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Abstract

The goal of this thesis is to research, implement, verify and compare solvers for the Vehi-
cle Routing Problem with Time Windows and the Nurse Rostering Problem using tools
for mathematical optimization like Mixed Integer Linear Programming and Constraint
Programming, Metaheuristics or Localsearch and ultimately combine them in a hybrid
solution method that benefits from their individual advantages. The tools and results
developed are available online to enable the community to expand on this work easily
by developing and comparing their solutions.

Keywords VRP, Vehicle Routing Problem, NRP, Nurse Rostering Problem, CVRPTW,
Capacitated Vehicle Routing Problem With Time Windows, Solomon, Benchmark, Mixed
Integer Linear Programming, Combinatorial Optimization, Genetic Algorithms, Con-
straint Programming, Metaheuristic

Abstrakt

Ćılem této práce je prozkoumat, implementovat, ověřovit a porovnat řešiče pro problém
vozového parku s časovými okny (Vehicle Routing Problem with Time Windows) a
problém rozvrhu sester (Nurse Rostering Problem) pomoćı nástroj̊u pro matematickou
optimalizaci jako je Smı́̌sené Celoč́ıselné Lineárńı Programováńı (Mixed Integer Linear
Programming) a Programováńı s Omezeńımi (Constraint Programming), Metaheuristiky
nebo Lokálńı Vyhledáváńı a nakonec je zkombinovat v hybridńı metody řešeńı která
kombinuje jejich silné stránky. Vyvinuté nástroje a výsledky jsou dostupné online, aby
komunita mohla snadno rozš́ı̌rit tuto práci daľśım vývojem a porovnáváńım vlastńıch
řešeńı.

Kĺıčová slova VRP, Vehicle Routing problém, NRP, Nurse Rostering problém, CVRPTW,
Capacitated Vehicle Routing problém s Časovými Okny, Solomon Benchmark, Smı́̌sené
Celoč́ıselné Lineárńı Programováńı, Kombinatorická Optimalizace, Genetické Algoritmy,
Programováńı s Omezeńımi, Metaheuristiky
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Introduction

Combinatorial optimization lies at the intersection of mathematics, computer science,
and operations research, focusing on finding the best solution from a finite set of pos-
sibilities. It deals with problems where the goal is to optimize one or more objective
functions subject to a set of constraints. Unlike in the case of continuous optimization,
the variables can be limited to discrete values in the case of combinatorial optimization.
An exhaustive search of all valid options is usually not feasible, requiring specialized
algorithms designed to explore the solution space efficiently.

Combinatorial optimization is present in logistics, transportation, and personnel
scheduling. Since these problems usually originate from real-life problems, a better
solver can help save time, money and other resources. Therefore, it is essential to im-
plement, validate and compare new proposed algorithms quickly. For this reason, this
work collaborates with Tomáš Omasta and extends [LO23].

One typical real-life example of the combinatorial optimization problem is the Trav-
eling Salesman problem, which, given a list of cities and the distances between each pair
of cities, aims to find the shortest path such that each city is visited exactly once and
which starts and ends in the origin city. It is an NP-hard problem, meaning it can not
be solved in polynomial time. The vehicle routing problem (VRP) generalises Traveling
Salesman by adding multiple ”salesmen” renamed to vehicles in this case. Also, the
towns are now called customers instead. Vehicle routing can be further expanded by
adding additional constraints such as maximum capacity, which each vehicle can carry,
pickup and delivery, time windows, or vehicle battery capacity. Combining constraints
allows for a better simulation of the real world for a particular application, which is
also common. By finding optimal or near-optimal solutions, organizations can mini-
mize costs, improve operational efficiency, enhance customer satisfaction, and help fight
against climate change by using less fossil fuels.

Another such problem is the nurse rostering problem (NRP), sometimes called the
nurse scheduling problem, which focuses on finding an optimal way to assign nurses to
shifts, typically with a set of hard constraints which all valid solutions must follow, and
a set of soft constraints which define the relative quality of valid solutions. This problem
has many formalizations, each suited to its particular application.

Collaboration with Tomáš Omasta has been instrumental in implementing a Python
interface, providing a convenient platform for comparing various optimization approaches.
The interface, available at [LO23], enables easy experimentation and benchmarking of

1



2 Introduction

different algorithms and problem instances. His work can be found at [Oma24].
Several tools and frameworks are utilized to accomplish the project’s goals. These

include Cplex[Cpl22], a widely-used commercial solver known for its capabilities in solv-
ing Constraint Programming (CP) problems, and OR-Tools[PF23], an open-source li-
brary that offers various optimization algorithms and solvers. These frameworks are
used to implement mathematical optimization in several formulations for the mentioned
problems. Pymoo [BD20] is used for its implementation of several metaheuristics and
hyperparameter searches. We implement a chromosome representation using several lo-
cal search decoders for these metaheuristics. The performance of these methods was
compared and studied. The best mathematical optimization solver is combined with the
best metaheuristic for the best hybrid solver our other implementations offer.



Chapter 1

Background

To properly understand our work, we must first introduce the topics on which we build.
We introduce some exact approaches for solving combinatorial optimization problems
and then compare them against heuristic and other methods.

1.1 Modern History of Operational Research

Operations research gained prominence during World War II to address military logistics
and decision-making problems. Notable contributions include the simplex algorithm for
linear programming [Dan90].

One significant area of research in combinatorial optimization is the application of
Integer Linear Programming (ILP) formulations. Dantzig and Fulkerson’s [DFJ54] sem-
inal work in 1954 on the transportation problem laid the foundation for using linear pro-
gramming techniques to solve optimization problems. Subsequently, many researchers
have focused on formulating combinatorial optimization problems as ILP models and
developing efficient algorithms to solve them.

Papers such as [Joh73] introduced approximation algorithms for Graph Coloring,
TSP or bin packing, while [Glo86] pioneered the field of metaheuristics with Tabu Search.

1.2 Exact approaches

In this section, we explore exact approaches to optimization, focusing on Integer Linear
Programming and Constraint Programming, which guarantee to find optimal solutions
by exhaustively exploring the solution space within defined constraints, focusing on
finding the best solution at the expense of computational time. These methods form the
foundation of many robust optimization frameworks.

1.2.1 Integer Linear Programming
ILP is a mathematical modelling technique that formulates optimization problems as
a system of linear equalities and inequalities with integer or binary decision variables.
ILP problems can be relaxed into LP problems by allowing the integer constraints to

3



4 Background

be continuous. This relaxation can be solved using the Simplex method. The simplex
method works by iteratively moving from one vertex of the feasible region to another
along edges, seeking to optimize the objective function. It operates by selecting a pivot
element and performing row operations to pivot towards an improved solution until
reaching an optimal vertex where no further improvement is possible. Using linear
programming relaxation, we can transform an NP-hard optimization problem (integer
programming) into a related problem that is solvable in polynomial time (linear pro-
gramming). The solution to the relaxed linear program can be used to gain information
about the solution to the original integer program. Automated solvers for ILP rely on
mathematical optimization algorithms, such as the branch-and-bound method, to effi-
ciently explore the solution space and find the best feasible solution. ILP is particularly
effective when the problem can be accurately modelled using linear equations and the
objective function, and constraints can be expressed as linear functions.

1.2.2 Constraint Programming
Constraint Programming is a declarative programming paradigm that focuses on mod-
elling and reasoning about constraints. It leverages constraint propagation techniques to
iteratively reduce the search space by enforcing local consistency and exploiting problem-
specific properties. Unlike ILP, CP allows for a more flexible and intuitive representation
of problems by explicitly defining the constraints that must be satisfied. For example,
in a scheduling problem where tasks have dependencies, time windows, and resource
constraints (e.g., no two tasks can use the same resource at the same time), CP can
naturally express these constraints using global constraints like all different, cumulative,
and element. Among the popular domains are boolean, integer, interval and mixed do-
mains, which combine two or more simple domains. CP solvers can importantly handle
both single-objective and multi-objective optimization problems, offering a powerful tool
for addressing real-world challenges across various industries.

1.2.3 Comparison
The strengths of ILP lie in its ability to handle large-scale linear optimization prob-
lems with well-defined objective functions and linear constraints. ILP solvers, such as
Gurobi[Gur23], are highly optimized and can efficiently explore the solution space.

On the other hand, CP offers several advantages in specific scenarios. One key
strength of CP is its ability to handle non-linear and non-convex constraints. It excels
in modelling complex combinatorial problems with various types of constraints, such
as scheduling, sequencing, and resource allocation problems. CP’s declarative nature
allows for a more natural representation of the problem, making capturing and expressing
intricate constraints easier.

