
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

AWS DeepRacer Controller Training Scenarios Exploration for

Real-World Perfomance

Yelizaveta Tskhe

Ing. Miroslav Čepek, Ph.D.

Informatics

Software Engineering 2021

Department of Software Engineering

until the end of summer semester 2024/2025

Instructions

AWS DeepRacer cars are a platform for experimenting with autonomous driving using

machine learning. This thesis aims to explore required steps to transfer the machine

learning controller from simulated environment to real world car and make it reliably

navigate a track even in visually cluttered environment. The challenge is in the

discrepancy between clean and fully controlled simulated environment and very noisy

real environment. The noise appears in the inputs - like moving objects in the visual field

of the camera or different light conditions. The challenge is also in noise in actions - like

different velocity and steering behaviour due to battery charge level. The thesis aims to

find techniques and approaches to address the problems and demonstrate the

improvement in the car driving in the real environment.

Steps:

1) Review literature on machine learning techniques and approaches for self-driving cars.

Review past bachelor theses on AWS DeepRacer cars.

2) Propose and train a baseline controller and demonstrate its performance in real-world

environment.

3) Propose improvements to the training procedure to improve car's performance in the

real-world.

4) Test your improvements and demonstrate the impact.

Electronically approved by Ing. Michal Valenta, Ph.D. on 15 February 2024 in Prague.

Bachelor’s thesis

AWS DEEPRACER
CONTROLLER
TRAINING SCENARIOS
EXPLORATION FOR
REAL-WORLD
PERFORMANCE

Yelizaveta Tskhe

Faculty of Information Technology
Department of Applied Mathematics
Supervisor: Ing.Miroslav Čepek,Ph.D.
May 13, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Yelizaveta Tskhe. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Tskhe Yelizaveta. AWS DeepRacer Controller Training Scenarios Exploration
for Real-World Performance. Bachelor’s thesis. Czech Technical University in Prague, Faculty of Infor-
mation Technology, 2024.

Contents

Acknowledgments vi

Declaration vii

Abstract viii

Abbreviations ix

Introduction 1

1 Foundational Concepts 2
1.1 Definition of autonomous driving . 2

1.1.1 Levels of automation . 2
1.1.2 Sensors . 3

1.2 AWS Deepracer . 3
1.3 Introduction to machine learning . 5

1.3.1 Supervised Machine Learning . 5
1.3.2 Unsupervised Machine Learning . 5
1.3.3 Reinforcement Learning . 5

1.4 Ethics for autonomous driving . 6
1.5 Safety for autonomous vehicles . 7
1.6 AWS Cloud for Robotics . 8

1.6.1 AWS Robomaker . 8
1.6.2 AWS Sagemaker . 8
1.6.3 DeepRacer-for-Cloud . 8

1.7 Related Research . 8

2 Theoretical background 10
2.1 Reinforcement learning . 10

2.1.1 Elements of Reinforcement Learning . 10
2.2 Deep learning . 11

2.2.1 Components of a Deep Learning network 11
2.3 Deep Reinforcement Learning in autonomous driving 12
2.4 Neural Networks . 12

2.4.1 Convolutional Neural Networks . 13
2.4.2 Feed-forward Neural Networks . 13
2.4.3 Recurrent Neural Networks . 14
2.4.4 Overfitting . 14

2.5 Multi-armed bandit problem . 14

ii

Contents iii

3 AWS DeepRacer 16
3.1 Software architecture . 16
3.2 Race modes . 16
3.3 Training algorithms . 17

3.3.1 Proximal Policy Optimization . 17
3.3.2 Soft Actor-Critic . 17

3.4 AWS DeepRacer Community . 17
3.5 Robot Operating System implementation . 18
3.6 Simulation environment . 18

4 Training 20
4.1 Problem Statement and Objective . 20
4.2 General training information . 20

4.2.1 Tracks selection . 20
4.3 Reward function . 21

4.3.1 Failed reward function . 22
4.3.2 Effective reward function . 23
4.3.3 Rewards comparison for 3-layer and 5-layer CNN 23
4.3.4 Relationship between lap completion time and reward 25

4.4 Action space . 26
4.4.1 Action space for 3-layer CNN model . 27
4.4.2 Action space ofr 5-layer CNN model . 28

4.5 Hyperparameters . 29
4.5.1 Hyperparameters for 3-layer CNN model 29
4.5.2 Hyperparameters for 5-layer CNN model 29

4.6 Domain randomization . 30
4.7 Neural network architecture . 30

4.7.1 3-layer CNN . 31
4.7.2 5-layer CNN . 31

5 Evaluation 32
5.1 Evaluation information . 32

5.1.1 Evaluation tracks selection . 32
5.1.2 Evaluation in simulation environment . 33
5.1.3 Comparison of 3-layer CNN models . 34
5.1.4 Comparison with 5-layer CNN models . 36

5.2 Transfer of the model to the vehicle . 38
5.2.1 Model structure required for AWS DeepRacer vehicle 38

5.3 Evaluation on a physical vehicle . 38
5.3.1 The initial evaluation . 39
5.3.2 Proposed improvements and evaluation 39

6 Conclusion 43

A Appendix 44

Contents of the attached media 49

List of Figures

1.1 AWS Deepracer car [3] . 4
1.2 Hierarchy [7] . 5
1.3 Trolley case scenario [10] . 6
1.4 Vehicle system architecture [14] . 7
1.5 AWS Sagemaker scheme [5] . 8
1.6 Hybrid-state A* [18] . 9
1.7 Optimum Race Line trajectory [19] . 9

2.1 RL elements [24] . 11
2.2 Deep Learning network architecture[24] . 12
2.3 CNN architecture [28] . 13
2.4 FNN and RNN comparison [30] . 14

3.1 ROS architecture [38] . 18
3.2 Training in simulation . 18

4.2 Track layouts . 21
4.3 Rewards per iteration for the unsuccessful model 22
4.4 Rewards per iteration . 24
4.5 Rewards per iteration for a 5-layer CNN model trained for 10 more iterations . . 24
4.6 Completion time and reward obtained . 25
4.7 Training with domain randomization . 30

5.1 Evaluation track layouts . 32
5.2 Evaluation tracks of 3-layer CNN. Smaller dataset refers to 3 training tracks.

Bigger dataset refers to 6 training tracks. 34
5.3 Evaluation tracks of 5-layer CNN. Smaller dataset refers to 3 training tracks.

Bigger dataset refers to 6 training tracks. 36
5.4 Completion per iteration . 37
5.5 Completion per iteration for the 5-layer CNN model trained for 10 more iterations 37
5.6 The directory structure required for AWS DeepRacer vehicle 38
5.8 Evaluation starting positions . 40
5.9 Darker lighting conditions . 41
5.10 Light reflections on the track . 42

iv

List of Tables

1.1 Specifications of the physical vehicle [3] . 4

4.1 Discrete action space [5] . 26

5.1 Evaluation on Red Star Pro track . 33
5.2 Evaluation on Dubai Pro track . 33
5.3 Evaluation on Singapore track . 33
5.4 Evaluation results . 42

A.1 Input parameters for reward function [5] . 44
A.2 Hyperparameters for AWS DeepRacer Training[5] 45

List of code listings

4.1 Unsuccessful reward function . 22
4.2 Effective reward function . 23
4.3 Model’s action space for 3-layer CNN . 27
4.4 Model’s action space for 5-layer CNN . 28
4.5 Hyperparameters for 3-layer CNN . 29
4.6 Hyperparameters for 5-layer CNN . 30

v

I am profoundly grateful to my supervisor, Miroslav Čepek, for his
invaluable guidance, patience and support throughout this thesis. His
mentorship and expertise helped me in navigating through the com-
plexities of research. I would also like to express the deepest appre-
ciation to my family for their love and encouragement. It has been
a source of strength and motivation for me. Additionally, I would
like to acknowledge the professors who have played a significant role
in my academic development throughout my bachelor studies. Their
passion for teaching and dedication to their students have been truly
inspiring.

vi

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act No.
121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Czech Technical
University in Prague has the right to conclude a licence agreement on the utilization of this thesis
as a school work pursuant of Section 60 (1) of the Act.

In Praze on May 13, 2024

vii

Abstract

This thesis aims to investigate the steps required to transfer a machine learning controller from
a simulated environment to the real-world vehicle, allowing it to navigate a track in a safe and
reliable way despite the visual differences. The main challenge lies in bridging the gap between
the ideal conditions in simulated environment and dynamic, noisy real-world scenario. The noise
manifests in the lighting conditions, light reflections, presence of foreign objects in the vehicle’s
camera as well as uncertainty in the speed and steering behaviour due to the battery level.

I have conducted an exhaustive review of the existing literature on the techniques and strate-
gies for autonomously driving vehicles in order to gain a deeper understanding of the domain.
Afterwards, I have trained and evaluated a reinforcement learning model that served as a bench-
mark for further experiments. Based on that, I proposed the potential improvements: training
with a domain randomization and using a deeper 5-layer neural network. The improvements
have been applied to the models in order to enhance the vehicle’s performance in the real-world
setting. They have been thoroughly tested and, as a result, domain randomization proved to be
helpful, while using a 5-layer neural network did not seem to bring significant improvement due
to the number of reasons.

Keywords AWS DeepRacer, autonomous driving, reinforcement learning, neural network

Abstrakt

Ćılem této práce je prozkoumat kroky potřebné k přenosu ř́ıdićı jednotky se strojovým učeńım
ze simulovaného prostřed́ı do reálného vozidla, aby bylo možné bezpečně a spolehlivě navigovat
po trati navzdory vizuálńım rozd́ıl̊um. Hlavńı výzva spoč́ıvá v překlenut́ı rozd́ılu mezi ideálńımi
podmı́nkami v simulovaném prostřed́ı a dynamickým, hlučným scénářem reálného světa. Šum
se projevuje ve světelných podmı́nkách, odrazech světla, př́ıtomnosti ciźıch objekt̊u v záběru
kamery vozidla a také v nejistotě rychlosti a chováńı ř́ızeńı v d̊usledku stavu baterie.

Provedla jsem vyčerpávaj́ıćı přehled stávaj́ıćı literatury o technikách a strategíıch pro au-
tonomně ř́ızená vozidla, abych źıskala hlubš́ı porozuměńı této oblasti. Poté jsem natrénovala a
vyhodnotila model učeńı s posilováńım, který sloužil jako měř́ıtko pro daľśı experimenty. Na jeho
základě jsem navrhla možná vylepšeńı: trénováńı s náhodným výběrem domény a použit́ı hlubš́ı
pětivrstvé neuronové śıtě. Tato vylepšeńı byla aplikována na modely s ćılem zvýšit výkonnost
vozidla v reálném prostřed́ı. Byla d̊ukladně otestována a ve výsledku se ukázalo, že doménová
randomizace je užitečná, zat́ımco použit́ı 5vrstvé neuronové śıtě zřejmě nepřineslo významné
zlepšeńı z řady d̊uvod̊u.

Kĺıčová slova AWS DeepRacer, autonomńı ř́ızeńı, pośıleńı učeńı, neuronová śıt’

viii

Abbreviations

ANN Artificial Neural Network
AWS Amazon Web Services
CNN Convolutional Neural Network
FNN Feed-forward Neural Network

ML Machine Learning
NN Neural Network

PPO Proximal Policy Optimization
ReLU Rectified Linear Unit

RL Reinforcement Learning
RNN Recurrent Neural Network
ROS Robot Operating System
SAC Soft Actor-Critic

ix

Introduction

In recent years, autonomous driving technology has significantly improved with the promising
potential to reshape the mobility field. The central challenge is to develop reliable, robust, and
safe systems with the capability to navigate complex, unpredictable real-world environments
efficiently. AWS DeepRacer platform offers a space for developers to train, test, and deploy
reinforcement learning models, that can be further used in self-driving vehicles in real-world
scenarios.

This thesis focuses on the comprehensive exploration of the AWS DeepRacer training tech-
niques and strategies with the goal of enhancing its performance in real-world conditions. The
fundamental difficulty is the transfer of the model from the simulation environment with ideal
conditions to the realistic noisy environment with varying conditions.

