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Abstract

This work is dedicated to the optimization of the currently used open-source network monitoring
program – ipfixprobe developed primarily by CESNET, more precisely on its cache, as it’s the
core of flow-based monitoring. We will analyze the source code to identify approaches leading
to performance issues and propose solutions for the identified problems. To prove the efficiency
of our proposals we will experimentally test them, including a comparison of currently popular
non-cryptographic hash functions and cache policies having good results adapted for specific
conditions of the flow cache, usage of machine learning to create the best suiting policy for the
exact type of traffic, and implementation of the DDoS detection algorithm. Successful proposals
will become part of the project, increasing user service quality.

Keywords network monitoring, flow exporter cache optimization, cache replacement policy,
flood detection, hash function test

Abstrakt

Tato práce je věnována optimalizaci v současnosti použ́ıvaného open-source programu pro mon-
itorováńı śıtě – ipfixprobe vyvinutého primarně sdružeńım CESNET, přesněji řečeno jeho skryté
paměti, nebot’ je jádrem monitoringu založenému na toćıch. Bude analyzován zdrojový kód,
abychom identifikovali př́ıstupy vedoućı k sńıžeńı výkonu a navrhneme řešeńı pro identifiko-
vané problémy. Abychom prokázali účinnost našich návrh̊u, experimentálně je otestujeme,
včetně srovnáńı aktuálně populárńıch nekryptografických hašovaćıch funkćı a správ skryté paměti
přizp̊usobených specifickým podmı́nkám skryté paměti śıt’ových tok̊u s dobrými výsledky, využit́ı
strojového učeńı k vytvořeńı nejvhodněǰśı správy pro přesný typ provozu a implementaci de-
tekčńıho algoritmu pro DDoS. Úspěšné návrhy se stanou součást́ı projektu a zvýš́ı kvalitu
uživatelských služeb.

Kĺıčová slova monitorováńı śıtě, optimalizace skryté paměti exportéru tok̊u, správa skryté
paměti, detekce útoku zaplavou, test hashovaćı funkce

vii
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Introduction

The global growth of the Internet due to its wide range of services means growth in users and
devices [15]. Connecting all devices into one network means such a network’s complexity and high
link bandwidth. The Internet consists of many independent devices, which usually do not have
much computer power and are designed for one, maximum few, tasks. Increased link bandwidths
complicate the work of such devices, which results in the deterioration of services, degrading
users’ internet experience.

One of the most essential devices from the point of view of endpoint users is devices focused
on security: there are many kinds of firewalls, Intrusion Detection Systems (IDS), Intrusion Pre-
vention Systems (IPS), etc. Such devices must analyze passing data to detect network perimeter
violations, anomalous traffic detection and filtration, inner network recourse accesses, etc.

Previously used solutions relied primarily on analyzing separate packets. Still, the rising
amount of network devices and network traffic made it too expensive to analyze connections by
analyzing packet payloads at the IP level, as the device with enough computing power would be
expensive.

The second problem is the popularization of SSL/TLS network security protocols [8], which
leads to the encryption of a significant fraction of data transferred by the Internet. A large
amount of traffic is generated by web surfing, which is encrypted in almost all cases. Encrypted
traffic cannot be decrypted without the decryption key, i.e., analysis is impossible without the
key. Some solutions exist to confront the problem, like decryption and analysis of the traffic on
network borders. Still, such solutions require user agreement and cooperation and thus could be
used more in corporate than home networks.

New network loads and encryption required an innovative solution to provide security. The
NetFlow protocol [5] was created to overcome the limitations of the packet payload-based ana-
lysis. It overcomes the weak sides of the payload-based approach by aggregating and analyzing
only the metadata and packet headers of all connections, ignoring the payloads. This flow-based
approach significantly reduces observing device load, but the device is still required to remember
and manage all active flows. To process all passing packets in time, the observing device uses
a space-efficient and time-efficient in-memory structure – cache. The cache is a core of the
observing device, granting velocity and reliability of the exported data of the whole system.
This work is focused on optimizations of existing open-source flow exporter ipfixprobe [4].

Objectives of this work are:

1. Research cache implementations of other flow exporters.

2. Analyse the source codes of the currently used ipfixprobe flow exporter, especially cache
source codes.

3. Make the cache more readable and extensible by refactoring.

2
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4. Identify parts of suboptimal code in the cache and propose possible improvements.

5. Experimentally test proposed improvements.

6. Compose a cache version with the best improvements and make a pull request back to the
original repository.



Chapter 1

Network monitoring

In this work, we focus on a specific technique of network monitoring – IP flow tracking.
The flow is defined as a set of packets with the same properties (flow key) that can be observed

on the observation point in a specified time interval [29]. These properties are usually source
and destination IP addresses and ports, the transport layer protocol, and the time stamp from
the defined time interval. Aggregated data are collected to analyze the flow: count of packets,
count of transmitted bytes, sum of TCP flags, etc. Data can be collected for two separate
unidirectional flows or one combined bidirectional. The flow record consists of the flow key and
aggregated data, which can be analyzed and persistently stored. To standardize the flow record
format, the NetFlow standard was created.

1.1 NetFlow
NetFlow is a Cisco protocol developed for network traffic monitoring. The NetFlow network
architecture comprises exporters, collectors, analyzers, and communicating nodes. Usually, two
unidirectional flows with opposite directions between the same nodes are combined into one
bidirectional flow. The exporters are responsible for creating flows from passing packets and
exporting them to one or more flow collectors. Exporters can be located on routers or separate
devices. The main purpose of collectors is to gain flows from exporters and store and process
them. The collected information can be used to see the overall network picture and detect
anomalies and attacks. The scheme of the NetFlow architecture can be found in Figure 1.1.

If bidirectional flows are used, the fields are measured for source-to-destination and
destination-to-source directions; in this work, by flow we mean bidirectional flow.

1.2 IPFIX
Based on Cisco’s proprietary NetFlow protocol, a new open-source protocol was created: IPFIX
[29]. The IPFIX protocol is very similar to the NetFlow standard of version 9. However, it has
advantages over NetFlow, such as platform independence, custom export fields, and variable-
length export records.

IPFIX and NetFlow have many common fields [29] [23]; exported fields can be found in Table
1.1.

2



IPFIX 3

Table 1.1 Export fields of NetFlow and IPFIX

Only NetFlow

The number of contiguous bits in the source and destination addresses subnet mask
IP multicast outgoing byte counter
Minimum and maximum IP packet length on incoming packets of the flow
Active and inactive timeouts in seconds
Source and destination MAC addresses
The fragment-offset value from fragmented IP packets
IPv4 or IPv6 next hop address
Bit-encoded field identifying IPv6 option headers found in the flow
Source and destination VLAN identifiers

Common

IP version number
Source and destination IP address
Packet counter. If a packet is fragmented, each fragment is counted as an individual packet.
Byte counter. The sum of the total length in bytes of all IP packets belonging to the flow.
Protocol type (TCP, UDP, ICMP ...)
Type of service octet (IPv4) or traffic class octet (IPv6)
TCP header flags
If the protocol type is TCP or UDP: source and destination TCP/UDP port number
Next hop IP address
Source and destination BGP Autonomous System numbers
Next hop BGP Autonomous System number
Multicast replication factor - the number of outgoing packets originating from a single
incoming multicast packet.
Timestamp of the first packet of the flow
Timestamp of the last packet of the flow
In case of IPv6: Flow Label
If the protocol type is ICMP: ICMP type and code
Input and output interfaces
If sampling is used: sampling configuration
If MPLS is supported at the observation point: the top MPLS label or the corresponding
forwarding equivalence class is bound to that label. The FEC is typically defined by an IP
prefix.
Include the DiffServ Code Point that has a length of 6 bits.

Only IPFIX

Unique identifier of the observation point and exporting process
Time To Live (IPv4) or Hop Limit (IPv6)
IP header flags
Dropped packet counter at the observation point If a packet is fragmented, each fragment
must be counted as an individual packet.
Fragmented packet counter counter of all packets for which the fragmented bit is set in the
IP header



Exporter 4

Figure 1.1 Scheme of the NetFlow architecture.

1.3 Exporter
Under typical circumstances, modern network bandwidth is measured in gigabits [2]. So, the
exporters must collect packets into flows under high load because poor-quality exports signifi-
cantly decrease the quality of every service that relies on exported data. This is why the NetFlow
exporter is the bottleneck of the whole system.

