
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Implementation of DNS over HTTPS Detector

Ondřej Hrdlička

Ing. Karel Hynek, Ph.D.

Informatics

Information Security 2021

Department of Information Security

until the end of summer semester 2024/2025

Instructions

Study computer network monitoring approaches. Get acquainted with DNS over HTTPS

protocol and its detection possibilities. Implement the detector proposed in [1] as an

NEMEA system [2] module, that can be deployed to real network monitoring

infrastructure. Test the implemented detector using real-world network data and

evaluate it using standard metrics (detection accuracy and processing speed).

[1] K. Jerabek, K. Hynek, O. Rysavy and I. Burgetova, "DNS Over HTTPS Detection Using

Standard Flow Telemetry," in IEEE Access, vol. 11, pp. 50000-50012, 2023, doi: 10.1109/

ACCESS.2023.3275744.

[2] T. Cejka, V. Bartos, M. Svepes, Z. Rosa and H. Kubatova, "NEMEA: A framework for

network traffic analysis," 2016 12th International Conference on Network and Service

Management (CNSM), Montreal, QC, Canada, 2016, pp. 195-201, doi: 10.1109/CNSM.

2016.7818417.

Electronically approved by prof. Ing. Róbert Lórencz, CSc. on 26 January 2024 in Prague.

Bachelor’s thesis

IMPLEMENTATION OF
DNS OVER HTTPS
DETECTOR

Ondřej Hrdlička

Faculty of Information Technology
Department of Information Security
Supervisor: Ing. Karel Hynek, Ph.D.
May 14, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Ondřej Hrdlička. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Hrdlička Ondřej. Implementation of DNS over HTTPS Detector. Bachelor’s
thesis. Czech Technical University in Prague, Faculty of Information Technology, 2024.

Contents

Acknowledgments vi

Declaration vii

Abstract viii

Abbrevations ix

Introduction 1

1 Theoretical Background 2
1.1 Network Monitoring . 2

1.1.1 IP Flow . 3
1.1.2 Flow-Based Monitoring . 3
1.1.3 Flow Exporter . 5
1.1.4 Flow Collector . 7

1.2 NEMEA System . 8
1.2.1 NEMEA System Deployment and Capabilities 9

1.3 DoH Protocol . 10
1.3.1 DoH Request . 10
1.3.2 DoH Response . 10
1.3.3 DoH using JSON format . 11
1.3.4 Detection of DoH . 11

2 Dataset and Analysis 14
2.1 Data Collection . 14

2.1.1 Real-Word Data . 14
2.1.2 Generated Data . 15
2.1.3 Final Dataset . 15

2.2 Data Analysis . 15

3 Design 19
3.1 Scheme . 19
3.2 IP-Based Detection . 20
3.3 Filtration . 20

3.3.1 Minimal Number of Packets Threshold . 20
3.4 Classification . 21

3.4.1 Used Features . 21
3.4.2 Machine Learning Classifier . 22

3.5 Verification . 23
3.6 IP Rule Extraction . 24

ii

Contents iii

4 Implementation 25
4.1 IP-Rule Database . 25
4.2 IP-Based Detection & Filtration Module . 27
4.3 ML Classifier Module . 28

4.3.1 Multithreading . 28
4.3.2 ML Hyperparameters . 29

4.4 Active Verification & Rule Extraction Module . 29
4.4.1 Active Verification . 29
4.4.2 IP-Rule Extraction . 32
4.4.3 Multithreading . 32

4.5 Supplementary Files . 34

5 Evaluation 35
5.1 ML Performance . 35
5.2 Correctness Testing . 36
5.3 Whole Detector Performance . 37

Contents of the attachment 42

List of Figures

1.1 Packet Observation Architecture . 4
1.2 Flow-Based Monitoring Architecture Example . 5
1.3 Metering and Flow Export Architecture . 6
1.4 Network Monitoring with NEMEA . 8
1.5 Parts of NEMEA System . 9
1.6 DoH POST Query Example . 10
1.7 DoH GET Query Example . 11
1.8 DoH Response Example . 11
1.9 DoH JSON Request Example . 11
1.10 DoH JSON Response Example . 12

2.1 Average Packet Sizes by Protocol and Direction 16
2.2 Ratios of Transmitted Packets by Protocol and Direction 16
2.3 Average Number of Transmitted Kilobytes by Protocol and Direction 17
2.4 Mean Packet Size Variance by Protocol . 17
2.5 Mean Time between Packets by Protocol and Direction 18

3.1 Detection Pipeline of the Proposed DoH Detector 19
3.2 DoH Flow Example . 21

4.1 Implementation Scheme of NEMEA Modules . 25
4.2 TLS SNI and ALPN Wireshark Capture . 31

5.1 Consfusion Matrix od XGBoost Classifier . 36

List of Tables

1.1 Standard Flow Record Features . 4

3.1 Bidirectional Flow Record Example . 20
3.2 Final Feature Set for the ML Classifier . 22

5.1 Evaluation Metric Scores of the XGBoost Classifier 36
5.2 Comparison of Process Time Efficiency with Different Thread Settings 37

iv

List of code listings v

List of code listings

4.1 RedisManager Constructor . 26
4.2 IP Rule Examples . 26
4.3 Method for Getting IP Rules . 26
4.4 Method for Setting New IP Rule . 27
4.5 Methods for Handling Expired Rules . 27
4.6 IP Module Algorithm . 27
4.7 Classifier Module Algorithm . 28
4.8 XGBoost Hyperparameters Values . 29
4.9 Used Nmap Options . 29
4.10 Nmap Argument Parsing Logic . 30
4.11 Nmap Script DoH Check Example . 30
4.12 Nmap Output Example . 31
4.13 Nmap Output Parsing Logic . 32
4.14 Setting Rules to Rule Database . 32
4.15 Active Verification Module Algorithm . 33

I would like to express my sincere gratitude to my supervisor, Ing.
Karel Hynek, Ph.D., for his guidance, suggestions, and expert advice
throughout the entire process. Additionally, I am thankful to Ing.
Tomáš Čejka, Ph.D., for introducing me to Karel and assisting with
theme selection. Lastly, I am also grateful to my friends and family
for their understanding and support during my studies.

vi

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accordance with
Article 46(6) of the Act, I hereby grant a nonexclusive authorization (license) to utilize this
thesis, including any and all computer programs incorporated therein or attached thereto and
all corresponding documentation (hereinafter collectively referred to as the “Work”), to any and
all persons that wish to utilize the Work. Such persons are entitled to use the Work in any way
(including for-profit purposes) that does not detract from its value. This authorization is not
limited in terms of time, location and quantity.

In Prague on May 14, 2024

vii

Abstract

This bachelor thesis describes the creation of a DNS over HTTPS (DoH) network detector in-
tegrated within the NEMEA system. Network monitoring tools face challenges in detecting
DNS queries since malware creators utilize encrypted DNS protocols. This work focuses on
the implementation of the detector which combines three different detection methods—IP-based
blocklist, machine learning classification, and active verification. Evaluation on a real-world
dataset demonstrates the effectiveness of the detector in identifying DoH traffic with high accu-
racy while using only standard flow telemetry. Implementing the proposed detector within the
NEMEA framework offers a deployable solution for high-speed networks, which can help prevent
numerous security threats.

Keywords DNS, DoH, NEMEA, network monitoring, flow-based monitoring, DoH detection,
machine learning

Abstrakt

Tato bakalářská práce popisuje tvorbu DNS over HTTPS (DoH) detektoru, který je integrován
do systému NEMEA. Nástroje pro monitorováńı śıtĕ čeĺı r̊uzným výzvám při detekováńı DNS
dotaz̊u, protože tv̊urci malwaru využ́ıvaj́ı šifrované DNS protokoly. Tato práce se zamĕřuje na
implementaci detektoru, který kombinuje tři r̊uzné metody detekce—IP blocklist, klasifikaci po-
moćı strojového učeńı a aktivńı ovĕřováńı. Vyhodnoceńı detektoru na datové sadě z reálné śıtě
ukazuje vysokou přesnost detektoru v identifikaci DoH provozu, a to pouze s využit́ım standardńı
flow telemetrie. Implementace navrženého detektoru v rámci NEMEA frameworku nab́ıźı nasa-
ditelné řešeńı pro vysokorychlostńı śıtě, které může pomoci předcházet mnoha bezpečnostńım
hrozbám.

Kĺıčová slova DNS, DoH, NEMEA, monitoriváńı śıt’e, monitoriváńı śıt’ových tok̊u, detekce
DoH, strojové učeńı

viii

Abbrevations

ALPN Application Layer Protocol Negotiation
C2 Command and Control

DDoS Distributed Denial of Service
DNS Domain Name System
DoH DNS over HTTPS
Gbps Gigabits per second

HTTPS Hyper Text Transfer Protocol Secure
IDS Intrusion Detection System

IE Information Element
IP Internet Protocol

IPFIX Internet Protocol Flow Information Export
ISP Internet Service Provider
ML Machine Learning

NEMEA Network Measurements Analysis
PCAP Packet Capture
SCTP Stream Control Transport Protocol

SNI Server Name Indication
SSH Secure Shell
TLS Transport Layer Security

TRAP Traffic Analysis Platform
TTL Time To Live
UDP User Datagram Protocol

UniRec Unified Record
VLAN Virtual Local Area Network

ix

Introduction

Domain Name System (DNS) is an essential part of today’s internet, allowing the translation of
human-readable domain names into numerical Internet Protocol (IP) addresses the computers
can understand. This process enables users to access websites conveniently, send emails, and
many other online activities. DNS protocol is one of the oldest network protocols, operating on
a request-response scheme. For example, whenever a user wants to visit a website, he sends a
message to a DNS server requesting to translate a certain domain name and gets an IP address
as a response. When the protocol was designed, there were not many concerns about users’
privacy or the potential misuse of the transmitted information.

Since the traditional DNS is unencrypted, meaning that anyone can see what is being sent, the
transported information is susceptible to interception, analysis, and possible misuse by hackers
or other intruders. Such vulnerabilities have raised concerns about the privacy and security of
users on the internet. In response, the encrypted DNS protocol concepts were developed, and
DNS over HTTPS (DoH) is by far the most common one. DoH secures the connection in a
manner very similar to information protection by websites. It encapsulates the payload within a
secure HTTPS connection, thereby enhancing security and privacy.

On the ability to inspect DNS packets rely several security systems, since its analysis can
uncover or confirm numerous security threats, such as DNS data exfiltration or malware pres-
ence. Given that encrypted DNS protocols serve the same function as traditional DNS, the
potential for misuse mirrors that of the original DNS protocol. The 2016 Cisco Annual Security
Report [4] stated that 91.3% of malware families rely on DNS, primarily exploited for connecting
to Command and Control (C2) infrastructure, data exfiltration, and traffic redirection.

The detection of encrypted DNS traffic is crucial for sustaining network security. By imple-
menting the DoH detector proposed by Jeřábek et al. [16] and measuring its performance on
a real-life dataset, we hope it will provide sustainable results. While other detectors and DoH
detection methodologies already exist, they often lack the robustness and scalability required
for real-world deployment. Integrating the proposed detector within the NEMEA framework
was the motivation to overcome this issue and to provide a production-ready DoH detector, de-
ployable on high-speed networks. According to Hynek [14], malware creators know the benefits
of encryption and the problems associated with identifying encrypted DNS protocols and have
started using these techniques in their creations.

