
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Security Analysis of GoOut

Kryštof Rohan

Ing. Josef Kokeš, Ph.D.

Informatics

Information Security 2021

Department of Information Security

until the end of summer semester 2024/2025

Instructions

The goal of the thesis is to perform a security analysis of the web version of the GoOut

application (https://goout.net).

1) Research the state-of-the-art of threat modelling and penetration testing of

applications. Focus particularly on web applications (e.g. OWASP Top Ten).

2) Study the GoOut application from the point of view of an external user. Identify

potential threats using a suitable methodology.

3) Perform a black-box penetration test of the application.

4) List discovered vulnerabilities, evaluate their seriousness.

5) Focusing on the most serious vulnerabilities, provide recommendations for a fix or

mitigation (where possible).

Electronically approved by prof. Ing. Róbert Lórencz, CSc. on 15 January 2024 in Prague.

Bachelor’s thesis

SECURITY ANALYSIS OF
GOOUT

Kryštof Rohan

Faculty of Information Technology
Katedra informačńı bezpečnosti
Supervisor: Ing. Josef Kokeš, Ph.D.
May 7, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Kryštof Rohan. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Rohan Kryštof. Security Analysis of GoOut. Bachelor’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2024.

Contents

Acknowledgments v

Declaration vi

Abstract vii

List of abbreviations viii

Introduction 1

1 Key Penetration Testing Concepts 2
1.1 Background . 2
1.2 OWASP Top 10 . 3

1.2.1 Broken Access Control . 3
1.2.2 Cryptographic Failures . 4
1.2.3 Injection . 4
1.2.4 Insecure Design . 5
1.2.5 Security Misconfiguration . 5
1.2.6 Vulnerable and Outdated Components . 6
1.2.7 Identification and Authentication Failures 6
1.2.8 Software and Data Integrity Failures . 7
1.2.9 Security Logging and Monitoring Failures 7
1.2.10 Server-Side Request Forgery . 8

1.3 OWASP API Security Top 10 . 8
1.3.1 Broken Object Level Authorization . 9
1.3.2 Broken Authentication . 9
1.3.3 Broken Object Property Level Authorization 9
1.3.4 Unrestricted Resource Consumption . 10
1.3.5 Broken Function Level Authorization . 10
1.3.6 Unrestricted Access to Sensitive Business Flows 10
1.3.7 Server Side Request Forgery . 11
1.3.8 Security Misconfiguration . 11
1.3.9 Improper Inventory Management . 11
1.3.10 Unsafe Consumption of APIs . 11

1.4 Threat Modeling . 12
1.5 Common Vulnerability Scoring System v3.x . 12

2 GoOut 13
2.1 Mission and Vision . 13
2.2 Components and Technologies . 14
2.3 Defined Scope and Testing Notes . 17

ii

Contents iii

3 The Penetration Test 18
3.1 Burp Suite . 18
3.2 Information Gathering . 19
3.3 OWASP Top 10 Testing . 19

3.3.1 Broken Access Control . 19
3.3.2 Cryptographic Failures . 20
3.3.3 Injection . 20
3.3.4 Insecure Design . 21
3.3.5 Security Misconfiguration . 22
3.3.6 Vulnerable and Outdated Components . 23
3.3.7 Identification and Authentication Failures 24
3.3.8 Software and Data Integrity Failures . 25
3.3.9 Security Logging and Monitoring Failures 25
3.3.10 Server-Side Request Forgery . 26

3.4 OWASP Top 10 Testing Evaluation . 26
3.5 OWASP API Security Top 10 Testing . 26

3.5.1 Broken Object Level Authorization . 26
3.5.2 Broken Authentication . 27
3.5.3 Broken Object Property Level Authorization 27
3.5.4 Unrestricted Resource Consumption . 28
3.5.5 Broken Function Level Authorization . 28
3.5.6 Unrestricted Access to Sensitive Business Flows 28
3.5.7 Server Side Request Forgery . 29
3.5.8 Security Misconfiguration . 29
3.5.9 Improper Inventory Management . 31
3.5.10 Unsafe Consumption of APIs . 31

3.6 OWASP API Security Top 10 Testing Evaluation 32
3.7 Recommendations . 32

3.7.1 “Locking out” the entire sale without any purchase 32
3.7.2 Accessible DEV Environment . 32
3.7.3 Identification and Authentication Failures 33
3.7.4 XSS . 33

4 Conclusion 35

A Evaluated vulnerability findings 36

Contents of the attachment 41

List of Figures

2.1 Diagram showing the sets of rights for user type in GoOut 14
2.2 Activity feed component of GoOut web application 15
2.3 Hall sale-form component of GoOut web application 16

3.1 Proof of concept of the invalid phone being saved in the database 22
3.2 Individual organizer account permissions settings in GoOut Admin 23
3.3 Error and warning messages logged in chat by Slack integration 26
3.4 API Misconfiguration issue leading to an informational disclosure 31

List of Tables

1.1 CVSS v3.1 Ratings table conversion . 12

3.1 Penetration test findings based on OWASP Top 10 19
3.2 Penetration test findings based on OWASP API Security Top 10 27

A.1 Full list of found vulnerabilities with their CVSS vector string 36

List of code listings

3.1 Function responsible for sending group SMS to an external gateway 21
3.2 Malicious HTML form exploiting the CSRF vulnerability 25
3.3 Commented out code checking for invalid password reset hashes 25
3.4 Payload in response from /services/user/v1/accountExists endpoint 28
3.5 Required JSON payload structure to exploit the BFLA 29
3.6 Payload send via HTTP POST to /services/saleform/purchase/v1/pay 30
3.7 Thrown error contained in JSON response . 30
3.8 Example of a counting expression as the rate limiting 33
3.9 Vulnerable code to XSS . 34
3.10 Properly escaped code preventing XSS . 34

iv

I would like to express my sincerest gratitude to my supervisor,
Ing. Josef Kokeš, Ph.D., who has consistently served as an exem-
plary role model for his profound depth of knowledge, his capacity to
impart valuable advice, and his commitment to sharing his expertise.
In the spirit of gratitude and respect, I extend my sincerest thanks
to GoOut for their constructive and forward-thinking approach to
this thesis. In particular, I would like to express my gratitude to
David Zettl, who provided me with the opportunity to achieve my
full potential. Furthermore, I would like to express my gratitude
to the Boualay family for their invaluable assistance in proofread-
ing this thesis, which has significantly enhanced the quality of the
text. In closing, I would like to express my gratitude to my fam-
ily for their unwavering love and support, particularly during those
moments when I challenged their beliefs in security.

v

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act No.
121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Czech Technical
University in Prague has the right to conclude a licence agreement on the utilization of this thesis
as a school work pursuant of Section 60 (1) of the Act.

In Praze on May 7, 2024

vi

Abstract

Information security is undoubtedly a key concept in the internet. This thesis focuses on security
of one particular web application, GoOut, made by a company that differiences in the ticketing
field. In order to strengthen its security, a penetration test of the web application and the API
endpoints is performed. The penetration test is using a black box approach with a primary focus
on the OWASP resources, namely the Top 10 lists. Vulnerabilities and other potential findings
are discussed and rated based on their severity. Although no critical vulnerabilities are found,
there are a few other discoveries such as problems in the authentication or potential lockout
of the sale. The contribution of this thesis is to help GoOut securing their web application by
providing findings of the penetration test with possible remediation and also provide insight to
anyone how safe and secure it is.

Keywords security analysis, OWASP, web application security, GoOut, API security

Abstrakt

Informačńı bezpečnost zcela jednoznačně představuje kĺıčový koncept v celém internetu. Tato
bakalářská práce se zaměřuje na zabezpečeńı jedné specifické webové aplikace, GoOut, která je
vytvořena unikátńı firmou v odvětv́ı prodeje vstupenek. S ćılem pośılit zabezpečeńı je prove-
den penetračńı test webové aplikace a API endpoint̊u. Tento penetračńı test využ́ıvá black box
př́ıstupu a zaměřuje se primárně na zdroje firmy OWASP, jmenovitě Top 10 listy. Zranitelnosti
a daľśı potenciálńı nálezy jsou diskutovány a ohodnoceny na základě jejich závažnosti. I když
žádná kritická zranitelnost neńı nalezena, je zde několik jiných nález̊u, jako např́ıklad problémy
s procesem authentizace nebo potenciálńı uzamčeńı prodeje. Př́ınosem bakalářské práce je po-
moc GoOut k zabezpečeńı webové aplikace poskytnut́ım nález̊u penetračńıho testu s možnými
nápravami a zároveň umožnit komukoli náhled do jej́ı bezpečnosti.

Kĺıčová slova bezpečnostńı analýza, OWASP, bezpečnost webových aplikaćı, bezpečnost API,
GoOut

vii

List of abbreviations

2FA Two-factor Authentication
ACL Access Control List
API Application Programming Interface
B2B Business-to-business
B2C Business-to-consumer

BFLA Broken Function Level Authorization
BOLA Broken Object Level Authorization

CAPTCHA Completely Automated Public Turing test to tell
Computers and Humans Apart

CMS Content Management System
CORS Cross-Origin Resource Sharing

CPU Central Processing Unit
CVE Common Vulnerability and Exposures

CVSS Common Vulnerability Scoring System
DEV Development
DNS Domain Name System
DoS Denial of Service

GDPR General Data Protection Regulation
HMAC Hash-Based Message Authentication Code
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure
ID Identification
IT Information Technology
IP Internet Protocol

JSON JavaScript Object Notation
JWT JSON Web Token
NVD National Vulnerability Database

OSINT Open-Source Intelligence
OWASP Open Web Application Security Project
SHA512 Secure Hash Algorithm 512-bit

SMS Short Message Service
SSH Secure Shell Protocol
SQL Structured Query Language
SSO Single Sign-On

SSRF Server-Side Request Forgery
TLS Transport Layer Security

TOR The Onion Router
URL Uniform Resource Locator

UX User Experience
VPN Virtual Private Network
WAF Web Application Firewall

WSTG Web Security Testing Guide
XSS Cross-site Scripting

viii

Introduction

Information technology has become an inseparable part of our daily lives. We have slowly but
surely moved our identities, finances, hobbies, and jobs online. While technology was initially
intended to simplify processes, there will always be those who exploit it for their own gain.
Web applications are no exception; even if they are used by thousands of users, there are still
numerous ways in which they can be potentially attacked and, worse, exploited.

Cybersecurity plays a key role in the hierarchy. Bad actors use it for their unethical purposes
while others use it to prevent them from doing so. This is also my main motivation: to use my
knowledge to make the world a better and safer place. in particular, to secure a specific web
application, GoOut, a culture guide that helps connect people with culture.

I hope that this thesis will not only be an excellent resource for other students of security but
also a good indication of the journey GoOut has gone through to achieve an even more robust
security for its users, including me personally.

The primary goal of the research part is to explore the possibilities of web application penetra-
tion testing, mainly resources provided by OWASP. This includes choosing and analyzing existing
concepts, such as suitable methodology or a standardized vulnerability scoring system. The next
goal is to dive into the GoOut web application and analyze its components and functionalities
before choosing suitable tools for security testing.

In the practical part, the objective is to conduct a penetration test of GoOut in order to
strengthen its security. The goal is to identify vulnerabilities, if any, and analyze their severity
and possible threats related to them. Once analyzed, each has to be evaluated by its sever-
ity based on the GoOut business and technical perspective. The final objective is to provide
recommendations on how to fix or mitigate any vulnerabilities found.

1

Chapter 1

Key Penetration Testing
Concepts

This chapter focuses on the current state of internet security, with a particular emphasis on
the web application security. It explains why security is such a significant issue and covers two
well-known publications by the nonprofit security organization OWASP that focus on common
mistakes and vulnerabilities found in web applications. It also covers key concepts like threat
modeling and consistent vulnerability severity scoring.

1.1 Background
Humanity has made a significant progress in recent decades, adapting to new challenges and
developing processes not only to overcome failures but also to prevent them once and for all.
Namely, medicine could have been considered black magic just a few hundred years ago, what
no one expected to become a daily routine for numerous job positions – scientific research,
transportation, medical guidance, doctors, and many others nowadays. It might not be surprising
that there is always an enormous amount of testing done before any medical product can be
used outside of the laboratories as this type of testing is standard in today’s world. In fact, the
testing process can be seen in almost every other field as well, improving the quality of products
or services while also preventing potential consequences of failure.

The IT field is mostly not an exception; on the other hand, product testing does not necessarily
include testing from the security perspective. As one of the fastest growing fields, it creates a
potential risk with a considerable impact as IT is used everywhere in our daily lives. We use
computers, software, websites, and hardware to communicate, work, transport, keep records,
learn, relax, deal with business, transfer money, calculate, etc. IT security testing, which includes
the penetration testing process, is often skipped or completely ignored even though people’s
health and money depend on it. To make the situation even worse, it is estimated that web
applications were targeted by approximately 172 cyber-attacks[1] per day during 2022.

Penetration testing[2] aims to reveal vulnerabilities and weak parts of tested components
mimicking real-world attacks using the actual tools and methods the attackers would use. Pen-
etration testing can be used in many scenarios, differing in scope, approach, and time. Scope
defines which components should be tested and which ones should be left untouched. The testing
approach also plays a crucial role. An attacker can access the tested components either from
the wide internet without any previous knowledge of their functionalities, related components,
or used resources (known as black box testing) or with everything revealed, connected, and ex-
plained, such as source code, flow charts of the connected components, and documentation of the

2

OWASP Top 10 3

functionality (known as white box testing). Eventually, gray box testing, an approach combining
both previously mentioned approaches, might also be used. Finally, time defines the length of
the whole penetration process — in hours, days, or weeks.