My goal is to review related works on the same topic, analyze the utilized methods and ap-
proaches, and compare them. Subsequently, I will create a reinforcement learning model and
train it in the simulated environment. The evaluations will be conducted not only in the simula-
tion environment but also in the real-world setting on the printed ”A to Z Speedway” track under
different conditions. After analyzing the model’s performance, I will propose improvements to
the training process that could possibly enhance the model’s behavior in the real-world scenario.

1

Chapter 1

Foundational Concepts

In this chapter, I describe the general concept of autonomous driving, including levels of au-
tonomy, radars, sensors and cameras. Moreover, I explain different types of machine learning:
supervised, unsupervised and reinforcement learning. I also discuss ethics and safety of au-
tonomous driving.

1.1 Definition of autonomous driving
There is no universal definition of autonomous driving. The word originates from Greek autos
(independent) and nomos (human orders) in a sense that a human orders the vehicle to move by
programming its behavior. The vehicle, in turn, autonomously continues driving obeying the
rules and constraints that were considered while programming its behavior. It involves the use
of complex systems, sensors and algorithms in order to control all processes, including steering,
accelerating and braking.

1.1.1 Levels of automation
The Society of Automotive Engineers has defined five levels of automation.

Level zero means no automation at all; a human must control the vehicle at all times and
perform operations like steering, accelerating, decelerating, braking, observing and evaluating
driving environment [1].

Level one (driver assistance) allows a primitive system for driver assistance, anti-lock braking
systems as well as stability control start. The driver assisting system can either control
steering or acceleration and baking, however driver has to be fully aware of the environment
and execute all operations [1].

Level two (partial automation) automation uses more advanced assistance systems, includ-
ing emergency brake and collision avoidance. The system can perform both steering and
accelerating, braking. The vehicle still requires full attention and partial control of the driver
[1].

Level three (conditional automation) means the vehicle is driving autonomously but the
driver must stay alert and take over the control at any time [1].

Level four (high automation) is where the human attention is not needed anymore. The
vehicle’s system executes all operations and does not require driver’s control [1].

2

AWS Deepracer 3

Level five (full automation) means the vehicle is able to drive autonomously in any road
network and independent of weather conditions with unlimited driving modes [1]

. Nowadays, no vehicle is capable of full automation (level 5) and as stated by Toyota Research
Institute, no one in the industry is capable of producing a vehicle with level 5 automation [1].

1.1.2 Sensors
Sensors and cameras are needed for the perception of environment. One of the most important
features is recognising static and dynamic objects in the environment.

Monocular cameras – 2D cameras with a passive sensor (does not emit any signal for mea-
surements) that distinguish colors, which is important for traffic lights detection. However,
this type of cameras lacks the depth perception in order to obtain more accurate information
from the image [2].

Event cameras – cameras producing output based on the changes in brightness. The data
is recorded asynchronously for individual pixels with respect to visual stimuli. [2]

Radar (Radio Detection and Ranging) – a sensor with the help of which 3D information,
such as depth information, can be measured. It is an active sensor that emits radio waves
that bounce back from the objects and measures the time of each bounce. The result from the
radar is presented as a set of 2D coordinates that show the center of the object associated with
the velocity at that point. There are different types of radar depending on the range: long-
range radar (up to hundreds of meters), medium-range radar (up to fifty meters), short-range
radar (up to few meters) as well as multi-modal radar that can operate at different ranges.
Radars are cheaper than LiDARs and work at a greater distance but are less accurate. The
weather and light conditions do not affect radars, while other types of sensors might struggle
during rain or fog [2].

LiDAR (Light Detection and Ranging) – works in the same principle as a radar but
operates with light waves instead of radio waves. LiDARs are larger than radars, which might
be a disadvantage when a smaller size required but are more accurate than radar on distance
under 200 meters. The data acquired from a LiDAR is often used for the creation of 3D maps
[2].

The multisensor setup can be also used for the vehicle as a combination of radar and LiDAR to
achieve multiple goals and fault-free systems.

1.2 AWS Deepracer
AWS DeepRacer is a fully autonomous 1/18th scale car. The DeepRacer car is trained in the
simulation by AWS Robomaker and the neural networks are updated by AWS Sagemaker [3].

The agent has a function that is used for approximation of the policy. The state is taken
from the image from the car’s cameras, which then defines the action taken by the agent. If
the vehicle performs favorable actions, it receives a positive reward, otherwise, negative reward.
One episode is the time period starting when the vehicle is placed on the track and ending either
with the vehicle going off track or the vehicle completing the whole lap around the track while
staying on the track at all times [4].

As it was stated in the AWS DeepRacer Developer Guide, the environment state might refer
to everything connected to the problem. It can be either the vehicle’s physical location on the
track and the track itself or the image acquired from the vehicle’s front cameras. The latter one
does not capture the environment state fully, therefore the environment is considered partially
observed and the state might be referred to as an observation [5].

AWS Deepracer 4

AWS DeepRacer car is equipped with Wi-Fi capabilities. It has 4 MP cameras, a 360-degree
12-meter scanning radius LiDAR sensor, and an integrated accelerometer. The physical car can
drive itself on the track or can be controlled manually. Autonomous driving is executed in the
car’s compute module, which uses images captured from the vehicle cameras[3].

Figure 1.1 AWS Deepracer car [3]

The AWS DeepRacer is equipped with various sensors that allow it to perceive its environ-
ment and make independent decisions. These sensors usually consist of a front-facing camera,
which acts as the main tool for visual perception, along with additional options like LiDAR and
ultrasonic sensors for gauging depth and avoiding obstacles. The camera takes pictures of the
surroundings, and onboard software processes these images to gather important details about
the track, obstacles, and nearby objects.

Component Specification
Car 1/18 Scale 4WD with Monster Truck Chassis
CPU Intel Atom™ Processor
Memory 4GB RAM
Storage 32GB (expandable)
Wi-Fi 802.11ac
Camera Stereo 4MP Cameras with MJPEG (second camera is optional)
LIDAR Sensor 360 Degree 12 Meters Scanning Radius LIDAR Sensor (optional)
Software Ubuntu OS 16.04.3 LTS, Intel® OpenVINO™ toolkit, ROS Kinetic
Drive Battery 7.4V/1100mAh Lithium Polymer
Compute Battery 13600mAh USB-C PD
Ports 4x USB-A, 1x USB-C, 1x Micro-USB, 1x HDMI
Sensors Integrated Accelerometer and Gyroscope

Table 1.1 Specifications of the physical vehicle [3]

Introduction to machine learning 5

1.3 Introduction to machine learning
Machine learning (ML), a subclass of artificial intelligence, is a method of learning from data
and, based on that, making predictions or decisions. It is categorized to supervised machine
learning, unsupervised machine learning, and reinforcement learning [6].

Figure 1.2 Hierarchy [7]

1.3.1 Supervised Machine Learning
Supervised machine learning is a subclass of ML, where learning is made with labeled data.
The data has already been divided into predetermined classes and new data has to be mapped to
desired outputs. The input dataset is divided into train and test datasets. It is also referred to
as a classification problem, where the machine finds patterns in multiple examples of mappings
of input to output and, consequently, maps the given input. Other supervised machine learning
algorithms are decision trees, Naive Bayes, and support vector machines [6].

1.3.2 Unsupervised Machine Learning
Unsupervised machine learning does not present the data divided into classes, it analyzes
and clusters unlabelled datasets. It extracts some features from the analyzed dataset and uses
them to classify the newly introduced data. An example of unsupervised machine learning
algorithms might be a k-means clustering [6].

1.3.3 Reinforcement Learning
Reinforcement learning (RL) is a method of machine learning where the agent is trained
in a dynamic environment through trial-and-error interactions. At each time step t, the agent
receives a state st. in a state space S and selects an action at from an action space A, following
a policy, which represents an agent’s behavior (a mapping from state st to actions at, receives a
scalar reward rt, and transitions to the next state st+1, according to environment dynamics, or
model, for reward function R(s, a) and state transition probability P(st+1—st, at) respectively
[6].

Ethics for autonomous driving 6

1.4 Ethics for autonomous driving
With all the benefits autonomous driving brings to humanity, there are also issues raised by it
such as ethical challenges. The questions arise in the case when an autonomous vehicle crashes
into another vehicle - how the autonomous vehicle interacts with the human driver and how the
responsibility is assigned. Accidents on the road are inevitable, but the difference is that human
drivers have limited control in such situations, whereas autonomous vehicles might have the
opportunity to make decisions about that.

It is still questionable if so-called ”trolley cases” are useful in such situations or not. ”Trolley
case” is a scenario where a trolley can result in some number of deaths if it goes one way or
some other number of deaths if it chooses to go the other way. [8]. Similarly, an autonomous
vehicle driving down a street can either crash into multiple pedestrians who ran onto the road
or drive sideways to kill one pedestrian walking on the sidewalk [9]. There is another version
of the ”trolley case”, where an alternative to hitting a group of pedestrians is to be stopped by
another vehicle that is pushed in front of the autonomous vehicle.

Figure 1.3 Trolley case scenario [10]

It is believed by some people that the ”trolley cases” have to be programmed, so in the case
of a potential car crash, the autonomous vehicle behaves in a way pre-defined earlier [11].

On the other hand, Trolley Pessimism is the belief that it is incorrect to use ”trolley cases”
as a basis for programming autonomous vehicles’ behavior in accident scenarios [8]. One of the
reasons is the idea that imaginary experiments are far from realistic ones, so it is impossible
to program the behavior of the vehicle in a future imaginary scenario. Another reason is the
uncertainty of the autonomous vehicle’s behavior in a particular situation: even though the
vehicle’s behavior is programmed with certainty, there is no absolute certainty in whether the
expected outcome will be generated [12]. Autonomous vehicles fully depend on machine learning
algorithms, so the training set has to be made of all possible situations with a desired input-
output par for it. However, the decision about the proportion of daily driving scenarios and
accident scenarios in the training set is made by the programmer and can differ [13].

It is clearly an ethical choice to make as one programmer might decide to not include any
accident scenarios, because it is better to focus on the most possible daily driving situations,
while the other one can dedicate half of the training set to accident scenarios. The goal of both
programmers is to maximize the number of lives saved, but they plan to achieve it in different
ways.

There is no certain answer to which way is better, but the conclusion is that programmers
and ethicists should carefully evaluate the decisions they make considering the ethical principles.

Safety for autonomous vehicles 7

1.5 Safety for autonomous vehicles
One of the key challenges of autonomous driving is the safety of autonomous vehicles. Even
though autonomous driving has had a significant improvement over the past years, there are still
no fully autonomous vehicles ready for use yet. A safe vehicle must be able to obey traffic laws
and avoid road hazards effectively. There have been huge improvements in sensors in the 21st
century, mainly in sonar, LiDAR, radar, vision sensors, and global navigation satellite systems
[14]. The data for the decision-making of autonomous vehicles comes not only from sensors but
also from communication with the infrastructure, other vehicles, the Internet, and the cloud.
However, multiple errors cause accidents on the road.

One of them is a perception error. It happens on the perception layer which has the
main function of acquiring data from sensors in order to perceive the environment for real-time
decision-making. This type of error is mainly caused by failures in hardware (sensors) that create
confusion in the decision system and result in dangerous driving behavior. It can be also caused
by errors in the software when it misleads the other two layers (action and decision layers) causing
safety problems [14].

Another type of error is a decision error. The decision layer acquires information from the
perception layer, makes decisions, and passes the information to the action layer. The sources
of such errors are system and human factors. The efficient autonomous vehicle must be able
to detect road hazards and inform the driver to take over. This should happen immediately,
however, it can take some time for a driver to respond and start the control of the vehicle [14].

Lastly, the action error happens on the last layer - action layer, which is responsible for
controlling the vehicle using the information acquired by perception and decision layers. Its func-
tions include steering the wheel, braking, accelerating, decelerating, and changing the direction.
The main reasons for such errors might be a malfunction of the controlling system, the heat
management system, or failure of actuators [14].

Figure 1.4 Vehicle system architecture [14]

To minimize the errors of autonomous vehicles the objects in the environment must be de-
tected, localized, and categorized effectively; the system must immediately respond to the changes
in the environment with the help of a thoroughly tested, efficient decision-making system; the
autonomous vehicle must wirelessly communicate with other vehicles (vehicular cloud) and road
facilities.