Moreover, CP’s constraint propagation techniques enable the system to reason about
the constraints and perform early pruning of infeasible regions of the search space. This
pruning significantly reduces the search space and can lead to faster convergence to
optimal or near-optimal solutions. CP’s ability to handle discrete decision variables and
combinatorial structures makes it well-suited for problems involving discrete choices and
combinatorial optimization.
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However, it is essential to note that the choice between ILP and CP depends on the
specific characteristics of the problem at hand. Some problems may be more naturally
formulated using ILP, while others may lend themselves better to CP modelling. Un-
derstanding the strengths and weaknesses of each approach allows for informed decision-
making when selecting the appropriate technique for solving combinatorial optimization
problems.

For example, [VHA11] found that their best implementation of CP outperforms their
best ILP method ”by a factor of 5 to 50” on a mix of randomly generated instances
and benchmarks from other literature on the no-wait job shop problem. The job shop
problem involves scheduling a set of jobs, each with a specific sequence of tasks that must
be processed on different machines. The no-wait job shop problem adds the constraint
that each job must move directly from one machine to the next without any waiting
time between tasks, increasing the complexity of scheduling.

On the other hand, [FLS15] shows that the ILP approach significantly outperforms
CP for the Lazy Bureaucrat Problem, evaluated on randomly generated instances using
a standard instance generator. The Lazy Bureaucrat Problem involves scheduling tasks
for a bureaucrat who prefers to minimize their work by taking the longest possible breaks
between tasks. The challenge is to find an optimal schedule that maximizes these breaks
while ensuring all tasks are completed within given constraints.

1.2.4 Mixed Integer Programming
Mixed Integer Programming (MIP) combines the capabilities of both ILP and CP by
allowing for both integer and continuous variables within the same optimization model.

Only some advanced solvers allow the combination of constraints from both ap-
proaches. While this allows for more options during modeling of the problem it does not
necesarily benefit the performance as shown by [KB16] again on a combination of own
generated instances and some public benchmarks, this time for the classical job shop
scheduling problem.

1.3 Heuristic Approaches

Heuristic algorithms are designed to find suitable solutions to optimization problems in a
reasonable amount of time without guaranteeing optimality. These methods often involve
iterative improvement techniques and search algorithms that explore the solution space
by making local modifications to the current solution. Heuristics can be effective when
dealing with large-scale problems where finding the optimal solution is computationally
infeasible. Heuristics are often problem-dependent.

Metaheuristics are problem-independent techniques that can be applied to various
problems. A metaheuristic knows nothing about the problem it will be applied to. It can
treat functions as black boxes. A large number of metaheuristics exist, as well as a large
number of their classifications. For example, based on the origin of their inception, they
can be classified as evolutionary (Genetic Algorithm, Differential Evaluation, Harmony
search...), trajectory-based (Simulated Annealing, Tabu Search, Variable Neighbourhood
Search, ...) or nature-inspired (Particle Swarm Optimization, Grey Wolf Optimizer,
Cultural Algorithm, ...), but there are also multiple views on this specific classification.
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Figure 1.1 Euler diagram of the different classifications of metaheuristics from [DC]
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Based on the type of search strategy, they can be classified as local search (Hill Climbing
method), global search (GA and PSO) or both (SA and TS). Another classification is
based on whether the algorithm improves a single solution (SA) or multiple (PSO).

1.3.1 Simulated Annealing

Simulated Annealing relies on a model [Met+53] for simulating the physical annealing
process, where particles of a solid arrange themselves into a thermal equilibrium. It
searches for a good solution by iteratively making minor changes to the current solution
and accepting modifications based on a probability that decreases over time. This allows
the algorithm to escape local optima early on and converge to a good solution as the
”temperature” lowers.

1.3.2 Particle Swarm Optimization
Particle Swarm Optimization is a population-based metaheuristic inspired by the social
behaviour of birds and fish, initially proposed by [EK95]. It involves a swarm of par-
ticles (potential solutions) that move through the solution space, guided by their own
best-known positions and the best-known positions of their neighbours. The particles
iteratively adjust their positions to find the optimal solution.
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1.3.3 Differential Evolution
Differential Evolution is a population-based optimization algorithm that uses differences
between randomly selected pairs of solutions to evolve the population. By combining
existing solutions and introducing mutations, DE explores the solution space efficiently.
It’s beneficial for continuous optimization problems and excels in maintaining diversity
within the population.

1.3.4 Biased Random Key Genetic Algorithm
The Biased Random Key Genetic Algorithm is a variation of the genetic algorithm that
represents solutions as vectors of random keys (real numbers). It biases the selection
process towards better solutions, promoting faster convergence. BRKGA is effective for
both combinatorial and continuous optimization problems, leveraging the strengths of
genetic algorithms while incorporating a bias to enhance performance.

1.4 Other Approaches

1.4.1 Local Search
Local search algorithms focus on iteratively improving a given solution by exploring
neighbouring solutions in the search space. These algorithms start with an initial solution
and make small changes, evaluating the resulting solution’s quality. If the modified
solution improves the objective function, it is accepted as the new current solution.
Local search algorithms continue this process until no further improvements can be
made. Local search is particularly useful for problems with a large solution space and
complex constraints where global optimization is challenging. Examples of local search
algorithms include Hill Climbing, Genetic Local Search, and Variable Neighborhood
Search.

1.4.2 Decomposition Techniques
Decomposition techniques [Con+06] divide complex optimization problems into smaller,
more manageable subproblems. By decomposing the problem, it becomes possible to
solve the subproblems independently or in a coordinated manner. This approach is ben-
eficial for large-scale problems where the entire problem cannot be solved in a reasonable
amount of time. Decomposition techniques can include methods such as Benders’ de-
composition, Lagrangian relaxation, and column generation.

1.4.3 Hybrid Approaches
Hybrid approaches combine two or more optimization techniques to leverage their re-
spective strengths. These approaches aim to balance exploration and exploitation of the
search space by integrating different optimization methods.

For example, a hybrid approach may combine ILP with local search or metaheuristics
to benefit from the precision of ILP and its superior ability to find the global minimum
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while using heuristics to improve search efficiency at the start of the search. Hybrid
approaches can be tailored to specific problem characteristics and potentially provide
superior performance compared to individual methods.

Another example is combining different metaheuristics. Since some of the techniques
have excellent global search capabilities, they can be combined with other methods that
perform better at local searches.

A different approach to hybridization are multi-stage approaches. These decompose
a problem into smaller subproblems, solving each with the most suitable method. For
example, a large-scale scheduling problem might be divided into smaller time periods
or groups of tasks, solved individually using CP for handling constraints precisely, and
then integrated into a coherent overall solution using heuristics.

1.5 Conclusion

It is worth noting that the choice of approach depends on various factors such as problem
complexity, problem structure, available computational resources, and the desired trade-
off between solution quality and computation time. Each approach has its own set of
advantages and limitations, and the selection of the most appropriate technique should
be based on a careful analysis of the problem requirements and constraints and verified
on the results of experiments on the particular data set.



Chapter 2

Operational Research Solvers

Solvers for mathematical programming are sophisticated tools designed to help decision-
makers find optimal or near-optimal solutions to complex problems involving large
amounts of data and numerous constraints. These solvers leverage advanced mathe-
matical techniques like LP, CP, or MIP, which were introduced in the previous chapter.

The performance of these solvers is always improving, either by increasing raw com-
putational power, implementing more efficient software, or using new approaches.

While solvers can easily make use of all single-threaded performance increases, not
all can efficiently utilize the increases in the number of logical cores. For example, Cplex
notes that ”parallelism efficiency decreases for more than 4-8 threads. Increasing the
thread count past this number will not significantly reduce the execution time.” while
memory requirements scale linearly as each thread requires its copy of the model data.

Implementation speed-ups are solver-specific and much less linear. Continuing the
Cplex example - given the same set of MIP problems and hardware, this equates to an
average of about 1.8 times faster per annum. However, with especially large improve-
ments occurring in CPLEX versions 2.1-3.0 (inclusion of the dual simplex method),
over 5 times the performance of the previous version, and in CPLEX versions 6.0-6.5
(many improvements gleaned from ”mining” the academic literature), almost 10 times
the performance. [Bix20]

2.1 Cplex

Cplex [Cpl22] is a powerful and widely-used commercial solver for solving integer, linear,
convex and non-convex quadratic programming problems and convex quadratically con-
strained problems. Developed by IBM, Cplex offers a comprehensive suite of tools and
algorithms designed to handle complex constraints and deliver high-quality solutions.
This section will provide an overview of Cplex as a general CP solver, highlighting its
key features and capabilities and comparing it to OR-Tools, an open-source CP solver.

