet analysis and data export in UniRec format. Extensive testing
ensures the extension provides accurate data without disrupting Zeek’s overall performance. By
introducing this extension, Zeek users can now seamlessly leverage all of NEMEA’s capabilities
and enhance their security posture.

Keywords computer network, network security monitoring, Zeek, NEMEA, IPFIXprobe, plu-
gin development, network flow export, flow-based monitoring, Zeek script

Abstrakt

Tato práce představuje návrh a implementaci rozš́ı̌reńı systému Zeek, které umožňuje orga-
nizaćım provozuj́ıćı systém Zeek rovněž využ́ıvat funkce systému NEMEA. Přestože je Zeek
schopen komplexńıho śıt’ového monitoringu, oproti NEMEA systému např́ıklad nenab́ıźı pod-
poru jazyka Python, který je velmi populárńım pro pokročilou detekci hrozeb za pomoci stro-
jového učeńı. Tento projekt překonává nedostatky systému Zeek pluginem, který exportuje
rozš́ı̌rené flow statistiky do systému NEMEA, podobně jako IPFIXprobe flow exporter. Největš́ım
úskaĺım je integrace pluginu s C++ API Zeek systému a knihovnami NEMEA frameworku, což
je nezbytným krokem pro efektivńı analýzu dat a jejich následný export. Důsledné testováńı
zaručuje správnost generovaných dat a neovlivněný výkon celého systému. Uživatelé Zeeku mo-
hou za pomoci tohoto rozš́ı̌reńı jednoduše využ́ıvat schopnosti NEMEA systému a zlepšit tak
svou bezpečnostńı strategii.

Kĺıčová slova poč́ıtačová śıt’, bezpečnostńı monitorováńı śıtě, Zeek, NEMEA, IPFIXprobe,
vývoj pluginu, flow export, flow-based monitorováńı, Zeek skript
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Introduction

Network monitoring is a critical process that has become integral to managing IT infrastructure
and high-speed networks. The original network monitoring approach was to inspect each packet
individually. This became technically infeasible as both network traffic volume and complexity
increased. The lack of processing power and digital storage could only be solved with expensive
hardware that was not available to everyone, which later led to the adoption of a new approach,
flow-based monitoring. This effective and scalable method aggregates packets into flows for
analysis, addressing both mentioned limitations, although flow data repositories can still grow to
large sizes. A flow is defined as “a set of IP packets passing an observation point in the network
during a certain time interval, such that all packets belonging to a particular flow have a set
of common properties” [1]. Flow monitoring is now a widespread approach used for security
analysis, to comply with data retention laws, and many others [2].

Currently, many solutions exist for comprehensive network monitoring and flow analysis. Two
notable independent systems this thesis focuses on are Zeek [3] and NEMEA [4]. Zeek is a widely
adopted open-source tool introducing its own Zeek scripting language, an intuitive language
focused on network connection and protocol analysis. NEMEA’s community and ecosystem, on
the other hand, is not too extensive which poses a bigger challenge during setup. However, its
Python support naturally offers machine learning integration, which is becoming a necessary
part of a well-rounded network traffic analysis approach. To facilitate a seamless connection to
the NEMEA system for Zeek users while avoiding the integration of redundant flow exporters, a
bridge between the two systems is necessary, which is the aim of this thesis.

In its default configuration, the Zeek system creates multiple connection and protocol-focused
logs, none of which contain all flow statistics data necessary for a comprehensive NEMEA com-
munication. Zeek also provides a few output formats, including JSON or TSV. However, NEMEA
utilizes UniRec, a minimal binary format for messages, which is not supported. As a modular
system, Zeek enables users to extend the core functionality using scripts and plugins, but the
problems mentioned above have not yet been addressed. This is why the thesis focuses on the
development of a plugin that effectively and seamlessly connects Zeek with NEMEA. The exten-
sion will hopefully help organizations using Zeek conveniently leverage NEMEA capabilities and
enhance their overall security posture.

The thesis first introduces the evolution and principles of network monitoring to establish a
knowledge baseline before exploring Zeek and NEMEA. The two approaches, script and compiled
plugin, are discussed in terms of implementation, performance, and convenience. Zeek script
provides an intuitive and less technical method to extend the system capabilities but is ineffective
in higher throughput environments. The compiled plugin is more suitable for network data
processing, but a deeper understanding of Zeek Application Programming Interface (API) and
C++ language is necessary. To verify stability and performance, thorough testing is conducted
by comparing packet captures and other log outputs and through a network traffic stress test.

1



Chapter 1

Related Work

1.1 Computer Network Monitoring
Network monitoring is a practice encompassing many activities, many of which are out of the
scope of this thesis. In general, it is a practice of continuously collecting information from
computer networks with the aim of ensuring it is working properly and securely. The aspects
can be simplified into infrastructure health, network performance, and network security. Keeping
a network healthy means, for example, keeping all infrastructure up to date — routers, switches,
endpoints, and servers. Focusing on optimal performance is crucial to fully utilize the potential
of all devices, which, in the end, saves money. The primary focus of this work is the last aspect,
network security, which itself is a very broad area. Other than detecting anomalies, Distributed
Denial of Service (DDoS) attacks, or data exfiltration using a flow monitoring approach, on which
we will focus, keeping a network safe means also detecting malware, intrusion, and many more.

1.1.1 Methods and Techniques
We can classify network monitoring approaches into active and passive [2]. Active means the
monitoring device generates traffic in the form of simple pings or more complex queries to either
conduct various performance measurements or request data from network infrastructure and
endpoints to check their status in terms of proper function and to check for infection. The
second approach is more relevant to this work. Passive monitoring is an approach where no
additional information enters the networks, and we only listen. It can be referred to as Network
Traffic Analysis (NTA) and is often conducted by a more complex and comprehensive network
management software conducting real-time analysis, which we will discuss later.

The purpose of NTA is to have an idea of what is happening on our network. This is necessary
not only to detect malware but also active devices on the network, vulnerable protocols, and so on.
Keeping the collected data is helpful for forensic purposes in case of an incident and sometimes
even for complying with various data retention laws.

Two main sources of data are packet data and flows. The inspection of individual packets
and their payloads is referred to as Deep Packet Inspection (DPI) and can be collected using, for
example, a network switch SPAN port, port mirror, or a network Test Access Point (TAP) [5].
The most significant benefit of DPI is a 100% visibility to the network, however, it can be very
resource intensive, especially in high-speed networks where millions of packet can pass through
every second. The Flow monitoring approach, on the other hand, usually only collects pieces of
every packet, speeding up the collection process and dramatically reducing the volume of data
for analysis. The disadvantage of the flow approach is that it lacks the richer detail necessary

2



Flow-Based Monitoring 3

to detect certain complex cyber security issues. The collection of flows is commonly facilitated
using network infrastructure like routers, which usually integrate flow-collecting mechanisms out
of the box.

1.2 Flow-Based Monitoring
During the decade of 1990, the internet and digital communications usage exploded, significantly
contributing to the volume of data traveling through networks worldwide. At the same time,
technological advancements in network infrastructure, like the transition from dial-up to broad-
band and later fiber, led to much faster networks, increasing also the speed at which the data
needed to be handled. As the network usage grew, so did the variety and frequency of network
security threats. Malware distribution, data exfiltration, and DDoS attacks had to be somehow
addressed. All of these aspects contributed to the development of flow-based monitoring, which
effectively addresses many of these obstacles and shortcomings.

1.2.1 History
Flow-based monitoring was first introduced in 1991 by an Internet Engineering Task Force (IETF)
work group. However, its debut was unsuccessful due to privacy concerns and philosophies at
the time. The incentive was then resuscitated after 1995, going through a notable development,
but due to a lack of vendor interest, the research was again canceled in 2000.

In the meantime, Cisco has been developing a NetFlow technology, initially focused on switch-
ing, that is pretty similar to flow monitoring. It implemented a simple unidirectional flow cache,
where the flow was defined by an ingress interface, source and destination IP address and port
number, IP protocol number, and IP Type of Service. The forwarding decision of each frame
was only conducted for the first packet of a flow. All the following packets were automatically
switched in the same data plane (also referred to as the “forwarding plane”).

Multiple versions of Cisco NetFlow have been developed through the years, although some of
the initial versions were only internal. The two most notable versions are v5 [6] and v9 [7], each
introducing significant features and improvements. Version v5 is the most widely supported and
considered a standard format for many network monitoring tools. It is fixed in structure, which
means it lacks the flexibility to support, for example, IPv6 protocol and cannot be customized.
The next significant version, v9, introduced a more flexible and extensible framework to support
more flow record formats, including IPv6, Multiprotocol Label Switching (MPLS), and multicast.

Although there is a version referred to as NetFlow v10, it was developed by IETF in an
effort to standardize a flow export protocol. From 2004 to 2008, the IP Flow Information Export
(IPFIX) IETF working group extended the NetFlow v9 by introducing support for variable-length
fields, new Information Elements (IEs) to capture more detailed data about flows, and the option
for more flexible and secure transport protocols, including Stream Control Transmission Protocol
(SCTP), in addition to UDP and TCP supported by NetFlow v9. In 2014, IETF standardized
this NetFlow extension in RFC 7011 as the IPFIX Internet Standard[1]. Since then, IPFIX has
become widely supported by routers, switches, and other devices.

1.2.2 Flow Definition and Architecture
According to RFC 7011 [1], flows are defined as “sets of IP packets passing an observation point
in the network during a certain time interval, such that all packets belonging to a particular
flow have a set of common properties.” These common properties differ between protocols and
versions; however, they mostly include packet header fields such as source and destination IPs
and port numbers, packet contents, and other metadata.
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1.2.3 Architecture
According to Flow Monitoring Explained paper [2], the flow monitoring process architecture is
mainly conceptual, comprising 4 phases, which do not have to be completely distinct in reality.
The first phase is “packet observation”, which describes how packets are read from various
media. The second phase called “flow metering and export”, focuses on aggregating packets
into flows, flow record creation, and their subsequent export. These two phases usually occur
on a single device, referred to as a “flow exporter”. The next phase is the “data collection”,
which is concerned with the pre-processing of collected flow records and their optimal storage.
The last conceptual phase is “data analysis”, where data is parsed to generate simple statistics
and alerts and analyzed to detect threats and anomalies. Besides, the data can also be used
for network performance measurements. Although each phase can be conducted by a separate
machine or tool, many comprehensive solutions like Zeek are capable of all the mentioned steps
out of the box, making the whole flow monitoring setup process much more approachable to
smaller organizations or teams without the resources for multiple specialized devices.

1.2.3.1 Packet Observation
In the first phase, packets are captured from an observation point, which can be placed not only
in a wired or wireless network but also in a virtual one. In the case of a wireless observation,
capturing packets on a single point like a WLAN controller is suggested rather than from a
wireless device. This approach is easier to implement since decrypting the link layer encryption
can be avoided. Most comprehensive software-based network monitoring solutions also support
offline input in the form of packet capture (pcap) files. On a typical system, observation is
conducted using packet capture libraries capable of packet capture and filtering and offline pcap
read and write. Both software and hardware optimizations and acceleration have been developed
to speed up this process, mainly through efficient memory management and low-level hardware
interaction. After packets are read from the source, they go through multiple pre-processing
steps, which are, in part, necessary for further processing.

Figure 1.1 Architecture of the packet observation stage [2]

The packet observation phase can be further divided into several steps, as can be seen in
Figure 1.1. As mentioned, packets must first be captured or read from a media. The second
mandatory step is timestamping, which is, in an ideal case, closely connected to packet capture.
Hardware timestamping conducted by specialized network cards is much more accurate than
software-based timestamps, which can introduce a slight latency. Timestamping is necessary not
only to keep a correct order of events in case of merging data from multiple sources but also for
precise analysis and forensic purposes.

The next steps, truncation, packet sampling, and packet filtering are not mandatory, how-
ever, in certain situations, they can dramatically save resources and make the whole processing
more effective. Truncation of packets is certainly considerable in a flow monitoring environment,
as most protocols only work with the packet headers. However, some flow records can be ex-
tended with application-level information, in which case the truncation step must be skipped.
When the flow monitoring setup cannot process all packets, or in the case of a single packet flow
approach, the processed packet number can be reduced by implementing sampling. Sampling
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simply discards packets either systematically or randomly, effectively reducing bandwidth and
memory consumption. However, it results in information loss, and if not conducted properly,
our monitoring results can be biased. When only certain traffic is in our interest, packets can be
filtered by selecting only packets having certain properties or by hashing their parts and com-
paring them with hashes of the desired patterns. This way, uninteresting packets are discarded,
and bandwidth and memory consumption are reduced.

1.2.3.2 Flow Metering and Export

Figure 1.2 Architecture of the Flow Metering & Export stage [2]

After pre-processing, packets enter the metering phase (see Figure 1.2), where they are first
aggregated into flows based on IEs defining the flow layout and are later exported in the IPFIX
flow records. The IE layout consists of a name like “sourceIPv4Address”, ID, a description like
“IPv4 destination address in the packet header”, and other fields including length. Additionally,
to IP addresses, other IEs supported by most exporters can include flow start and end times,
protocol identifiers, number of bytes or packets, and information from link and application layers,
although commonly focused on network and transport layers. The format of IEs is specified using
IE templates, which are propagated from flow exporters to collectors.

Each time a new flow is detected, an entry consisting of IEs is created in flow cache tables
to keep track of active flows. These entries are identified by a “flow key”, which is defined by
a subset of the record IEs, such as IP addresses and port numbers. Flows can be collected
either unidirectionally or bidirectionally. In the case of bidirectional metering, there is a distinc-
tion between the originator and responder, and the host IEs have to be reversed to match the
corresponding flow cache entry correctly.

There can be multiple reasons for a flow to leave the cache table, such as timeout based on
total duration or inactivity. The specific timeout values should be correctly configured to achieve
the desired length and number of flows. Another reason for a flow entry expiration is a natural
connection expiration, such as a TCP FIN message. This is often the desired outcome since the
entry includes complete communication between the endpoints. A less desired reason is a cache
table becoming full. Since there are many approaches to flow collection, such as a low packet
sampling rate, it is necessary to correctly dimension the cache tables to not lose valuable data
due to insufficient space.

Before the records are exported, another sampling and filtering can be conducted on the whole
flow records instead of individual packets. This is done to reduce the processing requirements
of the subsequent phases. The sampling can again be done systematically or randomly while
filtering can target specific hosts, subnets, or port numbers.

When the records leave the flow cache, they can be encapsulated in a message and exported
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to one or more flow collectors using a flow export protocol. The standard export protocol, IPFIX,
uses message formats similar to the one depicted in Table 1.1. Some of the fields are fixed length
(numbers in parentheses indicate byte length), while the rest can contain variable length data.
The variable part comprises sets of one or more records, either describing an IE template or
carrying flow records or metadata for flow collectors. A flow record is then defined in RFC 7011
as “information about a specific flow that was observed at an observation point”[1].