AWS Cloud for Robotics 8

1.6 AWS Cloud for Robotics

1.6.1 AWS Robomaker
Amazon Robomaker is a platform for developing, testing, and deploying robotic applications.
It offers a cloud-based environment, in which developers can test their models under various
conditions and random domains before transferring the model to the physical robot. Robomaker
supports the Robot Operating System and its simulation environment replicates the real-world
conditions accurately, allowing developers to test and adjust their models efficiently [15].

1.6.2 AWS Sagemaker
Amazon Sagemaker is a machine learning service for building, training, and deploying machine
learning models. Even though it was not designed specifically for robotics, its functionalities
are relevant for the development of robotics applications. It is possible to utilize the built-in
algorithms or use custom models with support for frameworks such as TensorFlow and PyTorch.
Sagemaker enables developers to go through the whole machine learning flow, including data
labeling, model training, and deployment [16].

1.6.3 DeepRacer-for-Cloud
The platform where these 2 services integrate is a DeepRacer-for-Cloud environment which
offers a comprehensive set of tools for the development and training of autonomous driving
models in the AWS cloud. It has been used to train and fine-tune the models prior to their
deployment to the physical vehicle [17].

Figure 1.5 AWS Sagemaker scheme [5]

1.7 Related Research
In recent years, the field of autonomous driving, along with significant advancements in Artifi-
cial Intelligence, has gained a surge of interest and innovation. AWS DeepRacer is one of the
main platforms for the exploration and testing of RL models for autonomous driving. Having

Related Research 9

conducted a comprehensive review of research and studies on this topic, I aimed to identify key
strategies and methodologies as well as areas for further improvement in the field of autonomous
driving with AWS DeepRacer.

One of the algorithms proposed is the hybrid-state A* path search algorithm. The environ-
ment is represented as a graph, in which nodes are specific locations and edges are connections
between locations. There is a start state and an end state that the vehicle is aiming to achieve.
However, each grid cell is associated with a continuous 3D state of the vehicle [18].

Figure 1.6 Hybrid-state A* [18]

One of the most popular approaches is the Optimum Race Line algorithm has been imple-
mented. The goal was to calculate the optimum race line path for the particular track in order
to motivate the vehicle to follow that trajectory [19].

Figure 1.7 Optimum Race Line trajectory [19]

However, the main disadvantage of this algorithm is that it is focused on one particular track
only. Hence, it is not universal as the vehicle will perform well on the training track but poorly on
the unknown tracks. Therefore, the more generalized reward function has been used, considering
steering angle, speed, and vehicle staying within the borders of the track.

A relatively new race type: head-to-bot has been explored along with the comparison of
different reward functions [4]. In another paper, the DeepRacer model has been transformed
into the model for the full-sized autonomous vehicle and evaluated it in the real-world setting
[20]. Moreover, the simulation of the real-world transfer has been researched and the filtering of
training data has been performed in order to increase the robustness of the model in real-world
conditions [21]. Furthermore, the human-machine co-driving has been compared to the fully
autonomous driving [22].

Chapter 2

Theoretical background

In this chapter, I describe reinforcement learning and its elements: agent, environment and
reward function. Furthermore, I define what deep learning is and how it is used in autonomous
driving. The multi-armed bandit problem is also outlined in the chapter.

2.1 Reinforcement learning
Reinforcement learning is a training method of ML, where an agent interacts with the en-
vironment in a way to maximizes the numerical reward. The agent is not explicitly told which
actions to perform, instead, it has to discover and explore different actions in order to find out
which brings the biggest reward. The two most important features of RL are trial-and-error
search and delayed reward. The agent must have a goal related to the environment, which can
be achieved through interactions with the environment [6].

In comparison with supervised and unsupervised machine learning, reinforcement learning
does not get to train on the labeled dataset or find some hidden structure, instead, it learns on
its own through trial-and-error. Moreover, reinforcement learning focuses on the whole problem
of an agent interacting with the environment to achieve a particular goal, while other types
of machine learning tend to focus on subproblems without specifying how the solution to the
subproblem will be finally used as a solution to the whole problem [23]. Modern reinforcement
learning is strongly connected to psychology and neuroscience, as it is the most similar type of
learning that human beings and animals do.

Reinforcement learning can be model-based or model-free.

The model-based type of learning occurs when there is an environment (model) accessible,
so the agent learns the police or a value function by interacting with it, while in the latter
one, the agent has to find out the optimal policy through trial-and-error interactions with
the environment.

The model-free reinforcement learning can be divided into policy-based and value-based rein-
forcement learning. The policy-based approach (e.g. REINFORCE) learns the policy, which
is a mapping of states to actions, while the value-based approach (e.g. Q-learning) focuses
on predicting the value of actions in different states in the environment [23].

2.1.1 Elements of Reinforcement Learning
The main elements of reinforcement learning, besides agent and environment, are policy, reward
signal, value function, and model of the environment as an optional element [23].

10

Deep learning 11

A policy determines the agent’s behavior at a given time. Policy can be a simple function
mapping perceived states of the environment to the actions that the agent can perform as well as
more complex systems. The policy is a vital component of reinforcement learning, it is enough
to define the agent’s behavior [23].

A reward signal is a goal of reinforcement learning. After each action taken by the agent,
the environment sends a reward, as a number, back to the agent. The agent’s main objective is
to maximize the goal in the long run, so the acquired low reward might contribute to the change
of the policy to not select the same action in the consequent runs [23].

A value function specifies the reward that can be accumulated by the agent in the long
run, starting from the given state. Reward immediately informs the agent if the action that has
been just taken was good or not, while the value function considers the following steps and the
rewards that will be acquired in the long run. There might be a case where the next state brings
a lower reward but all subsequent states bring a big reward, resulting in the maximized total
reward, or the reverse [23].

Rewards are considered primary and values are secondary in the sense that values are based
on rewards. However, the values have a higher importance when an agent makes a decision.

A model of environment predicts the behavior of the environment, mainly the reward and
next state, given a current state and action that was taken by the agent. Models are useful to
plan the future actions to be performed by the agent.

Figure 2.1 RL elements [24]

2.2 Deep learning
Deep learning is a subclass of machine learning that exploits multiple layers of representations
in order to model complex relations between data. This kind of learning usually uses neural
networks. In autonomous driving deep learning models can be used for the detection of road signs
and pedestrians. Deep learning methods significantly improved speech recognition, visual object
recognition, object detection, and many other fields. It uses the back-propagation algorithm to
discover the structure in large datasets and get a machine to change its parameters in order to
compute the representation in each layer [25].

2.2.1 Components of a Deep Learning network
There are 3 main components of a deep learning network: an input layer which consists of
nodes that input data into the artificial neural network, a hidden layer acquires information
from the input layer and analyzes it from several different perspectives (as there might be multiple
hidden layers), and an output layer consisting of nodes that output the data, where each node
represents one answer [26].

Deep Reinforcement Learning in autonomous driving 12

Deep learning methods have multiple advantages over traditional machine learning methods,
such as they do not require manual feature extraction which leads to the more efficient processing
of unstructured data and they can analyze vast amounts of data and find hidden patterns.

Figure 2.2 Deep Learning network architecture[24]

2.3 Deep Reinforcement Learning in autonomous driving
There are multiple tasks where reinforcement learning could be applied in autonomous driving,
such as path planning, motion planning, trajectory optimization, development of driving policies
for navigation tasks, scenario-based policy for highways, intersections, merges, and splits. Path
planning is one of the main problems in autonomous driving, mainly because of the dynamic
environment in which vehicle has to pass through the intersection or merge into the highway.
Another important feature is motion planning which ensures the existence of a path between
start and end points [27].

The reward function for a deep reinforcement learning agent is a complex task that has
to consider multiple factors, such as the speed of the vehicle, distance traveled towards the
endpoint, interactions with the sidewalks, keeping the vehicle in lane and avoiding extreme
steering, acceleration, and braking [27].

There are multiple challenges in using deep reinforcement learning for autonomous driving.
For example, the sample efficiency - an autonomous vehicle requires a large number of samples
to learn a reasonable policy, safety in autonomous driving - even the well-trained vehicle might
be dangerous to deploy in the real environment, and autonomous driving being a multi-agent
task - besides the autonomous vehicle, there will be multiple other actors, such as other vehicles,
pedestrians, and cyclists [27].

2.4 Neural Networks
Artificial Neural Networks (ANN) are processing systems comprised of multiple intercon-
nected computational nodes, also known as neurons, that learn from the input data [28].

Neural Networks 13

2.4.1 Convolutional Neural Networks
Convolutional Neural Networks (CNN) are similar to the traditional ANNs in a way that
they also consist of neurons, each of which receives the input and executes an operation. The
main difference is that CNNs are commonly used for pattern detection within images. The
neurons in the layers of CNN are organized into 3 dimensions: height, width, and depth. The
height dimension is the number of rows in the input data, where each row is a horizontal line of
pixels. The width corresponds to the number of columns in the input (vertical lines of pixels).
The depth refers to the number of channels in the input data or each layer of CNN. The channels
can be color channels or feature maps produced by a specific filter. For example, in the case of
the image of 5 colors, the depth would be 5 (one channel for each color) [28].

CNNs are composed of 3 main types of layers: convolutional, pooling and fully-connected
layers. The process starts in the input layer storing the pixel values of the input image [28].

Figure 2.3 CNN architecture [28]

Next, the convolutional layer, the core building block of CNN, extracts features. Each filter
in the convolutional layer performs a convolution operation to the region of input and produces
a feature map that represents a particular pattern or feature [28].

After that, the pooling layer executes the downsampling of the input, reducing the dimen-
sionality of the input but preserving valuable features and patterns. This layer operates over
each activation map in the input data and performs the max pooling operation, in which the
maximum value in each region is preserved, while other values are discarded [28].

The fully connected layers, also known as dense layers, interpret high-level features ex-
tracted from previous layers and make decisions based on those patterns. Fully connected layers
are usually used for tasks like classification or regression, where the learned features need to be
mapped to specific output classes or values [28].

2.4.2 Feed-forward Neural Networks
Feed-forward neural networks (FNN) are one of the simplest types of ANNs. The infor-
mation flows in one direction from the input layer to the output layer without any loops. FNNs
consist of 3 layers: input layer, hidden layer, and output layer. The input and output layers are
similar to the ones in CNNs, while the hidden layer is concealed between the input and output
layers and serves as a computational core of the NN. This type of layer applies an activation
function on input from the previous layer and transfers the output to the next layer. The NN
may include 0 or more hidden layers [29].

Multi-armed bandit problem 14

There are 2 phases: feedforward phase and backpropagation phase. In the first phase, the input
is fed into the FNN and it goes through hidden layers to the output layer, where the decision is
made. The second phase starts after the result is obtained and the error, the difference between
the prediction and real output, is calculated. This error is fed back to the NN and the weights
used are adjusted in order to minimize the error [29].

2.4.3 Recurrent Neural Networks
Recurrent Neural Network (RNN) is a network containing a feedback connection, where
activations go through in the loop. It is usually used on sequential data, such as text, numerical
series, or handwriting, in order to detect features and patterns. One of the main differences is
the way data goes through the NN. In comparison to FNN, data goes through cycles and feeds
back [30].

Figure 2.4 FNN and RNN comparison [30]

The RNNs are difficult to train owing to its nonlinear iterative structure. Therefore, a small
change can result in a huge effect multiple iterations later [31].

2.4.4 Overfitting
Overfitting refers to the model not being able to learn effectively anymore. It can happen for
multiple reasons. The model can perform flawlessly on the training set but fails on the testing set.
Overfitted models can learn the noise in the training set instead of extracting more meaningful
features behind the input data. It is important to stop the training at the point when the model
is neither underfitted nor overfitted. One of the ways to find out the point to stop training is
computing the accuracy at the end of each iteration and stopping training at the point when
accuracy does not improve anymore [32].

2.5 Multi-armed bandit problem
The multi-armed bandit problem was introduced in 1952 and it is directly connected to the
exploration vs exploitation dilemma. There is a bandit with K arms (K actions to choose from)
and T rounds. Every round one hand is chosen and the reward from that hand is collected.
Hence, the reward on the other hand is unknown. The exploration in this case is that it is
necessary to try different arms to explore, however, the already acquired information can be
exploited and possibly lead to a greater reward [33].