1

Chapter 1

Theoretical Background

This chapter provides theoretical information about network monitoring possibilities and why
it is an important aspect of sustaining the availability and security of any system or com-
pany. Network monitoring approaches, and specifically flow-based methods, are covered in
Section 1.1. Following with Section 1.2, where Network Monitoring Analysis (NEMEA) sys-
tem is introduced as a flow-based monitoring approach, which became highly recognized in
recent years due to its flexibility and exceptional performance in high-speed networks. Fi-
nally, the DoH protocol is presented in Section 1.3 with all options and examples on how to
transfer DNS data over HTTPS connection.

Networking is the backbone of modern information technologies, enabling devices and applica-
tions to exchange data between each other across the internet. To ensure efficient and secure
communication between devices, data is usually sent via some network protocol—a set of rules
prescribing how data is structured, transmitted, and received across network interfaces. Different
protocols serve different functions, typically visualized through the OSI model. The model has
seven different layers, ranging from the Physical Layer, responsible for the transmission of bits
over hardware, to the advanced application-specific communication in the Application Layer. For
instance, the Internet Protocol (IP) is responsible for routing data packets to their destination,
thus making the network-to-network communication possible, or Transmission Control Protocol
(TCP), which guarantees reliable transportation of packets.

Understanding and effectively managing network protocols is crucial to maintaining network
security and availability. Effective monitoring helps network administrators and operators to
ensure network reliability and to discover issues as they emerge. It involves observing and
analyzing network performance to address any deviations from normal behavior, which could
indicate issues like traffic congestion, poor network components, or security breaches. Intrusion
Detection Systems (IDS) play a crucial role in this aspect since they are deployed within the
network to detect unusual activities or known threats using some predefined rules or based on
the observed events in network traffic. By identifying threats early, IDS enables quick response,
therefore mitigating the risks and minimizing potential damage. But as cyber threats evolve, so
does the need for more advanced detection techniques.

1.1 Network Monitoring
Network monitoring is a process of overseeing network traffic to ensure and maintain its avail-
ability and reliability, and to detect and address issues as soon as possible. The approaches of
network monitoring can be generally divided into two categories [13]: active and passive. Active
approaches insert new traffic into the network to conduct various types of measurements or to
monitor the path that traffic takes to reach its destination. They can be implemented by tools

2

Network Monitoring 3

such as Ping 1 or Traceroute 2. Passive approaches, on the other hand, examine the existing
network traffic generated by users, usually with the intention of detecting some anomalies based
on the observed events.

One of the passive approaches is packet capture. This provides a really deep insight into
the traffic, as entire packets are intercepted and investigated, but it requires a lot of resources
to store and analyze high packet volumes. Another passive monitoring approach is flow export.
This method is much more flexible to use in high-speed networks, as packets are accumulated
into flows, holding mostly statistical characteristics of particular connection, and the flows are
then exported for storage and analysis. A flow can be defined as a set of IP packets sharing some
common properties primarily in packet header fields, such as source and destination IP addresses
and port numbers [13].

The concept of flow export traces back to 1991, evolving significantly over the decades.
Initially introduced by the Internet Accounting Working Group of the Internet Engineering Task
Force (IETF), the idea faced early obstacles due to a lack of vendor interest and prevailing beliefs
against internet traffic monitoring. However, by 1995, renewed interest led to the development of
the Realtime Traffic Flow Measurement (RTFM) Traffic Measurement System, which offered a
more flexible approach to traffic flow measurement [1]. Parallel to these efforts, Cisco developed
NetFlow, a technology originating from flow-based switching, which became widely adopted
for its ability to provide detailed traffic flow information. This led to the creation of NetFlow
v5 [5] and, subsequently, the more advanced NetFlow v9 [8], offering enhanced capabilities such
as support for IPv6 and Virtual Local Area Networks (VLANs). Recognizing the need for a
standardized flow export protocol, the IETF chartered the IP Flow Information Export (IPFIX)
Working Group in 2004, which built upon NetFlow v9 to develop IPFIX [6] protocol, which
introduced some new features and became the internet standard by 2013 [13].

1.1.1 IP Flow
There are multiple definitions of IP flow in the internet community, but according to the one
described by the IPFIX Working Group in [7], [21]: ”A Flow is defined as a set of IP packets
passing an Observation Point in the network during a certain time interval. All packets belong-
ing to a particular Flow have a set of common properties”. An Observation Point is a place
somewhere in the network from where IP packets can be observed and captured, e.g. interfaces
of a router or shared medium like Ethernet-based LAN [7].

To determine whether a packet belongs to a certain flow, it has to satisfy all predefined
properties of the flow. In the specification of IPFIX, these properties are called the flow key.
They are for instance: source and destination IP addresses, source and destination port numbers,
and used transport protocol. There are also other fields in the flow record, usually statistical
characteristics used for analytical purposes. Table 1.1 shows standard flow record features in
most available flow export devices and protocols [16].

1.1.2 Flow-Based Monitoring
Flow-based monitoring has become increasingly popular over the past years. Many network
IDS rely on packet inspection, mentioned as another passive monitoring approach, however, the
disadvantage of packet inspection is that it is too difficult, or even impossible, to perform at
high-speed lines reaching hundred Gigabits per second (Gbps). Because of this, the flow-based
approach has become more suitable for numerous security systems. In this alternative approach,
only the IP flow records are investigated, thus consuming significantly fewer resources.

1https://linux.die.net/man/8/ping
2https://linux.die.net/man/8/traceroute

Network Monitoring 4

Flow Record
Source IP Address

Destination IP Address
Source Port

Destination Port
Transport Layer Protocol

Number of Packets
Number of Bytes

Time Start
Time End

Table 1.1 Standard Flow Record Features [16]

The typical flow monitoring architecture consists of multiple stages. According to Hofstede
et al. [13], the first stage is Packet Observation, where packets are intercepted when passing an
Observation Point. Initially, packets are read from the network line, usually by Network Card
Interface [13], where they undergo several tests, like header checksums. The next step is to times-
tamp the packets. This is important because exact packet time is essential for many analytical
purposes. Both of these steps are performed on every packet that passes the Observation Point.
All following stages shown in Figure 1.1 are optional. Packet truncation involves selecting only
those packet bytes that are necessary for subsequent stages. A great example of this is that flow
exporters typically rely solely on packet header fields [13].

Figure 1.1 Packet Observation Architecture [13].

The purpose of packet sampling is to reduce the load on the following stages of the metering
process. It means selecting only part of the observed packets to be processed and sent to the
next phase. They are in general two types of sampling strategies [13]:

• Systematic sampling: Deterministic approach that chooses packets based on predefined
rules. For example, select a packet every t seconds or a packet every n packets.

• Random sampling: This approach selects packets at random, which is generally more
preferred, as it avoids problems the systematic sampling may introduce, especially in the
case of periodic traffic.

Packet filtering is a deterministic process to separate all packets having a certain property from
those not having it. There are again two main strategies [13]:

Network Monitoring 5

• Property Filtering: The packet is selected based on whether a certain field within the
packet is equal to a predefined value or falls into a specified value range, e.g., IP addresses
or number of transmitted packets.

• Hash-Based Filtering: This method involves applying a hash function to either the entire
packet content or just some part of it. The output of the hash function is then compared
to predefined values, efficiently selecting packets with common properties.

Packet sampling and filtering come into play when dealing with limited resources or on high-
speed network lines, where capturing every packet would be impossible to perform. Both provide
a trade-off between efficiency and the completeness of data. The final flow records might not
include all packets but are designed to provide sufficiently accurate results.

Typically, there are more than one Observation Point within a network [7], such as multiple
router ports. These points form an entity known as the Observation Domain, which serves as
a scope where flow data is collected. Each Observation Domain must have a unique identifier,
and this concept helps to organize, manage, and interpret flow data more efficiently, especially
in complex network environments. Figure 1.2 shows an example of an architecture where three
Observation Points contribute to a single Observation Domain.

Figure 1.2 Flow-Based Monitoring Architecture Example

1.1.3 Flow Exporter
Flow exporter is a fundamental component of any flow monitoring system. It is where the
packets are aggregated into flows and then exported for analysis. As described by Hofstede
et al. [13], flow export contains two vital processes—the Metering process and the Exporting
process—illustrated in Figure 1.3. The metering process is responsible for the aggregation of
packets based on the packet elements defining the flow. The flows are stored in a flow cache,
where they remain until the flow is considered terminated. There are several options for flow to
expire provided later in this section.

The data that can be exported with flow records are called Information Elements (IE). These
elements cover various network layers, enabling flow description from the Link Layer (L2) to the
Application Layer (L7). However, common Information Elements are usually from the Network
Layer (L3) or Transport Layer (L4) [13].

Network Monitoring 6

Figure 1.3 Metering and Flow Export Architecture [13]

Flow Caches
Flow caches act as temporary storage within a Metering Process for all active flows. The entries
in the flow cache consist of Information Elements, which can be categorized as key or non-key
fields. The set of key fields is used to decide whether a packet belongs to an already existing
record in the flow cache or if there is a need to create a new one. According to Hofstede et
al. [13], when a packet is captured, its flow key is hashed and compared with the existing flow
entries. If a match is found, the specific flow entry is updated (e.g., byte and packet counters);
otherwise, a new entry is created. As mentioned in Section 1.1.1, standard fields used for a
flow key are usually source and destination IP addresses and port numbers. Non-key fields are
typically used for collecting statistical characteristics, such as byte and packet counters. Since
source and destination IP addresses are commonly part of the flow key, flows are unidirectional.
However, in some situations, both directions are important, which leads us to bidirectional flow
records, where special cache support is necessary for matching forward and reverse flows and for
maintaining bidirectional records [13].

The capacity of the flow cache heavily depends on the memory resources available in the flow
exporter, and it should be chosen considering the expected flow volume, the selected key and
non-key fields, and expiration policies [13].

Flow Cache Entry Expiration
Flow entries are kept in the cache until they are identified as finished, after which they expire.
The expiration is usually managed by the Metering Process, which is responsible for checking
expiration rules violations. IPFIX suggests several reasons for considering a flow has expired [22]:

• A flow is considered as expired when it has been active for a specified period. This ensures
that even long-running flows are reported periodically. In such cases, the flow entry is not
removed from the cache, allowing the Metering Process to avoid creating a new record;
instead, it just resets the counters and timestamps.

• A flow is considered as expired when no packets associated with it have been detected for
a specified time period.

• A flow is prematurely expired if the device experiences resource constraints.
Other reasons for expiring cache entries can also be implemented, such as the observation of a
TCP packet with a FIN or RST flag [13].

Exporting Process
When a flow expires, it is ready to be exported for further analysis. When using IPFIX as
an export protocol, the data are sent within an IPFIX message, which begins with a 16-byte

Network Monitoring 7

header including version number, message length, export time, and an observation domain ID,
followed by one or more sets. These sets can be Template Sets, Data Sets, or Options Template
Sets. Template sets outline the structure of the Data Records, Data Sets carry the exported
Data Records (i.e., flow records), and Options Template Sets are used to send metadata to flow
collectors—the flow key used by Metering Process [6].

After an IPFIX message is constructed, it is transmitted to a flow collector. IPFIX supports
multiple transport protocols [6]—Stream Control Transport Protocol (SCTP), TCP, or User
Datagram Protocol (UDP). SCTP is not widely used due to implementation challenges and
limited support outside of Unix-like systems. TCP offers reliable transport across most platforms,
making it the preferred option for exporting flows over the internet. Despite its lack of any
congestion awareness, UDP is the most widely deployed protocol for flow export, as it creates
almost no overhead to the system [13].

1.1.4 Flow Collector
Flow collectors play another crucial role in flow monitoring setups, as they are responsible for
receiving, storing, and preprocessing flow data sent from flow exporters. This preprocessing may
include the compression of flow data to reduce the storage requirements, aggregation to unify
similar data, anonymization to protect user privacy, and filtering to exclude irrelevant data [13].