1.3.1 Exporter implementation
To achieve its goal, the exporter uses a cache for flows. When a new packet arrives, the exporter
makes a cache lookup; if a cache hit occurs, data of the flow record are updated, or a new flow
is created; otherwise. For the best performance, the exporter must export every flow right after
the last packet of a flow is processed. Practically, there is no way to reliably determine the end
of a connection, except for TCP RST/FIN flags. This is the reason why inactive timeout was
introduced. Since the last packet’s timestamp has passed more than the established inactive
timeout, the flow is considered as ended and being exported. Another problem occurs with flows
that last too long. The flow data can’t be analyzed until the flow ends, which allows various
attack vectors. To avoid this, active timeout is introduced. The flow is exported since the first
flow packet has passed more time than the active timeout.

1.3.2 Flow exporters
Before we start the analysis of our flow exporter, we analyze the implementations of caches of
other flow exporters.

softflowd
The softflowd [16] is an old flow exporter written mainly in C. The main packet processing loop
differs from the algorithm of ipfixprobe described in section 1.4. The main difference is the
structure of a cache. softflowd uses two types of trees: red-black tree and splay tree, to keep
its records. There is only one tree for cache, i.e., all records are kept in one big tree. When a
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new packet arrives, it tries to find the flow in the tree, and if it is not found, it inserts a new
record. After the maximum flow amount threshold is exceeded, the cache starts to export flows
starting from flows that weren’t accessed for the most time. The default cache size is 213 records.
A comparison by key fields is used to compare two flows, but hashing is not used. Both data
structures consist of nodes, with pointers on left and right nodes, meaning that every access to
the next node will call memory read on unpredictable address, which makes it hardware cache
unfriendly. These tree-like data structures are simple and efficient for small amounts of flows,
especially splay-tree, as its rules, with bubbling up to the top nodes that are accessed, are similar
to the rules of LRU policy. Still, the high amount of active flows makes directing underlying
data structures too expensive. The program structure doesn’t support any plugins and can’t be
easily extended.

linux-flow-exporter
The linux-flow-exporter [27] has a cache written in C and uses the Linux kernel-provided Berkeley
Packet Filter interface to create efficient storage. Implementation suggests only one possible type
of storage – BPF hash-map. The usage of kernel storage allows kernel-level optimizations, such as
network integration, allowing packets to be processed at the OS level and just-in-time compilation
of user code that is executed in the kernel. There is a significant con to such an approach: there
is no possibility to change the used hash function, the defined hash function is used to keep
records, and we can’t define our hash map – only choose from a few predefined types, which
doesn’t must to be optimal for our tasks. The default cache size is set to 8 records per CPU but
can be increased to the maximum defined by BPF Linux subsystem limitations, which depend
on the exact system. The program processes only TCP packets, which is a severe disadvantage.
No support for custom plugins.

joy
The joy [14] is an open-source flow exporter created by CISCO. Every flow record in the storage is
a node of 2 linked lists at once: a linked list of flows having the same hash value and a linked list
of all flows in the order of their creation. To find the value, the hash is used, but in comparison
to ipfixprobe, the hash value is an index to the head of the linked list of flows having that hash;
comparison by key fields is used to find the exact flow in that list. To create the hash value,
authors use their hash function, which is the sum of all 32-bit tuples of IP addresses, protocols,
and ports multiplied by a constant. All IPv4 addresses are interpreted as IPv6, with a higher
96 bits set to 0. All flows are processed as unidirectional flow, but every flow record contains a
”twin” pointer, pointing to the flow record in the opposite direction (if present). Custom plugins
are not supported [26].

go-flows
The go-flows [6] flow exporter is written in the Go language. It uses default Go’s hash-table
implementation (called map in Go) to store its records [26]. The flow hash value is used as
an index of the row, where all flows with colliding hash values are stored. To find exact flow
comparison by key fields used. go-flows supports only bidirectional flows, and to find the flow
identical to Algorithm 13 approach used, where we try to find flow by key fields. If the lookup
isn’t successful, a second search with exchanged source and destination addresses and ports
occurs. This flow exporter allows the definition of any flow key, e.g., any combination of packet
fields can be used to identify the flow. Exporter supports user-added extensions.
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yaf
The yaf [24] flowmeter is written in C. To keep its record, it uses a hashtable-indexed pickable
queue. It is a combination of hash table and queue, where each flow is a node of a linked list with
pointers to its neighbors, while the node itself is in the hash table and can be randomly accessed
by its hash. As implementation requires many allocations of the same flow record objects, a slab
allocator is used, which maintains the pool of preallocated objects; when the object is freed, it
is not returned to OS but back to the pool for future allocations. All flows are interpreted as
bidirectional flows by default, and a second lookup is used to find possible reverse flows. User
plugins are supported.

Vermont
The Vermont [9] flow exporter is written in C++. The hash table is used to keep records. The
hash of the flow is used as the index to the hash table; every entry keeps a linked list of flows
with the same hash value, where comparison by key fields is used to find the exact flow. A hash
function is its implementation of the CRC32 hash. In biflow mode, a second hash of reversed
key fields is used to find possible reversed flow. Any field set can be used as a flow key. The
exporter is extensible by plugins.

CICFlowmeter
The CICFlowmeter [3] exporter, including its cache, is written in Java. The storage of active
flows is implemented by default Java’s HashMap implementation, where keys with the same hash
values are added to the linked list. Flows are interpreted as bidirectional by default. Two lookups
occur to find the flow for direct and reverse key tuples. The flow key is the string in the format
”src ip-dst ip-src port-dst port-protocol” (or reversed), i.e., the key tuple is fixed and cannot be
changed. Index to the hash table is the hash value of a string, which has a default implementation
in Java: assume we have a string s, the hash value is

∑s.length()−1
i=0 s[i] · 31s.length()−1−i. Custom

modules are not supported.

1.4 ipfixprobe
In this work, we try to find and negotiate problems with an existing open-source flow exporter
ipfixprobe [4] developed primarily by CESNET.
The program is built of plugins: input, output, process, and storage. Input plugins are responsible
for reading packets, e.g., from a PCAP file or an interface. Output plugin exports expired records
in different formats, e.g., IPFIX or custom UniRec [25]. Process plugins can serve different
purposes, such as exact protocol processing or statistics measurement. The main part of the
exporter is the storage plugin, which is responsible for processing packets into flows. Architecture
is described schematically in Figure 1.2
The hash table is divided into rows. The LRU replacement policy manages each row. The main

problem with cache replacement policies is that they usually have no defined behavior if some
elements in managed rows are externally deleted. In our case, it is flow exporting after the active
or inactive timeout. The current implementation periodically scans part of memory and exports
expired flows. This means that sometimes, unexpectedly, empty places appear in the managed
row.

The main function that describes incoming packet processing on a high level is a process packet
from Algorithm 1 or in Figure 1.3.
Used simple functions and variables are defined in Table 1.2.

Generally, the algorithm of packet processing works as follows:
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Figure 1.2 Architecture of ipfixprobe.

1. It tries to fill ports in case the packet is fragmented.

2. The probe must create a hash key of the packet. Currently, there is an XX64 [7] hash function
that creates a hash from a direct flow key tuple and the second hash value from the reversed
tuple to find the flow if the first packet of the flow was observed with exchanged addresses
and ports.

3. Then it looks up in the hash table with created hash values. Lower bits are used as the index
of the row.

4. After the row is found, it tries to find if the flow is already in memory by comparing hash
values.

The second and third steps are the find flow function, which described in Algorithm 13 If the
flow is found, it updates the appropriate counters and moves the updated flow to the row begin,
according to LRU policy. Shifts of the flows in a row are defined by circular shift operation from
Algorithm 17. Flow enhancement is described in Algorithm 14.

If the flow is not found, we must create a new one. New flow creation is in create new flow
from Algorithm 15. Here is the main difference with classic LRU - it first tries to find an empty
place in the current row (in Algorithm 16), and only if there is no empty place, it exports the
last flow in the row, shifts all flow from the lower half of the row by one in the direction of the
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Figure 1.3 ipfixprobe packet processing.

row end, which defined as free place in row from Algorithm 18. The new flow uses the created
empty place in the middle of the row.

We analyzed the program run on Mawi PCAP (section 4.1) by kcachegrind. We must notice
that the profiling results may significantly differ depending on the type of input traffic. The
results are also impacted by compilation options – compilation with a higher level of optimization
leads to significant changes in the program call tree, making data we are interested in unavailable.
We chose a PCAP with a higher inter-packet distance and a small number of exports due to the
lack of space. Results can be found in Figure 1.4

Figure 1.4 Results of profiling the Mawi PCAP by kcachegrind.



ipfixprobe 9

Algorithm 1 process packet
Input: IP Packet packet
fill ports if packet is fragmented(packet)
flow index = 0
if find flow(flow index, packet) then

if active or inactive expired(flow index) then
export(flow index)
process packet(packet)
return

end if
enhance flow position(flow index)

else
row begin = get row begin(flow index)
create new flow(row begin, packet)
export expired()

end if
return

Table 1.2 Description of used variables and function in Algorithms 1 - 18.