There is no universal solution to whether exploration or exploitation is preferred in a dynamic
environment. Exploration happens when a machine discovers new policies with the goal of
improving performance. Exploitation, on the other hand, is using already discovered policies

Multi-armed bandit problem 15

that are known to be beneficial. Systems that choose to use exploration are likely to suffer the
costs of experimentation without it bringing benefits, while machines engaging in exploitation
will find themselves stuck in the same state without any improvements. Therefore, it is necessary
to keep the balance between exploration and exploitation.

Chapter 3

AWS DeepRacer

In this chapter, I present general information about AWS DeepRacer as well as its architec-
ture. Additionally, the physical vehicle is described. Regarding the training process, informa-
tion about virtual and real environments, training algorithms, reward function, action space
and parameters is presented.

3.1 Software architecture
The software architecture of AWS DeepRacer encompasses a set of elements working together to
facilitate training, simulation, and deployment of RL models for autonomous driving.

An integral component of the DeepRacer software structure is the simulation environment
which offers a virtual space for training and evaluation. The platform allows developers to use
various tracks, race types, driving scenarios, and lighting conditions for the model to train under
different real-world settings. Therefore, it makes it possible to iterate effectively and fine-tune
the models before transferring them to the physical car.

The perception component within the software framework is responsible for processing
the input data from sensors in order to perceive the environment. Its main function is to analyze
images from the front-facing camera and recognize obstacles, track lanes, and other features
required for driving.

The fundamental role is played by reinforcement learning, which facilitates the agent’s
learning process by interacting with the environment. It associates specific actions with rewards
or penalties, gradually discovering efficient driving techniques.

3.2 Race modes
There are 3 race types available for AWS DeepRacer: time trial, object avoidance, and head-to-
bot [5]. In the current thesis, I focus mainly on the time trial type.

The time trial race focuses on optimizing lap times around a given track. The aim is to
complete as many laps as possible within the time limit [5].

The object avoidance race type requires the model to navigate through tracks while avoiding
the obstacles placed along the track. It is necessary to use the reward function that enables
models to detect obstacles, learn from mistakes, and make timely decisions in order to steer
away from them [5].

16

Training algorithms 17

In head-to-bot races, the agent competes against ”bots” that represent a particular level of
racing expertise. The model has to outperform the benchmark models by completing more
laps within the given time or by completing the lap faster [5].

3.3 Training algorithms
There are 2 possible policy optimization algorithms for the AWS Deepracer: Proximal Policy
Optimization (PPO) and Soft Actor-Critic (SAC). These algorithms optimize the policy in order
for the vehicle to execute actions that get the maximum possible reward [34].

3.3.1 Proximal Policy Optimization
The PPO algorithm is an on-policy algorithm that helps the agent learn a value function by using
the observations made by the current policy. It works in both discrete and continuous action
spaces. It uses trial and error to collect data about the environment while taking actions based on
the initial policy. The policy is changed based on the reward acquired after the particular action
by the agent, however, the change in the policy must be small which makes the PPO stable
algorithm. It uses the clipping function to make sure that the new policy is not completely
different from the old policy [34].

3.3.2 Soft Actor-Critic
The SAC is an off-policy algorithm that works only in continuous action space. It uses obser-
vations acquired from previous policies to learn its value function with the goal of maximizing
reward as well the entropy [34].

Entropy measures how confident the policy is at choosing the action for the state given. Low
entropy means the policy is confident in the action chosen, while high entropy means the policy
is uncertain.

For training the models, I used the PPO algorithm, which is also a default algorithm for AWS
Deepracer. It is well-suited for the environments with discrete action space, in which I trained
the models in. The PPO is known for its stability during training as well as the sample efficiency.
Hence, it required fewer training sets in order to achieve a good performance compared to other
more advanced algorithms like SAC.

3.4 AWS DeepRacer Community
The AWS DeepRacer Community is the community created by enthusiasts willing to share
their ideas and questions in order to expand their knowledge. It was founded after the AWS
London Summit in 2019 and the initial purpose of it was to be a place for the top 10 winners to
have insightful discussions, but it quickly evolved into a thriving hub for developers of all levels.

It used to be hosted on Slack, but recently it has been moved to Discord. Nowadays, there
are about 500 enthusiasts, developers, and professionals gathered to discuss topics related to
machine learning, reinforcement learning, and autonomous driving using AWS DeepRacer. There
are various channels dedicated to different aspects such as virtual racing, physical racing, model
training, and race announcements. The community members regularly organize racing events
and tournaments, where participants can test their models and learn from others [35].

Robot Operating System implementation 18

3.5 Robot Operating System implementation
The Robot Operating System (ROS) is an open-source system consisting of software li-
braries and utilities for the development of robot applications [36]. The AWS DeepRacer had
been built as a ROS 2 Foxy Fitzroy architecture and application. It is considered to be the
most secure and reliable ROS release [37].

ROS 2 has a layered architecture and distinguishes the ROS Client Layer (RCL) from the
ROS Middleware Layer (RML). The former serves as the interface for developers, while the latter
facilitates compatibility with various low-level communication protocols. Built upon the Data
Distribution Service (DDS), the RMW enhances the robustness of ROS 2. This architecture ef-
fectively abstracts the details of low-level protocol from the application layer, enabling developers
to focus on algorithms without having any concerns about the underlying structure [38].

Figure 3.1 ROS architecture [38]

Moreover, ROS provides a universal interface for the interactions with sensors of the AWS
DeepRacer vehicle in order to acquire sensor data efficiently.

3.6 Simulation environment
The simulation environment used for training and evaluation was the Deepracer-for-cloud
environment. It uses AWS Sagemaker and Robomaker, which run as docker containers during
the training and evaluation processes. The environment allows developers to train reinforcement
learning models in the simulation without the need for additional hardware.

Figure 3.2 Training in simulation

Simulation environment 19

The environment is based on Unity, a game development engine, which ensures high-quality
3D graphics and realistic conditions [39]. It is possible to choose a track for the training and
evaluation from the variety of them with different layouts and obstacles. Moreover, the virtual
agent is equipped with sensors, such as a front-facing camera and optionally, a LiDAR or radar.
These sensors provide inputs to the RL model, enabling it to perceive the environment and make
decisions based on it. It is also possible to adjust the action space (discrete or continuous) along
with the speed and the steering angle.

Chapter 4

Training

In this chapter, I discuss the training process, the reward function and tracks I used for it.
Besides that, I describe the results of training, the overall reward achieved and the routes that
were taken on the training tracks.

4.1 Problem Statement and Objective
Training and evaluating the vehicle in the simulated environment can perform flawlessly until
the model is transferred to the physical vehicle, where its performance might dramatically drop.
Transitioning from controlled simulations to real-world conditions presents a challenge.

The focus of this thesis is the gap between simulated environments and real-world
driving scenarios. In particular, the inherent noise and variability in the real world. The
noise manifests in various forms, such as dynamic objects in the visual field, unstable lighting
conditions, and other variations, for example, connected to the battery charge levels.

The primary objective of this research is to explore and develop techniques to bridge the
sim2real gap, allowing the models trained in simulated environments to navigate real-world tracks
safely.

4.2 General training information
In order to achieve the objective of a car driving on unknown tracks, the DeepRacer car has been
trained in a simulation environment Deepracer-for-Cloud on a selection of tracks of different
difficulty and curvature, including sharp turns and straight roads, for the car to handle complex
unexpected trajectories. There have been chosen 6 distinct tracks to ensure the comprehensive
training of the model. The models were trained locally without AWS Console based on the
whitepaper about the local training configuration [40].

4.2.1 Tracks selection
The first track is Penbay Open, which has a pretty straightforward layout without any sharp
turns. It helps the car learn the basic maneuvers and navigate through similar simple tracks.
The next Albert track is more challenging than the Penbay Open, as it includes more tight
turns and bends. The next 3 tracks chosen were Thunder Hill Open, Dubai Open, and Canada
Training which represent a mixture of tight and gentle turns, resembling the real urban driving
environment. The last one and the most complex one is Red Star Pro track. It has multiple tight

20

Reward function 21

turns that require precise control of steering, braking, and navigating through the track, which
makes this track suitable for training.

(a) Albert (b) Penbay Open (c) Dubai Open

(a) Thunder Hill Open (b) Red Star Pro (c) Canada Training

Figure 4.2 Track layouts

4.3 Reward function
The agent learns the value function which uses the reward function to make a judgment on
how good or bad the action taken was. It helps the agent learn the most optimal policies that
lead to a greater reward. The optimal policy is considered the one that balances the exploration
and exploitation time.

The reward function is one of the most important components of reinforcement learning, as it
shapes the behavior of the agent, encouraging the vehicle to stay on track and maintain optimal
speed.

I have experimented with multiple reward functions in the training process in order to find the
right balance between exploration and exploitation as well as the right weights for the penalties
and rewards. An example of the failed reward function is in 4.1. The model trained with that
reward function has never converged. In contrast, the reward function in 4.2 proved to be effective
and has been used as a main reward function in the training process.

Reward function 22

4.3.1 Failed reward function

def reward_function (params):
all_wheels_on_track = params [’all_wheels_on_track ’]
speed = params [’speed ’]
distance_from_center = params [’distance_from_center ’]

reward = 0

SPEED_THRESHOLD = 2.0
MIN_SPEED = 1.0
if not all_wheels_on_track :

reward -= distance_from_center

if speed > SPEED_THRESHOLD :
reward += 1

elif speed < MIN_SPEED :
reward -= speed * 10

return float(reward)

Code listing 4.1 Unsuccessful reward function

The model trained with the reward function in 4.1 has never converged even after numerous
training iterations on multiple tracks. The initial goal was for the model to stay on track and
maintain an optimal speed. However, the ways I defined penalization and rewards were too
harsh. The penalty for going off the track and driving at a lower speed was too large compared
to the reward that was given for having at least the optimal speed.

The reward function did not motivate the agent to explore and learn new patterns, as it
struggled to discover what could bring the higher reward, it could not define the policy correctly.
Therefore, the agent had difficulties associating rewards with any particular action, and over the
iterations, the reward was declining (see 4.3).

Figure 4.3 Rewards per iteration for the unsuccessful model

The conclusion I made from this reward function was that penalization and rewards had to
be balanced in a way that the agent could deduce which actions are favorable and which are

Reward function 23

not. Hence, I had to adjust the weights for the parameters that I used in the reward function.
Furthermore, I understood that in order to balance exploration and exploitation, it was essential
to give the agent more frequent rewards for intermediate actions, so that it is encouraged to
explore new actions and states.

4.3.2 Effective reward function

def reward_function (params):
all_wheels_on_track = params [’all_wheels_on_track ’]
speed = params [’speed ’]
distance_from_center = params [’distance_from_center ’]
track_width = params [’track_width ’]

reward = 1e-3

if all_wheels_on_track :
reward -= distance_from_center / (0.5 * track_width)
reward += 2 * speed

else:
reward = 0.1

return float(reward)

Code listing 4.2 Effective reward function

The reward function in 4.2 is the main reward function that has been used for training.
Initially, the reward is 1e-3 as a base reward to establish a baseline. The main goal is to train
the vehicle in a way that it can swiftly drive through the track while staying within the borders
of the track. It motivates the agent to stay on the track while decreasing the penalty as it gets
closer to the center of the track. The penalty for not being in the center of the track is scaled
by the track width which ensures the penalty correlates to the track size.

4.3.3 Rewards comparison for 3-layer and 5-layer CNN
As it can be seen from the graphs in 4.4, the total reward received by the agent shows a significant
continuous improvement across multiple episodes. This trend proves the fact that the agent uses
the reinforcement learning algorithm effectively to learn from its past experiences and to fine-tune
the decision-making process over time.

In the initial stages of training, the reward stays relatively low which can be explained by
the agent exploring the environment and understanding the track in order to create the driving
strategy.

After the main exploration phase is finished and the agent acquired a decent amount of
knowledge about the environment, the exploitation phase starts, in which the vehicle navigates
through the track yielding higher rewards.