It is essential that the flow collector is compatible with the export protocol features used by
the flow exporter, such as data encodings, transport protocols, and IEs. If the flow collector fails
to support every exported element in the received data stream, there is a risk of data loss. Extra
caution is necessary when using non-standard IEs, like application-specific or enterprise-specific
IEs [13].

Data Storage Formats
The efficiency of flow collectors critically depends on the used data storage format, which directly
impacts the speed and manner in which data is accessed and stored. There are two types of
storage formats:

• Volatile: Volatile storage operates in-memory, offering very quick data access, and is
typically used for immediate data processing or caching before it is written to persistent
storage. Volatile storage is useful for on-the-fly analysis of flow data when only the results
need to be archived.

• Persistent: Persistent storage, on the other hand, is designed for long-term data storage,
providing commonly greater capacity at the cost of slower data access.

Persistent storage becomes necessary when the data has to be stored beyond the time needed
for processing. Hofstede et al. [13] compared these three storage types:

• Flat files: Flat files, such as binary or text files, offer high-speed data access; however,
they often come with limited querying capabilities. They provide better portability since
many systems can read text-based flat files, but the lack of more sophisticated querying
features can be a limitation for some use cases.

• Row-oriented databases: Row-oriented databases store data as rows within tables and serve
as a common choice for Database Management Systems, like MySQL3, or PostgreSQL4.
They allow more complex queries but may require reading entire rows, even when only a
subset of the data is needed.

3https://www.mysql.com/
4https://www.postgresql.org/

NEMEA System 8

• Column-oriented databases: Column-oriented databases, such as FastBit5, store data by
columns, enabling the system to access only the necessary data fields, which can enhance
the query performance.

The choice of storage format has a direct effect on disk space, insertion performance, porta-
bility across systems, and query efficiency. Flat files have a clear advantage in disk space and
insertion speed but are less flexible in query operations. In contrast, row-oriented databases
may consume more disk space due to indexing but offer more query flexibility. Columns-oriented
databases provide a balance, offering better query efficiency and average disk space consumption.
The selection between these storage types depends on the requirements of the flow monitoring
setup [13].

1.2 NEMEA System
Network Measurements Analysis (NEMEA) is a flow-based, modular system for network traf-
fic monitoring designed to analyze flow data continuously with minimal storage requirements.
Monitoring probes (flow exporters) are responsible for observing the network and sending flow
data to a central collector utilizing the IPFIX protocol. The collector stores the received flow
records and sends them for analysis to the NEMEA system. The NEMEA system is comprised
of independent, interconnected modules and is highly flexible and extensible, allowing users to
implement and connect new modules easily. Each NEMEA module is an executable file that
performs specific tasks, such as data preprocessing, data filtering, detection, or reporting [3].

Despite the distinct roles of each module, they all share the same NEMEA framework, which
includes libraries implementing inter-module communication, data format, and common data
structures and functions. Modules communicate with each other via TRAP (Traffic Analysis
Platform) interfaces, an essential part of the framework, supporting unidirectional data streams.
These data streams may include messages with flow data, computed analytical statistics, alerts
of a detection module, or anything else [3].

Data can be exchanged over the TRAP interfaces in one of three supported formats—(i)
JSON, (ii) unstructured data, and, most commonly, (iii) NEMEA’s Unified Record (UniRec)
binary format, which allows efficient and quick access to transferred data. The setup of interfaces
of modules is done during startup, allowing users to select and connect modules as they desire.
A NEMEA module does not require any specific knowledge about other modules but usually
expects some predefined fields in the messages (e.g., IP addresses or packet counts) to operate
properly. This means that a module can be connected to any other module but will work only in
the presence of all essential data fields [3]. The figure shows the network monitoring setup with
NEMEA, and important parts of the NEMEA system are captured in Figure 1.5.

Figure 1.4 Network Monitoring with NEMEA [3]

5https://sdm.lbl.gov/fastbit/

NEMEA System 9

Figure 1.5 Parts of NEMEA System [3]

The core of the NEMEA system is typically some detector, responsible for identifying suspi-
cious network traffic. The other modules include tasks like the exportation and storage of flow
data, as well as pre-processing and post-processing of this data (filtering, aggregation, times-
tamping,. . .). The communication between these modules is done via TRAP interfaces, which
implement functions for sending and receiving messages across the modules. These messages,
typically UniRec messages, ensure an efficient and unified data format for the transmission. Fi-
nally, coordinating the entire NEMEA system is the Supervisor, a centralized management and
monitoring tool that takes care of all running modules [3].

1.2.1 NEMEA System Deployment and Capabilities
NEMEA was first introduced in 2013, and initially developed for CESNET—the Czech National
Research and Education Network operator, providing advanced network solutions and services
to research and educational institutions in the Czech Republic. It was created to overcome the
lack of existing tools for processing and analysis of L7 information since traditional flow exports
provided visibility up to L4 only. This information can be necessary to detect some kinds of
malicious traffic. NEMEA can handle high-speed network traffic links working at 100 Gbps, and
has been deployed at CESNET since 2014. The system is capable of detecting various types
of malicious traffic, including Distributed Denial of Service (DDoS) attacks, network scanning,
or dictionary attacks on Secure Shell (SSH). The high performance of NEMEA is highlighted
by its deployment in the CESNET2 network, demonstrating its ability to process large vol-
umes of network data and detect numerous network incidents daily without significant resource
consumption [3].

The NEMEA system deployed in the CESNET2 network can detect, on average:
• 110,000 horizontal port scans (76 every minute)

• 12,000 brute-force or dictionary attacks to log in to SSH (8.3 per minute)

• 2,400 DDoS attacks (mostly DNS and NTP (Network Time Protocol) amplification)
The numbers may vary at this time, but they demonstrate the capabilities of the NEMEA

system when deployed on an intensively used network. It is rather the number of alerts than
the number of actual attacks, but even then, the number of real attacks is still in the order of
hundreds.

DoH Protocol 10

1.3 DoH Protocol
DoH is a relatively new protocol defined in RFC 8484 [12] in 2018 and leverages HTTPS to
securely transmit DNS messages, thereby protecting domain name resolutions from potential
eavesdropping. It is designed to operate in conjunction with HTTP/2 to maintain efficiency
since it allows simultaneous transmission of multiple requests. The protocol employs features
like multiple streams within a single TCP connection and frames multiplexing. Despite the RFC
recommendations for HTTP/2 to enhance the protocol’s performance, it is noted that some DoH
resolvers only support HTTP/1 [16].

DoH client can encode a DNS query into an HTTP request using either the HTTP GET or
POST method. The queries are then sent to a resolver in the body of the HTTP POST method
encoded using DNS wire format, defined in RFC 1035 [19], or within the query string of GET
method, encoded with base64url [12].

The flexibility and ambiguity of DoH specifications open the door for various server behaviors.
According to [15], the shape of DoH traffic can significantly vary depending on the client-server
configuration and implementation. Presently, DoH is enabled by default in all major internet
browsers, including Chromium-based 6 or Mozilla Firefox 7 [16].

1.3.1 DoH Request
When the POST method is selected, the DNS query is embedded within a message body of the
HTTP request, with the content-type request header field specifying the message media type.
In general, POST requests are more compact than their GET equivalents. Figure 1.6 shows the
POST DoH example query for www.example.com. The 33 bytes are the DNS message in DNS
wire format [19].

: method = POST
: scheme = https
: authority = dnsserver . example .net
:path = /dns -query
accept = application /dns - message
content -type = application /dns - message
content - length = 33

<33 bytes represented by the following hex encoding >
00 00 01 00 00 01 00 00 00 00 00 00 03 77 77 77
07 65 78 61 6d 70 6c 65 03 63 6f 6d 00 00 01 00
01

Figure 1.6 DoH POST query example [12]

The GET request for the same URL can be seen in Figure 1.7. The body of the message
is empty and the queried domain is sent as a value of dns variable in the URL, encoded with
base64url format.

1.3.2 DoH Response
DoH responses should only be the type of application/dns-message as stated by Hoffman et
al. in RFC 8484 [12], but it is not impossible that other formats will be presented. The payload

6https://www.chromium.org
7https://www.mozilla.org

DoH Protocol 11

: method = GET
: scheme = https
: authority = dnsserver . example .net
:path = /dns -query?dns=

AAABAAABAAAAAAAAA3d3dwdleGFtcGxlA2NvbQAAAQAB
accept = application /dns - message

Figure 1.7 DoH GET Query Example [12]

for this media type is a message in the DNS wire format. In Figure 1.8, you can see a response
example for requesting www.example.com domain. The response contains an answer with the IP
address of 2001:db8:abcd:12:1:2:3:4 and Time To Live (TTL) of 3709 seconds.

: status = 200
content -type = application /dns - message
content - length = 61
cache - control = max -age =3709

<61 bytes represented by the following hex encoding >
00 00 81 80 00 01 00 01 00 00 00 00 03 77 77 77
07 65 78 61 6d 70 6c 65 03 63 6f 6d 00 00 1c 00
01 c0 0c 00 1c 00 01 00 00 0e 7d 00 10 20 01 0d
b8 ab cd 00 12 00 01 00 02 00 03 00 04

Figure 1.8 DoH Response Example [12]

1.3.3 DoH using JSON format
Additionally, some DoH resolver providers, such as Cloudflare or Google, also support the option
to transfer DNS data using JSON format. JSON formatted queries are sent as an HTTP GET
request, with the DNS query encoded in the URL. As said on Cloudflare’s official website [23], the
client should include an HTTP accept header with a type of application/dns-json, to indicate
its ability to accept a JSON response. The example is taken from Cloudflare documentation [23]
and the DoH request can look like the one on Figure 1.9.

GET /dns -query?name= example .com&type=AAAA HTTP /2
Host: cloudflare -dns.com
accept : application /dns -json

Figure 1.9 DoH JSON Request Example [23]

Figure 1.10 shows an example of a DoH response for the previous request in JSON format.

1.3.4 Detection of DoH
The detection of DoH is challenging, as it utilizes HTTPS protocol to encapsulate and transfer
DNS data, thus blending in with regular HTTPS traffic. The necessity of the protocol’s detection
was first recognized in 2020 by Bumanglag and Kettani [2], which surveyed the influence of mass

DoH Protocol 12

HTTP /2 200
server : cloudflare
content -type: application /dns -json
content - length : 210

{
" Status ": 0, // NOERROR - Standard DNS response code
"TC": false , // Whether the response is truncated
"RD": true , // Whether Recursive Desired bit was set
"RA": true , // Whether Recursion Available bit was set
"AD": true , // Whether response data was validated with

DNSSEC
"CD": false , // Whether the client asked to disable DNSSEC
" Question ": [

{
"name": " example .com.",
"type": 28 // record type AAAA - IPv6 address

}
],
" Answer ": [

{
"name": " example .com.",
"type": 28,
"TTL": 1726 ,
"data": " 2606:2800:220:1:248:1893:25 c8 :1946"

}
]

}

Figure 1.10 DoH JSON Response Example [23]

DoH adoption. In late 2022, Garćıa et al. [11] examined the efficiency of using a blocklist for
DoH detection, with the conclusion that due to the presence of numerous small and private DoH
resolvers, IP-based blocklisting is not sufficient for reliable detection. They also stated that 94%
of the public DoH resolvers are unknown to the internet community, and the number of resolvers
has increased almost 5 times during the 2021–2022 period.

Related Work
Several studies employed machine learning (ML) techniques to learn the shape of DoH traffic by
analyzing extended flow characteristics. Vekshin et al. [24], for instance, extracted 18 features
from extended flow records and achieved a high accuracy of 99.6%. Similarly, MontazeriShatoori
et al. [20] and Bandaki [18] have also employed machine learning with extended flow records and
time-related features to distinguish DoH traffic from regular HTTPS, with even higher accuracy
results.