Cplex supports many modelling languages, like Constraint Programming Modeling
Language (CPLEX-M) and the Object-Oriented C++ API. It also provides DOcplex,
a lightweight wrapper around the C API compatible with the NumPy and pandas,
prominent Python libraries.

9
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2.1.1 Key Features and Capabilities of Cplex
Optimization Algorithms: Cplex incorporates a variety of optimization algorithms
tailored for combinatorial problems. These include primal and dual variants of the
simplex method, barrier interior point, or second-order cone programming.

Parallel and Distributed Computing: Cplex leverages the power of parallel and dis-
tributed computing to speed up the optimization process. It can distribute the search
across multiple cores and machines, allowing for faster solution space exploration and
the solution of larger and more complex problems.

Community: Cplex boasts a large community of users, researchers, and developers.
Through forums and online resources, individuals can access solved examples and
valuable insights, share best practices, and receive assistance from experts, thereby
enriching the user experience and promoting continuous improvement and innovation
within the optimization community.

2.2 OR-Tools

OR-Tools [PF23] is an open-source library developed by Google that also offers a suite
of tools for solving combinatorial optimization problems. It offers general solvers for CP,
LP, and MIP and specialized solvers for vehicle routing and graph algorithms.

While it is difficult to say that one solver is generally better, one clear advantage is
that OR-Tools is licensed under the Apache License 2.0, a permissive license that allows
commercial use.

2.3 Gurobi

Gurobi is a commercial solver known for its high performance in solving large-scale lin-
ear programming (LP), mixed-integer programming, and quadratic programming (QP)
problems. It is widely regarded for its speed, reliability, and advanced features such as
parallel processing, cutting-edge heuristics, and automatic model tuning. Gurobi is one
of the fastest solvers available, often outperforming other solvers on large and complex
MIP problems. It offers intuitive interfaces for Python, MATLAB, and more.
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Vehicle Routing Problem

The Vehicle Routing Problem is a classic combinatorial optimization problem that deals
with the efficient distribution of goods or services using a fleet of vehicles. It first
appeared in a paper by George Dantzig and John Ramser in 1959 [CW64]. It generalises
the travelling salesman problem (TSP). It involves determining the optimal set of routes
for a given set of vehicles to serve a set of customers or locations while minimizing the
total cost or distance travelled.

In real-world scenarios, the VRP arises in various applications, including transporta-
tion and logistics, delivery services, waste collection, and public transportation. The
objective of the VRP is to find an optimal or near-optimal solution that minimizes
transportation costs, maximizes resource utilization, and satisfies various constraints
such as vehicle capacity, time windows, and customer preferences.

The VRP is a highly complex problem due to its combinatorial nature and the
interplay of multiple constraints. As a generalization of TSP, it also belongs to the class
of NP-hard problems, meaning that finding the exact optimal solution for large-scale
instances is computationally infeasible within a reasonable amount of time. As a result,
researchers have developed various approximation algorithms [BHM05], heuristics, and
metaheuristics to find near-optimal solutions within a reasonable time frame.

The VRP can be formulated in different variants, each introducing additional con-
straints and requirements. Some common variants include:

1. Capacitated VRP (CVRP): This variant adds a weight variable to each customer,
assumes that each vehicle has a limited carrying capacity and aims to find a set
of routes such that the total demand of customers served by each vehicle does not
exceed its capacity.

2. VRP with Time Windows (VRPTW): Customers have specified time windows within
which they must be served in this variant. The goal is to find a set of routes that
respect the time constraints while minimizing the total travel time or distance.

3. VRP with Pickup and Delivery (VRPPD): This variant involves transporting goods
or services from pickup to delivery locations. Each vehicle must pick up items from
certain locations and deliver them to other locations while satisfying capacity con-
straints and other requirements.

11
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4. Vehicle Routing Problem with LIFO: Similar to the VRPPD, an additional restriction
is placed on the loading of the vehicles: at any delivery location, the item being
delivered must be the item most recently picked up.

5. Open Vehicle Routing Problem (OVRP): The term “Open” is applied to problems
where each vehicle is not required to return to the central depot after visiting the
final customer, i.e. the vehicle routes are open paths instead of closed circuits.

The development of effective solution approaches for the VRP has been the subject
of extensive research, leading to the formulation of various algorithms and techniques.

3.1 Solomon Benchmark

The Solomon benchmark [Sola] [Solb], developed in the 1980s, is a widely-used set of
benchmark instances specifically designed for the Capacitated Vehicle Routing Problem
with Time Windows (CVRPTW). This benchmark provides a standardized set of Eu-
clidean problem instances that have been extensively utilized in Vehicle Routing Problem
research.

The benchmark consists of a collection of realistic routing problems, each representing
a different instance of the CVRPTW. These instances are based on real-world scenarios
and capture various characteristics and complexities of routing problems businesses and
organisations face.

Each instance in the Solomon benchmark is defined by a set of parameters, including
the number of customers, the coordinates of the depot and customers, the demands of
customers, and the time windows within which customers must be serviced. Since we
are given coordinates instead of a distance matrix, these instances are Euclidian, and the
triangle inequality holds. There are as many available vehicles as there are customers
to ensure a trivial solution always exists. These parameters are carefully selected to
create diverse problem instances that reflect different aspects of the CVRPTW, such as
vehicle capacity constraints, time constraints, and geographical considerations. There
are six sets of problems: The geographical data are randomly generated in problem set
R, clustered in problem set C, and a mix of random and clustered structures in problem

Figure 3.1 Example of a solution to instances RC101.25 and RC205.50
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set RC. Problem set ’1’ has a short scheduling horizon and allows only a few customers
per route (approximately 5 to 10). In contrast, set ’2’ has a long scheduling horizon,
permitting many customers (more than 30) to be serviced by the same vehicle. This
results in 56 instances of each size, 25, 50 and 100, or 168 instances total.

The original formulation declares that the single objective is to minimize the to-
tal distance travelled, however [Solb] uses the same instaces except they use multiple
objectives: first to minimize the number of vehicles and then the total distance.

The Solomon benchmark has been widely adopted in the research community, and
as a result, it is often used in other, even more specialized variants of VRP by adding
additional constraints. Similarly, there have been attempts to create larger instances to
test new, more powerful approaches, most notably the Gehring & Homberger benchmark
[GH99] with new instances of sizes ranging from 200 to 1000.

Benchmark instances assess algorithms’ generalization capability. Derived from real-
world scenarios, they indicate how well algorithms might perform in practical settings.

3.1.1 ILP CVRPTW formulation
Eqn. (3.1.1)

Objective:

min
U∑

u=1

∑
(vi,vj)∈A

tijxu
ij (3.1)

Subject to:

U∑
u=1

∑
(vi,vj)∈A

xu
ij ≥ 1 (∀vi ∈ V \ {v0}) (3.2)

∑
(vi,vj)∈A

xu
ij −

∑
(vj ,vi)∈A

xu
ji = 0 (∀vi ∈ V, 1 ≤ u ≤ U) (3.3)

∑
(v0,vi)∈A

xu
0i ≤ 1 (1 ≤ u ≤ U) (3.4)

∑
(vi,vj)∈A

dix
u
ij ≤ Q (1 ≤ u ≤ U) (3.5)

su
i + sij + tij − su

j + Mxu
ij ≤ M (∀(vi, vj) ∈ A, vi ̸= v0, 1 ≤ u ≤ U) (3.6)

su
i + sij + ti0 − b0 + Mxu

i0 ≤ M (∀(vi, v0) ∈ A, 1 ≤ u ≤ U) (3.7)

ai ≤ su
i ≤ bi (∀vi ∈ V, 1 ≤ u ≤ U) (3.8)

xu
ij ∈ {0, 1} (∀(vi, vj) ∈ A, 1 ≤ u ≤ U) (3.9)

Where: G = (V, A) is a directed graph, where V = {v0, v1, . . . , vn} is the set of
nodes and A is the set of arcs. Node v0 is the depot, and the other nodes represent the
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customers. A travel time tij is defined for each pair of nodes. Each customer vi has a
demand di, a time window [ai, bi] within which service must start, and a service time
sti. A fleet of U vehicles with capacity Q is available. Variables xu

ij indicate whether
arc (vi, vj) is used by vehicle u, and su

i represents the service starting time at node vi

visited by vehicle u. b0 denotes the end of the time horizon, and M is a large number
used in the big-M method.