Labels

fill ports if packet is fragmented (packet) – a function that is used to increase the
cache efficiency; it keeps the second internal smaller cache that keeps fragmented packet
headers that will be completed after the next fragment arrives. It fills up missing packet
ports, which allows for the precise determination of the packet flow.
active or inactive expired (flow index) – is a function that returns true if the flow
pointed by flow index has active or inactive timeout expired.
get row begin (flow index) – used to get the flow record index of the first record in the
row to which the flow index belongs.
export expired() – function check and exports, if record is expired, line size

2 records,
starting from n, next function call will start at n + line size

2 index.
low bits (int) – hash functions usually return long hash codes: 128 or 64 bits. We need
only n bits to address the cache flow table with 2n records. low bits returns lower n bits of
the int.
XXH64 – is a currently used hash function (defined in 1.1).
flow table – is a table that keeps all records managed by the cache.

▶ Definition 1.1. A hash function H is a function {0, 1}n → {0, 1}k, where n, k ∈ N, converting
any input of length n bit to the output of the length k bit, having k fixed for each hash function.
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Analysis

Firstly, the criteria for the improvement must be established. The idea of the cache itself suggests
two options: hit rate and speed. Increasing the hit rate would mean increasing the count of flows
successfully found with new incoming packets and decreasing the count of flows prematurely
exported due to lack of place in a row. Increasing the cache speed means decreasing the average
time the cache spends processing one packet. Analysis of the program by profiler (Figure 1.4)
shows that the majority of time cache spends creating hash values of incoming packets and
searching the flow with this hash value in memory, so our improvements are focused on this part
of the program.

2.1 Double hashing
As described in section 1.4, the cache creates two hashes from the packet fields. First, to find the
flow if the first packet of the flow was observed having the same source and destination addresses
and ports, and second, if we are observing the response from the destination.

2.2 Hash function
The second possible source of problems is the hash function itself. These two hash function
properties are the most important for our purposes: speed and collision resistance. Low hashing
speed leads to overall slowing and, in the worst cases, to packet drops. On the other hand, no
strict comparison of flows is used because of speed, i.e., comparisons are made only by hash
values. Low collision resistance leads to combining many flows into one. After such a mixed flow
is exported, none of the analyzing applications can come to a sensible conclusion from such data.
The second problem is the hashable data itself. Almost all of its fields have low entropy:

1. The probe will probably be installed on the gateway router dividing the inner network and
Internet, meaning that one of the source or destination IP addresses will be from a relatively
small range.

2. Majority of the traffic on the Internet belongs to HTTP, which, along with many other
applications, like DNS or SSH, uses well-known ports. Even if ports on the client side have
a wide range of possible values, one of the source or destination ports is predictable.

3. Majority of the traffic is transported by, decreasingly, TCP, UDP, and ICMP protocols.
Practically, the next-level protocol field has only a few possible values.

10
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4. Finally, all of those values must be combined to create a value that is unique among, in order,
hundreds of thousands of records.

To prove the point about entropy, we analyzed our PCAP files described in section 4.1, results are
at Tables 2.2 and 2.1, Port and Usage (%) shows the proportion of how many packets contain
such ports as source or destination. We assume that every application that uses port 443 is
HTTPS, 80 – HTTP, 22 – SSH, and 53 – DNS.

As we can see, for every case, 90% of protocol field values belong to TCP and UDP; for
ports, the situation is similar; HTTPS is a significant part of traffic (with the exception of Mawi
PCAP).

Table 2.1 Usage of protocols by different PCAP files

PCAP file Protocol Usage (%)

Tul TCP 81
UDP 17.4

Traffic TCP 66
UDP 33

Sh TCP 87.7
UDP 11.8

Mawi
TCP 50.2
UDP 39.7

IPv6 encapsulation 8.6

Table 2.2 Usage of ports by different PCAP files

PCAP file Port Usage (%)

Tul
HTTPS 73
HTTP 3.1
SSH 1.6

Traffic HTTPS 70
HTTP 7

Sh HTTPS 76
HTTP 10.9

Mawi
HTTP 27.9
SSH 7.4
DNS 1.8

The currently used function is XXH64, a hash function from the XXH family [7]. The XXH
hashes are widely used because of their speed and low collision count. The XXH family fulfills the
criteria of the SMHasher test suit [1], designed to test the distribution, collision, and performance
properties of non-cryptographic hash functions.

For further tests, we have chosen popular non-cryptographic hash functions nowadays: the
fastest hash functions from the XXH family, such as XXH3 64bits and XXH3 128bits, CRC32c
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hash function – CRC32 implementation of Google, FarmHash, Murmurhash, SuperFastHash,
and Toeplitz hash functions.

2.3 Cache row policy
The next source of the slowdown is how flows are placed in the rows. The idea of a hash table
divided into rows implies that only part of the target hash value is used as an index to the
exact row, and any strategy could be used to find, remove, or create a new item. process packet
algorithm described at Algorithm 1 can be used as a template for any new row policy; we only
need to redefine a few operations that the row policy must implement:

▶ Definition 2.1. Find flow(row begin, hash) - Operation that takes the index of the beginning
of the row as a parameter and the hash of the flow to find. Returns the index of found flow or
signals that the row doesn’t contain the flow.

▶ Definition 2.2. Find empty place(row begin) - Operation that takes the index of the begin-
ning of the row. Returns the index of empty place in the row or signals that the row is full and
contains no empty place.

▶ Definition 2.3. Enhance flow(flow index) - Operation that takes the index of the flow and
processes the row to improve the next Find flow operation for the flow which is currently on
flow index.

Enhance flow is an important operation from the point of view of the temporal locality. We
expect the recently accessed flow to be reaccessed soon, so we define an operation that helps
to find this flow more efficient on the next access. By increasing the efficiency of the Find flow
operation, we mean decreasing the overall time spent by the operation or increasing the chance
that flow will be found, i.e., it was not exported due to lack of space since the last access.

▶ Definition 2.4. Free place in row (row begin) - Operation that takes the index of the
beginning of the full row without any empty place and chooses and exports the most suitable
record using an algorithm determined by the row policy.

Operations above are presented in ipfixprobe (algorithms can be found in Appendix A): Find
flow is a find flow from Algorithm 13, Enhance flow is enhance flow from Algorithm 14,
Free place in row is a free place in row defined in Algorithm 18, and Find empty place
is find empty place from Algorithm 16.

LRU
The currently used implementation is a slightly improved LRU. LRU stores the flows sorted
according to their last access time: the most active flow is in the first position of the row, and
the least accessed is in the last. When flow inside the row is accessed, all flows, from the beginning
of the row to the accessed flow position, are shifted down by one, and the accessed flow is placed
to the freed position at the beginning of the row. When we need to add a new flow to the row, we
use the first found empty place, or if there is no empty place, we export the last (least recently
used) record, the lower half of the row is shifted down by one, and the freed place at the middle
of the row is used. The definition of the operations above can be found in section 1.4

Improvement
The idea for the improvement is to implement and compare other possible row management
policies. There are two important criteria for the comparison:
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1. For obvious reasons, total time spent manipulating flows within defined operations.

2. Total count of exported flows - if the cache uses an unsuitable policy, there will be exports of
still active flow, which leads to splitting up one flow into many. It’s much harder to analyze
such flows on the collector. As the collector is usually located on a simple device that doesn’t
have much computing power, we can’t expect the collector to unite such split flows. On the
other hand, updating the existing flow in our implementation is faster, so creating a new flow
instead of updating the old one increases overall time.



Chapter 3

Improvements implementation

This chapter is dedicated to the solutions to problems highlighted in previous chapters. The
source codes of all implementations below can be found in the public repository1.

3.1 Refactoring
The first part of my work was to refactor existing code. The original version of the code was hardly
readable and understandable. Also, there was almost no way to use C++ class inheritance, which
was very significant for creating cache extensions. That was done by dividing large files with
many classes and structures into small single-purpose files. After that, all functions were split into
smaller parts. Part of the refactoring was also to make possible simple hash function replacement
and rows manipulation functions part of the class interface. This led to simple extensions and
modifications of hash functions and row policies. The ipfixprobe repository maintainer verified
the results of refactoring. The refactored cache is schematically displayed in Figure 3.1.