Even though all mentioned techniques achieved pretty good results, they are limited in terms
of deployment since they are either packet-based or require additional data sources—individual
packet information or time-related features. These approaches use features like the median and
variance of packet sizes, which require more computational and memory complexity. These dis-
advantages prevent them from deployment on high-speed networks or monitoring infrastructure
with limited hardware resources.

DoH Protocol 13

Fest et al. [10] proposed a DoH detector using a neural network that relied on the standard flow
telemetry. Nevertheless, it had a lower accuracy (94.4%) compared to other proposals. There-
fore, Jeřábek et al. created a novel detector [15]. It uses standard flow telemetry, supported
by almost all flow monitoring devices while attaining similar or even better results. Further-
more, the method relies only on features that can be computed on running sequences, enabling
its deployment across any flow monitoring infrastructure, including high-speed Internet Service
Provider (ISP) networks.

Chapter 2

Dataset and Analysis

This chapter introduces the dataset created by Jeřábek et al. [17]. It was used for the ML
classifier’s training phase and also to visualize and examine the characteristics of DoH in
contrast to other HTTPS traffic. This should help us understand future classifier’s predictions
and also provide deeper insight into DoH protocol.
The dataset was created in late 2021 and contains comprehensive data samples of DoH and
regular HTTPS traffic. Section 2.1 briefly outlines the methods used when creating the dataset
and the types of data it includes. This is followed by Section 2.2, where, through a series of
graphs, we demonstrate some of the key differences of DoH.

2.1 Data Collection
The dataset contains labeled HTTPS traffic, either DoH or non-DoH, focusing on providing a
wide array of DoH communication traffic from various DoH services to represent the diversity
of real-world DoH implementations. The dataset is a collection of smaller datasets aggregating
to around 430 GB of raw binary data, derived from two environments—(i) real-world DoH and
HTTPS traffic from a large ISP backbone network with about half-million users and (ii) generated
DoH and HTTPS traffic from simulated and controlled system. The goal was to provide datasets
with heterogeneous DoH and non-DoH traffic [17].

2.1.1 Real-Word Data
The real-world datasets were captured on the CESNET2 network, a large-scale ISP infrastruc-
ture connecting several Czech educational and research institutions, hospitals, and even some
government offices. Data was captured by utilizing six strategically located monitoring points
across the CESNET2 perimeter in three locations—Prague, Brno, and Ostrava—each of them
linked to one or more 100 Gbps network lines. The packet capturing was performed between
June and October 2021, including different days and times. After the packets were captured,
they were merged into Packet Capture (PCAP) files. However, these PCAP files could not be
used directly but had to go through a comprehensive post-processing phase [17].

Deduplication of packets is one of the post-processing tasks. There is a chance that the packet
is captured on multiple observation points since the same packet may traverse multiple paths
before reaching its destination. Another critical step was data anonymization. This involved
masking the IP and MAC addresses—each address (except the IP addresses of DoH resolvers)
was replaced by part of its SHA256 hash with secret salt—and also substituting the packet
payload with generic data. The process was performed automatically and was carefully designed
to meet ethical standards while preserving the data’s value for research purposes. The PCAP files

14

Data Analysis 15

were then used to create IP flows using the ipfixprobe1, an open-source flow exporter. Flows were
extended for Transport Layer Security (TLS) information obtained from TLS handshake [17].

More information about the capturing filter, packet deduplication, anonymization, and flow
export methods used to create this dataset can be found in Jeřábek et al. [17].

2.1.2 Generated Data
The generated datasets were constructed within a controlled laboratory environment to produce
a diversity of DoH and regular HTTPS traffic scenarios. Jeřábek et al. [17] had used two web
browsers for this, Firefox and Chrome, primarily because of their advanced DoH implementa-
tions. The traffic generation involved browsing sessions where each browser visited thousands
of websites, using 16 different DoH resolvers to cover a broad spectrum of DoH implementation
behaviors. This approach ensured that the captured samples contained distinct traffic patterns
since the shape of DoH communication can significantly differ because of the server and browser
configuration [15].

Both browsers, Firefox and Chrome, fetched in total of 32,000 different websites. The traffic
generation process consisted of opening the browser and fetching the website, timeout, waiting for
the website to load, and then closing the web browser. The captured PCAP files were processed
the same way as in the case of real data, using the ipfixprobe to create TLS extended flow records.

2.1.3 Final Dataset
The final dataset is merged from the real-world captured data and the generated data and con-
tains nearly 15 million flow records. Each record includes detailed metadata like timestamps,
source and destination IP addresses (anonymized), port numbers, and transport protocol iden-
tifiers and is also enriched with the TLS-specific attributes extracted during the connection
establishment phase.

The comprehensive nature of the dataset enables the exploration of various aspects of DoH
and HTTPS traffic, offering valuable insights into the dynamics of encrypted internet communi-
cations.

2.2 Data Analysis
This section explores the characteristics of DoH traffic compared to traditional HTTPS, using
graphs to highlight some of the key features. These insights contribute to a better understanding
of the final feature set for the ML classifier, Section 3.4. Jeřábek et al. found several observations
about characteristics of DoH traffic, as highlighted in [15] and [16], and I wanted to demonstrate
them on the dataset presented in the previous section 2.1. The characteristics can be summarized
with the following observations:

Observation 2.1: DoH typically transmits less data in requests and responses than in regular
HTTPS.

Observation 2.2: DoH connections are more symmetrical in the meaning of transferred pack-
ets and bytes in each direction.

Observation 2.3: The packet size variance of DoH is lower than in other HTTPS traffic.
Observation 2.4: DoH in the browser creates multiple streams over the same HTTP/2 con-

nection and uses multiplexing for faster DNS resolution.
Observation 2.1 is captured in Figure 2.1, showing that the average DoH packet size is sig-

nificantly smaller—almost three times less—compared to regular HTTPS traffic. The average
1https://github.com/CESNET/ipfixprobe

Data Analysis 16

size of outbound DoH packets aligns well with the information from [9], that DNS messages are
typically around a hundred bytes.

Figure 2.1 Average Packet Sizes by Protocol and Direction

The symmetry of DoH traffic in terms of transmitted packets is depicted in Figure 2.2. It can
be clearly seen that DoH communication is almost equally balanced in the manner of inbound
and outbound packets. With HTTPS, it is normal that there is significantly more inbound traffic.
For instance, a web page request is usually small but receives a larger response, including data
like images, scripts, and ads, which require more packets.

Figure 2.2 Ratios of Transmitted Packets by Protocol and Direction

Data Analysis 17

In terms of transmitted bytes, the number of transmitted bytes in HTTPS was so much bigger
than in the case of DoH that it had to be scaled (see the difference of the right and left y-axis
in Figure 2.3, as the HTTPS axis is hundred times the DoH axis). Moreover, kilobytes were
compared rather than bytes for better readability. Even though it is not as symmetric as in the
term of packets, when compared with HTTPS, the difference is significant.

Figure 2.3 Average Number of Transmitted Kilobytes by Protocol and Direction

Figure 2.4 reflects the Observation 2.3, where you can see that the mean packet size variance
in DoH communication is more than 2 times lower than in HTTPS. Variance is a measure of
dispersion, meaning how far the values are spread out from their average value. In conclusion,
packet sizes within the DoH protocol do not vary as much as in other HTTPS communication.

Figure 2.4 Mean Packet Size Variance by Protocol

Data Analysis 18

The final graph illustrates the mean time between packets within a flow, Observation 2.4.
Since DoH typically utilizes multiplexing of HTTP/2 to send multiple DNS queries in rapid
succession without waiting for previous responses, it can lead to more frequent packet arrivals.
This can result in faster overall resolution time as DNS requests can be transmitted at the same
time, and responses can be received out of order. Figure 2.5 shows that the mean time between
packets is lower in the DoH protocol for both directions.

Figure 2.5 Mean Time between Packets by Protocol and Direction

Chapter 3

Design

This chapter outlines the pipeline of the DoH detector proposed by Jeřábek et al. [16]. It
details the procedural architecture of the detector, describing how each component contributes
to the overall detection mechanism and ensures the detector robustness. By providing insights
into the methodology and strategic design of the detector, it lays out the groundwork for
understanding the innovative approach to detecting DoH traffic. Individual detector parts are
introduced through Sections 3.2–3.6.

3.1 Scheme
The detector comprises three different types of detection—IP-based, ML-based, and active prob-
ing. It is designed to work with traditional flow telemetry data with standard flow features but
requires bidirectional flow records. If the used flow exporter does not support this feature, it
can be achieved with flow stitching—a process that can construct from two unidirectional flow
records a bidirectional one. An example of bidirectional flow can be seen in Table 3.1. The
detector utilizes these three detection types since relying only on statistical machine learning
methods would generate a high number of false positives [16].

Given that the active probing phase is a resource-consuming task, the detection system
employs an ML classifier to select only suspicious flows worth verification. Additionally, the
detection pipeline includes a feed-forward loop, where the verification step generates a block-
list/allowlist, which is then used by the IP-based module. By employing these three distinct
classification approaches, the detector overcomes the limitations of each of them: the records
in the IP list are time-sensitive and continuously updated through the verification step; the
ML classifier miss rate is mitigated by active verification; and the resources needed by active
verification are minimized by the IP list and ML module [16].

The detection pipeline is depicted in Figure 3.1. Further information about each step is
provided in the following sections.

Figure 3.1 Detection Pipeline of the Proposed DoH Detector

19

IP-Based Detection 20

Flow Record
Source IP address

Destination IP address
Source Port

Destination Port
Transport Layer protocol
Number of packets S → C
Number of bytes S → C

Number of packets C → S
Number of bytes C → S

Time start
Time end

Table 3.1 Bidirectional Flow Record Example. (S → C and C → S abbreviations stand for
Server-to-Client and Client-to-Server directions)

3.2 IP-Based Detection
The IP-based detection utilizes previously gathered information about destination IP addresses,
which is maintained by the IP Rule database and IP Rule Extraction module. By observing the
destination IP address field, it can quickly detect DoH traffic. The flow is forwarded to the next
phase when there is no prior knowledge about the destination IP address [16].

In order to improve the accuracy of detection results, we decided to add another parame-
ter for decision-making, than observing just the IP address. The detection relies also on the
hostname used when establishing the connection, part of a TLS SNI (Server Name Indication)
extension. The SNI parameter is used when multiple hosts share one IP address. This can be
done with virtualization and is a common thing these days. With this approach, we minimized
the possibility of incorrect detection, and it should help to achieve better and more precise results
when using a simple list-based detection.

3.3 Filtration
The filtration phase selects only those records with a predefined set of properties to reduce the
number of flows for the ML classifier. Given that the DoH connection is very similar to any other
HTTPS connection, it includes a TCP handshake, TLS handshake, HTTP/2 preface, application
data transfer, and TCP termination, as shown in Figure 3.2. The presence of numerous hand-
shakes and HTTP/2 preface packets, in contrast to the small amount of DoH data, significantly
complicates stable detection. According to Hynek [14], short DoH connections, especially the
single-query DoH, are very challenging to detect because they are very much alike to other short
API calls. Therefore, it is essential to determine the minimal number of packets within a flow
to distinguish DoH traffic from other HTTPS traffic reliably. The flow is instantly labeled as
non-DoH when is too short for a reliable DoH detection. Other flows are forwarded to the next
step [16].

Additionally, we also filter flows where the number of incoming or outgoing packets is equal
to zero since these IEs are used in a division when computing features for the ML classifier.