Table 1.1 IPFIX message format [2]

Version Number (2) Length (2)
Export time (4)

Sequence number (4)
Observation domain ID (4)

Set ID (2) Length (2)
Record 1
Record 2
Record n

When it comes to the message-carrying protocol itself, IPFIX is protocol-agnostic, typically
using SCTP, TCP, or UDP for transport. The suggested option is SCTP, thanks to its flexibility
and reliability. However, since there is usually a lack of support from both Operating Systems
(OS) and network devices, it can be difficult to implement. [2].

Because of the large processing requirements of the flow exporters, software-based solu-
tions are often not sufficient to handle high-speed network traffic. To overcome this shortcom-
ing, hardware-based or hardware-accelerated solutions are often implemented. Each approach
presents a trade-off: the decision lies between speed at a high cost and flexibility with more
affordability. There is a variety of comprehensive flow export solutions to choose from, both
commercial and open-source such as IPFIXprobe (see Section 1.5).

1.2.3.3 Data Collection
Multiple flow collectors can collect messages exported from flow exporters. These devices or
processes are concerned with first receiving data and then storing and pre-processing it before
analysis. The main decision regarding storage is between volatile and persistent options. Working
with data only in memory comes with a significant speed advantage, but the capacity might be
insufficient for processing large volumes of data. While solutions such as NEMEA (which is
described in Section 1.4) rely fully on this approach, a combination of the two is often inevitable.
Persistent disk storage provides much bigger capacity, but frequent writes can pose a performance
challenge. Pre-processing data by compression and correct storage format can make this process
less problematic. For example, binary storage format (flat files) introduces much less overhead
than databases, but it can be much more complicated to work with regarding filtering and queries.
Other than compression, pre-processing data can also include tasks like anonymization, although
it is less necessary than in methods like DPI. Similarly to flow export, there is an abundance of
both commercial and open-source tools for data collection [2].

1.2.3.4 Data Analysis
The last step in the flow monitoring process is data analysis. While manual analysis is certainly
possible and even necessary in some cases, some automation is inevitable to react to incidents
promptly in real time. The most basic analysis can include browsing and filtering flow data,
generating statistical overviews, and simple reporting and alerting of events such as suspicious
numbers of connections or traffic spikes.
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A more complicated analysis has to be conducted to identify threats in the network. A forensic
approach — focusing on who talked to who, for how long, how much. . . — can help uncover
attacks such as DDoS, worms, botnet communication, SPAM, network scans, and even Advanced
Persistent Threats (APTs) [2]. Command and control (C2) and other malicious addresses are
identified with the help of address reputation lists or blacklists, which can be managed locally or
by a third party, such as threat intelligence organizations. Another threat detection approach is
called pattern analysis, which is concerned with patterns such as rapidly repeated unsuccessful
logins, indicating a brute-force attack.

In addition to threat detection and data filtering, data can be analyzed to monitor the per-
formance and status of active services on the network. This can include metrics like Round-Trip
Time (RTT), jitter, delay, packet loss, and bandwidth use. A very practical use of performance
monitoring is, for example, service provider Service Level Agreement (SLA) verification, which is
most commonly concerned with availability. Performance can be monitored by post-processing
IEs exported by flow exporters, which is an easy-to-deploy but not comprehensive solution. A
more sophisticated method is to extend the flow exporter data by performance metrics, which
provides more information but requires some configuration and relies on higher protocols. Again,
one can choose from multiple open-source and commercial tool options for data analysis, such
as NEMEA [2].

1.3 Zeek
Zeek, which was originally called Bro, is a widely adopted, passive network traffic analyzer[3]. It is
an open-source software with a big community behind it. Its primary use is identifying vulnerable
SW and malware in computer networks, brute forcing, web applications, and generally suspicious
or malicious traffic. Zeek is so widely used because it is able to run on commodity HW, which
presents a low-cost solution for users of all types.

1.3.1 History
Zeek was initially created by Vern Paxson in an academic research at Lawrence Barkley Na-
tional Laboratory (LBNL). Although the project received much support from the International
Computer Science Institute (ICSI) in 2003, it wasn’t suitable for a wider audience because of its
complexity and generally bad end-user experience. In 2012, the National Center for Supercom-
puting Applications (NCSA) stepped in and helped develop the Zeek 2.0 version. This version
introduced a much better user interface which helped Zeek spread in the networking community.
An online educational platform was also introduced for developers to get hands-on experience
with Zeek’s custom scripting language. Around 2019, a new version, 3.0, was introduced, finally
under the name Zeek.

1.3.2 Usage and Capabilities
As mentioned, Zeek is mainly used as a security monitor to help with network incident investi-
gations; however, it can also be leveraged for troubleshooting and performance measurements.
Zeek reports in the form of various logs, each focused on a specific area of NTA. These can
include protocol or flow-focused logs, logs of files extracted from network communications, and
so on. The information Zeek reports can then be formatted and further analyzed by Security
Information and Event Management (SIEM) solutions.

The tool is fully customizable, meaning one does not have to rely on Zeek’s default func-
tionality and can introduce custom scripts or plugins. Zeek developed its own Turing-complete,
domain-specific scripting language, which was developed with network analysis in mind. No
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functionality is hard-coded into the Zeek core, which means users have full control over Zeek’s
functionality.

Despite Zeek being a versatile tool, it is not optimized for all the aspects of a comprehensive
NTA. Although it can be used as a signature-based IDS, or as a protocol analyzer, it is not
optimized for byte matching and packet-level inspection. For these purposes, users should turn
to other specialized tools such as Suricata, which is more suitable for DPI thanks to its multi-
threaded architecture [8]. Zeek mainly specializes in semantic misuse, anomaly detection, and
behavioral analysis.

Data sources in securing systems can be generally classified into 4 distinct categories. [3]
The first data source that can be leveraged is third-party data from either law enforcement or
non-government threat intelligence organizations. The second source is infrastructure and app
data, which can be collected, for example, from cloud logs. The next sort of data is endpoint
data collected from devices (endpoints) connected to a network, which includes data like system
logs and system configuration. The last category is data collected directly from the network,
which can be further categorized into four types: full content, extracted content, alert data,
and transaction data — the latter being Zeek’s main specialization. Although it is capable of
extracted data analysis and alert handling, there are other tools analysts should rather refer to.
When it comes to full content analysis, Zeek has not been optimized for writing full traffic to
disk, which means using it for this purpose can be inefficient, resulting in data loss.

Thanks to its versatility and low-cost implementation, Zeek is now used in various environ-
ments, including universities, research labs, supercomputing centers, corporations, and govern-
ment agencies. The tool can function in high-speed, high-volume networks without any difficulties
if no resource-intensive functionality is added to the system. When a cluster setup is correctly
implemented, it can be used on links going up to 100Gbps.

Figure 1.3 Zeek cluster setup architecture [3]

Since Zeek is not multi-threaded, the limitations can be overcome by implementing a cluster
setup, which is supported by default. The cluster setup architecture can be seen in Figure 1.3.
The traffic is simply split by a load balancer, which distributes the work between multiple
workers or threads (Zeek instances). The whole process is overseen by a central manager system,
which consolidates the individual logs into a single log. Both single and multi-system setups are
supported out of the box.
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1.3.3 Architecture
On the highest level, Zeek consists of two main components: the event engine, which reduces
the packet stream to higher-level events, and the policy script interpreter, which executes event
handlers defined in Zeek scripts. The simplified architecture can be seen in Figure 1.4.

Figure 1.4 Zeek high level architecture [3]

The event engine can generate events in all phases of the packet processing pipeline. The first
phase is the input source, where events such as raw_packet are generated. Going up through
the network layers, packets are first analyzed individually, providing events from the data link
layer. Further down the processing pipeline, Zeek generates session-related events and extracted
files. Thanks to Zeek’s plugin architecture, the core functionalities can be extended in any of
these stages.

When generated, an event only provides information that something happened, not why
it happened. The analysis of “why” is conducted using Zeek scripts, which react to the events
generated by the event engine. All of the analysis and output functionality Zeek offers, both user-
defined and default, is, in fact, implemented in the form of Zeek scripts, which are interpreted by
the policy script interpreter. The scripts can maintain state over time, which means analysis of
observations across connections and hosts is possible, such as a series of failed login attempts from
the same IP address within a short period indicating a brute-force attack. These scripts, however,
can be further enhanced by compiled components for more complex and effective functionality.

1.4 NEMEA
While not so widely adopted, NEMEA is another invaluable open-source network traffic analysis
system. It was developed by the Czech Education and Scientific NETwork (CESNET) research
team with support of Czech Technical University (CTU) and introduced at a conference in Mon-
treal in 2016. It is a stream-wise, flow-based system consisting of many independent modules,
each with its own task, making the system very flexible and scalable. The modules are inter-
connected by communication interfaces, between which messages are sent in NEMEA’s custom
UniRec binary data format. The individual messages can contain either flow records, alerts,
statistical data, or pre-processed data [9].

1.4.1 Capabilities
Because simple flow analysis is insufficient for successfully identifying modern-day attacks, the
NEMEA system also integrates application layer (L7) [10] data analysis. Its stream-wise archi-
tecture means it analyzes data almost completely in memory, effectively avoiding slow persistent
storage disk read and write operations. The system is capable of online and offline data analy-
sis, which can be very convenient for the new traffic analysis module development and testing.
Thanks to NEMEA’s Python support, the module development is accessible compared to sys-
tems relying only on low-level languages like C. Python also introduces a vast array of libraries
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for data analysis and machine learning, which can notably simplify the development of advanced
threat detection mechanisms.

From the start of development, NEMEA was intended for use with high-speed networks,
easily capable of handling 100GE links. To imagine its performance in a real example, CESNET
shared information about a NEMEA setup they have deployed and its capabilities. The instance
was deployed on a single server with six CPU cores and 12GB of Random Access Memory
(RAM). On average, while utilizing about 40% of the available resources, the system has detected
approximately 110 000 horizontal portscans, 12 000 SSH brute force attacks, and 2400 DDoS
attacks every day [9].

1.4.2 Usage
Security analysis is often done using an Intrusion Detection System (IDS) or Intrusion Prevention
System (IPS), which have the capability of both individual packet and flow processing like Zeek
(described in Section 1.3). NEMEA, on the other hand, is strictly flow-based, which not only
improves the performance by reducing the processed data but can also facilitate the detection of
different kinds of attacks.

Every NEMEA instance can be unique since each user can build different data paths using
NEMEA modules — each performing different tasks, underlying its flexibility. Modules are
connected in the form of trees — directed acyclic graphs — where one module usually serves
as a main ingress point. This module gathers or creates flows and sends them to the NEMEA
system. On the other side of the system lie the end modules, which are commonly concerned
with either logging or alert management.

Some of the module capabilities used in a typical system can include detection up to transport
layer [10], which is capable of identifying port scanning and attacks like DDoS, while application
layer-focused modules can specialize in analysis of protocols like DNS, SSL, or SIP. Other modules
can focus on infected device detection by extending flow records with fields such as URLs, which
can be used for suspicious server or device identification. The end modules handling alerts are
called “reporter” modules and convert alerts from detectors into a unified format to be either
logged, stored in a database, sent by email, or sent further to other systems specialized in alert
collection. Other commonly used modules are modules for offline testing. These modules can
read offline data formats like nfdump format, fastbit DB used by IPFIXcol flow collector, or
Comma-Separated Value (CSV) format. In addition to simple offline reading, these modules
are capable of “store and replay”, which can be an invaluable functionality for repeated module
testing.

The whole system can be easily reconfigured, which is useful not only in production envi-
ronments but also for developing new traffic analysis methods. A significant advantage is that
modules can be added or removed at run-time, enabling safe system modification in critical en-
vironments. As NEMEA is developed in C, C++, and Python programming languages, it can
be easily deployed on any UNIX-like OS. Additionally, thanks to the modular architecture, it is
not limited to single server setups. NEMEA can be distributed on multiple hosts, where modules
can communicate over the network.

1.4.3 Architecture
It has been mentioned that NEMEA systems consist of multiple modules, but other resources
are also necessary for them to function correctly and effectively. Since all modules typically
share some kind of functionality, like communication interfaces, these common features are im-
plemented in a set of libraries referred to as the NEMEA framework. Additionally, a supervisor
process is introduced to the system, controlling and monitoring all other modules.

It was mentioned that modules are connected in the form of trees. Modules can be hence
described as unidirectional building blocks of the NEMEA system, receiving a stream of data
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Figure 1.5 NEMEA system architecture

on an input interface, independently processing it, and sending a stream of data to their output
interface. A simplified architecture of the NEMEA system can be seen in Figure 1.5, showing
an example system of two detector modules and two output modules, all managed by the su-
pervisor, leveraging the NEMEA framework libraries. Detector modules are typically positioned
as branches in the tree structure, having a clear task of flow data analysis and identification of
malicious traffic such as port scanning. Other modules can have various purposes, such as the
leaf modules (like logger and reporter in the diagram) being tasked with logging, storing, and re-
porting. In contrast, other branch modules can work on data post-processing and pre-processing
like filtering, aggregation, or merging.

The NEMEA framework is an essential part of the system, as it implements a Traffic Analysis
Platform (TRAP) library, which defines communication interfaces and functions. The interfaces
are unidirectional, capable of processing messages of size up to 64kB. The interfaces can facilitate
Inter-Process Communication (IPC) on a single host by leveraging UNIX domain sockets, network
communication between individual hosts using TCP sockets, writing and reading data streams
from files, or conveniently discarding data in what NEMEA refers to as a “black hole.”

The framework also defines the key message data format for effective communication between
modules, UniRec. This binary format is very similar to C structs in terms of fast access, but it
additionally supports variable-length fields, and its template can be defined at run-time. When
two interfaces are connected, the sending and receiving formats are checked, and if there is a
match, a connection is established. Other than UniRec, NEMEA further supports the JSON
message format and unstructured data, although their use is not very common.

Modules like detectors usually overlap to some extent in their use of functions and data
structures, so the NEMEA framework includes a common library. This library provides effective
structures like trees, Bloom filters, hashtables, and various hash functions.

For the whole system to function properly, a supervisor process manages all active modules.
The management is conducted using an Extensible Markup Language (XML) configuration file,
which is changeable at run-time. The supervisor first retrieves information from the modules,
compares it to the provided configuration, and performs action in case of discrepancies, enforcing
the configuration. This control is conducted periodically, which enables the run-time changes.
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1.5 IPFIXprobe
One notable specialized flow exporter is IPFIXprobe. It was developed by CESNET — initially
as a standalone NEMEA system module called flow meter — and deployed in production in
2021. It is currently capable of handling 100 Gbps high-speed network lines, with a view to
supporting up to 400GE cards in the future. Although IPFIXprobe is not widely adopted, it is
used in production monitoring not only by the CESNET association but also by many Czech
universities.

