
jiří bláha

Research Methodology for Static
Stiffness of Six-Axis Serial Robots

bachelor thesis

Submitted to the
Division of Mechanics and Mechatronics
Dept. of Mechanics, Biomechanics, and Mechatronics
Faculty of Mechanical Engineering
Czech Technical University in Prague

in partial fulfilment of the requirements for the degree of
Bachelor of Science in the study programme Theoretical
Fundamentals of Mechanical Engineering.

Written under the supervision of

Ing. Zdeněk Neusser, Ph.D.
Division of Mechanics and Mechatronics

in Prague and Litvínov, Czech Republic, May 2024.

Thesis Supervisor

Ing. Zdeněk Neusser, Ph.D.
Division of Mechanics and Mechatronics
Dept. of Mechanics, Biomechanics, and Mechatronics
Faculty of Mechanical Engineering
Czech Technical University in Prague
Technická 4
160 00 Prague 6
Czech Republic
zdenek.neusser@fs.cvut.cz

Copyright © 2024 by Jiří Bláha.

Typeset in the LATEX typesetting system.
Illustrations drawn using TikZ by Till Tantau.

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

508858 Osobní číslo:Jiří Jméno:Bláha Příjmení:

Fakulta strojní Fakulta/ústav:

Zadávající katedra/ústav: Ústav mechaniky, biomechaniky a mechatroniky

Teoretický základ strojního inženýrství Studijní program:

bez oboru Studijní obor:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Metodika výzkumu statické tuhosti šestiosých sériových robotů

Název bakalářské práce anglicky:

Research Methodology for Static Stiffness of Six-Axis Serial Robots

Pokyny pro vypracování:
1. Seznamte se s problematikou analýzy tuhosti seriových robotů v prostoru.
2. Proveďte teoretický rozbor řešení kinematiky sériové šestiosé antropomorfní struktury se sférickým zápěstím.
3. Vyberte vhodného šestiosého sériového robota a sestavte jeho dynamický model v prostředí MATLAB-Simscape.
4. Analyzujte statickou tuhost robota založenou na linearizaci dynamického modelu.
5. Porovnejte výsledky tuhosti pro jednoho robota a pro dva propojené roboty.

Seznam doporučené literatury:
- Valášek M., Stejskal V., Březina J.: Mechanika A (lecture notes), Prague, CTU, 2002.
- Valášek M., Bauma V., Šika Z.: Mechanika B (lecture notes), Prague, CTU, 2004.
- Siciliano, B. et al. Robotics: Modelling, Planning, and Control. 1st ed. London,
England: Springer, 2018.
- http://www.mathworks.com (on-line documentation)

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Zdeněk Neusser, Ph.D. odbor mechaniky a mechatroniky FS

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 14.08.2024 Datum zadání bakalářské práce: 23.04.2024

Platnost zadání bakalářské práce: _____________

doc. Ing. Miroslav Španiel, CSc.

podpis děkana(ky)
prof. Ing. Michael Valášek, DrSc.

podpis vedoucí(ho) ústavu/katedry
Ing. Zdeněk Neusser, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

Statutory Declaration

I hereby declare that this thesis is my own work. Where other sources of informa-
tion have been used, they have been acknowledged in the bibliography.

I understand that my work relates to the rights and obligations under the Act No.
121/2000 Sb., the Copyright Act, in particular the fact that the Czech Technical
University in Prague has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60, §1 of the Copyright Act.

In Prague on
Jiří Bláha

Acknowledgements

First and foremost, it is my sincere pleasure to thank the supervisor of this thesis,
Ing. Zdeněk Neusser, Ph.D., for his tremendous support, never-ending patience
and courage to explore such a fascinating topic with me.

I also thank Filip Vaško, with whom I share a similar topic and who has
been a constant spirit of encouragement in my not always successful endeavours.
Having a close friend with whom I could discuss this topic helped me a lot.

Finally, I want to extend boundless gratitude to my family and my partner,
Anna. The indispensable financial and emotional support from my parents has
been pivotal to my academic pursuits, while Anna’s love and care have filled each
day with anticipation and joy. It is because of them that I now sit here, penning
these acknowledgments, filled with pride for what I have accomplished.

Author Jiří Bláha
Title Research Methodology for Static Stiffness of Six-Axis Serial Robots
Název Metodika výzkumu statické tuhosti šestiosých sériových robotů

Year 2023/2024
Department Dept. of Mechanics, Biomechanics, and Mechatronics
Division Division of Mechanics and Mechatronics
Supervisor Ing. Zdeněk Neusser, Ph.D.

Range 193 pages
74 figures
30 tables

Keywords static stiffness, kinetostatics, open kinematic chain, six-axis robot,
anthropomorphic structure, coupled robots

Klíč. slova statická tuhost, kinetostatika, otevřený kinematický řetězec, šes-
tiosý robot, antropomorfní struktura, spojení roboti

Abstract The subject of this bachelor thesis is the development of a research
methodology for static stiffness of robots, specifically six-axis serial
robots with an anthropomorphic structure. It covers theoretical
knowledge from the areas of rigid body mechanics, specifically
kinematics and statics, nonlinear systems and mathematics, which
together form the theoretical framework of static stiffness research.
This theoretical analysis is then applied to a model of a real six-axis
robot in the Simscape MBS environment, which is simulated in
several of its possible configurations. Finally, stiffness maps are pro-
duced and the evolution of static stiffness for a given configuration
after a second robot is attached is observed.

Abstrakt Předmětem této bakalářské práce je vývoj metodiky výzkumu
statické tuhosti robotů, konkrétně šestiosých sériových robotů s
antropomorfní strukturou. Zahrnuje teoretické poznatky z oblasti
mechaniky tuhých těles, konkrétně kinematiky a statiky, ne-
lineárních systémů a matematiky, které společně tvoří teoretický
rámec výzkumu statické tuhosti. Tato teoretická analýza je pak
aplikována na model skutečného šestiosého robota v prostředí Sim-
scape MBS, který je simulován v několika svých možných konfigu-
racích. Nakonec jsou vytvořeny mapy tuhosti a je sledován vývoj
statické tuhosti pro danou konfiguraci po připojení druhého robota.

Dedicated to my parents, Kamila and Petr.

Contents

0 Introduction and Problem Statement 1
0.1 Static Stiffness . 2
0.2 State of the Art . 2
0.3 Objectives . 3

I Theoretical Background 5
1 Kinetostatics of Rigid Systems . 7

1.1 Fundamental Concepts of Kinetostatics 8
1.1.1 System Representations . 8
1.1.2 Mechanism Theory and Grübler’s Formula 9
1.1.3 Kinetostatic Topology . 11

1.2 Rigid Body Motion . 12
1.2.1 Elementary Differentiable Manifolds 15
1.2.2 Properties of Rotation Matrices 17
1.2.3 Vector Transformations . 18
1.2.4 Euler XYZ Angles . 19
1.2.5 Homogeneous Transformation Matrices 21

1.3 Open-Chain Kinematics . 23
1.3.1 Forward Kinematics . 23
1.3.2 Closed-Form Inverse Kinematics 25
1.3.3 Differential Kinematics and the Jacobian 29

1.4 Static Gravity Compensation . 31
1.4.1 Torsion Spring Compensation 31

2 Simscape MBS Modelling . 33
2.1 Introduction to Multi-Domain Modelling. 33

2.1.1 Block Wiring and Signal Types 34

xi

xii Contents

2.1.2 Signal Rerouting, Distribution and Merging 35
2.2 Commonly Used Blocks . 35

2.2.1 Preliminary Blocks . 35
2.2.2 Solids and Joints. 36
2.2.3 Coordinate Transformations 38
2.2.4 Forces, Torques and Measuring. 39

2.3 Interfacing Simscape MBS with MATLAB. 39
3 Nonlinearity . 41

3.1 State-Space Representation . 41
3.1.1 Linearization . 42
3.1.2 Transfer Function Matrix 42

3.2 Singular Value Decomposition . 44
3.2.1 Static Compliance Matrix. 46
3.2.2 Static Stiffness Matrix. 47
3.2.3 Stiffness Homogeneity . 47

II Simulation Model 49
4 Model Assembly . 51

4.1 Choice of Robot. 51
4.1.1 KUKA KR 120 R2700-2 51

4.2 CAD Model within DS SolidWorks 53
4.2.1 Link Assembly . 53
4.2.2 Attached End-Effector . 54

4.3 Simscape MBS Integration. 55
4.3.1 Simscape Multibody Link for DS SolidWorks. 55
4.3.2 Block Rewiring and Model Reassembly 56
4.3.3 Model Walkthrough . 59

5 Algorithmization . 61
5.1 Chapter Organisation. 61
5.2 Closed-Form Inverse Kinematics 63

5.2.1 Inverse Position Kinematics 64
5.2.2 Inverse Orientation Kinematics. 66
5.2.3 Implementation . 67

5.3 Forward Kinematics . 67
5.3.1 Implementation . 67

5.4 Static Gravity Compensation . 68
5.4.1 Implementation . 69

5.5 Robot Coupling . 69
5.5.1 Closed-Form Inverse Kinematics 70
5.5.2 Forward Kinematics . 71
5.5.3 Static Gravity Compensation. 71

Contents xiii

5.6 Linearization and SVD . 72
5.6.1 Preliminary Definitions . 73
5.6.2 Grid and Level Definitions 73
5.6.3 Execution. 74
5.6.4 Simulation Parameters . 75

6 Results and Discussion . 77
6.1 Case s-C1 . 78
6.2 Case s-C2 . 82
6.3 Case s-C3 . 86
6.4 Case c-C1 . 90
6.5 Case c-C2 . 94
6.6 Case c-C3 . 98
6.7 Comparison of Cases s-C1-3 and c-C1-3 102
6.8 Case s-C4 . 106
6.9 Case s-C5 . 110
6.10 Case s-C6 . 114
6.11 Case c-C4 . 118
6.12 Case c-C5 . 122
6.13 Case c-C6 . 126
6.14 Comparison of Cases s-C4-6 and c-C4-6 130
6.15 Comparison of Cases s-C1-3 and s-C4-6 134
6.16 Comparison of Cases c-C1-3 and c-C4-6 138
6.17 Discussion of Results . 142

7 Conclusion and Outlook . 145
7.1 Missed Opportunities . 145
7.2 Future Work. 146

Bibliography . 147

Appendices 153
A Other Orientation Representations 155

A.1 Euler-Rodrigues Parameters . 155
A.1.1 Axis-Angle Representation Singularity 155
A.1.2 Unit Quaternion Representation 158

A.2 Cayley-Rodrigues Parameters . 160
A.2.1 Fundamentals of Linear Differential Equations 160
A.2.2 Exponential Coordinate Representation on SO(3) 162
A.2.3 Cayley-Rodrigues Representation 163

B Iterative Inverse Kinematics. 165
B.1 Jacobian-Based Inverse Kinematics 165

B.1.1 Analytical Jacobian . 166
B.1.2 Jacobian (Pseudo-)Inverse IIK 167

xiv Contents

B.1.3 Jacobian Transpose IIK . 169
B.2 Gradient-Based Inverse Kinematics 171

B.2.1 First-Order Newton Method IIK 171
B.3 MATLAB’s Optimization Toolbox 173

List of Figures

1.1 Six most typical robot joints. 10
1.2 Kinematic diagram of a 4R serial manipulator 11
1.3 Kinematic diagram of a 5R parallel delta robot 12
1.4 Rigid body motion . 13
1.5 Right hand rule . 14
1.6 Elementary differentiable manifolds. 16
1.7 Representing a point in different coordinate systems 18
1.8 Euler XYZ rotation sequence . 20
1.9 Open-chain forward kinematics . 24
1.10 6R anthropomorphic arm with a spherical wrist. 26
1.11 Inverse position kinematics . 27
1.12 2R planar sub-mechanism of the 6R anthropomorphic arm 28
1.13 Static gravity compensation . 31

2.1 Simulink/Simscape MBS signal types. 34
2.2 Rerouting, distribution, and merging of signals. 35
2.3 Preliminary Simscape MBS blocks . 36
2.4 Common Simscape MBS solids and joints 37
2.5 Coordinate transformation within Simscape MBS. 38

3.1 Singular value decomposition . 45
3.2 Stiffness ellipse in R3 . 48

4.1 Main dimensions of the KR 120 R2700-2. 52
4.2 CAD model of link 2 (shoulder) . 54
4.3 CAD model of the end-effector . 54

xv

xvi List of Figures

4.4 Final robot CAD assembly. 55
4.5 Simscape Mutlibody Link for DS SolidWorks 56
4.6 Link subsystems . 57
4.7 Complete Simulink/Simscape MBS model 58

5.1 Organisation structure of Chapter 5 62
5.2 Tensor of stiffness-evaluation points 62
5.3 Kinematic diagram of the KR 120 R2700-2 63
5.4 Substitution of links 4 and 5. 64
5.5 Configurations of the resulting 2R planar sub-mechanism 65
5.6 Two coupled robots working together. 69

6.1 Illustration of Case s-C1 . 78
6.2 Minima quiver-contour plot for Case s-C1 79
6.3 Maxima quiver-contour plot for Case s-C1 80
6.4 Illustration of Case s-C2 . 82
6.5 Minima quiver-contour plot for Case s-C2 83
6.6 Maxima quiver-contour plot for Case s-C2 84
6.7 Illustration of Case s-C3 . 86
6.8 Minima quiver-contour plot for Case s-C3 87
6.9 Maxima quiver-contour plot for Case s-C3 88
6.10 Illustration of Case c-C1 . 90
6.11 Minima quiver-contour plot for Case c-C1 91
6.12 Maxima quiver-contour plot for Case c-C1 92
6.13 Illustration of Case c-C2 . 94
6.14 Minima quiver-contour plot for Case c-C2 95
6.15 Maxima quiver-contour plot for Case c-C2 96
6.16 Illustration of Case c-C3 . 98
6.17 Minima quiver-contour plot for Case c-C3 99
6.18 Maxima quiver-contour plot for Case c-C3 100
6.19 Illustration of Case s-C4 . 106
6.20 Minima quiver-contour plot for Case s-C4 107
6.21 Maxima quiver-contour plot for Case s-C4 108
6.22 Illustration of Case s-C5 . 110
6.23 Minima quiver-contour plot for Case s-C5 111
6.24 Maxima quiver-contour plot for Case s-C5 112
6.25 Illustration of Case s-C6 . 114
6.26 Minima quiver-contour plot for Case s-C6 115
6.27 Maxima quiver-contour plot for Case s-C6 116
6.28 Illustration of Case c-C4 . 118
6.29 Minima quiver-contour plot for Case c-C4 119
6.30 Maxima quiver-contour plot for Case c-C4 120

List of Figures xvii

6.31 Illustration of Case c-C5 . 122
6.32 Minima quiver-contour plot for Case c-C5 123
6.33 Maxima quiver-contour plot for Case c-C5 124
6.34 Illustration of Case c-C6 . 126
6.35 Minima quiver-contour plot for Case c-C6 127
6.36 Maxima quiver-contour plot for Case c-C6 128

A.1 Axis-angle rotation representation . 156

B.1 Asymptotically stable two-variable system 168
B.2 Jacobian inverse IIK algorithm . 169
B.3 Jacobian transpose IIK algorithm. 170
B.4 First-order Newton method . 172

List of Tables

1.1 Constraints and freedoms provided by predominant robot joints . . . 10

4.1 Technical parameters of the KR 120 R2700-2 53
4.2 KR 120 R2700-2 joint ranges and angular velocities 53

5.1 Coordinate system displacements . 63
5.2 Simulation parameters . 75
5.3 Simulation work envelope limits. 75

6.1 Results table for Case s-C1 . 81
6.2 Results table for Case s-C2 . 85
6.3 Results table for Case s-C3 . 89
6.4 Results table for Case c-C1 . 93
6.5 Results table for Case c-C2 . 97
6.6 Results table for Case c-C3 . 101
6.7 Comparison of Cases c-C1 and s-C1 103
6.8 Comparison of Cases c-C2 and s-C2 104
6.9 Comparison of Cases c-C3 and s-C3 105
6.10 Results table for Case s-C4 . 109
6.11 Results table for Case s-C5 . 113
6.12 Results table for Case s-C6 . 117
6.13 Results table for Case c-C4 . 121
6.14 Results table for Case c-C5 . 125
6.15 Results table for Case c-C6 . 129
6.16 Comparison of Cases c-C4 and s-C4 131
6.17 Comparison of Cases c-C5 and s-C5 132

xix

xx List of Tables

6.18 Comparison of Cases c-C6 and s-C6 133
6.19 Comparison of Cases s-C4 and s-C1 135
6.20 Comparison of Cases s-C5 and s-C2 136
6.21 Comparison of Cases s-C6 and s-C3 137
6.22 Comparison of Cases c-C4 and c-C1 139
6.23 Comparison of Cases c-C5 and c-C2 140
6.24 Comparison of Cases c-C6 and c-C3 141

0
Introduction and Problem Statement

(1) “A robot may not injure a human being or, through inaction, allow a human
being to come to harm.”

(2) “A robot must obey the orders given it by human beings except where such orders
would conflict with the First Law.”

(3) “A robot must protect its own existence as long as such protection does not
conflict with the First or Second Laws.”

In his magnum opus, I, Robot (1950), Isaac Asimov once formulated the Three
Laws of Robotics listed above.1 [1] The field of robotics has since come a long
way, but due to our perception of robots as something quite ordinary in today’s
day and age, humanity can often find itself unaware of the existence of these
laws. Regardless of the widespread integration of robots and intelligent systems,
Asimov’s laws should remain at the forefront of our collective consciousness,
their significance unquestioned. Indeed, the idea behind the three statements
above extends beyond robotics itself, and when one starts looking at them in a
broader optic, they explode into the fascinating world of all technology. It is no
exaggeration to say that, in the contemporary world, automation has permeated
almost every aspect of our lives, providing us with unprecedented tools and
capabilities, ushering in an era of possibilities inconceivable to our ancestors.
While the proliferation of automation makes some concerned and others excited,
it is crucial to recognize that the dystopian futures envisioned in works like
Asimov’s I, Robot or Čapek’s Rossum’s Universal Robots are not an imminent

1To be more precise, Asimov’s laws of robotics were introduced 8 years prior to the release of his
magnum opus in a tale called Runaround (1942). This tale was subsequently published as part
of I, Robot where most of us know them from.

1

2 0. Introduction and Problem Statement

reality. The field of robotics, with its interdisciplinary nature encompassing
mechanical engineering, electrical engineering, information technology, and more,
is evolving in ways unanticipated by the early pioneers of science fiction.

Robots taking over the world is more of a philosophical question rather than
an engineering one. Present-day robotics is a far cry from the dystopian visions
of Asimov and Čapek, requiring continuous adaptation to contemporary issues.
As we navigate the evolving landscape of technology, it is prudent to remain
prepared for unforeseen challenges, ensuring a responsible and mindful integration
of robotic systems and artificial intelligence alike into our daily lives.

0.1 Static Stiffness

This thesis is focused on exploring the spatial static stiffness of six-axis serial
robots, a critical aspect within the field of robotics, particularly relevant in applica-
tions such as robotic machining. The increasing prominence of robotic machining
is attributed to its advantages, including a larger work envelope, reduced weight,
compactness, and improved cost-effectiveness compared to traditional CNC ma-
chining methods. In processes like milling, the tool center point is subjected to
significant force loads, typically directed in general directions. This phenomenon
often results in adverse effects such as vibrations, leading to deviations in the final
product’s dimensions and geometry. These deviations can range from functional
impairments in the produced part to situations where precision is imperative
for safety and functionality. To address these challenges, it is imperative for
the robotic system to possess adequate stiffness to withstand applied forces and
minimize tool displacements. While achieving infinite stiffness, wherein tool dis-
placement is entirely eliminated, is unattainable in practical applications, efforts
can be made to enhance stiffness and consequently improve product quality.

One potential strategy for enhancing overall stiffness characteristics is the
coupling of two robots, both sharing a common end-effector such as a spindle with
a milling cutter. The rationale behind this approach lies in the mutual support
offered by the two robots, potentially leading to enhanced stiffness. However,
it is crucial to note that such enhancements may be directional, with stiffness
improvements observed in certain directions while deterioration may occur in
others. Consequently, investigating spatial stiffness presents a significant challenge,
yet it is essential for understanding and addressing directional variations.

0.2 State of the Art

The research into robotic stiffness is still undergoing development. Almost every
research paper considers a different approach to such problem. In [2], a hybrid-
parallel robot structure was developed. Subsequently, the authors used finite

0.3 Objectives 3

element analysis (FEA) to investigate stiffness properties of said structure and
stiffness maps were created. As a result, static stiffness was, at some points of the
work envelope, comparable or even better compared to a conventional CNC. Yet,
the disadvantage of [2] is the stiffness being evaluated only in the direction of the
Cartesian axes, x, y, and z, thus not providing an idea about stiffness in a general
direction. In [3], a stiffness adjustable snake-like robot was modelled, along with its
gravity compensation. The work [4] investigated the joint stiffness of robots, both
analytically and under simulation, by attaching one-degree-of-freedom torsion
springs to each joint. The article [5] discusses the stiffness increase using topology
optimization of a six-degree-of-freedom industrial robotic arm. This optimization
is also based upon finite element analysis. In [6], the mathematical model of the
cooperation of multiple six-axis robots with flexible interconnection is developed,
while [7] explores the control aspects of such cooperative manipulation, and [8]
sets the objective of determining the system’s nominal motion. Paper [9] presents
a variable stiffness strategy of a structure with a compliant wrist, able to adjust
its stiffness continuously by virtue of a super-elastic Ni-Ti (Nickel-Titan) wire.
A different approach, using compliance control based on impedance control, is
shown within [10]. Finally, the parallel to robotic milling is established in [11],
where a stability prediction algorithm was developed, forecasting vibration.

Despite these contributions, existing research does not entirely align with
our objectives, necessitating the development of a novel methodology. Notably,
Neusser et al. from the Division of Mechatronics, CTU-FME, have addressed
the topic of static stiffness acting in general directions. Their ongoing research
investigates the static stiffness of a 3R planar mechanism, modeled after the
Stäubli RX-60 industrial manipulator, with their findings currently under review.
The motivation behind this thesis is to build upon the work of Neusser et al. by
expanding their research to encompass a spatial model and the investigation of
static stiffness in three-dimensional space.

0.3 Objectives

The thesis outlines three primary objectives,

(1) develop a theoretical framework for spatial static stiffness analysis,
(2) apply this framework onto a suitable six-axis robot,
(3) evaluate the results and compare them with two coupled robots,

which will be elaborated upon within its contents. Objective (1) is covered in
Chapters 1,2, and 3, which are housed in Part I. The other two objectives are
developed in Chapters 4 and 5, as for Objective (2), and Chapter 6, as for
Objective (3), both under the umbrella of Part II.

I
Theoretical Background

1
Kinetostatics of Rigid Systems

Kinematics and statics serve as foundational pillars in shaping the design paradigms
and computational methodologies employed in the field of robotics. Kinematics
pertains to the meticulous analysis of the isolated movement patterns exhibited
by systems, such as robotic mechanisms, while statics is concerned with the equi-
librium states of stationary bodies and the forces acting upon them. Despite their
individual significance, a comprehensive description of the system’s behaviour
necessitates a synergistic amalgamation of insights gleaned from both domains. In
instances where the primary focus does not lie in the meticulous understanding of
the system’s kinematics, there may be a tendency to eschew detailed exploration
in this realm, and vice versa. However, the omission of either discipline invariably
engenders lacunae in understanding, whether it pertains to grasping the intricate
equilibrium forces at play or capturing the nuances of the system’s motion.

The material contained within this chapter serves mainly as a theoretical intro-
duction to concepts applied in subsequent chapters, and also provides necessary
context for readers who might have limited prior knowledge on the subject.2 For
those already acquainted with the subjects addressed in subsequent sections, this
chapter can be skipped and revisited as required. The opening section delves into
the basics of system modelling and representation, emphasizing key ideas such
as degrees of freedom, mechanisms, links, and joints. We then shift our focus to
kinematics of solitary rigid bodies, where we introduce the concept of the position
vector, the rotation matrix, and subsequently, the homogeneous transformation
matrix. With these foundational principles in place, we explore the kinematics of
open chains, covering both their forward and inverse kinematics. To conclude, we
delve into a specific aspect of statics, namely static gravity compensation, where

2For further background on some unproven concepts, the reader is encouraged to consult other
resources provided by the author.

7

8 1. Kinetostatics of Rigid Systems

we outline the common methodology for recalculating the equilibrium position of
robot joints in order to account for gravity.

1.1 Fundamental Concepts of Kinetostatics

Each kinetostatic analysis of a system commences with the development of a
model thereof. It is imperative to navigate the delicate equilibrium between
simplifying the model and preserving its fidelity. While simplified models expedite
computational procedures, their departure from reality may yield suboptimal
accuracy. Conversely, complex models, while enhancing realism, entail height-
ened computational resources. This conundrum presents a nuanced optimization
challenge, wherein the balance must be struck between sacrificing accuracy and
augmenting computational demands. As a guiding principle, it is customary to
designate an acceptable threshold of accuracy and simplify accordingly.

1.1.1 System Representations

The determination of how best to portray a system becomes increasingly apparent
as we delve into the significance of the system’s dimensions and inertial properties,
such as mass, within the model. This critical assessment entails evaluating whether
these properties remain discernible from the chosen observation point, which
serves as the vantage point for scrutinizing the system. In light of this evaluation,
we are presented with two principal options: point mass or a set of point masses.
Each choice carries its own implications and considerations, ultimately shaping
the fidelity and accuracy of the model.

▷ Point Mass. The most trivial representation we can choose for a system is point
mass, a point-like object devoid of dimensions that encapsulates the entire mass
of the system. While utilizing point mass simplifies calculations substantially,
the results it produces are often skewed. Additionally, many systems cannot be
adequately captured using a point mass representation, necessitating a more
sophisticated model, a need that is usually apparent from the outset.

▷ Set of Point Masses. A natural choice one can make to increase the sophisti-
cation of point mass is a set of point masses (or system of point masses). If we
presume the distances between all point masses in this set, of which there are
infinitely many,3 stay constant under all circumstances, we call the set a rigid
body. Provided we allow these distances to be variable, e.g., under applied stress
or by motion itself,4 the set is then referred to as a flexible body. Moreover, it is

3From a mathematical standpoint, there are infinitely many point masses in the set but for
computation purposes, we need to limit ourselves to a finite number.

4For instance, when rotating a flexible disc at high angular velocities, its diameter tends to
change due to centrifugal forces, a phenomenon not observed when rotating a rigid disc.

1.1 Fundamental Concepts of Kinetostatics 9

apparent that flexible bodies require significantly more computation power as we
need to take their ability to deform into account. For the scope of our objectives,
we make do with rigid bodies, meaning we shall discard the idea of flexibility in
all following sections, allowing us to simplify our analysis by disregarding the
deformable nature of flexible bodies and focus on the behavior and interactions
of rigid, non-deformable structures.

Lastly, the precision in depicting the geometry of a rigid or flexible body
profoundly impacts the model’s accuracy, entwined with the computational
complexity we’re willing to manage. To enhance computational efficiency, we
often simplify topological intricacies in models, retaining essential mass and
inertia characteristics. For instance, in a kinematic diagram, a robotic arm may
be portrayed as a basic beam, with identical mass and inertia parameters as the
more complex real arm (see Subsection 1.1.3 later on).

1.1.2 Mechanism Theory and Grübler’s Formula

The smallest number of independent parameters D ∈ N0 with which we are able
to describe the configuration, i.e., the position and orientation, of a system in n-
dimensional Euclidean space En is referred to as the number of degrees of freedom.
A rigid body in three-dimensional Euclidean space E3 has six degrees of freedom
as it is able to, when not constrained, move in the direction all three Cartesian
axes and also rotate around said axes. Only with all six of these parameters
provided, we can state that the configuration of the rigid body is known.

Remark 1.1. A point mass in space has three degrees of freedom due to its
presumed infinitesimal size, resulting in its configuration remaining indifferent
when rotated about an axis. However, it retains the freedom to move arbitrarily,
thereby presenting us with a set of three independent parameters. ⋄

Remark 1.2. Following the same rationale, it becomes evident that within a
two-dimensional context, an unbounded rigid body exhibits three degrees of
freedom, while a free point mass has two. ⋄

In engineering practice, freely moving bodies are seldom found. More com-
monly, they are constrained and interconnected to create mechanisms, where the
individual bodies are referred to as links, and the constraints between them are
known as joints (see Figure 1.1). Further, the two links connected by a joint can
be referred to as the base link and the follower link, with the base link being the
one entering the joint while the follower link exits it. This terminology is heavily
dependent on context as when we look at Fig. 1.1, we can hardly distinguish
between the base and follower links with all six joint types. Conversely, if we
hypothetically designate the larger block in Figure 1.1(b) as stationary, it becomes

10 1. Kinetostatics of Rigid Systems

evident that it constitutes the base link, while the smaller block is the follower
link which performs prismatic motion by “sliding” in and out of the joint.

(a) Revolute (R) (b) Prismatic (P) (c) Helical (H)

(d) Cylindrical (C) (e) Universal (U) (f) Spherical (S)

Figure 1.1 Six most typical robot joints.

We distinguish between two types of mechanisms — open-chain (serial) and
closed-chain.5 Most industrial manipulators and robotic arms are open-chain
mechanisms (see Fig. 1.2), delta robots are an example of parallel, closed-chain
mechanisms (see Fig. 1.3). It is also common practice to distinguish between
the types of open-chain robots by joints they are composed of. For example, a
RRRRRR arm, or 6R arm for short, is composed of six revolute joints; the first
two joints of a RRP robot6 are revolute, the last one is prismatic; etc.

Joint type
R P H C U S

Space (3D) Constraints c 5 5 5 4 4 3
Freedoms f 1 1 1 2 2 3

Plane (2D) Constraints c 2 2 ✗ ✗ ✗ ✗

Freedoms f 1 1 ✗ ✗ ✗ ✗

Table 1.1 Constraints and freedoms provided by predominant robot joints.

Determining the number of degrees of freedom of mechanisms can sometimes
prove difficult and, as opposed to solitary rigid bodies, requires more than a
quick, logical analysis of the available movement, especially when the mechanism
in question is of increased complexity. Let us consider an arbitrary mechanism

5Closed-chain mechanisms have at least one closed loop.
6The RRP robot is also referred to as the SCARA robot.