3.3.1 Minimal Number of Packets Threshold
This section very briefly describes the process of determining the minimum number of packets
needed to reliably distinguish DoH from non-DoH traffic performed by Jeřábek et al. [16]. Two

Classification 21

Figure 3.2 DoH Flow Example [16]

approaches were employed: finding the best threshold value during the hyperparameters tuning
phase and unsupervised clustering with the K-Means algorithm. By incrementally increasing the
packet threshold and retraining the XGBoost1 classifier, the model’s accuracy, as expected, was
improved with a higher packet count, stabilizing around 116 packets. The K-Means clustering
method (with k = 2; the number of classes) was applied, and a purity score was calculated for
the formed clusters, resulting tin hat flow must contain at least 112 packets to achieve 9a 0%
purity index of both clusters [16].

Jeřábek et al. [16] also examine DoH connections for the top 10,000 visited websites from
the Majestic Million dataset. On average, these websites referenced another 20 unique domains
to load all the website content (images, scripts, advertisements). When measured in packets, it
gives roughly 120 packets per DoH flow for one website visit [16].

The experiments indicated a minimum of 112–116 packets is required for reliable DoH de-
tection, although the threshold was set to ≥ 120 packets since this number corresponds to an
average single website visit.

3.4 Classification
The classification phase utilizes a machine learning model to identify DoH-suspicious flows, which
should then be actively verified. The ML classifier depends completely on the statistical char-
acteristics of the flows. ML models make decisions based on a series of data known as features,
which are measurable properties of individual instances.

The process begins with the preparation of the dataset. The dataset comprises many samples,
each with a set of features and a corresponding label. The label represents the category or group
that the model will learn to predict—DoH and non-DoH traffic in our case. The labels enable
the algorithm to learn patterns and distinguish between the categories.

3.4.1 Used Features
The process of selecting features for the classifiers outlined here is derived from the methodology
used by Jeřábek et al. [16], and is provided as a summary to contextualize the final feature set
presented in Table 3.2.

The extraction of features from incoming flow data is one of the most important tasks when
designing any ML model since it directly impacts the model’s performance. Some of the shape
characteristics of DoH traffic are demonstrated in Section 2.2.

Rather than using flow information elements directly, the approach involved generating all
possible pairs through a division, resulting in a set of 21 features. Following this, a feature
reduction process was applied by computing the pair-wise Pearson correlation coefficient. This

1https://xgboost.ai/

Classification 22

step removed features with a really high correlation, a correlation coefficient higher than 0.9,
resulting in 4 final features [16].

ID Feature Name
1 mean payload size S → C
2 mean time between packets S → C
3 mean payload size C → S
4 num of C → S packets to packets ratio

Table 3.2 Final Feature Set for the ML Classifier

The final feature set reflects most of the traffic observations from Section 2.2. The most
important feature #1, along with feature #3, captures DoH traffic behavior from observation 2.1.
The feature #4 reflects the flow symmetry from observation 2.2, and observation 2.4 is captured
by feature #2.

3.4.2 Machine Learning Classifier
Jeřábek et al. [16] applied numerous classification algorithms to the prepared dataset, such
as Random Forest, K-Nearest Neighbors, Naive Bayes, and also popular boosting algorithms
XGBoost and AdaBoosted Decision Trees. To determine the best performing one, standard
metrics for unbalanced datasets were used, and XGBoost resulted as the best one.

During my work, I particularly focused on the XGBoost classifier not only because it was the
best performing one in [16], but also for its:

• Efficiency: It is known for its execution speed and performance, which is a vital aspect in
network monitoring when dealing with large volumes of data. It also utilizes a more reg-
ularized model formalization to control over-fitting, which makes the model more robust.

• Extensive Parameters Tuning: XGBoost provides a comprehensive range of tunable hy-
perparameters allowing precise optimization to suit specific datasets and detection tasks.
This can significantly improve detection rates and reduce false positives.

• Performance & Popularity: XGBoost models have exceptional results in comparison to
many other classification algorithms and have become a standard tool, especially in areas
where the highest levels of accuracy are required.

XGBoost, or Extreme Gradient Boosting, is a sophisticated and powerful algorithm that
builds a series of simple models (trees) to create a more complex and accurate model. It starts
with a very simple tree, initially some basic conditions on the used features, and evaluates how
well it did. In the next step, it pays attention to the instances that were predicted incorrectly.
Each new tree is built to correct the mistakes of the previous one and iteratively enhances
the model’s accuracy. Once enough trees are made, XGBoost combines them all to create
the final model and to make decisions. It also has built-in methods to prevent overfitting.
Overfitting means that the trained machine becomes overconfident and performs really well on
the training dataset, but poorly on new, unseen instances. There are numerous parameters,
called hyperparameters, which help you adjust the learning process of the XGBoost algorithm,
including the number of trees, their depth, and more.

Hyperparameters Tuning
Hyperparameters enable you to fine-tune the algorithm specifically to your dataset. To achieve
the best results, you typically need to find and select the right hyperparameters, a process known
as the hyperparameter tuning phase.

Verification 23

Jeřábek et al. [16] did not spespecifyich hyperparameters were used. In this work, Op-
tuna2, an open-source hyperparameter optimization framework, was employed to automate the
hyperparameter search. The best combination was identified using a five-fold cross-validation
procedure, selecting the hyperparameters with the highest average F1 score. The final set of
tuned hyperparameters contains:

• eta (learning rate): This scales the contribution of each tree to the whole model. When
eta is close to 0, it reduces the model’s learning rate and requires more boosting rounds,
often leading to better generalization.

• gamma (minimum split loss): Specifies the minimum loss reduction required to make a
further partition on a leaf node of the tree. The larger the gamma is, the more conservative
the algorithm will be.

• max depth: Defines the maximum depth of a tree. Higher values will make the model
more complex and more likely to overfit, as higher depth will allow the model to learn
relations very specific to a particular sample.

• subsample: This parameter controls the fraction of the training set that is randomly
sampled and used to train individual trees.

• colsample bytree: This sets the fraction of features used to train each tree.

• lambda: This is the L2 regularization term on weights. Higher values of lambda will make
the model more conservative.

• alpha: This is the L1 regularization term on weights. Higher values of alpha will make
the model more conservative.

• n estimators: Represents the number of trees the model will consist of. More trees can
give a more complex model, which can improve training accuracy, but there is a risk of
overfitting.

• tree method: The tree method parameter specifies the algorithm used when constructing
the trees. There are three methods available, but the exact method, which was selected,
enumerates all possible splits on all features. It is the most exhaustive and accurate
method, ensuring that the best-split point is found at each node. It can be very slow
when building and training the model, especially with large datasets, but should provide
the best results.

3.5 Verification
The next phase in the detection process involves active verification. At this stage, any record
entering this module has been identified by the classification module as a potential DoH flow.
Now it needs to be verified, whether the server, destination address, offers DoH resolution or not.
The active probing module queries the server for the example.com domain using all possible DoH
request methods, described in Section 1.3. In shared infrastructures, servers typically require a
domain name to establish the connection to the correct endpoint.

Very similar to the IP-list detection, the active probing module was enriched to also use a
domain name captured from a TLS handshake. This ensures more precise host verification and
fits with the IP rules stored in the database. By storing the results in the IP Rule database, the
module queries each target just once within a predefined time period, thereby minimizing the
resource usage for both, the target and the module. Furthermore, whenever the DoH resolver rule
(i.e., blocklist rule) is about to expire, the module regularly checks it to enhance the efficiency
of the database.

2https://optuna.org/

IP Rule Extraction 24

3.6 IP Rule Extraction
The final step in the detection pipeline is IP Rule extraction, which handles the results from the
active probing module. It stores both results, DoH verified and non-DoH verified, in the database,
which is utilized by the IP-based detection step. This limits the number of flows advancing to
the ML-based detection and active verification phase, thus enhancing the detector’s throughput
and efficiency—substantial aspects in any network monitoring system.

Chapter 4

Implementation

The detector is implemented as three inter-connected NEMEA modules—IP-based detection &
filtration module, ML classifier module, and active verification & rule extraction module; all
written in Python. They are built upon the pytrap1 library, which is a wrapper for libtrap and
UniRec libraries that allows you to develop NEMEA modules in Python. Libtrap defines the
communication interfaces for message transfer between modules, and the UniRec library is the
implementation of a flexible and efficient data format of flow records, both originally written in
C.

Figure 4.1 Implementation Scheme of NEMEA Modules

Figure 4.1 depicts the implementation scheme of the detector. The detector utilizes Redis2

central database for storing IP rules, used for managing blocklist and allowlist in the IP-based
detection module. NEMEA Merger3 is used to merge UniRec messages containing DoH alerts
from two input interfaces into one output interface.

4.1 IP-Rule Database
Redis was chosen for managing the block and allow rules utilized by the IP-based detection
module. Redis is an in-memory database system designed for high performance and speed,

1https://github.com/CESNET/Nemea-Framework/tree/master/pytrap
2https://redis.io/
3https://github.com/CESNET/Nemea-Modules/tree/master/merger

25

IP-Rule Database 26

exceptionally fast for read and write operations. Redis also supports setting expiration time on
keys you insert, which is a great feature when managing rule lists, as you can conveniently set
the rule expiration and let Redis take care of it. When properly configured, Redis does offer
data persistence options, but it is primarily an in-memory database and was implemented as
one. While it is not designed for complex queries, this was not a limiting factor since our read
operations in a blocklist/allowlist scenario are simple. Other database systems, like MySQL4 or
SQLite5, were also considered. While both have their strengths, especially in complex querying,
the operational speed and efficiency of Redis outperform them and thus was selected as the best
option for us.

Each module that needs to communicate with the database has a class called RedisManager.
The class starts with connecting to the database in the constructor, as you can see on Listing 4.1.
The parameters used in the Redis method are obtained from the central configuration file,
discussed later in Section 4.5.

def __init__ (self):
try:

self.db = redis.Redis(host=db_host , port=db_port , db=
db_number , password =None)

self.db.ping ()
except Exception as e:

logger .error (f’Failed to connect to Redis: {e}’)
print(" Failed to connect to Redis DB ")
sys.exit (1)

Code listing 4.1 RedisManager Constructor

The methods the class has implemented differ based on the module’s purpose, but in both
cases, the class utilizes the redis-py6 library, which is a Redis client for Python. RedisManager in
the IP-based detection module has only one method to retrieve IP rules from the database. An
example of an IP rule is illustrated in Listing 4.2 and has the form of ”{rule type}:{IP},{SNI}”,
where the rule type can be either block or allow. The method get ip rules for obtaining
the rules takes two arguments—self, which is a reference to the class that called the method;
and type, which specifies the rule type. The method is shown in Listing 4.3 and is pretty
straightforward, as it iterates through the database and returns a set filled with rules of a certain
rule type.