For example, a bank may have developed a new blog for its customers that requires testing
before publishing. A two-day penetration test is planned to use a black box testing approach,
allowing only the mentioned blog to be tested while restricting the attacker from testing other
internal bank systems or network communications. The outcome of the penetration test will be
a report, not only containing findings but also recommended tips to mitigate them. Both the
development and management teams should read the report to resolve everything found in the
application. Once resolved, the bank can also use the report from the marketing perspective as
a proof of its system’s hardening.

As with any other process, penetration testing also has its methods to do it sufficiently. These
methods, again, depend on the approach, length, and scope of the testing. Namely, a company
called OWASP focuses on researching potential attack vectors, attack methods used in the wild,
as well as the frequencies of vulnerabilities found in the area of web application security. Based
on this research, they create resources for organizations and penetration testers worldwide. [3]

1.2 OWASP Top 10
One of their incredibly recognized publications is OWASP Top 10. A list of the top ten critical
security risks of web applications based on broad research, updated once every few years to
always stay up to date with the developing IT field. Unlike OWASP Web Security Testing Guide
(WSTG), which is often used as a framework by penetration testers, OWASP’s Top 10 should not
stand as the only methodology provided from the security perspective. Whereas WSTG covers
almost every aspect of web application testing, the Top 10 highlights only what should never
be overlooked. However, if nothing else were tested, the Top 10 definitely would have helped to
harden the web application’s security. [4]

To gain a comprehensive understanding of the top ten security risks, the following sections
discuss each item of the Top 10 in depth with relevant examples.

1.2.1 Broken Access Control (A01:2021)
In everyday life??, it is common to encounter no trespassing signs or any other restrictive in-
structions. The question is: what prevents bad actors from doing the opposite of what they are
told? Sometimes, nothing, as these restrictions are often intended to keep us safe from potential
harm. Furthermore, if those restrictions were placed, for example, to prevent a customer from
accessing the cash desk, bad actors would simply not care as long as there is no physical barrier,
pin locking, or cameras. The very same applies to internet security. Of course, no one should
be allowed to access the admin dashboard or the customer’s personal information except the
privileged person. On the other hand, can any written rule indeed prevent the bad actor from
accessing the information? Without proper security measures in place, it is just a matter of time.

Broken Access Control moved up from the fifth position on the last list to the first place on
the most recent list, due to its frequent oversight in practice. The following questions should
always be asked:

1. Is the principle of least privilege1 in place?

2. Is access denied by default with explicitly set exceptions, or in other words, is an allowlist in
place?

1Least privilege stands for restricting everyone only to their required resources and nothing else.

OWASP Top 10 4

3. Does the application security not depend on locally stored user data or any data which can
be modified in any way from the user perspective?

Yet the last point might sometimes be necessary for the intended functionality. Therefore, an
adequate solution is required, for example, signing data with asymmetric cryptography to ensure
integrity.

A very simple, yet unfortunately very common, example of broken access control vulnerability
is missing authentication or authorization checks on a particular page. Developers may have
restricted access to the main dashboard, such as in the admin panel, yet they still need to
restrict access to any other sub-pages connected to it. The most concerning aspect is that this
attack can be executed successfully without requiring advanced tools or in-depth knowledge. An
attacker can easily edit the URL in their browser and access content they were never intended
to view. [5]

1.2.2 Cryptographic Failures (A02:2021)
It is well known that web applications contain an enormous amount of information. On the other
hand, not everyone realizes how much of this information is actually sensitive. Term sensitive can
be straightforwardly applied to credit card details or user credentials. However, there are several
regulations, such as data protection and privacy laws like the EU’s General Data Protection
Regulation (GDPR), that also define what is sensitive and how these data should be handled or
stored.

A visitor[6] has no idea which data they interact with are sensitive, except their personal
data. This is also why social engineering is so common and successful. A common scenario is
when an unsuspecting customer is asked to copy their browser request and provide it to a bad
actor. There is always some social engineering beforehand to persuade the victim to do so. While
it may not seem harmful, the victim could also be copying their sensitive session hash, which
could result in account theft or worse.

In order to ensure the confidentiality of any provided data, cryptographic algorithms are
being used. However, it is important to note that the use of cryptographic algorithms does not
necessarily mean that transmitted data is indeed secure. Issues might arise essentially anywhere,
with the type of algorithms or methods, their usage, or even the implementation in the code.

Starting with their type, usage of any old or weak cryptographic algorithms is problematic.
Databases are often breached just to reveal how badly were the credentials handled and stored.
Usage of deprecated cryptographic padding methods or deprecated hash functions[7] such as
MD5 may still be seen. Even if strong and verified methods are being used, a single weak spot in
the whole cryptography scheme would have a significant impact on the overall security. Not en-
forcing the usage of the cryptography, reusing initialization vectors or completely ignoring them,
not validating provided certificates, relying on randomness that does not meet cryptographic
requirements, or, in some cases, coding the whole cryptography algorithm manually will still
result in a high risk of unsecure implementation. [8]

1.2.3 Injection (A03:2021)
Web applications are mostly not just hand-crafted static pages with nothing but information
for visitors. For example, even online blogs that are actually based on providing information to
visitors often allow some direct input from them, like a comment section below the blog post.
Any application that allows user input exposes itself to a potential security risk. Not only is user
behavior unpredictable, even though some existing behavior traits are known[9], but it is also
sometimes malicious.

The mentioned comment section on the blog web application is probably intended as a space
for visitors to share their opinions. What if there was a way to craft a malicious comment

OWASP Top 10 5

containing a payload in its content that would steal any logged-in visitor’s credentials upon
just opening the blog post? Or what if a basic search bar used on an online e-shop could leak
every single stored information from the server database with, once again, a specially crafted
query? Both of these terrifying examples are actual instances of injection attacks in the wild.
Unfortunately, those specially crafted payloads are often as simple as writing two lines of code.

User input may be inevitable; in that case, it is vital to validate and sanitize it properly by
the application. Validation is often done on the front-end, which is an excellent feedback for
any visitor struggling with application usage, like when investigating whether they were already
registered or not. However, more is needed to guarantee that only validated data will come
through. Those front-end validations or restrictions are done only locally, and as the attacker
has full control over their local system, nothing prevents them from also skipping or disabling this
security mechanism. To properly prevent possible injection attacks from succeeding is to sanitize
and validate user input also on the back-end part before any further processing. However, the
only way to properly mitigate the threat is to let go of user input; the fewer user input flows
that exist, the better. [10]

1.2.4 Insecure Design (A04:2021)
Having the best possible implementation of something will never solve the core problem if it
was insecurely designed and needed security measures were never created or though of in the
first place. Imagine the described problem with an injection from the last chapter, where users
were given the ability to write blog comments. The way their filled-in data will be handled and
processed can be changed or secured anytime as it is basically a part of the implementation.
In contrast, an insecure design example of the blog application would be when the accounts
scheme allowed the existence only of the administrators, with no additional roles or hierarchy
included at all. In that scenario, a visitor wanting to comment on a blog post would have
to be either an administrator or not be able to comment at all. What about a user who the
administrators wanted to become an article editor, yet not the full administrator? Of course,
there are few workarounds, yet those are not optimal from both the security and sustainability
points of view. The takeaway is to properly and securely design the product before, during, and
after the implementation using the development cycle process.

Secure design should protect the confidentiality, integrity, and availability of data flows,
business logic, and assets. Therefore, evaluating possible threats via threat modeling should be
a part of the secure development cycle. In order to achieve an effective output[11], at least three
people should be part of the threat modeling. One representative from the security team, one
from the business team, and one from the technical team. Thanks to effective threat modeling,
possible flaws in the product could be revealed and prevented before it is too late. [12]

1.2.5 Security Misconfiguration (A05:2021)
Web applications cannot exist standing alone; in fact, they require many layers of technology.
A dedicated computer, server, has to be hosting the whole instance. This instance is probably
handled by virtualization, namely running in a container. Then there is a software used for the
server logic and routing, consisting of many technologies one depending on another. Furthermore
the web application itself might use many frameworks like Czech server-sided framework PHP
Nette. A misconfiguration can exist in any possible layer, and as the layers are not limited in
count, the potential for vulnerabilities always exists. [13]

The server hosting the target web application might also be running other web applications
or even completely different services working on different open ports. Unlike the target web
application itself, those services might be very simple to compromise. There could be a zero-
day vulnerability or an already widely-known vulnerability, as the service itself could simply
be outdated. Attacking services running on the same server could lead to privilege escalation,

OWASP Top 10 6

therefore overtaking everything on the server, including the originally targeted web application.
Leaking stack traces or any debug error logs to the public can both expose sensitive information
and provide enough data for attackers to weaponize. Using default insecure settings or having
a default account in the database with publicly known credentials also falls into this category.
A network security company, LogicMonitor, suffered a security breach just a few months ago by
providing its customers with default passwords, which were never forced to be changed. [14]

A straightforward solution would be to do the very opposite of what was mentioned in the
previous paragraph. The primary strategy is to minimize the attack vectors by disabling or
completely removing unused components while hardening all those remaining indispensable or
necessarily existing ones. Prevent usage of any default credentials, and if necessary, always
make sure to demand their change right after usage. Disable any debug outputs, like Tracy
in PHP Nette, or stack traces otherwise used by developers in the production and restrict the
development version, including production’s and development’s log files, from public access. [15]

1.2.6 Vulnerable and Outdated Components (A06:2021)
As already mentioned, web applications usually require many other dependencies or dependent
components, such as libraries, for their functionality. Requiring any other component also means
relying on its security, and with any other component used, the attack vector for the application
will become wider. This is a common problem for a worldwide known content management system
(CMS) called WordPress, used by 43.2% out of all websites[16]. Chances of being infected with
any malware during 2022 while having more than twenty plugins installed are 147.66x higher
than when compared with a brand new instance of WordPress without any plugin in use, based
on SiteLock’s Website Security publication. [1]

Sometimes, versions of depending components in use are not even known by the developers,
and those versions are then even often outdated. Missing crucial patch updates for existing
vulnerabilities, possibly already exposed in the wild, makes the web application an easy target.
For example, as of 25. 2. 2024[17] the outdated versions of PHP 7 are still being used by over
50 % of web applications which use PHP as its main back-end core. Not to mention that 15 %
of web applications use even older versions of PHP.

Developers working on web applications might change and vulnerabilities may arise at any
time. Therefore, a frequent, continuous inventory of versions of the used components, both
client-sided and server-sided, should be done. This way, it is simple to properly keep track of all
possible gateways to potential security incidents. Online resources like Common Vulnerability
and Exposures (CVE) listings or National Vulnerability Database (NVD) should be checked to
ensure any vulnerabilities of the used components are identified that may become threatening
in the future. A great example of components with already known vulnerabilities was published
by Sonatype[18], based on their research over 23 % of recent log4j downloads were versions still
affected by the log4shell vulnerability of 2021.

Even with a continuous inventory of used components, avoiding possible zero-day attacks
is impossible. Therefore, limiting dependencies on components will also help to shorten the
potential attack vector. Not every component will be updated forever and may eventually one
day suddenly result in a backdoor containing code injected into the web application. Automated
tools usually search for vulnerable and outdated components, so not even the most minor blog
could stay unnoticed. [19]

1.2.7 Identification and Authentication Failures
(A07:2021)

Authentication, verifying the identity of a user, process, or device, often as a prerequisite to
allowing access to resources in an information system, is usually a key element in web applications.

OWASP Top 10 7

Except for static informational web applications, most of them require at least some sort of
administration panel or a private page which is behind the mentioned authentication.

Unfortunately, there are many types of attacks related to the authentication itself. Password
guessing might probably be the simplest one to execute for attackers. It is resistant to any
security policy except those that could, cause much more trouble to users than attackers. An
example of that is account lockout which can be exploited in such a way as denial of service (DoS)
to affect the component availability, preventing targeted registered users from logging in. Luckily,
password guessing can be mitigated by disallowing default or weak passwords by enforcing strict
password policies like testing against the top-used or worst passwords while verifying policies
both on the client-side and server-side. Unlike password guessing, brute force password attacks
can be mitigated or entirely prevented by implementing the CAPTCHA mechanism and rate
limiting any login attempts. Yet password spraying, abuse of stolen credentials, and credential
stuffing attacks could bypass these protections, so multi-factor authentication implementation
and adequate failed attempts logs are always recommended as well.

With authentication itself being secured, there are still many other possible pitfalls. Both
user sessions and authentication tokens have to be properly invalidated during logout or given
a period of inactivity mainly on the server-side but also on the client-side. This information is
sensitive, and the web application should never expose it in an unencrypted form, such as in the
GET parameters. Exposure of any details related to the given account during registration, login,
or credentials recovery processes, such as its existence in the database, should also be avoided.
[20]

1.2.8 Software and Data Integrity Failures (A08:2021)
Software and data integrity failures, a contrast to vulnerable and outdated components, happen
when an assumption is made that the third-party code is safe and secure. Nonetheless, even
if those components were indeed secure and up-to-date, nothing stops attackers from possibly
spoofing, injecting malicious payload, or in any other way affecting the third-party code imported
into the web application.

Automatic downloads or updates are often enabled. Without proper integrity verification,
like the usage of digital signatures, it is only a matter of time before attackers exploit this
vulnerability and unnoticeably inject anything into the targeted web applications. Automatic
updating should also be restricted only to verified trusted sources and repositories.