1.1 Fundamental Concepts of Kinetostatics 11

composed of U ∈ N links and J ∈ N joints, each taking away c ∈ N degrees of
freedom (as per Tab. 1.1), then the total number of degrees of freedom D ∈ N0
of this mechanism is determined by Grübler’s formula as

D = D̃(U − 1) −
J∑

i=1
cj, (1.1)

where

D̃ =

3 for planar mechanisms,
6 for spatial mechanisms,

is the number of degrees of freedom of a rigid body. Expression (1.1) holds if and
only if all joint constraints are independent. If not, only a lower bound on the
degrees of freedom can be calculated from the formula. [12]

1.1.3 Kinetostatic Topology

As noted earlier, simplifying complex topological details in real systems is common.
This reduces computational demands and speeds up result generation. While
simplifying geometry is beneficial, preserving accurate inertial characteristics
remains a crucial aspect of modelling.

E

J1

J2

J3

J4

Link 1
Link 2

Link 3

Link 4

Link 5

Figure 1.2 Kinematic diagram of a 4R serial manipulator.

Figure 1.2 depicts a 4R (RRRR) serial manipulator model with streamlined
topology. Links are depicted as beams and are conventionally numbered from
the ground to the end-effector (E), same as the revolute joints (J), depicted as
cylinders. While this simplification is evidently more pleasant for computation

12 1. Kinetostatics of Rigid Systems

purposes, all links need to retain inertial properties as on the real manipulator.
Similarly, all joint revolution limits need to be preserved.

Link 1

Link 2

Link 3

Link 4

Link 5

Link 6

Link 7
Link 8

Link 9

E

J1

J2

J3

J4 J5

Figure 1.3 Kinematic diagram of a 5R parallel delta robot.

In contrast to the depiction in Figure 1.2, Figure 1.3 presents an alternative
configuration, showcasing a 5R (RRRRR) parallel delta robot. A notable distinc-
tion between the two diagrams is evident: while Figure 1.2 follows an open-chain
arrangement, Figure 1.3 displays a closed-loop formation involving links 1, 2, 4, 5,
7, and 8. As the primary focus of this thesis centers on open-chain configurations,
the inclusion of the kinetostatic topological representation of the parallel delta
robot serves primarily as an illustrative example. It underscores the potential
of such diagrams in simplifying visualizations, thus enhancing computational
efficiency without compromising precision.

1.2 Rigid Body Motion

Consider a rigid body freely navigating three-dimensional Euclidean space E3.
To describe its position in space, we need to be able to describe the position
of its every point. Let us define a stationary (base) coordinate system O1x1y1z1
anchored arbitrarily in space and affix a coordinate system O2x2y2z2 to the body
(see Figure 1.4). Since the body is free to move, the system O2x2y2z2 moves
relative to O1x1y1z1 as it’s tightly bound to the body. We can then transform
the position vector of an arbitrary point of the body from O2x2y2z2 to O1x1y1z1,

1.2 Rigid Body Motion 13

allowing us to transform the problem of describing the position of the body to
describing the relative position of two coordinate systems. [13, 14]

y1

z1

x1

j1

k1

i1 O1

x2
i2

y2

j2

z2
k2

O2

p1P

p2P

Rigid body

Path traced by O2

Rotation

P

Figure 1.4 Rigid body motion.

Following Figure 1.4, the position vector of point P in the O1x1y1z1 coordinate
system can be expressed in the form7

p1P = p1Pxi1 + p1Pyj1 + p1Pzk1 =
[
p1Px p1Py p1Pz

]T
∈ R3,

in which i1, j1,k1 ∈ R3 denote the unit vectors along the x1, y1, and z1 axes,
respectively, and are defined as

i1 :=
[
1 0 0

]T
∈ R3, j1 :=

[
0 1 0

]T
∈ R3, k1 :=

[
0 0 1

]T
∈ R3,

This notation generalizes to ipjP ∈ Rn, signifying that p ∈ Rn represents the
position vector of point P from the origin of coordinate system j, with its
components expressed within system i. Further, in cases when i = j, i is often
omitted. [13, 14] When considering a three-dimensional case, i.e., when n = 3,
this general position vector can be written as

ipjP :=
[

ipjPx
ipjPy

ipjPz

]T
∈ R3, (1.2)

where, if i is to not be equal to j to keep the prescript, i ∈ {1, . . . , C − 1},
j ∈ {i+ 1, . . . , C}, with C ∈ N being the total number of coordinate systems. On
the other hand, if i is to be equal to j, then i, j ∈ {1, . . . , C} and the position
vector is denoted pi/jP , with respect to Oixiyizi or Ojxjyjzj, respectively.

It is clear that, in the context of Figure 1.4, besides change of position, i.e.,
translation, the rigid body has also undergone change of orientation, i.e., rotation.

7A similar expression holds for the position vector of P with respect to O2x2y2z2.

14 1. Kinetostatics of Rigid Systems

This behaviour is described using a rotation matrix Rij ∈ Rn×n which, within
the framework of three-dimensional Euclidean space E3, takes the form

Rij :=

r11 r12 r13
r21 r22 r23
r31 r32 r33

 =

 iij
ijj

ikj

 ∈ R3×3, (1.3)

where it is always the case that i ∈ {1, . . . , C − 1} and j ∈ {i+ 1, . . . , C}.

x

y

z

i

j

k

(a) Coordinate systems

x, y, z

i, j,k

(b) Positive rotation

Figure 1.5 Right hand rule.

The three columns of Rij encompass projections of the unit vectors of the xj ,
yj, and zj axes of the j-th coordinate system onto the i-th coordinate system.
Therefore, two conditions must necessarily be satisfied:

(i) All columns of Rij need to have a unit norm given they correspond to the
Cartesian unit axes of coordinate system Ojxjyjzj, i.e.,

∥iij∥ = ∥ijj∥ = ∥ikj∥ = 1; (1.4)

(ii) since Ojxjyjzj is orthonormal and, as per the first condition, all columns of matrix
Rij have a unit norm, they also need to be mutually orthogonal, i.e.,

⟨iij,
ijj⟩ = ⟨ijj,

ikj⟩ = ⟨iij,
ikj⟩ = 0, (1.5)

where ⟨·, ·⟩ denotes the Euclidean inner product in R3.

The six conditions stated in Eqs. (1.4) and (1.5) can be rewritten as a single
constraint for the rotation matrix, i.e.,

RT
ijRij = RijR

T
ij = I3, (1.6)

where I3 ∈ R3×3 denotes the identity matrix. Equation (1.6) states that, as a
consequence of (1.4) and (1.5), Rij is an orthonormal matrix. [12, 15]

1.2 Rigid Body Motion 15

Lastly, we need to take the left/right-handedness of Ojxjyjzj into account.
We presume all coordinate systems we define are right-handed (see Fig. 1.5), so

det(Rij) = iiTj (ijj × ikj) = ijT
j (ikj × iij) = ikT

j (iij × ijj) = 1. (1.7)

By virtue of Rij being an arbitrary rotation matrix and satisfying conditions
(1.6) and (1.7), it, along with all other rotation matrices defined in (1.3), belongs
to the special orthogonal group SO(3) (see Definition 1.1). [12, 16]
Definition 1.1. The special orthogonal group SO(3) ⊂ R3×3, also referred to as
the group of rotation matrices in R3, is the set of 3 × 3 real matrices as defined
in (1.3) and satisfying conditions (1.6) and (1.7). [12] ⋄

The rotation of Ojxjyjzj by φij with respect to Oixiyizi can be performed
around an arbitrary axis, a, and is then denoted Rij(a, φij) (see Appendix A).
If we, for now, choose to limit ourselves to rotations around the three Cartesian
axes, x, y, and z, the respective rotation matrices then read

Rij(x, φij) =

1 0 0
0 cosφij − sinφij

0 sinφij cosφij

 ∈ SO(3) ⊂ R3×3, (1.8a)

Rij(y, φij) =

 cosφij 0 sinφij

0 1 0
− sinφij 0 cosφij

 ∈ SO(3) ⊂ R3×3, (1.8b)

Rij(z, φij) =

cosφij − sinφij 0
sinφij cosφij 0

0 0 1

 ∈ SO(3) ⊂ R3×3, (1.8c)

where φij ∈ [0, 2π). The sign of the angle of revolution can be determined via the
right hand rule for positive rotation [see Figure 1.5(b)].

1.2.1 Elementary Differentiable Manifolds

In earlier text, we established the special orthogonal group SO(3). This group
can be simplified to two dimensions to yield its planar equivalent, SO(2), which
exhibits analogous behavior but in one fewer dimension. The reduction of SO(3)
to yield SO(2) prompts a natural extension of this concept to arbitrarily many
dimensions n. This generalized n-dimensional group, denoted as SO(n), follows
the same principles as SO(3) and SO(2). It encompasses n×n matrices satisfying
constraints similar to those outlined in Eqs. (1.6) and (1.7). This extension
is introduced to emphasize the expansive nature of rotation matrices across
dimensions. However, we elect to establish a maximum limit of three dimensions
for SO(n) groups, given that real physical systems are spatial at most. Further, the
elements of SO(n) form a differentiable manifold, categorizing SO(n) groups as

16 1. Kinetostatics of Rigid Systems

matrix Lie Groups.8 To augment understanding of the mathematical concepts and
provide the reader with foundational knowledge of the more intricate mathematics
surrounding rotations, we introduce two elementary differentiable manifolds that
the reader has previously encountered, while refraining from delving extensively
into topics such as topology, differential geometry, and related subjects. [12, 19]

(a) Torus [T 3(ω, σ) ⊆ R3] (b) Sphere [S 2(ω, σ) ⊆ R3]

Figure 1.6 Elementary differentiable manifolds.

▷ Torus. The n-dimensional torus, T n ⊆ Rn is formally defined as the Cartesian
product of n circles, denoted S 1, i.e.,

T n := S 1 × S 1 × · · · × S 1︸ ︷︷ ︸
n-times

⊆ Rn, (†)

or, if we limit ourselves to three dimensions, (†) becomes

T 3(ω, σ) :=

(R + r cosω) cosσ
(R + r cosω) sin σ

r sinω

 ⊆ R3, ∀ ω, σ ∈ [0, 2π), (††)

where R > 0 is the distance from the center of the torus to the center of the tube,
also referred to as the major radius, and r > 0 is the radius of the tube, also
referred to as the minor radius. [20, 21, 22, 23, 24]

▷ Sphere. The n-dimensional sphere S n ⊆ Rn+1 is the set of points in Rn+1 at a
fixed radius R > 0 from the origin. Using set notation,

S n :=
{
(x0, x1, . . . , xn) ∈ Rn+1|x2

0 + x2
1 + · · · + x2

n = R2
}

⊆ Rn+1, (∗)

or, in the fashion of (††), the three-dimensional sphere reads

S 2(ω, σ) :=

R sinω cosσ
R sinω sin σ
R cosω

 ⊆ R3, ω ∈ [0, π] and σ ∈ [0, 2π). (∗∗)

If R = 1, (∗∗) is referred to as the unit sphere in R3. [20, 21, 22, 23, 24]
8For additional insights on Lie groups and Lie algebras, see [17, 18].

1.2 Rigid Body Motion 17

1.2.2 Properties of Rotation Matrices

Besides (1.6, 1.7), the membership of rotation matrices in n-dimensional special
orthogonal groups implies various inherent characteristics. We choose to list out
two important properties rotation matrices as entries of SO(n) posses: the inverse
element existence and closure (see Theorems 1.1, 1.2).9 [12, 19]
Theorem 1.1. The inverse of a rotation matrix Rij ∈ SO(3) is equal to its
transpose, and is also a rotation matrix in SO(3) ⋄

Proof. As Rij ∈ SO(3) is an orthogonal matrix, it is inherently invertible, with
its inverse, denoted R−1

ij ≡ Rji, being equivalent to its transpose RT
ij, implying

RT
ijRij = RijR

T
ij = I3. (1.9)

Furthermore, since Rij is square and satisfies Eq. (1.7), det(RT
ij) = det(Rij) = 1.

Hence, the inverse R−1
ij fulfills Def. 1.1, thereby concluding the proof. [12] □

The inverse element existence property is paramount in the context of re-
versing rotations imparted onto rigid bodies. In particular, when a rigid body’s
arrangement results from a sequence of rotations encapsulated within a com-
posite rotation matrix (as outlined in Theorem 1.2), obtaining the inverse of
this composite rotation matrix allows for the precise restoration of the body’s
original configuration, irrespective of the initial number of rotations applied. This
property ensures that even complex sequences of rotations can be effectively
undone, thereby maintaining the integrity of the body’s orientation.

Theorem 1.1 is built upon foundational concepts of linear algebra, such as the
equivalence between the inverse and transpose of an orthogonal matrix. However,
exhaustive proofs for these assertions are omitted within this thesis, as their
comprehensive treatment lies beyond its intended scope.10

Theorem 1.2. The product of two rotation matrices Rij,Rjk, both elements of
SO(3), is also a rotation matrix in SO(3). ⋄

Proof. Let Rij,Rjk ∈ SO(3) be two arbitrary rotation matrices defined in (1.3)
and satisfying (1.6, 1.7). Since both Rij and Rjk are orthogonal, their product,
Rik = RijRjk is also orthogonal and hence satisfies

(i) the inverse element existence, i.e.,

[RijRjk]TRijRjk = RT
jkR

T
ijRijRjk = RT

jkRjk = I3,

where, as per inverse element existence (Theorem 1.1), RT
ijRij = I3,

9An enlightening discussion on all SO(n) properties is held in [12], pp. 70 — 71, and [19], p. 72.
10In case of need, for the proof and subsequent discussion on the inverse-transpose equivalence,

the reader is encouraged to consult [25], pp. 345 — 346, Theorems 6,7 and Example 7; for the
proof of the determinant and transpose determinant equivalence, see [26], p. 390, Thm. 9.55(a).

18 1. Kinetostatics of Rigid Systems

(ii) the right-handedness constraint, i.e., Eq. (1.7),

det(Rik) = det(RijRjk) = det(Rij)det(Rjk) = 1.

It is obvious the former property is condition (1.6). Since (1.6) and (1.7) define
SO(3), we have proven Rik = RijRjk ∈ SO(3). [12] □

The significance of the closure property lies in its facilitation of straightforward
multiplication of rotation matrices for executing rotation sequences on rigid bodies.
This property extends to an indefinite number of rotation matrices, resulting in a
composite rotation matrix that remains within SO(3). As we’ll discover further,
this property is equally applicable to homogeneous transformation matrices, with
its significance being most prominent in this context.

In a manner reminiscent of Theorem 1.1, Theorem 1.2 is predicated on funda-
mental assertions within linear algebra. This theorem hinges on the recognition
of the equivalence between the determinant of a matrix product and the product
of the determinants of the constituent matrices. Once more, we abstain from
presenting the proof for this statement, given its comprehensive treatment in
numerous textbooks on linear algebra and related subjects.11

1.2.3 Vector Transformations

Understanding the geometrical meaning of rotation matrices is easier when we
look at how a point is represented in different coordinate systems. Consider a
point P ∈ E3 located somewhere in space and two coordinate systems Oixiyizi

and Ojxjyjzj whose origins coincide, i.e., Oi ≡ Oj, and Ojxjyjzj is otherwise
arbitrarily rotated with respect to Oixiyizi (see Figure 1.7).

P

piPy

piPx

piPz

yi

zi

xi

ji

ki

ii

yj

zj

xj

jj

kj

ij
pjPx

pjPy

pjPz

Oi ≡ Oj

Figure 1.7 Representing a point in different coordinate systems.

When we examine the construct from Figure 1.7, we shall find out that the two
respective position vectors of P , piP ∈ R3, i.e., within Oixiyizi, and pjP ∈ R3, i.e.,

11The intrigued reader is referred to Theorem 6 and Example 5 in [25], p. 175.

1.2 Rigid Body Motion 19

within Ojxjyjzj, are related only by the rotation matrix Rij ∈ SO(3) describing
the orientation of Ojxjyjzj within Oixiyizi (see Theorem 1.3).
Theorem 1.3. The position vectors piP ∈ R3 and pjP ∈ R3 of any point P ∈ E3

in two coordinate systems whose origins coincide and are otherwise arbitrarily
rotated relative to each other are related by piP = RijpjP . ⋄

Proof. We can express the position vector of point P either in the form

piP =
[
piPx piPy piPz

]T
∈ R3,

with respect to the Oixiyizi system, or as

pjP =
[
pjPx pjPy pjPz

]T
∈ R3.

when expressed with respect to the rotated system Ojxjyjzj . Given both piP and
pjP represent the same point,

piP = pjPx

iij + pjPy

ijj + pjPz

ikj ∈ R3

must hold. The above expression can be rewritten to the form

piP =

 iij
ijj

ikj

pjP = RijpjP ∈ R3, (1.10)

which proves the statement presented in Theorem 1.3.12 [15] □

Besides describing the orientation of two coordinate systems or representing a
point in different coordinate systems, we can also interpret a rotation matrix as
an operator allowing for rotation of a vector by a given angle around an arbitrary
axis in space, an observation hinted at by Equation (1.10). Notably, both the
original and the rotated vector have the same norm, which is easy to prove.13 [15]

1.2.4 Euler XYZ Angles

Given that rotation matrices are composed of nine entries which are not indepen-
dent but related by the orthonormality conditions (1.4, 1.5), their description of
the orientation of a system is surplus. Further, Eqs. (1.4, 1.5) also imply the need
of only three parameters for rigid body orientation description as the minimal
representation of the SO(n) group demands n(n− 1)/2 parameters. [15]

Let us consider a minimal representation of SO(3) using a set of three angles
ϕ = [α β γ]T ∈ R3. As per Theorem 1.2, a generic rotation matrix can be

12A different version of the same proof can be found in [27], p. 57, Theorem 2.5.1.
13The proof is done by employing the inverse element existence property.

20 1. Kinetostatics of Rigid Systems

composed as the product of three elementary rotations by α, β, and γ. For
this representation of SO(3) to be minimal yet properly relate two independent
orthonormal coordinate systems, successive rotations need to occur about non-
parallel axes. Consequently, among the 27 possible combinations of rotations,
only 12 sets are permissible, i.e.,

XYZ YZX ZXY
XZY YXZ ZYX
XYX YZY ZXZ
XZX YXY ZYZ

where each set forms a triplet known as the Euler angles. [15, 28, 29]
One distinct set of Euler angles for our case are the XYZ angles,14 also

referred to as the Roll-Pitch-Yaw (RPY) angles (see Figure 1.8). The orientation
of Ojxjyjzj resulting from the XYZ (RPY) rotation sequence is always expressed
within the the global coordinate system O1x1y1z1 hence why the XYZ sequence
is essential in robotics for end-effector orienting. [12, 31]

x1 ≡ ξ
y1

z1

i1 ≡ ξ
j1

k1
η

ζ

η
ζ

(a) 1st rotation, Yaw (Y)

x1
y1

z1

i1 j1

k1

ξ′

η′

ζ ′

ξ′

η′
ζ′

(b) 2nd rotation, Pitch (P)

x1
y1

z1

i1

j1

k1

xj

yj

zj

ij

jj
kj

(c) 3rd rotation, Roll (R)

Figure 1.8 Euler XYZ rotation sequence.

Remark 1.3. The axis notation for the RPY angles can vary depending on the
author, i.e., some authors denote them by the respective rotation sequence (XYZ),
e.g., [12, 29], while others use the ZYX denotation, e.g., [15], due to the fact that
the RPY angles express orientation with respect to the global coordinate system
and hence the product of these elementary rotations goes in the ZYX order [see
Eq. (1.11)]. We shall use the standard XYZ notation. ⋄

Remark 1.4. Contrary to the XYZ sequence, the ZYX sequence corresponds to
the orientation of Ojxjyjzj within Oixiyizi which was formerly coincident with

14For further material on some other Euler angles sets, consult [15], pp. 49 — 51 (ZYZ Euler
angles) or [30] pp. 150 — 154 (ZXZ Euler angles).

1.2 Rigid Body Motion 21

the j-th system before the sequence took place. As we will later discover, the
resulting rotation matrix is identical for both sequences, yet it allows for varying
physical interpretations. [12, 29] ⋄

To obtain Ojxjyjzj from O1x1y1z1, the Euler XYZ rotation sequence is:

rotate O1x1y1z1 by γ
about the x1 axis to obtain
(O)ξηζ [Fig. 1.8(a)],

rotate (O)ξηζ by β
about the y1 axis to obtain
(O)ξ′η′ζ ′ [Fig. 1.8(b)],

rotate (O)ξ′η′ζ ′ by α
about the z1 axis to obtain
Ojxjyjzj [Fig. 1.8(c)].

Start with a stationary
global coordinate
system O1x1y1z1,

Then, the resulting orientation of Ojxjyjzj with respect to the global coordi-
nate system O1x1y1z1 reads

R1j(ϕ) =
Roll (R)︷ ︸︸ ︷

R(O)ξ′η′ζ′j(z1, α)
Pitch (P)︷ ︸︸ ︷

R(O)ξηζ(O)ξ′η′ζ′(y1, β)
Yaw (Y)︷ ︸︸ ︷

R1(O)ξηζ(x1, γ)

=

cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ

sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ

−sβ cβsγ cβcγ

 ∈ SO(3),
(1.11)

where sα and cα are shorthand notation for sinα and cosα, etc. Coming back to
Remark 1.4, the ZYX rotation sequence would have the same resulting orientation
if one were to compute it. Yet, their physical interpretations are different as
highlighted in previous discussion.15

Besides Euler angles, there exist numerous other orientation representations,
such as the Euler-Rodrigues parameters,16 the Cayley-Rodrigues parameters, the
Cardan angles, among others, the first two of which are subject of Appendix A.

1.2.5 Homogeneous Transformation Matrices

The obvious approach to define the configuration of a rigid body concerning
Oixiyizi is by combining the position vector piOj

∈ R3 of the origin of Ojxjyjzj,
affixed to the body, with the rotation matrix Rij ∈ SO(3) describing the ori-
entation of Ojxjyjzj relative to Oixiyizi. Instead of treating piOj

and Rij as
separate entities, let us introduce a homogeneous transformation matrix denoted
as Hij ∈ R4×4, which integrates both the position vector and the rotation matrix
into a combined representation of Ojxjyjzj within Oixiyizi.

15See Remark 1.4 for such discussion.
16The Euler-Rodrigues parameters are also referred to as the unit quaternion representation.

22 1. Kinetostatics of Rigid Systems

Definition 1.2. The special Euclidean Group SE(3) ⊂ R4×4, also referred to as
the group of homogeneous transformation matrices in R3, is the set of 4 × 4 real
(compound) matrices of the form

Hij :=

 Rij ∈ SO(3) piOj
∈ R3

0T
3 ∈ R3 1

 ∈ R4×4, (1.12)

where 03 ∈ R3 is referred to as the null vector. [12] ⋄

Homogeneous transformation matrices behave in similar fashion to rotation
matrices. For one, as with rotation matrices, the product of two homogeneous
transformation matrices Hij and Hjk ∈ SE(3) is also a homogeneous transfor-
mation matrix, yet generally HijHjk ≠ HjkHij, analogous to RijRjk ≠ RjkRij.

A notable deviation from this analogy arises concerning the orthogonality
property, where for homogeneous transformation matrices, the orthogonality
property does not hold, and therefore

H−1
ij ̸= HT

ij ,

in contrast to rotation matrices. Consequently, the inverse of a homogeneous
transformation matrix is obtained through direct computation and reads [12, 15]

H−1
ij ≡ Hji =

 RT
ij ∈ SO(3) −RT

ijpiOj
∈ R3

0T
3 ∈ R3 1

 ∈ SE(3) ⊂ R4×4.

Theorem 1.4. A homogeneous transformation Hij ∈ SE(3) is isometric, i.e., it
preserves distances and angles between objects. ⋄

Proof. Let m,n,o ∈ R3 be column vectors and Hij ∈ SE(3) a homogeneous
transformation. By direct computation, one can verify the following:

(i) ∥Hijm−Hijn∥ = ∥m− n∥ and vice versa,

(ii) ⟨Hijm−Hijo,Hijn−Hijo⟩ = ⟨m− o,n− o⟩ and vice versa,

where the former identity is the preservation of distances, while the latter one is
the preservation of angles, thus completing the proof. [12] □

Theorem 1.4 holds significant importance, as it establishes a critical assur-
ance: post-transformation, the intrinsic distances and relative angles among any
three arbitrarily chosen points on a rigid body persist unaltered. This guarantee
plays a pivotal role in fostering a thorough comprehension of the body’s spatial
configuration, ensuring the faithful preservation of its structural integrity and
spatial relationships throughout the transformation process.

1.3 Open-Chain Kinematics 23

1.3 Open-Chain Kinematics

Creating the kinematic model of an open kinematic chain can be decoupled
into two problems. The first, typically regarded as simpler in the context of an
open-chain structure, is known as the forward kinematics problem. The second,
considered significantly more challenging, is the inverse kinematics problem.
Furthermore, the inverse solution encounters kinematic singularities, which prevent
the end-effector of a robotic structure from being positioned arbitrarily within its
workspace. Let us begin our exploration from the forward kinematics problem
and gradually progress towards inverse kinematics and singularity analysis.

1.3.1 Forward Kinematics

The forward kinematics problem involves determining the end-effector position
and orientation, concerning the global coordinate system O1x1y1z1, based on the
joint coordinates of the robotic manipulator,17 i.e., the mapping18

φ =
[
φ12 · · · φJ,J+1

]T
∈ RJ︸ ︷︷ ︸

known joint coordinates

7→ ε̃(φ) =
[
pT

1E(φ) ϕT
E(φ)

]T
∈ R6,︸ ︷︷ ︸

unknown end-effector pose

(1.13)

where J ∈ N is the number of joints of the robot, φ ∈ RJ is the vector of joint
coordinates, ε̃(φ) ∈ R6 is the end-effector configuration vector, p1E(φ) ∈ R3 is
the position vector of the end-effector, and ϕE(φ) = [αE βE γE]T ∈ R3 is the
orientation vector of the end-effector, expressed using the global XYZ (RPY)
Euler angles (see Subsection 1.2.4).

In cases when a tool, e.g., a milling cutter, drill, etc., is attached as the end-
effector, it is more convenient to talk about the tool center point (often abbreviated
as TCP), instead of a general end-effector point. The forward kinematics problem
then becomes a slightly modified version of (1.13), i.e.,

φ =
[
φ12 · · · φJ,J+1

]T
∈ RJ︸ ︷︷ ︸

known joint coordinates

7→ ε(φ) =
[
pT

1TCP(φ) ϕT
TCP(φ)

]T
∈ R6,︸ ︷︷ ︸

unknown TCP pose

(1.13’)

where ε(φ) ∈ R6 is the TCP configuration vector, in which p1TCP(φ) ∈ R3 and
ϕTCP(φ) = [αTCP βTCP γTCP]T ∈ R3 are the position and orientation vectors
of the tool center point, respectively.

Seeing as (1.13’) is analogous to (1.13), the question now is how does one
proceed to precisely adhere to the Scheme (1.13’), or (1.13) for that matter. The
approach we shall use is by utilizing homogeneous transformations Hij ∈ SE(3),
more specifically the product of multiple homogeneous transformations, resulting

17By the term “joint coordinates”, we mean the angular displacement of each actuated joint.
18A mapping is when an element is linked to another through a function or transformation.

24 1. Kinetostatics of Rigid Systems

in a homogeneous transformation matrix H1TCP(φ) ∈ SE(3), relating the tool
center point to the global coordinate system O1x1y1z1, i.e.,

H1TCP(φ) =
J+1∏
i=1

C∏
j>i

Hij(φ) = H12(φ12)H23(φ23) · · ·HJ+1,C(φJ,J+1)

=

 R1TCP(φ) ∈ SO(3) p1TCP(φ) ∈ R3

0T
3 ∈ R3 1

 ∈ SE(3),
(1.14)

assuming the TCP is the origin of the last, C-th coordinate system OCxCyCzC .

y1

z1

x1

j1

k1

i1 O1

yJ

zJ

xJ

jJkJ

iJ

OJ

yC

zC

xC jC

kC

iC OC

y2

z2

x2

j2

k2

i2

O2

H12

· · ·
H

JC

H1TCP

Figure 1.9 Open-chain forward kinematics.

The overall transformation H1TCP(φ) from (1.14), gives only the first portion
of ε(φ) directly. To obtain the remaining components of ε(φ), i.e., the orientation
vector of the tool center point ϕTCP(φ), and thus the XYZ Euler angles of the
TCP, one has to do a little more work. Given an overall transformation matrix
H1TCP(φ), the Euler XYZ angles can be obtained by comparing R1TCP(φ) to
the general rotation matrix R1TCP(ϕTCP) from (1.11), resulting in19

αTCP = atan2
[

r21

cos(arcsin r31)
,

r11

cos(arcsin r31)

]
, (1.15a)

βTCP = − arcsin r31, (1.15b)

γTCP = atan2
[

r32

cos(arcsin r31)
,

r33

cos(arcsin r31)

]
, (1.15c)

19The denominators in Eqs. (1.15a, 1.15c) are nothing but cos βTCP, having taken into account
that arcsin(−x) = − arcsin x and cos(−x) = cos x.