3.2 Double hashing
Original code hashes every incoming packet twice - Algorithm 13: {source IP, destination IP,
source port, destination port, transport layer protocol, IP version, VLAN ID} and {destination
IP, source IP, destination port, source port, transport layer protocol, IP version, VLAN ID}
and looks up twice, the second hash will find its flow if the flow is already in memory, but
the initial packet was observed having current destination IP address as source. Assuming that
we are interested in primarily bidirectional flows, which bring the most useful information for
collectors, we can avoid double hashing. Instead of hashing data twice, we assume that hashing
is an expansive operation so that we can hash sorted packet fields. If the source IP address, as
a number, is bigger than the destination one, we swap them; ports are swapped, too. Only one
hash lookup is enough to determine if the appropriate flow is already in memory. But then the
next problem arises – after the packet fields were sorted, there is no way to determine the original
order of the fields, i.e., no way to determine if the source-to-destination or destination-to-source
packet was captured. Without that information, there is no way to update separate statistics for
each direction. To solve that problem, we must extend the flow record structure with a boolean
flag set to true if addresses and ports are swapped within sorting. Now original functionality is
restored, what is the price for this improvement?

1https://github.com/Zadamsa/ipfixprobe-cache
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Figure 3.1 Class diagram of refactored ipfixprobe
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Increasing total memory usage - every flow record is kept if its fields are swapped. In our
case, the default cache size is 217 records, but in practice may sometimes be increased to 221.
Memory alignment leads to 128KB-1MB of additional space, which is not critical.

3.3 Hash function
As mentioned above, the XXH64 is currently used as a hash function; in this section, we compare
other possible candidates to replace XXH64.

XXH3 64, XXH3 128 [7] – both hash functions are from the XXH3 family, which is the
improvement of the original XXH family. XXH family has built-in processor acceleration sup-
port. Both hash functions appeared in the same year, 2018, a few years after the active probe
development stopped. XXH hashes are based on classic bit XOR and rotate operations.

Toeplitz hash [19] is based on linear operations with matrices. The data we want to hash
are loaded into the Toeplitz matrix, multiplied by the vector, which is interpreted as the key.
The result of the multiplication is interpreted as the hash. Assuming we have a matrix n · n and
vector with length n, the time complexity of standard multiplication would be O(n2), but using
a special Teoplitz matrix form, the multiplication can be done in O(n · log(n)) time [22]. To hash
new incoming packet fields, we must upload their fields to the Toeplitz matrix and multiply them
by a predefined key. The DPDK, a big library for processing packets, widely uses this approach.
In our tests, we use the implementation of DPDK.

CRC32c [11] is a hash function that calculates a 32-bit cyclic redundancy check optimized
for the hardware. This implementation uses other than the default polynomial to provide better
hash distribution and speed. Hashing itself is done by polynomial division of input data by
polynomial over the GF(2). We use Google implementation for tests.

MurMurHash3 [1], the third version of MurMurHash, belongs to hash functions based on
bit operations such as XOR and shifts. Optimized for x86 architecture. The main objective of
that hash function is a good distribution with low collisions.

FarmHash [12] originally appeared as a concurrent for CityHash and MurMurHash. Has
built-in processor acceleration support. Based on XORs and bit rotations. Implementation is
much more complex compared to MurMurHash3 and CRC32.

SuperFastHash [17] – the old hash function appeared in the year 2001. Based on XOR
and shifts. The main purpose was to create a simple hash function. Implementation of the hash
function itself takes about 40 lines in C.

3.4 Row policy
This section discusses managing schemes of different row policies, which could show better results
than the original LRU.

3.4.1 Heap LRU
The idea behind this improvement is to replace the array inside every row with a minimal heap.
The key comparison for heap elements is a timestamp of the last observed packet. In this case,
our operations are redefined as follows:

1. Find empty place – as for the original LRU implementation, we can’t predict the following
flow that will be exported because of timeouts, so empty places are randomly distributed over
the whole row. The only way to find such empty records is to check all records one after one,
as in Algorithm 16. The time complexity of this operation is O(n), where n is the length of
the row.
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2. Find flow - here we can use a similar approach as in Algorithm 13, but in comparison to the
original algorithm, the most active flows are at the lower half of the row now, so we search
for the flow starting at the end of the row, ending at the beginning.

3. Enhance flow - here, we meet significant simplification of the heap’s operations - as the new
packet has the highest timestamp in comparison to other flow, so the target flow must be
moved down by bubble down (Algorithm 2) to the lowest possible position. After that, the
heap is still in a valid state. In the worst case, we must bubble down the record from the top
of the heap, as the heap has the height of log(n), where n is the count of records in one row,
so the total complexity of this operation is O(log(n)).

4. Free place in row - is called if the current row is full and empty place for inserting new flow is
required. In this case, we export the element on the top of the heap, as it has the lowest last
access time. As the newly freed place belongs to the new flow, it has a last access timestamp
equal to the current time, i.e., maximal, compared to other flows in the row. To keep the
heap in the valid state, we bubble down (Algorithm 2) the element from the top of the heap.
O(1) for export and O(log(n)) for bubble down leads to overall O(log(n)).

Algorithm 2 bubble down
Input: index of the flow to move to the lowest layer flow index
row begin = get row begin(flow index)
row end = row begin + cache line length
while (flow index − row begin + 1) · 2 ≤ cache line length do

left leaf index = (flow index − row begin + 1) · 2 + row begin − 1
right leaf index = (flow index − row begin + 1) · 2 + row begin
swap target = −1
if right leaf index ≥ row begin + cache line length then

swap target = left leaf index
else if flow table[left leaf index].is empty() OR

flow table[left leaf index].is empty() then
if flow table[left leaf index].is empty() then

swap target = right leaf index
else

swap target = left leaf index
end if

else
if flow table[left leaf index].last access timestamp <
flow table[right leaf index].last access timestamp then

swap target = left leaf index
else

swap target = right leaf index
end if

end if
swap(flow index, swap target)
flow index = swap target

end while
return

As can be observed from Table 3.1, heap LRU has all operations at the same level or better. Of
course, asymptotic complexity can’t be the only criterion. The problem is a hidden multiplicative
constant. The main advantage of the original LRU scheme is that the most active flows are at the
beginning of the row, and there is a guarantee that the last accessed flow is in the first position
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Table 3.1 Comparison of asymptotic complexities of LRU on heap and default LRU on array

Operation Original LRU Heap LRU

Find empty place O(n) O(n)
Find flow O(n) O(n)

Enhance flow O(n) O(log(n))
Free place in row O(n) O(log(n))

of the row. In a heap LRU, the most active flows are somewhere in the last layer of the heap,
i.e., we need to check ⌈n/2⌉ flows to find it. We expect to see a higher average amount of tries
to find records.

3.4.2 Flow-Driven Rule Caching
This policy was initially developed to effectively cache packet-processing rules on switches with
Ternary Content Addressable Memory [20].

In the SDN architecture, all network switches are controlled by a centralized controller. When
a switch can’t find the appropriate rule for the flow to which the new incoming packet belongs,
it must request the controller for the new rule. Those requests slow down the network, so the
target of the work is to reduce the number of cache misses on switches caches, which also matches
the purposes of this work. The authors of the original work came up with a heuristic that tries
to predict when a new packet for every flow arrives. They divided all flows into two groups:
predictable and unpredictable flows.

1. Predictable flows are flows for which we can reliably determine the timestamp of the next
packet, e.g., the flows from deterministic network services.

2. Unpredictable flows are all other flows to which we can’t determine the arrival time of the
next packet.

In this work, all flows are threatened as unpredictable, as we expect packets to be encrypted,
meaning we can’t analyze signals from the packet body.

The algorithm works very similarly to the First-In-The-Future replacement strategy, but, for
obvious reasons, values of heuristic functions are used instead of the actual timestamp of a packet
from the future. The problem is that the original work doesn’t mention a way to find a value
with maximal value in the row. On SDN switches with CAM, this can be done trivially in O(1),
while in our linear software implementation, it would be O(n) hard. This raises the question
of how some effective implementation could be used. Still, neither heap nor sorted array as in
the original LRU implementation can be used, as the values of timers change spurious, which
means that when we access some row, we can’t be sure that the sorted storage is in a valid state,
meaning that we need to check and repair correctness of the row on each access, which seems
not to have a simple solution. For this test, we use inefficient implementation only to test the
statics of the proposed algorithm. Creating an optimized implementation only makes sense if
this replacement strategy provides a good enough cache-hit ratio.

The heuristic function value is interpreted as the value of the timer. If the timer expires, a
new value is calculated and assigned.

The only tunable parameter of the policy is Tmax. Defined operations:

1. Find flow and Find empty place operations work like the original LRU.
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2. Free place in row – the flow record with the highest heuristic value (timer) is removed, and
trivial O(n), because of flow searching, implementation is used.

3. Insert new element – after getting an empty place, we set up a timer for the record with a
Tmax value.

4. Enhance flow – set timer value as the difference between the timestamp of the new incoming
packet and the last packet of the flow.

5. The record with the highest timer value is exported.

To set the new value for the timer after it expires, we use Algorithm 3. The value of Tmax was
set to 2 seconds.