A notable example of a software supply chain attack, SolarWinds[21], occurred during 2019-
2020 and brought enough attention to the previously not often used type of attack. SolarWinds’s
software, Orion, for monitoring performance and statistics, is used within many companies. In
fact, SolarWinds’ customers were the target of this notorious supply chain attack as attackers
wanted to gain a persistent access to internal networks through their malicious code injected into
an otherwise fully secure software. [22]

1.2.9 Security Logging and Monitoring Failures (A09:2021)
Attacks are definitely inevitable, and even though many threats can be mitigated, the attack
vector shortened, or some known attack types explicitly prevented, there will never ever be a
definite list of all possible attack types. New vulnerabilities might be found; new payloads might
be invented. Strong security is one thing, but defense against the previously unknown attack is
way more complicated.

No matter what, monitoring and security logging should always be a fundamental part of
the defense. A straightforward scenario that could happen to any company, as it does not even
require any in-depth security knowledge, is a recently fired colleague downloading and breaching
customer details. Or like when ex-Google engineer, Linwei Ding, who was arrested on March 6
2024[23], for a stealing AI technology secrets and selling it to Chinese companies. Luckily, thanks

OWASP API Security Top 10 8

to successfully logging Linwei’s access, it was possible to uncover his malicious actions. The
question is, would his or anyone else’s accesses be properly logged in any other web application?

Logging is not meant to provide an ability to blame a person responsible for changing the color
of the navigation menu on the homepage. It is intended to have the ability to look back in time
and understand what was going on at any given moment. Was the application compromised?
How did the attacker get inside? What did they do in the application? What exactly could the
attacker access? Do they have persistent access, or are they already prevented from accessing
again? This brings up the following question: what is the log format? Can there be any malicious
payload injected by the attacker? Are those logs persistent so the attackers cannot simply remove
or tamper with them in any way once they, for example, escalate their privileges?

Monitoring adds another layer of awareness as, unlike the logs, it provides the opportunity
to react to anomalies and security incidents in real time. Therefore, monitoring and regular
evaluation of logs is necessary for everyone to possibly notice if the web application was even
breached. [24]

1.2.10 Server-Side Request Forgery (A10:2021)
The resources the web applications require do not necessarily have to be stored locally. Commu-
nication with other services or servers is often needed, and in order to prevent bad actors from
accessing what they are not supposed to access, proper security measures should be in place.

Internal services, databases, or endpoints are not accessible from the external network. Access
to those should and is usually restricted by access control lists (ACL) and firewall rules. The
problem arises when a node from the local area network, which could have been considered
confidential, like the application server, can be in a way controlled by a remote attacker even
without remote access control. Today’s web application features may allow users to supply URLs
for resources to fetch. Unlike previous attack types, server-side request forgery (SSRF) may occur
when a user, in a way, defines to the server what and where to fetch, just like when controlling a
puppet. What if the attacker asks the server to fetch locally stored environmental variables files,
configurations, or any other possibly sensitive data? The same applies to the aforementioned
internal-only services, which could be running in the same local area network, just on a different
server.

User data must be, as always, carefully sanitized. If a feature of allowing visitors to fetch
resources and data based on the provided URL or path is indeed required, a strict allowlist
consisting of only the intended files and paths to be fetched should be in place. Usage of the
opposite, a blocklist, is a bad practice as it could be circumvented at any time by automated
tools or manually crafted payloads. While preventing possible impact, logging of those requests
should also be implemented. [25]

1.3 OWASP API Security Top 10
In modern web applications, APIs[26] are playing a more and more important roles. They are
used as customer-facing, partner-facing, or even as internal only. Therefore, a specially dedicated
list OWASP API Security Top 10 was released, in 2023, to raise awareness of this often overlooked
issue.

Even with the existence of OWASP Top 10, which shares a lot in common, API Security
Top 10 is still recommended to check because unique security risks and vulnerabilities related
only to API do exist. Sometimes, web applications are built initially stand-alone, and later
mobile applications or other services requiring API endpoints are built upon them. As for that,
inconsistencies, deficiencies in the implementation or just inadequately applied policies might
occur, inevitably leading up to potential vulnerabilities. [27]

OWASP API Security Top 10 9

As with the previous list, the following sections also discuss each item of the API Security
Top 10 in depth with relevant examples.

1.3.1 Broken Object Level Authorization (API1:2023)
Web applications also usually use databases for data storage and manipulation. In order to
efficiently access one specific table’s row in the database, a unique identification is necessary.

A blog, which allows visitors to create their own accounts, has to store them somehow.
If registered account was given a unique ID like a number, there might also be some other
additional functionalities manipulating this ID. For example, change password endpoint could
require a parameter of account ID in order to reset only the desired account’s password and no
one else’s. If there were no object-level authorization checks, to see whether that logged-in user
has sufficient permissions to perform the requested action on the provided object, changing this
ID in the request to anything else would result in changing anyone’s password to the one given
by an attacker. The attacker could then make a simple assumption that the admin ID could be
the very first one ever created in the database, therefore equal to number one.

Broken Object Level Authorization (BOLA) may result in data loss or data disclosure. Manip-
ulating with predictable numbers as user identifications is not recommended. A better approach
would be to use hash values of registered usernames or emails, as those should be unique and
unpredictable enough. [28]

1.3.2 Broken Authentication (API2:2023)
Broken Authentication is related to the Identification and Authentication Failures described in
section 1.2.7. In API, a different authentication mechanisms might be used. Often, stand-alone
tokens like JSON web tokens (JWT) are used. Tokens still require a proper validation for their
authenticity, possibly expiration dates, and in the case of the mentioned JWT, even prevention
of accepting those without a signature algorithm. Without a signature included, it is not possible
to check whether they were modified by the attackers.

Yet, it is essential to keep track of all possible API authentication flows, including forgotten
passwords. Proper rate limiting and logging should be in place, and sensitive operations like
email changes should require additional password verification. [29]

1.3.3 Broken Object Property Level Authorization
(API3:2023)

Web applications may store several properties per object type. Registered user accounts may
be stored with the ID, email, IP address, password hash, timestamp of last login, but also with
some personal information like birthdate, full name, or phone number. If a blog web application
allowed visitors to view registered users’ accounts with the only intention of displaying their
latest activity on the blog, like when was the last time they left a comment on a post, only
relevant properties from the user object should be included in the API response. Even if the
front-end processed only the public information like the date of the last activity and username
from the user object, other sensitive properties were still delivered to the attacker’s device in the
server’s response. Allowing them to access personal information or any other possibly hidden
properties of the user object.

Unfortunately, this vulnerability might not only cause informational disclosure. In particular,
in scenarios where object properties are meant to be altered, user-provided types of properties
might not be validated. Therefore, attackers could send a payload to the username change API
endpoint, in which they would also include a property of isAdmin (supposing this property exists,

OWASP API Security Top 10 10

either by simply guessing or based on information gathered upon previous testing) equal to true.
This could result in privilege escalation or account takeovers. [30]

1.3.4 Unrestricted Resource Consumption (API4:2023)
API endpoints vary in their functionality and resource requirements. A simple endpoint returning
only the existence of a given username in the database will not bother anyone with its resource
consumption. However, this does not apply to an API endpoint generating thumbnails based
on the provided image in many resolutions. A different, yet related, scenario is an endpoint
integrated with an external SMS gate, which does not overwhelm from the computing resources
perspective but rather from the cost resources perspective. This endpoint could have been used
as a 2FA when signing in, costing a few cents per request. Attackers could exploit this by making
numerous 2FA requests from their created dummy accounts to cost the company extra money.

Each endpoint should have its own limits based on the intended functionality. For those
endpoints representing potential cost resources, rate limiting based on business needs is required,
while resources consuming endpoints need limitations of memory, CPU cores, file descriptors, and
process usage. Furthermore, incoming parameters or payloads created by the visitor or potential
attacker still require proper limitations and sanitization. [31]

1.3.5 Broken Function Level Authorization (API5:2023)
In contrast to BOLA from section 1.3.1, broken function level authorization (BFLA) is not related
to the object’s properties but rather directly to the API endpoint itself. The change password
endpoint might be expected to be used by both the users and the administrators but not by
non-signed-in visitors. The same applies to any admin-only related endpoint. In fact, modern
web applications require many roles and specific permissions. WordPress[32] also allows usage
of the roles concept and comes with six predefined roles: super admin, administrator, editor,
author, contributor, and subscriber.

A complex structure of roles could contain flaws, resulting in regular users having access to
higher privileged endpoints. This can also occur when the endpoint is not exposed by itself yet
is still an active part of the administration. Nothing prevents attackers from guessing the URL
path to that endpoint, and due to the lack of authentication and authorization checks, data
disclosure, data loss, or data corruption might occur. [33]

1.3.6 Unrestricted Access to Sensitive Business Flows
(API6:2023)

Business flows play a key role in every web application. The application provides either a
product, a service, or both. Attacks targeting business flows do not necessarily harm the web
application itself. For example, a cinema web application provides the service of reserving and
purchasing seats for screening. Attackers could block out the whole hall using VPN and proxies
to reserve each seat one by one. A different scenario of attack with the intention to spoof the
trustworthiness could be the creation of a fake company with a listing of counterfeit products on
business-to-business (B2B) or business-to-consumer (B2C) markets like AliExpress and boosting
its confidentiality by ordering its own products from fake accounts to leave very positive feedback.
Once enough trustworthiness is spoofed, real customers could be tricked into ordering expensive
items just to get scammed.

The main problem of business flow attacks is that there is no uniform solution. The first step
should always be to identify those flows and evaluate their possible impact on the whole business.
From the engineering side, implementing human verification processes mitigates, yet does not

OWASP API Security Top 10 11

prevent, those types of attacks. Usage of rate limiting, email or phone identity verification,
CAPTCHA, and blocklisting known VPNs, proxies, or TOR exit nodes will help. [34]

1.3.7 Server Side Request Forgery (API7:2023)
A section 1.2.10 in OWASP Web Top 10 was already dedicated to SSRF. The vulnerability itself
is very common, even in API endpoints, as those commonly work with webhooks and SSO. Both
the impact and the prevention are, at the core, the same. [35]

1.3.8 Security Misconfiguration (API8:2023)
Security misconfigurations were also discussed in OWASP Top 10. Nevertheless, even those are
also related to the API endpoints. An API stack depends on many components requiring proper
security hardening and staying up-to-date with the latest security patches.

Communications with the API endpoints, both external and internal, have to be ensured
of being transmitted over an encrypted communication channel (TLS). API endpoints must
be strictly configured to include sufficient security headers like Cross-Origin Resource Sharing
(CORS) policy in communications and also correctly handle caching. Improper configuration of
the HTTP response header might expose sensitive user data, as the absence of a Cache-Control
header could lead to unintentionally locally storing sensitive information like customer details (if
they were previously accessed by the victim during their latest session on the same device). [36]

1.3.9 Improper Inventory Management (API9:2023)
API endpoints grow over time[26]. Minor changes can be made at any time; on the other
hand, significant changes or changes directly in the web application model structure require
the endpoint to be reworked from scratch. As many dependent services might already work
with the endpoint, the new version is often released separately, with the original only marked as
deprecated, providing external parties enough time to update their dependence before completely
shutting the old deprecated endpoint down and replacing it with the new one.

The issue arises when those old versions of endpoints are forgotten and lost in time. This
creates a massive opportunity for attackers to try to exploit them, as they might use weaker secu-
rity measures or even contain vulnerabilities in their implementation. Without proper inventory
management, not only is it hard to keep track of all possible endpoints and their versions, but it
is also difficult to patch possible vulnerabilities. Therefore, an inventory with a continuous plan
of reviews and updated documentation is required to shorten the attack vector. API endpoints
with unclear purpose and use cases should be revised. [37]

1.3.10 Unsafe Consumption of APIs (AP10:2023)
As with the user-provided data, the assumption that any third party’s provided data is safe is,
in fact, an insecure approach. API endpoints might rely on third-party APIs and, even worse,
trust any data received from them. A quite amusing yet unpleasant example is an endpoint that
allows the user’s account to be connected to an external social network platform and fill in its
information based on data received from an external provider, like the chosen username on the
external platform. Attackers could create a fake account on a social networking platform with
a username equal to an SQL injection payload and request that the vulnerable web application
API connect to it. By mindlessly trusting the data received without further sanitization and
validation, information disclosure or worse could occur. [38]

Threat Modeling 12

1.4 Threat Modeling
Even with a suitable testing methodology in mind, security does not exist independently. There
will always be a context as to what is required for securing, how or where it is used, and so
on. Without a proper plan, spending days on improving the already secure data in the database
itself while the database uses default credentials such as admin:admin probably speaks for itself.
This is where a threat modeling process comes in really handy. It maps components of the
web application and potential threats to it. Those may include internal bad actors, like a fired
colleague with access to the system, but also a corrupted database as an outcome of a natural
disaster. The result of the threat modeling is a prioritized list of possible security improvements
or, rather, required changes to be done in the web application. Threat modeling is often used
as a continuous cycle, so any changes or updates from both components and possible threats are
still up to date. [39]

1.5 Common Vulnerability Scoring System v3.x
Vulnerabilities may arise at any time and in any scale. Yet, not every vulnerability is the
same. Security holes like improper user data sanitization resulting in SQL should be the highest
priority. In contrast, inadequate authentication policies like checking against the top 10000
common passwords may wait a few weeks without any significant impact. As the number of
vulnerabilities can also be overwhelming, a strategy has to be chosen appropriately in order to
mitigate every single one of them optimally.