1.3 Open-Chain Kinematics 25

where βTCP ∈ [−π/2, π/2], αTCP, γTCP ∈ (−π, π], and

atan2(r, q) =

arctan(r/q) if q > 0,
arctan(r/q) + π if r ≥ 0 and q < 0,
arctan(r/q) − π if r < 0 and q < 0,
π/2 if r > 0 and q = 0,
−π/2 if r < 0 and q = 0,
undefined if q = r = 0

is a two-argument version of the arctangent function, commonly used in computer
programming to compute the angle from the positive x-axis to the point [q, r] in
the Cartesian plane, yielding an angle θ in [rad] such that θ ∈ (−π, π]. Having
now computed ϕTCP(φ) from (1.15a — 1.15c) and p1TCP(φ) from (1.14), the
transition from φ to ε(φ) as per Scheme (1.13’) is complete.
Remark 1.5. Solutions (1.15a) and (1.15c) encounter singularities at r31 = ±1,
corresponding to βTCP = ±π/2, which remain valid solutions. In such scenarios,
it becomes necessary to derive expressions from R1TCP and subsequently solve
for the orientation vector of the TCP, ϕTCP(φ), accordingly. ⋄

The methodology we have described assumes that all coordinate systems can
be defined arbitrarily, provided they are right-handed. An alternative method
for open-chain forward kinematics involves utilizing the Denavit-Hartenberg
parameters, which are discussed in most major textbooks on robotics. [12, 15, 29]

1.3.2 Closed-Form Inverse Kinematics

As hinted in the introduction to this section, the inverse kinematics problem
presents a considerably greater challenge compared to its forward counterpart. The
fundamental concept involves a straightforward reversal of the forward kinematics
problem, specifically the desire for computing all joint variables based on the
desired pose of the end-effector or the tool center point (TCP), i.e.,

ε =
[
pT

1TCP ϕT
TCP

]T
∈ R6︸ ︷︷ ︸

known (desired) TCP pose

7→ φ(ε) =
[
φ12 · · · φJ,J+1

]T
∈ RJ ,︸ ︷︷ ︸

unknown joint coordinates

(1.16)

and similarly for an arbitrary end-effector. As the complexity and dimension of the
manipulator increase, Schemes similar to (1.16) become increasingly challenging.
While planar arms with fewer links generally allow for relatively straightforward
solutions to the planar form of (1.16), transitioning to spatial arms with more
joints and consequently more links presents challenges in finding a closed-form
solution. In fact, certain types of spatial arms have no closed-form solutions at
all, necessitating the use of numerical methods, the subject of Appendix B.

26 1. Kinetostatics of Rigid Systems

The majority of spatial serial structures, potentially capable of accommodating
closed-form solutions for their inverse kinematics, give rise to sets of nonlinear
equations20 when attempting to derive such solutions owing to their intricate
geometric arrangements. As a result, closed-form solutions may be within reach,
albeit regrettably only under specific configurations or simplified representations
of the arms, and are not universally accessible for arbitrary poses of the end-
effector, or the tool center point for that matter. A solution, yet still partial, is
the employment of the 6R anthropomorphic arm with a spherical wrist,21 designed
to mimic the structure and movement capabilities of the human arm. This type
of arm finds applications in a diverse array of fields such as machining, welding,
material handling, and is favoured in many industrial manipulators due to its
capacity for precise positioning and enhanced dexterity. [12, 15, 29, 31]

φ12

φ23

φ34

φ45

φ56

φ67

J1

J2

J3

J4

J5

J6

E

Link 1 (frame) Link 2 (shoulder)

Link 3 (arm)

Link 4 (elbow)

Link 5 (forearm)

Link 6 (wrist)

Link 7 (flange)

Wrist center point (WCP)

Figure 1.10 6R anthropomorphic arm with a spherical wrist.

The 6R anthropomorphic arm depicted in Figure 1.10 exhibits a configuration
where its ultimate three axes of revolution converge at a solitary point termed the
wrist center point (WCP). This design allows for the representation of the final
three rotations via a spherical joint, thereby warranting the designation spherical
wrist. Further, the implementation of the spherical wrist facilitates the segregation
of the inverse kinematics problem into two separate problems, the inverse position
kinematics problem and the inverse orientation kinematics problem.

20Equations in which the dependent variable or variables do not form a linear relationship with
the independent variable or variables, i.e., ones with square roots, trigonometric functions, etc.

21Understand the word “anthropomorphic” as resembling human anatomy.

1.3 Open-Chain Kinematics 27

▷ Inverse Position Kinematics. The fundamental concept of inverse position
kinematics involves ascertaining the precise spatial coordinates of the wrist center
point based on the desired pose of the end-effector or the tool center point. This
process entails deriving the position vector p1WCP(ε ∨ ε̃) ∈ R3 from the position
vector of the end-effector/TCP, which necessitates a stepwise approach of adding
constant vectors to p1E or p1TCP until the location of the WCP is established,
with all constant vectors being defined within the overarching system O1x1y1z1.

zC

yC

xC

kC

jC

iC

∆1E

p1WCP
p1E

OC

WCP

(a) Arbitrary end-effector (E)

xC

zC

yC
iC

kC

jC

∆1TCP
p1WCP

p1TCP
OC

WCP

(b) Tool center point (TCP)

Figure 1.11 Inverse position kinematics.

Suppose we have a rotation matrix R1E(ϕE) or R1TCP(ϕTCP), which charac-
terizes the desired orientation of either the end-effector or the tool center point
using the Euler XYZ angles. Additionally, we are provided with a constant dis-
placement vector representing the total displacement of the end-effector or the tool
center point from the wrist center point, denoted as dE = [dEx dEy dEz]T ∈ R3

or dTCP = [dTCPx dTCPy dTCPz]T ∈ R3, respectively. The expression for the
position vector of the wrist center point can be articulated as

p1WCP(ε ∨ ε̃) =

p1E +∆1E(ϕE) for E,
p1TCP +∆1TCP(ϕTCP) for the TCP,

(1.17)

where

∆1E(ϕE) = R1E(ϕE)
(
dE ⊙

[
iC jC kC

]T)
,

∆1TCP(ϕTCP) = R1TCP(ϕTCP)
(
dTCP ⊙

[
iC jC kC

]T)
,

assuming E or the TCP is the origin of the last, C-th coordinate system. The
operator ⊙ represents the Hadamard product, a binary operation capable of
operating on two matrices or vectors with identical dimensions. This operation

28 1. Kinetostatics of Rigid Systems

yields a new matrix or vector in which each element is computed as the product
of the corresponding elements from the input matrices or vectors. [25, 32, 33]

Now that the position of the wrist center point is determined, the inverse
position kinematics transitions into a trigonometric exercise confined to a plane.
This resulting 2R sub-mechanism operates within the J1-J2-J5 plane P ∈ E3,
rotating about the first axis of revolution by φ12.

J1

J2

J3

J4 J6

E

WCP

φ12

E0

P0

x1

y1

z1 ≡ z2

O1 ≡ O2

p1WCPx

p
1W

C
P

y

x2

y2

J5

Path traced by E

P

Figure 1.12 2R planar sub-mechanism of the 6R anthropomorphic arm.

The angular displacement φ12 between coordinate systems O1x1y1z1 and
O2x2y2z2, or the initial plane P0 ∈ E3 and P for that matter, reads

φ12 = atan2(p1WCPy , p1WCPx), (1.18)

as per Figure 1.12. Solving for φ23 and φ34 entails the examination of two potential
configurations that both achieve the designated WCP position — the elbow-up and
elbow-down configurations. In the depiction provided in Figure 1.12, we specifically
portray the elbow-up configuration, where the elbow (link 4), is oriented upwards.
Each configuration yields distinct equations governing φ23 and φ34, respectively,
which will be systematically derived within Chapter 5.

▷ Inverse Orientation Kinematics. Upon computing the angles for the initial
three joints, namely φ12, φ23, and φ34, utilizing inverse position kinematics, the
subsequent step involves determining φ45, φ56, and φ67. A notable advantage of

1.3 Open-Chain Kinematics 29

the 6R anthropomorphic arm with a spherical wrist lies in its capability to uphold
the prescribed position of the end-effector (TCP) irrespective of the angular
displacements exhibited by the last three joints, i.e., the position of the end-
effector (TCP) remains independent of the spherical wrist, and is unambiguously
determined by φ12, φ23, and φ34. Consequently, the function of the spherical wrist
predominantly revolves around achieving the desired orientation.

Consider a rotation matrix R1E(ϕE) or R1TCP(ϕTCP) encompassing the de-
sired orientation of the end-effector or the tool center point within O1x1y1z1,
respectively. Since the Euler XYZ (RPY) angles are inputs of the inverse kine-
matics problem, this rotation matrix is known. Moreover, now that φ12, φ23, and
φ34 are given, we are also provided with the rotation matrix R14(φ12, φ23, φ34),
relating the orientation of O4x4y4z4 within O1x1y1z1. As per Theorem 1.2, we
can express either R1E(ϕE) or R1TCP(ϕTCP) in the form

R1C(ϕC) = R14(φ12, φ23, φ34)R4C ,

from where we can obtain

R4C(φ12, φ23, φ34,ϕC) = RT
14(φ12, φ23, φ34)R1C(ϕC), (1.19)

assuming the end-effector or the TCP is the origin of the C-th coordinate system.
The rotation from O4x4y4z4 to OCxCyCzC can also be obtained from the defined
coordinate systems of the 6R anthropomorphic arm, i.e.,

R′
4C(φ45, φ56, φ67) =

J+1∏
i=4

C∏
j>i

Rij(φ45, φ56, φ67), (1.20)

which is similar to (1.14). Seeing as (1.19) is ultimately independent of φ45, φ56
and φ67, juxtaposing it with (1.20) yields algebraic expressions for the last three
joint angles, thereby finalising the closed-form inverse kinematics solution.

1.3.3 Differential Kinematics and the Jacobian

Following the derivation of both forward and inverse kinematics solutions, it is
pertinent to address the phenomenon of kinematic singularities. These configu-
rations denote states wherein the robot’s motion exhibits heightened sensitivity
to minor alterations in joint velocities. Kinematic singularities pose significant
challenges to motion planning and control, potentially leading to suboptimal
performance or even mechanical failure under extreme conditions. Consequently, a
thorough understanding and characterization of these singularities are imperative
for ensuring the safety and reliability of robotic systems.

Consider a forward kinematics solution of the form (1.14). Our aim is to find the
relationship between the joint velocities φ̇ ∈ RJ and linear and angular velocities

30 1. Kinetostatics of Rigid Systems

of the tool center point (TCP), denoted ṗ1TCP(φ, φ̇) ∈ R3 and ω1TCP(φ, φ̇) ∈ R3,
respectively, i.e., to obtain the mapping

νTCP(φ, φ̇) :=
[
ṗ1TCP(φ, φ̇) ω1TCP(φ, φ̇)

]T
7→ Jg(φ)φ̇, (1.21)

where Jg(φ) ∈ R6×D is termed the geometric Jacobian and is given by

Jg(φ) :=
[
Jp(φ) ∈ R3×D

Jω(φ) ∈ R3×D

]
∈ R6×D ,

where Jp(φ) and Jω(φ) satisfy the mappings

ṗ1TCP(φ, φ̇) 7→ Jp(φ)φ̇, (1.22)
ω1TCP(φ, φ̇) 7→ Jω(φ)φ̇, (1.23)

for a D-degree-of-freedom open-chain manipulator. [12, 15, 27, 29]
In order to compute the geometric Jacobian efficiently, it is advantageous to

address the linear velocity, i.e., Jp(φ), and angular velocity, i.e., Jω(φ), separately.
The contribution from the linear velocity ṗ1TCP(φ, φ̇) reads

ṗ1TCP(φ, φ̇) =
J∑

i=1

J+1∑
j>i

∂p1TCP(φ)
∂φij

φ̇ij (1.24)

and by reorganising (1.24) to the form

ṗ1TCP(φ, φ̇) 7→

jp11 · · · jp1D...
jp31 · · · jp3D

φ̇12
...

φ̇J,J+1

 , (1.25)

one obtains precisely (1.22). Assuming, the tool center point is part of the last,
U -th link of the manipulator in question, the contribution from the angular
velocity ω1TCP(φ, φ̇) is then given by

ω1TCP(φ, φ̇) =
U∑

u=1
ωu−1,u =

J∑
i=1

J+1∑
j>i

φ̇ijkj, (1.26)

since J+1 has to be equal to U (see, e.g., Figure 1.10). Again, reorganising (1.26)
to the form similar to (1.25), it yields (1.23). [12, 15]

Kinematic singularities occur when Jg(φ) is rank deficient, i.e., when

rank[Jg(φ)] < min(6,D),

or alternatively, if Jg(φ) is square,22

det[Jg(φ)] = 0,

which is computed, e.g., via the cofactor expansion. [15, 32]
22The geometric Jacobian becomes square for a 6-degree-of-freedom arm.

1.4 Static Gravity Compensation 31

1.4 Static Gravity Compensation

As gravity constitutes an intrinsic force within the fabric of nature, its influence
on the robotic system remains inherent, inevitably inducing deviations from the
intended pose of the end-effector or the tool center point, as prescribed by the
inverse kinematics solution, requiring a correction of the elements of the vector of
joint coordinates φ ∈ RJ . When the aim is to solely attain equilibrium using some
counter-torque to balance out gravitational torque, irrespective of the robot’s
dynamics, the process is referred to as static gravity compensation.

1.4.1 Torsion Spring Compensation

One approach to account for gravitational effects is to use torsion spring com-
pensation, i.e., attach torsion springs with stiffness κτ [N m rad−1] and dampers
with damping coefficient b [N m s rad−1] to each joint i and alter their equilibrium
position φij ∈ φ by some angle ∆φij to initiate a counter-torque acting against
gravitational torque and thereby create equilibrium.

y1

z1

x1

j1

k1

i1

kj

Link u, mu

Oj (Joint i), κτ , b Link u − 1, mu−1

gu

Mu

O1

p1Oj

p1Mu

pjMu

Figure 1.13 Static gravity compensation.

Let us consider an open kinematic chain composed of J ∈ N revolute joints
and U ∈ N links, each of mass mu. The equilibrium of joint i reads

κτ ∆φij + g
J∑
i

U∑
u>i

det(Tui)mu = 0, (1.27)

where g ≈ 9.806 65 [m s−2] is the gravitational acceleration and Tui ∈ R3×3 denotes
the gravitational torque matrix of joint i, given by [34]

Tui :=

 kjx kjy kjz

p1Mux
p1Muy

p1Muz

0 0 −1

 ∈ R3×3, ∀ j = i+ 1,

32 1. Kinetostatics of Rigid Systems

if ⟨gu,k1⟩ < 0 for gravitational forces g of all links u. The vector p1Mu
denotes

the position vector from the origin of O1x1y1z1 to the center of mass M of link u
and the axis of revolution of joint i is denoted kj , as O1x1y1z1 is reserved for the
frame. The elements of Tui can, in general form, be computed as

kj = R1jk1,

p1Mu
= R1upuMu

+
U∑

u>j
u̸=U

R1jpjOu
.

The gravity compensation algorithm start from the last, J-th joint of the
robot, for which, from (1.27), we have

∆φJ,J+1 = − g

κτ

U∑
u>J

det(Tu,J+1)mu,

which, for the 6R anthropomorphic arm, becomes

∆φ67 = − g

κτ

det(T77)m7,

wherein
k7 = R17k1, p1M7 = R17p7M7 .

As for joint 5, (1.27) reads

∆φ56 = − g

κτ

6∑
i=5

7∑
u>i

det(Tui)mu = − g

κτ

[
det(T65)m6 + det(T75)m7

]
,

for which

k6 = R16k1, p1M6 = R16p6M6 , p1M7 = R17p7M7 +R16p6O7 ,

and so on up to joint 1. All solutions for ∆φij form a vector of joint compensations,

∆φ =
[
∆φ12 · · · ∆φJ,J+1

]
∈ RJ ,

which, when added to the vector of joint coordinates φ ∈ RJ , corrects the inverse
kinematics solution to account for gravitational effects and ultimately leads in
achieving the desired pose of the end-effector or the tool center point.
Remark 1.6. This approach can also be interpreted as the motors actuating each
joint being stationary under compensation (hence static gravity compensation),
and us modelling the electromechanical stiffness behaviour of the motors and the
transmissions using these mechanical springs and dampers. ⋄

2
Simscape MBS Modelling

Simscape Multibody, formerly recognized as SimMechanics, stands as a robust
tool embedded within the MATLAB and Simulink ecosystem. Tailored for the
modeling and simulation of multi-domain physical systems, this software empowers
engineers and researchers to meticulously craft mechanical models ranging from
elementary mechanisms to sophisticated mechatronic systems. By leveraging
Simscape MBS (multibody systems), users can effortlessly design mechanical
components, joints, and constraints, thereby facilitating precise simulations of
dynamic motion, forces, and torques. Notably, its user-friendly interface and
extensive library of pre-assembled components streamline the modeling process,
while its seamless integration with Simulink ensures smooth analysis and design
of control systems. Ultimately, the utilization of Simscape MBS enables users to
delve deeply into the intricacies of mechanical systems, refining performance and
expediting the development of innovative designs.

This chapter heavily relies on sources such as [35, 36, 37, 38] in its attempt
to develop simple yet effective theoretical foundation into using Simscape MBS,
discussing mainly the function of commonly used blocks and the software’s relation
to MATLAB and Simulink, ultimately resulting in a symbiosis of all three tools.
Similarly to the previous chapter, may the well-versed reader feel free to skip this
portion of the thesis and come back as they find necessary.

2.1 Introduction to Multi-Domain Modelling

Before delving into specifics of individual blocks within Simscape MBS, the
author feels the need to briefly address some preliminary subjects in multi-domain
modelling. Upon initiating MATLAB, the user simply writes simulink in the
command window and the Simulink landing page appears. As Simscape MBS is an

33

34 2. Simscape MBS Modelling

embedded part of Simulink, creating a new multibody model is done by creating a
new Simulink model. On the now visible blank canvas, users can start importing
blocks from Simulink’s library, specifically from the “Simscape” category.

2.1.1 Block Wiring and Signal Types

The blocks in Simscape MBS (or plain Simulink for that matter) need to be
connected together in an order the mechanism is composed. This connecting is
referred to as block wiring and is done by dragging from the output of one block
into the input of another. This action is represented graphically as Simulink creates
a line between the blocks. Each block has a different number of input/output
ports, depending on its use case. Most commonly, blocks in Simscape MBS have
two ports, usually representing coordinate systems yet more ports can sometimes
be added, e.g., in a scenario where more coordinate systems are needed.

Simulink-PS Converter

PS-Simulink Converter
Simulink block (Constant)

Simulink Block (Display)

Simscape MBS Block (Revolute Joint)

Figure 2.1 Simulink/Simscape MBS signal types.

The connection of two blocks is dependent on if they represent the same signal
type. Simulink blocks not drawn from the “Simscape” library category, such as
displays, “Gain” blocks, “Mux” and “Demux” blocks, etc., are of the Simulink
signal type. On the other hand, all blocks from the “Simscape” library category
are of the physical system signal type (PS), hence some sort of “adapter” is needed
to convert one signal type to another and vice versa.

This conversion is achieved by virtue of the “Simulink-PS Converter” and
“PS-Simulink Converter” blocks (see Figure 2.1). Both blocks have only one input
and output ports under all circumstances. In the case of the former mentioned
block, the Simulink-type signal is fed to its input, while its output is of PS-type
signal and can be fed only to a block with PS-type signal inputs. On the contrary,
the latter mentioned block takes a PS-type signal as its input and outputs a
Simulink-type signal for further input into Simulink blocks.

2.2 Commonly Used Blocks 35

2.1.2 Signal Rerouting, Distribution and Merging

A signal does not need to follow only the output-input behaviour. In many
instances, it is the case the user needs to feed the same signal, containing the
same information, to various places at once, i.e., convert one output to multiple
inputs. Doing so is as easy as right-clicking on a chosen output signal and dragging
it to another input of the same signal type (PS/Simulink).23

Rerouting

Gain (multiply by 10)

[1]

[1]
[1 1] [10 10]

[10]

[10]

[1]

Mux (merging)

Demux (distribution)

Figure 2.2 Rerouting, distribution, and merging of signals.

In scenarios when the output is of, e.g., vector form, there may be a desire to
distribute the signal into individual vector components. This can be done by first
feeding the signal through the “Demux” block which takes one input and outputs
n signals depending on the dimension of the array on input.24

In contrast, when the user would like to feed multiple outputs into one input
of, e.g., a graphical interface such as the “Scope” block, the “Mux” block is needed.
Its input are n signals and on the output side is a n-dimensional array.

2.2 Commonly Used Blocks

Given most common Simulink blocks have already been established, e.g., “Mux”,
“Display”, etc., let us only turn our attention to Simscape MBS blocks as the
main structure of a robotic system is modelled using these blocks.

2.2.1 Preliminary Blocks

Each Simscape MBS model has to start with some preliminary blocks, com-
mencing the model and providing a reference. These include the “World Frame”,
“Mechanism Configuration”, and “Solver Configuration” blocks (see Fig. 2.3).

23If the input requires a signal of different type, one uses a converter.
24In the context of Fig. 2.2, the array is a 1 × 2 vector.

36 2. Simscape MBS Modelling

▷ World Frame. Advancing from left to right, the “World Frame” block does not
have any options dialogue box as it only serves as the overarching coordinate
system O1x1y1z1. This means it is orthogonal and right-handed. The port W is con-
nected, together with the “Mechanism Configuration” and “Solver Configuration”
blocks, to the first solid within the model.

Figure 2.3 Preliminary Simscape MBS blocks.

▷ Mechanism Configuration. The middle block in Figure 2.3 is the “Mechanism
Configuration” block. It is used to define global mechanical settings for the model,
such as uniform gravity. Its C port is connected, together with the “World Frame”
and “Solver Configuration” blocks, to the first solid within the model.

▷ Solver Configuration. The “Solver Configuration” block (rightmost block in
Figure 2.3) is used to set global solver settings for simulation. Its output port
is connected, together with the “World Frame” and “Mechanism Configuration”
block, to the first solid within the model.

2.2.2 Solids and Joints

Having now described the necessary preliminary blocks, the main portion of the
mechanism is composed of solids and joints, to which we turn now. In the case of
solids, there exists a considerably large number of options. Simscape MBS has a
built-in modeller, with which one can model simple shapes of cubic, cylindrical

2.2 Commonly Used Blocks 37

and other topologies. Given the topological intricacy of the model we’ll be using
(see Part II), the best option we are left with is the “File Solid” block.

Figure 2.4 Common Simscape MBS solids and joints.

▷ File Solid. The “File Solid” block (Figure 2.4) serves as an extension to the
Simscape MBS embedded modeller as it enables users to input any file given they
provide its path in the “Geometry” option on the left hand side of the block’s
configuration dialogue box. Under the “Inertia” and “Graphic” options, users can,
similarly to the Simscape MBS embedded modeller, define either density of the
component or mass, and let software determine other inertial parameters such as
center of mass coordinates, moments of inertia, etc. Moreover, the appearance of
the part can be changed under the “Graphic” option and more coordinate systems
can be added under the “Frames” option, extending the block’s input/output
ports beyond the reference port R, usually situated at the center of mass M.

The solids are usually connected through joints as on the actual robot.25

Given our attention resides on the 6R anthropomorphic arm with a spherical
wrist (extensively showcased in Chapter 1), the most important block in our use
case is the “Revolute Joint” block (depicted in Figure 2.4 right). On the other
hand, all joint types depicted in Figure 1.1 can be used in Simscape MBS to
model different types of robotic systems or mechanisms.

25An exception may be made for rigidly connected parts, e.g., via screws or pins.

38 2. Simscape MBS Modelling

▷ Revolute Joint. The “Revolue Joint” block has two ports by default, the base
port B and the follower port F, i.e., Simscape MBS uses the same terminology we
have introduced in Chapter 1. This means that, if one has two solids (robot links),
i and i+ 1, the revolute joint i has its B port connected to the output coordinate
system of solid i, whilst its F port connects to the input coordinate system of
solid i + 1. The axis of revolution of this joint has to be the z-axis, somewhat
constraining the model’s coordinate system definition (see Chapter 5 in Part II).
Configuring the joint mainly involves setting its state targets, i.e., desired angle
and, optionally, velocity; its internal mechanics, i.e., torsion spring stiffness and
damping coefficient (see Chapter 5), and actuation settings for its motion and
torque, which can be either provided by input, automatically computed, and, as
for torque, there can be none. Additionally, one can set limits for the angle of
revolution and sense forces, torques, etc. in the joint during simulation.

2.2.3 Coordinate Transformations

In many instances, the user will need to perform a transformation from one,
already defined, coordinate system to another without specifically defining this
system within, e.g., the “File Solid” block. This transformation is realised by
virtue of the “Rigid Transform” block (see Figure 2.5).

Figure 2.5 Coordinate transformation within Simscape MBS.

▷ Rigid Transform. The “Rigid Transform” block transforms one coordinate
system, situated at the B port, into another at its F port. The user can specify
rotation of the follower system along with its translation and has multiple options
to do so, e.g., rotation matrix, standard axis, quaternion, etc., as for rotation;
and Cartesian, standard axis, and cylindrical, as for translation. The resulting
coordinate system remains orthogonal and right handed.

2.3 Interfacing Simscape MBS with MATLAB 39

2.2.4 Forces, Torques and Measuring

To apply load on a system, e.g., force on the tool center point of a robot, one can
use the “External Force and Torque” block, where this load can be configured as
desired. As this block is not an essential building block of Simscape MBS, the
author refers the reader to [37, 38] for further insight.

Besides the “External Force and Torque” block, one may sometimes desire to
measure either dimensions, such as distances, angles, etc., or inertial parameters,
e.g., mass, moments of inertia, etc., of the system. For these purposes, Simscape
MBS provides the “Transform Sensor” and “Inertia Sensor” blocks, respectively.
As the need to measure is not always present, the author kindly asks the reader
to again consult [37, 38] for further information. Yet, our specific use case of these
blocks is briefly described in Part II, Chapter 5.

2.3 Interfacing Simscape MBS with MATLAB

To conclude this chapter, let us outline how the collaboration between MATLAB
and Simscape MBS works. Consider a multibody model within Simscape MBS
and some MATLAB script, e.g., used to calculate joint coordinates of the revolute
joints within the model. By default, these coordinates, and any variables for that
matter, appear in the MATLAB workspace upon running the script.

▷ From MATLAB to Simscape MBS. Now, the user has two options on how to
interface these variables into the model. Firstly, utilizing the “From Workspace”
block facilitates the loading of selected variables into Simscape MBS, albeit requir-
ing connection to an appropriate block within the model, see [36]. Alternatively,
certain blocks, such as revolute joints, the “Rigid Transform” block, etc., permit
direct incorporation of these variables as configuration parameters through the
block configuration dialogue box. The latter approach offers a more streamlined
process, enabling users to input variable names directly into the dialogue box.
However, both approaches necessitate prior execution of the MATLAB script
before simulation commencement.

▷ From Simscape MBS to MATLAB. Going the other way requires the “To
Workspace” block, which involves assigning variable names to signals and trans-
mitting them back to the MATLAB workspace upon initiating the simulation of
the model. As the reader shall see later, our model heavily relies on this block in
terms of its static gravity compensation.

3
Nonlinearity

Given most real mechanical structures, e.g., robotic systems, especially spatial
ones, are often of great complexity, they exhibit highly nonlinear behaviour within
their work envelope. Moreover, this nonlinearity tends to gets worse as the system
gets more complicated. This phenomena restrains engineers in their attempts
of finding, e.g., the equations of motion of the system, and thereby predicting
the system’s future movement, velocity, etc., as finding such equations requires
solving nonlinear differential equations and is thereby unattainable in closed-form.

The final theoretical chapter of this thesis undertakes a formal effort to es-
tablish a fundamental connection between the state-space representation of a
linearized system and its static stiffness. By delving into the foundational princi-
ples of control theory and dynamical systems, which encompass key ideas such as
the Laplace transform and transfer function matrices, a theoretical framework
is constructed. After thoroughly exploring these fundamental concepts, the dis-
cussion smoothly transitions into a methodical derivation of the aforementioned
relationship. This derivation is meticulously carried out by employing singular
value decomposition (SVD) on the transfer function of the linearized system, thus
clarifying the intricate relationship between system linearity and static stiffness.

3.1 State-Space Representation

The state-space representation can be understood as a mathematical model of a
physical system, defined by a set of input, output, and general variables related by
first-order differential, or difference equations. These general variables, termed the
state variables, dynamically evolve over time contingent upon the input variables
of the system. While the output variables are generally dependent on the state

41

42 3. Nonlinearity

variables, it is noteworthy that in certain scenarios, their reliance extends to both
input and state space variables of the given system. [39, 40, 41, 42]

3.1.1 Linearization

To derive the state-space representation, it is imperative to transform all higher-
order differential equations governing the system into first-order equations through
a process of linearization. This involves expanding all nonlinear terms within
the system’s equations using the Taylor expansion, as extensively detailed in
Appendix A, and truncating the expansion at the linear term, i.e., the first
order. A fundamental tenet of calculus dictates that the Taylor expansion of a
function yields acceptable accuracy only in the vicinity of the expansion point.
Consequently, the resultant linearized mathematical description, does not faith-
fully capture the system’s behaviour across its entire domain. Should a change
in the system’s operating point be required, it becomes necessary to reiterate
the linearization process to ensure consistency. As a result, for a system to be
pronounced linear, it must satisfy Definition 3.1 in all cases. [39, 43]
Definition 3.1. A system S is considered linear if it responds to a linear combi-
nation of its inputs by the same linear combination on its output. [41] ⋄

Definition 3.2. A system S is time-invariant if for any input signal ψ(t), the
output signal ς(t) satisfies the condition

ς(t) = S[ψ(t)] ≡ ς(t+ τ) = S[ψ(t+ τ)], ∀ τ ∈ R,

i.e., the output is independent of the time at which the input came. [40, 41] ⋄

Let ξ(t) ∈ Rn represent the state vector of S at time t. Provided S is linear,
time-invariant and finite-dimensional, its state-space representation reads

ξ̇(t) = Aξ(t) +Bψ(t),
ς(t) = Cξ(t) +Dψ(t),

where A ∈ Rn×n represents the dynamics of the system, B ∈ Rn×m represents the
effect of inputs on the system, C ∈ Rp×n represents the the relationship between
the state and the output, and D ∈ Rp×m represents the direct influence of inputs
on the output, for n-dimensional state space, m-dimensional input space, and
p-dimensional output space. [39, 41, 43]

3.1.2 Transfer Function Matrix

Consider a state space representation of a linearized system S. The output vector
ς(t) ∈ Rp of S can be expressed in the form

Σ(s) = G(s)Ψ (s),

3.1 State-Space Representation 43

so that
G(s) = Σ(s)

Ψ (s) ,

where the matrix operator G(s) is referred to as the transfer function matrix,
relating the inputs and outputs of S in the Laplace domain. The Laplace domain
is a product of the Laplace transform, transforming a function of time t into a
function of a complex variable s, termed the Laplace operator (see Definition
3.3), which allows for an easier analysis of differential equations as they become
algebraic ones within this specific framework. [40, 41]
Definition 3.3. The Laplace transform of a function f(t) : R+

0 7→ C is defined as

L{f}(s) :=
∫ +∞

0
f(t) exp(−st) dt,

wherein s = s1 + is2 ∈ C, s1, s2 ∈ R, i :=
√

−1. [41, 43] ⋄

Remark 3.1. The Laplace transform is defined only for a specific set of functions,
referred to as the domain of Laplace transformation. Essentially, the function
f(t) : R+

0 7→ C has to be integrable on I = [0, a] for all a > 0 and∫ +∞

0
f(t) exp(−st) dt < +∞

as t → +∞ for some s ∈ C, i.e., the integral converges. [41] ⋄

As for the state-space description, taking the Laplace transform yields

sΞ(s) − ξ0 = AΞ(s) +BΨ (s) (3.1a)
Σ(s) = CΞ(s) +DΨ (s) (3.1b)

where ξ0 ≡ ξ(0) is the initial state of the system. From (3.1a) we have

(sIn −A)Ξ(s) = ξ0 +BΨ (s),

and rearranging gives us

Ξ(s) = (sIn −A)−1ξ0 + (sIn −A)−1BΨ (s).