Constraints:

Constraints (3.2) ensure every customer is visited.

Constraints (3.3) and (3.4) define the sequence followed by vehicles.

Constraints (3.5) concern vehicle capacity.

Constraints (3.6)-(3.8) are related to the time windows.

3.2 Related Work

In the field of VRP, numerous papers have proposed innovative approaches. The paper
by Clarke and Wright [CW64] in 1964 introduced a savings algorithm for the VRP,
which provided an initial solution by merging feasible routes. Later research efforts have
focused on improving route construction methods, optimizing various VRP variants such
as the Capacitated VRP with Time Windows (CVRPTW) and the Vehicle Routing
Problem with Pickup and Delivery (VRPPD), and incorporating additional constraints
and objectives.

Booth and Beck’s work [BB19] focuses on the Electric Vehicle Routing Problem with
Time Windows, which extends traditional vehicle routing problems to incorporate the
unique characteristics of electric vehicles. They propose the first CP approaches for
modelling and solving the EVRPTW and compare them to a Mixed-Integer Linear Pro-
gramming (MILP) model. The authors introduce two CP models, including a single
resource transformation that significantly improves problem-solving capabilities. Exper-
imental results demonstrate the superiority of the single resource CP model over the
alternative resource model and the MILP model for medium-to-large problem classes.
They also explore a hybrid MILP-CP approach that outperforms individual techniques
for distance minimization problems with long scheduling horizons. The authors con-
clude by highlighting the importance of studying EV routing in the context of CP and
identifying opportunities for applying their techniques to related areas like multi-robot
task allocation.

Adam Zvada’s work [Zva21] addresses the Vehicle Routing Problem with soft-constrained
time windows (VRPTW) using machine learning and optimization heuristics. The the-
sis proposes a deep reinforcement learning model based on the Transformer architecture
and Graph Attention Network for embedding the input instance. The model incor-
porates a reward function that considers the time window constraint. The thesis also
explores other metaheuristic methods for solving VRPTW to benchmark the model’s
performance. The results show that while the deep learning model can solve VRPTW,
it is outperformed by metaheuristic solvers. The conclusion emphasizes the lack of atten-
tion given to VRPTW and highlights the need for further research in this area. Future
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work includes adopting a different model architecture to support soft-constrained time
windows and pick and deliver scenarios.

In their work, [Hà+20] address a variant of the vehicle routing problem with two
kinds of vehicles. They propose a Constraint Programming model and an Adaptive Large
Neighborhood Search (ALNS) algorithm, incorporating linear programming models to
check insertion feasibility. The experiments show that their CP model outperforms an
existing CP-based ALNS on small instances, while the LP-based ALNS achieves superior
solution quality across all instance classes. The authors also apply their method to a
well-studied variant of the problem and improve upon four best-known solutions. Future
research directions include developing efficient exact methods and applying the LP-based
ALNS to other vehicle routing problem variants.

3.2.1 State of the Art
3.2.1.1 Exact Solvers

For recent state-of-the-art approaches using exact solvers, we can refer to [BA21], where
the authors used meta-goal programming. In goal programming, goals are specified with
target values, and the objective is to minimize the deviations from these targets. Meta-
goal programming, an extension of traditional goal programming, is a type of multi-
objective optimization technique used to find solutions that satisfy multiple goals by
transforming them into a single-objective one by considering the sum of deviations (total
deviation) and maximum deviation at the same time. A preference weight is defined by
decision-maker(s) as well as a goal for each objective function. Another example is
[Gov+21] using a bi-objective MILP model solved by fuzzy goal programming. Fuzzy
goal programming incorporates fuzzy set theory to handle uncertainty and imprecision
in goal formulation and constraints. This approach is particularly useful when goals and
constraints are not sharply defined and are subject to vagueness or ambiguity.

3.2.1.2 Metaheuristics Solution Techniques

Here we would like to highlight [Gon+12] showcasing particle swarm optimization,
[SSM21] with nondominated sorting genetic algorithm II, a multi-objective metaheuris-
tic. [Rui+19] and [PPF18]which used biased random-key genetic algorithm, or [SBM23]
with differential evolution.

3.2.1.3 Hybrid approaches

Among relevant approaches that combine two or more solvers belongs the combination of
nondominated sorting genetic algorithm II with multiple objective particle swarm opti-
mization, both viable for multi-objective optimization VRP variants, as showed in [GJ20]
or [FRM20]. Nearest-neighbour procedure and petal algorithms are shown in [CLH21]
and [AT15]. A petal algorithm [RBL96] is a heuristic approach used to solve VRP.
The basic idea behind the petal algorithm is to generate a set of ”petals” or ”routes”,
each originating from the depot and covering a subset of customers. These routes are
then combined or optimized to create a feasible solution that covers all customers while
respecting vehicle capacity constraints.
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3.3 Conclusion

In conclusion, the VRP remains a vibrant area of research, continuously evolving with
advances in optimization techniques and computational capabilities. The ongoing de-
velopment of innovative algorithms and the formulation of new problem variants ensure
that the VRP will continue to be a focal point for both theoretical exploration and
practical application in optimizing logistics and distribution systems.



Chapter 4

Nurse Rostering Problem

The Nurse Rostering Problem, or Nurse Scheduling Problem, is a well-studied combina-
torial optimization problem with significant practical importance in healthcare manage-
ment. The objective is to create optimal work schedules for nurses, ensuring that various
operational constraints and nurses’ preferences are satisfied. Effective nurse rostering is
crucial for maintaining high standards of patient care, optimizing hospital resources,
and ensuring the well-being and job satisfaction of nursing staff. The complexity and
critical nature of the problem have led to extensive research and the development of nu-
merous datasets and benchmark instances for testing and comparing different solution
approaches.

4.1 Datasets and Variability

The datasets used in nurse rostering research often come from real-world scenarios, and
some have been compiled into benchmark repositories for academic and practical use
[Uni] [Ces+15]. These datasets typically vary based on factors such as the nursing staff’s
size, the scheduling period’s length, shift patterns, and specific institutional policies.
Some datasets feature a couple of straightforward scheduling needs, while others have
complex and stringent requirements with large horizons.

4.1.1 Problem Variants
Single-Stage NRP: In academic contexts, solutions often address a single, fixed plan-
ning horizon where complete information is available. The single-stage NRP involves
scheduling nurses for shifts within a set planning period (typically one week or longer)
without considering past or future data. Examples of this variant can be found in
the problem instances from the First International Nurse Rostering Competition
(INRC-I) [Has+14].

Multi-Stage NRP: In real-world scenarios, the quality of a roster within the current
planning horizon is heavily influenced by past outcomes and future considerations,
such as requested days off. Thus, optimizing each planning horizon independently
may lead to suboptimal overall rosters. The problem instances from the Second

17
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International Nurse Rostering Competition (INRC-II) [Ces+15] adopt a multi-stage
approach. Here, solving a single stage of the problem corresponds to one week while
considering historical data (e.g., each nurse’s last worked shift and total night shifts).
Moreover, rosters are evaluated across multiple planning horizons.

4.2 Common Constraints in Nurse Rostering

Nurse rostering involves balancing numerous constraints that can generally be catego-
rized into hard constraints and soft constraints. Hard constraints are mandatory require-
ments that must be met for a roster to be feasible, while soft constraints are preferences
or desirable conditions that should be satisfied as much as possible but can be violated
if necessary, typically with an associated penalty.

4.2.1 Hard Constraints
Coverage Constraints: Ensure that each shift has sufficient nurses with the required
skills to meet patient care needs. For example, certain shifts might require a minimum
number of nurses or specific qualifications.

Shift Type Constraints: Manage the assignment of different types of shifts, such as
morning, afternoon, night, and day-off shifts, ensuring that nurses receive a variety
of shift types as specified by the scheduling rules.

Maximum Consecutive Workdays: Limit the number of consecutive days a nurse can
work to prevent fatigue. For example, a nurse might not be allowed to work more
than six consecutive days.

Minimum Rest Period: Ensure adequate rest between shifts, such as guaranteeing at
least 11 hours of rest between the end of one shift and the start of the next.

Legal and Contractual Obligations: Adhere to labour laws and contractual agree-
ments, such as maximum weekly working hours, mandatory breaks, and specific
time-off requirements.