Every company differs in the services and products it provides. This also affects the business
impact of possible vulnerabilities in their systems, therefore changing the whole strategy chosen
for sufficient vulnerability mitigation, including its order of completion. However, without a
broad context of the inner components from both the business and technical sides, a strategy
may be impossible to define. This is where a common vulnerability scoring system (CVSS) comes
in with its solution.

CVSS, created by the National Institute of Standard and Technology, is a method used to
supply a measure of severity for given vulnerabilities by a standardized CVSS score, used widely
by industries, organizations, and governments that need accurate and consistent vulnerability
severity scores. CVSS comes with three metric groups: Base, Temporal, and Environmental. The
final score ranges from 0 to 10 and is calculated by a given Base metric, which is then affected by
both Temporal and Environmental metrics. Those metrics reflect the impact of a vulnerability on
confidentiality, integrity, and availability while also reflecting the complexity of attack execution
and its attack vector. The CVSS score can be represented by its numerical value, by a single
word substitution based on table 1.1, or by a compressed textual representation, a vector string.
[40]

Table 1.1 CVSS v3.1 Ratings table conversion

Severity Severity Score Range
None 0.0
Low 0.1-3.9
Medium 4.0-6.9
High 7.0-8.9
Critical 9.0-10.0

Chapter 2

GoOut

The purpose of this chapter is to explain in detail how GoOut works and how it differs from
other companies in the same industry. The chapter also covers the technical and business
aspects of user roles and their related components integrated into their web application.

2.1 Mission and Vision
The claim that there are countless cultural events around the world every year may not be too
surprising. These can range from huge music festivals, international sports matches and gala
evenings to small local art exhibitions or workshops. On reflection, it should be evident that
the organizers’ costs can vary significantly. After all, only some theatres can afford the same
quality and robust software solution, such as its own system with sales, administration, and
ticket management of its performances, compared to, for example, a multinational cinema chain.

GoOut addresses this problem. Their original intention was just to record all cultural events
in the Czech Republic, thanks to which it can still be used as a search engine for cultural events
without the need for registration in many countries, including the Czech Republic. Since 2014,
which has been clarified in a conversation in 2023 with one of the original founders of GoOut,
Vojtech Knyttl, they have even started selling tickets and providing a complete solution for
organizers. The solution includes, among other things, event management, ticketing including
many payment methods, customer support, remarketing and tracking codes, advanced financial
statistics, social media promotion, widgets allowing the organizers to also integrate GoOut sale-
form with their website, web development, and many more. Some of those features are new,
whereas others have been in place since 2014; in the end, the GoOut web application is still
growing and may come with even more features in the future. Unlike other competitors in
the ticketing industry, GoOut differentiates itself by not only selling tickets but also connecting
people to the actual culture. It is not common for a seller to include events for which they do
not sell tickets. [41]

It is possible to register to the GoOut platform either as an organizer whose capabilities
have been mentioned in the previous paragraph or as a regular user. Functions for regular users
include an easy discovery of new events based on their preferences or previously attended events
or the use of a manual search. Searching can be done directly using event name, organizer, artist,
or location, as well as by individual categories of music genres. Users have their own personal
profiles, which they can hide from the public. Users can also gain cultural guide status if they
actively attend and follow cultural events. It is also possible to discover new events just by
following other users. The activity of the followed users is then displayed on the activity feed, so
it is possible to find many exciting events just by scrolling without the need to search for them
manually.

13

Components and Technologies 14

Regular users, as well as any visitors without registration, can purchase tickets for events
contracted with GoOut directly using the web interface of the web application. What is worth
mentioning, however, is that the overall payment integration is provided by an external company
called PayU[42], which complies with the European Union regulations, so any sensitive data is
never handled by the GoOut application. The existence of the registered user account allows
one to view previously purchased tickets, including those that were bought before the actual
account registration (if the provided email on the tickets corresponds with the registered one).
The whole web application also comes with dedicated mobile applications both for Android and
iOS. Registered users can view their tickets or discover new exciting events at any time, simply
having a culture in the palm of their hand.

2.2 Components and Technologies
In order to perform the penetration test focused on OWASP’s Top 10 methodologies, a brief
overview of which components in conjunction create the web application and how they might be
important from the business perspective is crucial. Therefore, I opened a discussion about these
matters directly with GoOut, which is my primary source for the following findings.

Components within GoOut are not necessarily accessible to everyone as some privileges might
be required. There are essentially four types of users:

1. unregistered visitors,

2. registered users,

3. organizers,

4. and admins.

Figure 2.1 Diagram showing the sets of rights for user type in GoOut

Visitors
(unregistered)

Users
(registered)

Organizers Admins

Each level unlocks additional components to work with. Admin accounts can interact with
every single one, whereas organizers cannot access the admin-only settings like creating new
events or sales, illustrated in the figure 2.1. Before diving further into each category, it is
important to note that becoming an organizer in GoOut is not necessarily a simple process.
Anyone representing an individual or a legal person can fill in a special organizer registration
form to apply for cooperation. This form is then manually reviewed by someone from GoOut to
decide whether the cooperation could be beneficial for both parties. If that is the case, the contact

Components and Technologies 15

person is contacted to settle details about the cooperation, all before any access to the GoOut
Admin is set up. The access is then based on roles given to each person from the organizing
group if there are any other people needing the access as well. So simply said, getting access to
the organizers features is definitely a complicated process for attackers to perform on their own,
on the other hand it might be simple for someone who is working on behalf of an already-verified
organizer group.

Now, when roles are clearly defined, let me start with the lowest privilege, unregistered
visitor’s view: Upon entering the homepage the activity feed section is loaded as shown in figure
2.2. The fetched feed in this section is based on many criteria, including interesting cultural
events or recommended events by cultural guide users, whereas for registered users it is mainly
based of their past attended events, liked events, followed performers, venues or other users. As
a result, newly registered users might have their activity feed empty. However, for the sake of
everyone else, the activity feed presents a particular load on the server. A very similar component
is a search bar, allowing everyone to manually search for desired sales by their name or by listing
specific artists, venues, or institutions.

Figure 2.2 Activity feed component of GoOut web application

Components and Technologies 16

Once a specific event’s sale is selected, the sale-form component appears as shown in figure
2.3. This component plays a vital role from a business perspective and is also accessible to all
user types. What is being presented as a simple HTML form, in reality, hides a complex system
behind it. There are simple sale forms, like for a gallery exhibition, and then there are hall sale
forms allowing users to select a specific seat from the plan of a theater. Seasoned sale forms
combine multiple hall functionality like theatre subscriptions. Sale-form consisting of a several
other sale-forms displayed as one, mainly for music festivals like RockForPeople, allowing users
to not only select tickets for the event but also additional services like camping, parking, tents,
and so on. Sale-form itself is the last step of conversion marketing, as the ticket purchase process
can only be done through it.

Figure 2.3 Hall sale-form component of GoOut web application

The registration process is a gate to account creation. The only requirement to advance in
privilege is to provide a valid email address. Once registered, the user can access components
related to account settings. Those settings include profile picture upload, bio status field, visi-
bility of the account, connection to Google Calendar, and most importantly, the ability to view
purchased tickets and their receipts. Users are also able to favorite any existing venue, artist, or
event or follow other users on GoOut. Unlike other platforms, there are no comment or review
sections available for users to create their own content unless they become organizers who are
partially enabled to create certain content, like sale categories.

The last component is called GoOut Admin. This component stays hidden from most of
the users as it is accessible only by selected organizers2 or GoOut employees. I should note
that this component itself is very complex and is created out of many other components, as
everything needed for the administration is located there. Listings of existing transactions with
many possibilities of their filtering, settings to set up a new sale or manage existing ones, or
settings of sale categories, like changing their visibility, creating unique voucher codes, setting
up a maximum number of tickets per the given category and so on, the same applies to events
themselves and their connections to venues, performers, or institutions, it is also possible to

2Their roles might differ from one another.

Defined Scope and Testing Notes 17

manage organizers and their permissions by directly managing their roles. Even if the organizer
is granted all possible access from the roles they can be given, they will still be restricted to
access only their related sales, unlike admins who are not limited in their activities in GoOut
Admin. For internal reasons, I am not able to disclose every single existing part of the GoOut
Admin, but if the part is related to a possible vulnerability, it will be covered later to properly
understand its scope and impact.

2.3 Defined Scope and Testing Notes
Upon thorough technical and business discussion with GoOut, the following scope was declared.
My penetration test will mainly focus on the parts accessible from the unregistered visitor view,
the registered user view, and the organizer view. Only a few admin-only components will be
excluded from the testing for obvious internal reasons. Otherwise accessible components from
those views are not further limited. The purchasing process handled by an external company,
“PayU”, is out of the scope, as well as the internal databases or other services except for the web
application located on dev.goout.net (a standalone copy of the web application’s production
version).

As an approach, black box testing was selected, restricting me from both statically and
dynamically analyzing source codes of the components and simply putting me into the position
of an external attacker. Testing for common web application vulnerabilities to make the most
effective use of the options in terms of time to attack versus potential success of the attack, thus
sticking to the aforementioned top ten lists.

Chapter 3

The Penetration Test

Building on the previous two chapters, this chapter demonstrates the practical application of
the OWASP resources to a penetration test performed on the GoOut web application. The
chapter also includes an evaluation of the vulnerabilities found during security testing and
their CVSS score based on their potential impact on GoOut.

3.1 Burp Suite
Building a house does not strictly require the usage of any tools. Nonetheless, they are still
recommended and commonly used. The same applies to penetration testing; nevertheless the
types of testing tools are still ubiquitous in their wide variety. Thanks to them, some parts of
the process can be automated, saving time and resources for more sophisticated tasks.

One particular tool is Burp Suite[43], a web application security testing software widely
adopted by professionals. Burp Suite allows to intercept and, where appropriate, to modify
every request coming through the browser or easily manually create custom payload requests in
a tool called repeater. It comes with many integrated automated tools for enumerating, brute
forcing or decoding, and even a tool called a sequencer, allowing explicitly testing web application
tokens, like cart or session tokens, for statistical tests of character-level and bit-level of their
randomness. Those statistical tests are composed of a runs test, a spectral test, a correlation
test, a compression test, and a few more. This is very crucial for black box testing approaches
as source codes of the back-end part of the applications are not available for analysis; therefore,
without tools like the sequencer, it is challenging to validate and evaluate the cryptography used
properly. However, it is essential to note that those tests can reveal only that the randomness is
weak; they cannot prove it is strong. [44]

To make the penetration testing even more structured and clear, Burp Suite allows to scope,
filter, and search for past-made requests, crawl chosen domains, or even run automatized testing
for known vulnerabilities. Burp Suite comes with even more integrated features. Hence, their
software comes in three types: Community, Professional, and Enterprise. The community one is
provided for free, but it has limited features, like missing vulnerability scan, advanced searching
or filtering, saving project files, and having limits on a brute force tool called intruder.

I have used the Burp Suite Professional version for my penetration testing, as I have been
given a one-month free license upon my direct request to PortSwigger. Unlike other tools, Burp
Suite accompanied me during the whole testing until the very end, which is not surprising as
based on a recent TechValidate[45] survey of Burp Suite Professional, 94 % of penetration testers
said that Burp Suite is a “best in class” software.

18

Information Gathering 19

Table 3.1 Penetration test findings based on OWASP Top 10

Vulnerability name CVSS v3.1 rating
Accessible DEV environment High, 7.5
Authentication policies High, 7.5
Sign-out does not sign-out High, 7.5
Cross-site request forgery Medium, 6.5
Leaking stack trace Medium, 6.5
Password reset hash can be reused and never expires Medium, 5.7
XSS in organizer view Medium, 4.6
XSS in event’s settings Low, 3.8
Incorrect data validation of a phone number Low, 3.6

3.2 Information Gathering
Before any active testing was done, I tried to gather as much information as possible about GoOut
systems and functionalities from public resources, including open source intelligence (OSINT)
and Wayback Machine. Documents found were either outdated or public anyway; however, from
the source code of the homepage, a link leads to /services/partners/swagger-ui/index.html,
which is a swagger UI API documentation version 1.0.6. which is affected by CVE-2022-24863[46].
Another interesting finding, thanks to the Nikto tool, an automatized web application scanner, is
/.well-known/apple-app-site-association which can be found in the attached media. This
is a special Apple’s meta JSON file meant for secure association between domain and iOS appli-
cation[47]. This file also allows to exclude possibly sensitive paths or endpoints. Thanks to that,
I have gained further knowledge of the existence of otherwise hidden paths like /ticketing/,
/edit/ and /legacy/.

I have also searched the domain’s DNS history to gain insight into possible servers’ locations.
However, the only notable information discovered from it was that servers were hidden behind
the CloudFlare proxy. Thanks to this, techniques like fingerprinting the web server or scanning
for opened ports will not work as intended because it is not possible to access the targeted
machine directly without CloudFlare in the way.

3.3 OWASP Top 10 Testing
With a proper overview of the GoOut web application’s components, roles, functionalities, and
possible business impact, it is already possible to perform penetration testing based on the
newest version of OWASP Top 10 released in 2021 and further researched in the chapter 1.2 with
a declared scope defined in chapter 2.3. I have tried to test components from all possible user
roles one by one with the vulnerabilities list in mind. Overall vulnerability findings evaluated by
CVSS v3.1 are listed in table 3.1.

3.3.1 Broken Access Control
I was amazed that none of the tested components had been affected by broken access control
vulnerability. As it is the number one on the Top 10 list, it is an excellent job from a security
perspective. Yet some findings similar to broken access control were found to be related to API
endpoints; information about those findings will be discussed in section 3.5.5.

