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Abstract

In this thesis, we explore the problem
of face image quality prediction. The pro-
posed approach builds upon recently pro-
posed method for learning CNN based
quality predictor (CNN-FQ) from triplets
of faces [47]. This thesis enhances previ-
ous work in several key ways. Firstly, we
introduce novel data selection and boot-
strapping methods for efficient training on
large face databases. Secondly, we train
and evaluate CNN-FQ using the JARPA
Janus Benchmark and CASIA-WebFace
datasets. Thirdly, we explore improve-
ments by replacing the CNN backbone
with a large neural model pre-trained
on the 20M LAION database. Lastly,
we evaluate the quality predictors using
protocols from the ongoing NIST face
quality prediction challenge. Our results
demonstrate the effectiveness of these en-
hancements, significantly improving per-
formance over the original implementation

proposed in [47].
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Abstrakt

V této diplomové praci zkouméme pro-
blém predikce kvality obrazi tvare. Na-
vrhovany pristup vychazi z nedavno na-
vrzené metody uceni predikce kvality na
zakladé CNN (CNN-FQ) z trojic tvari
[47]. Tato prace rozsituje predchozi praci
v nékolika kli¢ovych ohledech. Zaprvé za-
vadime nové metody vybéru dat a bo-
otstrappingu pro efektivni trénovani na
rozsahlych databazich obliceju. Zadruhé
trénujeme a vyhodnocujeme CNN-FQ
s vyuzitim datovych sad IARPA Janus
Benchmark a CASIA-WebFace. Zatreti
zkoumame zlepseni nahrazenim backbone
CNN velkym neuronovym modelem pred-
trénovanym na databazi LAION obsahu-
jici 20 miliont obrazii. Nakonec vyhodno-
cujeme prediktory kvality pomoci proto-
kold z probihajici soutéze NIST pro pre-
dikci kvality tvare. Nase vysledky demon-
struji i¢innost téchto vylepseni, coz vy-
razné zvysuje vykon oproti puvodni im-
plementaci navrzené v [47].

Klicova slova: predikce kvality obrazu
tvare, konvolu¢ni neuronové site,
bootstrapping

Preklad nazvu:
obrazku tvare

Prediktor kvality
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Chapter 1

Introduction

The issue of human face recognition has been a significant area of interest in
artificial intelligence and computer vision research for a long period. Face
quality prediction, a relatively less developed field, plays a crucial role in
enhancing face recognition and verification systems. High-quality images can
substantially improve their accuracy and other performance metrics, whereas
poor-quality images can lead to decreased metrics, non-matches, and even
security problems.

The aim of this thesis is to develop an algorithm that assesses the quality of
facial images to enhance the overall performance of face recognition systems.
The algorithm will assign quality scores to images, filtering out those likely
to result in non-matches. Building on recently published work [47], this
thesis aims to enhance it further. The main contributions include training
a convolutional neural network to predict face image quality using a large
dataset created from a combination of the IARPA Janus Benchmark C (I1JB-
C) and CASIA-WebFace datasets. It is important to note that the method
learns the quality predictor from existing large databases without requiring
additional annotations. This thesis will present effective methods for selecting
training data from a large pool, improved data preprocessing methods, and a
bootstrapping method for more effective training. Additionally, an alternative
approach will be implemented to extract information from images using
feature vectors containing the underlying latent features of faces. Finally,
the framework will be evaluated using the methodology and metrics defined
by the National Institute of Standards and Technology in the Face Analysis
Technology Evaluation (FATE) quality assessment track.

. 1.1 Face image quality

Defining image quality is essential yet complex. It can be approached in at
least three ways: through industry standards, human-centric definitions, and
quality concepts used in machine learning algorithms. While these methods
share commonalities, each introduces unique details. Thus, image quality is
inherently subjective and tied to specific tasks, research fields, or applications.
In this thesis, we are mainly interested in the machine-learning definition of
the problem.
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Industry standards. Broadly, face image quality is described in ISO/IEC
29794-1 [19] as the degree to which a biometric sample fulfills specified re-
quirements for a targeted application. The requirements may address aspects
such as focus, resolution or the probability of achieving a correct comparison
result. Other authors further specify that a sample’s quality is related to
being suitable for personal recognition [2] or automated matching [14]. In
that case, automated matching means the system’s ability to recognize/verify
a person using his reference face image. The industry standard definition aims
to define quality in such a way that it is associated with a high probability of
a biometric system working effectively on data, such as being able to verify
Or recognize a person.

We already see, that the term quality contains several important aspects
that can change the definition and use case of quality in some algorithm,
therefore it is essential to elaborate on its components. ISO/IEC 29794-1 [19]
outlines three components of quality.

Figure 1.1: Tmage quality components: character, fidelity, utility. Source: [2].

As shown in Figure [1.1, the first component is character, which refers
to the attributes of the individual’s physical features [39]. It indicates how
good the physical attributes are in terms of quality. The scars on the face,
ageing that makes skin wrinkled, skin condition in general affect the character
component. In cases where a face image has low character, recapturing the
image will not improve its quality.

The next aspect is fidelity, which describes the similarity between a bio-
metric sample and its source. According to ISO/IEC 29794-1 [19], the fidelity
of a biometric sample includes components attributable to the environment,
subject behavior, and technology. An example of a low-fidelity image could
be one that is highly compressed, so that the facial features cannot be seen
clearly.

The last component is utility, which is defined as the sample’s impact
on the biometric system’s performance [39]. This is the component that is
addressed by face image quality studies and algorithms in most of the cases.

Human centricdefinitions. From a human perspective, facial image quality
is typically defined through subjective evaluation by a human observer. This

involves personal judgment of various image attributes such as sharpness,
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1.2. Factors affecting face image quality

contrast, lighting, aesthetics, and the absence of blurring. It is important to
note that this evaluation is highly dependent on the observer.

Machine learning quality concepts. The goal of machine learning methods
is to determine a face image quality score that accurately predicts the success of
a face recognition system processing those images. Approaching this problem
with supervised learning is challenging due to the difficulty in obtaining data
with ground truth targets, such as the probability of success. For instance,
while it is easy to evaluate the success of a face matcher classifying pairs
of face images, determining how individual images contribute to success or
failure is much harder, in fact, it is the key challenge in this problem.

. 1.2 Factors affecting face image quality

The quality of face images can be influenced by different factors, which can
broadly be categorized into aspects related to the person in the image, envi-
ronmental factors, and technical or device characteristics [9]. Understanding
and addressing these factors is crucial for improving the performance and
reliability of face recognition systems, especially in critical applications like
security and identification. A more detailed description of factors is presented
in this section.

B 1.2.1 Individual-Related Factors

Individual-related factors are those connected to the person being captured
or to the user of the biometric capture system. Some of these, such as facial
expression or accessories, could potentially be mitigated by asking the subject
to cooperate and retake a picture. However, this is not always possible,
especially when using forensic or surveillance cameras [2], or in cases of aging
or injuries that irreversibly change the person’s appearance. We present an
overview of factors in Table [1.1.

Table 1.1: Individual-Related Factors Affecting Face Image Quality

Factor Description

Facial Expression Variations in expression can affect facial geome-
try and appearance

Occlusions [22] Objects like glasses, hats, or masks can obscure
key facial features

Pose and Angle Extreme head poses or angles can distort facial
features

Ageing and injuries | Changes in facial appearance over time can affect
the consistency of face recognition
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Il 1.2.2 Environmental Factors

The environmental factors in most cases address the lighting or illumination,
both natural and artificial, inside buildings. Artificial lighting can be improved
with appropriate equipment, but it is impossible for a person to influence
natural light or weather conditions. Background complexity is another aspect
mentioned: in a controlled environment, the background can be made uniform,
as is the case with ID pictures. On the other hand, in photos or recordings
from cameras ’in the wild,” the background is often not uniform and can
indeed be problematic, especially in crowded and busy places. The factors
are described in Table [1.2l

Table 1.2: Environmental Factors Affecting Face Image Quality

Factor Description

Lighting Conditions [49] | Insufficient or excessive lighting can
create shadows, reducing image clar-
ity

Background Complexity | Busy or cluttered backgrounds can
distract from the facial features and
affect detection

Weather Conditions For outdoor captures, weather ele-
ments like rain, fog, or bright sun-
light can degrade image quality

B 1.2.3 Technical Factors

There is a wide variety of devices that can be used for capturing images and
video sequences. Logically, each of these can lead to different outcomes and
possible problems or distortions. For example, there is clear evidence that the
use of hand-portable capture devices leads to performance degradation in face
verification systems [2]. To address these issues, it is possible to provide clear
instructions or methodologies for photographers, set standards for cameras
and other accessory devices, in other words, standardize the capturing process.
The table below (Table |1.3)) illustrates the technical factors.

4



1.3. Use cases of face image quality

Table 1.3: Technical Factors Affecting Face Image Quality

Factor

Description

Camera Quality

Compression Artifacts

2]
Motion Blur

Focus [4]

Exposure [43]

Noise [24]

The resolution, sensor quality, lens of
the camera affect the captured data
Over-compression of digital images
can lead to loss of detail and intro-
duce artifacts

Movement by the camera during cap-
ture can blur the image, reducing
clarity

Incorrect focus settings can result in
an out-of-focus image, distorting the
facial details

Overexposure or underexposure can
lead to loss of detail in facial features
High levels of noise, particularly in
low-light conditions, can obscure fa-
cial features

B 1.2.4 Biometric System Factors

ISO/TEC 2382-37:2017 [20] defines a biometric system as a system designed
for the biometric recognition of individuals based on their behavioral and
biological characteristics. The system may include both biometric and non-
biometric components, encompassing all related processes from image capture
to face recognition and verification. Key factors are outlined in Table 1.4l

Table 1.4: Biometric Factors Affecting Face Image Quality

Factor Description

Inter-System Variability | Each biometric system is unique, with a distinct
combination of components, leading to variations
in the qualities and other attributes it can predict
Algorithmic Sensitivity | The performance of the underlying algorithms
(face detection/recognition, face image quality
assessment) can widely vary and is affected by
numerous factors

. 1.3 Use cases of face image quality

When discussing the measurement or prediction of face image quality, it is
beneficial to consider the potential use cases to gain a deeper understanding
of the problem. This section is divided into two parts: initially, we focus on
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more abstract, general use cases of face image quality and then provide some
real-world examples.

B 1.3.1 General use-cases

This subsection summarizes the most important use-cases of face image quality
as described in [39].

1. Acquiring photos during enrollment process and database maintenance:
This involves selecting the best image from a set of images taken during
the enrollment process and initiating a retake if necessary to keep low-
quality photos out of the database. When updating a person’s template
and adding a new photo, it is essential to ensure that the photo is of
sufficient quality for the same reasons.

2. Summarization: Quality control across different locations or over time,
for example, is possible by collecting and analyzing pictures taken at
Airport A and Airport B to identify problematic locations, or in summer
and winter to determine specific seasonal trends and their effect on image
quality. Summarization allows for monitoring of workers/professionals,
specific groups of people.

3. Additional processing: For already acquired samples of poor quality, it is
possible to invoke further preprocessing, such as applying a restoration
algorithm, adjusting brightness, applying a more powerful matching
algorithm, or adjusting the threshold in the decision phase.

B 1.3.2 Real-world applications

In addition to the broader areas of application previously discussed, the
following practical applications, which we encounter on a daily basis, are also
important:

1. Border control systems: Automated border control systems rely on high-
quality face images. The automated gates at airports are designed to be
intuitive, and the lighting is uniform and symmetrical [23] to ensure the
images taken are of sufficient quality and do not produce false matches,
which is important for security reasons.

2. Smartphone security: Modern smartphones use facial recognition for
authentication. Sometimes, when a person wears a mask or sunglasses
(occlusion - worse quality), the smartphone may not authenticate imme-
diately. Nowadays, the algorithms are quite sophisticated, however, and
are trained to recognize people even when they are wearing accessories.
Face authentication in smartphones is used for banking transactions and
other applications as well.