Algorithm 3 Update timer FDRC
Input: index of the flow with expired timer flow index
timer start value = timer started with value(flow index)
if timer start value ̸= Tmax then

flow table[flow index].set timer(max(2 · X,Tmax))
else

//If the initial expired timer value was Tmax, the value of the timer is set to Tmax, but the
timer is not started again, and its value stays frozen at Tmax, i.e., if the timer set to Tmax

expires, we consider that we have already processed the last packet that belongs to flow and
flow can be exported.
flow table[flow index].freeze timer with value(Tmax)

end if

3.4.3 LRU2Q
The proposed algorithm is an improved version of the LRU-2, a particular case of LRU-K, which
uses a time of K-th access to the block to sort the block in the row. The problem that the
authors of the original work had with the LRU-K itself is that LRU was initially developed
for hardware use, i.e., using Content Accessible Memory, we can find the required block or an
empty place in the constant time while using LRU-K requires the heap data structure, which
leads to the logarithmic complexity for same operations. In our case, it is not such a big deal,
as our cache is implemented on the software level and has linear complexity. To overcome the
logarithmic complexity of the LRU-2, LRU-2Q [18] was created. Both algorithms provide the
same functionality, but LRU-2Q has constant time complexity with hardware implementation.
In our case, it is still linear.

To achieve its purposes, LRU-2Q divides the row into parts. The parts size is the tunable
part of the algorithm. We try to find the best parts sizes for our cache. The algorithm has two
versions: simplified and full. We test both versions.

LRU2Q Simplified
The simplified version divides rows into two parts: main (Am) and A1. Firstly, data appear in
the A1 queue, managed as FIFO. When a page inside an A1 queue is referenced again, it moves
to the main buffer, which is a standard LRU buffer.

The authors of the original work expect that the first use of the block doesn’t mean that the
block is long-term used. If the block is shifted from the A1, it won’t be accessed soon. However,
if the block is accessed inside the A1, we place it in the Am as a potentially long-term used block.
Operations are redefined as follows:
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1. Find flow – similar to the original LRU.

2. Find an empty place – Linear lookup over the row. We return the first found empty place,
regardless of whether it is inside A1 or Am.

3. Enhance flow – regardless of whether the target flow record is inside A1 or Am, it is moved to
the beginning of the Am. If the Am is full, we need to export the last record. The description
with pseudo-code is Algorithm 4.

4. Remove record – to free a place in the row, we remove the first record in the A1 and move
an empty place to the last place in the A1 buffer using circular shift from Algorithm 17.

Algorithm 4 enhance flow
Input: index of the flow to enhance flow index
row begin = get row begin(flow index)
if flow is inside Am(flow index) then

circular shift(row begin, flow index)
else

empty place = find empty place in Am(row begin)
if empty place == NO EMPTY PLACE then

last record in Am = row begin + Am length − 1
export(last record in Am)
empty place = last record in Am

end if
swap(flow table[empty place], flow table[flow index])
circular shift(row begin, empty place)

end if

The main target for this task is to determine the best parameters of the configuration, i.e.,
sizes of A1 and Am.

LRU2Q Full
The full version was proposed to improve the results of the simplified version. It uses three
buffers: A1in, A1out, and Am. The improved version was proposed to beat ”correlated reference.”
Correlated reference means repeated accesses to the same location in the cache shortly after the
access but no accesses in the subsequent long-term period. To avoid adding blocks to Am on
correlated references, the authors introduced Aout. Now, if we access the block in the A1in, we
do nothing, ignoring the correlated reference.

Operations are redefined as follows:

1. Find flow – same as the original LRU.

2. Find empty place – linear lookup over the row.

3. Enhance flow – if the record is in A1in, do nothing. If it is inside the Aout or Am, move it
to the beginning of Am, similar to Algorithm 4. If we move the record from Aout to the Am
and there is no empty place, we export the last record from the Am.

4. Free place in a row – to make a free place in the row, we shift all records in Ain and Aout
records, removing the last record from the Aout and making the last record from Ain first
record in Aout. The new place is returned at the beginning of the Ain then.

The main target for this task is to determine the best values for sizes A1, Ain, and Aout.
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3.4.4 LIRS
The Low Inter-reference Recency Set (LIRS) replacement policy [21] was invented to solve the
problems of LRU. LIRS adds Inter-Reference Recency (IRR) to every flow record in the cache.
IRR of the flow is calculated as the count of accepted packets between the last and second-to-
last accesses to the flow. IRR is used as a heuristic, and the authors of the original work expect
that if the flow has a high IRR, it will have a high IRR in the future, too. All flow records
are then divided into Low IRR (LIR) and High IRR (HIR) blocks. LIR blocks are expected
to be reaccessed soon. HIR blocks are divided into resident and non-resident blocks. In our
implementation, we use the original row, which is divided into two parts:

1. The ”list” part. This part of the row contains all flow records perceived as resident HIR
blocks.

2. The ”stack” part contains a mix of LIRS, resident, and non-resident HIR blocks.

Resident HIR blocks are blocks presented in a list; non-resident HIR blocks are contained only
in the stack part.

The authors defined the operation ”stack pruning” as removing all elements below the last
LIR block, described in Algorithm 5. LIRS redefines operations as follows:

Algorithm 5 prune stack
Input: index of the row beginning row begin
for row begin + cache line length − 1 ≥ i ≥ row begin + list size do

if flow table[i].is empty() then
continue

else if flow table[i].reference type== LIR then
return

else
export(i)

end if
end for

1. Enhance flow – described by Algorithm 6. The strategy depends on the type of the flow.
If the flow is LIR, it is moved to the top of the stack, and all HIR blocks before the new last
LIR block are removed from the stack.
If the flow is resident HIR, it depends on if the block is in the stack:
If it is, we change its status to LIR and move it to the top of the stack. As it is not an HIR
block anymore, we remove it from the list. The last block of LIR status changes its status
to HIR and adds itself to the end of the list. Then, the stack pruning occurs. If it isn’t, we
move it to the end of the list.
Upon accessing the non-resident HIR block, which can be found only on the stack, we change
its status to LIR and move it to the top. Then, we switch the last LIR block status to the
HIR and add it to the end of the list. Then stack pruning occurs.

2. Find flow – similar to the original LRU, linear search across the whole row.

3. Free place in row – used when the flow was not found, and an empty place is needed. To
create an empty place, we delete the first item of the list and create a new record at the end
of the list.
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4. Find an empty place – linear lookup over the whole row. The newly created record gets an
LIR status if the place is found in the stack. The new status is a (resident) HIR, if the place
is found in the list.

Algorithm 6 enhance flow
Input: index of the flow to enhance flow index
//LIR block can get hit only in the stack
if flow table[flow index].reference type == LIR then

circular shift(row begin + list length, flow index)
else if flow index < row begin + list length // Resident HIR block got hit in the list then

circular shift(row begin, flow index)
flow index in stack = find in stack(flow index)
if flow index in stack ̸= NOT FOUND then

circular shift(row begin + list length, flow index in stack)
flow table[flow index in stack].reference type = LIR
flow table[flow index].clear()
last lir index = find last lir index(row begin)
flow table[last lir index].reference type = HIR
flow table[row begin] = flow table[last lir index]
prune stack()

end if
else

//Non-resident HIR got hit
flow table[flow index].reference type = LIR
circular shift(row begin + list length, flow index)
empty place in list = find empty place in list(row begin)
if empty place in list == NO EMPTY PLACE then

last record in list = row begin + list length − 1
export(last record in list)
circular shift(row begin, last record in list)

else
circular shift(row begin, empty place in list)

end if
last lir index = find last lir index(row begin)
flow table[last lir index].reference type = HIR
flow table[row begin] = flow table[last lir index]
prune stack()

end if

3.4.5 Adaptive policy
Žadńık proposed the original idea in their work [28]. The problem with all previously discussed
policies is that too many possible types of traffic can be observed. The observed traffic kind
differs for web surfing and torrent downloading, or the intensity of flows created by a small set
of devices over the home and big corporate networks. Instead of trying to find the row policy
suitable for every case, we can create the one that suits the most for some particular case.

The original work suggests creating a row policy that can be adapted to some exact example
of network traffic.

Compared to other row policies suggested previously, we need to define some general policies
that can be tuned to fulfill the requirements of the traffic type specific to some network type.
Modification of LRU was suggested:
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0 1 2 3 4 5 6 7

Figure 3.2 Configuration [{0, 3, false},{1, 5, true}] displayed graphically

1. Find flow or an empty place work the same as in the original LRU.

2. Free place in row – export of the last record in the row.

3. Insert new flow – insertion of a new element occurs to position i, a configuration parameter.
i belongs to [0,s-1], where s is the length of the row.