OWASP Top 10 Testing 20

3.3.2 Cryptographic Failures
As declared in the scope, how data is handled or stored in the database could not be tested.
However, how they are being processed or stored locally is indeed within the scope. GoOut
strictly enforces the usage of the HTTPS protocol by including the Strict-Transport-Security
HTTP header with value max-age=15724800; includeSubDomains, while also redirecting any
requests from HTTP to HTTPS. All locally stored cookies are restricted with the attribute
secure set to valid. To mitigate possible attacks on confidentiality like XSS, sensitive cookies,
namely accessToken, are also marked with the attribute HttpOnly set to true, allowing them to
be only included in the HTTP request but not directly accessible by a locally running JavaScript.

I have made further inspections of the accessToken and refreshToken cookies. Based on
their structure, a conclusion was made that those are most likely the JWT tokens, which were
later indeed confirmed by successfully decoding their values. They were signed by HMAC using
SHA512 and contained iat, which stands for Unix epoch time, and also user ID. It was impossible
to spoof anyone’s identity as the server declined any JWT tokens with no signature algorithm
applied, and the server’s private key used for signing was never found during the whole testing.

One particular component that came to mind is the sale-form. Each purchase made has to
go through an external payment gate. However, GoOut somehow has to track the current state
of the transaction so that it can correctly generate tickets, but only if the payment process is
successful. During my investigations, I discovered that the purchaseHash is being sent along
with the payment request to PayU. Thanks to this unique purchaseHash, it is possible to view
purchased tickets and the receipt even without being logged in; as for the ticket purchase, no
account is required in the first place. The idea is straightforward: if the generated hash was weak,
anyone could access anyone’s tickets. Luckily, purchaseHash has a length of 32 characters made
out of characters ranging from the letter a to the letter z, resulting in log2(2632) = 150.4 bits of
entropy, which is very strong. This implies that valid tickets are secured against unauthorized
access.

3.3.3 Injection
GoOut lets the users provide data for every possible role. Even unregistered visitors, who are
the most difficult ones to identify or block, are eligible to use the search bar by filling in any
payload. Registered users can fill in details on their profile, which is what I focused on first. Every
field related to this component is being correctly sanitized, except the phone number. It was
not possible to inject an XSS payload, but it was possible to bypass client-sided phone number
restrictions and change it to something invalid as shown in figure 3.1. To fully understand the
potential impacts on the web application functionalities, I discussed it with GoOut developers[48].
The phone numbers provided by users may be used by the organizers to send informational SMS
about events for which users purchased tickets. Based on the discussion, this SMS sending
process, fortunately, creates a payload from all receiving numbers and sends it as one list to
the external SMS provider, as shown in code listing 3.1. Then, it checks for a the number of
successfully sent SMS by the external gate; therefore, an invalid number would not cause any
harm to the sending process itself. On the other hand, injecting a premium SMS number could
cause harm. Phone number length was limited only to a minimum of five digits, allowing for
the insertion of custom premium SMS services and potentially costing financial resources. This,
however, still depends on many variables as the external SMS gate might skip those numbers,
the attacker would have to purchase tickets for incoming events, and the organizer of that event
would need to send an SMS afterward containing a specific keyword, which on its own is very
unlikely as organizers are charged upon sending them. Therefore, it is doubtful that it will occur
in the first place for the attack to be successful.

Another component tested was sales and their settings in the GoOut Admin. Unlike other
components, a few fields were found vulnerable to the XSS injection attack. Starting with the

OWASP Top 10 Testing 21

Listing 3.1 Function responsible for sending group SMS to an external gateway

fun sendSms(numbers: List<String>, text: String) =
"https://[REDACTED]/"

.httpPost(
mutableListOf<Pair<String, Any?>>(

"to" to numbers.joinToString(","),
"message" to text,
"format" to "json",
"test" to if (production) 0 else 1,

),
)
.authentication().bearer(smsApiToken)
.fetch<SmsApiResponse>()

reason field, which is required when making any changes to the specific sale category as a reason
for the change. This field then displays in the overall history of the sale. Nothing prevents the
organizer from injecting malicious payload to attack directly GoOut Admin accounts viewing the
tampered sale. Luckily, as discussed in section 3.3.2, sensitive cookies, namely accessToken and
refreshToken, are correctly restricted from direct JavaScript access, thus mitigating the risk of
malicious payloads targeting them. On the other hand, one specific attack scenario affecting the
company’s reputation that comes to my mind, is when a departing colleague from the organizer’s
company seek to resell as many tickets as possible for personal profit, thereby also damaging the
company they were about to leave. Thanks to the malicious payload, they could change the
price of the ticket category to zero. They could also order a particular amount of tickets on
unregistered email accounts, revert the change, and use the malicious XSS payload to either
completely hide the changes in the locally displayed sale changes history or alter it in some other
way to avoid suspicion.

One more particular field vulnerable to the XSS injection was a part of the event settings.
This is, unlike the sale settings, accessible only to GoOut admins. Therefore, the possible threat
is much smaller than in the previously discussed field. This field, named adminInfo, serves as
an informational field for other admins to know about policies related to the event or who to
contact about the event or related sales if needed. This vulnerability itself may present a low
impact, yet it is way more interesting than it seems; details are discussed in section 3.5.5.

Otherwise, input fields and parameters were correctly sanitized or escaped, preventing possi-
ble SQL injection.

3.3.4 Insecure Design
From the role model applied in the organizer’s permissions, which can be seen in figure 3.2,
there would not be much to point out; meanwhile, GoOut admins’ permissions are something to
focus on. Becoming an official GoOut admin does not immediately allow viewing unpublished
events, sale categories, and transactions, as a role model is applied even there, however, those
permissions granted via the applied role are not fully documented anywhere and, therefore, they
might be wrongly set up in the first place, allowing, for example, access to internal business
numbers someone from the customer support team. This is not necessarily a vulnerability, but
as much as I would like to believe that no one with malicious intentions would ever come in
contact with it, it is nothing that can be relied on and should be properly revised, documented,
and set up to prevent any potential security incident.

OWASP Top 10 Testing 22

Figure 3.1 Proof of concept of the invalid phone being saved in the database

3.3.5 Security Misconfiguration
During my testing, I have managed to cause several HTTP error responses, including HTTP 500,
and other internal errors. At a first glance, it seemed that there was a potential stack trace leak
occurring when an internal error was thrown. This was immediately refuted as I realized that
those errors were left unhandled by the developers intentionally. My testing was scoped only
on the development environment, where is a different server configuration to provide a detailed
error log of exceptions, including a stack trace, for the purpose of easier debugging.

Nonetheless, I discovered a special occurrence of an error response, an HTTP 400 bad re-
quest, which ultimately led to leaking stack trace even on the production environment. By
purchasing tickets for any event, a unique purchase hash is generated. This hash also acts as a
secret, as tickets can be purchased even by unregistered visitors. GoOut allows the generation
of tax receipts using some particular component, which has not been discovered until now. The
communication with this component relies on a parameter called kind. This parameter can be
set for example to value document_full which specifies the requested document type of the
generated tax receipts. Upon requesting an empty value, the component correctly handles the
request with some fallback default selected document type. However, upon entering an invalid

OWASP Top 10 Testing 23

Figure 3.2 Individual organizer account permissions settings in GoOut Admin

HTTP character, reverse slash \, an unhandled HTTP error 400 bad request was thrown, ulti-
mately leaking the stack trace and HTTP server type with the currently running version. This
vulnerability was given a CVSS v3.1 rating of 6.5, based on information disclosure, expanding
possible attack vectors, and being accessible by anyone on the internet.

What was, in fact, far worse than just a leaking stack trace is that even though the devel-
opment version of the application was hidden, it was still accessible from the internet without
any authentication required. The development environment is an altered copy of the production
version, with no real connection to it and containing only limited data. Yet when compared
to the production environment, some of the debugging settings were enabled there. While not
affecting integrity anyhow, confidentiality was definitely affected. Causing a stack trace or other
type of information disclosure was far easier there, therefore elevating the potential impact and
creating a larger problem.

3.3.6 Vulnerable and Outdated Components
One particular component, which has already been discussed in section 3.2, is Swagger. The
version used is not only outdated but also vulnerable to denial of service attacks[46] by crafting
POST requests to the endpoint that expects only GET ones. Fortunately, this has been either
manually patched or secured by the usage of Cloudflare’s web application firewall (WAF).

Thanks to the misconfiguration issues further discussed in section 3.5.8, which ultimately led
to informational disclosure, I was able to identify the technologies internally used. One of them
was an outdated version of Java 17.0.7, which was directly by Oracle[49] recommended to stop
using after a critical patch release scheduled on 18 July 2023. I was personally unable to exploit
the version.

OWASP Top 10 Testing 24

3.3.7 Identification and Authentication Failures
Several problems were found in terms of authentication failures. Some of them present a higher
security risk, while others do not.

Let’s start with the one with the lowest risk, enforced password policies. GoOut allowed me
to create an account or change the password to at least seven characters long secret. This secret
could have been written in a lowercase format; it could have also been some very well-known
key-phrase or commonly used password like password. GoOut is used mainly in the Czech
Republic. Therefore, one of the most common passwords is Heslo123, which was also allowed
to be used even with the first letter being lowercase. Admin accounts are disallowed from using
passwords to authenticate, so those are not affected, yet organizer accounts were. The reason
why I consider this as the one with the lowest risk is that in order to successfully execute the
attack, the victim would have to consciously decide on a weak, common, or leaked password, like
using the very same one for every web application registration.

Unfortunately even if they decided to use a strong password it may not be enough against
a sophisticated targeted attack. With knowledge of the OSINT of the victim and some of the
passwords they used that have gotten leaked in past database breaches, it may be possible to
guess their currently used strong password. Multi-factor authentication, which could have helped,
was lacking in the GoOut application.

Besides the policies, something worse related to the sign-in component was discovered. GoOut
used no rate-limiting or prevention against attackers from launching targeted brute-force attacks
or any more beneficial attacks in terms of speed-result ratio, for example credential stuffing.

Following up with the session handling, the AccessToken cookie provides, seemingly a secure
way to handle user sessions. Unfortunately, this was not entirely true, as even with the token’s
integrity being strictly validated, there was a flaw in the invalidation during sign-out. The token
was valid for a few weeks; if the sign-out process was called at any point in time during the token’s
existence, a cookie was locally destroyed and the user was signed out. On the other hand, this
invalidation was done only on the client’s side. The server did not receive any information about
the accessToken invalidation upon request, as the only request it processed was to either validate
the provided cookie, its signature and time, or craft and sign a new one upon a successful sign-in.
Even with secure authentication policies in place, session hijacking may be possible. Once the
attacker has gained control of the session, without the possibility of invalidating it on the server’s
side there is nothing left to do but directly ask for help from GoOut developers.

This is not the only flaw related to the accessToken cookie affecting the overall security.
The cookie was not set with the attribute SameSite, resulting in it being vulnerable to cross-site
request forgery (CSRF) attacks. As a proof of concept, I created a friendly-looking website with
a simple button saying “Click to get your free gift!”; a key part of the HTML content can be
seen in listing 3.2. If the victim clicks on the button, their browser will create a POST request to
the official GoOut endpoint /services/social/follow/v2/follow with the payload set to the
values visible in the code snippet. That signed up the user to follow my testing account. This
might seem like a harmless play, but the opposite is true. Nothing stops attackers from crafting
requests to, for example, a payment or a sale settings endpoint, while also executing the request
right upon the page loading, rather than requiring the user interaction by clicking on a button.
Unlike the follow endpoint I used for the proof of concept, a password change would not be
possible to exploit as a unique hash is required for it. Overall, this vulnerability affects integrity;
on the other hand, it requires attackers to trick the victim into visiting their website, unless they
combine the usage of other vulnerabilities, such as XSS or a man-in-the-middle attack scenario.

The last problem from this section was found in the password reset component. In order to
change the currently used password, a password reset process has to be authenticated through
email. The email received contains a unique hash allowing one to change the password. The
issue with it was that not only could this hash be used more than once to change the password,
but it never really expired. If a bad actor gained access to the victim’s email account with an

OWASP Top 10 Testing 25

Listing 3.2 Malicious HTML form exploiting CSRF vulnerability to follow the attacker’s account on
GoOut

<form action="https://dev.goout.net/services/social/follow/v2/follow"
method="POST">↪→

<input name="type" id="type" value="user" type="hidden"/>
<input name="ids" id="ids" value="2951547" type="hidden"/>
<input name="action" id="action" value="LIKE" type="hidden"/>
<div>

<button>Click to get your free gift!</button>
</div>

</form>

Listing 3.3 Commented out code checking for invalid password reset hashes

// Commented out because of issues with finishing registrations. Should be
refactored when reimplementing for Next frontend.↪→

// if (userRequest.isClosed) {
// log.error("Request has already been closed: $userRequest")
// throw BadRequestException()
// }

old password reset request, an account takeover would still be possible. How likely would it be
to change the password of a random user who has requested the password change process at
any point in time until now? The reset hash consists of 37 characters with 26 possible values
ranging from letter a to z. Let’s say that 500 password reset requests are done daily. After
seven years of running, we would end up with 500 · 365 · 7 = 1277500 hashes, resulting in a 1 in

3726

1277500
∼= 4.64 · 1034 chance of successfully brute forcing hash on the first try, which is negligible.

Upon discussion with GoOut developers[48], it was found that the issue with the password
reset hash expiration was not there from the very beginning. One day, during further development
of the platform, someone commented out a part of the script responsible for the password change
request, which can be seen in code listing 3.3.