3. Immigration and visa processing: There are specified standards for facial
images used in visa processing. When applying for a visa and taking

6
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a photo, sometimes the system does not accept the photo because the
quality is not good enough or does not comply with the standards,
allowing the person’s image to be retaken immediately.

. 1.4 Face image quality assessment versus
Image quality assessment

It is important to differentiate between Face Image Quality Assessment
(FIQA) and Image Quality Assessment (IQA). As described in [34], FIQA is a
specialized branch within the broader field of IQA, which focuses on evaluating
the quality of images from an image processing perspective. FIQA is developed
specifically for biometric applications (particularly facial recognition systems),
and it primarily concentrates on the facial features that are crucial for such
systems.

General IQA algorithms are less effective when applied to FIQA tasks
because these general algorithms are typically designed to assess the subjective
perceptual quality of images as perceived by humans. On the other hand,
FIQA algorithms are designed to assess the biometric utility of face images,
determining how effectively an image can be used for facial biometrics rather
than how visually pleasing it is.

It is possible in some specific cases to adapt IQA algorithms for FIQA
purposes, but the reverse is not true: FIQA algorithms do not generally
perform well on non-facial images.

. 1.5 Contributions of the thesis

This thesis builds on a method for learning a face image quality predictor from
triplets of faces, recently proposed by [47]. The authors demonstrated the
potential of this approach using limited data in proof-of-concept experiments.
The goal of this thesis is to develop an efficient implementation of this method
and conduct a thorough empirical evaluation using the evaluation protocols
of the ongoing NIST challenge [13]. The thesis contributions are as follows:

1. Developed an efficient implementation of the algorithm to learn the
face image quality predictor, exploring different strategies for generating
training triplets, which is a main challenge of the method.

2. Combined the two face image datasets, IJB-C and CASIA-WebFace, to
create one large dataset, which was used for training and evaluation in
one of the experiments.

3. Investigated the use of image representations from deep neural models

pre-trained on large datasets, specifically using FaRL trained on a 20M
database of image-text pairs [50].
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4. Conducted a thorough evaluation of the developed face quality predictor
using the metrics defined by the ongoing NIST challenge on face image
quality assessment [13].

. 1.6 Outline of the thesis

Chapter |2 reviews relevant literature on face image quality assessment and
existing methodologies. Chapter 3| describes the method for learning the
face image quality predictor on which we build in this thesis. Chapter |4
describes enhancements proposed in this thesis, specifically triplet generation,
bootstrapping, and learning using feature-vector data. Chapter [5| focuses on
implementation details such as face detection, feature extraction, and the
neural network architectures used by the proposed method. Chapter 6| presents
the experiments and results, including dataset details, evaluation metrics, and
all the experiments conducted. Chapter |7| concludes the thesis, summarizing
findings and discussing implications and future research directions.



Chapter 2

Related work

This chapter reviews the existing face image quality algorithms and methods.
As the NIST Face Recognition Vendor Test (FRVT) Face Image Quality
Assessment has been ongoing for an extended period of time, numerous
studies related to the face image quality assessment problem have been
published. The official NIST Face Image Quality Assessment report
provides a detailed overview of face image quality and related concepts,
including the metrics, algorithms, and evaluation of the chosen state-of-the-
art algorithms. The most comprehensive comparison study on face image
quality was published in the survey paper [34].

In general, there are several main approaches to face image quality assess-
ment. For instance, as noted by [31], the L2-norm of an image representation
extracted by a neural network trained to perform face recognition task, serves
as a good predictor of face image quality; if the norm is high, the image is
often visually of good quality, whereas if it is close to zero, it is probably a
non-face. Other approaches focus on defining specific facial characteristics,
such as exact face position, different types of occlusion, illumination, and
others, as discussed in [11], [37], and [43]. Furthermore, there is a substantial
body of research employing machine learning methods, both supervised and
unsupervised, encompassing classical machine learning and deep learning
techniques [1], [45], [21], [18], [35], [40], [30]. Some of these methods work with
individual images to predict quality scores, while others involve comparing
an image with a reference image to determine quality. Fach of these method-
ologies encompasses a distinct definition of quality and its corresponding
assessment criteria. We are going to focus on some of the recent studies.

. 2.1 A Deep Insight into Measuring Face Image
Utility with General and Face-specific Image
Quality Metrics

Fu et al. in their recent study examine different existing methods of
accesing face image quality. Specifically, they analyse the differences and
results of 6 face image quality assessment (FIQA) and 10 image quality
assessment (IQA) algorithms.



2. Related work

As for the FIQA deep learning methods, they focused on RankIQ [6]
described in 2.4.3, FaceQnet [15], SER-FIQ [40], Probabilistic Face Em-
beddings [38], MagFace [26] and SDD-FIQA [30]. The IQA methods are
divided into statistical-model-based, CNN-based, multi-task learning-based,
and rank-based approaches.

To evaluate and compare all the mentioned methods, they use three
databases: BioSecure [29], LFW [17] and VGGFace2 [5] and metrics such
as error vs. reject characteristic (ERC), false non-match rate (FNMR) and
hand-crafted metrics such as inter-eye-distance, blur, contrast, symmetry-
intersection and others.

The evaluation showed that the FNMR on the BioSecure Database (which
is distinct from others due to the controlled capture environment) for all
the presented algorithms was very low, indicating that when all images are
of high quality, almost every algorithm performs nearly perfectly. What is
important to take away from this is that the data we use to build, train, and
evaluate our image quality assessment system is extremely important.

Handcrafted features (metrics) were effective on the VGGFace2 database
but inconsistent across different databases. These features often fail under
uncontrolled conditions, such as those in the LEW database, due to their
inability to adapt to specifics in image processing and different capture devices.
At the same time, the behavior of metrics such as ERC allowed authors to
conclude that there is indeed a correlation between the metrics and image
utility, meaning the metrics were effective with respect to selecting face images
with high utility. From that, we could note that it might make more sense to
use some generalized metrics to assess the performance of the system.

The authors also conclude that the best option is to combine different
metrics, which could lead to a more generalized measure across different FR
systems and application scenarios.

. 2.2 Learning Face Image Quality From Human
Assessments

Rowden et al. [3] proposed two methods for learning face image quality based
on generated target quality scores.

To generate the scores, the authors introduced two methods: a matcher-
independent method based on human assessments (HQV) of quality, and a
matcher-dependent method that utilizes quality values derived from similarity
scores between face images (MQV). During the human-based assessments,
participants were instructed to compare pairs of face images and decide
which one has better quality. As it is impossible to compare all possible
pairs, each person provided responses for around a thousand pairs. Then
the authors applied a matrix completion method, similar to those used in
recommendation systems such as Netflix, to obtain a full set of quality scores
for each participant on the entire database. For MQV, three different face
matchers were used to derive the face quality from similarity scores produced
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by these matchers.

The authors then used feature vectors extracted with ConvNet [42] to train
the support vector regression model with a radial basis kernel function for
automatic quality prediction (both MQV and HQV).

The authors evaluated the results on the IARPA Janus Benchmark-A (IJB-
A) and Labeled Faces in the Wild (LFW) [17] datasets. The evaluation showed
that the human assessments correlate strongly with recognition performance.
Specifically, employing HQV led to significant reductions in the False Non-
Match Rate (FNMR), around 2% for LFW and 13% for IJB-A for two different
matchers.

. 2.3 Face image quality assessment based on
learning to rank

Chen et al. [6] proposed a learning-to-rank approach for face quality assess-
ment based on the framework of Parikh and Grauman [32].

The authors provide an example of testing a face recognition method on
databases A and B. They state that if the performance of the algorithm on
images from dataset A is overall better than on images from B, then the
images from A have better quality than those in B. Moreover, it is considered
that the images from the same database have similar quality values.

Next, the three image databases are introduced: one with high-quality
(ID card) face images gathered in controlled environments, "wild” or real-
world image datasets LFW [17], and finally the non-face images on which the
algorithm produced false-positive results. All the images were normalized
to ensure only relevant facial information was used for quality assessment.
These images were then used to train a model that ranks the face quality by
learning from comparison outcomes across the mentioned databases.

The evaluation comprised measuring the Rank-based Quality Score ("rank
weights”) on features extracted from five different feature extractors (His-
togram of Oriented Gradients [7], Gabor [44], Gist [28], Local binary patterns
[27], and CNN). The results showed that the images from the dataset with
non-face entries were generally ranked lower, the faces without occlusion
(mostly from the ”"ID-card” database) were ranked higher. The method was
also able to rank facial expressions, common for the second, wild, dataset,
meaning it could learn and correspondingly rank the face images with differ-
ent intensities of emotions; for example, the neutral facial expression had a
higher RQS than the images with people showing any other kind of emotions.
Additionally, the RQS scores on images with variations in pose, exposure,
and resolution were explored, which allowed stating that the method is able
to correctly differentiate (therefore to correctly rank) between different types
and degrees of impact of these settings.

11
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. 2.4 Face image quality assessment for face
selection in surveillance video using
convolutional neural networks

Vignesh et al. address the problem of selecting high-quality images from
a pool of images to enhance face recognition system (FRS) performance by
imitating the FRS response using a convolutional neural network architecture.

The authors provide their own quality definition, relating it to the face
recognition algorithm. They define the FR pipeline as consisting of two
modules, where the first one contains face detection and localization, and
the second includes face feature extraction and matching. They suggest
considering the second module as a black box and model its output using a
CNN. They state that the CNN should be able to predict the quality of the
input images. The CNN outputs corresponding to the quality scores are used
to choose the images with the highest quality.

To assess the performance of the system, they extract feature vectors
from the highest-quality input images using HoG [7] and LBP feature
extractors. This method allows them to measure how well the CNN can
predict the score of face matchers.

Unlike previous works, this one solely works with video data, specifically
the ChokePoint dataset [45]. The inputs are represented as image sets. The
authors calculate the feature vectors for each input sequence and the probe
sequence and use the Mutual Subspace Method [46] proposed by Yamaguchi
et al. to compare them. They suggest stating the image sets are similar if the
canonical angle between them is smaller than the defined threshold. Next, to
find the output similarity score, they compute the mean canonical angle of
all the elements of the probe sequence. The resulting score helps determine
whether two sets are considered a match or not.

The evaluation focuses on comparing the proposed method with other
known selection approaches. The authors claim that their method is capable
of selecting the best possible subset of face images and that it outperforms
three of the four other methods used for comparison.
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Chapter 3

Proposed method

In this study, we adopt the methodology proposed in [47]. The method
trains a CNN to output a quality score for an input face image. Instead of
using face images annotated with specific quality scores, which are hard to
define, it uses face triplets annotated with binary labels indicating whether a
given face verification algorithm correctly ranks the triplets. These binary
annotations are easy to obtain. The quality scores are treated as binary
latent variables in a statistical model, which is trained to predict the triplet
labels. The EM algorithm estimates the model parameters, with the E-step
estimating the unknown quality scores and the M-step training the CNN for
quality prediction. In this thesis, we extend and enhance this method, as will
be described in the following chapters. Section |3.1 focuses on the triplet
ranking error. Section |3.2 elaborates on the Expectation-Maximization (EM)
algorithm used for parameter learning in the model. Finally, the architecture
of the system is described in Section |3.3.

. 3.1 Triplets ranking error

In this section, a statistical model from [47] corresponding to the described
system is presented.

Consider a triplet of faces (A, B,C) € I3, where I denotes the space of
input images. The triplet (A, B,C) is generated such that the images A
and B capture the same individual, while C represents a different individual.
Let d: I x I — R denote the distance score computed by a pre-trained face
matcher described in Section 5.2,

A face triplet (A, B, C) is assigned a binary label

y = [d(A, B) < min(d(A,C),d(B,C))] . (3.1)

The value of the label y indicates whether the triple is correctly ranked. That
is, label y equals 1 if the images are ranked correctly, meaning that the
distance between the images of the same individual is less than the distance
between the images of different individuals. If the ranking is incorrect, y is
set to 0.