4. Enhance flow – when the record on position x got hit, where x belongs to [0,s-1], the flow is
moved to position v[x], where v is an array of size s, defining a new position for hit flow as a
value of v at the original flow position.

We aim to find methods to adapt parameters i and v.
As we can notice, the set of valid combinations of those parameters is huge. The total count

of combinations is ss+1, which is 1617 = 295 147 905 179 352 825 856 for the default row length.
Assuming that evaluation of every combination takes at least a minute, simple brute force of all
possible values can’t be done.

To avoid brute force, Žadnik [28] proposed and formally proved a few optimizations to reduce
solution space:

▶ Definition 3.1. Move tuple - is a tuple of {t, c, i}, where:

t means the base target position of the enhanced flow.

c means a count of flows in the tuple and belongs to [1, s].

i is an ”increment” boolean flag that determines how the final place of the flow after enhance-
ment is calculated. If i is false, every flow from the tuple gets position t after enhancement.
Let the flow that gets enhancement is on the xth position from the first flow of its tuple, and
i is set to true, then the new position of the flow is t + x.

1. The flow position after enhancement can’t be closer or at the same distance to the end of the
row than before the enhancement, i.e., v[x] < x (the only exception is the zero record of the
row, which stays at its position after enhancement).

2. The flow can’t ”jump over” the other flow – if the flow on position x gets enhancement to the
position v[x], every flow at the position y, where 0 ≤ y < x, i.e., every flow, which is closer to
the row beginning than x, has v[y] ≤ v[x], i.e. gets better (closer to the beginning) or same
position after enhancement as v[x].

3. Instead of determining optimal values of v for each place in the row, we group up part of
the row as the ”move tuple” (Definition 3.1). The first tuple can’t set the increment flag to
true, as it breaks the first optimization. We divided the row into ⌈ row length

4 ⌉ tuples. For
example, if the row length is 8, it can be written by tuples as [{0, 3, false},{1, 5, true}]. This
shortened policy form can be written down to the complete form, displayed in Figure 3.2,
which graphically displays the enhanced position for every position.

The shortened form of the row significantly decreases solution space, and every flow in the
shortened form still fulfills the optimizations.
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To find exact parameter values, the authors of the original work proposed using a genetic
algorithm.

A genetic algorithm is a method of searching a state space in optimization inspired by natural
selection. The algorithm works with generations; every generation consists of possible solutions
to the problem, and every solution is presented by its chromosome. In our case, the chromosome
of a solution is the exact value of the parameters. The genetic algorithm defines operations in a
generation:

1. Mutation – random changes in the chromosome of the solution, i.e., random change of the
value of some parameter in configuration.

2. Crossover – an exchange of parts of chromosome between 2 solutions.

The genetic algorithm introduces a fitness function, which takes some solution and returns a
number evaluating the quality of this solution to measure the impact of the genetic operations
on the solution, and the objective function. As we want to minimize the objective function, we
define it as the reciprocal of the fitness function. For our purposes, the objective function can be
defined via the count of cache misses – the count of packets for which appropriate flow was not
found and no empty place in a row was found or via the reciprocal of the count of cache hits.
Both approaches create very similar solutions; we use the hit count as the fitness function.

The authors of the original work dedicated a significant part of the work to finding out
what genetic operation can be used and what effect it brings. Results show that usage of
crossover doesn’t bring significant improvement to the searching process – with crossover, a bit
better solution was generated in earlier stages of searching; at some count of generations, both
algorithms, with crossover and without, converged to solutions with the same fitness function
evaluation.

The final algorithm to find the best solution is described in Algorithm 7.
By comparing configurations with comparison operators, we mean a comparison of evaluations

of the fitness function.
Creating a new generation is described in Algorithm 20, the binary tournament in Algorithm

19.
The main function that creates new configurations is an Algorithm 21, which consists of

particular mutations and their fixes that are described in Algorithms 22-29.
We must also define a few functions responsible for generating random numbers in Table A.1.

Algorithm 7 Find best solution
Input: count of repeats repeats
Output: best found configuration configuration
generation = create random generation()
global best configuration = random configuration()
for 0 ≤ i < repeats do

best configuration = choose best(generation)
if global best configuration < best configuration then

global best configuration = best configuration
end if
parent configuration = binary tournament(generation)
generation = create generation(parent configuration)

end for
return global best configuration
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Packet distance prediction
Besides this improvement, the idea is to improve the row management policy’s performance by
adding the prediction of when the next packet for this flow arrives. Intuitive solution seems to
be analyzing the content of packet payloads. Practically, we can’t rely on the packet’s payload,
as it is highly probable encrypted, or even if not, we must understand the scheme of payloads of
many applications. Instead, we can rely on information that is always accessible, as it is needed
to route the packet through the network – IP packet and TCP/UDP headers. From the study
[28], the most information about the arrival of the next packet brings these fields:

1. IP protocol field.

2. IP total length field.

3. TCP flags.

4. TCP window size.

Even if we can find patterns in the arrival times of packets by observing the properties described
above, we must display them numerically to use later in the cache.

The original Žádńık [28] work used distance measurement in packets, i.e., the distance be-
tween two packets belonging to the same flow was measured in a count of packets belonging to
other flows accepted between these two packets. From our view, this measurement must not
be ideal, as the same flow with the same distances between packets is classified differently in
different networks depending on the intensity of other simultaneously active flows. This makes
the predictor trained on the one traffic example unprecise on the other example.

An improvement for this problem seems to be a distance measurement in seconds. In this
case, distances for all packets inside one flow are calculated independently of packets in other
flows, making these predictions more usable for other traffic samples.

We analyze packet distances in a PCAP file to create the dataset. We use the Weka library
and its implementation of the J48 classification tree to generate the classification code to make
the classification code. The textual form of the tree is converted to C code with the script. The
output of the script is a bunch of nested if statements, i.e., has constant time complexity.

After our classification tree is converted to the code, a question arises about using the packet
classifications. Packets classified as having a short distance to the next packet should be closer to
the beginning of the row. On the contrary, packets with long distances to the next packet should
be placed closer to the end of the row, reducing the probability of throwing out the records that
will be accessed soon. But depending on its classification, we don’t know the exact number of
positions to promote the flow. To address this problem, the original work’s author proposed
extending the adaptive policy with new parameters – offsets – to move every flow after enhance-
ment for every packet classification. Every offset is a whole number from [ line size

2 , − line size
2 ]

after the flow was enhanced to its position offset is also added, with restrictions that a new
position can’t be out of the current row. If it is negative, it can’t leave the flow at the original
position or even move it to a worse position. If, after adding the offset to enhanced flow, its
new index is the same or worse, a new position after enhancement is chosen next to the current
position.

3.4.6 Simulated annealing with taboo list
After analysis of the original policy search algorithm [28] described in subsection 3.4.5, we would
like to introduce and test a new way of searching for best configurations. We test the usage of
simulated annealing with taboo list optimization techniques.

We need to introduce a new definition to describe the following algorithm – the distance
between 2 configurations. Its value expresses how much two configurations of the same row
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Algorithm 8 calculate distance between configurations
Input: the first configuration left, the second configuration right
Output: integer numerically describing distance between configurations
distance = 0
for 0 ≤ tuple index < left.tuple count() do

distance += |left.count − right.count| + |left.target − right.target|
if left.increment ̸= right.increment then

distance += 1
end if

end for
distance += |left.offset of short − right.offset of short|
distance += |left.offset of medium − right.offset of medium|
distance += |left.offset of long − right.offset of long|
distance += |left.offset of never − right.offset of never|
distance += |left.insert position − right.insert position|

differ. This value is calculated as described in Algorithm 8.
The core of the new algorithm is described in Algorithm 9 and consists of the following steps:

1. If we find a better solution, we simply take it.

2. If all configurations in the generation have worse statistics than a parent of this generation,
we choose a random solution; the probability that the exact solution is chosen decreases with
increasing distance between this solution and the parent. Probability also decreases with
increasing generation number. We don’t want to change the current solution significantly as
the search ends. This step is described in Algorithm 10.

The second part of the improvement is a taboo list. Taboo list is a list of the last n configurations.
The n was set to a generation size. When mutations of the best solution are generated, we also
check that the newly generated solution is far enough from all solutions in the taboo list. This
approach is included inside the function create generation with taboo list from Algorithm 11.