3.3.8 Software and Data Integrity Failures
I could not find any software or data integrity failures during my security testing or any vulnerable
components that would be exploitable from this perspective.

3.3.9 Security Logging and Monitoring Failures
Due to the sequential security testing of every component, I have tried illegal actions from the
application design perspective like injecting malicious payloads numerous times. What surprised
me is that there was no active monitoring for potential security threats except error and warning
logging for the development and debugging purposes. All those and many others are being
actively logged in Google Console. Some specific thrown exceptions on the back-end are directly
integrated to be sent over the Slack chatting platform, as can be seen in figure 3.3. While
these logs usually contained data about related users and also were properly sanitized to prevent
stored attacks, both the channel on Slack which was used for this integration and the Google

OWASP Top 10 Testing Evaluation 26

Console itself were being constantly spammed with other logs or exceptions, often becoming
disorganized. Whereas thrown errors like internal server errors were correctly logged, brute-force
password attack attempts were never registered in the first place.

In addition to the internal error logging, additional logging is done directly in the web appli-
cation. This applies to event or sale changes in order to keep a history of past changes.

Figure 3.3 Error and warning messages logged in chat by Slack integration

3.3.10 Server-Side Request Forgery
SSRF was nowhere to be found, as the web application did not seem to fetch remote resources
based on the user-requested data.

3.4 OWASP Top 10 Testing Evaluation
Security testing focused on the OWASP Top 10 list yielded several interesting findings. Those
vary both in severity of the impact and the complexity of execution. Overall, the web application
of GoOut was well designed, with just a few flaws that commonly appear in any web application.
There were several findings related to authentication failures, like weak policies, lack of rate
limiting, improper session invalidation, and password reset hash re-usability.

3.5 OWASP API Security Top 10 Testing
This section is dedicated to the examination of security vulnerabilities in API endpoints, which
have been discovered during the process of information gathering or any previous security testing.
With the knowledge of the newest OWASP API Security Top 10 list from 2023, further discussed
in section 1.3, found vulnerabilities are listed in table 3.2.

3.5.1 Broken Object Level Authorization
One particular feature plays a key role in event administration. The endpoint
/services/contentadmin/schedule/v1/setPublishOn allows organizers or GoOut admins to

OWASP API Security Top 10 Testing 27

Table 3.2 Penetration test findings based on OWASP API Security Top 10

Vulnerability name CVSS v3.1 rating
“Locking out” the entire sale without any purchase Critical, 9.3
API event settings BFLA Medium, 5.9
API schedules settings BOLA Medium, 5.5
API user enumeration Medium, 5.3
API leaking an internal exception Medium, 5.3

set a specific event to be scheduled on a given date, which can be used to unpublish the event by
setting any future date or publish the event right away by setting a current date. The endpoint
accepts POST requests with two parameters. One of them is id, which specifies the desired event,
and publishOn, which defines the date (past, present, or future). The endpoint correctly requires
authentication as organizer or admin in order to process the request, but it does not check for
object level authorization. Due to this, it is possible for any organizer, even the smallest one who
organized only a single event with a few attendees, to unpublish or publish any existing event
in the application. What is important to note is that the organizer cannot access the targeted
event settings or alter anything else. To execute this attack, the attacker would have to guess the
event ID or retrieve it using a different approach. I have found out that the front-end part of the
web application, upon viewing specific venues, calls the /services/entities/v1/schedules
endpoint to retrieve incoming or past events. Those are referred to by their ID, which is exactly
what the attacker needs to successfully unpublish any published event. This affects both the
availability and confidentiality of the component. Availability is impacted when a published event
becomes suddenly unpublished, preventing customers from ordering tickets, and confidentiality
is affected if an attacker manages to publish any unpublished event. However, even this may be
more challenging than it seems as the event object has to be both approved and published (in
the past or the present) in order to be visible to the general public, and this endpoint allows
modification of the publishedOn attribute only.

3.5.2 Broken Authentication
The Authentication process itself is properly handled, using the JWT tokens, which were further
discussed in the cryptographic failures section 3.3.2, yet there was a major difference between
the web application and the API authentication processes. That was an inconsistent approach.
The web application focuses on security policies, avoiding leaking any information about user
account existence in the system: for example during an incorrect sign-in attempt, the generic
message Invalid credentials is displayed rather than Provided username does not exist
in the system and Password for a given account is incorrect. In contrast, the API de-
sign focuses more on the user experience (UX) by providing feedback for customer comfort. This
inconsistency, however, causes both wrong security policies and insufficient UX simultaneously.
API endpoint /services/user/v1/accountExists which takes one parameter email in a GET
HTTP request and responds with either HTTP 404 when the account does not exist in the sys-
tem or with HTTP 200 which includes real user ID as can be seen in the example response in
listing 3.4.

3.5.3 Broken Object Property Level Authorization
None of my created requests resulted in a broken object property level authorization flaw, from
both information disclosure and tampering point of view.

OWASP API Security Top 10 Testing 28

Listing 3.4 Payload in response from /services/user/v1/accountExists endpoint

{
"userId":1214821,
"status":200

}

3.5.4 Unrestricted Resource Consumption
Analytics of sale transactions are a necessary part of the web application from the organizer’s
business perspective. GoOut implemented various query options to fetch any desired data orga-
nizers would ever think of. This component is, however, very complex and so brought attention
to me. All queries are being handled by the /services/reporting/v0/purchase-stats API
endpoint which processes HTTP POST requests with JSON payload data. It is possible to filter
specific time ranges, transaction states like only those successfully paid, payment methods, sales
related to only specific sales or keywords, and so on. One key parameter, saleIds, was either
incorrectly designed or contained a security flaw in it. If the parameter was included in the
request query payload but left with an empty value, an unrestricted resource consumption would
occur.

Based on communication with GoOut[48], what did actually happen on the back-end is that
the component would iterate over all sales as the saleIds was empty while also evading the
authorization checks and ultimately causing the massive overload on the server to calculate
correct values over tons of existing sales. Luckily, the returned data of the JSON type contained
only numbers, and no further sensitive information about sales of other organizers or customer
related data was disclosed.

A denial of service could very quickly result from multiple calls with an empty saleIds value
to this endpoint. This affects primarily availability, yet also confidentiality from the internally
leaked numbers of sales; however, as it was already stated, attackers could have no idea where
those numbers came from or what they are even related to, and the overall confidentiality impact
is, therefore, smaller.

3.5.5 Broken Function Level Authorization
A case of BFLA I had stumbled upon was in /legacy/forms/event/submit endpoint, which
is a part of the GoOut Admin available only to the highest privileged users. Without being
admin, no requests are sent to this endpoint. On the other hand, a very similar endpoint
/legacy/forms/sale/submit is available for organizers, and relying on security through obscu-
rity that no one would ever guess or find this endpoint would not be a good idea. Upon further
testing, if the attacker knew the payload’s structure sent to this endpoint, nothing would have
prevented them from crafting their own malicious one to alter existing events. Luckily, as seen
in the listing 3.5, this minimal structure of a payload is nowhere near to being just randomly
guessed by the attacker, and also, the revisionId did not seem to be visible anywhere, therefore
the severity of this vulnerability is lowered by the attack complexity even though the attacker
would be able to alter the whole event.

3.5.6 Unrestricted Access to Sensitive Business Flows
A crucial role in the conversion marketing on the GoOut web application is definitely the sale-
form, which stands as a sensitive business flow, allowing even unregistered users to purchase
tickets. Once the ticket is selected and placed into an imaginary cart, for a small period of time

OWASP API Security Top 10 Testing 29

Listing 3.5 Required JSON payload structure to exploit the BFLA

{
"strings": {

"revisionId":"1651659",
"state":"APPROVED",
"adminInfo":"[payload]"

}
}

a reservation is made to prevent anyone else from buying out in the ticket in meanwhile. This time
period differs in particular scenarios, for example it is extended upon the start of the payment
process so customers can still successfully buy their selected tickets in case of insufficient funds
or wrong payment details provided, requiring more time to complete the order. The main issue
of this otherwise well-intended functionality is that it can also be used for malicious purposes.

During testing, I discovered that the /services/saleform/selection/v1/ticketByCount
endpoint is being called upon selecting or removing tickets. HTTP POST request consists of
saleId, dealId (sale category), totalPriceBefore which contains the total price of the cart
before the asked change (I was unable to exploit this parameter) then there are are also a
few more uninteresting attributes based on my findings and the very last one is numTickets.
The front-end loads and sets proper ticket limit per sale category in the sale-form based on
/services/feeder/v2/sales data. Clearly, a limitation value per ticket category exists in the
database. Yet, it was not correctly checked for and upon altering request to the
/services/saleform/selection/v1/ticketByCount with numTickets exceeding local sale cat-
egory limit, it was possible to order all of the requested tickets as long as their count did not
exceed the total amount of tickets per targeted sale category. This also implies that it was possi-
ble to block out a whole sale using a single POST request to the endpoint even without creating
an account, ultimately affecting the tickets availability.

3.5.7 Server Side Request Forgery
SSRF was not found anywhere, even in the API endpoints; no endpoint seemed to be accepting
URLs to make requests for or to be crafting URLs based on the string input provided, which
would ultimately lead to the vulnerability.

3.5.8 Security Misconfiguration
A sale-form component allows several payment methods for customer needs. Those methods are
selectable in the form itself and, in case of a payment failure, can even be changed afterward.
Once sale categories, ticket count, contact details, and a payment method were selected, the
/services/saleform/purchase/v1/pay endpoint was called via HTTP POST request with an
example payload visible in the listing 3.6.

Upon changing the type parameter to something illegal, like a single dot, the exception was
thrown and the endpoint replied with an HTTP 400 Bad Request. However, this response also
contained a JSON reply with the thrown exception as seen in listing 3.7.

Another occurrence of API security misconfiguration was located in event administration,
which was accessible by both GoOut admins and organizers. It is the very same component
discussed upon in the injection vulnerability findings in section 3.3.3, used for sale category
configuration. There was no limit to how many tickets could be set up as the maximum capacity
per the specified ticket category. When setting 999999 as the count parameter in the request,

OWASP API Security Top 10 Testing 30

Listing 3.6 Payload send via HTTP POST to /services/saleform/purchase/v1/pay

{
"purchaseHash":"wlwnhhnqbmxfegwivofursfyrqeocsiiy",
"firstName":"Krystof",
"lastName":"Tester",
"email":"rohankry@fit.cvut.cz",
"phone":"",
"ticketCount":2,
"ticketPriceCents":100500,
"saleDiscount":null,
"type":"PAYU",
"mailingAgreed":true,
"language":"cs",
"isDesk":false

}

Listing 3.7 Thrown error contained in JSON response

{
"message":"JSON parse error: Cannot deserialize value of type from String

".": not one of the values accepted for Enum class: [REDACTED]",↪→

"status": 400
}

OWASP API Security Top 10 Testing 31

read time out occurred on the server and the endpoint responded with HTTP 410 Gone. This
response also contained a JSON payload with the thrown exception. Unlike the previous one,
this one included even more sensitive information about the internal resources, such as Java and
Kotlin versions in the user agent and the internally running service endpoint, as shown in figure
3.4.

Figure 3.4 API Misconfiguration issue leading to an informational disclosure

Both of those vulnerabilities primarily affect confidentiality by leaking sensitive internal in-
formation. The second one also affects the availability as the execution takes a long time, which
could have been exploited for the purpose of the denial of service. Luckily, there is a timeout
period in place, partially mitigating the unrestricted resource consumption.

3.5.9 Improper Inventory Management
From the black box security testing perspective, it is very difficult to say anything on behalf
of the improper inventory management, even if an older, still working version of the endpoint
was found. A directly vulnerable API endpoint was not found; due to that, I have directly
discussed this topic with GoOut developers[48], and it was discovered that there was no proper
inventory management. There were a few endpoints that only a specific team, like a front-end,
knew about, while others had no clue where or how they were being used. Those endpoints were
not necessarily forgotten as someone still knew about them, but they could get lost in time very
quickly if the developers changed in the future.

3.5.10 Unsafe Consumption of APIs
There could have been internal consumption of external API; however, from the visible part of
the web application, no exploitable unsafe consumption was discovered.

OWASP API Security Top 10 Testing Evaluation 32

3.6 OWASP API Security Top 10 Testing Evaluation
Compared to the previous security testing based on OWASP Web Top 10, more severe vulnera-
bilities were discovered. Namely, unrestricted access to sensitive business flow sale-form tickets,
which could have been exploited to prevent any other visitor from buying tickets using just one
simple POST request exceeds the magnitude of the discovered vulnerability severities due to its
direct impact on the key business flow. Some potential problems regarding the code sustainability
were also discovered, such as improper inventory management of the existing API endpoints.

3.7 Recommendations
In the discussion of my vulnerability findings and their possible impacts in the previous sections,
I might have also hinted at what could be the possible mitigation or patches for them. However,
this was just a by-product of my explanation, and the overall recommendations, considering the
gathered information about both the technical and business sides, are listed in this section.

3.7.1 “Locking out” the entire sale without any purchase
A very straightforward mitigation of the lockout is to enforce checks on the back-end for maximum
selected ticket number. On the other hand, the core problem with potential attackers using
many VPNs or proxies to bypass the selected ticket amount will still persist. I would personally
recommend the following steps:

1. Validate maximum ticket selection on the back-end and log any illegal requests.

2. Blocklist well known VPN, proxies, or TOR exit nodes.

3. Implement CAPTCHA checks as an optional setting per sale.

4. Monitor incoming traffic or suspicious traffic spikes.

Those will never completely prevent attackers from doing so, but it mitigates the issue and
lowers the possible impact.