The architecture of IPFIXprobe is modular and extendable in the form of plugins. Its struc-
ture can be divided into four directional parts, defining the processing pipeline: input, processing,
storage, and output plugins. Input plugins facilitate packet observation from sources such as pcap
files, FPGA cards, or IPFIXprobe default raw socket input. The exporter can be extended by
processing plugins that export various new information from application layer protocols, such as
DNS, HTTP, SIP, or NTP. The storage part is essentially a flow cache, creating and updating
active flow entries. At the end of the pipeline, there are output plugins that provide several
options for the export of flow records. Three notable output formats are IPFIX, UniRec as a
data source for the NEMEA system, and human-readable text format.

The most important processing plugin is PSTATS, as the Zeek system extension presented
in this work mimics its functionality. The PSTATS plugin receives a maximum element count
number parameter, which specifies how many packets should be analyzed by the plugin in each
flow. It then creates arrays to record each analyzed packet’s length, time, direction, and TCP
flags in a flow. It also supports including or excluding zero-length packet information from the
arrays. Although the fields are defined as UniRec elements, the equivalent fields are exported in
formats like IPFIX [11].



Chapter 2

Analysis and Design

This chapter serves as a foundation for the development of the Zeek extension. It first identifies
both functional and non-functional requirements of the extension, which will be necessary later
in the development phase. The chapter also explores the existing solutions and their limitations.
Based on the extension requirements and shortcomings of the existing solutions, multiple design
considerations and decisions are discussed in terms of both implementation complexity and per-
formance. Then the chapter focuses on the detailed design of the extension in two variations:
Zeek script and compiled plugin.

2.1 Extension Requirements
Before delving into the development, it is necessary to outline the specific requirements the
extension needs to address. Essentially, the goal is for Zeek to act as a flow exporter — reading
packets from a source, categorizing them into flows, and subsequently exporting them — sending
extended flow data to a specified TRAP output interface like a typical non-leaf NEMEA module,
in this case specifically as the main ingress point.

Since Zeek is a network monitoring tool, it can read data from all common sources, so the
extension does not have to reimplement any packet observation mechanism. Since it is necessary
to collect per-packet statistics (PSTATS) during the flow metering phase, accessing and analyzing
each incoming packet individually while updating the appropriate flow records is necessary.

To correctly mimic the functionality of IPFIXprobe’s PSTATS plugin, the extension has to
accept two parameters. The first parameter is the maximum number of packets to be analyzed
in each flow, while the second tells whether empty payload packet statistics are to be recorded
as well. These parameters can significantly reduce processing requirements and stored data, as
some flows can consist of thousands of packets. In the case of focusing on the initiations of
network connections in the analysis phase, one can effectively disregard the rest of the conver-
sations by setting the maximum parameter to a lower number. Although empty packets can be
disregarded in cases like TCP ACK messages, which do not carry any significant information
for network security, including them in an analysis might be highly relevant for detecting DoS
attacks or network scan activities. Additionally, to function as a NEMEA output module, an
output interface parameter has to be accepted by the extension for the UniRec messages to be
exported.

The next task is to intercept Zeek’s processing pipeline at the point where flows are expired
from the flow cache / terminated. At this stage, the extension will gather all relevant data
and create a UniRec record before exporting to ensure compatibility with other NEMEA mod-
ules. The process of single-connection data flow — beginning with accepting categorized packets
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from Zeek, through basic and extended flow data collection, to UniRec export — is designed in
Figure 2.1.

Figure 2.1 High-level extension design

While addressing all the functional requirements, it is also necessary that the extension does
not impact Zeek’s overall performance, as information loss can have a detrimental effect on the
security analysis results. The extension must be reliable, accurate, and secure, which requires
proper error detection and correction mechanisms at all development stages. Additionally, to
properly function, the extension must be developed with usability in mind, in terms of its instal-
lation and integration, and its extensibility by other developers by properly commenting on the
code and adhering to best programming practices.

2.2 Existing Solutions
With the aim of avoiding unnecessary reimplementation of existing functionality, let’s explore the
solutions Zeek might present to cover the functional requirements. To extend its base functional-
ity, Zeek introduced its custom Zeek scripting language. As was already mentioned in Section 1.4,
when Zeek processes information collected from the network, it generates system-wide events,
which can then be taken care of by Zeek script event handlers. Zeek generates many events in
multiple processing phases, which might help with both individual packet and flow processing.

While Zeek script can be very convenient, it is still an interpreted language, which might
pose an intolerable overhead in some cases. For this reason, Zeek also provides an option to add
any functionality in a compiled form. It provides a C++ API that can be leveraged to register
new components, but also to compile individual functions and make them available in the Zeek
script environment. In reality, most Zeek plugins are constructed using a combination of the two
approaches.

2.2.1 Zeek Script
Zeek’s robust scripting language allows users to add custom functionality that responds to net-
work events. When Zeek detects activity on the network — such as a new connection establish-
ment or specific protocol transaction — an event is generated. Zeek scripts can register handlers
for these events, which enables them to process data in real time. The language introduces
special data types specifically designed for network analysis, including sets, tables, and records
that efficiently handle IP addresses, ports, and more.

The simplicity of Zeek’s scripting language makes it possible to develop and deploy custom
network analysis logic quickly. This is especially important for adapting to new threats or
customizing analysis to specific network environments. The possibility of extending Zeek using
the scripting language also makes it more accessible for network security professionals without
advanced programming skills. Network analysis functions, on the other hand, are typically
written in low-level languages to satisfy the environment’s huge processing requirements, making
them inaccessible to a broader audience. The Zeek community has contributed a large amount
of scripts that extend Zeek’s core functionality, ranging from detecting sophisticated attacks to
integrating with third-party services. An example of an SSH brute-force attack implemented in
Zeek script can be seen in Code Listing 2.1.



Existing Solutions 15

Code listing 2.1 Example of simplified SSH brute-force attack detection
global failed_login_attempts: table[addr] of count = {};

event ssh_auth_failed(c: connection) {
local src_ip = c$id$orig_h;
failed_login_attempts[src_ip] += 1;

if (failed_login_attempts[src_ip] >= 100) {
print fmt(} Potential SSH brute -force

attack detected from %s}, src_ip );
# Take additional actions here , like sending an alert.

}
}

Code listing 2.2 Plugin initiation command
$ zeek -aux/plugin -support/init -plugin <plugin -directory -name > \

<namespace > <plugin -name >

Zeek provides a modular architecture, allowing users to share and load scripts dynamically.
The scripts can be managed using the @load directive, with which other scripts can be loaded.
Thanks to this capability, developers do not have to reimplement existing features but can simply
import them similarly to other programming languages like C or Python. At the same time, users
can dynamically unload modules, which can help keep the system as lightweight as possible.

Although Zeek scripts are an accessible way to extend Zeek’s functionality, they must be
interpreted at runtime, introducing overhead and performance issues under high network load.
This can be especially problematic when scripts perform complicated data processing or when too
many scripts are active simultaneously. As the volume of network traffic increases and analysis
requirements become more complex, managing a large number of scripts can become challenging.
While a script might work well by itself, its introduction to a larger system might cause trouble.

To effectively make use of the Zeek script, it is important to utilize built-in functions and data
structures without introducing any unnecessary complexity. While some events are generated
only once or twice per connection, other events – like individual packet events – can be very
expensive in terms of resources and should not be used in production. Despite being ideal for
a wide range of applications, Zeek script has its performance limits. That is why it is often
complemented by compiled components.

2.2.2 Compiled Zeek Extensions
When Zeek script solutions come up short in terms of performance, new functionality can be
introduced to the system in a compiled form. Zeek is built in C and C++ programming languages,
which is a common option for network monitoring as it is very low-level and can process network
traffic without a significant overhead. To enable Zeek’s extension using a compiled plugin,
Zeek introduces a C++ API that developers can leverage to register both whole new system
components — protocol analyzers, data loggers. . . — and individual Built-in Function (BiF)
elements for use in Zeek script like functions or events.

A key collection of tools for Zeek compiled plugin development is zeek-aux. In addition to
development and log manipulation tools, it contains a script called init-plugin, which generates
a template for plugin development using the syntax in Code Listing 2.2

This automation significantly simplifies the creation of new plugins by providing a good
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Code listing 2.3 Plugin template generated by init-plugin
# include "Plugin.h"

namespace plugin { namespace namespace_plugin -name { Plugin plugin; } }

using namespace plugin :: namespace_plugin -name;

zeek:: plugin :: Configuration Plugin :: Configure ()
{
zeek:: plugin :: Configuration config;
config.name = "namespace ::plugin -name";
config.description = "<Insert␣description >";
config.version.major = 0;
config.version.minor = 1;
config.version.patch = 0;
return config;
}

starting point for development. The plugin skeleton contains a plugin name file marking the
directory as containing a Zeek plugin, a directory structure for plugin scripts, and a source
directory for BiF and C files already including a minimal plugin structure seen in Code Listing 2.3.
To automate and simplify the compilation of the plugin, the skeleton includes a configuration
script that prepares the compilation environment. After the configuration is done, developers
can simply run make to build the plugin, or make install to install it.

Zeek’s plugin class is a base class for all plugins. It encapsulates all functionality that extends
the Zeek subsystems, such as protocol analysis or special format logging. Using the Plugin class
methods, developers can register new components, perform actions before or after the plugin
is loaded, and hook into certain operations and events, such as constructing analyzer trees,
incoming unprocessed packets or log writes.

Compiled plugins offer a much better performance, which is critical in high-traffic networks.
They operate within Zeek’s runtime, executing more efficiently than interpreted script-based
solutions. Their deeper integration with Zeek’s core through the API allows them to access
data with minimal overhead, capturing and analyzing network traffic with minimal delay. In
addition to new components, developers can compile individual functions that can be introduced
to the Zeek script environment. Their purpose is not limited to network analysis or logging.
Such functions can take care of resource-intensive tasks like large array operations or frequent
function calls, which would be much more inefficient when implemented in an interpreted script.

While powerful, compiled plugins introduce a much higher level of complexity compared to
script-based extensions. To correctly implement a C++ plugin, developers must be proficient
in C++ programming and have a good knowledge of Zeek’s core environment and its underly-
ing structures. This can definitely steepen the learning curve and complicate the development
process.

Since C++ is a very powerful language, it is important for developers to be careful and
follow the best practices of software development so as not to disrupt the whole Zeek system.
This includes thorough error handling and testing of the plugin — improper memory access
can result in program crashes — and properly documenting all code. Adhering to Zeek’s coding
standards and maintaining comprehensive documentation can ensure the plugins’ maintainability
and readability for auditing by other developers and users.

In summary, relying solely on a script-based solution is not common when implementing
new comprehensive plugins that perform multiple tasks, such as analysis and logging. Although
Zeek script is versatile, implementing certain functionality can introduce large overhead, which



Existing Solutions 17

Code listing 2.4 Zeek local site policy file excerpt
@load misc/loaded -scripts
@load tuning/defaults
@load misc/capture -loss
@load misc/stats
@load frameworks/software/vulnerable
@load frameworks/software/version -changes
@load -sigs frameworks/signatures/detect -windows -shells
@load protocols/ftp/software
@load protocols/smtp/software
@load frameworks/files/hash -all -files
@load frameworks/files/detect -MHR
@load policy/frameworks/notice/extend -email/hostnames
@load frameworks/telemetry/log
...

could lead to data loss. For this reason, resource-intensive tasks are generally taken care of by
compiled parts of code, significantly enhancing overall performance. Thanks to the zeek-aux
toolset, developers can focus on creating security features, knowing that the core intricacies of
integration and compilation are well-managed.

2.2.3 Available Plugins and Extensions
Even when run without any extensions enabled, Zeek’s base functionality is extensive and capable
of many network monitoring tasks. Zeek’s core system handles the initial packet capture and
basic analysis, including the breakup of traffic into flows, identification of service protocols, and
basic connection logging. In its default configuration, Zeek additionally loads the local site
policy scripts, adding a more in-depth analysis of specific protocols, file hash comparison, basic
signature detection, and statistics and tuning scripts for performance optimization, all of which
can be seen in Code Listing 2.4. Since the base analyzers extract a lot of information, the
optimal scenario would be to simply collect the desired extended flow information from one or
more sources already existing in the system.

2.2.3.1 Connection Object
The most fundamental construct in Zeek is a connection object, which encapsulates the state
of network connections in a nested record structure [3]. Zeek’s core passes it to all events
related to a flow, such as new_connection, new_packet, file_over_new_connection, and many
more. It is a built-in record type that holds information such as connection ID — a connection
identifying 4-tuple of the originator and responder IP addresses and port numbers — based on
which packets are categorized into flows, start time and duration, and other connection and host-
specific information. When a new module collects additional information related to a connection
— especially when the information is being logged — the best practice is to extend the built-in
connection record to additionally hold the new information. Figure Code Listing 2.5 shows an
example of how Modbus extension defines its own data structure and redefines the connection
record to include it.

Although there is an abundance of such connection extensions, their focus is mostly on
specific protocols like DHCP, DNS, FTP, SSL, or HTTP. Since the extension this thesis develops
is concerned with protocol-agnostic flow data, none of these redefinitions are of interest. The
connection record itself, however, holds some basic flow information that could be extracted
with the extended PSTATS data and will be leveraged in the extension. The fact that the record
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Code listing 2.5 Connection object redefinition by Modbus extension
type Info: record {

ts: time &log;
uid: string &log;
id: conn_id &log;
tid: count &log &optional;
unit: count &log &optional;
func: string &log &optional;
pdu_type: string &log &optional;
exception: string &log &optional;

};

redef record connection += {
modbus: Info &optional;

};

lacks some of the required information means that a new packet-level analysis will have to be
conducted to access individual packets’ timestamps and payload sizes, determine their direction,
and extract TCP flags if relevant. Additionally, the connection record must be redefined to store
the extra collected information appropriately.

2.2.3.2 Output
When all necessary information is collected, it must be formatted into UniRec format and ex-
ported to NEMEA. By default, Zeek supports two output options: recommended Tab Separated
Values (TSV) format and JavaScript Object Notation (JSON) format. Although these formats
can be useful for efficient data access or further processing by other tools, their conversion to
UniRec format is not a desired solution.

Since other community extensions, excluding NEMEA, focus mostly on third-party tool in-
tegration, the extension will need to implement a custom logging mechanism, either in the form
of a new logger system component or a dedicated compiled BiF function.

2.3 Detailed Design and Considerations
The development of the Zeek extension to export enhanced flow statistics requires a design
approach that addresses the extraction of new data, their efficient handling within Zeek’s existing
ecosystem, and their extraction in a custom format. The design process begins with a solely
script-based solution, leveraging Zeek script’s network-focused capabilities. However, as some
events are not suggested for use in production and some functionality is more conveniently
implemented in C++, certain phases consider a compiled solution.

2.3.1 Defining New Record
To store required data and facilitate logging, the first step is to define a new record type within
a new module, Pstats. Adhering to Zeek’s best practices, an Info record will be created to
encapsulate all the new data fields necessary to store extended flow data — a simplified design
based on modbus extension (Code Listing 2.5) can be observed in Code Listing 2.6.