Algorithm 9 Simulated annealing
Input: count of repeats repeats
Output: best found configuration configuration
generation = create random generation()
global best configuration = random configuration()
for 0 ≤ current generation < repeats do

best configuration = choose best(generation)
if global best configuration < best configuration then

global best configuration = best configuration
end if
chosen configuration = choose(generation, current generation, chosen configuration)
generation = create generation with taboo list(chosen configuration)

end for

3.5 Multi thread optimization
The original implementation processes new packets and exports expired ones in the same thread.
These tasks seem not directly connected so that we could divide them into separate threads.
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Algorithm 10 choose
Input: generation to choose configuration from: generation, current generation number: cur-
rent generation, configuration from which generation was created: parent configuration
Output: chosen configuration
sorted generation = sort by efficiency(generation)
best configuration = sorted generation[0]
if best configuration > parent configuration then

return best configuration
end if
chosen configuration = best configuration
for 0 ≤ i < sorted generation.size() do

configuration = sorted generation[i]
if random(1 − edistance(configuration,best configuration)/(6·((current generation+i)· −3

40 −2))) then
chosen configuration = configuration

end if
end for
return chosen configuration

Algorithm 11 create generation with taboo list
Input: configuration to create generation from configuration, taboo list taboo list, generation
number current generation
Output: generation created from seed
output = EMPTY GENERATION
while output.size() < generation size do

new solution = configuration
new solution.mutate()
output.add(new solution)
repeat

repeat
output.last configuration().mutate()
too close = false
for all taboo configuration in taboo list do

too close = distance(output.last configuration(), taboo configuration)<
current generation · −0.5 + 20
if too close == true then

break
end if

end for
until too close == true

until NOT output.all configurations are unique()
end while
return output
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This approach has a problem when the export thread tries to export expired flows from the row
currently manipulated by the main thread; the program’s behavior is undefined. The standard
solution for this problem is the usage of mutexes and locks to grant exclusive access to the
memory. In this case, the main thread needs to gain the lock for every incoming packet, which
means doing a system call with approximately hundreds of process cycles that would dramatically
decrease the performance of the cache.

Instead, we use atomic variables with spin-waiting to grant exclusive access. The cache
keeps variables containing currently processed lines by export and main threads. This variable
is modified only atomically.

As the original implementation checked for the expiration of the flows after every newly
created flow, we can expect fewer expired flows to be exported, increasing the count of cases
where the cache decides that there is no empty place in the row. To address this problem, we
improve the searching empty place algorithm to check if flows have expired and return that place
after the export. Our task is determining how often the export thread must call the export
function to achieve acceptable results.

3.6 Flood detection
In all previous sections, we discussed only the optimizations focused on the traffic generated by
real users and their services; we expect this traffic to act according to typical user behavior. Of
course, it is not the only type of traffic on the network. In this section, we want to address
the problem of flood attacks on the network. From our point of view, the most important part
is the influence of such an attack on our cache. A flood attack is a denial of service attack,
which sends massive traffic to a particular server or service to exhaust its resources [10]. I.e., the
definition itself doesn’t define the exact way of carrying out an attack. Suppose we focus only
on our cache, ignoring all other network parts. In that case, flood attacks with a low amount of
simultaneously active flows, even bringing big payloads, don’t affect the cache as it doesn’t rely
on payloads. On the other hand, a flood attack can consist of a high amount of flow, which is
typical for TCP-SYN DDoS attacks. Such attacks create many new short flows consisting of few
packets. We expect that the count of malicious flows significantly surpasses the cache size, and
the cache tries to keep them all by exporting the regular user flows. Assuming that users will
continue communicating during the attack, their export records will be divided into many short
pieces, making their analysis impossible.

To react to the attack, we must be able to determine the start of the attack as soon as
possible. To do it, we use an approach based on the measurements of flow exports per second.

Hofstede [13] proposed a system to detect a flood attack by monitoring sharp increases in the
number of exported flows using exponentially weighted moving average extended by thresholds
and a cumulative sum. Algorithm description:

1. xt = α · xt + (1 - α) · xt−1, where xt is weighted average at time t, xt−1 is weighted average
calculated for previous time interval t − 1, α is tunable parameter, describing how previous
value is discarded. We forecast value xt+1 to be the same as xt.

2. After the actual value of xt+1 is known, we calculate the forecasting error as et+1 = xt+1 -
xt+1.

3. σe,t+1 is a standard deviation of previous forecasting errors, which is calculated as√∑t
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4. Then we calculate the threshold value for time t+1 as Tt+1 = xt+1 + max(cthr · σe,t+1, Mmin),
where cthr and Mmin are defined constants. Mmin is used to cancel flood detection on stages
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of low cache loads when a significant increase of active flow count in relative numbers, but
small in absolute, occurs.

5. We need to keep the sum of all differences between actual measurements and appropriate
thresholds. This sum at time t is defined as St = max(St−1 + (xt - Tt), 0).

6. The flood is detected when St exceeds the threshold Tcusum,t at time t, where Tcusum,t =
ccusum · σe,t.

Calculating all required variables for time t is a relatively expensive operation, so the time interval
can’t be very short – a good solution seems to be 5 seconds. The cthr was set to 5, Mmin to
7000, α to 0.3.

The steps above are presented algorithmically in Algorithm 12.

Algorithm 12 flood detected
Input: flood measurement data data
Output: true, if the flood attack detected, false otherwise
data.measurement count += 1
treshold = data.last mean+max(data.threshold · data.deviation, data.minimum)
data.cusum = max(data.cusum + data.cache misses in last interval − threshold, 0)
cusum threshold = data.cusum threshold · data.deviation
data.last mean = α · data.cache misses in last interval + (1 − α) · data.last mean
forecasting error = data.cache misses in last interval − data.last mean
data.error sum += forecasting error
data.error sum square += forecasting error2

error mean = data.error sum
data.measurement count

data.deviation =
√

data.error sum square−2·error mean·data.error sum
data.measurement count

return data.cusum > cusum threshold
//Calculation is called every predefined time interval, 5 seconds in our case.
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Test results

4.1 PCAPs
After the new feature is added, the impact must be measured. The best solution is to use the
traffic record, as the flow exporter works deterministically, returning the same output for the
same input (with deviations in time), allowing us to measure the consequences of the added
feature precisely.

We use PCAP files to measure the impact. PCAP file stores exact copies of the packets. If
we test our feature on the PCAP file, we don’t need to wait for time intervals between packets;
we insert the next packet right after the previous one, which decreases test time. In our tests,
we use these PCAP files:

1. Traffic – Is an evening traffic from backbone link of CESNET from 2023-06-05 21:15:32 to
2023-06-05 21:15:40. Length – 8 seconds, average inter-packet distance – 0.01sec. Content
classification by protocols is in table 4.2. Graph of new flows per second can be found in
Figure 4.1, packets per second in Figure 4.2.

2. Sh – Strahov dormitory, Prague, traffic of accommodated, the afternoon of Monday,
13.11.2023. Length – 1707s, average inter-packet distance – 0.34sec. Content classification by
protocols is in Table 4.3. Graph of new flows per second can be found in figure 4.3, packets
per second in Figure 4.4.

3. Tul - the Technical University of Liberec, normal high school traffic during the afternoon of
26.2.2024. Length – 332s, average inter-packet distance – 0.3sec. Content classification by
protocols is in Table 4.4. Graph of new flows per second can be found in Figure 4.5, packets
per second in Figure 4.6.

4. Mawi - is a PCAP sample from the Mawi archive. It describes the packets passing the Mawi
trans-Pacific link on 2010/04/14 from 14:00 to 14:15. Inter-packet distance is 1,2sec. Content
classification by protocols is in Table 4.5. Graph of new flows per second can be found in
Figure 4.7, packets per second in Figure 4.8.

5. Mawi flood - is a PCAP sample from the Mawi archive. It describes an interval of 2010/08/30
from 7:00 to 7:15. This record was labeled as containing anomalous traffic; we can observe
a sharp increase in the count of active flows in a few seconds, which is highly likely marks
the attack. Average inter-packet distance – 0.01sec. Content classification by protocols is in
Table 4.6. Graph of new flows per second can be found in Figure 4.9, packets per second in
Figure 4.10.

30
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Figure 4.1 Count of new flows per second in Traffic PCAP

The results of the tests are described by labels defined in Table 4.1.

4.2 Double hashing
To test the impact of the flow sorting described in section 3.2 we use two configurations, both
using LRU row policy and the XXH64 hash function, but one does hashing twice, and the second
one sorts its flows, hashing only once.
Results are presented in Tables 4.7-4.10.

We can observe that cache statistics are almost unchanged, with the only exception being
time. This improvement brings speedup 7.5%-19%. We can admit this improvement as successful.

4.3 Hash function
We use an improved version of hashing to test the hash functions, as described in the previous
section. Result are in Tables 4.11-4.15.

The count of cache hits by Toeplitz hash for Traffic PCAP (Table 4.11) is anomaly high. A
subsequent test, where the comparison of flows by hash value was replaced with strict comparison
by key fields, showed that Toeplitz hash creates many collisions (Table 4.12).