Now, substituting Ξ(s) into (3.1b) yields

Σ(s) = C[(sIn −A)−1ξ0 + (sIn −A)−1BΨ (s)] +DΨ (s),

by letting ξ0 = 0n and distributing C we get,

Σ(s) = C(sIn −A)−1BΨ (s) +DΨ (s),

44 3. Nonlinearity

and dividing by Ψ (s), we finally arrive at

G(s) = D +C(sIn −A)−1B, (3.2)

which can be rewritten to the form

G(s) = D +C 1
det(sIn −A)adj(sIn −A),

wherein adj(sIn −A) is the adjoint of [sIn −A]. The determinant det(sIn −A)
is termed the characteristic polynomial of the system and its roots are used to
determine the stability of S. [40, 41, 43, 44]

3.2 Singular Value Decomposition

Singular value decomposition (SVD) is a powerful technique of linear algebra,
used mainly for data analysis, where it allows for a simpler representation of a
large dataset, capturing its essential features and reducing dimensionality. [32, 33]
Theorem 3.1. Let A ∈ Rm×n be a real-valued matrix such that r = rank(A)
satisfies r ≤ min(m,n). The factorization of A which reads

A = UΛV T

in which U ∈ Rm×m, V ∈ Rn×n are orthonormal matrices of the form

U =

u1 u2 · · · um

 ∈ Rm×m, V =

v1 v2 · · · vn

 ∈ Rn×n

and Λ ∈ Rm×n is a pseudo-diagonal matrix of the form

Λ =

√
λ1

. . . √
λr

0
. . .

0

∈ Rm×n,

where λ1 ≥ λ2 ≥ · · · ≥ λr > 0 are the eigenvalues of A, is referred to as the
singular value decomposition of A. The non-zero diagonal entries of Λ are termed
the singular values of A, the columns of U are called the left singular vectors of
A, and the rows of V T are the right singular vectors of A. [15, 32, 45, 46, 47] ⋄

3.2 Singular Value Decomposition 45

Remark 3.2. In cases when A is rectangular, i.e., when m ̸= n, the singular
values

√
λ1, . . . ,

√
λr are computed from the eigenvalues of ATA. [45, 47] ⋄

Remark 3.3. The singular value decomposition concept can be extended to the
complex domain, where, for any complex-valued matrix A ∈ Cm×n, it reads

A = UΛV H ,

wherein U ∈ Cm×m and V ∈ Cn×n are unitary matrices, Λ ∈ Cm×n is again a
pseudo-diagonal matrix, and V H denotes the Hermitian transpose, sometimes
also referred to as the conjugate transpose, of V . [45, 46, 47] ⋄

v1

v2

v3

1

1

1

1

1

1

√
λ1

√
λ2

√
λ3

u1
u2

u3

√
λ1

√
λ2

√
λ3

V

V T

UT

U

Λ
A = UΛV T

Figure 3.1 Singular value decomposition.

Definition 3.4. The domain of a transformation is the set of all possible input
values ψ ∈ Rm for which the transformation is defined, i.e.,

dom(V) = {ψ | ψ ∈ Rm},

for a linear transformation V . [25, 26, 47, 48] ⋄

Definition 3.5. The range of V is the set of all possible output values V can
yield for the input values from its domain, i.e.,

range(V) = {ς | ς = V(ψ) ∈ Rp, ψ ∈ dom(V)},

where ς ∈ Rp is the output produced by applying V onto ψ. [25, 26, 47, 48] ⋄

46 3. Nonlinearity

The domain space of A, dom(A), is represented by the columns of U , which
form the basis for the space of all possible input vectors A can operate on. On
the other hand, the columns of V represent the range space of A, range(A), and
form a basis for the space spanned by all possible output vectors that can be
produced by applying A to vectors from its domain space. [33, 45, 47]

The geometric intuition behind singular value decomposition in 3D space
can be interpreted as shown within Figure 3.1. If we consider U and V to be
square, they can be interpreted as rotation matrices, i.e., elements of the special
orthogonal group SO(3), under the condition that det(U) = det(V) = 1. If
this property is not satisfied, then either det(U) = −1 or det(V) = −1 as both
matrices are still orthonormal, indicating reflection, not rotation. At last, Fig. 3.1
shows the effect of Λ, scaling each coordinate by the factor

√
λi. [32, 45, 46, 47]

3.2.1 Static Compliance Matrix

Finally, the time has come for us to tie all of the previously established theoretical
framework to the spatial static stiffness of six-axis serial robots. Consider a robotic
system, e.g., the 6R anthropomorphic arm with an attached end-effector housing
a tool. By applying external forces on the tool center point, we can measure its
displacement from its equilibrium position, prescribed as the input of the inverse
kinematics solution. As the dynamics governing such displacement is described
by higher-order differential equations, the system needs to be linearized at this
juncture to derive its state-space representation. Subsequently,

ξ̇(t) = Aξ(t) +Bf(t),
δ(t) = Cξ(t) +Df(t),

for some unit input force f(t) ∈ R3 and output TCP displacement δ(t) ∈ R3.
Since the subject of this thesis is static stiffness, ξ̇(t) = 0 and both the input force
and output displacements are not functions of time. As a result, (3.2) becomes

Gstatic = D −CA−1B,

relating the displacement of the tool center point to the input unit force,

∆ = GstaticF ,

effectively encompassing static compliance of the system. Taking its SVD yields

∆ = UΛstaticV
TF , (3.3)

where Λstatic ∈ R3×3 is the static compliance matrix. Its diagonal entries are the
principal static malleabilities

√
λ1,

√
λ2, and

√
λ3 [m N−1], i.e., the lengths of

the three semi-axes of the compliance ellipsoid (Figure 3.1). The center of the

3.2 Singular Value Decomposition 47

compliance ellipsoid is the point the tool center point is currently located at.
Further, postmultiplying both sides of (3.3) by UT yields

UT∆ = ΛstaticV
TF ,

i.e., the system inputs and outputs in the overarching coordinate system. This
effectively gives us a directional field of three vectors at each chosen point of
interest, where u1/∥u1∥ is the unit vector pointing in the direction of the largest
malleability, i.e.,

√
λ1, and vice versa for the other malleabilities,

√
λ2 and

√
λ3.

3.2.2 Static Stiffness Matrix

Now we know the principal static compliances and the principal direction these
compliances act in, obtaining static stiffness is trivial. Since stiffness is the
reciprocal of compliance, in terms of matrices, the static stiffness matrix reads

Kstatic = Λ−1
static =

1/
√
λ1 0 0

0 1/
√
λ2 0

0 0 1/
√
λ3

 ∈ R3×3

and has the principal stiffnesses,

κi = 1√
λi

, i = 1, 2, 3,

as its diagonal entries. Given that
√
λ1 ≥

√
λ2 ≥

√
λ3 > 0, the principal static

stiffness values are arranged in reverse order on the diagonal of Kstatic, making κ3
effectively the maximum principal stiffness, whilst κ1 is the minimum principal
stiffness since it corresponds to the maximum principal compliance.

Geometrically, one can imagine taking the inverse of the static malleability
matrix as reshaping the compliance ellipsoid in Figure 3.1, i.e., each of the three
semi-axes changing its length to κi, forming the stiffness ellipsoid.

3.2.3 Stiffness Homogeneity

Besides investigating the values of principal static stiffnesses, a question of
homogeneity arises. Coming back to our geometric parallel, we ideally want the
stiffness ellipsoid to become a sphere, i.e., have all of its three semi-axes be the
same length. Mathematically, we can express such relationship as

κ1

κ2
= κ2

κ3
= κ1

κ3
= 1

in terms of principal static stiffnesses, or as
√
λ1√
λ2

=
√
λ2√
λ3

=
√
λ1√
λ3

= 1,

in terms of principal static compliances.

48 3. Nonlinearity

Remark 3.4. Looking forward to Part II, the median value, κ2, holds less
significance. In practical terms of robotic machining, what truly matters are the
principal minima and maxima. This effectively reshapes the stiffness ellipsoid in
R3 into a stiffness ellipse in R3 (see Figure 3.2).

u1

u3

max κ

min κ

x

y

z

Figure 3.2 Stiffness ellipse in R3.

However, this ellipse isn’t strictly confined to a plane because the columns of UT ,
representing the principal directions, can point in any direction in space as long
as they maintain orthogonality, essentially forming a spatial curve. Under this
framework, the scenario of stiffness homogeneity reads

max κ
min κ = min κ

max κ = 1,

where, for clarity, κ3 and κ1 are denoted as max κ and min κ, respectively. ⋄

II
Simulation Model

4
Model Assembly

With the necessary theoretical framework now established, let us commence the
second part of this thesis by discussing which robotic system is the most adequate
for addressing the problem at hand. As elucidated in the preceding theoretical
discourse, the 6R anthropomorphic arm emerges as the optimal candidate due to
its capacity to streamline the inverse kinematics solution, facilitating a closed-
form solution and obviating the necessity for numerical algorithms. Additionally,
it is imperative that the chosen structure exhibits sufficient stiffness to endure
the typical loads encountered during machining operations such as milling and
drilling, thus constituting another pivotal criterion for our evaluation.

4.1 Choice of Robot

Numerous manufacturers currently provide robotic systems with the 6R anthropo-
morphic configuration. It is incumbent upon us to select the one that best aligns
with the specified criteria. Among the arms considered by the author for inclusion
in the model was the IRB 6660-100/3.3 from ABB, engineered specifically for
high-performance, high-payload machining tasks. Another arm deliberated upon
was the KR 120 R2700-2 from KUKA, which ultimately emerged as the chosen
option and will be elaborated upon in the subsequent text.

4.1.1 KUKA KR 120 R2700-2

Revisiting our criteria, the KR 120 R2700-2 comfortably meets the stipulated
requirements. For one, it is a 6R anthropomorphic arm with a spherical wrist and
secondly, akin to the IRB 6660-100/3.3, is designed to excel in high-performance
applications, allowing it to accommodate substantial force. Aligned with industry

51

52 4. Model Assembly

norms, KUKA provides a freely accessible, concise one-page datasheet for each of
its arms, featuring essential particulars like the work envelope and maximum reach.
Conversely, detailed technical specifications and manuals are accessible solely
through formal request. However, owing to KUKA’s provision of meticulously
detailed CAD models for its arms and accompanying accessories, the exhaustive
specifications are deemed superfluous for our requirements.

Figure 4.1 Main dimensions of the KR 120 R2700-2. Courtesy of KUKA.

Let us now proceed to detail all significant parameters of the KR 120 R2700-2,
as specified in the datasheet provided by KUKA, cited under [49]. The main
dimensions of the robot along with its workspace are depicted in Figure 4.1.

Parameter Value
Robot weight [kg] approx. 1 069
Maximum reach [mm] 2 701
Handling capacity [kg] 120

Continued on next page

4.2 CAD Model within DS SolidWorks 53

Continued from previous page

Number of axes 6
Repeatability [mm] ±0.05
Installation surface Floor
Installation surface area [mm2] 754

Table 4.1 Technical parameters of the KR 120 R2700-2. Data from [49].

The main technical parameters of the KR 120 R2700-2 are shown within Table
4.1. Table 4.2 shows the range and angular velocity ωi of each joint i.

(Joint)i Range [◦]
ωi [◦ s−1]

min. max.
(J)1 −185 +185 120
(J)2 −140 −5 115
(J)3 −120 +168 120
(J)4 −350 +350 190
(J)5 −125 +125 180
(J)6 −350 +350 260

Table 4.2 KR 120 R2700-2 joint ranges and angular velocities. Data from [49].

Overall, the listed parameters suffice for all necessary computations to achieve
the desired results. For additional information, please consult the KR 120 R2700-2
datasheet, or directly request the full product specification.

4.2 CAD Model within DS SolidWorks

SolidWorks, a CAD environment developed and maintained by Dassault Systèmes
(DS), a leading French technology company specialising in CAD, CAM, and
related software, stands out as an optimal choice for the CAD modelling phase.
This is due to its capability to effortlessly import .step files, a format in which
KUKA provides its models, ensuring a smooth and convenient workflow.

4.2.1 Link Assembly

The first step of the process is to obtain said .step files from the KUKA Download
Center.26 This can be done by searching “KR 120 R2700-2” in the search box
of the Download Center and downloading a .zip archive of the desired format,
i.e., .step. Next, upon extracting all files into a folder and opening SolidWorks,

26Found at https://www.kuka.com/en-de/services/downloads?terms=Language:en:1&q=.

https://www.kuka.com/en-de/services/downloads?terms=Language:en:1&q=

54 4. Model Assembly

one just simply opens the respective file by using ctrl+O and then clicking on
it. SolidWorks then processes this input, parses all files, forms all surfaces and
volumes, etc., and creates a new file with a .sldprt extension.

Figure 4.2 CAD model of link 2 (shoulder). Courtesy of KUKA.

Upon successfully opening and saving all constituent parts of the robot
through this method, the subsequent modelling endeavour entails assembling
these individual links into an assembly file with the .sldasm extension. This
assembly process is facilitated by employing standard SolidWorks tools, such as
mates. Notably, since KUKA furnishes the models with cylindrical leaders in
locations where joints would conventionally be situated (refer to Figure 4.2), the
mating process predominantly necessitates the application of the “coincident”
and “concentric” mates. These mates then serve to precisely align the cylindrical
leaders of each two respective links i and i+ 1 at joint i.

Spindle

Detachable flange

Chuck

Tool (milling cutter)

Figure 4.3 CAD model of the end-effector.

Additionally, the assembled links are complemented with a 500 millimetre
booster frame, additional brackets, screws, pins, etc. KUKA directly provides
the booster frame and brackets, while standardized elements such as screws (ISO
4762) are sourced from the SolidWorks Toolbox.

4.2.2 Attached End-Effector

Finally, let us turn our attention to the end-effector. Since we aim to develop a
slight parallel to robotic machining, the chosen end-effector is a spindle with a
milling cutter. As can be observed in Figure 4.3, the model of the spindle is very

4.3 Simscape MBS Integration 55

thorough, featuring detachable flanges to mount the end-effector to the robot’s
flange (link 7). On the other hand, the tool is only modelled as a ∅10 × 120 [mm]
cylinder in order to simplify the complicated geometry of milling cutters.

4.3 Simscape MBS Integration

Integrating the fully assembled model into Simscape MBS can be done using two
different approaches. For one, the components can be imported to Simscape MBS
individually by virtue of the “File Solid” block. All inertial parameters of the
imported parts are then, by default, calculated by sourcing the density of the part
from the .sldprt file. Further, the user has to manually define all coordinate
systems, connect all blocks either through a revolute joint or simply as a rigid
connection, etc., each step taking a considerable amount of time.

Figure 4.4 Final robot CAD assembly. Courtesy of KUKA.

It becomes apparent that streamlining this process becomes essential with
larger models. To save time, there exists a handy plug-in for SolidWorks called
Simscape Multibody Link. Although it significantly accelerates the block-by-block
building process directly in Simulink, since it is an pre-written algorithm, the
user has no control over how the assembled model behaves and looks.

4.3.1 Simscape Multibody Link for DS SolidWorks

Although the Simscape Multibody Link plug-in presents severe caveats as dis-
cussed in the previous paragraph, it is still a convenient tool, giving the user an

56 4. Model Assembly

idea on how to wire the blocks in Simscape MBS, and also providing them with
a data file containing all physical information about each component.

Figure 4.5 Simscape Mutlibody Link for DS SolidWorks.

The comprehensive guidelines detailing the installation and activation of the
plug-in are available on the MathWorks Help Center27 and affiliated platforms.
In essence, following successful activation of the plug-in in both MATLAB and
SolidWorks, the sole requisite within an open assembly is to run

Tools > Simscape Multibody Link > Export > Simscape Multibody

which outputs an .xml file with the same name as the assembly. Next, running

smimport('<filename>.xml');

in MATLAB’s command window results in the instantiation of a new Simulink
model derived from the SolidWorks assembly, accompanied by the creation of the
<filename>_DataFile.m data file corresponding to the newly established model.

4.3.2 Block Rewiring and Model Reassembly

The Simulink/Simscape MBS model produced is generally suitable for smaller-
scale implementations. However, in our current scenario, where we are working
with a larger-scale model, the automatically generated model tends to exhibit
significant clutter, with blocks densely interconnected. Moreover, the plug-in gener-
ates an excessive number of unnecessary coordinate systems, thereby exacerbating
the clutter and undermining the overall clarity of the model.

With the accompanying data file generated, we are now able to mostly dis-
regard the existing model. Instead, we choose to initiate a fresh approach, es-
tablishing our own coordinate systems and optimizing the model. This targeted
removal process is restrained, as certain “non-critical” blocks, such as motors

27Found at https://www.mathworks.com/help/smlink/ref/linking-and-unlinking-simme
chanics-link-software-with-solidworks.html

https://www.mathworks.com/help/smlink/ref/linking-and-unlinking-simmechanics-link-software-with-solidworks.html
https://www.mathworks.com/help/smlink/ref/linking-and-unlinking-simmechanics-link-software-with-solidworks.html

4.3 Simscape MBS Integration 57

and cables, are already well-defined. We specifically only eliminate some of the
primary seven links, subsequently re-importing them back in and assigning their
inertial properties. For instance, if the shoulder (Figure 4.2) is identified by index
28 in the data file, its inertial parameters are inputted in the form28

smiData.Solid(28).<parameter>

wherein <parameter> is, e.g., mass for mass m, CoM for the coordinates of the
center of mass M, etc. It is important to note a significant limitation with all
inertial parameters except mass — each of these properties is referenced to a
predetermined coordinate system R (as seen in Fig. 4.6), predefined in the CAD
model. As the CAD model is provided by KUKA, users are unable to relocate
this system. Attaching the “Inertia Sensor” block to each rigidly connected body
group and measuring the center of mass coordinates in a specific coordinate
system can resolve this issue. This approach is demonstrated in Figure 4.6, where
the outputs of the “Inertia Sensor” block (IS) are sent back as variables to the
MATLAB workspace, such as xM2, using the “To Workspace” block.29

(a) Link 2 (shoulder) (b) Link 4 (elbow)

Figure 4.6 Link subsystems.

In addition, beyond the task of rewiring all blocks, it is expedient to construct
subsystems for each assembly of rigidly interconnected bodies within the links,
facilitating further improvement in the model’s clarity. These subsystems are
depicted in Figure 4.6, while in the comprehensive model (Figure 4.7), users do
not initially observe these expanded structures.

28These parameters are entered-in in the left panel of the File Solid block (see Chap. 2).
29In Fig. 4.6, the m port outputs mass and the com port outputs center of mass coordinates.

58
4.M

odelA
ssem

bly

Robot 2
Robot 1

Measurement + linearization Orientation error

Position error

Force (input)
TCP displacement (output)

Preliminary blocks

End-effector

p1TCP(φ)

ε (3× position, 3× orientation)

ϕTCP(φ)

Figure 4.7 Complete Simulink/Simscape MBS model.

4.3 Simscape MBS Integration 59

4.3.3 Model Walkthrough

The comprehensive layout of the KR 120 R2700-2 Simulink/Simscape MBS model
is depicted in Figure 4.7 and can be segmented both horizontally and vertically.
Let us describe its contents in both of these directions in the following text.

▷ Horizontal Direction. Progressing from left to right, the model commences
with essential preliminary components, such as the “Mechanism Configuration”
and “Solver Configuration” blocks. Moving forward, users encounter top-level
subsystems that, when opened, unveil structures akin to those depicted in Figure
4.6. These subsystems are organized sequentially from the booster frame and
base to the end-effector positioned on the right. The six revolute joints of the
6R anthropomorphic arm are situated between the respective links they connect,
with their configurations to be elaborated upon in the subsequent chapter.

▷ Vertical Direction. The middle one of the three vertical layers belongs to the
first of the two total arms. For simulation with both arms coupled, the bottom
row houses the second robot and can be simply commented-out by selecting it
and using ctrl+shift+X, effectively forming a new model with only one arm
present. The topmost layer serves as a measuring and linearization station. The
measuring portion is realised using two “Transform Sensor” blocks, the bottom
of which measures the position, and the top one measures the orientation of the
tool center point, marked as the TCP port on the right side of the “End-Effector”
subsystem. Next, there are a total of twelve displays, displaying either the current
pose of the tool center point (left column of six displays), or the error from the
desired pose (right column of six displays). The measured values are fed to the
first six displays through two “Gain” blocks, simply allowing for unit conversion,
either from [m] to [mm] as for position, or from [rad] to [◦] as for orientation.
The desired positions and orientations of the TCP are entered in as constants,
updating on each run of the inverse kinematics algorithm (see Chapter 5), and
are subsequently being subtracted from the <parameter>Measured values to
display the current error, as hinted by the <parameter>Delta labels of the right
six displays. Lastly, the rightmost block of the top layer is the “External Force
and Torque” block, applying force on the tool center point via three “Inport”
blocks, fx, fy, and fz, which serve an the input of our nonlinear system for future
linearization. The output of this nonlinear system are the displacements of the
TCP, xM, yM, and zM, fed from the position “Transform Sensor” block.

5
Algorithmization

Now that the model within Simulink/Simscape MBS has been assembled, we
arrive at the essence of this thesis — the algorithmization of the model, comprising
the systematic computation of inverse kinematics, forward kinematics, and related
procedures, culminating in the determination of spatial static stiffness, which
stands as the primary focus of this research endeavor.
Notation 5.1. In this chapter, we will seamlessly alternate between the estab-
lished standard notation for position vector components and its simplified form,
represented by x, y, and z, in order to maintain clarity whenever necessary. ⋄

5.1 Chapter Organisation

Since the spatial stiffness function, κ(ε) : R6 7→ (0,+∞), is a six variable one,
dependent on the current position and orientation of the TCP, showing results
graphically is impossible. The idea of the stiffness map, i.e., the output of the
algorithm in Figure 5.1, is to fix all orientation angles, α, β, γ, and one position
coordinate, e.g., z of the tool center point, letting it work only in the respective
xy plane, creating a coloured contour plot of the stiffness

κ(x, y, zk) : R3 7→ (0,+∞), ∀ k ∈ {0, 1, . . . },

within that plane. Next, the plane is shifted one level above to

zk+1 = zk + ∆z, ∀ ∆z > 0,

and the same process repeats, ultimately resulting in multiple coloured contour
plots situated next to each other. After the completion of these xy-maps, one

61

62 5. Algorithmization

fixes a different coordinate, e.g., x, and the process repeats, similarly for the
y-coordinate, i.e., xz-planes. This ultimately results in stiffness maps across all
three Cartesian planes, xy, yz, and xz, in various levels, giving the reader an idea
on how the stiffness changes across three-dimensional space E3.

ε Inverse kinematics Forward kinematics

Gravity compensationLinearization + SVDStiffness map

κτ , b = const.

φ

∆φ

Hij

Figure 5.1 Organisation structure of Chapter 5.

To obtain accurate results, we need to divide each plane of interest into
segments in both directions, i.e., create an equidistant grid of points within that
plane. If we are provided with the dimensions of said plane in both coordinates,
we thereby know the planar coordinates of each one of its points, with the third,
spatial coordinate of these points being currently constant. If we broaden our
view and consider all possible levels of this moving plane, the spatial coordinates
of each point the static stiffness is being evaluated at can be stored in a 3rd order
tensor, with the length and width of the tensor corresponding to the grid in the
current plane, more specifically the planar coordinates of each of its points, and
the depth of the tensor encompassing all possible planes (see Figure 5.2).

+1 depth +1 depth

+1 plane +1 plane

Figure 5.2 Tensor of stiffness-evaluation points.

It is because of the need to precisely reach these points we need to start with
the inverse kinematics solution and proceed as showcased in Figure 5.1. This
algorithm follows a loop where upon each iteration, a new point is inputted as the
desired TCP position until the static stiffness has been evaluated at each point.

5.2 Closed-Form Inverse Kinematics 63

5.2 Closed-Form Inverse Kinematics

Being a 6R anthropomorphic arm with a spherical wrist, the KR 120 R2700-2
allows for closed-form inverse kinematics solution. Before solving for φ ∈ R6, we
need to topologically simplify the real robotic system (Figure 4.4), i.e., create its
kinematic diagram, in order to streamline the computation process.

ℓ 1
ℓ 2

ℓ3

ℓ 4
ℓ 5

ℓ6 ℓ7 ℓ8 ℓ9

ℓ 1
0

x1

y1

z1

x2

y2

z2
y3

z3

x3

x4

z4

y4

z5

y5

x5

x6

z6

y6

z7

y7

x7

x8
y8

z8

Figure 5.3 Kinematic diagram of the KR 120 R2700-2. Not to scale.

Such kinematic diagram is depicted in Fig. 5.3. The coordinate systems
designated on the robot are congruent with those delineated within the Simscape
MBS model. The subsequent table introduces the distances between these systems.

i 1 2 3 4 5 6 7 8 9 10
ℓi [mm] 735.6 409.4 330 1 150 115 868.5 351.5 170 213.5 345

Table 5.1 Coordinate system displacements.

Furthermore, the right hand rule for positive rotation [Figure 1.5(b)] can be used
to determine the positive direction of angular displacement for each joint. Here,
the right-hand thumb points along the joint axis, i.e., the z-axis.

64 5. Algorithmization

5.2.1 Inverse Position Kinematics

The inverse position kinematics problem for the 6R anthropomorphic arm starts
with determining the wrist center point position vector p1WCP(ε) ∈ R3. In light
of (1.17) and Figure 5.3, we can write

p1WCP(ε) = p1TCP +R18(ϕTCP)
[
ℓ10k8 − (ℓ8 + ℓ9)i8

]
,

since there is no displacement in the direction of the y8-axis. Now, φ12 reads

φ12 = atan2(p1WCPy , p1WCPx), (5.1)

as per (1.18). Moreover, the homogeneous transformation

H12 =

cosφ12 − sinφ12 0 0
sinφ12 cosφ12 0 0

0 0 0 ℓ1
0 0 0 1

 ∈ SE(3)

is known, and given [
p1WCP 1

]T
= H12

[
p2WCP 1

]T
,

we have [
p2WCP 1

]T
= H−1

12

[
p1WCP 1

]T
,

yielding the coordinates of the wrist center point in O2x2y2z2.

φ34

WCP
ℓ′

J3 J4

WCP

φ̃34
φ34 + π/2

φ34

ϑ

ℓ5

ℓ6 + ℓ7

J3

Figure 5.4 Substitution of links 4 and 5.

The determination of solutions for φ23 and φ34 necessitates their disentan-
glement into distinct scenarios: the elbow-up configuration problem and the
elbow-down configuration problem. Ultimately, it will be revealed that both
configurations converge upon similar solutions. Initially, given that joint 4 does
not exert influence on the positional kinematics of the TCP, it can be temporarily

5.2 Closed-Form Inverse Kinematics 65

disregarded. Subsequently, we opt to substitute links 4 and 5 with a single straight
virtual link of length ℓ′, prioritizing clarity. It follows from Figure 5.4 that

ℓ′ =
√

(ℓ6 + ℓ7)2 + ℓ2
5,

ϑ = atan2(ℓ5, ℓ6 + ℓ7),

seeing as the dashed triangle is a right triangle.

x2

z2

p2WCPx

p2WCPz

−φ̃ I
34

φ I
23

ℓ2

ℓ3 ℓ4

ℓ′

J2

J3

WCP

(a) Elbow-up (I)

x2

z2

p2WCPx

p2WCPz

φ II
23

φ̃ II
34

ℓ2

ℓ3

ℓ4

ℓ′

J2

J3 WCP

(b) Elbow-down (II)

Figure 5.5 Configurations of the resulting 2R planar sub-mechanism.

What we are now left with is a 2R planar sub-mechanism of the 6R anthropomor-
phic arm (Figure 5.5), already discussed in the theoretical portion of this thesis
(see Figure 1.12). Using the cosine theorem,

cos φ̃w
34 = −ℓ2

4 + ℓ′2 − [(p2WCPx − ℓ3)2 + (p2WCPz − ℓ2)2]
2ℓ4ℓ′ ,

wherein w = I, II. Further, from basic trigonometry, we obtain

sin φ̃w
34 = ±

√
1 − cos2 φ̃w

34,

and therefore, accounting for Figure 5.4, the solution for φw
34 reads

φw
34 = atan2

(
±
√

1 − cos2 φ̃w
34, cos φ̃w

34

)
+ ϑ− π/2. (5.2)

As for φw
23, expressing the wrist center point coordinates as projections of the

links lengths yields a system of nonlinear equations of the form

p2WCPx = ℓ3 + ℓ4 sinφw
23 + ℓ′(sinφw

23 cos φ̃w
34 + cosφw

23 sin φ̃w
34)

p2WCPz = ℓ2 + ℓ4 cosφw
23 + ℓ′(cosφw

23 cos φ̃w
34 − sinφw

23 sin φ̃w
34),

66 5. Algorithmization

but since φw
34 is already known, we can solve for sinφw

23 and cosφw
23. Rearranging

the system of equations into a linear system of the form Φw
34φ

w
23 = ℓ results in[

ℓ4 + ℓ′ cos φ̃w
34 ℓ′ sin φ̃w

34
−ℓ′ sin φ̃w

34 ℓ4 + ℓ′ cos φ̃w
34

]
︸ ︷︷ ︸

Φw
34

[
sinφw

23
cosφw

23

]
︸ ︷︷ ︸

φw
23

=
[
p2WCPx − ℓ3
p2WCPz − ℓ2

]
︸ ︷︷ ︸

ℓ

,

and upon computing
φw

23 = (Φw
34)−1ℓ,

the expression for φw
23 reads

φw
23 = atan2(sinφw

23, cosφw
23), (5.3)

finalising the inverse position kinematics problem.