The face triplets and their associated labels are considered random variables.
The distribution of the label y conditioned on the triplet (A, B, C) is described
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by the following model:

Po(ylA, B,C) = pyy | a,b,c) pg(alA) pg(b|B) py(c|C) (3:2)

o
where a, b, c serve as hidden variables that denote the quality of each respective
image within the triplet. Finally, the probability that the face triplet will be
ranked by the verification system correctly is defined as p(y =1 | A, B, C).
To characterize the distribution p(z | X), the authors use the logistic
distribution, which is defined based on the features extracted from the image
X using the CNN-FQ.

1
pole =11X) = T T

pa(fU =0X)=1 —pa(l’ =1]X),

with u representing the network’s weights and ¢(X) being the output from
the final and the second-to-last layers of the CNN-FQ.

. 3.2 Expectation-Maximization algorithm

The foundational paper on the Expectation-Maximization (EM) algorithm,
which also proves its convergence, was first presented in [33].

Let 8 be a vector which encapsulates all parameters of the distribution
p(y | a,b,c) and p(z | X).

The training set is defined as T = {(A;, B,;,C,,y;) C I? x {0,1} | i =
1,...,n}. It includes n triplets of facial images along with their corresponding
labels as per equation. The goal is to optimize the model parameters 6
through the maximization of the conditional log-likelihood for T, which is
formulated as L(0) = >-""  logp(y;|4;, B;, ;).

The Expectation-Maximization (EM) algorithm is used to transform the
maximization of L(#) into into a sequence of simpler problems. It introduces
an auxiliary function

- po(y;|A;, B;, C;)
F(9,q) = E g q;(a, b, c)log (3.3)
i=1 (a,b,c) q;(a,b,c)
c{0,1}3

where ¢;(a,b, c) are auxiliary variables for each image triplet. The auxliary
function F(6,q) acts as a lower bound to L(6), enabling a sequential opti-
mization approach.

The EM algorithm alternates two steps: the E-step and the M-step. During
the EM algorithm’s E-step, max, F(6',q) is calculated using a closed-form
solution:

qt<a b C) — pﬁt(yi|a7 b7 C)Pet(a’Az)pgt(b|Bz)p9t(c]Cz)
o Z)p€t<yi|a7bac)pet(a’Ai>p9t(b’Bi)p9t(C’Ci>

(a,b,c
€{0,1}3
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The subsequent M-step is decomposed into two optimization problems. The
first one focuses on optimizing parameters that define the distribution
p(yla,b,c). Specifically, the new iterate of the distribution is computed
by

1

t t—1
Ppyla,b,c) = = ¥, = ylg; " (a,b,c) .
blularb ) = ooy 2l = e b o

while the second deals with maximizing with respect to the weights of the
CNN-FQ that define the distribution p(z|X). The weights are trained by
maximizing the following objective function:

Q)= ( Y aullogpaldy)

i=1 " ae{0,1}

+ > Bi(b)logp,(b] B;) (3.4)

be{0,1}

+ 3 ule)logpylelCy))

ce{0,1}

In the latter case, the optimization is directed towards a function Q(6),
analogous to training a CNN using cross-entropy loss but adjusted for soft-
labels, which is resolved by the Adam optimization algorithm.

B 33 System architecture

The statistical model described in the previous section can be implemented
as a neural network architecture shown in Figure 3.1.

Figure 3.1: System architecture. The figure is adopted from [47].
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During the training phase, triplets of images are input into the CNN-FQ.
The outputs are latent quality labels (a, b, ¢), derived from a face triplet by the
CNN-FQ. The extracted quality labels are used to compute the probability
ply | A,B,C) as per equation 3.2, determining if the triplet is correctly
ranked. The model then uses the distribution p(y = 1| a,b,¢) to evaluate if
the system correctly ranks the pairs. Figure [3.2) provides an example of such
a distribution. As we can see, if all images in a triplet are of low quality, the
system’s ability to rank them correctly decreases. In contrast, if all images
are of high quality, the system is more likely to rank them correctly.

a b ¢ ply=1|a,b,c)
0 0 0 0.0002
0 0 1 0.0036
0 1 0 0.1534
0 1 1 0.1501
1 0 0 0.2081
1 0 1 0.1815
1 1 0 0.9999
1 1 1 0.9999

Figure 3.2: Example of distribution p(y = 1la,b,¢) learned from data.
Source: [47].

During the testing phase, the CNN-FQ processes an arbitrary image and
outputs a quality score. This score represents the probability that the latent
quality label for each image is equal to one, indicating high quality within
the model’s context.
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Chapter 4

Proposed efficient implementation

This chapter presents the enhancements and extensions integrated into into
the method for learning the face image quality predictor which was described
in the previous chapter. The primary goals of these improvements are to
enhance the efficiency of data generation, optimize the training process, and
explore alternative approaches to improve the performance of the model.

. 4.1 Triplets generation

An automated binary labeling approach, used by the method described in
Section 3.1/ to generate inputs for the CNN-FQ, allows for the creation of
an enormous number of training face image triplets. However, it is essential
to generate or select data wisely to ensure that the samples represent the
underlying data distribution well, therefore enabling more efficient training.
The chosen data directly impact training speed, convergence, and the resulting
metric values.

We implemented several strategies for triplet generation: i) random selec-
tion, ii) selection of as many unique faces as possible and iii) bootstrapping.
Bootstrapping differs in that it automatically selects data during training,
and is described separately in the last section of this chapter.

Random selection. In all cases we work with image templates corresponding
to persons’ IDs and image indices corresponding to specific faces in those
images. This means that the templates may contain repeating data, while
the indices do not. Random selection works in a way such that we divide
the templates into train and test (validation) parts and generate the triplets
using the following logic: for each unique ID (person), we find all matching
entries (indices) in the dataset, compute the distances among them, sort by
distance, and choose N furthest and M closest images. The non-matching
image is added by randomly selecting from the pool of non-matching indices.

Unique selection. In that case, we aim to form the dataset in a way that
introduces the set of already included indices and tracks it throughout the
triplet-generating process, ensuring that if an index (specific face on a specific
image) was already used in some triplet, we try not to append it to any other
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triplet. This method was implemented with the idea of creating the most
diverse dataset possible, but logically it results in a much smaller resulting
dataset. We therefore allow a certain percentage of repetition in order to
generate a dataset of reasonable size.

. 4.2 Bootstapping

The main goal of the bootstrapping implemented in this work was to allow
the neural network to select the data autonomously from a large set of all
face triples which can be generated from the used face database. The initial
preprocessing and the main training loop remained as in the initial CNN-FQ
training process. We applied several improvements to the method:

1. We used a joint CASIA+1JB-C dataset to ensure greater diversity.

2. We generated the training data using a slightly different logic: we created
all possible triplets with slight bounds on the number of times a face or
triplet can be used, resulting in a dataset of more than 4 million triplets.

3. The triplets dataset was randomly shuffled and divided into positive and
negative triplets.

4. We created the initial dataset by choosing an equal number of positive
and negative triplets.

5. Several different experiments were conducted with similar logic: train
the CNN for N epochs, afterward choose a subset of new, unseen data,
pass them through the CNN (in evaluation mode), identify the erroneous
triplets, and add them to the initial dataset. We set a target number of
positive and negative triplets for each iteration when we try to extend
the dataset.

6. We added an early stopping mechanism that stops training if the valida-
tion error doesn’t significantly change for 10 consecutive epochs.

The detailed explanation of experiments and their results is provided in
Section (6.4l

B a3 FarL

In addition to CNN-FQ, we decided to try another approach to predicting
face image qualities. Instead of training the CNN for quality prediction
from scratch, we implemented the predictor using a simple MLP on top of
image representations extracted by a pre-trained neural network. Specifically,
we used FaRL [50], a framework for general facial representation learning,
pre-trained on the large LAION-FACE dataset containing 20 million face
images, to generate the feature vectors. This model allows us to extract
512-dimensional vectors for later use.
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4.3. FaRL

The main difference stems from shifting from image data and CNN-FQ to
the use of feature vectors extracted from these images by a pre-trained trans-
former and an MLP. The optimization algorithm, Expectation-Maximization,
and the training loop remain the same.
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Chapter b

Implementation details

. 5.1 Face detection and alignment

The first step in the preprocessing pipeline is extracting bounding boxes using
the RetinaFace detector [8]. When working with images from the IJB-C
database, we have additional metadata available, allowing us to compute
ground truth bounding boxes. For the CASTA-WebFace dataset, we simply
use the bounding boxes detected by RetinaFace.

The algorithm works as follows: firstly, an input image is preprocessed.
In this stage, the image can be resized based on target size. However, in
our approach, we maintain the original dimensions of the image. This step
is beneficial as it helps in preserving the nuances in the image data. After
that, the image is normalized by subtracting a mean value from each channel,
therefore standardizing the input.

Next, a RetinaFace detector is applied to the image. It identifies not only
the box coordinates, but also facial landmarks, including the average positions
of the mouth and both eyes. It is important to note that RetinaFace can
detect multiple faces in one image. The subsequent bounding box selection
step is therefore crucial.

Figure 5.1: Ground truth and chosen RetinaFace boxes.

Once RetinaFace has identified all the bounding boxes, we apply an algo-
rithm to select the most accurate one by comparing each detected box to
the ground truth box, using the intersection-over-union (IoU) metric for this
comparison.
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This process identifies the RetinaFace box with the largest intersection
regarding the ground truth box. We then compare the selected box’s IoU with
a predefined threshold. If the IoU is larger than the threshold, suggesting
the detected box likely captures the relevant face, we add the bounding box
and corresponding landmarks to our list. Examples of successfully found
bounding boxes, along with the ground truth boxes, are illustrated in Figure
5.1l Otherwise, we record None for both box and landmarks for further
processing.

Finally, after processing all images, we address cases where RetinaFace
could not find an appropriate box and landmarks. We define an algorithm to
calculate average bounding boxes and landmarks with the goal of preserving
the maximal amount of information from the dataset. For bounding boxes,
the algorithm computes the average offset and scaling factor based on boxes
successfully extracted, enabling the generation of boxes comparable to those
detected by RetinaFace. For landmarks, the algorithm calculates their average
positions in relation to the detected boxes.

In the context of convolutional neural networks, it is essential to ensure
consistency of input across the dataset. The subsequent alignment process
involves adjusting the orientation and position of facial images to achieve
this. The procedure begins with loading bounding boxes and facial landmarks
detected by RetinaFace. For each image, the algorithm calculates the rotation
angle needed to align the eyes horizontally, using the landmarks associated
with the eye positions. The image is then rotated without cropping, which
preserves the initial facial structure. Subsequently, the bounding boxes and
landmarks are also rotated to match the image’s new orientation.

. 5.2 Feature vectors extraction

To measure the distance between the identities of people depicted in two input
face images, we use the extracted facial features. This distance is defined as
the cosine distance between the feature vectors extracted by a neural network.
As described in Section 3.1, to generate the training data, the labels are
computed based on these distances.

We apply the SENet-50 model [16] to extract the vectors from each image.
Again, we use the bounding boxes detected (for some images computed) by
RetinaFace. The images are cropped by bounding boxes and scaled by a
factor of 0.5. We resize each image to a fixed dimension (224x224 pixels)
corresponding to the image used in the main CNN-FQ model and normalize
the channels (again in the same way as the inputs to CNN-FQ will be
normalized).

The SENet-50 model outputs a 256-dimensional feature vector for each
image. Each vector is normalized to have a unit norm, which ensures that
the magnitude of the feature vectors will not influence the results.
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B 5.3 cNN-FQ

Hl 5.3.1 CNN-FQ architecture

The neural network architecture, proposed in [47] and described in Chapter
3| is defined as follows in Table [5.1L

Table 5.1: CNNFQ architecture. Each row represents a sequence of operations
in the network: convolution (Conv), batch normalization (BN), ReLU activation
(ReLU), sigmoid activation (Sigmoid), and average pooling (AvgPool).