During the whole process of training, the agent keeps adjusting its driving policy using the
trial and error method. Hence, the fluctuations in the graph can be observed in the points,
where the agent explores new driving strategies and faces challenges. However, the overall trend
remains uprising and the agent continuously improves the driving policy.

Reward function 24

(a) 3-layer CNN (b) 5-layer CNN

Figure 4.4 Rewards per iteration

The graphs in 4.4 demonstrate a comparison in rewards obtained by 3-layer CNN and 5-layer
CNN models. The findings show the striking difference in the reward of 1600 by the 10th iteration
obtained by the 3-layer CNN model and the reward of 80 acquired by the 5-layer CNN model
by the same iteration. One of the main factors contributing to the performance of the models
is the complexity of neural network architecture. Deeper neural networks require more training
and hyperparameters fine-tuning, so it is possible that the 5-layer model could not achieve a
higher reward within the same timeframe as the 3-layer one achieved. Moreover, the deep neural
networks are more prone to overfitting, which could additionally contribute to the gap in the
performance between the models.

Figure 4.5 Rewards per iteration for a 5-layer CNN model trained for 10 more iterations

In order to comprehend the 5-layer model extensively, I incremented the initial 5-layer CNN
model (the graph of it is 4.4b) and trained it for 15 more iterations to see its behavior. As a
result, it is visible on graph 4.5 that its performance has not become equal to the performance
of the 3-layer CNN model (on graph 4.4a) even after 15 additional iterations. It achieved the
reward of about 260 by the 25th iteration of overall training in comparison to the reward of 1600
obtained by the 3-layer CNN by the 10th iteration. Moreover, the performance started declining
after the 12th iteration, which could be due to overfitting and meant that the training had to be

Reward function 25

stopped at that point.

4.3.4 Relationship between lap completion time and re-
ward

(a) 3-layer CNN

(b) 5-layer CNN

Figure 4.6 Completion time and reward obtained

In the graphs above 4.6, the relationship between the lap completion time and reward
starting at different waypoints obtained can be observed.

For the 3-layer CNN model (on graph 4.6a), the lower lap time corresponds to the higher
reward, which means that the model effectively learned to drive through the track. The model’s
decision-making process is correctly aimed to minimize the lap time, which led to the correct
correlation between the reward and lap time.

However, for the 5-layer CNN model (on graph 4.6b), some differences can be found. In some
cases, the model manages to correlate the lower lap time to the higher reward, but in other cases,
it does not do so. It has some difficulty in optimizing the strategy in order to minimize the lap
completion time while maximizing the obtained reward. It could be due to various factors, such
as the complexity of the NN architecture, not optimal hyperparameters, or insufficient training

Action space 26

time and data.

4.4 Action space
Action space is a set of all valid actions that can be taken by the agent. The AWS DeepRacer
can be trained in either discrete or continuous action space.

Discrete action space represents a finite set of agent’s actions. Therefore, the vehicle’s
neural network must choose direction and speed according to the inputs of its cameras and
LiDAR sensor. The options set is limited. For example, the vehicle driving close to a
turn might choose to accelerate, brake, turn left, right, or continue straight. The options,
enumerated 0-9, are combinations of the steering angle and speed.

Continuous action space is an infinite set of possible actions. The neural network chooses
speed and direction, as it does in discrete action space, but there is an unlimited range of
options. The speed can range from 0.75 m/s to 4 m/s and the steering angle differs from -20
to 20 degrees.

Action number Steering Speed
0 -30 degrees 0.4 m/s
1 -30 degrees 0.8 m/s
2 -15 degrees 0.4 m/s
3 -15 degrees 0.8 m/s
4 0 degrees 0.4 m/s
5 0 degrees 0.8 m/s
6 15 degrees 0.4 m/s
7 15 degrees 0.8 m/s
8 30 degrees 0.4 m/s
9 30 degrees 0.8 m/s

Table 4.1 Discrete action space [5]

Action space 27

4.4.1 Action space for 3-layer CNN model

{
" action_space ": [

{
" steering_angle ": -30,
"speed": 0.6

},
{

" steering_angle ": -15,
"speed": 0.6

},
{

" steering_angle ": 0,
"speed": 0.6

},
{

" steering_angle ": 15,
"speed": 0.6

},
{

" steering_angle ": 30,
"speed": 0.6

}
]

}

Code listing 4.3 Model’s action space for 3-layer CNN

The action space chosen for the training with 3-layer CNN was the discrete one with 5 distinct
actions, each differing in steering angle and speed. It is quite straightforward and simple for the
model to understand, which can facilitate the training of the RL model. It includes a range
of steering angles, allowing the model to gradually adjust its steering behavior based on the
surrounding environment. The speed has been chosen to be constant across all actions in order
for the model to focus on the steering adjustments without adding the complexity of speed
control. The discrete action space promotes the exploration of different steering angles while
ensuring the exploitation of known effective actions for the particular scenario.

Action space 28

4.4.2 Action space ofr 5-layer CNN model

{
" action_space ": [

{
" steering_angle ": -30,
"speed": 0.5

},
{

" steering_angle ": -15,
"speed": 0.5

},
{

" steering_angle ": 0,
"speed": 0.5

},
{

" steering_angle ": 15,
"speed": 0.5

},
{

" steering_angle ": 30,
"speed": 0.5

},
{

" steering_angle ": -30,
"speed": 0.8

},
{

" steering_angle ": -15,
"speed": 0.8

},
{

" steering_angle ": 0,
"speed": 0.8

},
{

" steering_angle ": 15,
"speed": 0.8

},
{

" steering_angle ": 30,
"speed": 0.8

}
]

}

Code listing 4.4 Model’s action space for 5-layer CNN

The action space chosen for the 5-layer CNN is more complex, consisting of 10 discrete
actions. The steering angles stayed the same in order to allow the vehicle to explore and learn
different steering tactics effectively. However, the speed settings have been changed. There are
2 different options: 0.5 and 0.8, that allow the model to learn the speed control along with the
steering angle, enabling it to adapt to different track layouts and conditions.

Hyperparameters 29

4.5 Hyperparameters
Hyperparameters can help a model to have a more effective training process. For example,
in order for it to have a good mix of exploration and exploitation, multiple variables have to
be tuned, such as the number of episodes, the learning rate, and entropy. Moreover, to speed
up the training process, other variables have to be taken into account. They include batch size,
number of epochs, and discount factor. A detailed description of hyperparameters can be found
in Appendix A.

4.5.1 Hyperparameters for 3-layer CNN model
The hyperparameters chosen for the 3-layer CNN ensure stability during training and balance
between exploration and exploitation. For example, the beta entropy 0.01 is a relatively low
value reflecting a medium emphasis on exploration, while balancing it with a certain level of
exploitation. The discount factor of 0.99 makes the model consider the future rewards which
helps in the long-term planning.

{
" batch_size ": 64,
" beta_entropy ": 0.01 ,
" discount_factor ": 0.99 ,
" e_greedy_value ": 0.05 ,
" epsilon_steps ": 10000 ,
" exploration_type ": " categorical ",
" loss_type ": "huber",
"lr": 0.0003 ,
" num_episodes_between_training ": 20,
" num_epochs ": 5,
" stack_size ": 1,
" term_cond_avg_score ": 350.0 ,
" term_cond_max_episodes ": 1000 ,
" sac_alpha ": 0.2

}

Code listing 4.5 Hyperparameters for 3-layer CNN

4.5.2 Hyperparameters for 5-layer CNN model
Some of the hyperparameters have been adjusted for the 5-layer CNN. The batch size has been
increased to 128, which should lead to faster training but also requires more memory. Next, the
beta entropy has been increased from 0.01 to 0.05 indicating a higher emphasis on the exploration.
A slight change has been made to the discount factor increasing it to 0.999 and resulting in even
higher emphasis on future rewards and long-term planning. Moreover, the learning rate has been
changed to 0.0005 meaning the model might converge faster but with less stability during the
training.

Domain randomization 30

{
" batch_size ": 128,
" beta_entropy ": 0.05 ,
" discount_factor ": 0.999 ,
" e_greedy_value ": 0.05 ,
" epsilon_steps ": 10000 ,
" exploration_type ": " categorical ",
" loss_type ": "huber",
"lr": 0.0005 ,
" num_episodes_between_training ": 20,
" num_epochs ": 5,
" stack_size ": 1,
" term_cond_avg_score ": 350.0 ,
" term_cond_max_episodes ": 1000 ,
" sac_alpha ": 0.2

}

Code listing 4.6 Hyperparameters for 5-layer CNN

4.6 Domain randomization
Domain randomization is a technique used to train models that introduces variability into
the training environment in order to make the model more robust and easily adaptable to diverse
real-world scenarios.

In training the AWS DeepRacer, domain randomization plays a crucial role as the model has
to be ready to encounter different conditions while driving on the track. Exposing the model
to different lighting conditions helps prevent overfitting the model to specific conditions and
encourages the model to learn features that can be applied across various settings.

Moreover, domain randomization helps decrease the gap between simulation and reality. While
training in a simulated environment makes the model learn in a specific setting, it usually lacks
the complexity of real-world scenarios.

Figure 4.7 Training with domain randomization

4.7 Neural network architecture
The AWS DeepRacer’s neural network architecture involves a Convolutional Neural Network
(CNN) to process the visual input from the vehicle’s camera. The CNN architecture is designed
to perform analysis of the raw pixel data from the camera and extract meaningful features,
relevant to autonomous driving, such as other vehicles on the track, lane lines, and obstacles. The
process involves multiple layers of operations that allow the network to learn the representations
of the images from the camera.

Neural network architecture 31

There are 3 available neural networks for AWS DeepRacer: 3-layer CNN, 5 layer-CNN,
and 6-layer CNN. In this thesis, I will focus on the 3-layer and 5-layer networks, as they are also
the ones that are offered in the AWS Console.

4.7.1 3-layer CNN
The 3-layer CNN consists of 3 layers, where the first layer has 32 filters, an 8x8 kernel size,
and a stride of 4, the second layer has 64 filters, a 4x4 kernel size, and a stride of 2 and the
third layer has 64 filters, a 3x3 kernel size, and a stride of 1. There is no dense layer - no fully
connected middleware.

Filters are 2D matrices that are applied to the input data and responsible for detecting a
particular feature in the input. For example, the layer having 32 filters will identify 32 different
patterns or features in the input. Kernel size is the dimension of the filter or the size of the grid
of values. During the convolution operation, the filter will slide over the input data, and perform
multiplication and summation of values in order to produce a single value in the output. Stride
value is how much the filter slides over the input after each convolution operation.

The activation function used is Rectified Linear Unit (ReLU), which is defined as

f(x) = max(0, x)

It means that it returns x for the positive input and 0 for any negative input.

4.7.2 5-layer CNN
The 5-layer CNN is more complicated and takes more time to train a model, but it can
extract more complex features out of the input in comparison to the 3-layer CNN. There are
4 convolutional layers: the first one consists of 32 filters with a kernel size of 5x5 and a stride
of 2, the second layer is similar with the only difference in the size of the stride which is 1 in
this case, and the third and fourth layer have 64 filters with the kernel size of 3x3 and a strides
of 2 and 1 respectively. After the convolutional layers, there is a dense (fully connected) layer
with 64 neurons. The dense layer processes the flattened output from the previous convolutional
layer and performs classification tasks. The activation function used in the 5-layer CNN is the
hyperbolic tangent activation function. Mathematically it is defined as

tanh(x) = ex − e−x

ex + e−x

The tanh function outputs values in the range [-1,1] which results in the output being centered
around 0.

The 3-layer networks, compared to the deeper 5-layer networks, have a simpler shallower
architecture, which means faster training times and lower computational power required for the
training, enabling developers to experiment more. Having fewer layers, the 3-layer CNN decreases
the risk of overfitting and leaves more space for the models to be robust and generalize on the
unknown tracks efficiently.

Chapter 5

Evaluation

In this chapter, I discuss the evaluation process of the model, both virtual and in real world.
I describe the differences in performance of different models in different conditions.