5.2.2 Inverse Orientation Kinematics

The rotation matrix of the tool center point can be expressed as

R18(ϕTCP) = R14(φ12, φ
w
23, φ

w
34)R48,

where R18(ϕTCP) ∈ SO(3) is given by the desired orientation of the TCP and

R14(φ12, φ
w
23, φ

w
34) = R12(z1, φ12)R23(y2,−π/2)R23(x2,−π/2)

×R23(z2, φ
w
23)R34(z3, π/2)R34(z3, φ

w
34),

as per Figure 5.3 when not in its home configuration. By (1.19), we have

R48(φ12, φ
w
23, φ

w
34,ϕTCP) = RT

14(φ12, φ
w
23, φ

w
34)R18(ϕTCP), (⋆)

or alternatively, from (1.20),

R′
48(φ45, φ56, φ67) = R45(φ45)R56(φ56)R67(φ67)R78,

wherein

R45(φ45) = R45(x4,−π/2)R45(y4, π/2)R45(z4, φ45),
R56(φ56) = R56(y5,−π/2)R56(x5, π/2)R56(z5, φ56),
R67(φ67) = R67(x6,−π/2)R67(y6, π/2)R67(z6, φ67),

R78 = R78(x7, π)R78(y7, π/2),

and if we label the (i, j)-th element of R45(φ45), R56(φ56), and R67(φ67) aij, bij,
and cij, respectively, we get a conglomerate rotation matrix of the form

R′
48(φ45, φ56, φ67) =

 b31 −b32c22 b32c21
a21b11 a22c32 − a21b12c22 a21b12c21 − a22c31
a31b11 a32c32 − a31b12c22 a31b12c21 − a32c31

 ∈ SO(3),

5.3 Forward Kinematics 67

ultimately yielding

φ45 = atan2
[

r31

sin(arccos r11)
,

r21

sin(arccos r11)

]
, (5.4)

φ56 = arccos r11, (5.5)

φ67 = atan2
[

r12

sin(arccos r11)
,

r13

sin(arccos r11)

]
, (5.6)

when juxtaposed with (⋆), denoting the (i, j)-th element of (⋆) as rij.

5.2.3 Implementation

Implementing the inverse kinematics solution into Simscape MBS first requires
writing a MATLAB function of the form

function [phi] = ik6Rarm1(x,y,z,roll,pich,yaw)
<inverse kinematics solution>

and running it to obtain φ ∈ R6, comprised of solutions (5.1 — 5.6). With the
vector of joint coordinates loaded in the MATLAB workspace, interfacing this
solution with Simscape MBS is as simple as typing phi(i) into the “State Targets”
option in the block configuration dialogue box of the respective joint i.

5.3 Forward Kinematics

Upon the completion of the inverse kinematics solution, the next step in the
algorithmization of the KR 120 R2700-2 is the forward kinematics solution, which
outputs all transformation matrices Hij ∈ SE(3), later to be inputted into the
gravity compensation algorithm (see Figure 5.1 for reference).

Since the computation of the respective homogeneous transformations is trivial
and its showcase would only prolong the thesis, the author kindly asks the reader
to refer to (1.12, 1.14) and their surrounding discussion.

5.3.1 Implementation

Implementing the forward kinematics solution into Simscape MBS is not necessary
as it has no direct influence on the behaviour of the model. Instead, we only need
to write a MATLAB function of the form

function [H12,H23,H34,H45,H56,H67,H78] = fk6Rarm1(phi)
<forward kinematics solution>

and run it to save all transformations into the MATLAB workspace.

68 5. Algorithmization

5.4 Static Gravity Compensation

The demonstration of the static gravity compensation algorithm, i.e., the solution
for ∆φ ∈ R6, shall be somewhat of a middle ground between the forward and
inverse kinematics solutions, i.e., its extent will be neither too long nor brief.
Firstly, we have already showcased the “Inertia Sensor” block, thanks to which
we are able to measure the coordinates of the center of mass M in a chosen
coordinate system. The setup for such measurements can be seen in Figure 4.6
and its implementation back to MATLAB workspace comprises of running

out = sim('KR_120_R2700_2.slx');

in the MATLAB command window. Since the variables fed back to MATLAB
workspace, e.g., xM2 [Fig. 4.6(a)], are being measured at each discrete point in
time the simulation is running, these variables are loaded as arrays and not as
scalars. Yet, given their constant character (the center of mass is measured within
a system tightly bound to the given link), we can confidently extract any value
from this array, knowing it will be correct. For instance, to extract the very last
element of a variable array, one runs the command

out.<variable>(end,end)

in the MATALAB command window, where <variable> is, e.g., xM2, m2, etc.
Upon viewing the value of this variable, storing it is as simple as copying and
pasting it somewhere within a new MATLAB function or script.

As for the actual computation of ∆φ ∈ R6, we further need all rotation
matrices and position vectors of the origins of each coordinate system as demon-
strated in Chapter 1. We ultimately have both at our disposal as all homogeneous
transformations Hij ∈ SE(3) are now stored within the MATLAB workspace
since the fk6Rarm1.m function has already been executed. Finally, the last two
inputs of the static gravity compensation algorithm are the torsion spring stiffness
κτ and the damping coefficient b. We elect to set

kappa_tau = 2.5e4; % [N.m/rad]
b = kappa_tau/100; % [N.m/(rad/s)]

as the KR 120 R2700-2 is considerably large and thereby heavy.30 Now, the
stage is set and one is able to compute the vector of joint compensations. As
the specifics of the analytical solution of ∆φ ∈ R6 for the 6R anthropomorphic
arm have already been discussed, and the solution is simply iterative, the author
refers the reader to Section 1.4 of Chapter 1. What follows is, again, an outline
on the implementation of this solution into MATLAB and subsequently Simscape
MBS, allowing for subsequent linearization and singular value decomposition.

30The heaviest link of the KR 120 R2700-2 is link 3 (arm) with a mass of approx. 304 [kg].

5.5 Robot Coupling 69

5.4.1 Implementation

The last user-defined function reads

function [dphi] =
comp6Rarm1(H12,H23,H34,H45,H56,H67,H78,kappa_tau,b)↪→

<gravity compensation solution>

which, upon running, saves the vector of joint compensations into MATLAB
workspace. To implement such solution into the model within Simscape MBS,
one now has to change more parameters within the block configuration dialogue
box of the “Revolute Joint” block. Under the “Internal Mechanics” option, the
“Equilibrium Position” of the torsion spring attached to joint i is to be set to
phi(i) + dphi(i), with the “Spring Stiffness” parameter being kappa_tau and
“Damping Coefficient” being b. At last, under “Actuation”, the “Torque” is set to
“None” and “Motion” to “Automatically Computed”. These settings, combined
with the already set parameters from the inverse kinematics solution, ensure the
error from the desired TCP pose is no more than approximately 1 · 10−11 [mm]
as for position, and approximately 1 · 10−12 [◦] as for orientation.

5.5 Robot Coupling

It was already established that the Simscape MBS model of the final robotic
system houses both manipulators at once and commenting out the bottom rigid
body tree results in an effectively new model with only one arm present.

Figure 5.6 Two coupled robots working together. Courtesy of KUKA.

Given both robots are essentially identical kinematic structures, the algo-
rithms developed for a solitary manipulator apply for the case of coupling two
manipulators as well. Yet, due to the mirroring of the second manipulator, some
things have to be altered in order for the algorithms to work correctly.

70 5. Algorithmization

5.5.1 Closed-Form Inverse Kinematics

The inverse kinematics solution for the second robot is altered in two way. For
one, since the second robot is mirrored,

α = α′, β = −β′, γ = −γ′,

in the local coordinate system of the second robot, O′
1x

′
1y

′
1z

′
1, as ⟨i′1, i1⟩ = −1,

⟨j ′
1, j1⟩ = −1, and ⟨k′

1,k1⟩ = 1, i.e., the positive direction of the x- and y- axes
are reversed, which can also be observed if one mirrors Fig. 5.3. Secondly, as the
closed-form solution requires the position vector of the wrist center point, we need
to alter this position vector so it originates from O′

1. The respective homogeneous
transformation from O1x1y1z1 to O′

1x
′
1y

′
1z

′
1 is of the form

H11′ =

−1 0 0 D11′

0 −1 0 0
0 0 1 0
0 0 0 1

 ∈ SE(3),

where D11′ = 3 867 [mm] is the distance between O1 and O′
1, calculated so

that the two robots meet precisely at the end-effector when both in their home
configuration. By virtue of this transformation, we have[

p′
1TCP 1

]T
= H−1

11′

[
p1TCP 1

]T
,

and the following solution is the same as for a solitary manipulator.
As for implementation into MATLAB and Simscape MBS, one writes as very

similar function to the ik6Rarm1.m function. It is defined as

function [phidash] = ik6Rarm2(x,y,z,roll,pitch,yaw)
<altered inverse kinematics solution>

and upon running such function, the vector of joint coordinates for the second
arm, φ′ ∈ R6, is saved to MATLAB’s workspace. Within the model (Figure 4.7),
the settings for the bottom six revolute joints, corresponding to the second arm,
are essentially the same as for the first arm. The only difference is that, this time,
under “State Targets”, one inputs phidash(i′) for joint i′.

Now, instead of having to run two separate functions to solve for φ and φ′ ∈ R6,
it is convenient to create a third function, encapsulating both ik6Rarm1.m and
ik6Rarm2.m, as ε ∈ R6 is always defined within O1x1y1z1. This function reads

function [phi,phidash] = ik6R(x,y,z,roll,pitch,yaw)
<setting desired pose constants>
[phi] = ik6Rarm1(x,y,z,roll,pitch,yaw);
[phidash] = ik6Rarm2(x,y,z,roll,pitch,yaw);

5.5 Robot Coupling 71

and always solves for both φ and φ′ ∈ R6 simultaneously, regardless of if the
second arm is commented out or not. Furthermore, when walking the reader
through the model, we have mentioned the six constants representing the desired
pose of the tool center point. These constants update automatically on each run
of the ik6R.m function before ik6Rarm1.m and ik6Rarm2.m are executed. Under
<setting desired pose constants> within the previous code,

% position
set_param('KR120_R2700_2/xDesired','Value',string(x));
set_param('KR120_R2700_2/yDesired','Value',string(y));
set_param('KR120_R2700_2/zDesired','Value',string(z));
% orientation
set_param('KR120_R2700_2/RollDesired','Value',string(roll));
set_param('KR120_R2700_2/PitchDesired','Value',string(pitch));
set_param('KR120_R2700_2/YawDesired','Value',string(yaw));

is written, making sure the desired pose remains correct at all times, providing a
correct error if subtracted from the current TCP pose.

5.5.2 Forward Kinematics

Given all coordinate systems are defined in similar fashion for both robots, the
only alteration in the forward kinematics solution is the prior transformation
from O1x1y1z1 to O′

1x
′
1y

′
1z

′
1, before following the same solution to a solitary arm.

Similar to the inverse kinematics solution, the function for the forward kinematics
of the second manipulator is written in the form

function [H12dash,H23dash,...,H78dash] = fk6Rarm2(phidash)
<altered forward kinematics solution>

and outputs all H ′
ij ∈ SO(3) to MATLAB’s workspace.

Again, creating a master forward kinematics function remains convenient, so

function [H12,...,H78,H12dash,...,H78dash] = fk6R(phi,phidash)
[H12,H23,...,H78] = fk6Rarm1(phi);
[H12dash,H23dash,...,H78dash] = fk6Rarm2(phidash);

outputs both Hij and H ′
ij ∈ SO(3) at once, regardless of if the second arm is

commented out or not, in similar fashion to ik6R.m.

5.5.3 Static Gravity Compensation

What concerns the static gravity compensation algorithm, as the flanges (links
7 and 7′) of both robots are now rigidly connected with the end-effector, the
combined mass of this link increases and a shift in the coordinates of the center

72 5. Algorithmization

of mass can be observed. To account for this phenomena, we feed these altered
values back to MATLAB’s workspace in a manner similar to the static gravity
compensation algorithm for a solitary arm. When it comes to the mass distribution,
we choose to distribute this new mass evenly between the two robots, i.e.,

m7 = m7/2,
m′

7 = m7/2,

since the actual mass distribution is unknown.

Remark 5.1. One can feel free to choose a different mass distribution, e.g.,

m7 = m7/3,
m′

7 = 2m7/3,

so long as the actual updated mass of the end-effector remains unchanged. ⋄

As for the center of mass coordinates, one simply updates p7M7 and p′
7M7 ∈ R3

from the variables fed back to the MATLAB workspace.
Upon making the aforementioned alterations, we move on to the final master

function, housing static compensation algorithms for both manipulators. It reads

function [dphi,dphidash] =
comp6R(H12,...,H78,H12dash,...,H78dash,kappa_tau,b)↪→

[dphi] = comp6Rarm1(H12,...,H78,kappa_tau,b);
[dphidash] =

comp6Rarm2(H12dash,...,H78dash,kappa_tau,b);↪→

and outputs both ∆φ and ∆φ′ ∈ R6 simultaneously, regardless of if the second arm
is commented out or not. Implementing the solutions for the second manipulator
to Simscape MBS is similar to a solitary arm, only for the bottom rigid body tree
(see Figure 4.7 for reference). Again, these solutions ensure the divergence from
the desired pose is no more than approximately 1 · 10−11 [mm] as for position,
and approximately 1 · 10−12 [◦] as for orientation.

5.6 Linearization and SVD

Finally, we arrive at linearization and singular value decomposition, tying the
model and its static stiffness together. The reason we have written previous
solutions as MATLAB functions and not as scripts is because of our ability to
call them all in one linearization + SVD script, without needing to run what
would be their respective scripts separately.

5.6 Linearization and SVD 73

5.6.1 Preliminary Definitions

Before commencing the static stiffness evaluation itself, we need to define the
model from which the data will be sourced, along with the number of divisions
and planes. The robot is defined and loaded as
robot = 'KR_120_R2700_2';
load_system(robot);

and because Simscape MBS opens a visualization of the system by default,
set_param(robot,'SimMechanicsOpenEditorOnUpdate','off');

needs to be set so the visualization is not present at all, accelerating result
generation. Next, the simulation time, i.e., the time for linearization, the number
of divisions of each coordinate, and the number of levels (planes) is set using
simTime = 1; % simulation time
divNum = <integer1>; % number of divisions
sliceNum = <integer2>; % number of levels (slices)

where <integer1>, <integer2> are important choices as the model needs to
simulate at each point, thereby massively influencing the script’s runtime. For
instance, simulating the model at 900 distinct points takes approximately 36
minutes. On the other hand, simulating the model 22 500 times adds up to 15
hours of runtime, exhibiting exponential behaviour.

5.6.2 Grid and Level Definitions

Next, the grid and plane levels are simply defined using the divNum and sliceNum
parameters. As for grids, these definitions read
%% Division of axes
% x-axis division
xmin = <number1>; xmax = <number2>;
Xgrid = linspace(xmin,xmax,divNum);
% y-axis division
ymin = <number3>; ymax = <number4>;
Ygrid = linspace(ymin,ymax,divNum);
% z-axis division
zmin = <number5>; zmax = <number6>;
Zgrid = linspace(zmin,zmax,divNum);

%% Grids
[XmeshXY,YmeshXY] = meshgrid(Xgrid,Ygrid); % xy-planes
[YmeshYZ,ZmeshYZ] = meshgrid(Ygrid,Zgrid); % yz-planes
[XmeshXZ,ZmeshXZ] = meshgrid(Xgrid,Zgrid); % xz-planes

74 5. Algorithmization

and as for the plane levels, it is

Zslice = linspace(zmin,zmax,sliceNum); % xy-planes
Xslice = linspace(xmin,xmax,sliceNum); % yz-planes
Yslice = linspace(ymin,ymax,sliceNum); % xz-planes

i.e., sliceNum is our step size in terms of levels, ∆z, ∆x, or ∆y.

5.6.3 Execution

In terms of execution, the script’s main portion is written as a triplet of three
nested for loops, computing static stiffness in all Cartesian planes, i.e., xy, yz,
and xz. Coming back to our tensor parallel (Figure 5.2), the topmost loop is used
to set the current plane level, i.e., goes through the depth of the tensor, and the
two nested loops perform the loop found in Figure 5.1, i.e., go through the rows
and columns of the tensor. In MATLAB code, this approach reads

for i = 1 : 1 : sliceNum
for j = 1 : 1 : divNum

for k = 1 : 1 : divNum
try

<ik6R.m>
<fk6R.m>
<comp6R.m>

catch
continue

end
LsysXY = linearize(robot,simTime);
GsysXY = LsysXY.D -

LsysXY.C*(inv(LsysXY.A))*LsysXY.B;↪→

[UXY,LXY,VXY] = svd(GsysXY);

saveUxy(:,:,j,k,i) = UXY;
saveLxy(:,j,k,i) = diag(LXY);
saveVxy(:,:,j,k,i) = VXY;

end
end

end
save finalXY saveUxy saveLxy saveVxy

as for the xy-planes, and vice-versa for the yz- and xz-planes. The inclusion
of the try-catch construct within the code primarily serves the purpose of
preempting potential script failures when the ik6R.m function encounters difficulty
in determining a solution for the current desired pose of the tool center point. In

5.6 Linearization and SVD 75

such scenarios, program execution seamlessly transitions to the designated catch
block, facilitating continuity from the subsequent iteration. Conversely, when the
ik6R.m function successfully computes a solution, the robotic system assumes that
position, which is then linearized using MATLAB’s linearize function. Post-
linearization, the system’s transfer function Gsys<plane> undergoes singular
value decomposition, with the resulting matrices stored within either a five-
dimensional tensor or a four-dimensional equivalent. Following evaluation at all
points, the script generates a final<plane>.mat file, housing all three tensors.31

5.6.4 Simulation Parameters

Given the exponential behaviour of the runtime of the script, balance needs to
be found between the accuracy of the results and the actual time it takes to
generate them. For such reasons, we choose to perform every simulation with the
parameters presented within the following table.

Parameter
divNum sliceNum

Value 30 3
Number of Points 30 × 30 × 3 × 3 = 8 100
Estimated runtime [h] approx. 5.6

Table 5.2 Simulation parameters.

On the other hand, the coordinate range, i.e., the values of xmin, xmax, ymin,
ymax, zmin, and zmax, have been chosen so that the “ik6R.m” function yields as
many solutions as possible, which in turn results in a larger number of points
being evaluated. For these variables, we set the values shown in Table 5.3.

Variable xmin xmax ymin ymax zmin zmax

Value [mm] 1 700 2 200 −500 500 1 200 1 800

Table 5.3 Simulation work envelope limits.

As the selected work envelope decreases, the proximity of adjacent points
increases, thereby enhancing the understanding of static stiffness distribution.
Ideally, the entire work envelope of the robotic system should be evaluated.
However, due to the necessity for significantly larger values of divNum and
sliceNum in this scenario, the runtime of the script would become prohibitively
long, precluding the acquisition of results within a reasonable timeframe.

31These data files are subsequently loaded for result generation.

6
Results and Discussion

Finally, we arrive at the outcomes of our investigation into static stiffness. To facil-
itate visualization, a distinct script was developed alongside the data acquisition
script. Subsequently, the .mat files were loaded into this script using

load('final<plane>.mat');

for each of the three respective data files. Then, after arranging and reformatting
the gathered data into manageable arrays, stiffness maps — previously discussed
in the preceding chapter — were generated as a fusion of MATLAB’s quiver
and contour plots. Henceforth, we shall refer to them as quiver-contour plots.
Additionally, with each instance of result generation, the minimum, maximum,
and median values were recorded for both minimum and maximum principal
stiffnesses. This was done to precisely assess the influence of robot coupling on
the values directly, as well as on stiffness homogeneity (see further).

Capitalizing on the spatial nature of the problem, we explored two potential
orientations of the tool center point. In one scenario, the tool center point faces
downwards, with Euler XYZ angles set to ϕ = [0 0 0]T ∈ R3. Conversely, in
the other scenario, the tool center point approached the same set of points with
an arbitrary, non-zero orientation. In such instances, the Euler XYZ angles were
set to the values ϕ = [10 5 20]T ∈ R3 degrees.

While investigating two possible approaches of the tool center point further
enhances our understanding of the behaviour of the static stiffness function. Yet,
the vast array of potential cases renders comprehensive explanation impractical.
Instead, a dedicated page precedes each set of results, offering clarity and orienta-
tion for the reader. Generally, each case is covered by a quadruplet of pages, with
the first one giving the reader an introduction into the specific case, whilst the
other three showcase all of the gathered results during simulation.

77

6.1 Case s-C1. Solitary Robot Operating Vertically in xy-Planes

Parameters Configuration Solitary
Plane(s) xy (z-levels)
Euler XYZ angles ϕ = [0 0 0]T ∈ R3

Description
Contents Minima quiver-contour plot for Case s-C1 Static stiffness minima, minima directional field.

Maxima quiver-contour plot for Case s-C1 Static stiffness maxima, maxima directional field.
Results table for Case s-C1 Minima and maxima values, static stiffness homogeneity.

The directional field vectors in Figures 6.5 and 6.6 are uniformly scaled.
Stiffness homogeneity taken as the ratio between maximum principal stiffness and minimum principal stiffness medians.

TCP

Ro
bo

t 1

x1

z1

y1

Figure 6.1 Illustration of Case s-C1. Not to scale.

All other simulation parameters remain the same to those disclosed in Tables 5.2 and 5.3.

6.1
C

ase
s-C

1
79

Figure 6.2 Minima quiver-contour plot for Case s-C1. Solitary robot, xy-planes, ϕ = [0 0 0]T ∈ R3.

80
6.R

esults
and

D
iscussion

Figure 6.3 Maxima quiver-contour plot for Case s-C1. Solitary robot, xy-planes, ϕ = [0 0 0]T ∈ R3.

6.1
C

ase
s-C

1
81

Level 1. z = 1 200 [mm]
Minimum principal stiffness xy [N m−1] Maximum principal stiffness xy [N m−1]
min 0.317 min 2 905.725
max 6.080 max 602 210.840
med 3.900 med 4 934.055 homogeneity 1 265.810

Level 2. z = 1 500 [mm]
Minimum principal stiffness xy [N m−1] Maximum principal stiffness xy [N m−1]
min 0.317 min 734.450
max 6.237 max 2 508 995.890
med 3.885 med 9 278.310 homogeneity 2 388.365

Level 3. z = 1 800 [mm]
Minimum principal stiffness xy [N m−1] Maximum principal stiffness xy [N m−1]
min 0.001 min 10.800
max 5.960 max 1 248 840.670
med 3.570 med 4 652.400 homogeneity 1 304.300

Table 6.1 Results table for Case s-C1.

6.2 Case s-C2. Solitary Robot Operating Vertically in yz-Planes

Parameters Configuration Solitary
Plane(s) yz (x-levels)
Euler XYZ angles ϕ = [0 0 0]T ∈ R3

Description
Contents Minima quiver-contour plot for Case s-C2 Static stiffness minima, minima directional field.

Maxima quiver-contour plot for Case s-C2 Static stiffness maxima, maxima directional field.
Results table for Case s-C2 Minima and maxima values, static stiffness homogeneity.

The directional field vectors in Figures 6.5 and 6.6 are uniformly scaled.
Stiffness homogeneity taken as the ratio between maximum principal stiffness and minimum principal stiffness medians.

TCP

Ro
bo

t 1

x1

z1

y1

Figure 6.4 Illustration of Case s-C2. Not to scale.

All other simulation parameters remain the same to those disclosed in Tables 5.2 and 5.3.

6.2
C

ase
s-C

2
83

Figure 6.5 Minima quiver-contour plot for Case s-C2. Solitary robot, yz-planes, ϕ = [0 0 0]T ∈ R3.

84
6.R

esults
and

D
iscussion

Figure 6.6 Maxima quiver-contour plot for Case s-C2. Solitary robot, yz-planes, ϕ = [0 0 0]T ∈ R3.

6.2
C

ase
s-C

2
85

Level 1. x = 1 700 [mm]
Minimum principal stiffness yz [N m−1] Maximum principal stiffness yz [N m−1]
min 0.120 min 79.105
max 9.320 max 21 161 447.300
med 5.085 med 8 650.430 homogeneity 1 701.250

Level 2. x = 1 950 [mm]
Minimum principal stiffness yz [N m−1] Maximum principal stiffness yz [N m−1]
min 0.245 min 120.575
max 7.250 max 1 338 879.380
med 4.000 med 6 808.800 homogeneity 1 704.500

Level 3. x = 2 200 [mm]
Minimum principal stiffness yz [N m−1] Maximum principal stiffness yz [N m−1]
min 0.195 min 26.940
max 5.785 max 500 358.420
med 3.050 med 5 340.130 homogeneity 1 750.500

Table 6.2 Results table for Case s-C2.

6.3 Case s-C3. Solitary Robot Operating Vertically in xz-Planes

Parameters Configuration Solitary
Plane(s) xz (y-levels)
Euler XYZ angles ϕ = [0 0 0]T ∈ R3

Description
Contents Minima quiver-contour plot for Case s-C3 Static stiffness minima, minima directional field.

Maxima quiver-contour plot for Case s-C3 Static stiffness maxima, maxima directional field.
Results table for Case s-C3 Minima and maxima values, static stiffness homogeneity.

The directional field vectors in Figures 6.8 and 6.9 are uniformly scaled.
Stiffness homogeneity taken as the ratio between maximum principal stiffness and minimum principal stiffness medians.

TCP

Ro
bo

t 1

x1

z1

y1

Figure 6.7 Illustration of Case s-C3. Not to scale.

All other simulation parameters remain the same to those disclosed in Tables 5.2 and 5.3.

6.3
C

ase
s-C

3
87

Figure 6.8 Minima quiver-contour plot for Case s-C3. Solitary robot, xz-planes, ϕ = [0 0 0]T ∈ R3.

88
6.R

esults
and

D
iscussion

Figure 6.9 Maxima quiver-contour plot for Case s-C3. Solitary robot, xz-planes, ϕ = [0 0 0]T ∈ R3.

6.3
C

ase
s-C

3
89

Level 1. y = −500 [mm]
Minimum principal stiffness xz [N m−1] Maximum principal stiffness xz [N m−1]
min 0.040 min 1 322.000
max 5.800 max 8 466 771.300
med 3.660 med 7 699.725 homogeneity 2 106.000

Level 2. y = 0 [mm]
Minimum principal stiffness xz [N m−1] Maximum principal stiffness xz [N m−1]
min 0.065 min 87.765
max 7.000 max 1 133 691.160
med 4.000 med 4 470.700 homogeneity 1 145.380

Level 3. y = 500 [mm]
Minimum principal stiffness xz [N m−1] Maximum principal stiffness xz [N m−1]
min 0.320 min 1 325.875
max 5.785 max 4 303 868.955
med 3.660 med 7 527.873 homogeneity 2 056.000

Table 6.3 Results table for Case s-C3.

6.4 Case c-C1. Coupled Robots Operating Vertically in xy-Planes

Parameters Configuration Coupled
Plane(s) xy (z-levels)
Euler XYZ angles ϕ = [0 0 0]T ∈ R3

Description
Contents Minima quiver-contour plot for Case c-C1 Static stiffness minima, minima directional field.

Maxima quiver-contour plot for Case c-C1 Static stiffness maxima, maxima directional field.
Results table for Case c-C1 Minima and maxima values, static stiffness homogeneity.

The directional field vectors in Figures 6.11 and 6.12 are uniformly scaled.
Stiffness homogeneity taken as the ratio between maximum principal stiffness and minimum principal stiffness medians.

TCP
Ro

bo
t 1

R
obot

2

x1

z1

y1

Figure 6.10 Illustration of Case c-C1. Not to scale.

All other simulation parameters remain the same to those disclosed in Tables 5.2 and 5.3.

6.4
C

ase
c-C

1
91

Figure 6.11 Minima quiver-contour plot for Case c-C1. Coupled robots, xy-planes, ϕ = [0 0 0]T ∈ R3.

92
6.R

esults
and

D
iscussion

Figure 6.12 Maxima quiver-contour plot for Case c-C1. Coupled robots, xy-planes, ϕ = [0 0 0]T ∈ R3.

6.4
C

ase
c-C

1
93

Level 1. z = 1 200 [mm]
Minimum principal stiffness xy [N m−1] Maximum principal stiffness xy [N m−1]
min 0.160 min 2 061.160
max 141.550 max 1 496 764.725
med 47.330 med 5 548.445 homogeneity 117.230

Level 2. z = 1 500 [mm]
Minimum principal stiffness xy [N m−1] Maximum principal stiffness xy [N m−1]
min 0.110 min 1 502.500
max 540.000 max 10 857 505.600
med 58.710 med 16 350.000 homogeneity 278.500

Level 3. z = 1 800 [mm]
Minimum principal stiffness xy [N m−1] Maximum principal stiffness xy [N m−1]
min 0.520 min 106.000
max 333.430 max 2 279 293.300
med 74.245 med 6 699.660 homogeneity 90.238 954

Table 6.4 Results table for Case c-C1.

6.5 Case c-C2. Coupled Robots Operating Vertically in yz-Planes

Parameters Configuration Coupled
Plane(s) yz (x-levels)
Euler XYZ angles ϕ = [0 0 0]T ∈ R3

Description
Contents Minimum quiver-contour plot for Case c-C2 Static stiffness minima, minima directional field.

Maxima quiver-contour plot for Case c-C2 Static stiffness maxima, maxima directional field.
Results table for Case c-C2 Minima and maxima values, static stiffness homogeneity.

The directional field vectors in Figures 6.14 and 6.15 are uniformly scaled.
Stiffness homogeneity taken as the ratio between maximum principal stiffness and minimum principal stiffness medians.

TCP
Ro

bo
t 1

R
obot

2

x1

z1

y1

Figure 6.13 Illustration of Case c-C2. Not to scale.

All other simulation parameters remain the same to those disclosed in Tables 5.2 and 5.3.

6.5
C

ase
c-C

2
95

Figure 6.14 Minima quiver-contour plot for Case c-C2. Coupled robots, yz-planes, ϕ = [0 0 0]T ∈ R3.