Layer type Configuration

Input 224 x 224 RGB image
Conv+BN+ReLU | 64 filters, kernel: 7 x 7, stride: 2, padding: 3
MaxPool kernel: 3 x 3, stride: 2
Conv+BN+ReLU 64 filters, kernel: 1 x 1, stride: 1
Conv+BN+ReLU | 64 filters, kernel: 3 x 3, stride: 1, padding: 1
Conv+BN+ReLU 256 filters, kernel: 1 x 1, stride: 1
AdaptiveAvgPool Global

Conv+ReLU 16 filters, kernel: 1 x 1, stride: 1
Conv+Sigmoid 256 filters, kernel: 1 x 1, stride: 1
Conv+BN+ReLLU 128 filters, kernel: 1 x 1, stride: 2
Conv+BN+ReLU | 128 filters, kernel: 3 x 3, stride: 1, padding: 1
Conv+BN+ReLU 512 filters, kernel: 1 x 1, stride: 1
AdaptiveAvgPool Global

Conv+ReLLU 32 filters, kernel: 1 x 1, stride: 1
Conv+Sigmoid 512 filters, kernel: 1 x 1, stride: 1
Conv+BN+ReLU 256 filters, kernel: 1 x 1, stride: 2
Conv+BN+ReLU | 256 filters, kernel: 3 x 3, stride: 1, padding: 1
Conv+BN+ReLU 1024 filters, kernel: 1 x 1, stride: 1
AdaptiveAvgPool Global

Conv+ReLU 64 filters, kernel: 1 x 1, stride: 1
Conv+Sigmoid 1024 filters, kernel: 1 x 1, stride: 1
Conv+BN+ReLU 512 filters, kernel: 1 x 1, stride: 2
Conv+BN+ReLU | 512 filters, kernel: 3 x 3, stride: 1, padding: 1
Conv+BN+ReLU 2048 filters, kernel: 1 x 1, stride: 1
AdaptiveAvgPool Global

Conv+ReLLU 128 filters, kernel: 1 x 1, stride: 1
Conv+Sigmoid 2048 filters, kernel: 1 x 1, stride: 1
AvgPool kernel: 7 x 7, stride: 1

Conv 1 filter, kernel: 1 x 1, stride: 1
Sigmoid Output layer, output size: 1
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B 5.3.2 CNN-FQ training

The initial stage of the training process involves preparing the input data: the
images are cropped by bounding boxes extracted by the RetinaFace detector
and later normalized and resized to 224x224 pixels. The random horizontal
flips are applied as an augmentation technique.

The training incorporates the EM algorithm described in Section (3.2, Each
EM epoch consists of three CNN epochs (a hyperparameter), corresponding
to the M-step, where the network’s parameters are being maximized. For
optimizing the CNN-FQ’s parameters, the Adam optimizer and the learning
rate of 0.0001 are chosen. In the subsequent E-step, the latent variables are
updated based on the newly computed values.

Throughout the training, we compute and monitor various metrics, includ-
ing training and validation errors, the number of predicted false positives
and false negatives, loss function and the probability tables as described in
Section 3.3 These metrics provide insights into the model’s performance
over epochs. Additionally, we track the values of F and L described in Section
3.2,

. 5.4 FaRL architecture

The proposed FaRL method uses a simple multilayer perceptron architecture
with three hidden layers. The architectural details are presented in Table
5.2

Table 5.2: MLP architecture. Each row represents a sequence of operations in
the network: fully connected layers (FC) followed by activation functions ReL.U
or Sigmoid.

Layer type Configuration

Input Input feature vector, input size: 512
FC + ReLU 128 neurons, input size: 512

FC + ReLU 128 neurons, input size: 128

FC + Sigmoid | 1 neuron, input size: 128, output size: 1
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Chapter 6

Experiments and Results

This chapter describes experiments done with the method implementing all
improvements proposed in this thesis. In Section [6.1] we first describe datasets
used in our experiments. In section we present the evaluation metrics
used to evaluate the algorithms. Section provides the experiments along
with their results and discussion.

l 6.1 Data

B 6.1.1 1JB-Cdataset

The IARPA Janus Benchmark-C [25] (IJB-C) dataset, established in 2018, is
a fundamental benchmark for evaluating facial recognition technologies. It
consists of facial images and videos from 3,531 individuals, including 31,334
still images and 117,542 frames from 11,779 videos. On average, each subject
is represented by 6 images and 3 videos. The dataset authors ensure that
every individual appears in at least two images and one video. Figure
shows example images from the IJB-C dataset.

Figure 6.1: Sample images from IJB-C. Source: [25].

The videos in the dataset were sourced from YouTube and they mainly focus
on individuals. Information about age, gender, and geographic region was
collected through the Wikipedia API. Google and Wikimedia Commons were
used to gather images, while videos under the Creative Commons license were
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obtained from YouTube. Workers from Amazon Mechanical Turk provided
annotations and bounding box data.

In contrast to predecessor datasets, IJB-A and IJB-B, IJB-C provides
subjects in various poses and with different types of face occlusions, which
introduces more complexity. The dataset also aims to move beyond a focus
on celebrities or individuals in similar, appearance-based professions by rep-
resenting a wide spectrum of the global population and including individuals
from different occupations.

The dataset provides detailed metadata for each image and video frame, in-
cluding details about occlusions, subject and file identifiers, facial coordinates,
dimensions, environmental settings, along with demographic information and
pose angles.

Il 6.1.2 CASIA-WebFace dataset

The CASIA-WebFace dataset, created by Yi, Dong et al. [48], was developed
with the idea that nowadays data are more important than the algorithms
themselves and to overcome the problem that many large-scale training
datasets are private. It consists of 10,575 individuals and 494,414 images.
Each subject in the dataset has at least 15 images. The authors ensure that
the subjects in CASIA-WebFace do not overlap with the LEW dataset [17]
by checking for name duplicates. Example images from the CASIA-WebFace
dataset are illustrated in Figure |6.2l

Figure 6.2: Sample images from CASIA-WebFace dataset. Generated with own
script.

The images are crawled from IMDb (Internet Movie Database—an online
database of information related to films, TV series, and starring celebrities)
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in a semi-automatic way: firstly, the names of celebrities born from 1940 to
2014 are gathered. Subsequently, the images available in the gallery for each
celebrity are crawled. To assign the correct identity, authors group the photos
based on names and then apply a clustering method to label all the photos.
After that, the images are cropped using found bounding boxes and saved
into individual folders.

As mentioned by the authors, the incorrect annotations from CASITA-
WebFace were removed manually. However, it is important to note that the
dataset still contains some errors: images in the dataset are divided into
individual folders with photos, and in some of them, different people may
appear. We suggest ignoring this, because statistically, there should not be
that many false matches.

. 6.2 Evaluation metrics

This section outlines the metrics used to evaluate the algorithm presented
earlier. We adopt the evaluation methodology from the FRVT NIST Face
Image Quality Assessment track.

The quality scores should predict the matching outcome when comparing
two images of the same person. ISO/IEC 2382-37 [20] defines False Non-
Match Rate as the proportion of completed biometric mated comparison trials
that result in a false non-match, where biometric mated comparison trials
involve comparing a biometric probe (sample input) with a biometric reference
(an existing reference image, for example, a face image stored digitally on
a passport). This implies the need to compute matching scores for pairs
of images, then compare the predicted quality values with these scores to
compute the metrics.

The terms mated, matching, similarity, and genuine scores are used in-
terchangeably in this chapter and refer to scores computed from the pair of
images of the same person as described above.

The evaluation assumes working with N image pairs, x,;, ;5. To compute
the genuine scores, s;, the algorithm described in Section [5.2 is used. Al-
gorithm F introduced in Chapter |3|is used to calculate quality scores for
individual images, resulting in quality vectors ¢;; = F'(z;;) and ¢;5 = F(z;5).

NIST applies two distinct quality assessment strategies depending on the
application setup. The Application-Webcam photos assume having a frontal
face image as the reference and a lower-quality webcam probe image. In
that case, the vector of quality values is formed as q; = ¢;,, considering only
the quality of the probe image itself. In the wild image dataset, where both
images exhibit widely varying quality, the minimum of the quality values in
the pair is chosen, i.e., ¢; = min(g;;, ;o). This assumes that a low comparison
score is likely caused by the image with the lower quality.

Having the similarity vector s; and quality vector g; computed for N image
pairs z;;, x;5, the evaluation metrics described below are computed. The
formulas are fully adopted from the FRVT NIST quality assessment track.
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l 6.2.1 False Non-Match Rate

Referring to the ISO/IEC 2382-37 [20] FNMR definition, we may further spec-
ify that the false non-match rate denotes the frequency at which a biometric
matching system incorrectly categorizes two signals (images) originating from
the same individual as if they were from different individuals [36].

Given N genuine scores s, and N quality scores ¢; computed beforehand, we
construct the error/reject curve. The recognition threshold T'is set to divide
the scores into true accepts, s, > T, and false rejects, s; < T. Then, FNMR is
recomputed using different fractions, r, of low quality images excluded from
the computation.

The quantity is then

where the numerator represents the situation of having a good-quality image
with the threshold at or above @ and at the same time resulting in a false
non-match corresponding to being below threshold 7T, and the denominator
denoting the count of images with good quality, i.e., that are not discarded.
To compute the quality threshold @, the inverse of the cumulative distribution
of the N quality values is taken. The similarity threshold T is computed based
on predefined false-match rate. The terms FMR and FNMR are inversely
related, therefore T is balancing the acceptance of true matches against the
rejection of false ones. A lower FNMR score indicates better performance.

Il FNMR: A Practical lllustration

The goal of this section is to show that excluding low-quality images should
decrease the FNMR.

We refer to Figure 6.3 Each dot in the images represents an image. Above
each dot, we have the quality scores; the images are sorted by quality scores
from highest to lowest. Below each dot, we have the similarity scores, which
are not sorted. In simple terms, the FNMR numerator represents the situation
where the quality score q for an image is greater than or equal to the quality
threshold @ and the similarity score s is less than the similarity /recognition
threshold T. The denominator is the count of images where the quality score
q is greater than or equal to the quality threshold Q.
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Figure 6.3: FNMR computation visualisation for different r.

In first situation, we set the quality threshold @ to 0, meaning all images
will be included. We set the recognition threshold T to 25%, meaning the
25% of lowest similarity scores will be excluded. The blue points represent
the used qualities, and the orange points represent the chosen similarities
(those below the threshold).

® The numerator is 3 because there are three cases where a point’s quality
score is above the threshold @) and the similarity score is below the
threshold T.

® The denominator is 12, as the number of images above the threshold Q)
equals the total number of images.

In second situation, we set the quality threshold @ to the 25th percentile.
The blue dotted line indicates the index of the image from which ¢ > Q is
true, meaning we only consider images above this quality threshold. The blue
points represent the used qualities, and the orange dots represent the chosen
similarities (those below the threshold).

® The numerator is 1 because there is only one point where the quality
score is above the threshold ) and the similarity score is below the
threshold T.

® The denominator is 9, as we have excluded the 25% of low-quality images
(3 images).
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B 6.2.2 Efficiency

The efficiency score is computed by normalizing the False Non-Match Rate
(FNMR) with respect to the factor of excluded images, r. The optimal value
is 1.

1 (FNMR(0) — FNMR(r)
nr) =7 ( FNMR(0) (6.2)
B 6.2.3 Incorrect Sample Rejection Rate
The Incorrect Sample Rejection Rate (ISRR) is defined as
1 &
ISRR(Q) = > (1~ H(g; = Q)H(s; = T) (6:3)

i=1
i.e. the proportion of samples with quality below threshold Q, and genuine
similarity score at or above recognition threshold T. This error rate reflects
the inaccurate rejection of a photo, where the system incorrectly assigns low
quality to an image that would be correctly matched by a face recognition
engine. The optimal value is the lowest.

B 6.2.4 Incorrect Sample Acceptance Rate

The Incorrect Sample Acceptance Rate (ISAR) is defined as

N
SAR(Q) = > Hig — Q)1 — H(s, — T)) (6.4)

i.e., the fraction of samples with quality above the threshold Q that at the
same time have a genuine score below the recognition threshold T. This error
rate reflects the incorrect assignment of high quality to an image (therefore
accepting it) while having a negative outcome (similarity below the recognition
threshold) in the recognition process. Again, the optimal value is the lowest.