5.1 Evaluation information
The evaluation in the simulation environment Deepracer-for-Cloud of the autonomous driving
model trained on AWS DeepRacer was conducted across three distinct tracks, differing from
those utilized during the training phase. This approach was essential to assess the generalization
capability of the model and its adaptability to novel environments. The selected tracks varied in
complexity, encompassing diverse features such as sharp turns, straight segments, and varying
road conditions.

5.1.1 Evaluation tracks selection

(a) Red Star Pro (b) Dubai Pro (c) Singapore

Figure 5.1 Evaluation track layouts

The tracks chosen were Red Star Pro, Dubai Pro and Singapore. The first track is a
challenging circuit with a combination of light turns and sharp corners which demands precise
navigation and agile maneuvering. Throughout the course, the agent has to maintain optimal
speed and careful braking. The second track Dubai Pro is a blend of long straights and sweeping
curves. The long straightaways allow the vehicle to reach top speeds before encountering sharp
turns, in which the vehicle has to adjust speed to ensure stability and control. The last track
is called Singapore and its layout is challenging due to the tight corners throughout the whole
track.

32

Evaluation information 33

The selection of the Red Star Pro, Dubai Pro, and Singapore tracks for the evaluation of
the autonomous driving model was deliberate and strategic. Each track offers a unique set of
challenges, ranging from tight technical sections to high-speed straights. By evaluating the model
across these diverse tracks, we aimed to assess its generalization capability and adaptability to
varied racing scenarios.

5.1.2 Evaluation in simulation environment
The evaluation in simulation environment consisted of 3 laps in the time trial race type. The
videos are present in attachments.

Model No. of train-
ing tracks

Completion
time

Resets

3-layer CNN, initial model 6 5:08 2
3-layer CNN, with domain
randomization

6 5:05 0

3-layer CNN 7 5:06 0
3-layer CNN 8 5:05 0
3-layer CNN 9 5:06 0
5-layer CNN 6 4:51 4
5-layer CNN, improved 9 4:52 4

Table 5.1 Evaluation on Red Star Pro track

Model No. of train-
ing tracks

Completion
time

Resets

3-layer CNN, initial model 6 4:49 1
3-layer CNN, with domain
randomization

6 4:49 0

3-layer CNN 7 4:47 0
3-layer CNN 8 4:49 0
3-layer CNN 9 4:49 0
5-layer CNN 6 4:39 3
5-layer CNN, improved 9 4:54 7

Table 5.2 Evaluation on Dubai Pro track

Model No. of train-
ing tracks

Completion
time

Resets

3-layer CNN, initial model 6 4:49 0
3-layer CNN, with domain
randomization

6 4:54 0

3-layer CNN 7 4:33 0
3-layer CNN 8 4:37 0
3-layer CNN 9 4:44 0
5-layer CNN 6 5:46 15
5-layer CNN, improved 9 4:16 2

Table 5.3 Evaluation on Singapore track

Evaluation information 34

5.1.3 Comparison of 3-layer CNN models

(a) Dubai Pro (smaller dataset) (b) Dubai Pro (bigger dataset)

(c) Singapore (smaller dataset) (d) Singapore (bigger dataset)

(e) Red Star Pro (smaller dataset) (f) Red Star Pro (bigger dataset)

Figure 5.2 Evaluation tracks of 3-layer CNN. Smaller dataset refers to 3 training tracks. Bigger
dataset refers to 6 training tracks.

Above each graph in 5.2 there is a distance driven by the vehicle on that particular track,
the progress (percentage of track completed), and the lap time (time that the vehicle took to
complete the lap). Moreover, there is an average speed and velocity values. The average speed
is always 0.6, which was defined as the only speed option in the discrete action space. Gazebo is
an open-source robotic simulation engine, which is supported by a Robomaker environment and

Evaluation information 35

provides a realistic environment for model testing [41]. The velocity is an instantaneous measure
and it depends on multiple factors, such as direction changes and acceleration.

I compared the performance of 2 models: one that has been trained on 3 different tracks
(the left column) and another one that has been trained on 6 different tracks (the right column).
For the Dubai Pro and Red Star Pro tracks, both models demonstrated good performance and
improvements after having been trained on 6 tracks. It is noticeable that the vehicle’s driving
on the sharp turns has become significantly more precise and clean.

However, the model’s performance on the Red Star Pro track has not followed the same
pattern as it has on the 2 previous tracks. The model trained on the larger dataset of 6 tracks does
not outperform its counterpart trained on 3 tracks. The model exhibits diminished performance
due to its over-fitting on that specific track. It occurs when a model learns the details of the
training data up to the point when it cannot generalize on the new unseen tracks. In this case,
the model’s extensive exposure to the diverse array of tracks leads to over-fitting. On the other
hand, the model trained on the smaller dataset demonstrates a better, more robust performance,
which indicates a better balance between learning from diverse environments and avoiding over-
training.

Evaluation information 36

5.1.4 Comparison with 5-layer CNN models

(a) Dubai Pro (smaller dataset) (b) Dubai Pro (bigger dataset)

(c) Singapore (smaller dataset) (d) Singapore (bigger dataset)

(e) Red Star Pro (smaller dataset) (f) Red Star Pro (bigger dataset)

Figure 5.3 Evaluation tracks of 5-layer CNN. Smaller dataset refers to 3 training tracks. Bigger
dataset refers to 6 training tracks.

In comparison with the 3-layer models trained in discrete action space with constant speed, the
5-layer CNN models have been trained with various speed options in the discrete action space
as well. The performance on all 3 tracks has improved after being trained on the bigger dataset
of tracks for a longer time.

Evaluation information 37

(a) 3-layer CNN (b) 5-layer CNN

Figure 5.4 Completion per iteration

The completion per iteration graphs 5.4 demonstrate models’ abilities to effectively
navigate the track over time.

The 3-layer CNN graph illustrated a rapid progression in completing the lap from the initial
training episodes. The mean completion steadily increases over time, which demonstrates that
the model is quickly learning to adapt to the track. After a short period of time, it achieves a
100% completion, meaning it mastered the track and could subsequently complete the lap.

On the other hand, the 5-layer CNN model shows a slower increase in the lap completion
percentage. The slower delayed progress corresponds to the more complex, deeper architecture
of the 5-layer CNN, which requires more time and training data to learn the track effectively.

Figure 5.5 Completion per iteration for the 5-layer CNN model trained for 10 more iterations

For the more extensive analysis of a 5-layer CNN model, I trained it for 10 additional iterations
and its behavior has improved. On the 5th iteration in the additional training, it managed to

Transfer of the model to the vehicle 38

complete a full lap for the first time followed by 2 more full lap completions on the 9th and 10th
iterations (see 5.5). On average, the maximum completion percentage was about 85%. However,
after the 12th iteration, the completion percentage started declining (corresponds to the decline
on 4.5), which could possibly happen due to the model’s overfitting.

5.2 Transfer of the model to the vehicle
After uploading the trained model to the S3 bucket in the local Minio storage, it was available
to see in the Minio UI. Having downloaded the zip archive of the model, some adjustments to
the structure had to be made before uploading the model to the physical vehicle.

5.2.1 Model structure required for AWS DeepRacer vehi-
cle

rl-deepracer-model/
worker 0.multi agent graph.main level.main level.agent 0.csv
model metadata.json
worker 0.multi agent graph 0.json
agent/

model.pb

Figure 5.6 The directory structure required for AWS DeepRacer vehicle

The files inside of the directory:

model.pb: The file representing the trained model itself, stored in the Protocol Buffers
Format. It encapsulates the neural network architecture, weights, and other parameters
learned during the training process. It is the core component for the physical vehicle to make
predictions and decisions.

model metadata.json: This file includes metadata about the trained model, such as the
action space details, the training algorithm, the neural network, and the sensors used in the
training.

worker 0.multi agent graph.main level.main level.agent 0.csv: The CSV file contains
data about the training process and performance metrics of an agent in the RL environment.
Each row corresponds to one training episode, with columns describing various aspects of the
training, including episode length, total reward, and total steps.

worker 0.multi agent graph 0.json: This file encompasses the configuration for the RL
training. It includes specifications, such as the number of training iterations and evaluation
steps. Additionally, it presents the parameters related to the exploration strategies, neural
network architecture, and optimization algorithms.

5.3 Evaluation on a physical vehicle
After the models have been transferred to the physical car, I started the evaluation process in
the real world.

Evaluation on a physical vehicle 39

(a) A to Z Speedway track (b) The printed track

During the evaluation phase of the models, I conducted comprehensive tests on the A to Z
Speedway track in various environments in order to assess the model’s robustness and adapt-
ability to real-world scenarios. The evaluation consisted of multiple conditions, each designed to
challenge the vehicle and test its abilities. One stereo camera has been used as a sensor on AWS
Deepracer.

5.3.1 The initial evaluation
I started with the evaluation of the first 3-layer CNN model in the ideal lighting conditions
on the half of the printed track and it could complete the half lap in 66.67% out of all cases. On
the other hand, in the darker lighting conditions, it could complete the half-lap in 30% of the
tests conducted.

5.3.2 Proposed improvements and evaluation
After analyzing the results of the first evaluation, I proposed the improvements that could be
done to the model in order to enhance its performance on the track - domain randomization
and using a deeper 5-layer CNN.

The approach that I used with the improved models was starting the car from 3 different way-
points, as can be seen in 5.8 and, additionally, in the reverse direction. This method challenges
the vehicle and its adaptability to various driving scenarios.

Evaluation on a physical vehicle 40

(a) First waypoint (b) First waypoint in reverse direction

(c) Second waypoint (d) Second waypoint in reverse direction

(e) Third waypoint (f) Third waypoint in reverse direction

Figure 5.8 Evaluation starting positions

The 3-layer CNN model, trained with domain randomization in various lighting conditions,
completed the full lap in 88.89% in the ideal light, and in the worse lighting conditions (as on
5.9) it managed to complete the half lap in 100% of cases. The domain randomization during
training proved to be helpful for the vehicle to navigate on the unknown track in the real-world
scenario.

Evaluation on a physical vehicle 41

(a) (b)

(c)

Figure 5.9 Darker lighting conditions

The further improvement I came up with was to train the model on 3 more tracks with
domain randomization and test the new models on the track. As a result, the model trained on 1
more additional track performed worse than the baseline model in the ideal lighting conditions,
completing the full lap in 50% of drives. The model trained on 2 more additional tracks had the
same performance as the one trained on 1 more additional track, resulting in 50% of success.
However, the model trained on 3 more additional tracks, achieved 100% of lap completion in an
ideal lighting environment. Regarding the model’s performance in the darker light environment,
it could complete the half lap in only 33.33% and the main reason for such poor performance
is the presence of light reflections on the track (visible on 5.9b), which completely confused the
vehicle and made the track unrecognizable from the car’s camera.

Evaluation on a physical vehicle 42

Model No. of train-
ing tracks

Ideal light Dark light

Half
lap

Full
lap

Half
lap

Full
lap

3-layer CNN, initial model 6 66.67% 0% 30% 0%
3-layer CNN, with domain
randomization

6 88.89% 88.89% 100% 0%

3-layer CNN 7 50% 50% N/A N/A
3-layer CNN 8 50% 50% N/A N/A
3-layer CNN 9 100% 100% 33.33% 33.33%
5-layer CNN 6 41.67% 33% 0% 0%

Table 5.4 Evaluation results

The 5-layer CNN model in the ideal lighting conditions completed the full lap in 33.33% of
the tests and half lap in 41.67% of the evaluations. In the darker lighting conditions, it did not
manage to finish either a full lap or a half lap due to multiple reasons but mainly because of the
light reflections on the track. The reason for the poorer performance of the 5-layer CNN model
could be the model’s complexity as the NN could be too complex for the task which led to the
computational overhead and potential overfitting. While the 5-layer CNN has a bigger capacity
to learn more hidden features, it might also be prone to overfitting, resulting in the failure of
generalization. Compared to the 3-layer CNNs, 5-layer CNNs have to be trained on the larger
dataset for optimal performance, and failing to provide a bigger training set for it could have
impacted the model’s ability to generalize on unknown tracks.

Figure 5.10 Light reflections on the track

Furthermore, 3 evaluation runs of the 3-layer CNN model in ideal lighting conditions were
conducted with the low battery and the lap was completed in 100% of cases.