96
6.R

esults
and

D
iscussion

Figure 6.15 Maxima quiver-contour plot for Case c-C2. Coupled robots, yz-planes, ϕ = [0 0 0]T ∈ R3.

6.5
C

ase
c-C

2
97

Level 1. x = 1 700 [mm]
Minimum principal stiffness yz [N m−1] Maximum principal stiffness yz [N m−1]
min 0.115 min 133.165
max 161.510 max 7 970 399.000
med 53.145 med 10 153.580 homogeneity 191.000

Level 2. x = 1 950 [mm]
Minimum principal stiffness yz [N m−1] Maximum principal stiffness yz [N m−1]
min 0.175 min 135.670
max 425.710 max 7 013 218.070
med 51.670 med 9 401.940 homogeneity 181.860

Level 3. x = 2 200 [mm]
Minimum principal stiffness yz [N m−1] Maximum principal stiffness yz [N m−1]
min 0.055 min 105.625
max 270.000 max 47 072 430.852
med 51.700 med 11 039.920 homogeneity 213.440

Table 6.5 Results table for Case c-C2.

6.6 Case c-C3. Coupled Robots Operating Vertically in xz-Planes

Parameters Configuration Coupled
Plane(s) xz (y-levels)
Euler XYZ angles ϕ = [0 0 0]T ∈ R3

Description
Contents Minima quiver-contour plot for Case c-C3 Static stiffness minima, minima directional field.

Maxima quiver-contour plot for Case c-C3 Static stiffness maxima, maxima directional field.
Results table for Case c-C3 Minima and maxima values, static stiffness homogeneity.

The directional field vectors in Figures 6.17 and 6.18 are uniformly scaled.
Stiffness homogeneity taken as the ratio between maximum principal stiffness and minimum principal stiffness medians.

TCP
Ro

bo
t 1

R
obot

2

x1

z1

y1

Figure 6.16 Illustration of Case c-C3. Not to scale.

All other simulation parameters remain the same to those disclosed in Tables 5.2 and 5.3.

6.6
C

ase
c-C

3
99

Figure 6.17 Minima quiver contour plot for Case c-C3. Coupled robots, xz-planes, ϕ = [0 0 0]T ∈ R3.

100
6.R

esults
and

D
iscussion

Figure 6.18 Maxima quiver-contour plot for Case c-C3. Coupled robots, xz-planes, ϕ = [0 0 0]T ∈ R3.

6.6
C

ase
c-C

3
101

Level 1. y = −500 [mm]
Minimum principal stiffness xz [N m−1] Maximum principal stiffness xz [N m−1]
min 4.275 min 2 891.200
max 167.300 max 1 417 744.760
med 106.053 med 10 572.840 homogeneity 100.000

Level 2. y = 0 [mm]
Minimum principal stiffness xz [N m−1] Maximum principal stiffness xz [N m−1]
min 0.580 min 207.333
max 657.000 max 403 027.331
med 204.900 med 20 698.050 homogeneity 101.000

Level 3. y = 500 [mm]
Minimum principal stiffness xz [N m−1] Maximum principal stiffness xz [N m−1]
min 4.380 min 2 876.855
max 270.000 max 17 475 843.842
med 105.582 med 9 825.760 homogeneity 93.065

Table 6.6 Results table for Case c-C3.

6.7 Comparison of Cases s-C1-3 and c-C1-3

Description
Contents Comparison of Cases c-C1 and s-C1 Ratios between values for Case c-C1 and Case s-C1

Comparison of Cases c-C2 and s-C2 Ratios between values for Case c-C2 and Case s-C2
Comparison of Cases c-C3 and s-C3 Ratios between values for Case c-C3 and Case s-C3

Legend <number> Improvement after coupling.
<number> Deterioration after coupling.
<number> No change after coupling.

▷ Improvement After Coupling. As for <number> static stiffness values, larger ratio means greater improvement, i.e.,
the coupled configuration exhibits <number>-times larger the respective value. As for <number> stiffness homogeneities,
smaller ratio means greater improvement, i.e., the coupled configuration’s stiffness homogeneity is <number>-times the
stiffness homogeneity of a solitary robot, resulting in the coupled configuration showing an overall increase in static
stiffness homogeneity by a factor of 1/<number> over the solitary configuration.

▷ Deterioration After Coupling. As for <number> static stiffness values, smaller ratio means greater deterioration, i.e.,
the coupled configuration exhibits <number>-times smaller the respective value. As for <number> stiffness homogeneities,
larger ratio means greater deterioration, i.e., the coupled configuration’s stiffness homogeneity is <number>-times the
stiffness homogeneity of a solitary robot, resulting in the coupled configuration showing an overall decrease in static
stiffness homogeneity by a factor of 1/<number> over the solitary configuration.

6.7
C

om
parison

ofC
ases

s-C
1-3

and
c-C

1-3
103

Level 1. z = 1 200 [mm]
Minimum principal stiffness xy ratio Maximum principal stiffness xy ratio
min 0.495 min 0.710
max 23.280 max 2.485
med 12.140 med 1.125 homogeneity ratio 0.090

Level 2. z = 1 500 [mm]
Minimum principal stiffness xy ratio Maximum principal stiffness xy ratio
min 0.340 min 2.045
max 86.546 max 4.330
med 15.112 med 1.765 homogeneity ratio 0.116

Level 3. z = 1 800 [mm]
Minimum principal stiffness xy ratio Maximum principal stiffness xy ratio
min 598.180 min 9.826
max 55.900 max 1.825
med 20.810 med 1.440 homogeneity ratio 0.070

Table 6.7 Comparison of Cases c-C1 and s-C1. Ratios taken as c-C1/s-C1.

104
6.R

esults
and

D
iscussion

Level 1. x = 1 700 [mm]
Minimum principal stiffness yz ratio Maximum principal stiffness yz ratio
min 0.970 min 1.683
max 17.325 max 0.375
med 10.450 med 1.173 homogeneity ratio 0.112

Level 2. x = 1 950 [mm]
Minimum principal stiffness yz ratio Maximum principal stiffness yz ratio
min 0.719 min 1.125
max 58.733 max 5.238
med 12.936 med 1.381 homogeneity ratio 0.107

Level 3. x = 2 200 [mm]
Minimum principal stiffness yz ratio Maximum principal stiffness yz ratio
min 0.280 min 3.920
max 46.677 max 94.077
med 16.955 med 2.070 homogeneity ratio 0.122

Table 6.8 Comparison of Cases c-C2 and s-C2. Ratios takes as c-C2/s-C2.

6.7
C

om
parison

ofC
ases

s-C
1-3

and
c-C

1-3
105

Level 1. y = −500 [mm]
Minimum principal stiffness xz ratio Maximum principal stiffness xz ratio
min 117.760 min 2.185
max 28.953 max 0.167
med 29.000 med 1.373 homogeneity ratio 0.047

Level 2. y = 0 [mm]
Minimum principal stiffness xz ratio Maximum principal stiffness xz ratio
min 8.910 min 2.362
max 93.360 max 0.355
med 52.494 med 4.630 homogeneity ratio 0.088

Level 3. y = 500 [mm]
Minimum principal stiffness xz ratio Maximum principal stiffness xz ratio
min 13.800 min 2.170
max 46.677 max 4.060
med 28.836 med 1.305 homogeneity ratio 0.045

Table 6.9 Comparison of Cases c-C3 and s-C3. Ratios taken as c-C3/s-C3.

6.8 Case s-C4. Solitary Robot Operating Angularly in xy-Planes

Parameters Configuration Solitary
Plane(s) xy (z-levels)
Euler XYZ angles ϕ = [10 5 20]T ∈ R3

Description
Contents Minima quiver-contour plot for Case s-C4 Static stiffness minima, minima directional field.

Maxima quiver-contour plot for Case s-C4 Static stiffness maxima, maxima directional field.
Results table for Case s-C4 Minima and maxima values, static stiffness homogeneity.

The directional field vectors in Figures 6.20 and 6.21 are uniformly scaled.
Stiffness homogeneity taken as the ratio between maximum principal stiffness and minimum principal stiffness medians.

TCP

Ro
bo

t 1

x1

z1

y1

Figure 6.19 Illustration of Case s-C4. Not to scale.

All other simulation parameters remain the same to those disclosed in Tables 5.2 and 5.3.

6.8
C

ase
s-C

4
107

Figure 6.20 Minima quiver-contour plot for Case s-C4. Solitary robot, xy-planes, ϕ = [10 5 20]T ∈ R3.

108
6.R

esults
and

D
iscussion

Figure 6.21 Maxima quiver-contour plot for Case s-C4. Solitary robot, xy-planes, ϕ = [10 5 20]T ∈ R3.

6.8
C

ase
s-C

4
109

Level 1. z = 1 200 [mm]
Minimum principal stiffness xy [N m−1] Maximum principal stiffness xy [N m−1]
min 0.317 min 329.225
max 6.070 max 889 262.000
med 3.900 med 5 423.870 homogeneity 1 391.890

Level 2. z = 1 500 [mm]
Minimum principal stiffness xy [N m−1] Maximum principal stiffness xy [N m−1]
min 0.317 min 142.890
max 6.933 max 606 038.560
med 3.890 med 3 841.590 homogeneity 987.770

Level 3. z = 1 800 [mm]
Minimum principal stiffness xy [N m−1] Maximum principal stiffness xy [N m−1]
min 0.001 min 17.085
max 6.010 max 1 480 637.690
med 2.853 med 4 881.520 homogeneity 1 711.100

Table 6.10 Results table for Case s-C4.

6.9 Case s-C5. Solitary Robot Operating Angularly in yz-Planes

Parameters Configuration Solitary
Plane(s) yz (x-levels)
Euler XYZ angles ϕ = [10 5 20]T ∈ R3

Description
Contents Minima quiver-contour plot for Case s-C5 Static stiffness minima, minima directional field.

Maxima quiver-contour plot for Case s-C5 Static stiffness maxima, maxima directional field.
Results table for Case s-C5 Minima and maxima values, static stiffness homogeneity.

The directional field vectors in Figures 6.23 and 6.24 are uniformly scaled.
Stiffness homogeneity taken as the ratio between maximum principal stiffness and minimum principal stiffness medians.

TCP

Ro
bo

t 1

x1

z1

y1

Figure 6.22 Illustration of Case s-C5. Not to scale.

All other simulation parameters remain the same to those disclosed in Tables 5.2 and 5.3.

6.9
C

ase
s-C

5
111

Figure 6.23 Minima quiver-contour plot for Case s-C5. Solitary robot, yz-planes, ϕ = [10 5 20]T ∈ R3.

112
6.R

esults
and

D
iscussion

Figure 6.24 Maxima quiver-contour plot for Case s-C5. Solitary robot, yz-planes, ϕ = [10 5 20]T ∈ R3.

6.9
C

ase
s-C

5
113

Level 1. x = 1 700 [mm]
Minimum principal stiffness yz [N m−1] Maximum principal stiffness yz [N m−1]
min 0.317 min 39.640
max 16.600 max 167 200 597.420
med 5.045 med 3 289.190 homogeneity 651.750

Level 2. x = 1 950 [mm]
Minimum principal stiffness yz [N m−1] Maximum principal stiffness yz [N m−1]
min 0.246 min 98.836
max 7.545 max 1 963 030.230
med 3.867 med 3 866.395 homogeneity 1000.000

Level 3. x = 2 200 [mm]
Minimum principal stiffness yz [N m−1] Maximum principal stiffness yz [N m−1]
min 0.025 min 67.686
max 5.900 max 589 019.037
med 3.045 med 4 136.833 homogeneity 1 358.745

Table 6.11 Results table for Case s-C5.

6.10 Case s-C6. Solitary Robot Operating Angularly in xz-Planes

Parameters Configuration Solitary
Plane(s) xz (y-levels)
Euler XYZ angles ϕ = [10 5 20]T ∈ R3

Description
Contents Minima quiver-contour plot for Case s-C6 Static stiffness minima, minima directional field.

Maxima quiver-contour plot for Case s-C6 Static stiffness maxima, maxima directional field.
Results table for Case s-C6 Minima and maxima values, static stiffness homogeneity.

The directional field vectors in Figures 6.26 and 6.27 are uniformly scaled.
Stiffness homogeneity taken as the ratio between maximum principal stiffness and minimum principal stiffness medians.

TCP

Ro
bo

t 1

x1

z1

y1

Figure 6.25 Illustration of Case s-C6. Not to scale.

All other simulation parameters remain the same to those disclosed in Tables 5.2 and 5.3.

6.10
C

ase
s-C

6
115

Figure 6.26 Minima quiver-contour plot for Case s-C6. Solitary robot, xz-planes, ϕ = [10 5 20]T ∈ R3.

116
6.R

esults
and

D
iscussion

Figure 6.27 Minima quiver-contour plot for Case s-C6. Solitary robot, xz-planes, ϕ = [10 5 20]T ∈ R3.

6.10
C

ase
s-C

6
117

Level 1. y = −500 [mm]
Minimum principal stiffness xz [N m−1] Maximum principal stiffness xz [N m−1]
min 0.001 min 329.225
max 5.771 max 1 575 544.430
med 3.657 med 1 596.450 homogeneity 436.530

Level 2. y = 0 [mm]
Minimum principal stiffness xz [N m−1] Maximum principal stiffness xz [N m−1]
min 0.075 min 883.170
max 6.073 max 4 122 020.575
med 3.895 med 6 972.120 homogeneity 1 789.615

Level 3. y = 500 [mm]
Minimum principal stiffness xz [N m−1] Maximum principal stiffness xz [N m−1]
min 0.173 min 17.085
max 6.015 max 14 450 212.625
med 3.670 med 4 039.083 homogeneity 1 100.923

Table 6.12 Results table for Case s-C6.

6.11 Case c-C4. Coupled Robots Operating Angularly in xy-Planes

Parameters Configuration Coupled
Plane(s) xy (z-levels)
Euler XYZ angles ϕ = [10 5 20]T ∈ R3

Description
Contents Minima quiver-contour plot for Case c-C4 Static stiffness minima, minima directional field.

Maxima quiver-contour plot for Case c-C4 Static stiffness maxima, maxima directional field.
Results table for Case c-C4 Minima and maxima values, static stiffness homogeneity.

The directional field vectors in Figures 6.29 and 6.30 are uniformly scaled.
Stiffness homogeneity taken as the ratio between maximum principal stiffness and minimum principal stiffness medians.

TCP
Ro

bo
t 1 R

obot 2

x1

z1

y1

Figure 6.28 Illustration of Case c-C4. Not to scale.

All other simulation parameters remain the same to those disclosed in Tables 5.2 and 5.3.

6.11
C

ase
c-C

4
119

Figure 6.29 Minima quiver-contour plot for Case c-C4. Coupled robots, xy-planes, ϕ = [10 5 20]T ∈ R3.

120
6.R

esults
and

D
iscussion

Figure 6.30 Maxima quiver-contour plot for Case c-C4. Coupled robots, xy-planes, ϕ = [10 5 20]T ∈ R3.

6.11
C

ase
c-C

4
121

Level 1. z = 1 200 [mm]
Minimum principal stiffness xy [N m−1] Maximum principal stiffness xy [N m−1]
min 0.020 min 1 040.222
max 211.525 max 5 987 573.784
med 44.692 med 4 740.550 homogeneity 106.075

Level 2. z = 1 500 [mm]
Minimum principal stiffness xy [N m−1] Maximum principal stiffness xy [N m−1]
min 0.023 min 749.455
max 259.700 max 1 917 246.230
med 50.236 med 6 529.990 homogeneity 129.985

Level 3. z = 1 800 [mm]
Minimum principal stiffness xy [N m−1] Maximum principal stiffness xy [N m−1]
min 0.008 min 632.231
max 176.567 max 4 145 477.705
med 27.165 med 3 953.360 homogeneity 145.532

Table 6.13 Results table for Case c-C4.

6.12 Case c-C5. Coupled Robots Operating Angularly in yz-Planes

Parameters Configuration Coupled
Plane(s) yz (x-levels)
Euler XYZ angles ϕ = [10 5 20]T ∈ R3

Description
Contents Minima quiver-contour plot for Case c-C5 Static stiffness minima, minima directional field.

Maxima quiver-contour plot for Case c-C5 Static stiffness maxima, maxima directional field.
Results table for Case c-C5 Minima and maxima values, static stiffness homogeneity.

The directional field vectors in Figures 6.32 and 6.33 are uniformly scaled.
Stiffness homogeneity taken as the ratio between maximum principal stiffness and minimum principal stiffness medians.

TCP

Ro
bo

t 1 R
obot 2

x1

z1

y1

Figure 6.31 Illustration of Case c-C5. Not to scale.

All other simulation parameters remain the same to those disclosed in Tables 5.2 and 5.3.

6.12
C

ase
c-C

5
123

Figure 6.32 Minima quiver-contour plot for Case c-C5. Coupled robots, yz-planes, ϕ = [10 5 20]T ∈ R3.

124
6.R

esults
and

D
iscussion

Figure 6.33 Maxima quiver-contour plot for Case c-C5. Coupled robots, yz-planes, ϕ = [10 5 20]T ∈ R3.

6.12
C

ase
c-C

5
125

Level 1. x = 1 700 [mm]
Minimum principal stiffness yz [N m−1] Maximum principal stiffness yz [N m−1]
min 0.027 min 1 700.517
max 104.935 max 2 656 238.510
med 40.625 med 3 398.753 homogeneity 83.660

Level 2. x = 1 950 [mm]
Minimum principal stiffness yz [N m−1] Maximum principal stiffness yz [N m−1]
min 0.225 min 1 705.020
max 103.953 max 592 342.345
med 40.380 med 3 938.157 homogeneity 97.527

Level 3. x = 2 200 [mm]
Minimum principal stiffness yz [N m−1] Maximum principal stiffness yz [N m−1]
min 0.010 min 1 702.850
max 105.560 max 1 000 740.182
med 39.185 med 5 019.235 homogeneity 128.090

Table 6.14 Results table for Case c-C5.

6.13 Case c-C6. Coupled Robots Operating Angularly in xz-Planes

Parameters Configuration Coupled
Plane(s) xz (y-levels)
Euler XYZ angles ϕ = [10 5 20]T ∈ R3

Description
Contents Minima quiver-contour plot for Case c-C6 Static stiffness minima, minima directional field.

Maxima quiver-contour plot for Case c-C6 Static stiffness maxima, maxima directional field.
Results table for Case c-C6 Minima and maxima values, static stiffness homogeneity.

The directional field vectors in Figures 6.35 and 6.36 are uniformly scaled.
Stiffness homogeneity taken as the ratio between maximum principal stiffness and minimum principal stiffness medians.

TCP
Ro

bo
t 1 R

obot 2

x1

z1

y1

Figure 6.34 Illustration of Case c-C6. Not to scale.

All other simulation parameters remain the same to those disclosed in Tables 5.2 and 5.3.

6.13
C

ase
c-C

6
127

Figure 6.35 Minima quiver-contour plot for Case c-C6. Coupled robots, xz-planes, ϕ = [10 5 20]T ∈ R3.

128
6.R

esults
and

D
iscussion

Figure 6.36 Maxima quiver-contour plot for Case c-C6. Coupled robots, xz-planes, ϕ = [10 5 20]T ∈ R3.

6.13
C

ase
c-C

6
129

Level 1. y = −500 [mm]
Minimum principal stiffness xz [N m−1] Maximum principal stiffness xz [N m−1]
min 0.702 min 997.550
max 190.440 max 8 429 178.556
med 120.777 med 2 182.650 homogeneity 18.070

Level 2. y = 0 [mm]
Minimum principal stiffness xz [N m−1] Maximum principal stiffness xz [N m−1]
min 0.020 min 688.030
max 101.850 max 699 061.930
med 17.903 med 3 778.895 homogeneity 211.080

Level 3. y = 500 [mm]
Minimum principal stiffness xz [N m−1] Maximum principal stiffness xz [N m−1]
min 0.262 min 1 027.590
max 211.524 max 62 860 479.640
med 68.222 med 12 074.970 homogeneity 176.995

Table 6.15 Results table for Case c-C6.

6.14 Comparison of Cases s-C4-6 and c-C4-6

Description
Contents Comparison of Cases c-C4 and s-C4 Ratios between values for Case c-C4 and Case s-C4

Comparison of Cases c-C5 and s-C5 Ratios between values for Case c-C5 and Case s-C5
Comparison of Cases c-C6 and s-C6 Ratios between values for Case c-C6 and Case s-C6

Legend <number> Improvement after coupling.
<number> Deterioration after coupling.
<number> No change after coupling.

▷ Improvement After Coupling. As for <number> static stiffness values, larger ratio means greater improvement, i.e.,
the coupled configuration exhibits <number>-times larger the respective value. As for <number> stiffness homogeneities,
smaller ratio means greater improvement, i.e., the coupled configuration’s stiffness homogeneity is <number>-times the
stiffness homogeneity of a solitary robot, resulting in the coupled configuration showing an overall increase in static
stiffness homogeneity by a factor of 1/<number> over the solitary configuration.

▷ Deterioration After Coupling. As for <number> static stiffness values, smaller ratio means greater deterioration, i.e.,
the coupled configuration exhibits <number>-times smaller the respective value. As for <number> stiffness homogeneities,
larger ratio means greater deterioration, i.e., the coupled configuration’s stiffness homogeneity is <number>-times the
stiffness homogeneity of a solitary robot, resulting in the coupled configuration showing an overall decrease in static
stiffness homogeneity by a factor of 1/<number> over the solitary configuration.

6.14
C

om
parison

ofC
ases

s-C
4-6

and
c-C

4-6
131

Level 1. z = 1 200 [mm]
Minimum principal stiffness xy ratio Maximum principal stiffness xy ratio
min 0.060 min 3.160
max 34.831 max 6.733
med 11.470 med 0.874 homogeneity ratio 0.076

Level 2. z = 1 500 [mm]
Minimum principal stiffness xy ratio Maximum principal stiffness xy ratio
min 0.073 min 5.245
max 37.457 max 3.160
med 12.937 med 1.700 homogeneity ratio 0.132

Level 3. z = 1 800 [mm]
Minimum principal stiffness xy ratio Maximum principal stiffness xy ratio
min 29.832 min 37.000
max 29.370 max 2.800
med 9.522 med 0.810 homogeneity ratio 0.085

Table 6.16 Comparison of Cases c-C4 and s-C4. Ratios taken as c-C4/s-C4.

132
6.R

esults
and

D
iscussion

Level 1. x = 1 700 [mm]
Minimum principal stiffness yz ratio Maximum principal stiffness yz ratio
min 0.088 min 42.900
max 6.320 max 0.015
med 8.050 med 1.033 homogeneity ratio 0.128

Level 2. x = 1 950 [mm]
Minimum principal stiffness yz ratio Maximum principal stiffness yz ratio
min 0.910 min 17.250
max 13.777 max 5.240
med 10.445 med 0.302 homogeneity ratio 0.100

Level 3. x = 2 200 [mm]
Minimum principal stiffness yz ratio Maximum principal stiffness yz ratio
min 0.420 min 25.158
max 17.890 max 1.700
med 12.870 med 1.213 homogeneity ratio 0.095

Table 6.17 Comparison of Cases c-C5 and s-C5. Ratios taken as c-C5/s-C5.

6.14
C

om
parison

ofC
ases

s-C
4-6

and
c-C

4-6
133

Level 1. y = −500 [mm]
Minimum principal stiffness xz ratio Maximum principal stiffness xz ratio
min 2 363.865 min 3.030
max 33.000 max 5.350
med 32.845 med 1.367 homogeneity ratio 0.041

Level 2. y = 0 [mm]
Minimum principal stiffness xz ratio Maximum principal stiffness xz ratio
min 0.248 min 0.780
max 16.773 max 0.170
med 4.595 med 0.542 homogeneity ratio 0.118

Level 3. y = 500 [mm]
Minimum principal stiffness xz ratio Maximum principal stiffness xz ratio
min 1.510 min 60.146
max 35.166 max 4.350
med 18.595 med 2.990 homogeneity ratio 0.160

Table 6.18 Comparison of Cases c-C6 and s-C6. Ratios taken as c-C6/s-C6.

6.15 Comparison of Cases s-C1-3 and s-C4-6

Description
Contents Comparison of Cases s-C4 and s-C1 Ratios between values for Case s-C4 and Case s-C1

Comparison of Cases s-C5 and s-C2 Ratios between values for Case s-C5 and Case s-C2
Comparison of Cases s-C6 and s-C3 Ratios between values for Case s-C6 and Case s-C3

Legend <number> Improvement after reorienting.
<number> Deterioration after reorienting.
<number> No change after reorienting.

▷ Improvement After Reorienting. As for <number> static stiffness values, larger ratio means greater improvement, i.e.,
the angled configuration exhibits <number>-times larger the respective value. As for <number> stiffness homogeneities,
smaller ratio means greater improvement, i.e., the angled configuration’s stiffness homogeneity is <number>-times the
stiffness homogeneity of the vertical configuration, resulting in the angled configuration showing an overall increase in
static stiffness homogeneity by a factor of 1/<number> over the vertical configuration.

▷ Deterioration After Reorienting. As for <number> static stiffness values, smaller ratio means greater deterioration,
i.e., the angled configuration exhibits <number>-times smaller the respective value. As for <number> stiffness homo-
geneities, larger ratio means greater deterioration, i.e., the angled configuration’s stiffness homogeneity is <number>-times
the stiffness homogeneity of the vertical configuration, resulting in the angled configuration showing an overall decrease
in static stiffness homogeneity by a factor of 1/<number> over the vertical configuration.

6.15
C

om
parison

ofC
ases

s-C
1-3

and
s-C

4-6
135

Level 1. z = 1 200 [mm]
Minimum principal stiffness xy ratio Maximum principal stiffness xy ratio
min 1.000 min 0.113
max 1.000 max 1.477
med 1.000 med 1.099 homogeneity ratio 1.100

Level 2. z = 1 500 [mm]
Minimum principal stiffness xy ratio Maximum principal stiffness xy ratio
min 1.000 min 0.195
max 1.112 max 0.242
med 1.000 med 0.414 homogeneity ratio 0.414

Level 3. z = 1 800 [mm]
Minimum principal stiffness xy ratio Maximum principal stiffness xy ratio
min 0.341 min 1.582
max 0.992 max 1.186
med 0.799 med 1.000 homogeneity ratio 1.312

Table 6.19 Comparison of Cases s-C4 and s-C1. Ratios taken as s-C4/s-C1.

136
6.R

esults
and

D
iscussion

Level 1. x = 1 700 [mm]
Minimum principal stiffness yz ratio Maximum principal stiffness yz ratio
min 2.663 min 0.501
max 1.781 max 7.901
med 1.000 med 0.380 homogeneity ratio 0.383

Level 2. x = 1 950 [mm]
Minimum principal stiffness yz ratio Maximum principal stiffness yz ratio
min 1.000 min 0.820
max 1.000 max 1.466
med 0.968 med 0.568 homogeneity ratio 0.587

Level 3. x = 2 200 [mm]
Minimum principal stiffness yz ratio Maximum principal stiffness yz ratio
min 0.122 min 2.512
max 1.000 max 1.177
med 1.000 med 0.775 homogeneity ratio 0.776

Table 6.20 Comparison of Cases s-C5 and s-C2. Ratios taken as s-C5/s-C2.

6.15
C

om
parison

ofC
ases

s-C
1-3

and
s-C

4-6
137

Level 1. y = −500 [mm]
Minimum principal stiffness xz ratio Maximum principal stiffness xz ratio
min 0.008 min 0.249
max 1.000 max 0.186
med 1.000 med 0.207 homogeneity ratio 0.207

Level 2. y = 0 [mm]
Minimum principal stiffness xz ratio Maximum principal stiffness xz ratio
min 1.161 min 10.063
max 0.863 max 3.626
med 1.000 med 1.560 homogeneity ratio 1.562

Level 3. y = 500 [mm]
Minimum principal stiffness xz ratio Maximum principal stiffness xz ratio
min 0.548 min 0.013
max 1.000 max 3.357
med 1.000 med 0.537 homogeneity ratio 0.535

Table 6.21 Comparison of Cases s-C6 and s-C3. Ratios taken as s-C6/s-C3.

6.16 Comparison of Cases c-C1-3 and c-C4-6

Description
Contents Comparison of Cases c-C4 and c-C1 Ratios between values for Case c-C4 and Case c-C1

Comparison of Cases c-C5 and c-C2 Ratios between values for Case c-C5 and Case c-C2
Comparison of Cases c-C6 and c-C3 Ratios between values for Case c-C6 and Case c-C3

Legend <number> Improvement after reorienting.
<number> Deterioration after reorienting.
<number> No change after reorienting.

▷ Improvement After Reorienting. As for <number> static stiffness values, larger ratio means greater improvement, i.e.,
the angled configuration exhibits <number>-times larger the respective value. As for <number> stiffness homogeneities,
smaller ratio means greater improvement, i.e., the angled configuration’s stiffness homogeneity is <number>-times the
stiffness homogeneity of the vertical configuration, resulting in the angled configuration showing an overall increase in
static stiffness homogeneity by a factor of 1/<number> over the vertical configuration.

▷ Deterioration After Reorienting. As for <number> static stiffness values, smaller ratio means greater deterioration,
i.e., the angled configuration exhibits <number>-times smaller the respective value. As for <number> stiffness homo-
geneities, larger ratio means greater deterioration, i.e., the angled configuration’s stiffness homogeneity is <number>-times
the stiffness homogeneity of the vertical configuration, resulting in the angled configuration showing an overall decrease
in static stiffness homogeneity by a factor of 1/<number> over the vertical configuration.

6.16
C

om
parison

ofC
ases

c-C
1-3

and
c-C

4-6
139

Level 1. z = 1 200 [mm]
Minimum principal stiffness xy ratio Maximum principal stiffness xy ratio
min 0.123 min 0.505
max 1.494 max 4.000
med 0.944 med 0.854 homogeneity ratio 0.905

Level 2. z = 1 500 [mm]
Minimum principal stiffness xy ratio Maximum principal stiffness xy ratio
min 0.213 min 0.500
max 0.481 max 0.177
med 0.856 med 0.400 homogeneity ratio 0.467

Level 3. z = 1 800 [mm]
Minimum principal stiffness xy ratio Maximum principal stiffness xy ratio
min 0.015 min 5.959
max 0.530 max 1.820
med 0.366 med 0.590 homogeneity ratio 1.613

Table 6.22 Comparison of Cases c-C4 and c-C1. Ratios taken as c-C4/c-C1.