To define individual fields, Zeek’s scripting language provides multiple data types for the
storage of network data. In addition to custom types, the script provides several attributes
that can be assigned to variables and record fields such as &optional, &default, or &log. The
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Code listing 2.6 Initial declaration of the Pstats::Info record type
module Pstats;

type Info: record {
...

};

record has been designed to store data in an appropriate format while addressing all record fields
extracted by IPFIXprobe with PSTATS extension:

IP Addresses (dst ip, src ip) - These fields will record the source and destination IP
addresses to identify the flow endpoints. The addr data type represents an IP address and
can be used for tasks like effective subnet matching.

Port Numbers (dst port, src port) - Another basic flow information is transport-level
port numbers. The special port data type holds an unsigned integer, which can be further
followed by protocol specifications like /tcp or /udp.

Protocol (protocol) - This field indicates the protocol number, utilizing the count data
type. Although protocols could be represented with a smaller 8-bit data type, count is the
only basic unsigned integer type Zeek’s script offers.

Endpoint bytes (bytes, bytes rev) - Two counters aggregating the bytes sent from con-
nection endpoints, the former from originator to responder and the latter in reversed direction.
These fields can only be of positive value, hence count type has been selected.

Times (time first, time last) - The flow initiation and termination times will be stored
using the time data type. It is a temporal type representing an absolute time. It is essentially
a double representing seconds with microsecond precision, which can additionally be used to
produce interval data types using simple subtraction.

MAC Addresses (dst mac, src mac) - MAC addresses will be stored as simple strings.
The string data type can easily accommodate the hexadecimal notation of MAC addresses
without the need for a more complex structure.

Packet Counts (packets, packets rev) - These fields will count the packets from the
communication originator and responder — same notation as bytes. The choice of the count
data type here is straightforward, as it is designated to hold non-negative integers. This
effectively doubles the maximum possible value the field can hold compared to int type.

PSTATS Data - Individual packet data fields will be represented using a vector data
type capable of dynamically holding multiple values. Timestamps are intuitively kept in a
vector of time, lengths and flags in a count vector, and directions in a vector of int, as its
possible values are either 1 or -1, representing packet directions from originator and responder
respectively.

When a record is defined and meant to be attached to a connection record globally, it is
first necessary to encapsulate it in an export block. This enables the record to be visible in
other modules using the namespace operator, in this case, specifically Pstats::. Once the new
record type is available globally, the connection can be redefined to include the pstats record
optionally. It is declared as optional, meaning the pstats field can be missing during connection
instantiation, a necessary step for Zeek to function properly — see Code Listing 2.7 again based
on modbus example in Code Listing 2.5.
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Code listing 2.7 Export and assign the Pstats::Info record to connection
export {

type Info: record { ... }
};

redef record connection += {
pstats: Info &optional;

};

2.3.2 Record Instantiation
For the Pstats::Info record to be populated with extracted information, it first has to be
instantiated. An appropriate time for its instantiation is at the very beginning of each connection,
before its population, during individual packet inspection. Although Zeek offers a few events
related to connection initiation, not all are suitable for this purpose. The event new_connection
was chosen over the connection_established event. Despite being raised at the beginning
of each connection, the connection_established is generated when a SYN-ACK packet is
received from the responder, meaning in case a whole handshake is recorded, a SYN packet from
the originator precedes the event. On the other hand, new_connection is “raised with the first
packet of a previously unknown connection”[3]. The extension ensures that the pstats record is
prepared and attached to every connection from the start, even before the first packet is processed
by opting for this event. In any other case, some information might be missed, invalid reads and
writes might occur, or a redundant check for pstats presence at the connection record would
have to be conducted with each incoming packet.

When the new_connection event is raised, the connection record is already instantiated,
meaning Zeek has conducted the initial analysis to categorize the first packet into a connection.
As Zeek categorizes flows based on the IP address and port number 4-tuple, it is certain that both
originator and responder addresses and ports are available and can be used for custom record
instantiation. However, other details like the responder MAC address or the number of packets
are not yet known, and their extraction has to be handled later in the communication. It is also
important to mention that port numbers in ICMP connections are not actually port numbers
but rather store the ICMP message type and code in source and destination ports, respectively.

2.3.3 Populating the Record
The initial approach to populating the pstats record with packet and flow statistics utilizes
solely Zeek’s scripting language. Since some basic flow data is readily available at the connection
record, the main challenge is to access each packet in a flow individually and update appropriate
record fields. Although this approach can achieve the desired functionality, packet-level event
handlers are strongly discouraged because, in a busy network, the number of packets to be
processed can easily become impossible to handle without loss. Zeek’s documentation states
that packet events are “usually infeasible to handle when processing even medium volumes of
traffic in real-time” [3], which means a compiled solution has to be employed to achieve packet
data collection without complications in any given environment.

2.3.3.1 Script Design
To leverage Zeek’s event-driven architecture, a few events can be considered for the purpose of
individual packet access:
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raw packet - The first raw packet event is “generated for every packet Zeek sees that has a
valid link-layer header” [3]. As a parameter, this event provides a raw packet header record
that holds a layer 2 header [10], and optionally higher level protocol headers like IP header,
TCP header, or UDP header if present. Although this event provides a comprehensive insight
into all relevant protocol headers, the main issue is the absence of flow categorization. Since
this event is very low-level, the categorization has not yet been conducted and would have
to be reimplemented. As IP addresses and port numbers are used for categorization, first
it would be necessary to determine whether the IP protocol is present, then eventually the
information would be extracted. Zeek records flow data in both directions (biflows), meaning
the extracted address-port pairs would have to be checked in both orders for flow matching.
Furthermore, since connection record is typically accessed through event handlers receiving
it as a parameter, there is no direct way to look up an active connection based on an ID
and a more complex structure like a Zeek table (map) would have to be implemented to keep
track of active connections. This solution, although functional, introduces an unnecessary
redundancy in both flow categorization and memory allocation.

tcp packet - The next considered tcp_packet event is an event unsurprisingly generated for
all TCP packets. The decision not to utilize this event is straightforward, as TCP is only one
transport protocol out of three protocols tracked by Zeek: TCP, UDP, and ICMP. Using this
event, many packets would not be appropriately analyzed, which would result in significant
information loss.

new packet - The most fitting is the new_packet event. Most importantly, this event is
low-level enough that it is generated for all processed packets — except raw packets that
do not pass certain checks — but at the same time high-level enough that the packet has
already gone through the flow categorization process, so the event handler provides both a
connection parameter for flow information and pkt\_hdr for packet-specific information.
By choosing this event over raw_packet and tcp_packet, it is ensured that no data is lost
in processing and both storage and categorization redundancy are successfully avoided.

As all data in the packet headers is static throughout the analysis compared to time, let’s start
by addressing timestamping first. The actual order in which PSTATS information is extracted
in the new_packet event handler is discussed in subsequent design and implementation chapters
since it relies, for example, on the extension parameters that are yet to be defined. There are
two Zeek built-in functions that can be potentially used for accessing time:

current time - This function is self-explanatory, as it returns the current time according
to the operating system. Use of this function is not recommended for networking uses as
it introduces a slight discrepancy between the actual time a packet was observed and the
moment the operating system handles the request for the current time. From the moment a
packet is captured, Zeek first conducts basic analysis throughout which events are generated,
a script event handler has to be interpreted, and a call to the operating system has to be
conducted, all of which introduce some time delay, resulting in time discrepancies in the order
of hundredths of milliseconds possibly to low milliseconds.

network time - Choosing the network time for timestamping overcomes this problem. When
a packet is first observed on a medium — online or offline — Zeek records the current
time. Regardless of any processing that happens between the capture and new_packet event
handling, this function returns the timestamp of the last processed packet by accessing the
initially stored value. This means that the current time is always greater or equal to the
network time in Zeek’s environment.

The extraction of the rest of the extended flow information is more straightforward. Even
though only TCP, UDP, and other higher levels directly provide a bool field stating whether
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a packet is sent from the originator to the responder or the other way around, determining
the packet direction is a simple task. The originator address available at connection can be
compared with the source address from the packet’s IP header and in case of a match, the
direction value will be 1; otherwise, it will be -1. When accessing the transport layer payload
size, first it has to be considered what protocols are of interest. When tracking connections,
Zeek considers three protocols, TCP, UDP, and ICMP. Now, the ICMP protocol is not actually
a transport protocol as it does not facilitate data transfer between hosts; rather, it is used to
send error messages and operational information. For this reason, ICMP packets can be simply
approached as having a zero payload size. In the case of TCP and UDP packets, data length
(dl) and UDP length (ulen) are conveniently accessible in their respective header records. The
last PSTATS information is TCP flags, which are relevant only when analyzing TCP packets.
When it is clear that a TCP packet is being analyzed, the TCP flags are also readily available
as a TCP header record field, flags.

At this point, it is also necessary to address pstats fields recording numbers of packets and
bytes, as well as the connection’s termination time. Although the connection record provides
endpoint and flow statistics that might be relevant, there are some issues that prevent their
reliable use.

Bytes and Packets The first issue is that the number of bytes is concerned with IP-level
bytes rather than transport-level bytes, and primarily that both these values are set only if
use_conn_size_analyzer parameter is set to true in a global environment. An option would be
to access these numbers at a connection’s conn record field, however, the documentation states
that the same boolean has to be set for the information to be collected and additionally that
the number of bytes might be inaccurate. Hence, gathering the endpoint information from the
endpoint and conn records is unreliable and insufficient in the case of certain configurations.

Calculation of these fields, however, does not require too much additional effort. When a
packet direction is determined in the new_packet handler, the appropriate packet number field
can be simply incremented by one — source packet number when the direction is 1, destination
when -1. Addressing the number of bytes sent, these fields can be incremented in a similar
fashion since the transport-layer payload size and direction have already been determined.

Termination Time To address the connection’s end time, although it could be determined
from the PSTATS timestamps vector, the value might not always be accurate. When a connection
is longer than the number of packets to be analyzed for PSTATS data, its actual termination
happens after the last logged timestamp. Another option would be to leverage the connection’s
start time and duration available through the connection record; however, the issue is that
although the start time is accurate, the duration does not cover trailing TCP packets like the
final ACK messages. Due to this feature, if an end time was calculated by adding the connection
duration to its start time while all packets were accounted for in the PSTATS timestamps vector,
the last timestamp would appear to be outside the connection’s boundaries. The start time can
be hence read from the connection record upon its termination, but to record the connection
termination time 100% accurately, the value has to be updated with every analyzed packet in a
connection. By employing this approach, the extension will provide accurate data where packet
timestamps vector and connection’s time boundaries are synchronized.

To better picture the script extension design, Figure 2.2 demonstrates the flow of events
from Zeek’s start to the record population. Zeek starts by parsing the script — loading record
redefinitions, event handlers. . . — and continues by generating events that will be handled as
described in this section.



Detailed Design and Considerations 23

Figure 2.2 Script record population design

2.3.3.2 Compiled Plugin Design
Because of the high processing requirements for the extension, a stronger approach than a strictly
script solution has to be employed. Zeek’s auxiliary init-plugin script creates a compiled plugin
template that serves as a solid starting point for individual packet inspection. It was already
mentioned that most Zeek extensions are a combination of both scripts and compiled parts. The
idea for the compiled record population is to leverage the structures and events already defined
in the script solution and only substitute the new_packet event handler with a C++ solution.
The main challenge lies in facilitating interaction between the plugin and the script structures.

While the plugin builds upon the designed script, the extension flow is slightly altered, uti-
lizing a different packet analysis approach, as seen in Figure 2.3. All differences are described in
detail throughout the rest of this section.

Figure 2.3 Plugin record population design

Component Selection First, it is important to explore the Zeek environment’s components
available for the purpose of packet analysis. Reaching out to the community at this point has
been very helpful, as by consulting with Arne Welzel, one of the core Zeek developers, I was able
to understand Zeek’s analysis components, their interaction and management, and to adhere to
best practices both through analysis and development of the extension.

I was first advised to utilize a general Analyzer class component. Compared to a lower-level
packet analyzer component, a simple analyzer is additionally associated with a connection, which
is very convenient for the purpose of flow data management. Packet analyzers operate below
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Code listing 2.8 DeliverPacket method to be overridden for individual packet access
/**

* Passes packet input to the analyzer for processing . The analyzer
* will process the input with any support analyzers first and then
* forward the data to DeliverPacket (), which derived classes can
* override .

...
*/

void NextPacket(int len , const u_char* data , bool is_orig ,
uint64_t seq = -1, const IP_Hdr* ip = nullptr , int caplen = 0);

/**
* Hook for accessing packet input for parsing . This is called by
* NextPacket () and can be overridden by derived classes .

...
*/

virtual void DeliverPacket(int len , const u_char* data , bool orig ,
uint64_t seq , const IP_Hdr* ip , int caplen );

Zeek’s session analysis on a link and network layer, parsing higher-level protocols and passing
packets to appropriate protocol analyzers for session-level analysis, all of which is irrelevant to
this extension.

For each connection, analyzers are kept in a tree structure where every analyzer has a parent
analyzer and an arbitrary number of child analyzers. When an analyzer processes data, it
forwards the rest further to all his children — for example IP analyzer might remove the IP header
before passing the payload to TCP analyzer. The analysis conducted by this extension does not
particularly require multiple levels of analysis, so defining one custom analyzer is sufficient to
substitute the script’s new_packet event handler functionality. As the extension needs to access
transport layer packets before they are processed and the data is truncated, the idea is to assign
the newly defined analyzer as a child of the tree root called session adapter.

Analyzer Design To accommodate the extracted data, the analyzer will have to define at-
tributes for endpoint bytes and packets as unsigned integers, last packet time as double, and
the four PSTATS vectors: vector of integers for directions (1 or -1), vector of double types for
packet times, and two vectors of unsigned integers for payload lengths and TCP flags.

By exploring the capabilities and methods of the Analyzer class in Zeek’s Github reposi-
tory[12], I was able to grasp the class’ API in the form of virtual methods. The most appropriate
method that can be leveraged for session packets’ access is a DeliverPacket method with the
description and definition in Code Listing 2.8. This function specifically can conduct the packet-
level data extraction similarly to the script’s new_packet handler — as depicted in Figure 2.3.

Time - First addressing the packet timestamping, where the initial approach was to lever-
age the C++ chrono library. This solution, however, introduces the same issue as the
current_time function available in Zeek’s script environment, so it is imperative that the
compiled solution accesses the last packet timestamp as network_time does. I have been
advised by Vern Paxson, the original Bro designer, that the same value is accessible in the
C++ environment under zeek::run_state::network_time, which has saved me the effort
of browsing through Zeek’s source code. This accurate value can then be used for both the
last packet time update and for timestamp vector assignment.