Chapter 6

Conclusion

This thesis has been focused on bridging the gap in transferring the model from the simulation
environment to real-world conditions in autonomous driving using AWS DeepRacer.

I have conducted a thorough review of existing literature on machine learning techniques
and approaches for autonomously driving vehicles. It involved a wide array of articles, research
papers, and past bachelor theses. By analyzing the methodologies applied and the issues en-
countered, I have gained valuable lessons and insights that have been reflected in the current
thesis.

Moreover, I have trained 3-layer CNN models in the simulation environment on 6 tracks and
those models have been tested in the real-world environment on the printed ”A to Z Speedway”
track. The models performed well in the ideal lighting conditions but failed to do so in the worse
lighting with light reflections being on the track.

After the models’ performance has been analyzed, I have come up with the potential improve-
ments - using domain randomization in order to mimic the real-world conditions in the training
environment, and using a deeper 5-layer neural network in the training.

The improved models have been tested again on the physical vehicle and the whole testing
process has been recorded on video (videos can be found in the attached media). The domain
randomization proved to be useful and resulted in the vehicle completing the full lap. However,
the 5-layer CNN models have not demonstrated a great improvement which could be due to
numerous factors, such as the network’s complexity, overfitting, or insufficient training data.

One area for potential future research could be investigation and training using deeper neural
networks that go even beyond the 5-layer CNNs used in this thesis. By using the more complex
neural network with deeper architecture, it is possible to capture more detailed patterns and
finer structures, that could lead to further improvements in the autonomous driving field.

43

Appendix A

Appendix

Parameter Type Description
all wheels on track Boolean Flag to indicate if the agent is on the track
x float Agent’s x-coordinate in meters
y float Agent’s y-coordinate in meters
closest objects [int, int] Zero-based indices of the two closest objects to the

agent’s current position of (x, y)
closest waypoints [int, int] Indices of the two nearest waypoints
distance from center float Distance in meters from the track center
is crashed Boolean Boolean flag to indicate whether the agent has

crashed
is left of center Boolean Flag to indicate if the agent is on the left side to the

track center or not
is offtrack Boolean Boolean flag to indicate whether the agent has gone

off track
is reversed Boolean Flag to indicate if the agent is driving clockwise

(True) or counter clockwise (False)
heading float Agent’s yaw in degrees
objects distance [float,] List of the objects’ distances in meters between 0 and

track length in relation to the starting line
objects heading [float,] List of the objects’ headings in degrees between -180

and 180
objects left of center [Boolean,] List of Boolean flags indicating whether elements’

objects are left of the center (True) or not (False)
objects location [(float, float),] List of object locations [(x,y), ...]
objects speed [float,] List of the objects’ speeds in meters per second
progress float Percentage of track completed
speed float Agent’s speed in meters per second (m/s)
steering angle float Agent’s steering angle in degrees
steps int Number steps completed
track length float Track length in meters
track width float Width of the track
waypoints [(float, float),] List of (x,y) as milestones along the track center

Table A.1 Input parameters for reward function [5]

44

45

Parameter Description
Gradient Descent
Batch Size

A subset of an experience buffer composed of images captured by the
camera mounted on the AWS DeepRacer vehicle and actions taken by
the vehicle.

Number of Epochs The number of passes through the training data to update the neural
network weights during gradient descent.

Learning Rate Controls how much a gradient-descent (or ascent) update contributes to
the network weights.

Entropy Added uncertainty that helps the AWS DeepRacer vehicle explore the
action space more broadly.

Discount Factor A factor determining the importance of future rewards. A factor of 0
means the current state is independent of future steps, whereas a factor
of 1 means that contributions from all future steps are included.

Loss Type The type of objective function used to update the network weights.
Number of Experi-
ence Episodes Be-
tween Each Policy-
Updating Iteration

The size of the experience buffer used to draw training data from for
learning policy network weights.

Table A.2 Hyperparameters for AWS DeepRacer Training[5]

Bibliography

1. BARABÁS, Istvan; TODORUŢ, Adrian; CORDOŞ, N; MOLEA, Andreia. Current chal-
lenges in autonomous driving. In: IOP conference series: materials science and engineer-
ing. IOP Publishing, 2017, vol. 252, p. 012096. No. 1. Available from doi: 10.1088/1757-
899X/252/1/012096.

2. YURTSEVER, Ekim; LAMBERT, Jacob; CARBALLO, Alexander; TAKEDA, Kazuya. A
survey of autonomous driving: Common practices and emerging technologies. IEEE access.
2020, vol. 8, pp. 58443–58469. Available also from: https://ieeexplore.ieee.org/stamp/
stamp.jsp?arnumber=9046805.

3. AMAZON WEB SERVICES. AWS DeepRacer - Racing Simulator Software [online]. [N.d.].
[visited on 2024-05-05]. Available from: https://aws.amazon.com/deepracer/.

4. TIAN, Allen; JOHN, Eddy Guerra; YANG, Kecheng. Poster: Unraveling Reward Functions
for Head-to-Head Autonomous Racing in AWS DeepRacer. In: Proceedings of the Twenty-
fourth International Symposium on Theory, Algorithmic Foundations, and Protocol Design
for Mobile Networks and Mobile Computing. 2023, pp. 592–594. Available from doi: 10.
1145/3565287.3617987.

5. AMAZON WEB SERVICES. AWS DeepRacer - Developer Guide [online]. [N.d.]. [visited
on 2024-05-05]. Available from: https://docs.aws.amazon.com/deepracer/latest/
developerguide/deepracer-get-started.html.

6. LI, Yuxi. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274. 2017.
Available from doi: 10.48550/arXiv.1701.07274.

7. HAZRATIFARD, Mehdi; GEBALI, Fayez; MAMUN, Mohammad. Using machine learning
for dynamic authentication in telehealth: A tutorial. Sensors. 2022, vol. 22, no. 19, p. 7655.

8. BASL, John; BEHRENDS, Jeff. Why everyone has it wrong about the ethics of autonomous
vehicles. In: Frontiers of engineering: Reports on leading-edge engineering from the 2019
symposium. National Academies Press, 2020, pp. 75–82. Available from doi: 10.17226/
25620.

9. NYHOLM, Sven; SMIDS, Jilles. The ethics of accident-algorithms for self-driving cars: An
applied trolley problem? Ethical theory and moral practice. 2016, vol. 19, no. 5, pp. 1275–
1289.

10. WIKIPEDIA CONTRIBUTORS. Trolley problem — Wikipedia, The Free Encyclopedia.
2024. Available also from: https://en.wikipedia.org/w/index.php?title=Trolley_
problem&oldid=1218726891. [Online; accessed 7-May-2024].

46

https://doi.org/10.1088/1757-899X/252/1/012096
https://doi.org/10.1088/1757-899X/252/1/012096
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9046805
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9046805
https://aws.amazon.com/deepracer/
https://doi.org/10.1145/3565287.3617987
https://doi.org/10.1145/3565287.3617987
https://docs.aws.amazon.com/deepracer/latest/developerguide/deepracer-get-started.html
https://docs.aws.amazon.com/deepracer/latest/developerguide/deepracer-get-started.html
https://doi.org/10.48550/arXiv.1701.07274
https://doi.org/10.17226/25620
https://doi.org/10.17226/25620
https://en.wikipedia.org/w/index.php?title=Trolley_problem&oldid=1218726891
https://en.wikipedia.org/w/index.php?title=Trolley_problem&oldid=1218726891

Bibliography 47

11. GEISSLINGER, Maximilian; POSZLER, Franziska; BETZ, Johannes; LÜTGE, Christoph;
LIENKAMP, Markus. Autonomous driving ethics: From trolley problem to ethics of risk.
Philosophy & Technology. 2021, vol. 34, no. 4, pp. 1033–1055.

12. HIMMELREICH, Johannes. Never mind the trolley: The ethics of autonomous vehicles in
mundane situations. Ethical Theory and Moral Practice. 2018, vol. 21, no. 3, pp. 669–684.

13. WU, Stephen S. Autonomous vehicles, trolley problems, and the law. Ethics and Information
Technology. 2020, vol. 22, no. 1, pp. 1–13.

14. WANG, Jun; ZHANG, Li; HUANG, Yanjun; ZHAO, Jian; BELLA, Francesco. Safety of
autonomous vehicles. Journal of advanced transportation. 2020, vol. 2020, pp. 1–13.

15. AMAZON WEB SERVICES. Robot Simulator - AWS Robomaker [online]. [N.d.]. [visited
on 2024-05-05]. Available from: https://aws.amazon.com/robomaker/.

16. AMAZON WEB SERVICES. Amazon Sagemaker - AWS [online]. [N.d.]. [visited on 2024-
05-05]. Available from: https://aws.amazon.com/pm/sagemaker/?trk=3ea5c9d1-0497-
4ab3-92e6-c583f43ac2f9&sc_channel=ps&ef_id=CjwKCAjw3NyxBhBmEiwAyofDYXKLOTU3t-
u7zKfsaCNivb3QxDiuPgN27YpGmUTEbCHd _ NSLzdC - HhoCSyMQAvD _ BwE : G : s & s _ kwcid =
AL ! 4422 ! 3 ! 645186192649 ! e ! !g ! !aws % 20sagemaker ! 19571721771 ! 146073031580 &
gclid=CjwKCAjw3NyxBhBmEiwAyofDYXKLOTU3t-u7zKfsaCNivb3QxDiuPgN27YpGmUTEbCHd_
NSLzdC-HhoCSyMQAvD_BwE.

17. AWS DEEPRACER COMMUNITY. Deepracer-for-Cloud [online]. [N.d.]. [visited on 2024-
05-05]. Available from: https://github.com/aws-deepracer-community/deepracer-
for-cloud.

18. DOLGOV, Dmitri; THRUN, Sebastian; MONTEMERLO, Michael; DIEBEL, James. Path
planning for autonomous vehicles in unknown semi-structured environments. The interna-
tional journal of robotics research. 2010, vol. 29, no. 5, pp. 485–501. Available from doi:
10.1177/0278364909359210.

19. GHIMIRE, Mukesh. A Study of Deep Reinforcement Learning in Autonomous Racing Using
DeepRacer Car [online]. 2021.

20. NAVARRO, Anthony; GENC, Sahika; RANGARAJAN, Premkumar; KHALIL, Rana; GOB-
ERVILLE, Nick; ROJAS, Johan Fanas; ASHER, Zachary. Using Reinforcement Learning
and Simulation to Develop Autonomous Vehicle Control Strategies. 2020. Tech. rep. SAE
Technical Paper. Available from doi: 10.4271/2020-01-0737.

21. NAIR, Unnikrishnan R; SHARMA, Sarthak; PARIHAR, Udit Singh; MENON, Midhun S;
VIDAPANAKAL, Srikanth. Bridging Sim2Real Gap Using Image Gradients for the Task
of End-to-End Autonomous Driving. arXiv preprint arXiv:2205.07481. 2022.

22. YE, Heng; LIU, Yanbo; XU, Jiahao; DU, Haikuo; SUN, Weiqi; XU, Wenchao; LI, Zhengyu;
SHEN, Zanwei; LIU, Yan. Application of Human-Machine Co-driving in Multi-vehicle For-
mation of Deepracer Automatic Driving Platform. In: Society of Automotive Engineers
(SAE)-China Congress. Springer, 2023, pp. 20–36.

23. SUTTON, Richard S; BARTO, Andrew G. Reinforcement learning: An introduction. MIT
press, 2018.

24. HUANG, Honglan; HUANG, Jincai; FENG, Yanghe; ZHANG, Jiarui; LIU, Zhong; WANG,
Qi; CHEN, Li. On the improvement of reinforcement active learning with the involvement of
cross entropy to address one-shot learning problem. PloS one. 2019, vol. 14, no. 6, e0217408.

25. LECUN, Yann; BENGIO, Yoshua; HINTON, Geoffrey. Deep learning. nature. 2015, vol. 521,
no. 7553, pp. 436–444. Available from doi: 10.1038/nature14539.