1) "block :94.140.14.14 , dns. adguard .com"
2) "block :8.8.4.4 , dns. google .com"
3) "block :8.8.8.8 , dns. google "

Code listing 4.2 IP Rule Examples

def get_ip_rules (self , type):
pattern = f"{type }:*"
rules = set ()
for key in self.db. scan_iter (pattern):

rule = key. decode (’utf -8’).split(’:’)[1]. split(’,’)
rules.add ((rule [0], rule [1]))

return rules

Code listing 4.3 Method for Getting IP Rules

RedisManager in the active verification module has a method called set rule for setting new
rules. It takes four arguments—self, ip, tls sni, and rule type—all of them with the same

4https://www.mysql.com/
5https://www.sqlite.org/
6https://github.com/redis/redis-py

IP-Based Detection & Filtration Module 27

meaning as in the previous case. The method is presented in Listing 4.4. The setex method
sets the key that expires in rule validity seconds, which is also obtained from the central
configuration file.

def set_rule (self , ip , tls_sni , rule_type):
key = f"{ rule_type }:{ ip},{ tls_sni }"
self.db.setex(key , rule_validity , ’active ’)

Code listing 4.4 Method for Setting New IP Rule

The class also has two other methods for capturing and handling expired rules. Both methods
are shown in Listing 4.5. The first method listens for any message and if it contains an expired
rule, the second method is called. The rule is parsed and eventually inserted into the queue,
where it waits until it is checked again.

def listen_for_expiration (self):
pubsub = self.db. pubsub ()
pubsub . psubscribe (’__keyevent@0__ : expired ’)

while True:
message = pubsub . get_message ()
if message and message [’type ’] == ’pmessage ’:

expired_key = message [’data ’]. decode (’utf -8’)
self. handle_expiration (expired_key)

def handle_expiration (self , key):
list_type , ip_name = key.split(’:’)
ip , name = ip_name .split(’,’)

if list_type == ’block ’:
record = {

’DST_IP ’: ip ,
’TLS_SNI ’: name ,

}
if ip_address (record [’DST_IP ’]). version == 4:

ip4_que .put(record)
else:

ip6_que .put(record)

Code listing 4.5 Methods for Handling Expired Rules

4.2 IP-Based Detection & Filtration Module
The IP-based detection module uses only the destination IP address and TLS SNI value from
the input flow to make decisions. The module hosts two sets, the blocklist and the allowlist,
which are used byt the list-based detection. The module’s algorithm is illustrated in Listing 4.6.

while True:
flow = trap. receive ()
if (flow[DST_IP], flow[TLS_SNI]) in allowlist :

continue
if (flow[DST_IP], flow[TLS_SNI]) in blocklist :

trap.send(merger_ifc , flow)
continue

Filtration step
if (flow[PACKETS] >= 120 and flow[PACKETS] != 0):

trap.send(next_module_ifc , flow)

Code listing 4.6 IP Module Algorithm

ML Classifier Module 28

The lists are regularly updated from the central Redis, which is done by the RedisManager
class as shown in Listing 4.3. Another class called the IPDetectionModule, is in charge of
periodically updating the lists and has a method to check whether a current IP-SNI pair is
present in one of the lists. The class has a separate daemon thread for the periodic updates. The
thread sleeps for a predefined interval and updates the list when awoken.

The IP-based module is the only one that uses multiple output interfaces. The first one
is to send alerts to the NEMEA Merger if a DoH flow is detected, and the second one is for
passing unknown records to the classifier module. If the flow record does not meet all filtration
conditions, it is dropped and the module proceeds to the next record.

4.3 ML Classifier Module
The classifier module utilizes the ML model to classify flow records from the IP-based detection
module. It has two threads. The main thread is responsible for receiving flow data from the
input interface and for sending alerts if a flow is labeled as DoH. The second thread, named
RecordWorker, is tasked with processing the flows with the ML model. Listing 4.7 depicts these
two threads, and their purpose in the module.

records_que = Queue ()
alerts_que = Queue ()

RecordWorker Thread
while True:

batch = records_que . get_multiple ()
features = compute_features (batch)
predictions = clf_model . predict (features)

for i, prediction in predictions :
if prediction == 1:

alert_que .put(batch[i])

Main Thread
while True:

while not alerts_que .Empty ():
trap.send(next_module_ifc , alert_que .get ())

flow = trap. receive ()
records_que .put(flow)

Code listing 4.7 Classifier Module Algorithm

4.3.1 Multithreading
The main thread is indeed responsible for receiving and sending UniRec messages as well, since
sending alerts from any other thread than the main thread caused big problems, typically result-
ing in a segmentation fault. In the early versions of this module, it was implemented to process
only one flow at a time, meaning that every flow on the input was individually processed by the
ML model. But by adding the other thread for this job and with the model’s support of batch
predictions, it can process multiple flow records through the ML model at a time. The computed
flow features are stored in an array and are processed by the ML model in batch, which returns
an array of predictions, indexed the same way as the passed feature array.

Both records que and alerts que are defined as Queue classes from the queue7 Python
7https://docs.python.org/3/library/queue.html

Active Verification & Rule Extraction Module 29

library. This library implements thread-safe multi-producer, and multi-consumer queues, pro-
viding all the required locking semantics.

4.3.2 ML Hyperparameters
In Chapter 3 we talked about the hyperparameters tuning and the set of used hyperparameters
for the final XGBoost classifier. In Listing 4.8 are the actual values, that were found with Optuna.

hyperparameters = {
’eta ’: 0.05291182757260608 ,
’gamma ’: 0.4695685061384431 ,
’max_depth ’: 8,
’subsample ’: 0.9428776019771409 ,
’colsample_bytree ’: 0.7528176279468037 ,
’lambda ’: 0.2509168917726876 ,
’alpha ’: 0.9598152571784272 ,
’n_estimators ’: 587,
’tree_method ’: ’exact ’

}

Code listing 4.8 XGBoost Hyperparameters Values

4.4 Active Verification & Rule Extraction Module
The last module is accountable for verifying that a DoH resolving service is actually running on
the flow’s destination IP address. The ML classifier has labeled the flow as DoH, but we need
to verify that it is really capable of processing DoH queries and returning a DoH response.

4.4.1 Active Verification
We had to choose to verify whether a certain host provides DoH resolving or not. The first
option was to use Nmap, short for Network Mapper, which is an open-source tool for network
discovery and host monitoring, very popular among system and network administrators. The
second option was to write our program to check for the DoH service. The program would take
parameters like IP address and TLS SNI, connect to the destination, send different DoH requests,
and check for the responses.

We have decided to use Nmap, primarily because of the optimized techniques and its efficiency.
Furthermore, Nmap has numerous options with which it can be run, that can reduce the time
needed to scan one host. To minimize the surface the individual scan has to cover, we specified
to only scan port number 443, since HTTPS is typically running on that port. We also disabled
the DNS resolution of the scanned host, as this can significantly speed up the entire verification
process. The last option was to treat all hosts as online and skip the host discovery. Normally,
Nmap first attempts to determine whether a host is online by sending a series of standard
discovery packets, like a ping request or TCP SYN packets. By skipping this phase, Nmap
immediately proceeds to scan the specified ports or services on the target host. The options can
be seen on Listing 4.9.

nmap --script =dns -doh -check -n -Pn -p443 [IPs] --script -args =...

Code listing 4.9 Used Nmap Options

Another great advantage of Nmap is that it can scan multiple hosts at once. This is powerful
and can significantly speed up the verification process, as you can gather multiple hosts and verify
them in one Nmap call. Each Nmap call involves initialization processes, such as loading scripts

Active Verification & Rule Extraction Module 30

or initializing the scanning engine, but also some finalization steps, such as processing results and
cleaning up resources. When you scan multiple hosts with one command, this initialization and
finalization overhead occurs only once. Moreover, Nmap is designed to perform scans efficiently
by leveraging parallelism.

Nmap Script

We used Nmap with dns-doh-check8 script written by Tomáš Čejka. The script was slightly
modified to accept the TLS SNI parameter and use it when establishing a TLS connection.
Because we used Nmap to scan multiple hosts at once, we had to come up with how to pass the
TLS SNI argument. The argument is passed on in a formatted string, where each SNI parameter
is keyed by the host IP address. Since Nmap takes the argument value and use it to all hosts, this
was the only way to pass different argument values to different hosts. The only problem occurs if
there are two hosts with the same IP address but different SNI values in one Nmap call. As the
argument is keyed by IP addresses, Nmap would always use only one of the SNI parameters from
the argument. Therefore, this situation is neglected, and none Nmap calls contain duplicated IP
addresses.

Listing 4.10 shows the example of how the argument is formatted and the argument processing
logic inside the Nmap script. Nmap scripts are written in the Lua9 programming language, and
the script is called on every scanned host. The host.ip represents the IP address of the current
host, ensuring that the right SNI argument will be used.

nmap --script -args=’4.4.4.4. sni= example .com ,1.1.1.1. sni=abc.cz’

local arg_key = host.ip .. ".sni"
local tls_sni = stdnse . get_script_args (arg_key)

Code listing 4.10 Nmap Argument Parsing Logic

The script performs 6 DoH checks—both HTTP versions and all three request methods (GET,
POST, and JSON). An example of one of the checks is shown in Listing 4.11, and corresponds
to an HTTP/1.1 JSON request. The result variable is initially set to false and is changed only
if some of the tests succeed.

local query1 = ’/dns -query?name=www. example .com&type=A’
local target = host.ip..":".. port. number

local req = http_request . new_from_uri ("https ://".. target .. query1)
req.ctx = tlsctx
req. sendname = tls_sni
req. headers : append (" accept ", " application /dns -json")
req. headers : upsert ("user -agent", " example / client ")
req. version = 1.1

local headers , stream = req:go(timeout)
if headers and headers :get(": status ") == "200" and headers :get("

content -type") == " application /dns -json" then
result = true

end

Code listing 4.11 Nmap Script DoH Check Example

To ensure the script is working properly, especially regarding the HTTP version and the used
SNI value when establishing a TLS connection, we intercepted the communication with Wire-

8https://github.com/stratosphereips/DoH-Research/blob/main/nmap-script/dns-doh-check.nse
9https://www.lua.org/

Active Verification & Rule Extraction Module 31

shark10. We observed the TLS handshake packets and particularly inspected the SNI and Appli-
cation Layer Protocol Negotiation (ALPN) values. The ALPN extension in the TLS handshake
allows the client and server to negotiate which protocol to use over the secure TLS connection.
This happens before the application layer protocol begins, ensuring that both parties have agreed
on which protocol to use. Figure 4.2 is a screenshot from Wireshark of the Client Hello packet
in the TLS handshake, and you can see that the SNI and also the ALPN version were set as
intended.

Figure 4.2 TLS SNI and ALPN Wireshark Capture

Nmap scan report for 8.8.8.8
Host is up (0.0063 s latency).

PORT STATE SERVICE
443/ tcp open https
|_dns -doh -check: true

Code listing 4.12 Nmap Output Example

The output of a Nmap scan is shown in Listing 4.12. When multiple hosts are scanned,
outputs like this are listed one after another. For processing and parsing the output, the re11

Python library, providing regular expression (regex) matching, was utilized. Initially, the output
was split by scanned IP addresses into individual reports. Then, we iterate through the reports
and search for the true or false that the script has returned. Listing 4.13 demonstrates the
logic of parsing the Nmap output.

10https://www.wireshark.org/
11https://docs.python.org/3/library/re.html

Active Verification & Rule Extraction Module 32

def parse_output (self , nmap_output):

split the output into individual reports for each address
scan_report = re.split(r"Nmap scan report for", nmap_output)

try to find the IP address and dns -doh -check pattern in every
subreport

for report in scan_report :
ip = self. ip_regex_compiled . search (report)
doh_true = self. doh_true_compiled . search (report)
doh_false = self. doh_false_compiled . search (report)

if both found , set value for the IP to True or False
if ip and doh_true :

self. scan_results [ip.group ()] = True
elif ip and doh_false :

self. scan_results [ip.group ()] = False

Code listing 4.13 Nmap Output Parsing Logic

4.4.2 IP-Rule Extraction
After the Nmap output is parsed and all scanned hosts are verified, the results are stored in the
scan results list, keyed by the IP address. The send alerts method is called and is responsible
for setting rules via the RedisManager, as well as for inserting DoH alerts into the alerts queue.
The method is depicted in Listing 4.14.

def send_alerts (self , records):
global alerts_que

for record in records :
ip = str(record [’DST_IP ’])
name = record [" TLS_SNI "]
if self. scan_results [ip] == True:

redis_manager . set_rule (ip , name , ’block ’)
alerts_que .put(record)

else:
redis_manager . set_rule (ip , name , ’allow ’)

Code listing 4.14 Setting Rules to Rule Database

4.4.3 Multithreading
The idea of multithreading in this module is very similar to the classifier module. The main
thread is responsible for receiving and sending UniRec messages, while other threads—called
ConsumerThreads—are used to prepare the Nmap script argument, call Nmap, process its out-
put, and extract rules for the database. The algorithm of this module is illustrated in Listing 4.15.