3.7.2 Accessible DEV Environment
The development environment still requires users to sign in as they would also have to in the
production environment. With DEV being accessible from the wide internet by anyone, this
is the core issue that has to be resolved. Possibly, the fastest approach is to apply a allowlist
on the firewall to completely restrict access from all but explicitly allowed IP addresses. Even
though this would do the job, it still has many flaws. First of all, IP addresses may rotate and
change over time, so some developers could lose their access while a random person under the
same internet service provider would be suddenly granted it. Sometimes, the IP address is used
on a wider range of devices thanks to the network address translation, granting the access not
only to the desired developer but also to many other people living or being in the same area as
them.

However, a better approach is to apply rules to a firewall or a router in order to block the
incoming traffic to the server completely. Allowing only devices connected to the local network
access to the DEV environment. Even with this more secure approach, one problematic area still
exists: developers working remotely. In order to allow the remote access only to authenticated
developers and nobody else, a VPN or a SSH connection should be in place. The last thing I
would personally recommend to improve overall security is to sufficiently log accesses from the
VPN or SSH and monitor any suspicious sign-in attempts or actions.

Recommendations 33

Listing 3.8 Example of a counting expression as the rate limiting

http.request.uri.path eq "/services/user/auth/v2/login" and http.request.method
eq "POST" and http.response.code eq 401↪→

3.7.3 Identification and Authentication Failures
Several vulnerabilities were found in the authentication process, but fortunately, none of them
were severe enough to allow for authentication bypass or identity spoofing. I would suggest the
following mitigation to reinforce the current security:

1. Minimum password length should be set to eight characters based on the NIST guidelines[50].

2. The password hash should be checked against commonly used passwords, rockyou3 could be
used; however, a Czech based list should also be used.

3. reCAPTCHA or any other form of robot detection should be in place in sign-in form.

4. Proper rate limiting should be applied to all authentication related endpoints and flows; an
example of a possible rule applied directly through CloudFlare WAF can be seen in code
listing 3.8, this expression counts the number of failed logging attempts by counting HTTP
401 replies to requests for login endpoint /services/user/auth/v2/login. If the number
of attempts exceeds a certain threshold, human verification will be required.

5. Suspicious login attempts, especially to the organizer or admin accounts, should be properly
logged and actively monitored.

6. 2FA should be required for organizer and admin accounts while also being optional for normal
users.

7. Session cookies like accessToken and other sensitive ones should properly set the attribute
SameSite to Strict to mitigate mentioned CSRF attacks.

8. Session cookies need to be also revoked on the server by implementing a blocklist for the
JWT and shortening its expiry time to rotate them more often.

9. Password reset hash reuse prevention by uncommenting the existing code in the listing 3.3
while also implementing its expiration time to one hour to be checked before processing.

3.7.4 XSS
Cross-site scripting can be prevented by properly escaping or sanitizing user-provided data. Upon
discussing with GoOut developers[48], this was a quick inline fix, as can be seen in the difference
between the original code snippet without escaping 3.9 and the patched one in the code snippet
3.10. Unfortunately, this is the only part of the mitigation; to entirely prevent XSS, user-provided
data should only go through a dedicated flow that is correctly sanitized in order to avoid any
other possible components from being or becoming vulnerable to injection. I may not have found
all instances of this vulnerability, and without proper mitigation, it could still be exploited at
some point.

3Huge list of leaked passwords commonly used for password cracking.

Recommendations 34

Listing 3.9 Vulnerable code to XSS

<p>${diff.key}: ${oldValue} 
${newValue}</p>↪→

Listing 3.10 Properly escaped code preventing XSS

<p>${diff.key}: ${oldValue?html} 
${newValue?html}</p>↪→

Chapter 4

Conclusion

The goal of this thesis was to strengthen the security of the GoOut web application by finding
possible vulnerabilities by using penetration testing.

An analysis of the importance of security testing in today’s world, what key concepts need to
be understood in order to perform it properly, pointed to existing resources published by OWASP.
Another analysis was done on what GoOut is. This analysis answers what differentiates GoOut
from other companies in the field, what components are essential for the application from both
a technical and business perspective, and what types of user roles can be found there. Based on
this analysis, it is possible to build on the knowledge gained and focus entirely on penetration
testing the GoOut web application. Identified vulnerabilities are evaluated and discussed in
terms of potential business impact. For the most serious ones, a dedicated remediation section
aims to provide a possible and appropriate mitigation.

Although many vulnerabilities were found, many other attacks were unsuccessful. GoOut’s
developers continuously consulted with me about possible solutions to the vulnerabilities found,
as well as the technical cause behind them. Fortunately, at the time of writing, most of them
have already been mitigated, further improving the overall security. After all, there are many
other products or services that were left out of scope and therefore untested. This leaves room for
potential additional security testing in the future. I hope to be able to contribute to additional
security testing in the future.

35

Appendix A

Evaluated vulnerability findings

Table A.1 Full list of found vulnerabilities with their CVSS vector string

Vulnerability name CVSS v3.1 rating
“Locking out” the entire sale without any
purchase

AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H/CR:X/IR:X/AR:H

Accessible DEV environment AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N
Authentication policies AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:N
Sign-out does not sign-out AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N
Cross-site request forgery AV:N/AC:L/PR:N/UI:R/S:U/C:N/I:H/A:N
Leaking stack trace AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N
Password reset hash can be reused and
never expires

AV:N/AC:L/PR:L/UI:R/S:U/C:H/I:N/A:N

API event settings BFLA AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:H/A:N
API schedules settings BOLA AV:N/AC:L/PR:H/UI:N/S:U/C:L/I:N/A:H
API user enumeration AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N
API leaking internal exception AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N
XSS in organizer view AV:N/AC:L/PR:H/UI:N/S:C/C:H/I:N/A:N/CR:L/IR:X/AR:X
XSS in event’s settings AV:N/AC:H/PR:N/UI:R/S:C/C:H/I:N/A:N/CR:L/IR:X/AR:X
Incorrect data validation of phone number AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:N/CR:X/IR:L/AR:X

36

Bibliography

1. SITELOCK. 2022 SITELOCK ANNUAL WEBSITE SECURITY REPORT [online]. 2022.
Available also from: https://s3.us- east- 1.amazonaws.com/sectigo- sites- web/
global/uploads/2022- SiteLock- Website- Security- Report- FINAL.pdf. [Accessed
20-02-2024].

2. SOUPPAYA, Murugiah; SCARFONE, Karen. Technical Guide to Information Security
Testing and Assessment. Special Publication (NIST SP), National Institute of Standards
and Technology, Gaithersburg, MD, 2008. Available also from: https://tsapps.nist.
gov/publication/get_pdf.cfm?pub_id=152164.

3. OWASP FOUNDATION. OWASP Web Security Testing Guide [online]. [N.d.]. Available
also from: https://owasp.org/www-project-web-security-testing-guide/. [Accessed
20-02-2024].

4. OWASP FOUNDATION. OWASP Top Ten [online]. [N.d.]. Available also from: https:
//owasp.org/www-project-top-ten/. [Accessed 20-02-2024].

5. OWASP FOUNDATION. A01 Broken Access Control — OWASP Top 10:2021 [online].
2021. Available also from: https : / / owasp . org / Top10 / A01 _ 2021 - Broken _ Access _
Control/. [Accessed 23-03-2024].

6. GARY L. BRASE Eugene Y. Vasserman, William Hsu. Do Different Mental Models Influ-
ence Cybersecurity Behavior? Evaluations via Statistical Reasoning Performance. Informa-
tion. 2017. Available also from: https://ncbi.nlm.nih.gov/pmc/articles/PMC5673648/.

7. STEVENS, Marc; SOTIROV, Alexander; APPELBAUM, Jacob; LENSTRA, Arjen; MOL-
NAR, David; OSVIK, Dag Arne; WEGER, Benne de. Short Chosen-Prefix Collisions for
MD5 and the Creation of a Rogue CA Certificate. In: HALEVI, Shai (ed.). Advances in
Cryptology - CRYPTO 2009. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. isbn
978-3-642-03356-8.

8. OWASP FOUNDATION. A02 Cryptographic Failures — OWASP Top 10:2021 [online].
2021. Available also from: https : / / owasp . org / Top10 / A02 _ 2021 - Cryptographic _
Failures/. [Accessed 23-03-2024].

9. GOLDBERG, Lewis R.; ROSOLACK, Tina K. The Big-Five factor structure. Journal of
Personality and Social Psychology. 1990, vol. 59, no. 6, pp. 1216–29.

10. OWASP FOUNDATION. A03 Injection — OWASP Top 10:2021 [online]. 2021. Available
also from: https://owasp.org/Top10/A03_2021-Injection/. [Accessed 23-03-2024].

11. KA LUŻNY, Jakub. Threat Modeling — how to start doing it? [Online]. 2021. Available also
from: https://www.securing.pl/en/threat-modeling-how-to-start-doing-it/.
[Accessed 25-02-2024].

37

https://s3.us-east-1.amazonaws.com/sectigo-sites-web/global/uploads/2022-SiteLock-Website-Security-Report-FINAL.pdf
https://s3.us-east-1.amazonaws.com/sectigo-sites-web/global/uploads/2022-SiteLock-Website-Security-Report-FINAL.pdf
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=152164
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=152164
https://owasp.org/www-project-web-security-testing-guide/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://ncbi.nlm.nih.gov/pmc/articles/PMC5673648/
https://owasp.org/Top10/A02_2021-Cryptographic_Failures/
https://owasp.org/Top10/A02_2021-Cryptographic_Failures/
https://owasp.org/Top10/A03_2021-Injection/
https://www.securing.pl/en/threat-modeling-how-to-start-doing-it/

Bibliography 38

12. OWASP FOUNDATION. A04 Insecure Design — OWASP Top 10:2021 [online]. 2021.
Available also from: https://owasp.org/Top10/A04_2021-Insecure_Design/. [Accessed
23-03-2024].

13. ANAND, Abhineet; CHAUDHARY, Amit; ARVINDHAN, M. The Need for Virtualization:
When and Why Virtualization Took Over Physical Servers. In: HURA, Gurdeep Singh;
SINGH, Ashutosh Kumar; SIONG HOE, Lau (eds.). Advances in Communication and Com-
putational Technology. Singapore: Springer Nature Singapore, 2021. isbn 978-981-15-5341-7.

14. ELMERS, Robbie. LogicMonitor Provided Default And Weak Passwords To Its Customers
[online]. 2023. Available also from: https://technewsspace.com/logicmonitor-provided-
default-and-weak-passwords-to-its-customers/. [Accessed 25-02-2024].

15. OWASP FOUNDATION. A05 Security Misconfiguration — OWASP Top 10:2021 [online].
2021. https://owasp.org/Top10/A05_2021-Security_Misconfiguration/ [Accessed
23-03-2024].

16. Q-SUCCESS. Usage Statistics and Market Share of WordPress, March 2024 [online]. [N.d.].
Available also from: https : / / w3techs . com / technologies / details / cm - wordpress.
[Accessed 04-03-2024].

17. Q-SUCCESS. Usage Statistics and Market Share of PHP for Websites, March 2024 [online].
[N.d.]. Available also from: https : / / w3techs . com / technologies / details / pl - php.
[Accessed 25-02-2024].

18. SONATYPE. The Pervasive Influence of Open Source: Trends, Adoption, and Security
Concerns [online]. 2022. Available also from: https://www.sonatype.com/state-of-the-
software-supply-chain/open-source-supply-and-demand. [Accessed 25-02-2024].

19. OWASP FOUNDATION. A06 Vulnerable and Outdated Components — OWASP Top
10:2021 [online]. 2021. Available also from: https : / / owasp . org / Top10 / A06 _ 2021 -
Vulnerable_and_Outdated_Components/. [Accessed 23-03-2024].

20. OWASP FOUNDATION. A07 Identification and Authentication Failures — OWASP Top
10:2021 [online]. 2021. Available also from: https : / / owasp . org / Top10 / A07 _ 2021 -
Identification_and_Authentication_Failures/. [Accessed 23-03-2024].

21. UNIT42. SolarStorm Supply Chain Attack Timeline [online]. 2020. https : / / unit42 .
paloaltonetworks.com/solarstorm-supply-chain-attack-timeline/ [Accessed 25-
02-2024].

22. OWASP FOUNDATION. A08 Software and Data Integrity Failures — OWASP Top
10:2021 [online]. 2021. Available also from: https : / / owasp . org / Top10 / A08 _ 2021 -
Software_and_Data_Integrity_Failures/. [Accessed 23-03-2024].

23. THEHACKERNEWS. Ex-Google Engineer Arrested for Stealing AI Technology Secrets for
China [online]. 2024. Available also from: https://thehackernews.com/2024/03/ex-
google-engineer-arrested-for.html. [Accessed 09-03-2024].

24. OWASP FOUNDATION. A09 Security Logging and Monitoring Failures — OWASP Top
10:2021 [online]. 2021. Available also from: https : / / owasp . org / Top10 / A09 _ 2021 -
Security_Logging_and_Monitoring_Failures/. [Accessed 23-03-2024].

25. OWASP FOUNDATION. A10 Server Side Request Forgery (SSRF) — OWASP Top 10:2021
[online]. 2021. Available also from: https : / / owasp . org / Top10 / A10 _ 2021 - Server -
Side_Request_Forgery_%5C%28SSRF%5C%29/. [Accessed 23-03-2024].