140
6.R

esults
and

D
iscussion

Level 1. x = 1 700 [mm]
Minimum principal stiffness yz ratio Maximum principal stiffness yz ratio
min 0.242 min 12.770
max 0.650 max 0.333
med 0.764 med 0.334 homogeneity ratio 0.438

Level 2. x = 1 950 [mm]
Minimum principal stiffness yz ratio Maximum principal stiffness yz ratio
min 1.268 min 12.565
max 0.244 max 0.084
med 0.781 med 0.420 homogeneity ratio 0.536

Level 3. x = 2 200 [mm]
Minimum principal stiffness yz ratio Maximum principal stiffness yz ratio
min 0.185 min 16.130
max 0.391 max 0.020
med 0.758 med 0.455 homogeneity ratio 0.600

Table 6.23 Comparison of Cases c-C5 and c-C2. Ratios taken as c-C5/c-C2.

6.16
C

om
parison

ofC
ases

c-C
1-3

and
c-C

4-6
141

Level 1. y = −500 [mm]
Minimum principal stiffness xz ratio Maximum principal stiffness xz ratio
min 0.164 min 0.345
max 1.140 max 5.945
med 1.140 med 0.206 homogeneity ratio 0.181

Level 2. y = 0 [mm]
Minimum principal stiffness xz ratio Maximum principal stiffness xz ratio
min 0.032 min 3.320
max 0.155 max 1.735
med 0.087 med 0.183 homogeneity ratio 2.100

Level 3. y = 500 [mm]
Minimum principal stiffness xz ratio Maximum principal stiffness xz ratio
min 0.060 min 0.360
max 0.784 max 3.600
med 0.646 med 1.230 homogeneity ratio 1.900

Table 6.24 Comparison of Cases c-C6 and c-C3. Ratios taken as c-C6/c-C3.

142 6. Results and Discussion

6.17 Discussion of Results

Ultimately, it may be inferred by the reader that, while stiffness maps (quiver-
contour plots) provide insight into how stiffness varies across the examined
work envelope, the most pivotal aspect of the results lies in the comparison
tables. Stiffness maps fall short compared to numerical data for two primary
reasons. Firstly, the contour lines, or isolines, would have been more precise
and densely distributed had the model been simulated across a larger set of
points. Secondly, due to the necessity of flattening all data to a set of planes for
reasonable visualization, the directional field becomes distorted. This distortion
arises because the third component of all vectors is consistently constrained to lie
within the respective plane, rendering the vector a mere projection. Consequently,
while these vectors accurately represent principal directions within the respective
plane, they lack information pertaining to three-dimensional space. Nevertheless,
stiffness maps provide a useful connection to the presented values.

As for the values themselves, the most interesting are the median and ho-
mogeneity values, which result as the ratio between maximum and minimum
principal stiffness medians. The specific values are heavily influenced by what
torsion spring stiffness we have chosen, accompanied with its damping coefficient.
In hindsight, choosing κτ = 2.5 · 104 [N m rad−1] was ultimately not enough,
considering the mass of the individual links. Henceforth, the values are simply
relative and what matters most are, again said, the ratios between configurations.
Furthermore, in many instances, the maxima and minima values deviate far from
the median. From stiffness maps, it can be seen these deviations often occur at
one singular point, wherein the simulation might have encountered anomalies
or a kinematic singularity was reached. Moreover, the gravity compensation
algorithm could influence simulation, along with other effects. It is because of
the aforementioned reasons the peaks and valleys of the minimum and maximum
principal stiffnesses, yet also individual values, are of less significance.

In aggregate, across all investigated cases and in light of the comparison
tables, the coupling of two robots opposite one another emerges as the preeminent
configuration with respect to both static stiffness values and, notably, homogeneity.
This assertion holds irrespective of whether the pairing occurs in the vertical or in
the angular configuration, with the increase in homogeneity consistently evident,
often by a factor surpassing 10. Concerning the stiffness values per se, the coupled
configuration evinces a proclivity towards heightened minimum principal stiffness,
particularly in its maximum and median values, frequently by a factor exceeding
10 or 20. Conversely, save for a few exceptions, the progression of maximum values
does not exhibit such escalation, with the prevailing trend indicating an increase
by approximately 2-, 3-, or occasionally 5-fold. Yet, we again mention the ratios
between these values are highly relative as they depend on various parameters,
discussed before. Further, if one configuration reaches an absurdly enormous peak

6.17 Discussion of Results 143

and the other does not, the ratio is less valuable and does not necessarily extend
our insight into static stiffness of six-axis robots.

Additionally, when juxtaposing all cases in the angled configuration with the
cases in the vertical configuration, we come to the resolution that the angled
configuration is more susceptible to lower minimum and maximum principal
stiffness values. While this is not always the case, it is still a relevant statement
in light of the comparison tables for both the coupled robots and a solitary
one. As for stiffness homogeneity, its improvement or deterioration in the angled
configuration compared to the vertical configuration is not uniform, hence why
the author refrains from further general discussion of such, and refers the reader
to the respective comparison table to see whether the static stiffness homogeneity
has improved or worsened in the specific case they inquire.

7
Conclusion and Outlook

The focal point of this thesis was spatial static stiffness in three dimensions,
particularly for six-axis serial robots of the anthropomorphic structure. During
the inquiry into such topic, the reader was presented with the monumental
significance of spatial stiffness, accompanied with an outline of the past and
current developments on the subject. Next, the necessary theoretical groundwork
was established, ranging from kinetostatics of rigid systems (Chapter 1) to
nonlinearity and singular value decomposition (Chapter 3), which ultimately tied
all the previously developed theory into a self-contained methodology for static
stiffness evaluation, necessarily preceded by static compliance.

Within the simulation portion of the thesis, the model of a real, six-axis robot
by KUKA was assembled in DS SolidWorks, and subsequently in Simscape MBS
(Chapter 4). This allowed the author to perform numerous simulations of the
behaviour of the robotic system under force load on its tool center point. For
such investigation, multiple algorithms were created (Chapter 5), in order to
streamline the data gathering process. Moreover, said algorithms were adapted for
the case of robot coupling. As for results (Chapter 6), the coupled configuration
came out on top in having the best stiffness homogeneity ratio and values, further
supporting our case of robot coupling, in this instance opposite each other.

7.1 Missed Opportunities

Although the thesis provides a comprehensive overview of static stiffness of six axis
serial robots, more work can always be done. For one, stiffness can be examined
equally in terms of dynamics as it can be in terms of statics. Creating a dynamical
model of such complicated kinematic structure was beyond the scope of this thesis,
yet the inclusion of robot dynamics within the model is pivotal, as it accounts

145

146 7. Conclusion and Outlook

for all phenomena statics could never account for. Further, such dynamic model,
developed using either the Lagrange equations of the second kind or the Lagrange
equations of the mixed kind, would accelerate result generation since the model
needn’t to be simulated at each instance. Instead, the desired pose of the tool
center point could be substituted into the eigenequations of motion of the system,
yielding a transfer function instantaneously. This directly allows more points to
be evaluated, leading to an increase in the fidelity of stiffness maps.

Additionally, only one position of the accompanying robot was investigated,
that being opposite the formerly solitary arm. It would be interesting to not have
the robots be distributed 180 degrees but some different angle, e.g., 45 or 90
degrees, or even have three robots working together. The intuition is, the more
robots, the better the stiffness. Yet, until verified, it cannot be determined with
absolute certainty. Moreover, attaching a parallel delta robot to the top of the
end-effector could increase stability, and thereby stiffness, even more.

7.2 Future Work

The ideas for future work naturally stem from all of the missed opportunities.
For one, a dynamic model of the robot ought to be developed to deepen our
understanding of the distribution of stiffness within three-dimensions, at least for
what concerns six-axis robots. To not limit ourselves to six-axis serial robots, the
stiffness of either one attached parallel robot to the serial robots configuration, or
solely one, two, or more parallel robots, can be examined. Lastly, approaching the
problem using different layouts of robots, e.g., distributed evenly by 45 degrees,
can further enhance our inquiry into stiffness in general.

Bibliography

1. Asimov, I. I, Robot. New York, NY: Bantam Books, 2008. Robot Series.
isbn 978-0-553-38256-3.

2. Sun, L.; Fang, L. An Approximation Method for Stiffness Calculation of
Robotic Arms with Hybrid Open- and Closed-Loop Kinematic Chains.
Advances in Mechanical Engineering. 2018, vol. 10, no. 2. doi 10.1177/
1687814018761297.

3. Hu, J.; Liu, T., et al. Static Modeling of a Class of Stiffness-Adjustable
Snake-like Robots with Gravity Compensation. Robotics. 2023, vol. 12, no.
2. doi 10.3390/robotics12010002.

4. Wu, K.; Li, J., et al. Review of Industrial Robot Stiffness Identification
and Modelling. Applied Sciences. 2022, vol. 12, no. 17. doi 10 . 3390 /
app12178719.

5. Liang, M.; Wang, B., et al. Dynamic Optimization of Robot Arm Based on
Flexible Multi-Body Model. Journal of Mechanical Science and Technology.
2017, vol. 31, no. doi 10.3390/app12178719.

6. Živanović, M.; Vukobratović, M. General Mathematical Model of Multi-Arm
Cooperating Robots with Elastic Interconnection at the Contact. Journal
of Dynamic Systems, Measurement, and Control. 1997, vol. 119, no. 4. doi
10.1115/1.2802381.

7. Živanović, M.; Vukobratović, M. Control Laws Synthesis of Multi-Arm
Cooperating Robots with Elastic Interconnection at the Contacts. Robotica.
2000, vol. 18, no. 2. doi 10.1017/S0263574799001940.

147

10.1177/1687814018761297
10.1177/1687814018761297
10.3390/robotics12010002
10.3390/app12178719
10.3390/app12178719
10.3390/app12178719
10.1115/1.2802381
10.1017/S0263574799001940

148 Bibliography

8. Živanović, M.; Vukobratović, M. Synthesis of Nominal Motion of the Multi-
Arm Cooperating Robots With Elastic Interconnections at the Contacts.
Journal of Dynamic Systems, Measurement, and Control. 2004, vol. 126, no.
2. doi 10.1115/1.1767853.

9. Du, X.; Tete, H. Modelling and Continuous Stiffness Control of Robot with
Compliant Wrist for Misalignment Shaft-Hole Assembly. Measurement and
Control. 2024, vol. 57, no. 1. doi 10.1016/j.rcim.2023.102676.

10. Luo, Q.; Zhang, X, et al. Research on a Biomimetic Flexible Ball Joint With
Variable Stiffness for Robots. ASME Journal of Mechanisms and Robotics.
2024, vol. 16, no. 10. doi 10.1016/j.rcim.2023.102676.

11. Kun, Ch.; Peng, X, et al. Interactive Coupling of Structural Dynamics and
Milling Forces for High-Frequency Stability Prediction in Robotic Milling.
Robotics and Computer-Integrated Manufacturing. 2024, vol. 86, no. doi
10.1016/j.rcim.2023.102676.

12. Lynch, K.; Park, F. Modern Robotics: Mechanics, Planning, and Control.
UK: Cambridge University Press, 2017. isbn 978-1-107-15630-2.

13. Valášek, M. et al. Mechanika A: Lecture Notes. Prague: CTU, 2002.
14. Stejskal, V. et al. Mechanika I: Lecture Notes. Prague: CTU, 1998.
15. Siciliano, B. et al. Robotics: Modelling, Planning, and Control. 1st ed. Lon-

don, England: Springer, 2018. Advanced Textbooks in Control and Signal
Processing. isbn 978-1-84996-634-4.

16. Belta, C.; Kumar, V. On the Computation of Rigid Body Motion. 2009.
Available at: https://api.semanticscholar.org/CorpusID:9281725.

17. Bump, D. Lie Groups. 2nd ed. New York, NY: Springer, 2013. Graduate
Texts in Mathematics. isbn 978-1-4614-8023-5.

18. Humphreys, J. Introduction to Lie Algebras and Representation Theory. New
York, NY: Springer, 1973. Graduate Texts in Mathematics. isbn 978-0-387-
90052-0.

19. Jazar, R. Theory of Applied Robotics: Kinematics, Dynamics, and Control.
2nd ed. New York, NY: Springer, 2010. isbn 978-1-4899-7760-1.

20. Kosinski, A. Differential Manifolds. Mineola, NY: Dover Publications, 2007.
Dover Books on Mathematics. isbn 978-0-4864-6244-8.

21. Lee, J. Introduction to Smooth Manifolds. 2nd ed. New York, NY: Springer,
2012. Graduate Texts in Mathematics. isbn 978-1-4419-9981-8.

22. do Carmo, M. Riemannian Geometry. 4th ed. Basel, Switzerland: Birkhauser,
1991. Mathematics: Theory and Applications. isbn 978-3-7643-3490-1.

10.1115/1.1767853
10.1016/j.rcim.2023.102676
10.1016/j.rcim.2023.102676
10.1016/j.rcim.2023.102676
https://api.semanticscholar.org/CorpusID:9281725

Bibliography 149

23. Munkres, J. Topology. 2nd ed. London, England: Pearson Education, 2013.
isbn 978-1-292-02362-5.

24. Pressley, A. Elementary Differential Geometry. 2nd ed. London, England:
Springer, 2009. Springer Undergraduate Mathematics Series. isbn 978-1-
84882-890-2.

25. Lay, D. et al. Linear Algebra and its Applications. 5th ed. Upper Saddle
River, NJ: Pearson, 2014. isbn 978-0-321-98238-4.

26. Axler, S. Linear Algebra Done Right. 4th ed. Cham, Switzerland: Springer,
2024. Undergraduate Texts in Mathematics. isbn 978-3-031-41025-3.

27. Angeles, J. Fundamentals of Robotic Mechanical Systems: Theory, Meth-
ods, and Algorithms. 3rd ed. New York, NY: Springer, 2006. Mechanical
Engineering Series. isbn 0-387-29412-0.

28. Kuipers, J. Quaternions and Rotation Sequences. Princeton, NJ: Princeton
University Press, 2002. isbn 0-691-10298-8.

29. Craig, J. Introduction to Robotics. 3rd ed. Upper Saddle River, NJ: Pearson,
2003. isbn 0-13-123629-6.

30. Goldstein, H. Classical Mechanics. 3rd ed. Philadelphia, PA: Pearson Edu-
cation, 2011. isbn 978-81-317-5891-5.

31. Spong, M.; Hutchinson, S., et al. Robot Modelling and Control. 2nd ed.
Nashville, TN: John Wiley & Sons, 2020. isbn 978-1-119-52399-4.

32. Strang, G. Introduction to Linear Algebra. 4th ed. Wellesley, MA: Wellesley-
Cambridge Press, 2009. isbn 978-0-9802327-1-4.

33. Golub, H.; Van Loan, C. Matrix Computations. 4th ed. Baltimore, MD: Johns
Hopkins University Press, 2013. Johns Hopkins Studies in the Mathematical
Sciences. isbn 978-1-421-40794-4.

34. Valášek, M. et al. Mechanika B: Lecture Notes. Prague: CTU, 2004.
35. The MathWorks, Inc. MATLAB Documentation. Available at: https://

www.mathworks.com/help/matlab/.
36. The MathWorks, Inc. Simulink Documentation. Available at: https://www.

mathworks.com/help/simulink/.
37. The MathWorks, Inc. Simscape Documentation. Available at: https://www.

mathworks.com/help/simscape/.
38. The MathWorks, Inc. Simscape Multibody Documentation. Available at:

https://www.mathworks.com/help/sm/.
39. Khalil, H. Nonlinear Systems. 2nd ed. Upper Saddle River, NJ: Pearson,

1995. isbn 0-13-228024-8.

https://www.mathworks.com/help/matlab/
https://www.mathworks.com/help/matlab/
https://www.mathworks.com/help/simulink/
https://www.mathworks.com/help/simulink/
https://www.mathworks.com/help/simscape/
https://www.mathworks.com/help/simscape/
https://www.mathworks.com/help/sm/

150 Bibliography

40. Hangos, K.; Lakner, R., et al. Intelligent Control Systems. New York, NY:
Springer, 2001. Applied Optimization. isbn 978-1-4020-0134-5.

41. Hangos, K.; Bokor, J., et al. Analysis and Control of Nonlinear Process
Systems. London, England: Springer, 2004. Advanced Textbooks in Control
and Signal Processing. isbn 978-1-85233-600-4.

42. Slotine, J-J.; Li, W. Applied Nonlinear Control. Upper Saddle River, NJ:
Pearson, 1990. isbn 0-13-040890-5.

43. Ogata, K. Modern Control Engineering. 5th ed. Upper Saddle River, NJ:
Pearson, 2009. isbn 978-0-13-615673-4.

44. Bhatia, P.; Szegö, Giorigio. Stability Theory of Dynamical Systems. Berlin,
Germany: Springer, 2002. Classics in Mathematics. isbn 3-540-42748-1.

45. Rannacher, R. Numerical Linear Algebra. 3rd ed. Heidelberg, Germany:
Heidelberg University Publishing, 2018. Lecture Notes Mathematics. isbn
978-3-947732-00-5.

46. Demmel, J. Applied Numerical Linear Algebra. Philadelphia, MS: Society
for Industrial and Applied Mathematics, 2018. isbn 978-0-89-871389-3.

47. Anton, H.; Rorres, C. Elementary Linear Algebra. Nashville, TN: John Wiley
& Sons, 2013. isbn 978-1-118-43441-3.

48. Lang, S. Linear Algebra. 3rd ed. New York, NY: Springer, 1987. Undergrad-
uate Texts in Mathematics. isbn 978-0-38-796412-6.

49. KR 120 R2700-2. KUKA, 2022. Document ID: 0000-325-899. V4.1.
50. Riley, K.; Hobson, M., et al. Mathematical Methods for Physics and Engi-

neering. 3rd ed. Cambridge, England: Cambridge University Press, 2006.
isbn 978-0-521-86153-3.

51. Corke, P. Robotics, Vision, and Control: Fundamental Algorithms in MAT-
LAB. 1st ed. Berlin, Germany: Springer, 2011. isbn 978-3-642-20143-1.

52. E., Hitzer; Sangwine, S. Quaternion and Clifford Fourier Transforms and
Wavelets. Basel, Switzerland: Springer, 2013. isbn 978-3-0348-0602-2.

53. Goode, S.; Annin, S. Differential Equations and Linear Algebra. 4th ed.
Upper Saddle River, NJ: Pearson, 2015. isbn 978-0-321-96467-0.

54. Sohrab, H. Basic Real Analysis. 2nd ed. New York, NY: Springer, 2014. isbn
978-1-4939-1840-9.

55. Bartle, R.; Sherbert, D. Introduction to Real Analysis. 4th ed. Nashville,
TN: John Wiley & Sons, 2011. isbn 978-0-471-43331-6.

56. Hildebrand, F. Introduction to Numerical Analysis. 2nd ed. Mineola, NY:
Dover Publications, 1987. Dover Books on Mathematics. isbn 0-486-65363-3.

Bibliography 151

57. Sauer, T. Numerical Analysis. 2nd ed. Upper Saddle River, NJ: Pearson,
2011. isbn 978-0-321-78367-7.

58. Quarteroni, A.; Sacco, R., et al. Numerical Mathematics. 2nd ed. Berlin,
Germany: Springer, 2007. Texts in Applied Mathematics. isbn 978-3-540-
34658-6.

59. Wiggins, S. Introduction to Applied Nonlinear Dynamical Systems and Chaos.
2nd ed. New York, NY: Springer, 2003. Texts in Applied Mathematics. isbn
0-387-00177-8.

60. Isidori, A. Nonlinear Control Systems. 3rd ed. Berlin, Germany: Springer,
1995. Communications and Control Engineering. isbn 3-540-19916-0.

61. Nocedal, J.; Wright, S. Numerical Optimization. 2nd ed. New York, NY:
Springer, 2006. Springer Series in Operations Research and Financial Engi-
neering. isbn 978-0387-30303-1.

62. Dennis, J.; Schnabel, R. Numerical Methods for Unconstrained Optimization
and Nonlinear Equations. Society for Industrial and Applied Mathematics,
1996. Classics in Applied Mathematics. isbn 0-89871-364-1.

63. The MathWorks, Inc. Optimization Toolbox Documentation. Available at:
https://www.mathworks.com/help/optim/.

https://www.mathworks.com/help/optim/

Appendices

A
Other Orientation Representations

As was highlighted in Chapter 1, there exist various other orientation representa-
tions, two of which are the subject of this appendix, namely the Euler-Rodrigues
parameters, also referred to as the unit quaternion representation (Section A.1),
and the Cayley-Rodrigues parameters (Section A.2). Both of these representations
require “higher level” mathematics and mechanics in general, e.g., quaternion
algebra, the exponential coordinate representation of rotation, etc., which are
not discussed within the main portion of the thesis. Even though these former
mentioned mathematical and mechanical instruments go beyond what is reason-
able to present in the main body of this thesis, they find many applications in
robotics, computer graphics, and other disciplines, where in some scenarios, they
prove more useful and convenient than the standard, “lower-level” representations,
hence why we choose to mention them as part of this appendix.

A.1 Euler-Rodrigues Parameters

Previously, we touched upon rotation about an arbitrary axis in space. Let us
expand on this idea and discover an inconvenient singularity in the inverse solution
which leads us to the need of a different orientation representation.

A.1.1 Axis-Angle Representation Singularity

Let a = [ax ay az]T ∈ R3 be the unit vector of axis a with respect to Oixiyizi

and φ the angle of revolution about a. Note that this representation is nonminimal
in SO(3) as it requires n(n− 1)/2 + 1 parameters.

If we adapt a solution for this rotation from [15], pp. 52 — 54, it is clear to
see that, in order to rotate Oixiyizi about a by φ to obtain Oℓxℓyℓzℓ, we need to

155

156 A. Other Orientation Representations

perform the following steps (as per Figure A.1):

rotate Oixiyizi by −ϱ about the zi

axis and by −χ about the yi axis
to obtain the system Ojxjyjzj,

rotate Ojxjyjzj by the desired ang-
le of revolution φ about zj to
obtain the system Okxkykzk,

realign Okxkykzk with a
by rotating by χ about yk

and by ϱ about zk to ob-
tain the system Oℓxℓyℓzℓ.

Start with an arbitrary coor-
dinate system Oixiyizi,

The resulting orientation of Oℓxℓyℓzℓ within Oixiyizi is then

Riℓ(a, φ) =
realignment︷ ︸︸ ︷

Rkℓ(zk, ϱ)Rkℓ(yk, χ)
desired rotation︷ ︸︸ ︷
Rjk(zj, φ)

misalignment︷ ︸︸ ︷
Rij(yi,−χ)Rij(zi,−ϱ)

=

 a2
xC + cφ axayC − azsφ axazC + aysφ

axayC + azsφ a2
yC + cφ ayazC − axsφ

axazC − aysφ ayazC + axsφ a2
zC + cφ

 ,
where C = 1 − cosφ and sφ, cφ is shorthand notation for sinφ, cosφ respectively.
In this case, Riℓ(a, φ) = Riℓ(−a,−φ), hence such representation is not unique,
as rotation by φ about a (a is positive) is indistinguishable from rotation by −φ
about −a (a is negative — points in the opposite direction). [15]

yi

zi

xi

ji

ki

ii

a

a

ay

ax

az

χ

φ

Oi

ϱ

Figure A.1 Axis-angle rotation representation. Figure adapted from [15].

Additionally, in order to remove the dependence of Riℓ(a, φ) on ϱ and χ, we have
utilized the following transcendental functions derived from Figure A.1:

sin ϱ = ay√
a2

x + a2
y

, sinχ =
√
a2

x + a2
y,

cos ϱ = ax√
a2

x + a2
y

, cosχ = az.

A.1 Euler-Rodrigues Parameters 157

When solving the inverse problem, the axis and angle corresponding to a given
rotation matrix of the form (1.3) can be obtained as [15]

φ = arccos tr(Riℓ) − 1
2 ,

a = 1
2 sinφ

r32 − r23
r13 − r31
r21 − r12

 , (A.1)

where tr(Riℓ) is the trace of the rotation matrix, formally defined as

tr(A) :=
n∑

i=1
aii,

for any n× n (square) matrix A.
As we can see, solution (A.1) diverges if sinφ = 0, i.e., when

φ =

0 (null rotation),
π,

which are still valid solutions. In such instances, it becomes necessary to directly
refer to the expressions obtained from the provided rotation matrix and seek a
solution through this method. [15]
Theorem A.1. In the case of the null rotation, i.e., φ = 0, the unit vector a of
the axis of revolution a becomes arbitrary. [15] ⋄

Proof. The (i, j)-th entry of the rotation matrix Riℓ(a, φ) can be expressed as

rij = δij + (1 − cosφ)aiaj − sinφϵijkak, (A.2)

where ai ≡ ax, aj ≡ ay, ak ≡ az,

δij :=

1 if i = j,

0 otherwise,

is the Kronecker delta, and

ϵijk :=

1 if (i, j, k) is an even permutation of (1, 2, 3),
−1 if (i, j, k) is an odd permutation of (1, 2, 3),
0 otherwise,

is the Levi-Civita symbol. When φ = 0, the (i, j)-th entry of the rotation matrix
becomes rij = δij and hence Riℓ(a, φ = 0) = I3, eliminating all components of
a from (A.2). This results in an arbitrary unit vector a since the null rotation
always yields the identity matrix, which concludes the proof. [19, 50] □

158 A. Other Orientation Representations

Remark A.1. Eq. (A.2) from Theorem A.1 can be written in matrix form as

Riℓ(a, φ) = I3 + sinφ [A] + (1 − cosφ) [A]2 , (A.3)

in which [A] ∈ R3×3 is a skew-symmetric matrix derived from the unit vector a,

[A] =

 0 −az ay

az 0 −ax

−ay ax 0

 ∈ R3×3, [A]T = − [A] .︸ ︷︷ ︸
skew-symmetry

Again, if φ = 0, Riℓ(a, φ = 0) becomes the identity matrix. [12] ⋄

A.1.2 Unit Quaternion Representation

As was highlighted previously, the inverse solution of the axis-angle representation
becomes singular at φ = 0 since the unit vector a becomes arbitrary, giving us no
information about the axis of revolution a. Moreover the axis-angle representation
is not unique. To address these limitations, it is necessary to adopt an alterna-
tive four-parameter representation. One such example are the Euler-Rodrigues
parameters, defined as [12, 15, 19, 27, 29]

Q :=
[
q0 q1 q2 q3

]T
∈ R4,

where

q0 := cos(φ/2) ∈ R, (A.4)

q := sin(φ/2)a =
[
q1 q2 q3

]T
∈ R3, (A.5)

and naturally
∥Q∥ = q2

0 + q2
1 + q2

2 + q2
3 = 1. (A.6)

If the Euler-Rodrigues parameters are looked at as a 4×1 vector, they are also
referred to as the unit quaternion representation, since ∥Q∥ = 1. Geometrically,
an orientation described using the unit quaternion representation is visualized as
a point on a hypersphere in R4. [12, 29] This can seem hard to grasp, yet their
benefits make them a very ubiquitous and versatile option in robotics, computer
graphics, and other subjects, with some of their biggest strengths being:

▷ Uniqueness. Every rotation within three-dimensional space is associated with
precisely one unit quaternion. This distinctive property guarantees that there are
no redundant or multiple representations for identical rotations. [15, 27, 51]

▷ Continuity. Unit quaternions provide seamless interpolation between rotations.
In contrast to Euler angles, which may encounter discontinuities, quaternions
offer smooth transitions between orientations. [12, 15, 28]

A.1 Euler-Rodrigues Parameters 159

▷ Numerical Stability. Quaternion operations manifest superior numerical stabil-
ity relative to alternative representations, thereby evincing diminished suscepti-
bility to numerical errors. [28, 29, 52]

▷ Global Coverage. Unit quaternions provide comprehensive coverage of rotations
throughout space, devoid of any singularities or discontinuities, unlike certain
other representations like Euler angles. [12, 15, 28, 52]

Given a unit quaternion Q = [q0 q]T ∈ R4, the corresponding rotation
matrix is obtained by rotating about the unit axis in the direction of q ∈ R3 by
φ = 2 arccos q0 and reads

Rij(Q) =
(
q2 − ⟨q, q⟩

)
I3 + 2qqT + 2q0

∂(q × x)
∂x

=

2(q2
0 + q2

1) − 1 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) 2(q2

0 + q2
2) − 1 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) 2(q2
0 + q2

3) − 1

 , (A.7)

for an arbitrary vector x ∈ R3. [12, 15, 27]
If a generic rotation matrix Rij ∈ SO(3) of the form (1.3) is provided, the

inverse solution is then given by

q0 = 1
2
√

tr(Rij) + 1, (A.8)

q = 1
2

sgn(r32 − r32)
√
r11 − r22 − r33 + 1

sgn(r13 − r31)
√
r22 − r33 − r11 + 1

sgn(r21 − r12)
√
r33 − r11 − r22 + 1

 ≡ 1
4q0

r32 − r32
r13 − r31
r21 − r12

 , (A.9)

where

sgn(w) :=

1 if w ≥ 0,
−1 if w < 0,

for an arbitrary w ∈ R. Note that by (A.8), we assume that q0 ≥ 0, corresponding
to φ ∈ [−π, π]. Consequently, any rotation can be described as elucidated in the
global coverage property. Further, (A.8, A.9) are nonsingular. [12, 15, 29]

Finally, let us discuss the inverse and product properties of the unit quaternion
representation. The quaternion derived from the inverse of the rotation matrix
R−1

ij = RT
ij ∈ SO(3) can be computed as

Q−1 =
[
q0 −q

]T
∈ R4.

On the other hand, if we let Q = [q0 q]T ∈ R4 and Q⋆ = [q⋆
0 q⋆]T ∈ R4

be two unit quaternions corresponding to rotation matrices Rij, Rjk ∈ SO(3),

160 A. Other Orientation Representations

respectively, the unit quaternion representation of RijRjk ∈ SO(3) can be
obtained by first arranging the entries of Q and Q⋆ to the form

Q =
[
q0 + iq1 q2 + iq3

−q2 + iq3 q0 − iq1

]
, Q⋆ =

[
q⋆

0 + iq⋆
1 q⋆

2 + iq⋆
3

−q⋆
2 + iq⋆

3 q⋆
0 − iq⋆

1

]
,

where i :=
√

−1 is the imaginary unit. The product Q̃ = QQ⋆ reads

Q̃ =
[
q̃0 + iq̃1 q̃2 + iq̃3

−q̃2 + iq̃3 q̃0 − iq̃1

]
.