Active Verification & Rule Extraction Module 33

ip4_que = Queue ()
ip6_que = Queue ()
alerts_que = Queue ()

ConsumerThreads
class ConsumerThread (Thread):

scan_results = []
ip_que = ip4_que or ip6_que

def send_alerts (records):
for record in records :

if scan_results [record [DST_IP]] == True:
set_block_rule (record [DST_IP], record [TLS_SNI])
alerts_que .put(record)

else:
set_allow_rule (record [DST_IP], record [TLS_SNI])

while True:
records = ip_que . get_multiple ()
targets = []
for record in records :

scan_results [record [DST_IP]] = False
targets . append ((record [DST_IP], record [TLS_SNI]))

parse_output (run_nmap (targets))
send_alerts ()

Main Thread
while True:

while not alerts_que .Empty ():
trap.send(next_module_ifc , alert_que .get ())

flow = trap. receive ()
if record [DST_IP]. isIpv4 :

ip4_que .put(flow)
else:

ip6_que .put(flow)

Code listing 4.15 Active Verification Module Algorithm

There are separate threads for IPv4 and IPv6 addresses because you cannot call Nmap with
both address types at once. The whole flow records are stored in a thread-safe Queue object,
from where they are taken and processed by ConsumerThreads. The user can specify how many
threads there will be for each Queue, thus determining how many threads will process IPv4 or
IPv6 addresses.

Scan results for a single host can be either True or False. The initial value is False and
changes only when the Nmap scan results in True. There are situations where the scanned host
is behind a firewall that filters and drops the scan packets. In such cases, the scan result value
remains False, and an allow rule will be extracted. This is because typically, the host will remain
behind the firewall, and the situation will not change. We do not want to repeatedly check and
attempt to verify the host since it would be extremely intrusive. Therefore, the allow rule is
inserted into the database, ensuring that the host will be checked again once the rule expires.

Supplementary Files 34

4.5 Supplementary Files

Configuration
Since many detector parameters can differ based on the platform it runs on, we have agreed to
have a single configuration file for easier management. It has three sections—redis, nmap, and
clf. In the redis section, the user can define which Redis database to connect to, including
the host and port where it runs, as well as the validity of individual rules inside the database
and the block/allow lists. Nmap section allows you to configure the multithreading options in
the verification module since this depends on the available resources. The clf section is to set
up the classification module, its ML model file, and also how many RecordWorker threads there
should be.

ML Model
After an ML model is trained and hyperparameters tuned, it has to be exported so it can be then
used in other processes. XGBoost library provides methods for saving and loading the XGBoost
models in JSON format. The model is saved with a method called save model and then can be
loaded with load model.

The ML classifier module requires this file and will not run without its presence. You can use
practically any ML model that supports batch predictions (and was trained on the same feature
set) and declare its location in the configuration file. The only condition is that it has to be a
JSON file exported with the XGBoost library.

Logs
Each module has its own log file, to continuously report its work or to inform about errors. This
is implemented with logging12 Python module, which provides flexible event logging.

12https://docs.python.org/3/library/logging.html

Chapter 5

Evaluation

This chapter describes the methods used to evaluate the implemented detector from the previous
Section. The ML model is evaluated based on the common metrics for evaluating any ML
classifier. The detector’s modules were individually tested for their correct functioning and
error handling. Finally, the whole detector performance was tested on the dataset presented in
Chapter 2, to measure its resource requirements.

5.1 ML Performance
Evaluating the performance of an ML model involves examining how well the model can perform
on unseen data. Standard metrics for this are typically based on the numbers of true and false
positives and negatives, which stand for:

• True Positives (TP): Correct predictions of positive class

• False Positives (FP): Incorrect predictions of positive class

• True Negatives (TN): Correct predictions of negative class

• False Negatives (FN): Incorrect predictions of negative class

A confusion matrix summarizes the performance of an ML model while displaying the numbers
of actual and predicted labels, thus the TP, FP, TN, and FN values. The confusion matrix of
our XGBoost classifier can be seen in Figure 5.1.

The accuracy metric represents the ratio of correct predictions and is calculated as the sum
of correct predictions divided by the total number of predictions. This can be reliable only if we
have a balanced dataset, meaning an equal number of samples in each class. However real-world
datasets are usually heavily unbalanced, making this metric impractical.

accuracy = TP + TN

TP + FP + TN + FN
(5.1)

Precision and recall are other metrics commonly used when evaluating an ML model. Pre-
cision is a metric measuring how often our model correctly predicts a positive class (DoH flow
in our case). It answers the question: how often the DoH predictions are correct? Recall is a
metric that measures how often our model correctly predicts a positive class from all the actual
positive samples in the dataset. It answers the question: can the model find all instances of DoH
flows?

35

Correctness Testing 36

Figure 5.1 Consfusion Matrix od XGBoost Classifier

precision = TP

TP + FP
(5.2)

recall = TP

TP + FN
(5.3)

F1 score is another metric that combines these two and is computed as a harmonic mean of
the precision and recall scores. The harmonic mean braces similar values for precision and recall,
therefore, the more they deviate from each other, the worse the harmonic mean. F1 score can
be computed as:

F1 = 2 ∗ precision ∗ recall
precision + recall (5.4)

The dataset was initially filtered of flows not having at least 120 packets, as described in
Section 3.3, and randomly split into 70-30 training and testing parts, where the testing part was
used for the final evaluation of the model. It was split with scikit-learn 1 train test split
function, with the random state value set to 422. The confusion matrix is depicted in Figure 5.1
and the individual metric scores can be seen in Table 5.1.

Precision Recall F1 score
0.9983 0.9991 0.9987

Table 5.1 Evaluation Metric Scores of the XGBoost Classifier

5.2 Correctness Testing
The testing methodology for the right functioning was iterative in nature, consisting of individ-
ual module tests, and progressing to inter-module communication. Modules were continuously
tested during the implementation phase to validate its internal operations. Every program-failing
operation is encapsulated with a try-catch block to handle possible exceptions, logging the event,
but preventing the program from unwanted terminating.

1https://scikit-learn.org/stable/

Whole Detector Performance 37

5.3 Whole Detector Performance
The evaluation dataset contains 366,385 flow records, but the active verification was not per-
formed since the dataset is over two years old. Instead, the ground truth labels were used.
Nevertheless, the filtration step filtered most of the records and left 6057 DoH and 1910 non-
DoH flows for further detection. The ML classifier then produced only 2 FN, meaning that two
DoH flows were labeled as non-DoH and 3 FP which are expected to be eliminated by the active
verification. The whole system thus achieved an F1 score of 0.9998 with precision of 1.0 and
recall of 0.9997.

We also evaluated the detector performance in the manner of memory consumption and time
process efficiency. The time was measured with the time 2 Python library accordingly: start
variable was set at the beginning of the main loop of the module, and the end variable at the
very end. The difference between those two timestamps represents the process time.

Two different methodologies were employed to measure the memory consumption: the htop 3

command-line utility and the psutil 4 Python library. Below is described the memory consump-
tion and time process efficiency of each module.

IP-Based Detection & Filtration Module
The first module has to process every flow from the given dataset. The time was computed as an
average of 6 independent measurements, resulting in 2.161 seconds needed to process more than
350 thousand records. This means it can process one flow under 6 microseconds.

Observations from htop indicated a per-process resident set size (RES) of approximately
64 MB. This measurement reflects the non-swapped physical memory that the process has used.
In parallel, the psuitl reported consistent memory usage around 63 to 64 MB, which closely aligns
with the htop measurements.

ML Classifier Module
The classifier module process flows that passed the filter in the previous module. From the given
dataset, only 7967 flows passed the filter. Such amount of flows can be processed by this module
in average of 1.348 seconds. This means that it can process one flow in 169 microseconds.

In the evaluation of the second NEMEA module, the top monitoring tool revealed that
instance of the Python script allocates approximately 171 MB of physical memory (RES). The
psutil tool reported a total memory consumption of around 175 MB.

Active Verification & Rule Extraction Module

Number of Threads Total Time Time per Flow
1 41.976 s 7.792 ms
2 20.1678 s 3.7437 ms
4 11.3937 s 2.115 ms

Table 5.2 Comparison of Process Time Efficiency with Different Thread Settings

Despite the obsolesce of the dataset and possible wrong results it produces, the active ver-
ification was performed just to evaluate the last module. Because this module is the most
resource-consuming and heavily relies on multithreading, I wanted to test the performance of
this module for various thread setting options. The previous ML module labeled 6093 flows as

2https://docs.python.org/3/library/time.html
3https://linux.die.net/man/1/htop
4https://psutil.readthedocs.io/en/latest/

Whole Detector Performance 38

DoH flows, where 5387 were IPv4 and the rest, 706, were IPv6. Since the testing platform did
not support IPv6 scanning, I only verified the IPv4 flows. Table 5.2 compares the times needed
to process all 5387 flows and the time needed to verify a single host.

The htop tool measured that an instance of this module allocates around 71 MB of physical
memory. The psutil reported a total memory consumption of approximately 69 to 70 MB, which
again aligns well with the figure reported by htop.

Conclusion

Given the increasing use of DoH, it is crucial to develop methods that can effectively identify
such traffic within high-speed network environments. The primary objective of this thesis was
to implement an algorithm for the automated detection of DoH traffic. Other detection meth-
ods and algorithms that were mentioned are not capable of reliable detection with minimized
computational requirements.

The design of the detector in this thesis comprises several distinct phases, each tailored to
address some aspect of the detection pipeline. Every phase contributes to enhancing the overall
accuracy while also minimizing the computational resources, thus enabling effective detection
within high-speed network environments. The shape and characteristics of DoH traffic were
demonstrated on a series of graphs, which helps in understanding how the detection algorithm,
especially the ML classifier, identifies DoH flows.

This bachelor thesis provides an implementation of a DoH detector within the NEMEA system
framework, which utilizes different detection techniques to address the challenges of detecting
encrypted DNS messages. The integration of the detector into the NEMEA framework not only
showcases its practical applicability but also underscores its compatibility with existing network
infrastructure and detection methodologies.

The effectiveness of the detector was evaluated on a real-world dataset, where it showed high
accuracy and processing efficiency. The ML classifier was evaluated using common metrics for
evaluating any ML model. The model showed exceptional results, even though it uses standard
flow telemetry with only 4 features, which makes the model very simple (in comparison to other
ML models for DoH classification).

Future work could employ other ML models with different feature sets aiming on other DoH
distinctions. It is possible to merge outputs of more than one ML model, which could lead to
more comprehensive detection results. By utilizing diverse ML approaches specializing in other
DoH traffic characteristics, we can potentially enhance the detection accuracy and minimize the
number of false positives generated by the ML module.

39

Bibliography

[1] Nevil Brownlee. RTFM: Applicability Statement. RFC 2721. Oct. 1999. doi: 10.17487/
RFC2721. url: https://www.rfc-editor.org/info/rfc2721.