4.2.2 Soft Constraints
Shift Preferences: Accommodate nurses’ preferences for certain shifts or days off as
much as possible. For example, some nurses might prefer not to work night shifts or
may have requested specific days off.

Fairness and Equity: Ensure a fair distribution of shifts among nurses, preventing
scenarios where some nurses receive significantly more or fewer preferred shifts than
others.

Patterns and Continuity: Maintain preferred patterns or sequences of shifts, such as
avoiding isolated single-day shifts or clustering similar shift types together.
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Figure 4.1 Example of a solution to Instance3 from the Nurse Rostering Benchmark in the
RosterViewer available at [Lim]
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Workload Balance: Distribute the workload evenly across the nursing staff, taking
into account factors like total hours worked and the distribution of shift types.

For our work, we selected [Tim14] as it is one of the major benchmarks in this
field and offers reasonably difficult instances. The instances are single-stage, and the
constraints are similar to INRC-I. It is also well maintained with the last change in July
2022 and offers an ILP formulation. It also refers to a free application to verify and
visualize the results.

4.3 Related Work

4.3.1 Exact Solvers
[ZZS18] applied ILP for a long-term nurse rostering problem in a hospital, addressing
variability in nurse availability and schedule updates with CPLEX. [MM19] added soft
constraints to connect weekly rosters, enhancing performance but still lacking optimal
solutions for INRC-II. [RM16] reformulates problems as network-flow-based MILPs. Au-
thors used this for INRC-II, with a Coin CBC solver implementing a look-ahead method
that extends planning periods and relaxes constraints, achieving top results in the com-
petition. [BC14] applied column generation, splitting the problem into a master problem
and a pricing problem, performing well on INRC-I datasets. Lexicographic Goal Pro-
gramming was used by [Böo+21] for multi-objective optimization in Danish hospitals.
Lexicographic Goal Programming solves multi-objective problems by prioritizing goals
sequentially, ensuring high-priority goals are met before addressing lower ones, and using
Gurobi for optimization. Fuzzy Mathematical Programming was applied by [Jaf+16] for
a hospital in Iran.

4.3.2 Metaheuristics Solution Techniques
[LH12] applied Adaptive Neighborhood Search to the INRC-I dataset, improving best-
known results for 12 instances and [TSB15] used Variable Neighborhood Search for
INRC-I, achieving best results for 50 instances. [MK19] implemented Iterative Local
Search for INRC-I, outperforming other methods on smaller instances. [CGS20] used SA
for the INRC-II dataset and improved many best-known results for the 4-week horizon
instances. [Alt+12] applied Particle Swarm Optimization to a French hospital’s problem,
outperforming IP and CP methods.

4.3.3 Hybrid approaches
[RAL17] integrated IP and CP, using Gurobi for pre-solving and IBM ILOG CP for
solving CSP models, achieving strong results on the INRC-I dataset. [Awa+17] com-
bined Hybrid Harmony Search Algorithm with Hill-Climbing Optimization (HCO) and
Particle Swarm Optimization (PSO) to address the INRC-I dataset, achieving improved
results in a significant number of instances. [CZ20] combined decision trees with the Bat
Algorithm, Particle Swarm Optimization, and a greedy search to address a real-world
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diagnostic unit problem. This hybrid method generated higher-quality solutions in less
computational time compared to individual methods.

4.4 Conclusion

The Nurse Rostering Problem is a complex and critical optimization challenge in health-
care management. With various available datasets reflecting different constraints and
requirements, researchers can develop and test robust and adaptable algorithms to real-
world scenarios. By addressing the NRP through advanced optimization techniques and
leveraging the latest benchmark datasets, significant improvements in nurse scheduling
can be achieved, ultimately benefiting both healthcare providers and patients.
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Chapter 5

Implementation

As mentioned, this work was implemented in collaboration with Tomáš Omasta and is
publicly available at [LO23]. While we collaborated on the design and implementation of
many of the internal parts, the main focus of this work was on VRP, NRP, performance
logging and statistics used to present the results in the next chapter.

5.1 Performance Logging

We implemented the performance logging for all three solvers used in our work, namely
Docplex, OR-Tools and Pymoo; only the hybrid combination of multiple solvers does
not currently support it. While, in theory, it is as simple as appending the results to
the previous, doing just that proved challenging in the current implementation while
not being essential for designing new approaches. This performance is represented by an
entry under the key ”solution progress” in each of the logged solves in the run history
of each instance. The entry contains a list of all new minimums of the criteria function,
the time when they were found, and other optional solver-specific variables in a list as
logged by the solver.

5.1.1 Benefits
We have not seen this kind of data widely utilized in the studied literature and believe
it will unlock a new dimension through which approaches can be studied and compared.
It allows a new look into how each implementation works without solving each instance
for each length of time with the added benefit of precise timing. For example, a hybrid
approach is designed to utilize the one strongest approach at each phase of the optimiza-
tion process. Having the data of how each approach performs during the entire studied
interval will simplify choosing how much time is allowed for each.

5.1.2 Disadvantages
As we mentioned, while this approach might benefit the research where the time allowed
for the solver is treated as a parameter, it does come with a performance penalty, which
should not be ignored in the final deployment. We have not studied this performance
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Figure 5.1 Example of the solution progress

penalty as we believe it not to be influential because the difference will be affected by
more factors like the overhead of our framework and the usage of Python, which is widely
known to be one of the languages with the worst performance, as the implementation
programming language of our choice. These differences to a deployment where time is of
the essence make this penalty non-significant. Due to the nature of implementation into
our chosen solvers, we expect the least performance hit will be to Docplex, where we
implemented the search history by choosing non-standard logging options, which allowed
us to search the logs using a regex after the solve. In both OR-Tools and Pymoo, we had
to modify a callback used after each evaluation, which caused a much greater impact on
the performance.

5.1.3 Testing
During the testing, we experienced and subsequently fixed or improved various bugs. In
the implementation for Pymoo, we modified the function used to log time as the standard
implementation with time.time() is not recommended to be used, instead suggesting
time.perf counter(), also mentioned in [Kuž23]. The other issue we encountered was
caused by an error in the batch evaluation of benchmarks, which caused the search
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history of each solved instance to be appended to the previous, invalidating this data.

5.2 Statistics and Vizualization

To analyze and present the results of our experiments, we implemented a suite of exam-
ples to process, analyze and visualize the data. Note these are not usually in the form
of ready-to-use general functions but rather a list of specialized code snippets and their
evaluation results that might need to be modified to work on a different application. For
processing the results, we transformed the relevant fields of all instances to a Pandas
Dataframe - these include information about the instance and the relevant information
for each solve in a list.

We provide a utility function for VRP plots that modifies the X-axis to show the
type of instance for the Solomon benchmark. We utilize this function when comparing
the distance or time required by different solvers, for example, in figure 6.2.

5.3 Vehicle Routing

Our main focus was on VRP; thus, we implemented and compared multiple solving
approaches to the instances in the Solomon benchmark as well as a loader for these
instances and a visualiser and validator for the results into the General Optimization
Solver repository [LO23].

We represent the solved solutions in a unified fashion across all solvers in order to
have directly comparable results. In the case of VRP, by a list of lists, with one list
for each vehicle used, the list contains the path taken. 0 represents the depo, and
each vehicle has to start and end at the depo, while customers are represented by their
respective number [1, 100 ].

5.3.1 Cplex

5.3.1.1 Mixed Integer Programming

The MIP implementation was inspired by examples of implementations for Cplex using
the available APIs for Python and others from Alex Fleisher, an IBM employee, available
at [Fle].

We are going to refer to a variable n, which equals the number of customers.
This implementation uses a list of integer variables as the main decision variable that

stores the paths. This list is non-inferred, and every other variable used in the model
is marked as inferred. This means that if all variables in this list have their values set,
all other variables will already have their values determined. We define one variable
for each customer and two variables for each vehicle to serve as a starting location and
ending location, respectively, or since the number of vehicles is defined to be the same as
the number of customers, this also equals 3n. This list defines how each vehicle travels
backwards, and this reversal is necessary for the other constraints, such that each index
in the list denotes the number of the represented nodes, and its value is the number of
nodes visited by the same vehicle beforehand. This limits the values to [0, 3n-1 ]. A
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node can not link back to itself. The first visited node links back to the ending node,
which finishes the circuit.

We are going to need an extra list of variables that represent which vehicle serves
which node called veh. The nodes which serve as starting/ending nodes are hard set to
the value of the respective vehicle, while customer nodes can have any values in [0, n].
However, each customer in a circuit needs to have the same value.