The product of Q and Q⋆ can be directly obtained from the entries of Q̃ and
yields a new unit quaternion Q′ ∈ R4 of the form

Q′ = Q ◦ Q⋆ =
[
q̃0 q̃1 q̃2 q̃3

]T

=

q0q

⋆
0 − q1q

⋆
1 − q2q

⋆
2 − q3q

⋆
3

q0q
⋆
1 + q1q

⋆
0 + q2q

⋆
3 − q3q

⋆
2

q0q
⋆
2 + q2q

⋆
0 − q1q

⋆
3 + q3q

⋆
1

q0q
⋆
3 + q3q

⋆
0 + q1q

⋆
2 − q2q

⋆
1

 ≡

q′

0
q′

1
q′

2
q′

3

 ∈ R4,

or more generally,

Q′ = Q ◦ Q⋆ =
[
q0q

⋆
0 − ⟨q, q⋆⟩ q0q

⋆ + q⋆
0q + q × q⋆

]T
∈ R4,

where ◦ denotes the quaternion product.32 [12, 15]

A.2 Cayley-Rodrigues Parameters

Another set of parameters representing orientation are the Cayley-Rodrigues
parameters. Since they are derived from the exponential coordinate representation
on SO(3), let us first get started by defining such representation. [12]

A.2.1 Fundamentals of Linear Differential Equations

Consider a linear differential equation of the form

ẋ(t) = Ax(t), where x(t) ∈ Rn, A ∈ Rn×n, x(0) = x0. (A.10)

By basic LDR theory,33 the solution to such equation is

x(t) = exp(At)x0,

32The quaternion product is generally not commutative, i.e., Q ◦ Q⋆ ̸= Q⋆ ◦ Q.
33For further information regarding linear differential equations, refer to sources such as [53].

A.2 Cayley-Rodrigues Parameters 161

where

exp(At) =
+∞∑
s=0

(At)s

s! = In +At+ (At)2

2! + (At)3

3! + (At)4

4! + · · · (A.11)

as per the Taylor expansion (see Definition A.2).
Definition A.1. Let f(x) : I 7→ R be an s-times differentiable function at x0 ∈ I.
The s-th degree polynomial of the form

Ts(x) := f(x0) + f ′(x0)(x− x0) + f ′′(x0)
2! (x− x0)2

+ · · · + f (s)(x0)
s! (x− x0)s,

where
f (s)(x0) ≡ dsf(x)

dxs

∣∣∣∣∣
x=x0

is referred to as the s-th degree Taylor polynomial of f(x) at x0. [54, 55] ⋄

Theorem A.2. Let s ∈ N, let f(x) : I 7→ R. Suppose f(x) is infinitely differen-
tiable at x0 ∈ I and ds+1f(x)/dxs+1 exists on I. For any x ∈ I, there exists a
point X lying between x and x0 such that

f(x) = f(x0) + f ′(x0)(x− x0) + f ′′(x0)
2! (x− x0)2

+ · · · + f (s)(x0)
s! (x− x0)s + f (s+1)(X)

(s+ 1)! (x− x0)s+1,

(A.12)

where
f (s)(x0) ≡ dsf(x)

dxs

∣∣∣∣∣
x=x0

f (s+1)(X) ≡ ds+1f(x)
dxs+1

∣∣∣∣∣
x=X

and also
Rs(x) = f (s+1)(X)

(s+ 1)! (x− x0)s+1 (A.13)

is the Lagrange remainder, henceforth Eq. (A.12) is referred to as the Taylor
polynomial of degree s with the Lagrange form of the remainder. [50, 54, 55] ⋄

Definition A.2. Let s ∈ N, let f(x) : I 7→ R be infinitely differentiable at x0 ∈ I.
If and only if the power series given by

f(x) =
+∞∑
s=0

f (s)(x0)
s! (x− x0)s, f (s)(x0) ≡ dsf(x)

dxs

∣∣∣∣∣
x=x0

(A.14)

162 A. Other Orientation Representations

has its sequence of remainders Rs(x) [Eq. (A.13)] converging to zero for all
x ∈ I′ ⊆ I as s approaches infinity, i.e.,

lim
s→+∞

Rs(x) = 0 ∀x ∈ I′,

we refer to it as the Taylor expansion of f(x) at x0. [54, 55] ⋄

Now, if we let f(x) = expx and x0 = 0, Eq. (A.14) yields the famous Maclaurin
series which reads

expx =
+∞∑
s=0

xs

s! = 1 + x+ x2

2! + x3

3! + x4

4! + · · · (A.15)

since the derivative of expx is always the function itself. Further, if the argument
of the function one wishes to expand is of vector, matrix, or higher-order tensor
form, the Taylor expansion holds the same as defined in (A.14). So, for (A.15),
we have precisely (A.11) when we input At instead of x as an argument.
Remark A.2. Other important Maclaurin series of common functions are

sin x =
+∞∑
s=0

(−1)s x2s+1

(2s+ 1)! = x− x3

3! + x5

5! − x7

7! + · · · , (A.16)

cosx =
+∞∑
s=0

(−1)s x
2s

(2s)! = 1 − x2

2! + x4

4! − x6

6! + · · · , (A.17)

from where it is clear to see that whilst sin x is odd, cosx is even. ⋄

A.2.2 Exponential Coordinate Representation on SO(3)
The exponential coordinate representation on SO(3) is very similar to the axis-
angle representation, i.e., it takes the unit vector of the axis of rotation a ∈ R3

and the angle of revolution about said axis φ as parameters. Whilst the axis-angle
representation is a four-parameter one, expressing rotation using exponential
coordinates takes only three parameters, namely the vector e = aφ ∈ R3. The
rotation can be conceptualized as a vector piP (t) ∈ R3, representing the position
vector of point P ∈ E3 in the frame Oixiyizi, undergoing constant rotation at a
rate of 1 [rad s−1] around a from t = 0 to t = φ. The velocity of the endpoint of
piP (t) can be articulated as

ṗiP (t) = a× piP (t) = [A]piP (t), piP (0) = piP0 ,

which is a linear differential equation of the form (A.10), hence its solution is34

piP (t) = exp([A]t)piP0

t≡φ−→ piP (φ) = exp([A]φ)piP0

34Note that, in this context, time t is equivalent to the angle of revolution φ.

A.2 Cayley-Rodrigues Parameters 163

and can be expanded to the form

exp([A]φ) = I3 + [A]φ+ ([A]φ)2

2! + ([A]φ)3

3! + ([A]φ)4

4! + · · · ,

where if we utilize [A]3 = − [A], [A]4 = − [A]2, etc., we obtain

exp([U]φ) = I3 +
(
φ− φ3

3! + φ5

5! − · · ·
)

︸ ︷︷ ︸
Maclaruin series for sin φ

[A] +
(
φ2

2! − φ4

4! + φ6

6! − · · ·
)

︸ ︷︷ ︸
“Maclaruin series” for 1 − cos φ

[A]2

= I3 + sinφ [A] + (1 − cosφ) [A]2 = Rij(a, φ) ∈ SO(3),

known as the Rodrigues formula for rotations.35 When expressed in component
form, one gets the expression

rij = δij + (1 − cosφ)aiaj − sinφϵijkak,

i.e., Eq. (A.2), where δij is the Kronecker delta and ϵijk is the Levi-Civita symbol
as discussed previously.36 [12, 19]

A.2.3 Cayley-Rodrigues Representation

The Cayley-Rodrigues parameters can be directly obtained from the exponential
coordinate representation on SO(3), i.e., given said representation in the form
Rij(a, φ) = exp([A]φ), the parameters read [12]

C = a tan(φ/2) =
[
c1 c2 c3

]T
∈ R3.

Given a Cayley-Rodrigues representation C, the rotation matrix corresponding
to this rotation can be obtained using

Rij(C) = (1 − ⟨C, C⟩)I3 + 2⟨C, C⟩ + 2 [C]
1 + ⟨C, C⟩

,

where [C] ∈ R3×3 is a skew-symmetric matrix derived from the Cayley-Rodrigues
representation (more precisely from its components c1, c2, c3). [12]

On the other hand, the inverse solution reads

[C] =
Rij −RT

ij

1 + tr(Rij)
, tr(Rij) ̸= −1,

for a generic rotation matrix Rij ∈ SO(3) of the form (1.3). [12]
35We have already used this formula prior to its derivation [see Eq. (A.3)].
36For formal definitions of the Kronecker delta and the Levi-Civita symbol, see p. 157.

164 A. Other Orientation Representations

At last, let us discuss the computation of the product of two Cayley-Rodrigues
representations C, C⋆, which correspond to rotation matrices Rij, Rjk, respec-
tively. The appeal of the Cayley-Rodrigues representation primarily lies in how
straightforwardly the product can be obtained. It reads

C ′ = CC⋆ = C + C⋆ + (C × C⋆)
1 − ⟨C, C⋆⟩

=
[
c′

1 c′
2 c′

3

]T
∈ R3,

where, in cases when ⟨C, C⋆⟩ = 1, an alternative formula is necessary. Define

γ = C√
1 + ⟨C, C⟩

∈ R3, ∥γ∥ = sin(φ/2),

in order to express the rotation matrix in the form

Rij = I3 + 2
√

1 − ⟨γ,γ⟩ [Γ] + 2 [Γ]2 ,

where [Γ] ∈ R3×3 is a skew-symmetric matrix derived from the components of γ.
Utilizing γ, the product of C and C⋆ is expressed as

γ ′ = γ
√

1 − ⟨γ⋆,γ⋆⟩ + γ⋆
√

1 − ⟨γ,γ⟩ + (γ × γ⋆) ∈ R3,

with the direction of γ ′ being coincident with that of C ′. [12]

B
Iterative Inverse Kinematics

In in many cases, the inverse kinematics problem does not have a closed-form
solution, especially for complex robotic systems with multiple degrees of freedom.
To achieve the desired pose of the end-effector, engineers often result to iterative
methods, which provide an efficient approach to approximate the solution.

Within the framework of iterative inverse kinematics, the algorithm continually
adjusts the joint parameters to minimize the disparity between the desired and
current robot poses. This iterative refinement process typically entails gradually
refining the joint angles until the error falls below a specified threshold or until
a predetermined number of iterations is reached. Despite their computational
overhead, iterative methods offer adaptability and resilience, making them suitable
for real-time applications and dynamic environments. This Appendix is intended
to present common iterative inverse kinematics (IIK) methods as a complement
to the content discussed in Section 1.3.2 (Chapter 1).

B.1 Jacobian-Based Inverse Kinematics

Jacobian-based methods leverage the concept of the Jacobian matrix, which
was introduced earlier to close out open-chain kinematics. It encapsulates the
relationship between changes in joint variables and corresponding changes in the
position and orientation of the tool center point, serving as a mathematical bridge
and enabling the translation of desired tool center point poses into adjustments in
joint angles. Despite their effectiveness, Jacobian-based methods may encounter
challenges such as singularities or local minima, which require careful consideration
and mitigation strategies. Nevertheless, their versatility and efficiency make them
indispensable tools in robotics for achieving accurate motion.

165

166 B. Iterative Inverse Kinematics

B.1.1 Analytical Jacobian

Subsection 1.3.3 introduced one of two possible forms of the Jacobian matrix,
i.e., the geometric Jacobian Jg(φ) ∈ R6×D , mapping the tool center point linear
and angular velocities to the joint coordinates of a D-degree-of-freedom arm.
A different form to obtain such mapping is to compute the analytical Jacobian
Ja(φ) ∈ R6×D by simply differentiating the forward kinematics solution.

The contribution from linear velocity is computed in similar fashion to (1.24),

ṗ1TCP(φ, φ̇) = ∂p1TCP(φ)
∂φ

φ̇ 7→ J ′
p(φ)φ̇,

whilst the contribution from angular velocity is simply

ϕ̇TCP(φ, φ̇) = ∂ϕTCP(φ)
∂φ

φ̇ 7→ J ′
ϕ(φ)φ̇,

however the computation of ∂ϕTCP(φ)/∂φ is not always effortless since the
function ϕTCP(φ) is not generally available directly but requires computation
from the corresponding rotation matrix. [12, 15, 29]

The analytical Jacobian is, similarly to (1.21), given by the mapping

ε̇(φ, φ̇) :=
[
ṗ1TCP(φ, φ̇) ϕ̇TCP(φ, φ̇)

]T
7→ Ja(φ)φ̇,

i.e.,

Ja(φ) :=
[
J ′

p(φ) ∈ R3×D

J ′
ϕ(φ) ∈ R3×D

]
∈ R6×D ,

but is not the same as the geometric Jacobian as generally ω1TCP ̸= ϕ̇TCP. [15]
To find a correlation between ϕ̇TCP and ω1TCP, let us consider a set of Euler

XYZ angles. In order to obtain this transformation, we need to account for
contributions of each of the rotational velocities to the angular velocity with
respect to the global coordinate system, i.e.:

(i) Yaw. The first rotation (Yaw) contributes to ω1TCP by γ̇[1 0 0]T ,
(ii) Pitch. The second rotation (Pitch) contributes to ω1TCP by β̇[0 − sγ cγ]T ,
(iii) Roll. The third rotation (Roll) contributes to ω1TCP by α̇[cβ − sβsγ cγ]T .

Upon computing all contributions from rotational velocities to the angular velocity,
ω1TCP can be related to ϕ̇TCP by the expression

ω1TCP(φ, φ̇) = Ω1TCP(ϕTCP)ϕ̇TCP,

B.1 Jacobian-Based Inverse Kinematics 167

where, in the case of the Euler XYZ angles,

Ω1TCP(ϕTCP) =

1 0 cos β
0 − sin γ − sin β sin γ
0 cos γ cos γ

 ∈ R3×3,

is nonsingular for all sin γ ̸= 0 and tan β ̸= tan γ. [15, 19, 29]
Provided the transformation Ω1TCP(ϕTCP) to be known, we are able to com-

pute the geometric Jacobian from the analytical Jacobian as

νTCP(φ, φ̇) =
[
I3 O3

sym. Ω1TCP(ϕTCP)

]
ε̇(φ, φ̇) = Υa(ϕTCP)ε̇(φ, φ̇),

yielding
Jg(φ) = Υa(ϕTCP)Ja(φ),

where O3 ∈ R3×3 denotes the null matrix. [15, 27, 29]
Remark B.1. The geometric and analytical Jacobians are distinct representations
of the motion of the tool center point within robotic systems. While the geometric
Jacobian relates the velocity of the TCP coordinate system in the space of joint
coordinates (configuration space), the analytical Jacobian pertains to the robot’s
operational space. This operational space denotes the domain within which the
TCP operates, prioritizing a task-centric portrayal of the robot’s motion. It
focuses on delineating the precise spatial configurations and procedures employed
by the tool center point to accomplish its designated tasks. [12, 15] ⋄

B.1.2 Jacobian (Pseudo-)Inverse IIK

Suppose we have the mapping (1.21). Then, the joint velocities can by obtained
by inversion of the geometric Jacobian, i.e.,

φ̇ = J−1
g (φ)νTCP(φ, φ̇), (B.1)

provided Jg(φ) is square and has full rank. Moreover, suppose we are provided
with an initial condition φ(0) ≡ φ0. By these measures, we can obtain the joint
positions by integrating (B.1) over time, i.e.,

φ(t) =
∫ t

0
φ̇(ϖ) dϖ +φ0,

and by resorting to time discretization with step size ∆t. The simplest numerical
technique we can employ is the Euler integration method, which reads

φ(tk+1) = φ(tk) + φ̇(tk)∆t,

168 B. Iterative Inverse Kinematics

ultimately resulting in

φ(tk+1) = φ(tk) + J−1
g [φ(tk)]νTCP(tk)∆t,

where tk+1 = tk + ∆t for all k ∈ N0. [15, 51, 56, 57, 58]

x1(t)

x2(t)

t
t → ∞

x(0) ≡ x0

x(t)

Figure B.1 Asymptotically stable two-variable system.

Let eTCP(φ) ∈ R6 denote the operational space error vector between the
desired and current tool center point poses, denoted ε ∈ R6 and εc(φ) ∈ R6,
respectively. Mathematically, we can express such vector as

eTCP(φ) = ε− εc(φ). (B.2)

Differentiating both sides of (B.2) with respect to time yields

ėTCP(φ, φ̇) = ε̇− ε̇c(φ, φ̇), (B.3)

which can be rewritten to the form

ėTCP(φ, φ̇) = ε̇− Ja(φ)φ̇, (B.4)

giving us the rate at which this error changes in time. Assuming Ja(φ) is square
and has full rank, i.e., is nonsingular, choosing

φ̇ = J−1
a (φ)[ε̇+EeTCP(φ)] (B.5)

leads to an equivalent linear system

ėTCP(φ, φ̇) +EeTCP(φ) = 06, (B.6)

wherein, if E is positive definite, i.e., is symmetric and all its eigenvalues λ are
strictly positive, (B.6) is asymptotically stable (Fig. B.1).37 The error tends toward

37For deeper understanding of (nonlinear) dynamical systems and chaos theory, the author
encourages readers to refer to works such as [39], [44], or [59].

B.1 Jacobian-Based Inverse Kinematics 169

zero with a convergence rate determined by the eigenvalues of E. Specifically,
with larger eigenvalues corresponding to faster convergence. [15, 19, 32, 51]

E J−1
a (φ)

∫

Forward kinematics

eTCP(φ) φ̇
ε φ

ε̇

ε
c
(φ

)

+
−

+
+

Figure B.2 Jacobian inverse IIK algorithm. Figure adapted from [15].

If J−1
a (φ) does not exist, either because the analytic Jacobian is rectangular

or rank deficient, (B.5) is unusable. The rectangularity of the Jacobian may stem
from the manipulator being kinematically redundant, i.e., D > 6 and thereby
there exists (D − 6) redundant degrees of freedom, equivalently expressed as
the manipulator being (D − 6)-times redundant. In such instances, it becomes
necessary to resort to the expression

φ̇ = J †
a(φ)[ε̇+EeTCP(φ)] + [ID − J †

a(φ)Ja(φ)]φ̇∗,

instead of (B.5), where

J †
a(φ) := JT

a (φ)[Ja(φ)JT
a (φ)]−1 ∈ RD×6

is termed the Moore-Penrose right pseudo-inverse of Ja(φ) ∈ R6×D and φ̇∗ ∈ RJ

is a vector of arbitrary joint velocities. [15]

B.1.3 Jacobian Transpose IIK

Developing a computationally simpler algorithm than the Jacobian inverse ap-
proach entails deriving the relationship between φ̇ and eTCP(φ) while maintaining
error convergence to zero and avoiding the need for linearization of (B.4). Find-
ing such relationship necessitates a brief exploration in stability theory as it is
established using the Lyapunov direct method. [15]

▷ Lyapunov Direct Method. An intuitive approach to define stability involves
associating an energy-based description with an autonomous system, if possible.
Under this framework, if the rate of change of this energy is negative for each
system state except the equilibrium state, then the energy decreases along any
system trajectory until it reaches its minimum at the equilibrium state. [15]

170 B. Iterative Inverse Kinematics

In our case, this equilibrium state is at eTCP(φ) = 06, i.e., when the error
between the desired and current TCP poses is zero. A scalar function L (eTCP)
is a Lyapunov function if it satisfies the following properties:

(i) L (eTCP) and L̇ (eTCP) are continuous.
(ii) L (eTCP) is positive definite, i.e., L (eTCP) > 0, for all eTCP(φ) ̸= 06, whereas

L (eTCP) = 0 at the equilibrium state eTCP(φ) = 06.
(iii) L̇ (eTCP) is negative definite, i.e., L̇ (eTCP) < 0, for all eTCP(φ) ̸= 06.
(iv) As ∥eTCP(φ)∥ → +∞, L (eTCP) → +∞.

The existence of such function guarantees global asymptotic stability. In the
case where L̇ (eTCP) is only negative semi-definite, i.e., L̇ (eTCP) ≤ 0, global
asymptotic stability is ensured if and only if L̇ (eTCP) ≡ 0 exclusively along the
equilibrium trajectory eTCP(φ) ≡ 06. [15, 39, 59, 60]

E JT
a (φ)

∫

Forward kinematics

eTCP(φ) φ̇
ε φ

ε
c
(φ

)

+
−

Figure B.3 Jacobian transpose IIK algorithm. Figure adapted from [15].

The Lyapunov function candidate for determining φ̇(eTCP) is

L (eTCP) = 1
2e

T
TCP(φ)EeTCP(φ),

where E is positive definite. Differentiating with respect to time yields

L̇ (eTCP) = 1
2
[
ėT

TCP(φ, φ̇)EeTCP(φ) + eT
TCP(φ)EėTCP(φ, φ̇)

]
.

Moreover, since E is a constant matrix, we can write

L̇ (eTCP) = 1
2
[
eT

TCP(φ)ET ėTCP(φ, φ̇) + eT
TCP(φ)EėTCP(φ, φ̇)

]
,

which can be further simplified to the form

L̇ (eTCP) = eT
TCP(φ)EėTCP(φ, φ̇)

B.2 Gradient-Based Inverse Kinematics 171

as E is symmetric. Accounting for (B.3) and (B.4), we get

L̇ (eTCP) = eT
TCP(φ)Eε̇− eT

TCP(φ)EJa(φ)φ̇,

and finally, choosing
φ̇ = JT

a (φ)EeTCP(φ),

results in the expression

L̇ (eTCP) = eT
TCP(φ)Eε̇− eT

TCP(φ)EJa(φ)JT
a (φ)EeTCP(φ), (B.7)

which is negative definite for a constant reference, i.e., ε̇ = 06, and under the
assumption of Ja(φ) being full rank. Since L (eTCP) is originally positive definite,
the system is asymptotically stable and the error between the desired and current
poses of the tool center point converges to zero. On the other hand, (B.7) is only
negative semi-definite in cases when

ker[JT
a (φ)] ̸= ∅,

where ker[JT
a (φ)] is the kernel of the analytical Jacobian, i.e., the subspace of

joint velocities that do not generate any tool center point velocity in the current
manipulator configuration, and ∅ denotes the empty set. In such scenarios, the
algorithm may encounter a standstill at φ̇ = 0J with eTCP(φ) ̸= 06. However,
it can be shown this circumstance occurs exclusively when the designated TCP
pose cannot be reached from the current configuration. [15, 26, 29, 32]

B.2 Gradient-Based Inverse Kinematics

Gradient-based methods are optimization techniques that hinge on the gradient,
or the first derivative, of an objective function relative to the variables targeted for
optimization. These techniques progressively adjust these variables in a manner
that diminishes or enhances the objective function, guided by the gradient’s
direction. By computing the gradient of the discrepancy between the desired
and current tool center point poses concerning the joint angles, these methods
iteratively refine the joint angles until they converge to a solution.

B.2.1 First-Order Newton Method IIK

Let f(φ) : RJ 7→ R6 be a differentiable forward kinematics solution of the form
(1.13’), mapping the current joint coordinates vector φ ∈ RJ to the tool center
point configuration vector ε(φc) ∈ R6. Define h(φ) : RJ 7→ R6 as

h(φ) := ε− f(φ) : RJ 7→ R6,

172 B. Iterative Inverse Kinematics

in terms of the desired TCP configuration ε ∈ R6, and solve for

h(φ) := ε− f(φ) = 06,

such that φ ∈ RJ becomes the solution φ ∈ RJ . This is analogous to

eTCP(φ) = ε− εc(φ) = 06,

i.e., minimizing (or nulling) the error between the desired and current poses of
the tool center point, ε ∈ R6 and εc(φ) ∈ R6, respectively. [12, 29]

φc

eTCP(φc)

Solution

eTCP(φ0)

φ0 φ1

J−1
a (φ0)eTCP(φ0)

Ja(φ0)

Figure B.4 First-order Newton method. Figure adapted from [12].

Starting with an initial guess φ0 ∈ RJ , the desired configuration of the tool
center point can be expressed using the Taylor expansion, i.e.,

ε = εc(φ) = εc(φ0) + Ja(φ0)(φ−φ0) + · · · ,

which can be rewritten to the form

ε = εc(φ0) + Ja(φ0)∆φ0 + · · · ,

and by electing to terminate the Taylor expansion at its initial order, we can
approximate the new solution as

φ1 = φ0 + ∆φ0 = φ0 + J−1
a (φ0)eTCP(φ0),

or more generally, any following solution can be computed using

φk+1 = φk + J−1
a (φk)eTCP(φk), ∀ k ∈ N0,

an expression termed the first-order Newton method, or the Newton-Raphson
method for solving a system of nonlinear equations. This formula works only
under the assumption that J−1

a (φk) exists. If not, one has to again resort to the
Moore-Penrose pseudo-inverse of the analytical Jacobian. [12, 15, 27, 29]

B.3 MATLAB’s Optimization Toolbox 173

Remark B.2. The convergence of the Newton method is heavily dependent on
the initial guess φ0 ∈ RJ . As the initial guess moves farther from the solution, the
slope of the error function ultimately diverges from the solution. As an example,
if we were to choose an initial guess in the “second quadrant” in Fig. B.4, the
slope at this initial guess would steer far left, never reaching the solution. ⋄

Remark B.3. If there exist multiple solutions to the inverse kinematics problem,
the Newton method tends to find the one closer to the initial guess φ0 ∈ RJ . ⋄

Remark B.4. The initial idea of the Newton method’s first order can be broad-
ened to include higher-order Taylor expansions. This extension has the potential
to hasten convergence by leveraging additional insights into the error function.
However, calculating higher-order derivatives and inverting associated matri-
ces can frequently incur significant computational costs or become infeasible
in extreme scenarios. In such instances, engineers turn to alternatives, such as
the quasi-Newton methods, which offer approximations of these higher-order
derivatives matrices without the need for their explicit computation. [61, 62] ⋄

B.3 MATLAB’s Optimization Toolbox

In addition to already mentioned methods, MathWorks provides their Optimiza-
tion Toolbox for MATLAB, which can be utilised to solve for φ ∈ RJ . The toolbox
includes a large number of functions, each to be used in a specific case, some of
which shall be briefly covered in the following text. However, for comprehensive
insight into these functions and their use cases, consider referencing [35, 63].

▷ lsqnonlin. The lsqnonlin function can be used to solve for φ ∈ R6 in cases
when the inverse kinematics problem can be formulated as a least-squares problem,
e.g., minimising the error between the desired and current TCP poses. [63]

▷ lsqcurvefit. The lsqcurvefit function is used for fitting curves to data. In
the context of the inverse kinematics problem, if one has a forward kinematics
model of the system, the lsqcurvefit function tries to fit this forward kinematics
model to the provided data, i.e., the desired pose of the TCP. [63]

Naturally, the functionality of MATLAB’s Optimization Toolbox extends
beyond this short showcase and can be used in various different fields. The
showcase of the lsqnonlin and lsqcurvefit serves merely as an illustrative
example to underscore the large amount of options for numerical solution of the
inverse kinematics problem, depending on the way we choose to describe it.

	Contents
	List of Figures
	List of Tables
	Introduction and Problem Statement
	Static Stiffness
	State of the Art
	Objectives

	Theoretical Background
	Kinetostatics of Rigid Systems
	Fundamental Concepts of Kinetostatics
	System Representations
	Mechanism Theory and Grübler's Formula
	Kinetostatic Topology

	Rigid Body Motion
	Elementary Differentiable Manifolds
	Properties of Rotation Matrices
	Vector Transformations
	Euler XYZ Angles
	Homogeneous Transformation Matrices

	Open-Chain Kinematics
	Forward Kinematics
	Closed-Form Inverse Kinematics
	Differential Kinematics and the Jacobian

	Static Gravity Compensation
	Torsion Spring Compensation

	Simscape MBS Modelling
	Introduction to Multi-Domain Modelling
	Block Wiring and Signal Types
	Signal Rerouting, Distribution and Merging

	Commonly Used Blocks
	Preliminary Blocks
	Solids and Joints
	Coordinate Transformations
	Forces, Torques and Measuring

	Interfacing Simscape MBS with MATLAB

	Nonlinearity
	State-Space Representation
	Linearization
	Transfer Function Matrix

	Singular Value Decomposition
	Static Compliance Matrix
	Static Stiffness Matrix
	Stiffness Homogeneity

	Simulation Model
	Model Assembly
	Choice of Robot
	KUKA KR 120 R2700-2

	CAD Model within DS SolidWorks
	Link Assembly
	Attached End-Effector

	Simscape MBS Integration
	Simscape Multibody Link for DS SolidWorks
	Block Rewiring and Model Reassembly
	Model Walkthrough

	Algorithmization
	Chapter Organisation
	Closed-Form Inverse Kinematics
	Inverse Position Kinematics
	Inverse Orientation Kinematics
	Implementation

	Forward Kinematics
	Implementation

	Static Gravity Compensation
	Implementation

	Robot Coupling
	Closed-Form Inverse Kinematics
	Forward Kinematics
	Static Gravity Compensation

	Linearization and SVD
	Preliminary Definitions
	Grid and Level Definitions
	Execution
	Simulation Parameters

	Results and Discussion
	Case s-C1
	Case s-C2
	Case s-C3
	Case c-C1
	Case c-C2
	Case c-C3
	Comparison of Cases s-C1-3 and c-C1-3
	Case s-C4
	Case s-C5
	Case s-C6
	Case c-C4
	Case c-C5
	Case c-C6
	Comparison of Cases s-C4-6 and c-C4-6
	Comparison of Cases s-C1-3 and s-C4-6
	Comparison of Cases c-C1-3 and c-C4-6
	Discussion of Results

	Conclusion and Outlook
	Missed Opportunities
	Future Work

	Bibliography
	Appendices
	Other Orientation Representations
	Euler-Rodrigues Parameters
	Axis-Angle Representation Singularity
	Unit Quaternion Representation

	Cayley-Rodrigues Parameters
	Fundamentals of Linear Differential Equations
	Exponential Coordinate Representation on SO(3)
	Cayley-Rodrigues Representation

	Iterative Inverse Kinematics
	Jacobian-Based Inverse Kinematics
	Analytical Jacobian
	Jacobian (Pseudo-)Inverse IIK
	Jacobian Transpose IIK

	Gradient-Based Inverse Kinematics
	First-Order Newton Method IIK

	MATLAB's Optimization Toolbox