[2] Kimo Bumanglag and Houssain Kettani. “On the Impact of DNS Over HTTPS Paradigm
on Cyber Systems”. In: 2020 3rd International Conference on Information and Computer
Technologies (ICICT). IEEE, Mar. 2020. doi: 10.1109/icict50521.2020.00085. url:
http://dx.doi.org/10.1109/ICICT50521.2020.00085.

[3] Tomas Cejka et al. “NEMEA: A Framework for Network Traffic Analysis”. In: 12th In-
ternational Conference on Network and Service Management (CNSM 2016). 2016. doi:
10.1109/CNSM.2016.7818417. url: http://dx.doi.org/10.1109/CNSM.2016.7818417.

[4] Cisco Systems. Cisco Annual Security Report. Online. 2016. url: https://mkto.cisco.
com/rs/564-whv-323/images/cisco-asr-2016.pdf.

[5] Cisco Systems, Inc. NetFlow Export Datagram Format. [online], Accessed on 04-05-2024.
Sept. 2007. url: https://www.cisco.com/c/en/us/td/docs/net_mgmt/netflow_
collection_engine/3-6/user/guide/format.html.

[6] B. Claise. Specification of the IP Flow Information Export (IPFIX) Protocol for the Ex-
change of Flow Information. Tech. rep. Sept. 2013. url: https://datatracker.ietf.
org/doc/html/rfc7011.

[7] B. Claise. Specification of the IP Flow Information Export (IPFIX) Protocol for the Ex-
change of IP Traffic Flow Information. Tech. rep. Jan. 2008. url: https://datatracker.
ietf.org/doc/html/rfc5101.

[8] Benôıt Claise. Cisco Systems NetFlow Services Export Version 9. RFC 3954. Oct. 2004.
doi: 10.17487/RFC3954. url: https://www.rfc-editor.org/info/rfc3954.

[9] Hannes Federrath et al. “Privacy-Preserving DNS: Analysis of Broadcast, Range Queries
and Mix-Based Protection Methods”. In: Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2011, pp. 665–683. isbn: 9783642238222. doi: 10.1007/978-3-642-
23822-2_36. url: http://dx.doi.org/10.1007/978-3-642-23822-2_36.

[10] Jan Fesl, Michal Konopa, and Jǐŕı Jeĺınek. “A novel deep-learning based approach to DNS
over HTTPS network traffic detection”. In: International Journal of Electrical and Com-
puter Engineering (IJECE) 13.6 (Dec. 2023), p. 6691. issn: 2088-8708. doi: 10.11591/
ijece.v13i6.pp6691-6700. url: http://dx.doi.org/10.11591/ijece.v13i6.pp6691-
6700.

[11] Sebastián Garćıa et al. “Large Scale Analysis of DoH Deployment on the Internet”. In:
Lecture Notes in Computer Science. Springer Nature Switzerland, 2022, pp. 145–165. isbn:
9783031171437. doi: 10.1007/978-3-031-17143-7_8. url: http://dx.doi.org/10.
1007/978-3-031-17143-7_8.

40

https://doi.org/10.17487/RFC2721
https://doi.org/10.17487/RFC2721
https://www.rfc-editor.org/info/rfc2721
https://doi.org/10.1109/icict50521.2020.00085
http://dx.doi.org/10.1109/ICICT50521.2020.00085
https://doi.org/10.1109/CNSM.2016.7818417
http://dx.doi.org/10.1109/CNSM.2016.7818417
https://mkto.cisco.com/rs/564-whv-323/images/cisco-asr-2016.pdf
https://mkto.cisco.com/rs/564-whv-323/images/cisco-asr-2016.pdf
https://www.cisco.com/c/en/us/td/docs/net_mgmt/netflow_collection_engine/3-6/user/guide/format.html
https://www.cisco.com/c/en/us/td/docs/net_mgmt/netflow_collection_engine/3-6/user/guide/format.html
https://datatracker.ietf.org/doc/html/rfc7011
https://datatracker.ietf.org/doc/html/rfc7011
https://datatracker.ietf.org/doc/html/rfc5101
https://datatracker.ietf.org/doc/html/rfc5101
https://doi.org/10.17487/RFC3954
https://www.rfc-editor.org/info/rfc3954
https://doi.org/10.1007/978-3-642-23822-2_36
https://doi.org/10.1007/978-3-642-23822-2_36
http://dx.doi.org/10.1007/978-3-642-23822-2_36
https://doi.org/10.11591/ijece.v13i6.pp6691-6700
https://doi.org/10.11591/ijece.v13i6.pp6691-6700
http://dx.doi.org/10.11591/ijece.v13i6.pp6691-6700
http://dx.doi.org/10.11591/ijece.v13i6.pp6691-6700
https://doi.org/10.1007/978-3-031-17143-7_8
http://dx.doi.org/10.1007/978-3-031-17143-7_8
http://dx.doi.org/10.1007/978-3-031-17143-7_8

Bibliography 41

[12] Paul E. Hoffman and Patrick McManus. DNS Queries over HTTPS (DoH). Tech. rep.
Internet Engineering Task Force (IETF), Oct. 2018. url: https://tools.ietf.org/
html/rfc8484.

[13] Rick Hofstede et al. “Flow Monitoring Explained: From Packet Capture to Data Analy-
sis With NetFlow and IPFIX”. In: IEEE Communications Surveys & Tutorials 16.4
(2014), pp. 2037–2064. issn: 1553-877X. doi: 10.1109/comst.2014.2321898. url: http:
//dx.doi.org/10.1109/COMST.2014.2321898.

[14] Karel Hynek et al. “Summary of DNS Over HTTPS Abuse”. In: IEEE Access 10 (2022),
pp. 54668–54680. issn: 2169-3536. doi: 10.1109/access.2022.3175497. url: http:
//dx.doi.org/10.1109/ACCESS.2022.3175497.

[15] Kamil Jarebek, Ondrej Rysavy, and Ivana Burgetova. “Measurement and Characterization
of DNS over HTTPS Traffic”. In: arXiv cs.NI.arXiv:2204.03975 (2022). arXiv:2204.03975v1.
doi: 10.48550/arXiv.2204.03975. url: https://arxiv.org/abs/2204.03975.

[16] Kamil Jerabek et al. “DNS over HTTPS detection using standard flow telemetry”. In:
IEEE Access 11 (2023), pp. 50000–50012. doi: 10.1109/access.2023.3275744.

[17] Kamil Jeřábek et al. “Collection of datasets with DNS over HTTPS traffic”. In: Data in
Brief 42 (June 2022), p. 108310. issn: 2352-3409. doi: 10.1016/j.dib.2022.108310.
url: http://dx.doi.org/10.1016/j.dib.2022.108310.

[18] Yaser M. Banadaki. “Detecting Malicious DNS over HTTPS Traffic in Domain Name Sys-
tem using Machine Learning Classifiers”. In: Journal of Computer Sciences and Applica-
tions 8.2 (Aug. 2020), pp. 46–55. issn: 2328-7268. doi: 10.12691/jcsa- 8- 2- 2. url:
http://dx.doi.org/10.12691/jcsa-8-2-2.

[19] P. Mockapetris. Domain Names - Implementation and Specification. Tech. rep. Nov. 1987.
url: https://datatracker.ietf.org/doc/html/rfc1035.

[20] Mohammadreza MontazeriShatoori et al. “Detection of DoH Tunnels using Time-series
Classification of Encrypted Traffic”. In: 2020 IEEE Intl Conf on Dependable, Autonomic
and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on
Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech). IEEE, Aug. 2020. doi: 10.1109/dasc-picom-
cbdcom-cyberscitech49142.2020.00026. url: http://dx.doi.org/10.1109/DASC-
PICom-CBDCom-CyberSciTech49142.2020.00026.

[21] J. Quittek. Requirements for IP Flow Information Export (IPFIX). Tech. rep. Oct. 2004.
url: https://datatracker.ietf.org/doc/html/rfc3917.

[22] G. Sadasivan. Architecture for IP Flow Information Export. Tech. rep. Mar. 2009. url:
https://datatracker.ietf.org/doc/html/rfc5470.

[23] Using JSON · Cloudflare 1.1.1.1 docs — developers.cloudflare.com. Online. Accessed 06-
04-2024. url: https://developers.cloudflare.com/1.1.1.1/encryption/dns-over-
https/make-api-requests/dns-json.

[24] Dmitrii Vekshin, Karel Hynek, and Tomas Cejka. “DoH Insight: detecting DNS over
HTTPS by machine learning”. In: Proceedings of the 15th International Conference on
Availability, Reliability and Security. ARES 2020. ACM, Aug. 2020. doi: 10.1145/3407023.
3409192. url: http://dx.doi.org/10.1145/3407023.3409192.

https://tools.ietf.org/html/rfc8484
https://tools.ietf.org/html/rfc8484
https://doi.org/10.1109/comst.2014.2321898
http://dx.doi.org/10.1109/COMST.2014.2321898
http://dx.doi.org/10.1109/COMST.2014.2321898
https://doi.org/10.1109/access.2022.3175497
http://dx.doi.org/10.1109/ACCESS.2022.3175497
http://dx.doi.org/10.1109/ACCESS.2022.3175497
https://doi.org/10.48550/arXiv.2204.03975
https://arxiv.org/abs/2204.03975
https://doi.org/10.1109/access.2023.3275744
https://doi.org/10.1016/j.dib.2022.108310
http://dx.doi.org/10.1016/j.dib.2022.108310
https://doi.org/10.12691/jcsa-8-2-2
http://dx.doi.org/10.12691/jcsa-8-2-2
https://datatracker.ietf.org/doc/html/rfc1035
https://doi.org/10.1109/dasc-picom-cbdcom-cyberscitech49142.2020.00026
https://doi.org/10.1109/dasc-picom-cbdcom-cyberscitech49142.2020.00026
http://dx.doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00026
http://dx.doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00026
https://datatracker.ietf.org/doc/html/rfc3917
https://datatracker.ietf.org/doc/html/rfc5470
https://developers.cloudflare.com/1.1.1.1/encryption/dns-over-https/make-api-requests/dns-json
https://developers.cloudflare.com/1.1.1.1/encryption/dns-over-https/make-api-requests/dns-json
https://doi.org/10.1145/3407023.3409192
https://doi.org/10.1145/3407023.3409192
http://dx.doi.org/10.1145/3407023.3409192

Contents of the attachment

DoH detector..DoH detector project
config.ini..configuration file of modules
dns-doh-check.nse..................................Nmap script for host verification
src

nemea IPlist module.py IP-based detection module
nemea clf module.py .. ML classifier module
nemea nmap module.py....................................DoH verification module

model.json..exported ML model
text

thesis.pdf..thesis in PDF
thesis source codes.zip..............................compressed thesis source code

42

	Acknowledgments
	Declaration
	Abstract
	Abbrevations
	Introduction
	Theoretical Background
	Network Monitoring
	IP Flow
	Flow-Based Monitoring
	Flow Exporter
	Flow Collector

	NEMEA System
	NEMEA System Deployment and Capabilities

	DoH Protocol
	DoH Request
	DoH Response
	DoH using JSON format
	Detection of DoH

	Dataset and Analysis
	Data Collection
	Real-Word Data
	Generated Data
	Final Dataset

	Data Analysis

	Design
	Scheme
	IP-Based Detection
	Filtration
	Minimal Number of Packets Threshold

	Classification
	Used Features
	Machine Learning Classifier

	Verification
	IP Rule Extraction

	Implementation
	IP-Rule Database
	IP-Based Detection & Filtration Module
	ML Classifier Module
	Multithreading
	ML Hyperparameters

	Active Verification & Rule Extraction Module
	Active Verification
	IP-Rule Extraction
	Multithreading

	Supplementary Files

	Evaluation
	ML Performance
	Correctness Testing
	Whole Detector Performance

	Contents of the attachment