26. AMAZON WEB SERVICES. What is Deep Learning? [Online]. 2021. Available also from:
https://aws.amazon.com/what-is/deep-learning/#:˜:text=Deep%20learning%20is%
20a%20method,produce%20accurate%20insights%20and%20predictions.

https://aws.amazon.com/robomaker/
https://aws.amazon.com/pm/sagemaker/?trk=3ea5c9d1-0497-4ab3-92e6-c583f43ac2f9&sc_channel=ps&ef_id=CjwKCAjw3NyxBhBmEiwAyofDYXKLOTU3t-u7zKfsaCNivb3QxDiuPgN27YpGmUTEbCHd_NSLzdC-HhoCSyMQAvD_BwE:G:s&s_kwcid=AL!4422!3!645186192649!e!!g!!aws%20sagemaker!19571721771!146073031580&gclid=CjwKCAjw3NyxBhBmEiwAyofDYXKLOTU3t-u7zKfsaCNivb3QxDiuPgN27YpGmUTEbCHd_NSLzdC-HhoCSyMQAvD_BwE
https://aws.amazon.com/pm/sagemaker/?trk=3ea5c9d1-0497-4ab3-92e6-c583f43ac2f9&sc_channel=ps&ef_id=CjwKCAjw3NyxBhBmEiwAyofDYXKLOTU3t-u7zKfsaCNivb3QxDiuPgN27YpGmUTEbCHd_NSLzdC-HhoCSyMQAvD_BwE:G:s&s_kwcid=AL!4422!3!645186192649!e!!g!!aws%20sagemaker!19571721771!146073031580&gclid=CjwKCAjw3NyxBhBmEiwAyofDYXKLOTU3t-u7zKfsaCNivb3QxDiuPgN27YpGmUTEbCHd_NSLzdC-HhoCSyMQAvD_BwE
https://aws.amazon.com/pm/sagemaker/?trk=3ea5c9d1-0497-4ab3-92e6-c583f43ac2f9&sc_channel=ps&ef_id=CjwKCAjw3NyxBhBmEiwAyofDYXKLOTU3t-u7zKfsaCNivb3QxDiuPgN27YpGmUTEbCHd_NSLzdC-HhoCSyMQAvD_BwE:G:s&s_kwcid=AL!4422!3!645186192649!e!!g!!aws%20sagemaker!19571721771!146073031580&gclid=CjwKCAjw3NyxBhBmEiwAyofDYXKLOTU3t-u7zKfsaCNivb3QxDiuPgN27YpGmUTEbCHd_NSLzdC-HhoCSyMQAvD_BwE
https://aws.amazon.com/pm/sagemaker/?trk=3ea5c9d1-0497-4ab3-92e6-c583f43ac2f9&sc_channel=ps&ef_id=CjwKCAjw3NyxBhBmEiwAyofDYXKLOTU3t-u7zKfsaCNivb3QxDiuPgN27YpGmUTEbCHd_NSLzdC-HhoCSyMQAvD_BwE:G:s&s_kwcid=AL!4422!3!645186192649!e!!g!!aws%20sagemaker!19571721771!146073031580&gclid=CjwKCAjw3NyxBhBmEiwAyofDYXKLOTU3t-u7zKfsaCNivb3QxDiuPgN27YpGmUTEbCHd_NSLzdC-HhoCSyMQAvD_BwE
https://aws.amazon.com/pm/sagemaker/?trk=3ea5c9d1-0497-4ab3-92e6-c583f43ac2f9&sc_channel=ps&ef_id=CjwKCAjw3NyxBhBmEiwAyofDYXKLOTU3t-u7zKfsaCNivb3QxDiuPgN27YpGmUTEbCHd_NSLzdC-HhoCSyMQAvD_BwE:G:s&s_kwcid=AL!4422!3!645186192649!e!!g!!aws%20sagemaker!19571721771!146073031580&gclid=CjwKCAjw3NyxBhBmEiwAyofDYXKLOTU3t-u7zKfsaCNivb3QxDiuPgN27YpGmUTEbCHd_NSLzdC-HhoCSyMQAvD_BwE
https://aws.amazon.com/pm/sagemaker/?trk=3ea5c9d1-0497-4ab3-92e6-c583f43ac2f9&sc_channel=ps&ef_id=CjwKCAjw3NyxBhBmEiwAyofDYXKLOTU3t-u7zKfsaCNivb3QxDiuPgN27YpGmUTEbCHd_NSLzdC-HhoCSyMQAvD_BwE:G:s&s_kwcid=AL!4422!3!645186192649!e!!g!!aws%20sagemaker!19571721771!146073031580&gclid=CjwKCAjw3NyxBhBmEiwAyofDYXKLOTU3t-u7zKfsaCNivb3QxDiuPgN27YpGmUTEbCHd_NSLzdC-HhoCSyMQAvD_BwE
https://github.com/aws-deepracer-community/deepracer-for-cloud
https://github.com/aws-deepracer-community/deepracer-for-cloud
https://doi.org/10.1177/0278364909359210
https://doi.org/10.4271/2020-01-0737
https://doi.org/10.1038/nature14539
https://aws.amazon.com/what-is/deep-learning/#:~:text=Deep%20learning%20is%20a%20method,produce%20accurate%20insights%20and%20predictions
https://aws.amazon.com/what-is/deep-learning/#:~:text=Deep%20learning%20is%20a%20method,produce%20accurate%20insights%20and%20predictions

Bibliography 48

27. KIRAN, B Ravi; SOBH, Ibrahim; TALPAERT, Victor; MANNION, Patrick; AL SAL-
LAB, Ahmad A; YOGAMANI, Senthil; PÉREZ, Patrick. Deep reinforcement learning for
autonomous driving: A survey. IEEE Transactions on Intelligent Transportation Systems.
2021, vol. 23, no. 6, pp. 4909–4926.

28. O’SHEA, Keiron; NASH, Ryan. An introduction to convolutional neural networks. arXiv
preprint arXiv:1511.08458. 2015. Available from doi: 10.48550/arXiv.1511.08458.

29. SAZLI, Murat H. A brief review of feed-forward neural networks. Communications Faculty
of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering. 2006,
vol. 50, no. 01. Available from doi: 10.1501/commua1-2_0000000026.

30. SCHMIDT, Robin M. Recurrent neural networks (rnns): A gentle introduction and overview.
arXiv preprint arXiv:1912.05911. 2019. Available from doi: 10.48550/arXiv.1912.05911.

31. SUTSKEVER, Ilya. Training recurrent neural networks. University of Toronto Toronto,
ON, Canada, 2013.

32. YING, Xue. An overview of overfitting and its solutions. In: Journal of physics: Conference
series. IOP Publishing, 2019, vol. 1168, p. 022022. Available from doi: 10.1088/1742-
6596/1168/2/022022.

33. EVEN-DAR, Eyal; MANNOR, Shie; MANSOUR, Yishay; MAHADEVAN, Sridhar. Action
elimination and stopping conditions for the multi-armed bandit and reinforcement learning
problems. Journal of machine learning research. 2006, vol. 7, no. 6.

34. PETRYSHYN, Bohdan; POSTUPAIEV, Serhii; BEN BARI, Soufiane; OSTREIKA, Ar-
mantas. Deep Reinforcement Learning for Autonomous Driving in Amazon Web Services
DeepRacer. Information. 2024, vol. 15, no. 2, p. 113. Available from doi: 10.3390/info15020113.

35. AWS DeepRacer Community [online]. [N.d.]. [visited on 2024-05-05]. Available from: https:
//deepracing.io/#about.

36. ROS (Robot Operating System) [online]. [N.d.]. Available also from: https://www.ros.org.
37. SERVICES, Amazon Web. AWS DeepRacer is now open source and ready to hit the road with

ROS 2 [online]. [N.d.]. Available also from: https://aws.amazon.com/blogs/opensource/
aws-deepracer-is-now-open-source-and-ready-to-hit-the-road-with-ros-2/.

38. AMAZON WEB SERVICES. ROS 2 Foxy Fitzroy: Robot Development [online]. [N.d.]. Avail-
able also from: https://aws.amazon.com/blogs/robotics/ros2-foxy-fitzroy-robot-
development/.

39. UNITY TECHNOLOGIES. Unity Simulation Now on AWS [online]. [N.d.]. Available also
from: https://blog.unity.com/engine-platform/unity-simulation-now-on-aws.

40. JAKL, Vincent; KOSORIN, Peter; PROCHAZKA, Adam. AWS DeepRacer local training
configuration. 2023. Available also from: https://apps.datalab.fit.cvut.cz/static/
deepracer/deepracer_setup_whitepaper.pdf.

41. KOENIG, Nathan; HOWARD, Andrew. Design and use paradigms for gazebo, an open-
source multi-robot simulator. In: 2004 IEEE/RSJ international conference on intelligent
robots and systems (IROS)(IEEE Cat. No. 04CH37566). Ieee, 2004, vol. 3, pp. 2149–2154.

https://doi.org/10.48550/arXiv.1511.08458
https://doi.org/10.1501/commua1-2_0000000026
https://doi.org/10.48550/arXiv.1912.05911
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.3390/info15020113
https://deepracing.io/#about
https://deepracing.io/#about
https://www.ros.org
https://aws.amazon.com/blogs/opensource/aws-deepracer-is-now-open-source-and-ready-to-hit-the-road-with-ros-2/
https://aws.amazon.com/blogs/opensource/aws-deepracer-is-now-open-source-and-ready-to-hit-the-road-with-ros-2/
https://aws.amazon.com/blogs/robotics/ros2-foxy-fitzroy-robot-development/
https://aws.amazon.com/blogs/robotics/ros2-foxy-fitzroy-robot-development/
https://blog.unity.com/engine-platform/unity-simulation-now-on-aws
https://apps.datalab.fit.cvut.cz/static/deepracer/deepracer_setup_whitepaper.pdf
https://apps.datalab.fit.cvut.cz/static/deepracer/deepracer_setup_whitepaper.pdf

Contents of the attached media

thesis
text

appendix.tex training parameters appendix
bib-database.bib..bibliography database
text.tex..thesis text

images .. images used in thesis
thesis.tex..thesis source code
tskheyel-assignment.pdf ... thesis assignment
thesis.cls.. thesis source code support file

models
.tar.gz files...model files

evaluation
real world evaluation real world evaluation videos
simulation environment evaluation........simulation environment evaluation videos

49

	Acknowledgments
	Declaration
	Abstract
	Abbreviations
	Introduction
	Foundational Concepts
	Definition of autonomous driving
	Levels of automation
	Sensors

	AWS Deepracer
	Introduction to machine learning
	Supervised Machine Learning
	Unsupervised Machine Learning
	Reinforcement Learning

	Ethics for autonomous driving
	Safety for autonomous vehicles
	AWS Cloud for Robotics
	AWS Robomaker
	AWS Sagemaker
	DeepRacer-for-Cloud

	Related Research

	Theoretical background
	Reinforcement learning
	Elements of Reinforcement Learning

	Deep learning
	Components of a Deep Learning network

	Deep Reinforcement Learning in autonomous driving
	Neural Networks
	Convolutional Neural Networks
	Feed-forward Neural Networks
	Recurrent Neural Networks
	Overfitting

	Multi-armed bandit problem

	AWS DeepRacer
	Software architecture
	Race modes
	Training algorithms
	Proximal Policy Optimization
	Soft Actor-Critic

	AWS DeepRacer Community
	Robot Operating System implementation
	Simulation environment

	Training
	Problem Statement and Objective
	General training information
	Tracks selection

	Reward function
	Failed reward function
	Effective reward function
	Rewards comparison for 3-layer and 5-layer CNN
	Relationship between lap completion time and reward

	Action space
	Action space for 3-layer CNN model
	Action space ofr 5-layer CNN model

	Hyperparameters
	Hyperparameters for 3-layer CNN model
	Hyperparameters for 5-layer CNN model

	Domain randomization
	Neural network architecture
	3-layer CNN
	5-layer CNN

	Evaluation
	Evaluation information
	Evaluation tracks selection
	Evaluation in simulation environment
	Comparison of 3-layer CNN models
	Comparison with 5-layer CNN models

	Transfer of the model to the vehicle
	Model structure required for AWS DeepRacer vehicle

	Evaluation on a physical vehicle
	The initial evaluation
	Proposed improvements and evaluation

	Conclusion
	Appendix
	Contents of the attached media