Direction Determination - In the plugin solution, determining the packet direction is
trivial, as the DeliverPacket function directly provides it in the form of a boolean parameter
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Code listing 2.9 FTP analyzer component registration
class Plugin : public zeek:: plugin :: Plugin {
public:

zeek:: plugin :: Configuration Configure () override {
// Component registration
AddComponent(new zeek:: analyzer :: Component("FTP",

zeek:: analyzer ::ftp:: FTP_Analyzer :: Instantiate ));
AddComponent(new zeek:: analyzer :: Component("FTP_ADAT",

nullptr ));

// Plugin configuration definition
zeek:: plugin :: Configuration config;
config.name = "Zeek::FTP";
config.description = "FTP␣analyzer";
return config;

}
} plugin;

orig, stating whether the packet is being sent from originator to responder or not – meaning
responder to the originator.

Payload and Flags - To access the transport payload size and TCP flags, the extension has
to process the IP_Hdr object being passed as an ip parameter. The IP_Hdr class is a class
used for IPv4 and IPv6 packet header wrapping which can be leveraged for next protocol
identification using its NextProto method. Zeek does not provide similar header wrappers
for TCP, UDP, or ICMP protocols, so other networking C++ libraries must be leveraged for
the next headers’ parsing. Both the TCP and UDP payload sizes and TCP flags are parts of
the transport protocol headers, so they do not have to be calculated but rather simply read
from the headers, while ICMP payload size remains zero, as proposed in the script solution.

Endpoint Statistics - To address the numbers of packets and transport-layer bytes sent,
the extension will update the attributes in the same way as the script solution: increment
the appropriate packet count by one and add extracted bytes to the endpoint attribute based
on direction.

Component Registration and Integration When a new analyzer is defined, it is necessary
first to register it as a component. This is important as when an analyzer is being instantiated,
either a name or tag must be provided, both of which must match a corresponding registered
component’s attributes. In other cases, Zeek’s analyzer manager does not allow the analyzer’s
instantiation. The plugin API provides three methods that are executed before Zeek actually
starts to analyze traffic, hence each suitable for correct component registration: InitPreScript,
InitiPostScript, and Configure. The first two methods are executed by Zeek before and
after scripts are parsed, while Configure is called when “the plugin is instantiated to query
basic configuration parameters” [12] and returns a configuration object describing the plugin.
Although component registration would be acceptable in all three methods, after exploring other
plugins in Zeek’s repository, it was obvious that component registration is typically conducted
in the Configure method before the configuration is defined and returned; hence this extension
will follow the convention — during plugin load in Figure 2.3. An example of how the FTP
plugin registers an analyzer component can be seen in Code Listing 2.9.

When the component is successfully registered in the system, it has to be assigned to each
connection before the actual analysis is conducted. The plugin API provides several hook meth-
ods that act as entry points for the plugin to various events such as log initiation, network
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Figure 2.4 Custom analyzer attachment

time update, and, most importantly, the setup of connections’ analyzer trees, which I was ad-
vised by Arne Welzel to utilize for the purpose of analyzer attachment to a connection. This
hook “executes when a connection’s initial analyzer tree has been fully set up” [12], at which
moment the tree can be manipulated and extended. The new analyzer can then be assigned
as a ChildAnalyzer of the tree root, facilitating the individual packet inspection as previously
discussed. An example of a custom analyzer assignment to the connection’s analyzer tree is
presented in Figure 2.4.

Value Management When the analyzer collects the desired data, one of the main challenges
the extension faces is that the data stored in a C++ plugin is not accessible in the script
environment, essentially leaving pstats record fields empty. To make the data available, the
connection record has to be accessed and updated throughout the analysis. Zeek’s plugin
API provides a method specifically designated for this purpose called UpdateConnVal, which is
called whenever a connection record is accessed in the script for the information it holds to be
accurate and up to date. Now, the method provides only a RecordVal pointer to a connection
record which has to be further navigated to retrieve the custom record and update its appropriate
fields. Since it is unclear in Zeek’s event-driven architecture whether the pstats instantiation and
assignment in the main plugin script’s new_connection precedes the update call, it is important
that the extension first checks whether pstats has been assigned and eventually creates and
assigns it.

To create a Zeek script record in a C++ plugin, the record type describing the record structure
— defined in the main Zeek script — has to be retrieved. After the record of the desired type is
instantiated, it has to be correctly assigned to the connection. When a record type is defined,
Zeek indexes all the fields it encapsulates, beginning with the number 0. When individual record
fields need to be accessed, it is done so using the record’s field indices. Rather than simply
updating a value, a new Zeek value, such as an int or count, has to be first constructed and
only then assigned to an offset as a whole. By implementing the connection update function,
the compiled plugin solution completely substitutes the new_packet event handler functionality
of populating the pstats record.

2.3.4 Connection Termination
With the packet-level data collection process established for both script and hybrid (script +
compiled plugin) solutions, the next step is to finalize the collection of the remaining basic
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flow data upon the connection’s termination. The first considered event for this purpose was
connection_finished based on its descriptive name, however, this event is generated only for
TCP connections finished by a FIN message from both endpoints, which would again result in
an incomplete analysis, as it would omit data from UDP and ICMP flows. A more suitable event
is a connection_state_remove event which is “generated when a connection’s internal state
is about to be removed from memory”[3]. By choosing this event, termination of all types of
connections is covered, and all required data can be extracted.

When the pstats record was instantiated, both source and destination IP addresses and
port numbers were already available and recorded. Then, both script and hybrid solutions
populated the PSTATS vectors with directions, transport layer payload sizes, packet timestamps,
and TCP flags while updating the byte count, packet count, and last packet time fields. The
only remaining fields to be addressed are hence MAC addresses, connection initiation time, and
transport protocol.

Beginning with MAC addresses, the extension can leverage the endpoint records available as
connection record fields, which directly provide link-layer addresses as l2_addr. The transport
protocol is also provided by Zeek as transport_proto enum field in connection’s conn record
field. The only issue is that protocols are described by their abbreviations – ”TCP”, ”udp”, and
”icmp” – which means they have to be converted to their IP numerical identifiers – 6, 17, and
1, respectively. Other protocols should not be encountered as Zeek only tracks the 3 addressed
protocols, however, as the enum contains also an unknown_transport value, it will default to
zero in that case.

2.3.5 Extension Parameters
For a more granular control over Zeek’s configuration, script values can be defined from the
command line when a Zeek instance is being launched. This extension requires the definition of
3 parameters to facilitate control over its functionality: LogFirst, LogEmpty, and OutIfcSpec.
To enable setting these parameters during startup, they have to be globally accessible, which
can be achieved by declaring them in the export block next to the definition of Pstats::Info
record. When variables are exported as a part of a namespace, their value can be specified as
shown in Code Listing 2.10.

Code listing 2.10 Zeek launch command specifying unix socket output interface
$ zeek -i any scripts/pstats Pstats :: OutInterface="u:1111"

As the output interface specification is necessary for the extension to function as intended,
this parameter must be mandatory and proper checks must be implemented to ensure a specifier
was provided. The remaining parameters are also crucial for the extension to effectively work
with data — especially very long connections in terms of packets — these parameters can be
set to a sound default value and then optionally redefined if necessary. The NEMEA’s PSTATS
module gathers statistics for the first 30 packets in a connection by default and does not log zero
transport-layer payload packets, hence this extension sets the parameters to the same values.
To actually leverage the parameters in the extension, their use has to be implemented properly
in both script and hybrid solutions. The following sections discuss the integration of LogFirst
and LogEmpty parameters, while OutIfcSpec is addressed in the subsequent Logging and Export
Section 2.3.6.

2.3.5.1 Script Solution
As the variables are defined directly in the Zeek script, accessing them throughout the script
solution is straightforward. Now as both LogFirst and LogEmpty affect whether packets are
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Code listing 2.11 Packet analysis pseudocode
# Base Functionality
- Get timestamp
- Update time of connection 's end
- Extract payload size
- Determine direction
- Increment endpoint packets
- Add payload size to endpoint bytes

# Extended Data
- Check whether packet -level data should be recorded

and eventually end this packet 's analysis
- Either if packet is empty and LogEmpty is set to false
- Or maximum packet threshold has been reached

- Extract TCP flags
- Update PSTATS vectors

analyzed for extended flow data, the extension addresses both values in the individual packet
inspection facilitated by new_packet event handler. Since both parameters are related only to
extended PSTATS data, the basic analysis has to remain unaffected by their integration.

The base analysis conducted, regardless of whether a maximum analyzed packet threshold
has been reached or an empty packet was encountered, includes firstly updating the connection
end timestamp, determining packet direction for packet count incrementation, and extraction of
payload size for it to be added to the appropriate endpoint bytes. This means that all information
to be added to the PSTATS vectors except TCP flags is available without any extra effort. Based
on this observation, the only functionality that can be positioned after the parameters’ check is
the TCP flag extraction and the PSTATS vectors’ update itself. A pseudocode describing the
new_packet handler flow can be seen in Code Listing 2.11.

2.3.5.2 Hybrid Solution
The challenge faced when utilizing a compiled packet analysis again lies in the value management
between the Zeek script and the C++ plugin. Once the global variables’ values are successfully
loaded into the C++ environment, their use is very similar to the script’s new_packet event
handler.

Compared to the pstats values assigned to the connection record, the LoadFirst and
LoadEmpty values are not attached to any record but are rather available in the module’s names-
pace. This means they have to be loaded in a different way than by leveraging record offsets.
Zeek refers to script object names as IDs or identifiers and provides a method zeek::id::find
specifically designated for the purpose of global variables’ retrieval using their name, such as
Pstats::LogFirst.

To manage these values effectively, their loading has to be correctly positioned in the ex-
tension’s architecture. If both values were being looked up in the analyzer’s DeliverPacket
method, the script would again be referenced with every incoming packet, which introduces
redundancy as these values remain static from Zeek’s start until its termination. Loading the
values during the initiation of the custom analyzer would also be redundant as the new analyzer
is instantiated for every new connection, which could even result in the same overhead as the
previous case in case of very short connections — analyzers being frequently generated. This
leads to the idea that the values should be loaded only once per Zeek instance’s lifetime, ideally
during the plugin’s initiation phases. Because the variables are defined in a script, it is necessary
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to look up the values only after the script has been parsed and command line parameters are
correctly assigned. Plugin’s InitPostScript virtual method presents a perfect entry point as
it is concerned with “second-stage initialization of the plugin called late during Zeek’s startup
after scripts are parsed” [12]. The values can be conveniently stored as the plugin’s attributes
and accessed by analyzers without the need to look them up in the script environment.

2.3.6 Logging and Export
It has already been pointed out that Zeek’s reporting is facilitated by default through multiple
ASCII logs, where each log reports a different protocol or other analysis results. To follow this
convention, all exported data by this extension will be first logged in a designated TSV log
pstats.log for complete transparency on the exporter side of the flow monitoring architecture. A
UniRec message will be constructed and sent to the NEMEA flow collector before the local TSV
logging to minimize the delay between collection on Zeek’s side and analysis in NEMEA. Since
UniRec is a binary format and there is no existing solution for its construction in Zeek script,
the export implementation is expected to be much simpler in a C++ environment where existing
NEMEA libraries can be leveraged.

Traditional logging of custom data is a common task for Zeek extensions, and the implemen-
tation process is well documented by Zeek [3]. The Zeek logging framework abstracts much of
the process from file creation to appending records. Since the information collection is completed
in the connection_state_remove handler in both script and hybrid solutions, and logging is
commonly defined using the Zeek script, the local logging design does not differ between the
solutions.

Custom logging design begins with a definition of a log stream, which corresponds to a single
log output. To inform Zeek about a new log stream associated with the extension, a Log::ID
enumerable holding all Zeek instance’s log streams has to be redefined to include a Pstats::LOG
additionally. Since the changes have to be globally visible, this redefinition has to be conducted
in an export block.

Before writing data to a stream, it is necessary to specify the logged data format during
its initiation, for which the already defined Pstats::Info record can be used — with only a
minor addition of &log attribute to fields that are to be logged, in this case, all fields. To follow
Zeek’s guidelines, the creation of a log stream is conducted in zeek_init event handler, which
is executed during Zeek’s initialization before any processing begins. Once a stream is initiated,
pstats data can be written to it using a Log::write method by providing an appropriate log
identifier, resulting in log file creation and its population.

Addressing data export over the network is a much more complicated task, which requires a
complex solution in both script and hybrid options.

2.3.6.1 Script Export
Although Zeek script is a Turing-complete language, facilitating network communication and
binary structure construction and manipulation is not supported by default and its implemen-
tation would go beyond practical limits. To satisfy the requirements, supporting programs or
scripts would have to be introduced, and their integration with Zeek would have to be facilitated
using Zeek script functions system or piped_exec, which enable scripts to communicate with
the underlying operating system and other processes. For this reason, this work does not discuss
the script UniRec export further.

2.3.6.2 Hybrid Export
When enhancing a script with compiled components, it is important to decide how to achieve the
export of collected data. Since most of the connection data is available in each analyzer — fields
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Code listing 2.12 Conn extension BiF definition
function set_current_conn_duration_threshold %(cid: conn_id ,

threshold: interval %): bool
%{
zeek:: analyzer :: Analyzer* a = GetConnsizeAnalyzer(cid);
if ( ! a )

return zeek::val_mgr ->False ();

static_cast <zeek:: analyzer :: conn_size :: ConnSize_Analyzer *>(a)
->SetDurationThreshold(threshold );

return zeek::val_mgr ->True ();
%}

such as protocol and MAC addresses would have to be additionally read in the C++ code — it
would be intuitive to construct and export UniRec messages in the analyzer’s Done method, which
is invoked when a connection has been completely analyzed. Although this decision would result
in better performance by avoiding further interaction with the script, the extension will adhere
to Zeek’s best practices and implement both export and logging by updating the script-defined
record and the connection object.

This leads to two options: implement a specialized writer component and register it in the
system or create a BiF compiled function which would be called in connection_state_remove
before ASCII logging of each connection. I was advised by the Zeek community to keep things
simple and opt for the BiF function, where the implementation does not need to leverage Zeek’s
component API further.

Extraction Function The generated plugin skeleton contains a pstats.bif file, where custom
script functions and events can be defined. This file will hence be used to define a compiled
function, which will accept the collected flow data and take care of its export to NEMEA. To
grasp the bif file environment and syntax, I inspected other extensions defining their custom
functions, such as Conn extension Code Listing 2.12.

Similarly to updating script structures from C++ code in Section 2.3.3.2, the structure values
now have to be read back to the plugin environment to leverage NEMEA’s C++ libraries for
packing and export. The processing function will hence start by accessing all pstats record’s
fields, including vectors, and storing them in appropriate type local variables.

UniRec Interface Leveraging the NEMEA framework, the extension will make use of its
unirec++ library, which provides structures and methods designed for managing low-level TRAP
interfaces and UniRec message construction. By consulting with NEMEA developer Pavel Šǐska
and by observing a C++ NEMEA module torder, I have been able to identify necessary steps
for both interface setup and UniRec record construction and population.