26. DI LAURO, Fabio; SERBOUT, Souhaila; PAUTASSO, Cesare. A Large-Scale Empirical
Assessment of Web API Size Evolution. Journal of Web Engineering. 2022, vol. 21, no. 6,
pp. 1937–1979. Available from doi: 10.13052/jwe1540-9589.2167.

https://owasp.org/Top10/A04_2021-Insecure_Design/
https://technewsspace.com/logicmonitor-provided-default-and-weak-passwords-to-its-customers/
https://technewsspace.com/logicmonitor-provided-default-and-weak-passwords-to-its-customers/
https://owasp.org/Top10/A05_2021-Security_Misconfiguration/
https://w3techs.com/technologies/details/cm-wordpress
https://w3techs.com/technologies/details/pl-php
https://www.sonatype.com/state-of-the-software-supply-chain/open-source-supply-and-demand
https://www.sonatype.com/state-of-the-software-supply-chain/open-source-supply-and-demand
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/
https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/
https://unit42.paloaltonetworks.com/solarstorm-supply-chain-attack-timeline/
https://unit42.paloaltonetworks.com/solarstorm-supply-chain-attack-timeline/
https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/
https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/
https://thehackernews.com/2024/03/ex-google-engineer-arrested-for.html
https://thehackernews.com/2024/03/ex-google-engineer-arrested-for.html
https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures/
https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures/
https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%5C%28SSRF%5C%29/
https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%5C%28SSRF%5C%29/
https://doi.org/10.13052/jwe1540-9589.2167

Bibliography 39

27. OWASP FOUNDATION. OWASP API Security Top 10 Introduction [online]. 2023. https:
//owasp.org/API-Security/editions/2023/en/0x03-introduction/ [Accessed 02-03-
2024].

28. OWASP FOUNDATION. API1:2023 Broken Object Level Authorization — OWASP API
Security Top 10 [online]. 2023. Available also from: https://owasp.org/API-Security/
editions/2023/en/0xa1- broken- object- level- authorization/. [Accessed 23-03-
2024].

29. OWASP FOUNDATION. API2:2023 Broken Authentication — OWASP API Security Top
10 [online]. 2023. Available also from: https://owasp.org/API-Security/editions/
2023/en/0xa2-broken-authentication/. [Accessed 23-03-2024].

30. OWASP FOUNDATION. API3:2023 Broken Object Property Level Authorization —
OWASP API Security Top 10 [online]. 2023. https : / / owasp . org / API - Security /
editions/2023/en/0xa3-broken-object-property-level-authorization/ [Accessed
23-03-2024].

31. OWASP FOUNDATION. API4:2023 Unrestricted Resource Consumption — OWASP API
Security Top 10 [online]. 2023. Available also from: https://owasp.org/API-Security/
editions / 2023 / en / 0xa4 - unrestricted - resource - consumption/. [Accessed 23-03-
2024].

32. WORDPRESS. Roles and Capabilities [online]. [N.d.]. Available also from: https : / /
wordpress . org / documentation / article / roles - and - capabilities/. [Accessed 02-
03-2024].

33. OWASP FOUNDATION. API5:2023 Broken Function Level Authorization — OWASP API
Security Top 10 [online]. 2023. Available also from: https://owasp.org/API-Security/
editions/2023/en/0xa5-broken-function-level-authorization/. [Accessed 23-03-
2024].

34. OWASP FOUNDATION. API6:2023 Unrestricted Access to Sensitive Business Flows —
OWASP API Security Top 10 [online]. 2023. Available also from: https://owasp.org/
API - Security / editions / 2023 / en / 0xa6 - unrestricted - access - to - sensitive -
business-flows/. [Accessed 23-03-2024].

35. OWASP FOUNDATION. API7:2023 Server Side Request Forgery — OWASP API Security
Top 10 [online]. 2023. Available also from: https://owasp.org/API-Security/editions/
2023/en/0xa7-server-side-request-forgery/. [Accessed 23-03-2024].

36. OWASP FOUNDATION. API8:2023 Security Misconfiguration — OWASP API Security
Top 10 [online]. 2023. Available also from: https://owasp.org/API-Security/editions/
2023/en/0xa8-security-misconfiguration/. [Accessed 23-03-2024].

37. OWASP FOUNDATION. API9:2023 Improper Inventory Management — OWASP API
Security Top 10 [online]. 2023. Available also from: https://owasp.org/API-Security/
editions/2023/en/0xa9-improper-inventory-management/. [Accessed 23-03-2024].

38. OWASP FOUNDATION. API10:2023 Unsafe Consumption of APIs — OWASP API Se-
curity Top 10 [online]. 2023. Available also from: https://owasp.org/API-Security/
editions/2023/en/0xaa-unsafe-consumption-of-apis/. [Accessed 23-03-2024].

39. SHOSTACK, Adam. Threat Modeling: Designing for Security. John Wiley & Sons, Incor-
porated, 2014. isbn 9781118822692.

40. NIST. Vulnerability Metrics [online]. 2023. Available also from: https://nvd.nist.gov/
vuln-metrics/cvss. [Accessed 03-03-2024].

41. GOOUT. GoOut [online]. [N.d.]. Available also from: https : / / goout . net / cs / pro -
poradatele/funkce/. [Accessed 02-03-2024].

https://owasp.org/API-Security/editions/2023/en/0x03-introduction/
https://owasp.org/API-Security/editions/2023/en/0x03-introduction/
https://owasp.org/API-Security/editions/2023/en/0xa1-broken-object-level-authorization/
https://owasp.org/API-Security/editions/2023/en/0xa1-broken-object-level-authorization/
https://owasp.org/API-Security/editions/2023/en/0xa2-broken-authentication/
https://owasp.org/API-Security/editions/2023/en/0xa2-broken-authentication/
https://owasp.org/API-Security/editions/2023/en/0xa3-broken-object-property-level-authorization/
https://owasp.org/API-Security/editions/2023/en/0xa3-broken-object-property-level-authorization/
https://owasp.org/API-Security/editions/2023/en/0xa4-unrestricted-resource-consumption/
https://owasp.org/API-Security/editions/2023/en/0xa4-unrestricted-resource-consumption/
https://wordpress.org/documentation/article/roles-and-capabilities/
https://wordpress.org/documentation/article/roles-and-capabilities/
https://owasp.org/API-Security/editions/2023/en/0xa5-broken-function-level-authorization/
https://owasp.org/API-Security/editions/2023/en/0xa5-broken-function-level-authorization/
https://owasp.org/API-Security/editions/2023/en/0xa6-unrestricted-access-to-sensitive-business-flows/
https://owasp.org/API-Security/editions/2023/en/0xa6-unrestricted-access-to-sensitive-business-flows/
https://owasp.org/API-Security/editions/2023/en/0xa6-unrestricted-access-to-sensitive-business-flows/
https://owasp.org/API-Security/editions/2023/en/0xa7-server-side-request-forgery/
https://owasp.org/API-Security/editions/2023/en/0xa7-server-side-request-forgery/
https://owasp.org/API-Security/editions/2023/en/0xa8-security-misconfiguration/
https://owasp.org/API-Security/editions/2023/en/0xa8-security-misconfiguration/
https://owasp.org/API-Security/editions/2023/en/0xa9-improper-inventory-management/
https://owasp.org/API-Security/editions/2023/en/0xa9-improper-inventory-management/
https://owasp.org/API-Security/editions/2023/en/0xaa-unsafe-consumption-of-apis/
https://owasp.org/API-Security/editions/2023/en/0xaa-unsafe-consumption-of-apis/
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss
https://goout.net/cs/pro-poradatele/funkce/
https://goout.net/cs/pro-poradatele/funkce/

Bibliography 40

42. PAYU. Zabezpečeńı plateb [online]. 2024. Available also from: https://czech.payu.com/
zabezpeceni-plateb/. [Accessed 20-03-2024].

43. PORTSWIGGER. Burp Sequencer randomness tests [online]. [N.d.]. Available also from:
https://portswigger.net/burp/documentation/desktop/tools/sequencer/results/
tests. [Accessed 04-03-2024].

44. WEAR, Natalie Sunny. Burp Suite Cookbook: Practical recipes to help you master web
penetration testing with Burp Suite. Information. 2018. Available also from: https://www.
amazon.com/Burp-Suite-Cookbook-Practical-penetration-ebook/dp/B07HRHPK6L/
ref=sr_1_1.

45. PORTSWIGGER. Case Studies [https://portswigger.net/customers]. 2024. [Accessed
23-03-2024].

46. NIST. CVE-2022-24863 [online]. [N.d.]. Available also from: https://nvd.nist.gov/
vuln/detail/CVE-2022-24863. [Accessed 19-03-2024].

47. APPLE. Supporting associated domains — Apple Developer Documentation [online]. [N.d.].
Available also from: https://developer.apple.com/documentation/xcode/supporting-
associated-domains. [Accessed 10-03-2024].

48. Discussions with GoOut developers in person. Prague, 2023-2024.
49. ORACLE. JDK 17.0.7 Release Notes [online]. [N.d.]. Available also from: https://www.

oracle.com/java/technologies/javase/17- 0- 7- relnotes.html. [Accessed 16-03-
2024].

50. NIST. NIST’s New Password Rule Book: Updated Guidelines Offer Benefits and Risk [on-
line]. [N.d.]. Available also from: https://www.isaca.org/resources/isaca-journal/
issues/2019/volume- 1/nists- new- password- rule- book- updated- guidelines-
offer-benefits-and-risk. [Accessed 23-03-2024].

https://czech.payu.com/zabezpeceni-plateb/
https://czech.payu.com/zabezpeceni-plateb/
https://portswigger.net/burp/documentation/desktop/tools/sequencer/results/tests
https://portswigger.net/burp/documentation/desktop/tools/sequencer/results/tests
https://www.amazon.com/Burp-Suite-Cookbook-Practical-penetration-ebook/dp/B07HRHPK6L/ref=sr_1_1
https://www.amazon.com/Burp-Suite-Cookbook-Practical-penetration-ebook/dp/B07HRHPK6L/ref=sr_1_1
https://www.amazon.com/Burp-Suite-Cookbook-Practical-penetration-ebook/dp/B07HRHPK6L/ref=sr_1_1
https://portswigger.net/customers
https://nvd.nist.gov/vuln/detail/CVE-2022-24863
https://nvd.nist.gov/vuln/detail/CVE-2022-24863
https://developer.apple.com/documentation/xcode/supporting-associated-domains
https://developer.apple.com/documentation/xcode/supporting-associated-domains
https://www.oracle.com/java/technologies/javase/17-0-7-relnotes.html
https://www.oracle.com/java/technologies/javase/17-0-7-relnotes.html
https://www.isaca.org/resources/isaca-journal/issues/2019/volume-1/nists-new-password-rule-book-updated-guidelines-offer-benefits-and-risk
https://www.isaca.org/resources/isaca-journal/issues/2019/volume-1/nists-new-password-rule-book-updated-guidelines-offer-benefits-and-risk
https://www.isaca.org/resources/isaca-journal/issues/2019/volume-1/nists-new-password-rule-book-updated-guidelines-offer-benefits-and-risk

Contents of the attachment

readme.txt...............................a brief description of the content of the medium
src

thesis.zip..................................source code of the thesis in format LATEX
gobuster.txt...................output of Gobuster tool used in information gathering
nikto.txt..........................output of Nikto tool used in information gathering
nmap.txt output of Nmap tool used in information gathering
whatweb.txt....................output of Whatweb tool used in information gathering
apple-app-site-association....Apple’s meta file found during information gathering

text .. contents of the thesis
thesis.pdf..text of the thesis in PDF format

41

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Key Penetration Testing Concepts
	Background
	OWASP Top 10
	Broken Access Control
	Cryptographic Failures
	Injection
	Insecure Design
	Security Misconfiguration
	Vulnerable and Outdated Components
	Identification and Authentication Failures
	Software and Data Integrity Failures
	Security Logging and Monitoring Failures
	Server-Side Request Forgery

	OWASP API Security Top 10
	Broken Object Level Authorization
	Broken Authentication
	Broken Object Property Level Authorization
	Unrestricted Resource Consumption
	Broken Function Level Authorization
	Unrestricted Access to Sensitive Business Flows
	Server Side Request Forgery
	Security Misconfiguration
	Improper Inventory Management
	Unsafe Consumption of APIs

	Threat Modeling
	Common Vulnerability Scoring System v3.x

	GoOut
	Mission and Vision
	Components and Technologies
	Defined Scope and Testing Notes

	The Penetration Test
	Burp Suite
	Information Gathering
	OWASP Top 10 Testing
	Broken Access Control
	Cryptographic Failures
	Injection
	Insecure Design
	Security Misconfiguration
	Vulnerable and Outdated Components
	Identification and Authentication Failures
	Software and Data Integrity Failures
	Security Logging and Monitoring Failures
	Server-Side Request Forgery

	OWASP Top 10 Testing Evaluation
	OWASP API Security Top 10 Testing
	Broken Object Level Authorization
	Broken Authentication
	Broken Object Property Level Authorization
	Unrestricted Resource Consumption
	Broken Function Level Authorization
	Unrestricted Access to Sensitive Business Flows
	Server Side Request Forgery
	Security Misconfiguration
	Improper Inventory Management
	Unsafe Consumption of APIs

	OWASP API Security Top 10 Testing Evaluation
	Recommendations
	"Locking out" the entire sale without any purchase
	Accessible DEV Environment
	Identification and Authentication Failures
	XSS

	Conclusion
	Evaluated vulnerability findings
	Contents of the attachment