The capacity constraint is resolved using function pack, which is ”used to represent
sub-problems where the requirement is to assign objects to containers such that the
capacities or minimum fill levels of the containers are respected” [Cor]. For this function,
we define 3 other lists of variables: load to represent how capacity is used in each vehicle
with the maximum value set to the maximum capacity, where, which contains the first
n values of veh, just the customers. Demand with demands for each customer and used,
a single integer variable that equals the number of vehicles used.

The time constraints are represented by a list of integer variables with a length of
3n. Each of the customer nodes is limited in value to its time window. Starting nodes
are hard to set to zero. The value of each node is computed with respect to the start
time of the previous node, its service time, distance to the next node and the next node’s
earliest start.

Finally, a list of the travelled distance of the vehicles is computed, and the sum of
this list is minimized.

This is the only implementation that currently works with warm start, meaning a
solution is given to the solver during the inicialization that guides the solver, it does not
restrict the search space to the values of variables it sets. This is done by reconstructing
the model variables based on the given solution. Since we only have one list of inferred
variables, we only need to reconstruct prev, and Cplex is able to complete the solution.

5.3.1.2 Constraint Programming

We modified the formulation from [BB19] for the CP implementation. These modifica-
tions were made to adapt their solution from the vehicle routing problem with synchro-
nization constraints and two types of vehicles for our CVRPTW. We will again use n
for the number of customers.

Variables:

Visit veh: Here we represent the solution using two dimensional array visit veh of
interval variables for the visit to a customer i by vehicle v. This variable is optional
for customer nodes, meaning it might or might not be used in the solution.

Visit: An interval variable representing the visit to a customer. Each node has an
associated visit interval.

Route: A sequence variable representing the order of visits for each vehicle.

Total distance: The objective variable representing the total distance travelled by all
vehicles.

Load: The load carried by each vehicle, which should not exceed the vehicle’s capac-
ity.
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Constraints:

Alternative: The alternative function is used to specify that each node must be visited
by exactly one vehicle

No Overlap: Ensures that visits do not overlap in time for each vehicle

Start of Route: The first visit of each vehicle at the starting node starts at time 0

First and Last Visit: Specifies the first and last visit of each route to be the starting
and ending node of each vehicle

Capacity: The load for each vehicle is calculated as the sum of the demands of all
customers visited by that vehicle. The load must not exceed the vehicle’s capacity

5.3.2 OR-Tools
We adapted the code from [Kre] for this implementation. The model did not have to
be modified for our application; we only had to adapt the pre-processing data. This
model utilizes the advantages of OR-Tools specialized VRP model with functions like
AddDimensionWithVehicleCapacity for vehicle capacity, RegisterUnaryTransitCallback
for customer demands or RegisterTransitCallback for distance between nodes.

5.3.3 Pymoo
Since this is not an exact algorithm, it follows a different design principle, unlike the
previous implementations. For metaheuristic approaches, we need to implement a way
to transform the solution to a chromosome and back. A chromosome is represented
by a list of floats. We chose the representations present, for example, in [MJP21].
This representation works by taking the list of paths without the depo indexes and
flattening them into a single list. Transforming the list of floats back into paths starts
by calculating the order from lowest to largest. We can understand this as an order of
visits. An important advantage of this representation is that every chromosome can be
mapped to at least one valid path.

5.3.3.1 Local search

We need to implement a local search algorithm to transform the order of visits into
paths, as one order of visits may represent many valid paths. For this reason, we imple-
ment numerous algorithms. However, different chromosome representations might have
a straightforward way of converting a chromosome into paths.

We start with a simple algorithm that starts at the depo and appends customers in
the visit order until it fails a time window or capacity constraint. Only then does it
return to the depo and continue with a new vehicle.

The second algorithm is designed to search the entire search space of valid solutions.
It is guaranteed to find the best solution for a given visit order, but the time com-
plexity has an upper bound of 2n where n is the number of customers since it has
up to two options at every customer - use a new vehicle or use the old vehicle.
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A variant of the previous algorithm uses a heuristic based on the distances of the
current node, next node and depo to prune many of the branches. This is supposed
to reduce the expected time complexity extremely while keeping good solutions.

Other algorithms utilize heuristics for the decision on when to use a new vehicle even
when they are not yet forced to by the constraints. These heuristics are based on
comparing the distances of the current node, the next node and the depo where a
new vehicle can start. Some of the heuristics also took into consideration how much
capacity of the current vehicle was used.

We also leave a couple of our ideas for smarter local search algorithms in the code
ready for future improvements. For example, one idea is to compute the initial paths
using the first algorithm we mentioned but then try swapping vehicles for some of
the customers so that the resulting paths are still valid. A second idea is based on
the iterative deepening search. The algorithm would search depth-first until it needs
to use the new vehicle and then expand the search to width until these alternative
paths reach the customer for which the new vehicle was necessary. It would then
choose the best solution and repeat.

The advantage of this approach is that with implemented functions to transform
paths to and from a chromosome and a function to sum the cost of paths, we can
plug and play any of the metaheuristics offered by Pymoo. These functions can also be
utilised for any other metaheuristic not included in Pymoo except with more effort. Since
our repository is built around general solvers it is recommended to copy our functions
from our code into a smaller project. The effort of implementing a new solver into our
project is expected to be much greater than that of implementing a metaheuristic. This
is because many metaheuristics are, in their essence, very simple algorithms that only
result in short functions of a couple of lines of code. The results can then be copied back
and compared.

5.3.3.2 Hyperparameters

Many metaheuristics feature a list of hyperparameters that can fit a particular use
case better. Hyperparameter optimization is an extremely computationally expensive
topic, usually utilizing grid search, which is simply an exhaustive search through a
manually specified subset of the hyperparameter space by evaluating each combination
of hyperparameters. For instance, Differential Evolution has 6 binary or continuous
hyperparameters, which would result in a 6D search space for every instance.

Fortunately, we can use more efficient methods as a lot of research has been conducted
on this topic because of its application in training neural networks.

We adopt a new feature of Pymoo, which offers code for hyperparameter optimization
on [Pym]. The last example from this page allows us to find the best set of hyperpa-
rameters for one instance while reducing randomness by trying multiple seeds for the
random function. It runs the method for each random seed until the set termination
criteria are met. The performance metric used is the average number of evaluations.

We utilize this example to implement our expanded hyperparameter selection by
training metaheuristics on a learning set of instances and then evaluating a different set
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of testing instances. The best hyperparameters are then saved to be used for further
evaluation.

5.3.4 State of the Art
We were not able to find a reliable source for current state-of-the-art results. Many
repositories were abandoned, for example the original repository for Solomon benchmark
[Sola] was last updated on March 24, 2005. For this reason, we developed a workflow to
find and potentially update the known best results, which we refer to in our repository.
First, we need to paste the values into data/VRPTW/best.csv in the same format as the
values already present. Then, the code in stats.ipynb will process and analyse the data
and finally update the known best values for our instances. For the values currently
present in the repository, we searched through multiple repositories and publications
in order to get a representative snapshot of the current state of the art. Since it is
unfortunately not common practice to publish the paths for these values, we opted not
to verify found solutions. Because our solution to this problem can not recognize whether
the best solution comes originally from the resource we linked, we do not mention the
author of the solution.

We recognize that our solution to this problem is not ideal and is more of a bandaid.
The field would benefit from a unified, recognized, and updated repository of solutions
for these still popular instances, ideally done by the resurrection of the original Solomon
benchmark repository, which still holds great significance.

5.4 Nurse Rostering

Our NRP solver is an implementation of the IP formalization given in [Tim14]. As the
decision variable, it uses a three-dimensional array of binary variables representing all the
nurses, days and shifts implemented as a binary var dict. The most challenging aspects
of this implementation are constraints on minimum consecutive shifts and minimum
consecutive days off, which have to be implemented by preventing every solution that
would not follow these constraints. As a result, the number of total constraints and the
size of the model scale very quickly with the amount and values of these constraints,
and the performance decreases.

Our state-of-the-art solutions for this problem originate from the source of the in-
stances [Tim14].

5.5 Conclusion

Our work focuses on two very different problems. On the one hand, we have VRP with
an incredibly large search space and relatively few constraints limiting it. This leads to
the behaviour of the solvers to run until they reach the timeout. On the other hand we
have NRP with also a very large search space but rather limiting hard constraints wher
the solvers. Unfortunately, we were not able to dedicate enough time to NRP to explore
it as we did with VRP.
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The general parts of the implementation, like the performance logging, can be found
in the folder src. Problem-specific implementation is in src/vrp and src/nrp folders.
For example, the statistics and visualization are in the file stats.ipynb and a selection
of other useful tools like the hyperparameter optimization are in tools.ipynb and solvers
are in the solvers subfolder. In the subfolder starters are files used to evaluate the
implementations.