A key class, defined by the unirec++ library, is Nemea::Unirec. An object of this class
encapsulates the NEMEA module’s TRAP interfaces and abstracts their low-level configuration.
After an object is created, it is imperative that it is kept alive for the whole Zeek extension
execution, hence the extension will instantiate it in the plugin’s configuration phase and store it
as an attribute of the plugin class. This way the extension opens an output interface only once,
avoiding redundancy.

The decision of where exactly to initiate the interface in the configuration phase requires
a careful approach. As the output interface specifier is required for the Unirec initiation, it
is necessary that the main.zeek script has already been loaded. A convenient approach would
be to leverage the plugin’s InitPostScript method similarly to the extension parameter setup
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Code listing 2.13 UniRec record template design
ipaddr DST_IP ,
ipaddr SRC_IP ,
uint16 DST_PORT ,
uint16 SRC_PORT ,
uint64 BYTES ,
uint64 BYTES_REV ,
time TIME_FIRST ,
time TIME_LAST ,
macaddr DST_MAC ,
macaddr SRC_MAC ,
uint32 PACKETS ,
uint32 PACKETS_REV ,
uint8 PROTOCOL ,
int8* PPI_PKT_DIRECTIONS ,
uint32* PPI_PKT_LENGTHS ,
time* PPI_PKT_TIMES ,
uint8* PPI_PKT_FLAGS

in Section 2.3.5.2; however, an issue arises when active Zeek plugins are listed using zeek -N.
For the plugins to be listed completely, including their registered hooks and components, the
InitPostScript is executed for each, and since unsuccessful interface initiation is designed to
exit the program, such a listing would not be possible. For this reason, the extension will employ
a simple workaround by defining another BiF function for UniRec interface configuration, which
will be called in the main script’s zeek_init handler that only executes when Zeek is launched
— Zeek init event in Figure 2.5.

To instantiate a Nemea::Unirec object, module info has to be provided, specifying the number
of input and output interfaces. As the network data input is taken care of by Zeek either from
a file or network interface, the extension will only define an output interface specified by the
extension’s parameter OutIfcSpec — a string in a correct TRAP interface specifier format [13].

If a specified interface is available, the Unirec object method buildOutputInterface can be
used to build a UnirecOutputInterface class object. Similarly to the main Unirec object, the
interface will be kept within the plugin class for convenient access throughout the extension’s
lifetime.

Template Design The next step is to define a UniRec message template describing individ-
ual record fields and associate it with the interface. The NEMEA framework defines UniRec
field types similar to C++ and Zeek, hence the template design closely resembles the Zeek
Pstats::Info record type. The proposed template in Code Listing 2.13 has been designed ac-
cording to NEMEA field standard [14] in terms of both field names and their data types, ensuring
compatibility and efficiency.

Once the template is defined and associated with the output interface, the interface object
has a method getUnirecRecord which “gets a reference to the pre-allocated UniRec record for
efficient use. This function provides access to the UniRec record instance that has already been
pre-allocated within the UnirecOutputInterface. It allows direct modification of the record’s
fields before sending it through the TRAP interface” [14]. As the function comment states, using
the record reference, its individual fields can be updated with collected values. As opposed to the
interface setup which suffices only once per extension’s lifetime, the record field value assignment
has to be conducted with every terminated connection, hence takes place right after data is read
from script structures in the final export BiF function. The assignment is very similar to the
Zeek record update, leveraging individual field offsets in the UniRec record.
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At this point, the UniRec record is finalized and can be sent to the output interface using its
send method. Collectors can then simply connect to the exporter — locally or over the network
— and subscribe for collection, or in case a file output is selected, data can be observed in a
specified output file. To correctly terminate the extension and its export, UniRec objects have to
be correctly destructed so that all buffered messages are flushed to the interface, avoiding data
loss.

2.3.7 Solution Comparison
When comparing the two suggested solutions throughout all extension phases, it is immediately
evident that the design of the script-only solution is much less complicated as opposed to the com-
piled enhancement. While the script’s individual packet is directly facilitated by the new_packet
event, a whole new compiled plugin structure must be introduced before any functionality is im-
plemented. To achieve the packet access itself, a new analyzer component has to be defined,
registered, and correctly assigned to each connection manually. Furthermore, to substitute the
new_packet event handler functionality completely and have the collected data by an analyzer
available in the Zeek script structures, the compiled plugin has to update the appropriate struc-
tures whenever they are to be accessed in the script environment. All of these tasks require an
advanced knowledge of both C++ programming language and Zeek’s C++ API. As both Zeek
and NEMEA are open-source tools, they often miss crucial documentation necessary to fully
grasp their components and functions, which led me to reach out to the open-source community
for guidance.

On the other hand, due to the shortcomings of the Zeek script in performance and UniRec
extraction, an extension must employ a more effective solution than solely Zeek’s script. Com-
piled code runs at native speed, which significantly reduces the overhead compared to interpreted
scripts. Although the plugin still leverages the Zeek script for structure definition and connection-
level events, the script is being interpreted only a few times per connection, completely avoiding
the packet-level event handler and its overhead.

Figure 2.5 Complete plugin design

In conclusion, while Zeek’s script can be easily and rapidly deployed in lower processing
environments or for testing, more complex production-level extensions require some compiled
enhancement. Despite the improvements the compiled solution presents, in some cases – like
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a high number of one-packet connections forcing frequent script execution – the performance
difference between the solutions might be less substantial.

The complete design of the plugin solution is presented in Figure 2.5, where light-blue objects
are plugin-related and gray script-related. After Zeek is started, components, hooks, and BiF
elements are registered when plugins are loaded. With every new connection, the registered
analyzer is attached and collects flow statistics from all connection’s packets. Finally, when all
packets are processed, the control is passed to the connection termination event handler which
logs the collected data in a TSV log. It also invokes the UniRec export function which exports
all data to the UniRec output interface.
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Implementation

This chapter details the practical implementation of the Zeek extension which was designed to
collect and export extended flow statistics effectively. The implementation is divided into two
main parts: the script-based solution and the hybrid solution extended with compiled parts.

The script-based solution, discussed in the first section, focuses on the definition of new
structures, their population, and logging. Due to infeasible complexity, it does not implement
export to NEMEA, which is one of the key requirements for the extension. However, since both
solutions overlap, it serves as a foundation for the plugin solution.

The compiled plugin builds upon the script solution, defining and registering new components
and custom functions, which is necessary both to achieve better performance and to utilize C++
libraries for a more convenient export of flow statistics.

3.1 Script
Implementation of the script solution was conducted in a single file pstats.zeek, beginning with
module declaration module Pstats;, which defines the module namespace. Structure and global
definitions are then conducted for the extension to correctly function in Zeek’s environment.
Finally, all event handlers are defined to conduct the proposed analysis, data collection, and
logging.

3.1.1 Definitions
The initial module declaration is followed by an export block seen in Code Listing 3.1, which
encapsulates all definitions and redefinitions according to the proposed design. The export
begins with a redefinition of the global enum object containing all log identifiers, where LOG is,
in essence, Pstats::LOG. It continues by definition of parameters that can be redefined from the
command line during startup, initiated with discussed default values. The block ends with the
custom Pstats::Info record, where all fields are marked for logging using the &log attribute.
Attributes whose values are either not known at the time of record instantiation or cannot be
set to a sound default value are further defined as &optional so that they can be assigned later
during the analysis process. The connection record is then redefined to optionally include the
newly defined record as specified in the record design Section 2.3.1.

34
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Code listing 3.1 Custom Zeek record definition
export {

# Add " Pstats :: LOG" id to global list of log identifiers
redef enum Log::ID += { LOG };

# Specify these parameters at launch to modify script behavior
global LogFirst: count = 30 &redef;
global LogEmpty: bool = F &redef;

type Info: record {
dst_ip: addr &log;
src_ip: addr &log;
dst_port: port &log;
src_port: port &log;
protocol: count &optional &log;
bytes: count &log;
bytes_rev: count &log;
time_first: time &optional &log;
time_last: time &optional &log;
dst_mac: string &optional &log;
src_mac: string &optional &log;
packets: count &log;
packets_rev: count &log;
pkt_directions: vector of int &log;
pkt_lengths: vector of count &log;
pkt_times: vector of time &log;
pkt_flags: vector of count &log;

};
}

Code listing 3.2 Zeek initiation event handler defining a log stream
event zeek_init () {

Log:: create_stream(Pstats ::LOG , [$columns=Info , $path=} pstats }]);
}

3.1.2 Event Handlers
The first event handler defined by the script is the zeek_init event shown in Code Listing 3.2,
which takes care of log stream creation, providing the Pstats::Info record as a template and
”pstats” as a log file name, resulting in pstats.log file creation and its subsequent population.

Now that the environment and components are configured, the script defines event handlers
focused on the actual data collection and logging.

New Connection Starting with record instantiation and assignment to the connection record,
the new_connection event handler instantiates the pstats record with known IP addresses and
ports and default values for non-optional fields. Endpoint bytes and packets are set to zero
and later incremented, while vectors are set to empty vectors, ready to be populated with per-
packet information. To access record members, Zeek makes use of dollar notation instead of dots
compared to C or C++ to avoid confusion with IP addresses. The syntax can be demonstrated
in both access to endpoint information in instantiation and assignment to connection in Code
Listing 3.3. To test whether an optional field is present, a question mark can be placed before



Script 36

the dollar sign, returning T (true) or F (false).

Code listing 3.3 Custom record instantiation and assignment
event new_connection (c:connection) {

c$pstats = Info($dst_ip=c$id$resp_h ,
$src_ip=c$id$orig_h ,
$dst_port=c$id$resp_p ,
$src_port=c$id$orig_p ,
$dst_bytes =0,
$src_bytes =0,
$dst_packets =0,
$src_packets =0,
$pkt_directions=vector(),
$pkt_lens=vector(),
$pkt_flags=vector(),
$pkt_times=vector ());

}

New Packet After successful instantiation of the pstats record, it can be accessed and up-
dated in the new_packet event handler with every incoming packet. Starting with timestamping,
the handler leverages the network_time function described in the script design to retrieve an
accurate packet timestamp. The connection’s end time can then be immediately updated.

To minimize the number of conditional statements, the next addressed information is packet
bytes using the designed approach of extracting payload sizes from protocol header structures,
which is simply set to zero in case of ICMP or unknown protocols. Next, when packet direction
is determined by address comparison, both packet and byte count can be updated in one place.

At this point, further analysis and assignments are conducted only in case the following
condition in Code Listing 3.4 is not met, meaning empty packets are not logged when they are
not supposed to, and no additional packets are logged when a provided or default threshold has
been reached. If the condition is not met, the new_packet event handler finishes by updating
the record vectors with direction, bytes, timestamp, and if applicable — if (p?$tcp) — also
TCP flags using a += vector assignment operator.

Connection Termination The last event handler defined in the script solution handles the
connection_state_remove event. Based on the proposed design, all remaining fields are as-
signed before a record is logged. Starting with the MAC addresses, the presence of l2_addr
fields is tested using the question mark notation, which is eventually assigned to the pstats
record fields dst_mac and src_mac. Next, a Zeek switch statement very similar to C or C++ is
leveraged for protocol translation from enum type to standard IP header protocol field numbers.
Before comparison of the enum values with literal strings such as “tcp”, a conversion from enum
to string has to be conducted using cat(enum) function, as can be seen in Code Listing 3.5.

To finalize the information collection, the event handler retrieves a mandatory connection
record’s field start_time and assigns it to pstats$time_first field. Now, the populated

Code listing 3.4 Extension parameter check during analysis
if (( LogFirst < c$pstats$dst_packets + c$pstats$src_packets)

|| (LogEmpty == F && bytes == 0))
return;
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Code listing 3.5 Protocol abbreviation translation
# Translate protocol string to corresponding
# IP header protocol field number
if (c?$conn && c$conn?$proto) {

local proto = cat(c$conn$proto );
switch proto {

case "tcp":
c$pstats$proto = 6;
break;

case "udp":
c$pstats$proto = 17;
break;

case "icmp":
c$pstats$proto = 1;
break;

}
}

custom record can be logged by providing the defined log identifier in the following fashion:
Log::write(Pstats::LOG, c$pstats);.

It was decided that implementing export of flow records in UniRec messages leveraging Zeek’s
scripting language would be too complex and inconvenient, hence this is the final form of the
script-based solution.

3.2 Plugin
To satisfy the UniRec export requirement, a compiled solution has to be implemented for per-
formance, convenience, and security – using Zeek functions like system(command) when unnec-
essary is not considered secure. Although this solution largely builds upon the implemented
script, adding new functionality in C++ involves many challenges, from leveraging Zeek API to
integration with foreign NEMEA libraries.

To initiate the plugin structure, Zeek’s init-plugin script was leveraged, creating a “Pstats”
plugin in “Nemea” namespace. The generated directory is then populated with the main Zeek
script and C++ source and header files, resulting in an installable Zeek plugin. For the main
script to be loaded with the plugin, it is placed in scripts/Nemea/Pstats directory and loaded by
scripts/Nemea/Pstats/__load__.zeek, which is further loaded by scripts/__load__.zeek.
Although the structure might seem complicated, it presents a scalable approach to possible future
enhancements.

3.2.1 Main Script
Adhering to the proposed design, the compiled plugin interacts with a main.zeek script, which still
facilitates new record definition, its instantiation, data collection finalization, and ASCII logging
— largely based on pstats.zeek script solution. The main difference is that the new_packet
event handler is completely omitted as the individual packet analysis is compiled. Although
vector and counter fields of the defined Pstats::Info record are being assigned in the plugin, it
is considered a bad practice to leave counter variables uninitialized, hence the record instantiation
new_connection will remain untouched.

Additionally, as this solution implements data export, an OutIfcSpec parameter specifying
the TRAP output interface is exported as a global variable for redefinition upon Zeek instance
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startup, initially set to value “undefined”. The last addition to the main script is two new func-
tions: unirec_export, which exports data before ASCII logging, and unirec_init, responsible
for UniRec output interface initiation. Both of these functions are described in depth in the
following sections.

3.2.2 BiF
Similarly to other extensions compiling new Zeek functions, the plugin starts with function
declaration in pstats.bif file. For convenient development — Visual Studio Code, in which the
plugin was developed, does not provide an extension that could handle the bif file formatting
— the file only defines function wrappers which then call imported plugin methods UnirecInit
and UnirecExport.

In the declaration in Code Listing 3.6, the header files are first included in a special C block,
following the syntax observed in other extensions. As Zeek cannot define functions without a
return value, the wrappers are defined to return a boolean symbolizing either success or failure.
The actual functionality conducted by the imported functions is discussed in Section 3.2.3 and
Section 3.2.5, respectively.