. 6.3 Experiments and Results

This section presents the conducted experiments along with their configura-
tions and results. We start with the experiment that we set as a baseline
in Section and subsequently present the different ideas for improv-
ing the training process or data generation. Section elaborates on the
bootstrapping method presented in Section We try out the different
configurations of bootstrapping, finally choosing the best one and running it
on the merged dataset of IJB-C and CASIA-WebFace. In Section we
present the results of training of the multilayered perceptron working with
vector data instead of image data, as proposed in Section We finally
compare all the methods and choose the best one in Section along with
the discussion of the results.
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When evaluating, we focus on several metrics. Along with comparing the
training and validation errors, the conditional log-likelihood L, the auxiliary
function F, we apply the evaluation methodology from the FRVT NIST face
quality challenge. In addition, we evaluate the ability of the trained models
to correctly assign the quality score and to correctly order the scored images.

For full-size images with qualities predicted by the algorithms, please refer
to the Appendix |B.

B 6.3.1 Testdataset

As the FRVT NIST protocol proposes evaluating the performance of the
quality-prediction algorithms on face pairs, we created the dataset as follows.

The test dataset was created in advance in such a way that we initially
divided the IJB-C dataset into two parts so that they do not intersect. The
images were chosen both from frames and images to ensure the representativity
of the dataset, similar to the training data. We ended up with having 10,362
unique faces which corresponds to 5,182 unique pairs of face images. The test
set is used exclusively for calculating NIST evaluation metrics and for assigning
quality scores for visualization of sorted qualities for human assessment.

B 6.3.2 Baseline experiment

The goal of the baseline experiment is to evaluate the performance of the orig-
inal CNN-FQ proposed in [47], providing a benchmark for the improvements
we aim to achieve. In the baseline experiment, we use images with bounding
boxes extracted using RetinaFace. We do not apply any additional data
preprocessing or transformations here. The training and validation triplets
are generated using feature vectors extracted by SENet-50, by finding M
closest and N furthest pairs and randomly adding the non-match to them, as
described in Section 4.1l

The 1JB-C dataset is used here as a source of images with a total of 3,496
different identities (persons). We divide the dataset into train and validation
using the ratio 0.2. The triplet generation results in 42,400 training triplets
with around 66% of unique faces, where exactly half are positive triplets and
the other half negative triplets. For validation triplets, totaling 18,216 with
56% uniqueness, positive and negative triplets are again evenly divided.
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Figure 6.4: The left figure shows the evaluation of the training and validation
error as the function of the number of epoch of the EM-algorithm. The right
figure visualizes the log-likelihood L and its lower bound optimized by the EM
algorithm for the Baseline experiment.

During the training process, we track the errors, L, and F. As we can
see from the plots, it takes more than 100 epochs to converge, which may
be logical considering the sizes of the training and validation subsets. The
training and validation errors are computed for each triplet by comparing the
ground truth label and the predicted label (here, a threshold of 0.5 is set to
convert the predicted probability of a triplet being ranked correctly into a
binary label). As presented in Figure [6.4/on the left, initially, both training
and validation errors start around 0.5 - it is the moment when the model
predicts the same label for every triplet. As the training proceeds, we see
a monotonic decrease in both errors, resulting in 5.75% training and 21.5%
validation error. The log-likelihood, L, and F are monotonically increasing,
and L > F, which gives us the right to say that the algorithm works as
intended.

Figure 6.5: The left figure shows the FNMR (y-axis) versus the fraction of the
excluded queries (x-axis). The right figure shows the efficiency (y-axis) as the
fraction of the excluded queries (x-axis) for Baseline experiment.

Figure |6.5shows the False Non-Match Rate (FNMR) and the efficiency,
which is FNMR normalized with respect to the factor of excluded images, as
defined in Section [6.2.2 The initial threshold is set to give an FNMR, of
0.01, i.e., the lowest 1 percent of matching scores. The scores are computed
by comparing images. We show the metrics for different rates of images
discarded: from 1% to 30%. In general, we assume that with low-quality
images being discarded, the FNMR should decrease while the efficiency, on
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the other hand, should increase. It is clear that the behavior of both metrics is
fluctuative. If we compare their initial value and values at 30% of low-quality
data removed, we see improvement: the FNMR decreases from 0.01 to 0.0095
and the efficiency increases from 0 to 0.17. However, in an ideal case, the
metrics would be monotonic. The gray line on the FNMR plot represents
the ideal case of how the FNMR should behave. Of course, we may have
expected the FNMR to be closer to the ideal line, but the results of some
SOTA algorithms presented in [12] show the same trend.

Figure 6.6: Qualities, ISRR, ISAR for Baseline experiment.

In Figure 6.6, we can see the distribution of the predicted values on the
left and the plot depicting the trade-off between ISAR and ISRR on the right.

As we can see from the quality plot, the trained model tends to predict
mostly higher scores for the face images. It may sound good, but we need
to be critical here, as the IJB-C dataset is very challenging, with different
types of occlusions. The high scores may not always match the images that
are really of high quality.

Analyzing the ISAR, corresponding to the acceptance of incorrect samples,
and ISRR, corresponding to the rejection of incorrect samples, allows us
to find the balance between the two errors - in practice, we would likely
want to achieve this result. The quality threshold here means a minimum
acceptable quality for samples in the dataset. With the threshold increasing,
more samples get rejected and fewer get accepted. In this particular case,
the optimal point is around 0.35 with the corresponding values of ISRR and
ISAR being around 0.12 and 0.008, respectively.

To better understand the ability of the algorithm to predict quality, we
present Figure 6.7 with the quality values sorted from the lowest to the
highest. It is clear that the lower-quality images mostly depict people with
their faces turned to the side, and the pictures are either of lower resolution or
blurred, while the higher-quality images mostly show people looking directly
at the camera. The ordering is not perfect, so we may see some occluded or
non-frontal faces among those with higher scores.
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Figure 6.7: Images sorted by quality for Baseline experiment.

Figure 6.8: The examples of input faces for individuals and the predicted scores
returned by the CNN-FQ for the Baseline experiment.

Figure 6.8 presents several cases of individuals with images arranged in
ascending order of quality. These plots suggest that the ordering by quality
for individuals works. Additionally, an examination of the exact predicted
quality values may be beneficial. For instance, in image (a), from a subjective
human perspective, the second image appears to be of higher quality due
to the facial features seen clearly; however, the assigned quality score of
0.965 may be too high for an image of such resolution. In image (b), the
stability of the algorithm’s predictions is evident, particularly within the
same individual. Given that these images likely originate from a video file, it
is expected that the quality scores would be similar, which aligns with the
observations. Finally, image (c¢) demonstrates that while the assignment of
quality to the highest quality image seems appropriate, the ordering may not
be always optimal. A manual assessment by a human might place the first
and second images in a different order.
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B 6.3.3 Evaluation of impact through generation of unique
triplets

As in the previous case, we make use of the bounding boxes from RetinaFace
for training and feature vectors extracted by SENet-50 for triplet generation.
The current experiment differs from the baseline in the way of generating
triplet data: here, we try to make a dataset as diverse as possible while keeping
its size reasonable as described in Section [4.1, resulting in approximately
9,000 training triplets with around 80% unique faces and validation triplets
with the size of approximately 2,100 and 90% uniqueness.

Figure 6.9: The left figure shows the evaluation of the training and validation
error as the function of the number of epoch of the EM-algorithm. The right
figure visualizes the log-likelihood L and its lower bound optimized by the EM
algorithm for Unique triplet generation experiment.

From the Figure (6.9 it is obvious that the current experiment differs from
the baseline. Even though we expected the uniqueness of the dataset to
positively affect the evaluated metrics, the situation is the opposite. The
training error decreases to 3.4%, but the validation error does not decrease
during the whole training process. The key assumption behind this behavior
is the insufficiently large training dataset. It is possible that the model fits
well to the training set that is not representative enough, so overfitting occurs
and results in relatively poor performance on the validation data. Overfitting
can also arise from a situation where the model is too complex for the given
data. Another assumption is that different combinations of face images may
be beneficial for the model, but with the current script, it was not possible
to obtain such triplets due to the fact that some of the faces were already
included in another triplet. As for the metrics F and L, we observe the desired
tendency to increase.
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Figure 6.10: The left figure shows the FNMR (y-axis) versus the fraction of
the excluded queries (x-axis). The right figure shows the efficiency (y-axis)
as the fraction of the excluded queries (x-axis) for Unique triplet generation
experiment.

The experiment results for FNMR and efficiency are depicted in Figure
6.10. Analyzing both metrics together gives us a clear understanding that
the model does not work as intended. Indeed, we see a decrease in FNMR
and an increase in efficiency for some smaller ratios of excluded low-quality
images, but after this certain ratio corresponding to 20%, both metrics start
to degrade. We expect the metrics to behave monotonically - with the ratio
growing, the FNMR should decrease and the efficiency should increase. This
non-monotonic tendency can signal that the quality scores do not effectively
represent the genuine scores.

Figure 6.11: The left figure shows the FNMR (y-axis) versus the fraction of
the excluded queries (x-axis). The right figure shows the efficiency (y-axis)
as the fraction of the excluded queries (x-axis) for Unique triplet generation
experiment.

The distribution of quality scores presented on the left in Figure 6.11
suggests that the model is able to predict diverse scores across the dataset,
which may be more optimal than predicting only the high or low scores,
because the dataset contains images with a wide variety of qualities. Moreover,
we expect the IJB-C to contain some reasonable amount of low-quality scores,
and the current model setting allows for this. The ISAR-ISRR tradeoff on
the right proposes the quality threshold of 0.1 as being the optimal one. In
this case the value is quite low, which means that system is very selective
and starts to reject the samples even at quality threshold 0.1. ISRR in the
optimal point has a value of 0.12 and ISAR of 0.008.
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Figure 6.12: Images sorted by quality for Unique triplet generation experiment.

As observed in Figure |6.12, the sorting of all images by quality does not
show a clear trend as before; we can see blurred, low-resolution, or high-
saturation images among those that were assigned high quality. On the other
hand, there are examples of subjectively good-quality faces that were added
between the poor ones. Overall, it is harder to spot any specific trend, and
therefore the ordering does not appear efficient enough.

Figure 6.13: The examples of input faces for individuals and the predicted
scores returned by the CNN-FQ for the Unique triplet generation experiment.

When we address the examples of individual quality assignment and order-
ing, presented in Figure [6.13], there are several important things to notice.
Image a) suggests that the model can correctly assign low quality to poor
images and high quality to better ones. If we look closer at the first four
pictures, we might expect the scores for them to be close to each other,
as they originate from the same video sequence. However, the variance in
predicted scores is significant; it ranges from 0.0157 to 0.485, even though the
images appear to have similar low quality. Image b) demonstrates the impact
of occlusion on the predicted quality: the first three images are partially
occluded by a microphone, whereas the last one depicts a normal face picture.
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On the other hand, the specific quality values are questionable, as the last
image is relatively low-resolution and the person is looking to the side. The
last example, plot c), presents a subjectively good quality assignment and
ordering.

B 6.3.4 Impact of using face alignment on the CNN-FQ
performance

To further improve the results of training, we proposed introducing additional
data preprocessing and alignment. The first change was in bounding box
detection: as described in Section [5.1, we decided not to discard the images
where RetinaFace was not able to find a face. Instead, we computed the
bounding box for such images and added the landmarks computation as well.
The other suggestion was to align the images to standardize the inputs to
the convolutional neural network. It is commonly known that alignment of
inputs is beneficial and can improve the performance. Here we work with
53,294 training triplets, 62% of uniqueness; and 20,700 validation triplets,
53% of uniqueness.

Figure 6.14: The left figure shows the evaluation of the training and validation
error as the function of the number of epoch of the EM-algorithm. The right
figure visualizes the log-likelihood L and its lower bound optimized by the EM
algorithm for Aligned experiment.