Chapter 6

Experiments

The experimental chapter of this thesis is designed to verify, compare and study our
implemented approaches and show the powerful tools designed for these reasons. To
validate our results, we implemented a solution checker for both of our problems that
validates whether all hard constraints are followed and compares the value of the solution
with the real value. We used this function on all of our reported results when evaluating
and are confident in the validity of our solutions.

We decided to compare our results on 15 minutes of evaluation. This amount of
time for each solve of each instance works out to almost 2 days of computational time
for the entire Solomon benchmark. Longer solving times would be impractical for our
implementation, and thanks to our performance logging, we also get the values for all
shorter solves with perfect granularity.

In this section, we start by selecting the parameters for our evaluation, such as
the number of threads and workers. Then, we find the best two implementations of
exact solvers and metaheuristics to combine in the final hybrid approach. In doing so,
we showcase the features we developed to help users faster develop and compare their
future approaches to these problems.

The experiments were run on a CentOS Linux release 7.5 cluster node, which uses
Slurm as a workload manager and job scheduler. The cluster node has two Intel Xeon E5-
2690 v4 CPUs, 14 Cores/CPU, 2.6GHz with 35 MB SmartCache. The RAM was limited
to 32 GB. Later, due to issues with the cluster, we had to use a local computer with
AMD Ryzen 5 5600X. This processor has 6 physical cores and 12 threads and operates
at 3.7 GHz with a Boost frequency of up to 4.6 GHz with 32 MB of L3 cache paired with
32 GB of DDR4 memory at a speed of 3600 MHz. The software used was CPLEX/22.11,
GCCcore-10.2.0, and Python-3.8.6. The experiments were run on a single CPU node.

6.1 Multithreading experiment

This experiment was done in order to obtain the ideal settings for all the other tests.
We use the performance logging on multiple solves of the same instance to get these
values. We used our MIP model implementation and Cplex. For consistency, we fixed
the random seed.

31
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Figure 6.1 Example of the solution progress for multiple solves on the instance R109.50. All
runs were performed on cluster nodes except for those with 12 threads, which were run on the
local computer
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As shown in figure 6.1, the solver performs similarly well unless we significantly
mismatch the number of workers and threads. This is an important observation since
the Cplex’s default setting is to use as many workers as there are threads available on
the machine. This results in a workers-to-threads mismatch on the cluster and subpar
performance since using an entire node’s worth of resources, all 56 threads, is not optimal.
For this reason, we added a parameter passed to Cplex, allowing us to control the number
of workers used.

Another observation is that fewer workers tend to converge faster at the beginning,
but it takes longer to find the global optimum.

We can also note that using fewer, much faster cores is better than using many slow
cores. However, computing all solutions on the cluster was much more feasible for us.
This confirms the claim that Cplex performance does not scale well above 8 threads 2.

In Cplex, memory requirements scale linearly, as mentioned previously, but our VRP
implementation uses very little memory. This is confirmed by the fact that using many
workers does not significantly negatively affect performance.

As a result of this experiment, we chose to continue with the value of 28 threads and
28 workers. We believe that this combination offers the best conditions for Cplex. In
our use case, we are not heavily limited by our resources, and this number of threads
only populate half a compute node. We also see no benefit in using more threads. An
important consideration was also that these systems use two CPUs, and using only one
of them avoids the possibility of instability caused by the communication between CPUs.

6.2 Experiment with exact solvers

Name of the Solver Count of Best Solutions Count of Bad Solutions
Docplex, CP model 40 21
OR-Tools 60 10
Docplex, MIP model 126 0
Name of the Solver Total Sum of Distances Average Time (s)
Docplex, CP model 117788.3 403
OR-Tools 111532.0 227
Docplex, MIP model 106721.2 222

Table 6.1 For this table, we define the best solution as a solution within 0.5% of the best-
found solution and a bad solution as one with a length of paths over 25% of the best-found
solution. The total sum of distances equals the sum of all paths over all instances. The average
time is the average of when the solvers inserted their last solution into the search progress

In figure 6.2, we can see that our MIP model managed to find almost all known
best paths for instances of size 25 and 50 and the best results of all our solvers on the
instances for 100 customers. The CP model implementation outperforms the OR-Tools
implementation on instances of size 25 but loses on the larger instances. Table 6.1
confirms that the MIP model performs the best with a significant lead, and OR-Tools is
overall second best in these metrics.

Meanwhile, the MIP implementation with Cplex crushes both other implementations
in terms of value, speed, and consistency. However, it is important to note that all
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implementations reach overall good results, with even the CP model finishing with only
21 out of the 168 instances over 25% the known best values and with only a single result
in the entire experiment going over 50% - the result of OR-Tools model reached 62% on
the instance RC202.25.

6.3 Experiments on metaheuristic methods

Unlike exact solvers, metaheuristics benefit from tuning many parameters. We will focus
on finding the best general local search implementation, choosing a good representative
selection of metaheuristics, choosing the best set of hyperparameters for each of the
metaheuristics, and finally, choosing the best metaheuristics for our goal. We choose to
use the same number of threads and time as in the case of exact approaches to achieve
the best comparison between the approaches.

6.3.1 Best local search
We conduct two sets of experiments to find the benefits of each of our algorithms men-
tioned in section 5.3.3.1. The first experiment is aimed at the general performance of
each implementation, while the second one is specifically aimed at their usage for the
metaheuristic algorithm. The application of each of the experiments is slightly different
as in the optimization part of the metaheuristic, we value time much more than at the
end, where we convert the final chromosome into a solution. This is because the opti-
mization part is limited by the seed of the decoder, whereas the final decoding is run
only once, and its performance will affect the resulting value more.

6.3.1.1 First Experiment

The first experiment aims to test how the local search decodes a given chromosome. For
examples of chromosomes, we used the best paths for each instance found by the exact
approaches, without deposit and flattening into a list. We look for the final length of
the paths reconstructed and the decoder’s length.

Name of the decoder Count of fails
decode chromosome fast 59
decode chromosome rec 0
decode chromosome rec pruned 8
decode chromosome second 11

Table 6.2 Table of decoders and their overall fails. We mark a result as a failure if it is over
5% longer than the original paths

The table 6.2 shows that the full recursive function has a perfect score as expected.
The pruned version is only slightly worse, and the version with a heuristic is slightly
worse yet. For a full picture, we have to look at table 6.3. Our perfect implementation
takes an incredible amount of time to complete even the smallest instances, with a couple
of minutes on average for each. This is that time complexity of 2n we were talking about.
We do not have the results for the larger instances as they would still be running even if
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N Decoder Time (s)
25 decode chromosome fast 0.009
25 decode chromosome rec 11289.048
25 decode chromosome rec pruned 0.039
25 decode chromosome second 0.011
50 decode chromosome fast 0.017
50 decode chromosome rec Did not finish
50 decode chromosome rec pruned 0.089
50 decode chromosome second 0.020
100 decode chromosome fast 0.036
100 decode chromosome rec Did not finish
100 decode chromosome rec pruned 0.215
100 decode chromosome second 0.045

Table 6.3 Table of decoders and the sum of time they needed to finish each size of instances

we did not cancel them (if we take that one instance of size 25, which took 150 seconds,
the time needed, for instance, with 50 customers, scales to about 160 years). This result
means that this decoder is no longer of use to us. Next, we see that both decoders
with linear time complexity take roughly the same time on each side of the instance,
as expected. Both of these and the pruned recursive decoder roughly double the time
needed as the number of instances doubles. This verifies that our pruned algorithm cuts
down the expected time complexity from 2n to n.

Combined results in these tables mean that the best decoder should be either the
recursive pruned one or the heuristic one, depending on whether we prefer slightly better
results or faster results.

6.3.1.2 Second Experiment

The second experiment is evaluated by using the decoders for Particle Swarm Optimiza-
tion. We chose PSO because it does not have tunable hyperparameters, thus making it
slightly more general for this application. The assumption for all the other metaheuris-
tics is that the difference between performance with different decoders will be the same
or similar.

Important results were seen in 6.3 is that the recursive pruned decoder is not eval-
uated for the larger instances. This is because, in at least one instance, it encountered
a chromosome on which the pruning does not work as well. This means that low ex-
pected time complexity can not be solely relied on when using metaheuristics as the
huge amount of evaluations also results in needing its upper limit to be conservative.