Code listing 3.6 BiF function wrappers
%%{
# include "zeek/Val.h"
# include "Plugin.hpp"
%%}

function unirec_init %(%): bool
%{
if (:: plugin :: Nemea_Pstats :: plugin.UnirecInit ())

return zeek::val_mgr ->True ();
return zeek::val_mgr ->False ();
%}

# Zeek wrapper function for UniRec message construction and export
function unirec_export %(c:connection %): bool

%{
// Call the actual export function defined in Export .cc
if (:: plugin :: Nemea_Pstats :: plugin.UnirecExport(c))

return zeek::val_mgr ->True ();
return zeek::val_mgr ->False ();
%}

3.2.3 Plugin Class
The implementation of the compiled plugin begins with the definition of a Plugin class, which
inherits from the zeek::plugin::Plugin class, facilitating the integration with Zeek’s core.
For better organization, the class and method definitions and declarations are split into two
files, Plugin.cc and Plugin.hpp. The base class provides multiple virtual methods that can be
overridden and later invoked by Zeek in certain situations. Although the only required method
for the plugin to be considered a valid Zeek plugin is a Configure method, other virtual methods
are overridden, and new methods are defined for plugin initialization, component attachment,
export, and proper cleanup. As the UniRec export is complex and requires separate source files
for better organization, it is described in depth in a dedicated Section 3.2.5.
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3.2.3.1 Configuration
Starting with the configuration, the method first enables a hook necessary for the plugin’s
HookSetupAnalyzerTree method to be invoked by Zeek, a necessary entry point for analyzer
component attachment to a connection. The function takes a HOOK_SETUP_ANALYZER_TREE hook
type enum and a priority value, which can be set to manage the order of this method invocation
across all plugins. Since this plugin does not rely on others, the value is set to zero.

Next, the configuration method registers the analyzer component Pstats_Analyzer whose
implementation is discussed in the next section. The registration is achieved using Zeek’s
AddComponent function, which registers the provided component. To construct such a com-
ponent, a component identification name is provided with a pointer to its Instantiate method
which returns a new object of the class. After that, the configuration method fulfills its purpose
by creating a zeek::plugin::Configuration object and defining its attributes – plugin name
Nemea::Pstats already prepared by plugin-init, a brief description, and version specification
1.0.0 – before returned.

3.2.3.2 Analyzer Attachment
Delving into the analyzer tree setup, the biggest challenge is to properly attach a new analyzer
to the zeek::Connection* conn provided as a parameter to the hook function. The first step
is to retrieve the connection’s session adapter – essentially connection analyzer tree root – by
invoking conn->GetSessionAdapter(). After the instantiation of a new analyzer by the means
of Zeek’s analyzer manager, an object that maintains and schedules available protocol analyzers,
a segmentation fault kept arising during its attachment. Thanks to Arne Welzel’s help, I have
been able to solve this issue by treating attachments differently in TCP connections. The issue
is that although analyzers are normally attached to session adapter using its AddChildAnalyzer
method, TCP connections’ session adapter is not actually an IP::SessionAdapter, but rather
a TCP::TCPSessionAdapter, so it cannot be treated in the same way. This complication was
solved by statically casting the adapter to a TCP adapter in case of TCP connections. After the
attachment shown in Code Listing 3.7, the analyzer is prepared to process incoming traffic.

Code listing 3.7 Custom analyzer attachment
if (conn ->ConnTransport () == TRANSPORT_TCP) {

auto* tcp_session_adapter =
static_cast <zeek:: packet_analysis ::
TCP:: TCPSessionAdapter *>( session_adapter );

tcp_session_adapter ->AddChildPacketAnalyzer(pstats_analyzer );
} else

session_adapter ->AddChildAnalyzer(pstats_analyzer );

3.2.3.3 Parameters
Another overridden virtual method leveraged during the plugin’s initiation is an InitPostScript
method that reads values of the script parameters: LogFirst, LogEmpty, and OutIfcSpec. For
storage of these values, 3 corresponding class attributes are defined. Considering the maximum
possible number of packets defined by the UniRec field standard, the first parameter is stored as
a uint32_t type variable for effective memory management.

For each of the three parameters, a lookup is conducted using their name in the script’s
Pstats:: namespace. When a pointer is retrieved, the function checks whether there is an asso-
ciated value of the expected Zeek type and eventually reads the value and assigns it to the plugin
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member variable. If the retrieval fails, the values are set to default values defined in the header file
— LOG_FIRST_DEFAULT 30, LOG_EMPTY_DEFAULT false, and OUT_IFC_DEFAUTL "undefined".

3.2.3.4 UniRec Interface
The UniRec interface setup method UnirecInit invoked by the unirec_init BiF function ini-
tiates an output interface by leveraging NEMEA framework libraries. As the UniRec export
is one of the base extension requirements, it must be correctly initiated. The method hence
first checks whether the m_out_ifc_spec member value was changed from the default value and
eventually terminates the execution using the exit function with return code 1 while providing
hints to users on how to specify parameters. If the check is passed, a Nemea::Unirec object is
created by providing trap module information — 0 input interfaces, 1 output interface, module
name, and description — and stored as a plugin class member for its persistence throughout the
Zeek instance’s lifetime. The subsequent interface initiation is conducted in a try-catch block as
unsuccessful initiation raises exceptions.

As NEMEA modules are typically started from a command line, the initiation parameters
are parsed from argc and argv parameters. To provide these parameters, both are created
synthetically by constructing a nullptr-terminated C string array and simply calculating the
arguments by eye, as this number won’t change — Code Listing 3.8.

Code listing 3.8 Command line parameter synthetic creation
const char* argv[] = {} ProgramName}, "-i",

m_out_ifc_spec.c_str(), nullptr };
int argc = 3;

These two values are then passed to m_unirec->init(argc, (char**)argv) method, which
initiates the Unirec object, enabling a subsequent interface build. First, however, the plugin
method checks whether an output interface is available and eventually notifies the user while
exiting the program with return code 2. A buildOutputInterface method is used for the
construction of Nemea::UnirecOutputInterface object that is also assigned as a plugin member
for convenient access throughout the extension, specifically during the export phase. The last step
is to change the UniRec record template of the interface to the one defined in design section 2.3.6.2
— defined in the plugin header file. In case an exception occurs during interface initiation, the
method prints the exception and provides a reference to correct interface specification practices.

To demonstrate the challenges faced while navigating open-source software, whose develop-
ment is often an ongoing process, a caught exception generated by NEMEA’s unirec++ library
using std::cerr << "EXCEPTION: " << ex.what() is included in Code Listing 3.9. This situ-
ation led me to explore the NEMEA framework’s Github source code, and I have been able to
identify the issue statically.

The UnirecInit method completes the main plugin class — except for the export discussed
later — and finalizes the UniRec record export environment preparation.

Code listing 3.9 Exception generated by NEMEA framework
$ zeek -r pcaps/smallFlows.pcap
EXCEPTION: TODO
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3.2.4 Analyzer
To adhere to best coding practices and enhance readability, the Pstats_Analyzer class, which in-
herits from zeek::analyzer::Analyzer, is also divided into header and source files Analyzer.hpp
and Analyzer.cc. The base class also represents Zeek’s API by declaring virtual methods to be
overridden by developers to introduce custom functionality.

To facilitate the analyzer component registration in the plugin’s configuration described in
Section 3.2.3.1, a constructor and the instantiation method have to be defined. Following other
extension conventions, the constructor is declared as explicit to prevent implicit conversions from
its zeek::Connection parameter. The static Instantiate method then simply allocates and
returns a new Pstats_Analyzer object and can be readily used in the Component instantiation
process.

3.2.4.1 DeliverPacket
To substitute the script’s new_packet event handler, the class overrides a DeliverPacket method
that conducts the packet-level analysis. Before data is actually extracted, the analyzer class
defines member variables as proposed in the analyzer design, addressing endpoints’ byte and
packet count, the time of the last packet that has to be constantly updated, and four PSTATS
vectors. The primitive type members are set to zero in the class constructor, while vectors
are preallocated using the reserve method to the LogFirst parameter value to avoid time-
consuming reallocation during analysis and enhance performance.

The implementation of packet analysis is conceptually similar to the new_packet event with
only minor changes, such as invoking a base class method to maintain functionality. The ac-
curate timestamp is then read from run_state::network_time directly to member variable
m_time_last instead of the local variable to optimize memory management. Another difference
compared to the script approach is that TCP flags are always extracted regardless of whether
they will be logged to avoid duplicate parsing of the header — it has to be always accessed to
determine the payload bytes. The order in which protocols are checked begins with TCP protocol
as it is encountered more commonly than UDP, which also enhances performance by minimizing
conditional jumps during execution. In the case of ICMP or any other unknown protocol, the
payload size remains zero.

Same as in the script solution, a check is conducted to verify whether PSTATS information
should be logged — empty packets and maximum packet count. If not, the method simply
returns, and the analyzer continues with the delivery of subsequent packets. In a heavy-load
network, this method will be invoked very frequently; therefore, all functionality has to be
optimized to the greatest extent possible.

3.2.4.2 UpdateConnVal
When all required connection information is collected, there is a need to update the script
connection$pstats fields for subsequent TSV logging. Another overridden API method is hence
UpdateConnVal, invoked by Zeek whenever connection is referenced in the script. The method
provides a pointer to the connection record, which is immediately leveraged to retrieve a pointer
to the pstats record. The function then checks whether retrieval of the connection$pstats
record pointer was successful and eventually creates and assigns the record.

To increase readability, the code is modularized by introduction of a helper boolean function
CreateAssignPstats, defined to create and assign the record. First, a Zeek record type has to
be retrieved using auto info_type = id::find_type<RecordType>("Pstats::Info"). Then,
a new pstats record is created using Zeek’s make_intrusive function, which creates a reference
counted object. Finally, using pstats field offset in the connection record’s fields, the record is
assigned. Errors encountered in all of these operations are handled by the false value returned and
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eventually accompanied by an error message under the condition DEBUG was defined during com-
pilation — wrapped in an #ifdef-#endif block. If the function fails, UpdateConnVal execution
is terminated, and the assignment is conducted either in the script or the next UpdateConnVal
call.

Once the field is retrieved or correctly assigned, the method can continue with the designed
update. Helper functions UpdateCount, UpdateTime, and templated UpdateVector function
are defined to enhance readability and to avoid code duplication. The count update function
is used for the update of endpoint bytes and packets, while the time update function sets the
time of the last connection’s packet. Both functions start by finding the provided field offset
using its name but differ in how the actual Zeek value is created before the assignment. Zeek
count value can be generated by leveraging Zeek’s value manager object, specifically by calling
its Count method while providing the value. A time value, however, has to be constructed by
make_intrusive<TimeVal>(time).

The UpdateVector function is a little more complex as it is designed to accept a vector of
any type — in this case integer, unsigned integer, and time — and update a corresponding
Zeek vector. Because of this complexity in terms of templates, the function is defined in the
header file, as opposed to all other definitions, to simplify compilation. The function template
consists of the vector item type, Zeek vector item type, and a function used to create the value
itself to address the differences between the instantiation of Zeek values. It works similarly to
the primitive value update functions in terms of offset lookup, however, it additionally has to
construct a vector type value which has to be populated with Zeek values before assignment.
In the excerpt seen in Code Listing 3.10, the method uses the create_val_func provided as a
parameter to construct individual item Zeek values and assign them to the vector. Only then
can be the whole updated vector assigned to the pstats record.

Code listing 3.10 UpdateVector function excerpt
auto vector_val = make_intrusive <zeek::VectorVal >( vector_type );

for (const T& value : pstats_vector)
vector_val ->Assign(vector_val ->Size(), create_val_func(value ));

pstats_record ->AsRecordVal()->Assign(field_offset ,
std::move(vector_val ));

A wrapper function UpdatePstatsVectors has been created to update each of the four
PSTATS vectors by invoking the complex UpdateVector function, which would otherwise disturb
the organization of UpdateConnVal — update of time vector can be seen in Code Listing 3.11.

Code listing 3.11 Zeek time vector update
UpdateVector <double , zeek::TYPE_TIME >( pstats_record ,

"pkt_times", pkt_times ,[]( double value)
{ return make_intrusive <TimeVal >( value); });

By implementing both DeliverPacket and UpdateConnVal overridden methods, the analyzer
class is fully capable of handling the analysis previously conducted by the new_packet handler
in the script-based solution and is expected to significantly enhance performance.
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Code listing 3.12 Read packet times vector from Zeek to plugin
std::vector <Nemea::UrTime > pkt_times = ReadVector <Nemea::UrTime ,

zeek::TYPE_TIME >( pstats_record , "pkt_times", []( zeek:: ValPtr val)
{ return ur_time_from_double(val ->AsTime ()); });

3.2.5 Export
The plugin continues where the script solution could not by introducing the BiF unirec_export
function, which is made available for use in the script’s connection_state_remove handler. This
wrapper function invokes the plugin’s method UnirecExport, which conducts three important
steps: reads data from the script’s pstats record, packs the flow data into a UniRec record, and
sends it to the output interface. As these steps require a complex approach, all helper functions
are declared and defined in separate files, Export.hpp and Export.cc, in an Export namespace
to support scalability and organization.

3.2.5.1 Read Script Values
Starting with the first task, the loading of Zeek script values from connection$pstats record
begins by finding the record using its name – same as in UpdateConnVal in Section 3.2.4.2.
To read individual primitive type values, a template function ReadValue is defined to avoid
redundant code. This function template consists of a C++ data type, a Zeek data type, and
again a function, now to extract the actual value from the Zeek data type. The function retrieves
the field from pstats record verifies it holds the correct type, and returns its value converted
using convert_func provided as a parameter. This function is used to retrieve all the custom
record fields except for vectors.

For the purpose of reading vector items from any of the four vectors, a template function
ReadVector is defined. As always, the function starts by retrieving the desired pstats field
based on its name. It then creates an std::vector of the desired type, one by one reads the
Zeek vector items, extracts their raw value using convert_func, and appends it to the result
vector. The biggest challenge lies in constructing a UniRec time type array, as a double type
vector cannot be directly assigned to a UniRec time array. The issue is that there is no simple
convert_func that could take care of Nemea::UrTime construction from C++ double, so a helper
function ur_time_to_double facilitates the conversion. It constructs a Nemea::UrTime object,
sets its time attribute, and returns it. The pkt_times read can be seen in Code Listing 3.12.

As reading all the values is very space-consuming, they are encapsulated in a ReadData func-
tion, which assigns the read data to a helper RecordData struct. At this point, the UnirecExport
method has all the required data loaded from the main script and is ready to build a UniRec
record.

3.2.5.2 Assign to UniRec Record
To start populating a UniRec record, the UniRec output interface kept as a plugin class member
variable is leveraged to get a reference to a preallocated record by invoking its getUnirecRecord
method. To assign count and time values to the record, a template function AssignValue is
defined. Similarly to the Zeek value assignment, a desired offset in the UniRec record is retrieved
using the ur_get_id_by_name function, which is then leveraged for the field value assignment
using the record’s SetFieldFromType method.