The error and F,L plots are depicted in Figure [6.14 In contrast to our
expectations, the results of the model with additional improvements did
not lead to better performance. This outcome may be logical in terms of
computing the average bounding boxes and landmarks, because statistically,
there were not many cases where RetinaFace failed to detect a bounding box:
only around 5% of the input data was prone to this problem. As for the
alignment, unfortunately, this step did not improve the model’s results. It is
possible that the alignment process removed some valuable information from
the data, the initial model was already performing near its optimal capability,
or the initial images were already standardized enough, meaning the alignment
did not change them much. The results from the experiment show a training
error of 8.95% and a validation error of 22.45%. The log-likelihood L and
log-likelihood lower bound F performed as expected, similar to the previous
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experiments.

Figure 6.15: The left figure shows the FNMR (y-axis) versus the fraction of the
excluded queries (x-axis). The right figure shows the efficiency (y-axis) as the
fraction of the excluded queries (x-axis) for Aligned experiment.

As in the baseline model, both metrics, FNMR and efficiency, in the current
experiment (Figure 6.15) show some fluctuations. There is no clear trend
of monotonic decrease in FNMR and increase in efficiency. Moreover, if we
look at their values at 30% of excluded low-quality images, they return to
the initial values (0.01 for FNMR and 0 for efficiency), which indicates that
excluding such a high percentage of images is not beneficial. However, in
NIST reports, they often consider a range of excluded images from 0% to
10% only, so we do not know if this behavior is problematic or can be normal
for some algorithms.

Figure 6.16: The left figure shows the FNMR (y-axis) versus the fraction of the
excluded queries (x-axis). The right figure shows the efficiency (y-axis) as the
fraction of the excluded queries (x-axis) for Aligned experiment.

As seen in Figure [6.16|on the left, the quality density plot shows a significant
difference in predictions compared to the baseline experiment. Instead of
predicting high values in most cases, we see peaks at the lowest values between
0 and 0.2 and the highest values between 0.8 and 1. However, the distribution
is non-uniform, which implies that simply excluding low-quality images might
not be straightforward, as different quality clusters may impact the model
differently. The optimal quality threshold, with a value around 0.15, suggests
that images with a quality below 0.15 are considered low quality and excluded.
ISRR has a value of 0.14 and ISAR of 0.0081.

Figure |6.17 presents sorted images for the Alignment experiment. As
in the baseline model, it is clear that the images assigned a high quality
represent frontal pictures of faces and images with higher resolution. At the
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Figure 6.17: Images sorted by quality for Aligned experiment.

same time, we see that this is not always true: there are a few examples with
visibly lower quality or non-frontal poses. Lower quality images have poor
lighting conditions, blur, and noise. However, it is important to note that
the ordering is not perfect, and some of the predicted quality scores do not
seem reasonable.

Figure 6.18: The examples of input faces for individuals and the predicted
scores returned by the CNN-FQ for the Aligned experiment.

Moving on to analyzing the quality predictions for individuals in Figure
0.18:

Picture a) shows the ordering that may be found valid from a human
perspective: the quality of the first three images is lower with the person
facing to the side. Moreover, with the quality increasing for these pictures,
more facial features are seen. The highest-quality image is clear, with relatively
good quality and a close-to-frontal pose. The only irregularity is the difference
in score between the first image and the subsequent two; it is several times
lower, even though visually they are similar.

For the individual in b), we could say that the quality assignment is
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connected to the emotions. While the first pictures depict a person during a
speech, the last one shows a neutral face.

Finally, for the last person, we may deduce that the highest-quality image
got this score because there are no glasses and the facial expression is again
almost neutral.

B 6.3.5 Experiment with additional data preprocessing,
alignment and unique triplets generation script

The experiment described in this section was based on data preprocessed in
the same way as in Section [6.3.4, meaning the use of additionally computed
bounding boxes, landmarks, and alignment of images. In addition, we used
the same triplets generation script as in Section [6.3.3] which led to a training
dataset of size 9,000 with 80% unique faces and a validation dataset of size
2,000 with 80% unique faces.

Figure 6.19: The left figure shows the evaluation of the training and validation
error as the function of the number of epoch of the EM-algorithm. The right
figure visualizes the log-likelihood L and its lower bound optimized by the EM
algorithm for Aligned Unique experiment.

Given the smaller dataset size compared to a similar experiment without
alignment and other preprocessing steps, the results are as expected, with
clear signs of overfitting. Refer to Figure for the details. The training
error is 3.58%, and the validation error is 45.71%, closely matching the results
in Section This indicates that neither the additional preprocessing nor
the different triplets generation logic was successful. Even though L and F
show the desired growing trend, we cannot say that the experiment overall
resulted in any improvement based on these metrics.
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Figure 6.20: The left figure shows the FNMR (y-axis) versus the fraction of the
excluded queries (x-axis). The right figure shows the efficiency (y-axis) as the
fraction of the excluded queries (x-axis) for Aligned Unique experiment.

As we proposed to evaluate the models using several approaches, the study
of NIST metrics (Figure 6.20) may show different results. This is because
the metrics computed during training, such as error, do not always directly
reflect the overall behavior of the model, meaning the predicted qualities
may still be reasonable. On the contrary, the FNMR shows an increasing
trend and the efficiency starts to drastically decrease, both from the quality
threshold of 0.15. The model is therefore incapable of predicting the quality
scores that reflect the true qualities.

Figure 6.21: The left figure shows the FNMR (y-axis) versus the fraction of the
excluded queries (x-axis). The right figure shows the efficiency (y-axis) as the
fraction of the excluded queries (x-axis) for Aligned Unique experiment.

From Figure [6.21) on the left, it is obvious that the quality density plot
is shifted to the left, meaning the model mostly predicts low values, with a
significant concentration around 0. At the same time, it fails to predict values
over 0.8, which is a problem because the [JB-C dataset contains high-quality
images among others. The right figure suggests choosing a value around 0.03
as the optimal point to balance between incorrect acceptance and incorrect
rejection, which is the lowest threshold across the presented models. This
may be logical given the quality distribution, with a peak around [0, 0.2]. We
end up with ISRR 0.11 and ISAR 0.0082.

Given the poor performance based on all the metrics used, it is not expected
that the ordering of qualities will be accurate. However, we still present the
predicted qualities in Figure [6.22. We cannot see a clear or consistent trend
in predicting the qualities; high- and low-quality images appear both among
those scored with low and high-quality values, indicating randomness in the
quality assessment process. The quality values do not visually correlate with
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Figure 6.22: Images sorted by quality for Aligned Unique experiment.

parameters such as lighting, blur, or occlusion.

Figure 6.23: The examples of input faces for individuals and the predicted
scores returned by the CNN-FQ for the Aligned Unique experiment.

Despite the poor overall results of the model, its quality predictions pre-
sented in Figure 6.23 are reasonable for some individuals. For the person in
plot a), the first image is blurred, low-resolution, and shows a non-neutral face
with a non-frontal pose. The best image is also non-frontal, but the lighting
and resolution are visibly better. In plot b), the first image is occluded,
underexposed, and the hat occludes the face. In the second image, even with
the glasses on, the quality seems better as the underexposure is no longer a
problem, and the man looks directly at the camera. For the person in plot c),
the first three images are blurred and have poor lighting, leading the model
to rate them lower than the last image, which is high-resolution, frontal, and
has no brightness issues.
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. 6.4 Bootstrapping experiments

B 6.4.1 Choosing the best configuration

We decided to conduct a bootstrapping experiment on the larger dataset, with
the hypothesis that increasing the dataset size should improve the results.
We combined the IJB-C and CASIA-WebFace datasets. The identities in
the datasets did not overlap. The preprocessing steps, such as bounding box
detection, were exactly the same for all the data to ensure consistency of
inputs. The resulting dataset contained around 14,000 identities and 600,000
faces (images).

Section 4.2 described the bootstrapping process and triplets selection logic.
Here, we conduct several experiments to choose the best hyperparameters,
namely the size (the target number of positive and negative new data to add
in each evaluation iteration) and the frequency of updates. Table 7.1 presents
the configuration of three experiments. The initial dataset size is 20,000
triplets for each experiment, as this seemed reasonable based on previous
experiments. The ratio of positive to negative data is always 50:50, unless
stated otherwise. The hypothesis is that each experiment is more complex
and should lead to better results. Table |6.1] shows the configurations for the
experiments.

Table 6.1: Bootstrapping experiments configuration

Initial dataset size | Target number of P/N | Frequency of updates

20,000 2,000 Every 15th epoch, from
15 to 90

20,000 5,000 Epochs 15, 30, 45, 60, 80

20,000 5,000 Epoch 3, then every 9th
epoch from 9 to 90

We present in Figures [6.24] and |6.25| the results from the training only,
as the main idea was to choose the best configuration and run it until
convergence. Therefore, we provide only the metric plots that are tracked
during training. We compare experiment 1 with experiment 2, and experiment
2 with experiment 3, for better visibility. We stopped the models’ training
when the trend of potential improvement in validation error was clear. Around
epoch 70, experiment 1 had a validation error of 21.92%, experiment 2 had
19.8%, and experiment 3 had 18.49%. The graphs are downloaded from
Weights and Biases (wandb), a tool and platform for tracking machine learning
experiments. One wandb step corresponds to approximately 4 training epochs.
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6.4. Bootstrapping experiments

Figure 6.24: Bootstrapping for Experiment 1 and Experiment 2.

Figure 6.25: Bootstrapping for Experiment 2 and Experiment 3.

B 6.4.2 Best configuration results evaluation

The initial dataset size was 20,000 triplets, with 10,000 positives and the same
number of negatives. We added an additional 5,000 positives and negatives
in epoch 3 (to ensure the functionality of the code) and then in each epoch
divisible by 9. It is clear that in later epochs, the model is more capable
of correctly predicting the right label for a triplet. Therefore, when adding
new data aiming to choose 5,000 positives or negatives, we set a ‘max__ tries’
parameter to 10 to prevent infinite loops and to manage time complexity. In
all cases, this parameter value was sufficient to add the desired amount of
data. By the end, after epoch 90, where the last evaluation and addition
iteration was made, we ended up with a dataset of around 130,000 triplets.
Having 130,000 triplets means processing around 390,000 images in every
epoch, which is highly time- and memory-consuming. Therefore, we do not
train for more than 100 epochs.
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6. Experiments and Results

Figure 6.26: The left figure shows the evaluation of the training and validation
error as the function of the number of epoch of the EM-algorithm. The right
figure visualizes the log-likelihood L and its lower bound optimized by the EM
algorithm for Bootstrapping experiment.

Figure |6.26 displays errors and F, L for Bootstrapping experiment. The
fluctuative behavior of both the errors and F, L is defined by the bootstrapping
strategy: when we add new data, which the model identified as erroneous,
it is clear that the model will not immediately correctly predict the labels.
Therefore, in each evaluation and addition iteration, the errors will increase,
and L, F will decrease.

When creating the joint dataset of IJB-C and CASIA, we anticipated that
the larger dataset size would significantly improve training results. As shown
in the error plots, the training error decreased to 6.28% and the validation
error to 14.79%. Compared to previous experiments, there is a notable
improvement: the validation error decreased by 6.71%. The training errors
are similar in both cases. This outcome indicates that using a larger and
more diverse dataset, which includes faces from both IJB-C and CASIA, is
essential for enhancing performance.

Figure 6.27: The left figure shows the FNMR (y-axis) versus the fraction of the
excluded queries (x-axis). The right figure shows the efficiency (y-axis) as the
fraction of the excluded queries (x-axis) for Bootstrapping experiment.

In analyzing the FNMR and efficiency (Figure 6.27)), we generally track
two things: monotonicity and the correct direction of metrics. Here, the
FNMR and efficiency are not strictly monotonic, but the fluctuations of
FNMR are negligible. The FNMR shows a visible decreasing trend, which
is positive because as the model performs well during training, we expect
the NIST metrics to improve. The efficiency in this experiment looks more
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6.4. Bootstrapping experiments

stable compared to the previous experiments (in the range of 10% to 30% of
excluded lowest-quality images), and moreover, it manages to reach a value
of 0.35, which is the highest among the presented experiments. Given the
metrics, the algorithm works as intended, and discarding low-quality images
improves its performance.