We instead include a different decoder called min of 2. This simple modification
evaluates both variants fast and second and returns the better result. Results for the
first experiment can be extrapolated from the original results - the values and count of
fails will be the minimum of these 2 or lower, while the time will be negligibly larger
than the sum of both.

Disregarding the result of the recursive decoder in table 6.4, we see a surprising
result: the worst-performing function from the previous experiment finished as the best.
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Name of the Solver Total Sum of Distances
decode chromosome rec pruned 27637.9
decode chromosome fast 179380.1
decode chromosome second 179992.2
min of 2 185388.9

Table 6.4 Table of decoders and the sum distances of all their solutions. The value for
decode chromosome rec pruned is misleading as it only finished on the smallest set of instances

A large difference in decoding between chromosomes created from great solutions and
what are essentially random solutions would explain this unexpected result.

Another takeaway from these results is that even with similar time complexity, the
decoder min of 2 always returns the same or a better solution than either one of the
decoders it uses, finished with worse overall results. This can be explained by the
difference in speed. Even with the same time complexity, the actual time can be different,
and in the case of this decoder, it absolutely will be. According to this result, we
estimate that the speed of the decoder plays a very significant role in the performance
of metaheuristics. This is not a great result for our repository overall. It means that a
metaheuristic with a decoder implemented in Python will perform much worse than the
same metaheuristic with the same type of decoder implemented in a faster programming
language like C++.

6.3.2 Best metaheuristic
For the selection of tested metaheuristics, we choose Particle Swarm Optimization, as
mentioned earlier, as well as Differential Evolution and Biased Random Key Genetic
Algorithm. This selection was based on the review of literature done in 3.2.1.2 with a
focus on metaheuristics implemented in Pymoo.

To find the best metaheuristic, we first need to apply the hyperparameter optimiza-
tion mentioned in 5.3.3.2. Using the best set of hyperparameters for each metaheuristic,
we evaluate them using the benchmark.

We use figure 6.4 to analyse these experiments’ results. From this figure, we can
deduce that, on average, the MIP model beats all metaheuristics at every point in time,
starting at the point at which it finds its first valid solution. PSO and DE are able to
construct the first solution in just a hundredth of a second, while BRKGA operates in
the tenths of a second but converges much faster, beating them at around the one-second
mark.

We did not expect the crushing result of Cplex. Furthermore, we observed that
metaheuristics performed slightly better on the smaller instances, some even beating
Cplex until the one-second mark, but an even bigger lead in performance for Cplex
on the larger instances. This goes against our expectations, as metaheuristics usually
perform better at the beginning of the optimization process and scale better for larger
problems. We expect that this is caused by our metaheuristics implementations under-
performing. When compared to similar approaches in literature [Gon+12], we found
that our solutions have roughly twice the value of the reference at the same time. Our
implementation decisions certainly play a role in this result. A faster implementation of
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the chromosome decoders, ideally in C++, would play a significant role. The next step
would be to measure the impact of our logging implementation on this faster decoder;
as we noted in the decoder experiment, the speed of the decoder plays a crucial role.
We believe that these changes would get us closer to the expected performance. The
scaling issue needs to be further studied, we recommend integration of larger datasets
like [GH99]. The Cplex results could be moved slightly further to the left on the time
axis if we included the time necessary to build the model.

6.4 Hybridization experiment

For the hybridization we selected two parts, first use BRKGA and follow it by giving its
result to the MIP model. The selection of metaheuristics is influenced by the smallest
time period, which Pymoo accepts as a parameter, and that is one second. If we look at
the figure at 6.4, we see that the one-second mark values of our metaheuristics are rather
ambiguous, so we choose BRKGA for its superior convergence performance. Because of
the results of the previous section the experiment is rather theoretical as we do not
expect an improvement, we only want to verify the implementation. Essentially, we are
giving Cplex a solution to start with, but with the knowledge that if we had used Cplex
from the start, it would have had a better solution by that time.

Name of the Solver Count of Best Solutions Count of Bad Solutions
GA BRKGA 17 6
Docplex, MIP model 126 0
Hybrid approach 124 0
Name of the Solver Total Sum of Distances Average Time (s)
GA BRKGA 127392.5 403
Docplex, MIP model 106721.2 222
Docplex, MIP model 107934.8 900

Table 6.5 For this table, we define the best solution as a solution within 0.5% of the best-
found solution and a bad solution as one with a length of paths over 25% of the best-found
solution. The total sum of distances equals the sum of all paths over all instances. The average
time is the average of when the solvers inserted their last solution into the search progress. Since
the hybrid approach does not support performance logging, we used the sum of times given to
both solvers.
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Figure 6.4 Results of the selected metaheuristics and the MIP model on instances for 50
customers. The points represent the values of all found solutions and their time. We estimate
the search progress over time using a logarithmic function to simplify the analysis. The x axis is
set to logarithmic scaling to improve visibility in the most clustered area.



Chapter 7

Nurse Rostering Experiment

This experiment serves to verify the validity of our implementation. In table 7.1, we
can see that our implementation returned valid solutions for most of the instances. For
larger and more constrained instances, the solver ran out of memory. The main cause
of this issue is mentioned in 5.4 as the constraints on minimum consecutive shifts and
minimum consecutive days off that scale are extremely large with those larger instances.

Figure 7.1 Example of a solution to Instance4 using our own function to visualise the solution.
This instance has a time span of four weeks, 10 different employees and two kinds of shifts
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Instance Refence solution Found value Time
1 607 1204 5.468
2 828 2121 900.015
3 1001 3007 900.057
4 1716 3112 900.021
5 1143 4529 900.028
6 1950 5227 900.037
7 1056 4634 900.029
8 1300 6711 900.057
9 439 2657 900.061
10 4631 12745 900.074
11 3443 None None
12 4040 None None
14 1278 9945 900.094
15 3829 None None
16 3225 None None
17 5746 None None
18 4459 None None

Table 7.1 Table with results from NRP implementation verification run. These solutions
were computed on the local computer instead of the cluster with a timeout set to 15 minutes.
During the computation, the system ran out of available memory.



Chapter 8

Conclusion

In collaboration with Tomáš Omasta, this thesis implements new approaches into the
[LO23]. This allows for similar new approaches to better and faster analyze their benefits.
The ultimate objective of our work is to implement a hybrid solver. We explore many
details that are required for this goal.

We split the text into three parts. In the first, we briefly introduced all the theory
necessary for understanding our work and explored similar approaches from the liter-
ature. In the second part, we explained how our own implementation of each part of
the solver works. In the final part, we presented the results from our experiments with
visualizations that provide a detailed look into how each part performs.

We have implemented and verified processes necessary for implementing hybrid ap-
proaches. We compared several approaches to exact solvers. We have shown the com-
plexity of choosing the best parameters for heuristic approaches by creating several
chromosome decoders, selecting multiple metaheuristics and comparing them. For this
comparison, we also developed important tools, which we have shown. Finally, we used
everything together to implement the best hybrid approach to CVRPTW that our cur-
rent implementation allows. At the very end, we presented the results of the ILP im-
plementation of NRP. In the points where we noticed irregularities, we recommended
options for exploration of this phenomenon and improvements or extensions to our de-
signs.
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Appendix A

Used Software

The following software was used in the development of this thesis:

GitHub Copilot 1

ChatGPT (OpenAI) 2 for text style feedback suggestions

Grammarly 3 for grammar and spelling checking

Pycharm 4 for the programming

Overleaf 5 for writing the thesis

1https://github.com/features/copilot
2https://chatgpt.com
3https://app.grammarly.com/
4https://www.jetbrains.com/pycharm/
5https://www.overleaf.com
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Concents of the attachment

text..........................................Folder with source files for the text
plots .......................................... Figures referenced in the text

General-Optimization-Solver .................. Relevant parts of the repository
data .......................... Folder for the processed instances and solutions
raw data.................................Folder for the unprocessed instances
src

nrp
solvers.........................Folder with all the implemented solvers
plots ................................................ Folder for figures
starters......................................Examples for evaluation
problem.py.........................................General VRP code
stats.ipynb.........................................Tools for analysis
utils.ipynb................................................VRP utils

nrp
solvers.........................Folder with all the implemented solvers
problem.py.........................................General NRP code
stats.ipynb.........................................Tools for analysis
utils.ipynb................................................NRP utils

src ...................................... Folder for the unprocessed instances
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