As IP and MAC addresses require a special approach, they are taken care of by two separate
functions: AssignIpAddr and AssignMacAddr. To assign a UniRec ipaddr or macaddr, they
both have to be constructed using the unirec++ library classes and structs. An IP address
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Code listing 3.13 UniRec array reservation an population
// Get offset
int id = ur_get_id_by_name(field_name.c_str ());

// Populate array
auto dir_arr = record.reserveUnirecArray <T>( src_arr.size(), id);
for (size_t i = 0; i < src_arr.size (); i++)

dir_arr.at(i) = src_arr.at(i);

can be conveniently instantiated from an std::string type in which IP addresses are stored
throughout the plugin. Unfortunately, MAC addresses can only be created from an uint8_t
array – essentially unsigned char – which is constructed in AssignMacAddr and populated by an
sscanf function using %hhx delimited by a colon format. Both IpAddress and MacAddress type
variables can then be assigned to the UniRec fields also using the record’s setFieldFromType
method.

Vectors are of variable lengths compared to all other defined fields, hence their assignment
has to be handled differently. Another dedicated function has been created to address the
needs, called ReserveAndAssignArray. When the UniRec field offset is retrieved, the record’s
reserveUnirecArray method can be used to reserve memory within the UniRec record. The
returned UnirecArray object can then be leveraged for a population of the actual record with
vector items, as depicted in Code Listing 3.13. To organize the UnirecExport function, all
assignments are conducted in a new function AssignData.

In case any of the implemented assignment functions fails, it simply returns without populat-
ing the record while providing an error message — in case DEBUG is defined — leaving the field
empty. When all assignments have been conducted, the output interface object is used to send
the finalized UniRec record by invoking its send method. The implemented export satisfies the
last extension’s requirement, completing the whole hybrid solution.

3.2.6 Compilation
An integral part of the extension development is compilation. It was mentioned before that the
plugin-init script prepares the compilation environment, including a configuration script. With
new files and libraries introduced to the system, however, CMakeLists.txt has to be reconfigured
for the extension to be compiled and linked. As my previous experience with more complex
project compilation has been foundational, the process has been a lot of trial and error.

While specifying which new source files — such as Export.cc — should be additionally com-
piled was easily achievable by adding their relative paths to a zeek_plugin_cc function in the
CMakeLists.txt file, linking the program with NEMEA’s unirec++ library has been a signifi-
cant challenge. After experimenting with various CMake macros, I have been able to link the
library by utilizing include_directories, link_directories, and target_link_libraries.
The first two macros were pointed to /usr/local/include containing required header files and
to /usr/local/lib containing required dynamic libraries, respectively. What required the most
effort was the last macro, which required a Nemea_Pstats target I could not initially identify,
a PUBLIC keyword necessary to link also against other related targets, and the library that the
target needed to link against, unirec++. The reason I could not find the exact target name was
that it was not present in the configuration of Make files but was rather generated by CMake
commands during compilation. I was able to later identify the target name in CMakeFiles in the
plugin’s build directory and successfully compile and link the extension. The use of the macros
can be seen in Code Listing 3.14.
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Code listing 3.14 CMakeLists.txt excerpt - load and link unirec++
# Include UniRec library and headers
include_directories (/usr/local/include)
link_directories (/usr/local/lib)

# Link the UniRec library
target_link_libraries(Nemea_Pstats PUBLIC unirec ++)



Chapter 4

Testing

As the extension is completely implemented, it is necessary to evaluate whether it satisfies all
proposed requirements, compare Zeek’s performance with and without the extension, and verify
whether the produced output is correct. Correctness was tested by comparison of the results
with single-flow packet capture and with other Zeek logs. To assess the performance impact of
the extension, a set of scripts has been created for single host setup testing.

4.1 Correctness
During the implementation phase, the extension was continuously tested on three sample packet
capture files downloaded from Tcpreplay, ranging from 37 to 40 686 flows [15]. To test the
final version for correctness, I started by focusing on single-flow files to isolate eventual errors
better and for overall clarity. Both extraction and subsequent comparison were conducted using
Wireshark protocol analyzer [16].

I began by focusing on the Zeek script base shared by both solutions, which starts by defining a
custom record and assigning it to connection. I extracted a simple nine-packet HTTP flow from
the testing packet capture, and in new_connection event handler, I added two print statements
printing the connection object before and after pstats assignment in its entirety, including all its
initialized and uninitialized fields. When observing Zeek’s output after reading the one-flow file,
I observed an uninitialized pstats field at the end of the connection in the first output, which
means the record was correctly redefined. When the connection was printed after the assignment,
the output already contained the initial values provided during pstats instantiation, which I
compared to the packet capture. As both IP addresses and port numbers matched the values
seen in Wireshark, the record instantiation also works as expected.

4.1.1 Script
Before moving to the final hybrid solution, I tested the script version as its correctness is necessary
for an accurate performance comparison of the two solutions. The solutions start to differ when
it comes to the individual packet inspection, so I started by examining the behavior of the script’s
new_packet event handler, specifically packet timestamps, directions, and bytes – TCP flags are
extracted only after script parameters are checked, which will be tested later. The HTTP flow
consists of nine TCP packets, beginning with a 3-packet TCP handshake, followed by a GET
request and an acknowledgment packet, a 304 code response again followed by acknowledgment,
and a 2-packet TCP connection termination, so it is expected that the handler will be called for
each. To verify it is called as expected, I added a print statement to the very top of the handler.
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As I observed nine lines of output, it is ensured that the event handler is indeed executed with
every packet.

To check whether the handler correctly extracts and assigns all desired fields, I decided to
print the whole final pstats record at the end of the connection termination handler before
logging to avoid browsing extensive output. A first important observation is that each of the
PSTATS vectors only contained two values, which confirms the LogEmpty parameter set to false
works as expected, as only two packets in the flow carry a transport-layer payload. Setting it to
true resulted in all nine packets being logged in each vector. To confirm the second parameter
LogFirst also functions properly, I left the LogEmpty parameter set to true while configuring the
LogFirst to number 7, which correctly resulted in 7 items in each vector upon flow’s termination.

As Zeek timestamps are represented in seconds with microsecond precision — seconds since
1970-01-01 — the Wireshark default time offset view was changed to match the format for
comparison. With the unified format, I was able to confirm the individual packet times were
both correctly extracted and assigned. The rest of the pstats fields’ values were also successfully
compared to the packet capture — connection time boundaries were also compared to conn.log
for consistency across Zeek’s environment – ensuring the extension conducts a comprehensive
and correct analysis. Similar testing was also conducted for UDP, and ICMP flows to address
all possible protocol cases.

The last remaining function to be tested is the ASCII logging. For all the mentioned protocols,
I simply compared the verified printed pstats record before logging and the contents of pstats.log.
As all fields matched the printed values, the correctness testing of the script solution is complete.

4.1.2 Plugin
To test all functionality conducted by the compiled plugin, it is first necessary to ensure that
Zeek correctly recognizes it. By executing zeek -NN, Zeek prints all available plugins in a verbose
mode. The output in my case is positive, as the plugin is not only listed but includes a custom-
defined analyzer, two BiF functions unirec_init and unirec_export, and a statement that
SetupAnalyzerTree hook is implemented.

With the plugin installed and the components registered, I began testing the plugin itself. I
began with the plugin configuration, specifically with the reading of script parameters by adding
temporary print statements after each parameter read. By specifying each of the three plugin
parameters, I observed whether changes were visible in the plugin environment. With control
over the OutIfcSpec parameter, I continued with the unirec_init function additionally called
in the main.zeek script, which sets up the UniRec interface.

I utilized a logger NEMEA module, which I configured to subscribe to localhost at TCP port
1111 in its most verbose mode (-vvv), which enabled me to observe unsuccessful connections
every second. As I executed Zeek while specifying TCP port 1111 as an output interface, I
immediately noticed a successful connection from the logger module, which means the UniRec
interface is being correctly initialized and we can move to the analysis testing.

To test the data collection, I chose the same approach of printing the c$pstats record in its
entirety after the data collection is finalized rather than with every packet — even in the case of
a 9-packet flow, the output can be very extensive and illegible. By comparing the output with
the verified script solution output, I verified that the analysis was conducted correctly and all
collected information was accurate.

The last step is to ensure that data is correctly packed into a UniRec record and received
without any malformation. As the logger module simply logs all received records and the UniRec
template closely resembles the record defined in the Zeek script, as soon as the received UniRec
message gets printed, it can be conveniently compared. By comparing each field in the pstats.log
to the logger’s output, I ensured all values and vectors were transmitted without corruption and
verified the correctness of the last extension’s functionality.



Performance 48

Code listing 4.1 lscpu command output excerpt
L1d: 512 KiB (12 instances)
L1i: 512 KiB (12 instances)
L2: 12 MiB (9 instances)
L3: 25 MiB (1 instance)

4.2 Performance
As organizations typically do not dedicate special machines for flow extraction and collection,
the performance testing was conducted on a single host — a 64-bit Debian desktop machine,
12th Gen Intel(R) Core(TM) i7-12700K CPU with 20 cores and the following cache metrics 4.1,
and 32GB of memory.

The approach was to conduct multiple measurements by generating traffic consisting of grad-
ually decreasing size packets and capturing it using a Zeek instance first in its default mode,
then with the script solution active — only analysis and logging without UniRec export — and
finally with the hybrid extension. Over a period of time, I wanted to observe the received on a
network interface, the number of packets Zeek processed, and most importantly, the difference
between them to determine the advantage of the plugin.

Starting with the traffic generation, I explored several network testing tools including tcpre-
play, however, for its multithreading capabilities and granular traffic generation options, I selected
iperf3 [17]. This command line tool works in 2 modes: client mode for generation of network
traffic and server mode for accepting it. The most important options are bandwidth, which was
set to 3 Gbps, and the length of individual packets in bytes, which I leveraged for the gradual
packet increase while keeping bandwidth static.

Figure 4.1 Performance testing design

To automate the measurement process, I created a measure.sh Bash script, designed in Fig-
ure 4.1, which begins by starting an iperf3 server on CPU core 0 using taskset command, as
the server is only single-threaded. Specifying cores for each of the measurement tasks — iperf3
server, iperf3 client, and Zeek instance — ensures that the performance of one is not affected by
the other and results are as accurate as possible. Next, measurement rounds are conducted while
the provided packet length — continually decreased by the provided step size — is greater than
16 bytes, the minimum acceptable value for the iperf3 packet length parameter. To initially avoid
fragmentation when testing the performance over the network before turning to the loopback
interface approach, the starting packet length was set to 1472 bytes. Although it could be set to
up to 64KB, the performance is expected to degrade, especially with lower values, as much more
packets per second have to be generated to reach the set bandwidth, so by keeping the initial
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value of 1472, redundant measurement rounds are avoided. Selecting a 28-byte reduction step
size ensures that the 53rd measurement is conducted with a 16-byte packet length, reaching the
biggest performance load possible.

In each round, I started by reading the number of packets currently received on a loopback
interface by referring to system file /sys/class/net/lo/statistics/rx packets, which is later used
to calculate how many packets were actually received. Then, I continued by launching a Zeek
instance first in its default configuration on core 1 while executing the iperf3 client on 18 threads
2-19. The iperf3 was executed using the timeout command, letting it run for exactly one second
each round. Additionally, it was started in a UDP mode to avoid confirmation packets on
the interface, providing localhost as a destination, 3Gbps bandwidth, and calculated packet
length, which is at the same time logged to packet sizes.log for later data visualization. After
sending traffic for one second, the zeek instance was first terminated before accessing the interface
rx_packets again to calculate the difference, which is appended to interface packets.log.

When exploring options to get the number of packets processed by Zeek, I initially noticed
that when a Zeek instance is terminated, Zeek informs how many packets were dropped and not
processed. Although these numbers might seem very handy for the purpose of packet loss mea-
surement, after some testing, I determined they are very inaccurate. For this reason, I leveraged
a total number of received packets by Zeek also provided upon its termination, appending it to
zeek packet.log.

After conducting the 53-round measurement for the default configuration, I conducted the
whole measurement again for both the incomplete script solution and the hybrid solution. With
Zeek and interface packet and Zeek packet pairs of logs for each configuration, I moved to Jupyter
notebook [18] for collected data visualization in Python language.

Leveraging pandas library [19], I started by reading the common packet sizes.log for all mea-
surements and all configuration-related packet count logs. As all logs only contain one column,
I utilized a read_csv pandas function to read them into data frames. I concatenated the two
logs and the packet sizes for each solution into default_data, script_data, and plugin_data.
Using matplotlib library [20], I visualized each dataset by creating scatter plots that plot packet
sizes against processed packet numbers 4.2.

Figure 4.2 Comparison of solutions’ performance to Zeek default configuration

We can see from the graph that the number of packets handled by iperf3 stagnates somewhere
below one million packets per second, which might be a result of the performance limitations of
either iperf3 or the testing machine itself. An important observation is that the script solution
results in a significant loss when packets per second reach approximately 400 thousand. However,
the plugin solution exceeded expectations and did not affect the overall Zeek performance at all.



Conclusion

This thesis has described the requirements, design, and development of the Zeek extension aimed
at extended flow statistics export and integration with the NEMEA system. Before delving into
technicalities, related themes were described so readers can better grasp the challenges and
decisions encountered throughout the work.

By exploring the field of network monitoring with a focus on flow-based monitoring archi-
tecture, Zeek’s and NEMEA’s capabilities and structure, and the workings of IPFIXprobe flow
exporter, I was able to lay down the foundational requirements for the extension. Through re-
search of the existing solutions and possibilities for Zeek extension development, I have identified
both the strong sides and shortcomings of Zeek’s custom scripting language and compiled plugin
solutions. Throughout the design of the sole script solution, however, I determined that UniRec
export requirements cannot be satisfied. Another challenge faced when designing individual
packet inspection in the script was that high-level script events generated with every packet in
a high throughput network can be very resource intensive, which led to the conclusion that the
extension has to employ compiled components.

Since the script solution overlaps with the plugin, specifically with its main Zeek script,
the implementation focused on both solutions for the possibility of subsequent performance
comparison. The development of the script solution required an understanding of Zeek’s scripting
language, which was not too complicated, thanks to comprehensive documentation. The compiled
approach, on the other hand, posed a significant challenge. From understanding Zeek’s C++
API to linking third-party libraries, it has been a process of continuous learning through a lot
of trial and error. Since open-source projects — both Zeek and NEMEA — are often work in
progress, the development required browsing through Github source code repositories, and in my
hardest times, led me to reach out to the open-source community, which has been invaluable.

After completing the designed solutions, I started by testing both for correctness through
comparison of the results with packet capture files and other logs produced by Zeek for con-
sistency across the environment. I then turned to a comparison of Zeek’s performance in its
default configuration, with the script active and with the plugin installed. It was confirmed that
the Zeek script can pose a large overhead and thus cause information loss. The plugin solution
exceeded all expectations as it did not have an impact on Zeek’s performance.

In the future, the extension could be further enhanced by implementing dynamic, runtime-
configurable template UniRec records, a feature supported by NEMEA but not yet leveraged,
as the UniRec record format is defined statically. This capability would increase the extension’s
adaptability, providing custom solutions to diverse network environments.
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