Figure 6.28: Qualities, ISAR, ISRR for Bootstrapping experiment.

As presented in Figure 6.28 on the left, the quality density plot shows the
distribution of image qualities with a peak around 0.4 to 0.6, indicating that
many images are evaluated as having average quality. There are only a small
number of images where the algorithm predicts higher values, ranging from
0.8 to 1. Although the IJB-C dataset contains many images with occlusion,
it still includes good-quality images, so the predictions are not always perfect.
The ISRR-ISAR plot on the right defines the optimal threshold near 0.37,
with ISRR around 0.2 and ISAR at 0.007. It is notable that rejecting 20% of
images, based on the optimal intersection point, is quite high. These exact
values will be compared with other metrics in the final section of the chapter,
as the comparison provides better insights into each model’s performance.

The quality scores depicted in Figure [6.29| appear consistent for images
with similar characteristics. We can summarize them as follows. High scores
are assigned to:

® Properly lit images.

B [mages with good resolution, clear details, and sharpness.
® Images where the person is facing the camera directly.
On the other hand, lower scores are given to:

® Blurry images, those with noise or artifacts.

B [mages with low light or overexposure.

® Images where the person has a significant head turn.

Overall, the assignment of qualities with the bootstrapping algorithm has
much in common with the previous successful algorithms and the initial
training. It corresponds to the visual human assessment in most cases, but
there are some outlier images present as well.
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6. Experiments and Results

Figure 6.29: Images sorted by quality for Bootstrapping experiment.

Figure 6.30: The examples of input faces for individuals and the predicted
scores returned by the CNN-FQ for the Bootstrapping experiment.

We refer to Figure [6.30 for the individual qualities. For the individual
in first plot, the predicted values are quite consistent compared to other
experiments, where the model predicted values smaller than 0.2 and larger
than 0.8 for images within the same video frame. Most algorithms predicting
qualities measure features such as mouth open or eyes open. In this case,
the model effectively captured these details. Additionally, the last image is
the closest to a frontal view. For the individual in second plot, the last two
images have better resolution. The first four images depict the person in
action, with different rotations of the face and more pronounced emotions.
For the individual in last plot, the predictions show a gradual improvement.
The first image has low resolution and is underexposed. The second image
also has low resolution. In the third image, the face is positioned too far away
and turned to the side. The last image has the best resolution among those
compared.
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6.5. FaRL + MLP

B 6.5 FaRL+MLP

In this experiment, we used exactly the same triplets as in the baseline
experiment. We extracted the feature vectors using FaRL and trained an
MLP instead of CNN-FQ as described in Section |4.3.

Figure 6.31: The left figure shows the evaluation of the training and validation
error as the function of the number of epoch of the EM-algorithm. The right
figure visualizes the log-likelihood L and its lower bound optimized by the EM
algorithm for FaRL experiment.

Examining the outcome of this approach (Figure |6.31) shows a result
that is visibly different from the previous experiments. Even though the
training error has a value of 9.93%, which is slightly higher, the validation
error decreases to 15.46% - one of the best across the experiments described
so far. The behavior of the log-likelihood and the auxiliary function is also
different: the function F gets very close to L, indicating that the parameters
are estimated well.

Figure 6.32: The left figure shows the FNMR (y-axis) versus the fraction of the
excluded queries (x-axis). The right figure shows the efficiency (y-axis) as the
fraction of the excluded queries (x-axis) for FaRL experiment.

Figure [6.32 presents the FNMR, and efficiency metrics for the FaRL
experiment. The FNMR plot implies that excluding more low-quality images
does not consistently benefit the model, but we see a larger decrease after
a fraction of 0.2. At the same time, the efficiency grows significantly from
the same point, 0.2 as well. FNMR manages to decrease from 0.01 to around
0.0095, and the efficiency grows from 0 to around 0.2.
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6. Experiments and Results

Figure 6.34: Images sorted by quality for FaRL experiment.

Figure 6.33: Qualities, ISAR, ISRR for FaRL experiment.

Figure 6.33|illustrates the predicted quality scores and ISAR-ISRR plot.
The quality density plot shows a similar to Baseline experiment distribution,
skewed to higher values, with the difference of starting predicting values from
the values around 0.2, meaning that the model does not assign the lowest
possible, zero values. Another difference is the higher variability of predicted
values, which is a positive aspect. There is a significant peak from 0.8 to
1, indicating that the algorithm tends to give high values to most of the
images. Another difference is the higher variability of predicted values, which
is a positive aspect. There are peaks around 0.2, 0.5 and 0.7 as well. The
quality threshold suggested as optimal by ISAR-ISRR is the highest among all
experiments. Comparing the value of ISRR, which is around 0.2 here, to 0.12
in the baseline experiment, shows that the current model is more conservative
and leads to more incorrect rejections, which is not a very positive sign. It is
important to balance incorrect rejections and acceptances. However, since we
are more interested in lower ISRR, the choice of the quality threshold in a
real-world setting may be different.
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In general, the model can distinguish between different quality levels, as
demonstrated in Figure |6.34. Many of the low-quality images have issues
such as blurriness, low resolution, poor lighting, or non-frontal poses. Higher-
quality images tend to have good lighting, sharpness, and frontal poses. The
model appears consistent in assigning lower scores to images with obvious
quality issues and higher scores to images without such issues. However, there
are a few cases where the quality scores might not align perfectly with visual
inspection, but none of the algorithms resulted in perfect predictions for all
the images.

Figure 6.35: The examples of input faces for individuals and the predicted
scores returned by the CNN-FQ for the FaRL experiment.

We refer to Figure |6.35| for details on the individual qualities. For Person
a), the ordering looks efficient, but the difference between the qualities of the
first and second images (which are almost identical) is quite large, likely due
to the yaw angle and the reflection on the glasses. For Person b), the first
two images are of low resolution, the third one is of higher resolution but has
the top part of the face cropped, and the last image shows high resolution
with the face closer to the camera. For Person c), the face with the neutral
expression got the highest score. However, the quality values are expected to
be closer to each other as they stem from the same video.

. 6.6 Bootstrapping + FaRL

We used triplets similar to those in the initial bootstrapping experiment.
Since the seed was set, the initial training triplets are identical. We modified
the bootstrapping to work with feature vectors extracted from images and
used a multilayer perceptron instead of CNN-FQ. All other settings, such
as evaluation and data addition criteria, remain the same as in the original
bootstrapping experiment. The validation set is fixed to ensure consistency
over epochs and accurate representation.
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6. Experiments and Results

Figure 6.36: The left figure shows the evaluation of the training and validation
error as the function of the number of epoch of the EM-algorithm. The right
figure visualizes the log-likelihood L and its lower bound optimized by the EM
algorithm for Bootstrapping+FaRL experiment.

As demonstrated in Figure [6.36, both the training and validation errors
start at a lower level, around 0.3, compared to experiments with image data,
where they started around 0.4. The training error, although higher than in
CNN-FQ experiments, converges to 15.22%. The validation error surpasses all
previous results, achieving a value of 13.47%, which was our desired outcome.
The fluctuations in F and L are due to the bootstrapping method itself, but
overall, both the log-likelihood and the auxiliary function show growth, with
F remaining less than or equal to L.

Figure 6.37: The left figure shows the FNMR (y-axis) versus the fraction of the
excluded queries (x-axis). The right figure shows the efficiency (y-axis) as the
fraction of the excluded queries (x-axis) for Bootstrapping+FaRL experiment.

FNMR and efficiency are presented in Figure 6.37. In comparison with the
FaRL experiment on IJB-C and without bootstrapping, the model exhibits
similar fluctuative behaviour. However, it shows a slightly higher FNMR, and
does not display as strong a decreasing trend. The same is true for efficiency;
for some reason, it does not perform as well as the initial FaRL. Compared
to normal bootstrapping using image data, the model fluctuates with no
clear trend. Overall, the method is functional but not ideal. Despite the
satisfactory performance during training, its effectiveness is reduced in this
context. The vector representation probably lack certain features, resulting in
slightly worse performance compared to the image and CNN-based approach.
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6.6. Bootstrapping + FaRL

Figure 6.38: Qualities, ISAR, ISRR for Bootstrapping+FaRL experiment.

The quality distribution (Figure 6.38, on the left) in this experiment
is very close to that in the original experiment, which is logical since the
data representation is the same—the feature vectors—although the dataset
size is larger. When compared with bootstrapping on image data, most
qualities were around 0.4-0.6, whereas in this experiment, the qualities are
higher, skewed to the right with a peak between 0.8 and 1, and another peak
around lower values. The ISRR and ISAR values remain similar to those
in bootstrapping and FaRL-+MLP experiments, but the quality threshold is
lower.

Figure 6.39: Images sorted by quality for Bootstrapping+FaRL experiment.

As the common features of low-quality and high-quality images have been
previously discussed, we will not mention them once again here. Generally,
the quality assignment and ordering (shown in Figure 6.39) in this experiment
are consistent with those observed in successful experiments. The model
effectively captures features indicative of low-quality images, such as noise
and blurriness, and performs similarly for higher-quality images. However,
there are still some impostor images when viewed from a human perspective.
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6. Experiments and Results

Figure 6.40: The examples of input faces for individuals and the predicted
scores returned by the CNN-FQ for the FaRL experiment.

Moving on to individual cases presented in Figure [6.40, may provide
more details about how the model works. The plot (a) presents a generally
controversial sequence of images. In the first and second images, the person is
looking down with eyes closed. In the third and fourth images, the person is
looking to the side, and in the fourth image, the person is smiling. The fifth
image is an impostor; it is visibly the worst among all images but somehow
received a better score. The last image visually appears better than the others
because the face is almost neutral and almost facing the camera. In plot (b),
the ordering of images clearly makes sense, as the quality improves with each
subsequent image. The first image is very pixelated, with eyes closed, mouth
open, and facing the side. The second image has low resolution. The third
image is good, but the hair occludes the top of the face, and the head position
is not as straight as in the last image, which has the best resolution. In the
final image, the person looks directly at the camera, and despite the occlusion
by the microphone, it still visibly looks as the best one. In plot (c), the first
image shows emotions, is blurred, and is facing to the side. The second and
third images are non-frontal and less sharp. However, the second and third
images could probably be swapped. The last image has better lighting and
resolution and is closer to a frontal view.

. 6.7 Discussion of results

It is crucial to explore and analyze the metrics together. Each metric (such
as validation error or false non-match rate) is defined over a set of different
parameters and may not reflect the whole underlying complexity of a problem.
It describes the performance only partly, and one metric can reveal insights
that another might overlook. Moreover, in real-world applications, we usually
have more than one specific goal.

In this thesis we used a range of metrics each evaluating a specific aspect
of the face quality predictor. Namely, we used the following metrics:

® Triplet classification error show how well the model can predict the
correct ordering of the triplets. Training error indicates how well the
model fits the training data, while validation error shows how well the
model generalizes to unseen data. The triplet classification error is a
proxy objective which is easy to optimize based on the available data and
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their annotations. However, the true metrics to evaluate the performance
of the quality predictor, like FNMR, are shown below in the list.

® FNMR and Efficiency show how discarding the faces with predicted
low quality improve the performance of the underlying face verification
system. We report FNMR after discarding 1 to 30 percent of images.
FNMR below 0.01 indicates improvement.

# The distribution of quality score predicted from the test faces is important,
especially in combination with knowledge about the data. For example,
if we know that the dataset is diverse, but the model predicts only high
or low values, it may signal that something is not working as intended.

® SRR versus ISAR: balancing these metrics is crucial because a high
threshold increases ISRR, leading to more frequent denial of access to
authorized users. On the other hand, a low threshold reduces the ISRR,
but it can increase the risk of unauthorized access described by ISAR.

B Visual quality assessment: the goal is to visualize how the quality pre-
dicted by the trained model correlates with the human perceived quality.

In the summary tables we report the results for the following methods:

® Baseline: implementation of the original algorithm of [47].

Unique triplet generation: experiment with unique triplets.

Aligned: experiment on aligned images.

Aligned Unique: experiment on aligned images with unique triplets.

Bootstrapping: bootstrapping with the best chosen configuration.

FaRL: experiment with feature vectors and a MLP.

Bootstrapping+FaRL: bootstrapping on joint IJB-C and CASIA dataset
using feature vectors instead of images.

Table 6.2: The triplet classification error evaluated on the training and testing
data shown for the evaluated methods, sorted from best by validation error

Experiment Training error | Validation error
Bootstrapping+FaRL 15.22% 13.47%
Bootstrapping 6.28% 14.79%

FaRL 9.93% 15.46%
Baseline 5.75% 21.5%

Aligned 8.95% 22.45%

Aligned Unique 3.58% 45.711%

Unique triplet generation | 3.4% 46.47%
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Table |6.2| summarizes training and validation triplet classification error
for all the compared methods. It is evident that the models are generally
capable of fitting well to the training data. The validation error, however,
provides insight into how the model performs with unseen data, making
it a crucial metric for evaluation. The best result is achieved with the
Bootstrapping+FaRL model, where a large dataset of images from IJB-C
and CASIA was used, along with feature vectors and a different neural
network architecture from CNN-FQ. The second-best result is from the initial
bootstrapping, which had a slightly higher validation error but achieved
half the training error in comparison with the Bootstrapping+FaRL. The
FaRL experiment, which was conducted on the same data as the Baseline,
outperformed the Baseline experiment by reducing the error by an additional
6%, even with a much simpler architecture, probably thanks to the fact that
FaRL was trained on a dataset of around 20 million images [50] and is capable
of extracting really low-level but important details from the face images. The
Baseline and Aligned experiments yielded similar errors, indicating that the
alignment process did not significantly benefit the model. The Unique triplet
generation and Aligned Unique experiments performed poorly, likely due to
insufficient dataset sizes leading to overfitting on new data.

Table 6.3: FNMR and Efficiency computed on the test set. FNMR, below 0.01
indicates improvement due to using the face quality improvement.

Experiment FNMR(30) | Efficiency(30)
Bootstrapping 0.00895 0.349
FaRL 0.00946 0.179
Baseline 0.00947 0.175
Unique triplet generation | 0.00974 0.086
Bootstrapping+FaRL 0.00973 0.084
Aligned 0.00999 0.002
Aligned Unique 0.0105 -0.185

Table 6.3 shows the FNMR and efficiency values when the highest percent-
age of data, 30%, is excluded. Although the differences overall are not very
significant, some observations and conclusions can still be made. The lowest
false non-match rate and highest efficiency were achieved in the Bootstrapping
experiment. FaRL is the second-best experiment. The results of the Baseline
and FaRL experiments are similar, which is logical since they were run on the
same data. However, we would expect FaRL to outperform the Baseline more
significantly, as observed when comparing the validation error. Surprisingly,
the results of the Unique triplet generation and the Bootstrapping+FaRL
experiments are close to each other. However, it should be noted that the
NIST metrics for the experiment Unique triplet generation did not follow any
clear trend, so this might be a coincidence. The NIST metrics on aligned
data (Aligned, Aligned Unique) are the least successful.
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Table 6.4: ISAR, ISRR and quality thresholds summary for the experiments

Experiment Threshold | ISRR | ISAR
Baseline 0.35 0.12 0.008
Unique triplet generation | 0.10 0.12 | 0.008
Aligned 0.15 0.14 | 0.0081
Aligned Unique 0.003 0.11 0.0082
Bootstrapping 0.37 0.20 | 0.007
FaRL 0.70 0.20 | 0.12
Bootstrapping+FaRL 0.28 0.22 | 0.007

Table |6.4 summarizes the ISAR, ISRR, and quality thresholds for the
various experiments. ISAR and ISRR values are from the optimal point—the
point of intersection of the two error lines. The key observations are:

® The quality threshold is the highest for the FaRL experiment, with a

value of 0.7, which is significantly higher than the thresholds for the other
experiments. This indicates that the model is very conservative. On
the other hand, it is important to remember that the FaRL experiment
tended to predict very high qualities for face images in general.

The highest values of ISRR are for the Bootstrapping, FaRL, and Boot-
strapping+FaRL experiments. We generally prefer the lowest possible
score, and a value of around 0.2 is relatively high. If we wanted to ensure
the lowest possible ISRR value, we would have to sacrifice situations
where the ISAR—incorrect acceptance situations—is higher.

The ISAR values are very close for all the experiments except FaRL, even
given the different quality thresholds. This suggests that the models
have a similar ability to correctly identify good and bad quality images,
but they set different thresholds for classification. This can be explained
by the fact that the algorithms predict different quality values, which
can be seen from the quality density plots presented for every algorithm.

Table 6.5: Validation error, FNMR and the number of training faces (images)
for the experiments, sorted from largest number of faces.

Experiment Validation error | FNMR, | Num. of train faces
Bootstrapping 14.79% 0.00895 | 158,000
Bootstrapping+FaRL 13.47% 0.00973 | 142,000

Aligned 22.45% 0.00999 | 61,000

FaRL 15.46% 0.00946 | 55,500

Baseline 21.5% 0.00947 | 55,500

Unique triplet generation | 46.47% 0.00974 | 21,600

Aligned Unique 45.71% 0.0105 | 21,500
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Table [6.5| presents the experiments with a focus on the number of faces
(images) used during the training, along with the corresponding validation
error and FNMR. This analysis aims to highlight the impact of the number of
images on the performance metrics. Bootstrapping had one of the lowest vali-
dation errors and the best (lowest) false non-match rate, probably due to the
largest number of images used in the training process. Bootstrapping+FaRL,
which also used a large dataset, achieved the best validation error among all
experiments. However, its FNMR was higher, and its training error was quite
high as well, indicating some trade-offs in performance metrics. The Aligned
experiment shows that a larger dataset size is not always the key to success.
Despite having a slightly larger dataset, it performed worse than the Baseline
experiment. This could be due to issues during the alignment and cropping
process or a smaller percentage of non-repeating images in this dataset. FaRL
and Baseline were trained on the same data, resulting in very close FNMR
values. However, the validation error for FaRL was visibly lower, suggesting
that the vector representations used in FaRL might provide valuable informa-
tion. The experiments with the smallest number of images, Unique triplet
generation and Aligned Unique, aimed to use the maximum number of unique
images possible. The number of triplets in these experiments was significantly
smaller than in other datasets, making it insufficient for the model to learn
effectively. Additionally, there could have been other underlying issues in
these datasets that impacted their performance.

When addressing the visual quality assessment, the general qualities pre-
diction and ordering worked satisfactorily for most of the experiments. For
Unique triplet generation and Aligned Unique, it worked poorly. The qualities
for individuals generally worked for all models, but it is important to note
that overall their effectiveness highly depends on the specific case.

As previously discussed, the selection of the best method requires a compre-
hensive evaluation of all metrics together. Overall, the most promising results
were obtained from the FaRL, Bootstrapping, and their combined approach,
Bootstrapping+FaRL. Additional data preprocessing steps, such as alignment,
did not significantly change the outcomes. One possible explanation is that
the images were already normalized to some extent. Another hypothesis
is that the aligned images may have lost some crucial information due to
differences in cropping and bounding box configurations. Unfortunately, the
experiments with unique triplets did not yield successful results. However,
there is potential for improvement with an increased number of triplets or
more sophisticated implementation strategy. Regarding Bootstrapping, our
hypothesis was confirmed; the larger dataset indeed enhanced performance,
which is a positive sign. FaRL and FaRL+Bootstrapping were notably success-
ful, moreover, the utilization of vector representations significantly accelerated
the training process.
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Chapter 7

Conclusion

In this thesis, we have explored the topic of face image quality prediction. We
have presented the theoretical background, including various definitions and
aspects of face image quality, factors affecting it, use cases, and approaches
to its assessment.

The goals and contributions of this work were to develop an efficient
implementation of the algorithm to learn the face image quality predictor [47]
and to explore different strategies for generating training triplets. We also
aimed to implement transfer learning using image representations from deep
neural models pre-trained on large datasets, specifically using FaRL trained on
a 20M database [50]. Lastly, we aimed to evaluate all implemented methods
using the metrics defined by the ongoing NIST challenge on face image quality
assessment [13].

In the practical part of the work, we introduced the baseline experiment,
mirroring the implementation of the original method [47], which was sub-
sequently enhanced in various ways. We explored different approaches as
stated in the goals. We implemented an experiment with additional data
processing and alignment. We attempted to generate a more diverse dataset
with a high percentage of unique faces in triplets. We also implemented
bootstrapping using joint CASIA+IJBC dataset, an experiment with FaRL-
extracted vectors on the same data as the baseline experiment, and finally
a combination of FaRL and bootstrapping. We presented, described, and
implemented the metrics proposed by NIST to evaluate all the methods. Each
experiment was evaluated using these NIST metrics along with a discussion.
We provided chosen images with quality predictions to ensure that, with
respect to human perception, the method works as well. In general, we had
several hypotheses on how to improve the implementation and what to try
out. We have summarized all the experiment results in Section 6.7 and
discussed which enhancements were successful and which were not.

The main finding was that a larger dataset and working with different
image representations, such as feature vectors, were indeed beneficial. From
the performed experiments, we can conclude that the goals of the thesis were
accomplished. We tried out different improvements to the algorithm, evaluated
them using real-world NIST metrics, and identified the most promising
approaches.
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7. Conclusion

This thesis opens up opportunities for future research on the topic. There
are several possible paths for enhancing and extending this work:

® The multilayer perceptron architecture used in the FaRL experiment
was relatively simple. Exploring improvements to the MLP architecture
working with FaRL could yield better results. A more sophisticated
architecture might lead to even greater improvements.

B We observed a significant increase in training speed when working with
feature vectors instead of images. Another potential direction could
involve training FaRL on an even larger dataset by using more triplets
from the joint IJB-C+CASIA dataset or by incorporating new datasets.

® Another possibility is to explore further enhancements of the current
algorithm. This could involve experimenting with efficient data genera-
tion strategies or trying different backbones other than the already used
CNN-FQ and FaRL.
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Appendix A
Used Al Software

In accordance with the guidelines provided in [Pouzivani Ul ve studijnich|

I declare that I have used the following Al software during the work
of this thesis:

® ChatGPT (OpenAl): grammar control, rephrasing. E|

Ihttps://intranet.fel.cvut.cz/cz/rozvoj/MP-pouzivani-ui.pdf

https://chatgpt.com
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Appendix B

Images with predicted quality scores

69



B. Images with predicted quality scores

Figure B.1: Images sorted by quality for Baseline experiment.
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B. Images with predicted quality scores

Figure B.2: Qualities for different persons in Baseline experiment.
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B. Images with predicted quality scores

Figure B.3: Images sorted by quality for Unique triplet generation experiment.
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B. Images with predicted quality scores

Figure B.4: Qualities for different persons in Unique triplet generation experi-
ment.
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B. Images with predicted quality scores

Figure B.5: Images sorted by quality for Aligned experiment.
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B. Images with predicted quality scores

Figure B.6: Qualities for different persons in Aligned experiment.
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B. Images with predicted quality scores

Figure B.7: Images sorted by quality for Aligned Unique experiment.
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B. Images with predicted quality scores

Figure B.8: Qualities for different persons in Aligned Unique experiment.
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B. Images with predicted quality scores

Figure B.9: Images sorted by quality for Bootstrapping experiment.
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B. Images with predicted quality scores

Figure B.10: Qualities for different persons in Bootstrapping experiment.
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B. Images with predicted quality scores

Figure B.11: Images sorted by quality for FaRL + MLP experiment.
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B. Images with predicted quality scores

Figure B.12: Qualities for different persons in FaRL 4+ MLP experiment.
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B. Images with predicted quality scores

Figure B.13: Images sorted by quality for Bootstrapping + FaRL experiment.
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B. Images with predicted quality scores

Figure B.14: Qualities for different persons in Bootstrapping + FaRL experiment.
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