XXH3 64bits is the fastest hash function that surpasses other hash functions. Statistics
are almost the same for all hash functions. The hash function of the cache is replaced with
XXH3 64bits.
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Figure 4.2 Count of new packets per second in Traffic PCAP

4.4 Row policy
In this section, we test different row policies. To hash flows, we use XXH3 64bits with sorted
flows.

The original LRU policy is used as a reference. Results are presented in Tables 4.16-4.19.
Seeing LRU implementation with a heap slower than the original LRU is unexpected. An-

alyzing the cache runs with the profiler in Figure 1.4, we found that almost half of the cache’s
work time is spent searching for the flow in the row. The character of heap implementation
means that the flow with the lowest last access time is on the top of the heap, while the most
active flows are randomly shuffled on the lower half of the row. In the default implementation,
flows in the row are sorted by their last access time, while heap LRU disrupts the rule of locality.
This effect is revealed by increasing the average lookup and lookup variance statistics.

According to the original LIRS paper, the ”list” part must be tiny, approximately 1% of
managed space. In our case, it is impossible to set that small value, as from 16 cells in a row,
we can set the list to be minimal one cell long, or 6.25%. Setting the list part size to 0 degrades
the LIRS to default LRU. Increasing the list part size to 2 makes statistics worse, so the size of
1 seems to be the best.

The 2Q simplified algorithm shows promising results. The division of the row to proportion
1:3 has the worst hits statistics while having the best work time, average lookup time, and lookup
variance compared to other 2Q-simplified policies. The 1:1 and 3:1 options show a difference in
cache hits of less than 0.1%; for many types of traffic, 2Q is faster than the default LRU, except
for the Traffic PCAP file. The best proportions can’t be chosen, as it depends only on the type
of traffic, which makes this policy unsuitable for the general-purpose flow exporters, as we can’t
know the traffic where the exporter is installed.

The full version of the 2Q algorithm generally can’t overcome the simplified version, having
time statistics higher and cache hit statistics worse. We can notice that cache hit statistics are
almost the same for all presented proportions. The flow-driven replacement policy in this test
uses an inefficient implementation, so the time is not essential for us, but statistics: the policy



Row policy 33

Figure 4.3 Count of new flows per second in Sh PCAP

can’t achieve the hit rate of the LRU, showing a slight decrease of cache hits. Unexpectedly, it
overcomes the LRU on the Mawi PCAP file and gains more hits.

The default LRU policy looks pretty efficient, combining a good hit ratio and run time,
compared to other policies for all provided traffic samples. We don’t see enough reasons to
replace the LRU policy with another policy.

4.4.1 Adaptive row policy
This subsection is dedicated to the comparison of the results of the configurations found in the
genetic algorithm and simulated annealing with the taboo list. To create the configurations, the
search algorithm created 80 generations with eight configurations each, and the first generation
was set to have more configurations – 16. Practically, improvements after the 60th generation
are minor; increasing the generation count to 200 doesn’t bring any improvement. For many
PCAP files, such as Mawi and Sh, the count of cache misses is too low to test adaptive policies,
so the cache size for these records was reduced to 211 (default cache size used for other cases is
217).

The main problem with searching the configuration is the required time. For our PCAP files,
creating and evaluating 80 generations requires 4-12 hours. According to the work of Žadńık
[28], sampling could be used to reduce evaluation time. We tested reducing PCAP files to
deterministically every 2nd and every 3rd packet: as we can see in the result tables, creating
generation on original PCAP records makes configuration pretty close to the original LRU, while
configurations created on sampled PCAPs may show better results on sampled PCAP, but worse
on the original record. By reducing PCAP to every 2nd packet, we managed to generate relatively
successful configurations for some PCAP files, while by reducing input to every 3rd packet, we
didn’t find any successful configuration. To create our configurations, we do not use sampled
PCAPs.

The XXH3 64bits (section 4.3) with sorted flows (section 3.2) were used to reduce the eval-
uation time of generations. We present results comparing found configurations for the genetic
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Figure 4.4 Count of new packets per second in Sh PCAP

algorithm and simulated annealing in Table 4.20-4.23.
We can notice that for the majority of PCAP files, adaptive policies brought a slowdown.

The genetic algorithm or simulated annealing configurations itself cannot slow down the cache in
runtime, as their impact on the run is few memory and arithmetic operations for every packet.
The source of the slowdown is the distance predictor for PCAP files, where found configurations
did not significantly differ from the original LRU configuration, and the increase of cache hits
did not pay off the price of prediction for every packet.

Algorithms found the configurations with better hit/miss statistics for all PCAP files, while
the significant improvement is shown only on Mawi PCAP (Table 4.23).

Every presented configuration for the genetic algorithm and simulated annealing is the best
of the five generated configurations. Still, all configurations differed only slightly, and to achieve
almost the same results, we could create only one configuration for every PCAP file. Also, we
can notice almost no difference between the results of configurations provided by the genetic
algorithm and those of simulated annealing with taboo list.

4.5 Multi thread optimization
In this section, we use configuration with the default LRU, using XXH3 64bits hash function to
hash sorted flows. Results of the comparison are presented in Table 4.24.
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Figure 4.5 Count of new flows per second in Tul PCAP

Figure 4.6 Count of new packets per second in Tul PCAP
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Figure 4.7 Count of new flows per second in Mawi PCAP

Figure 4.8 Count of new packets per second in Mawi PCAP
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Figure 4.9 Count of new flows per second in Mawi flood PCAP

Figure 4.10 Count of new packets per second in Mawi flood PCAP
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Table 4.1 Labels used to compare cache results

Hits – count of packets where the proper flow was successfully found in the cache.
Empty – count of packets, where proper flow was not found, but the row had an empty
place, and we didn’t need to export any flow to place new flow to the row.
Not empty – count of packets where the proper flow was not found, and the row had no
empty place, and we needed to export flow to place new flow to the row.
Exported – overall count of exported flows, including exports of expired flows or due to
lack of empty place in a row.
Avg. lookup – average count of checked cells in a row, before the proper flow was found.
Unsuccessful searches are not counted.
Var. lookup – variance of the average lookup.

Periodic – count flow flows exported in periodical exports of function export expired().
On finish – count of flows, including active and expired, that was in the cache when the
exit signal was accepted.

Time – average count of seconds spent in the cache. Packet processing and exporting time
included. Packet reading from input and writing to output excluded. Count of runs to
average – 5.

Table 4.2 Traffic PCAP statistics

Protocol Flows Packets Bytes

TCP 281 305 10 134 741 9 466 938 155
TCP (%) 69.6 66.6 69.6

UDP 112 510 4 977 507 4 129 882 362
UDP (%) 27.8 32.7 30.3

ICMP 5 323 12 236 912 928
ICMP (%) 1.12 0.08 0.003

DNS 54 456 91 249 15 925 411
DNS (%) 13.4 0.6 0.1
SSL/TLS 83 687 6 890 495 6 622 891 749

SSL/TLS (%) 20.7 45.3 48.7

Total 403 972 15 204 703 13 598 309 979
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Table 4.3 Sh PCAP statistics

Protocol Flows Packets Bytes

TCP 398 216 40 837 004 44 507 978 384
TCP (%) 72.8 87.6 93.7

UDP 121 469 5 505 412 2 977 366 682
UDP (%) 22.2 11.8 6.2

ICMP 27 024 217 643 4 018 179
ICMP (%) 4.9 0.4 0.008

DNS 70 600 138 130 14 115 324
DNS (%) 12.9 0.2 0.02
SSL/TLS 13 185 29 257 645 33 026 567 520

SSL/TLS (%) 2.4 62.8 69.5

Total 546 772 46 567 434 47 489 385 503

Table 4.4 Tul PCAP statistics

Protocol Flows Packets Bytes

TCP 1 035 007 41 178 500 1 008 741 494
TCP (%) 77.4 81.09 93.1

UDP 256 602 8 780 681 70 639 299
UDP (%) 19.1 17.2 6.5

ICMP 43 538 129 258 3 048 034
ICMP (%) 3.2 0.2 0.2

DNS 468 468 53 331
DNS (%) 0.03 0.0004 0.002
SSL/TLS 15 381 35 467

SSL/TLS (%) 0.0014 0.0007 0.003

Total 1 337 211 50 781 008 1 082 600 789

Table 4.5 Mawi PCAP statistics

Protocol Flows Packets Bytes

TCP 508 725 15 841 821 410 695 428
TCP (%) 47.9 53.6 78.4

UDP 480 836 12 809 017 107 885 132
UDP (%) 45.3 43.3 20.6

ICMP 10 670 73 254 492 764
ICMP (%) 1.005 0.2 0.08

DNS 261 934 451 080 9 021 576
DNS (%) 24.6 1.5 18.8

Total 1 061 040 29 535 029 523 396 592
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Table 4.6 Mawi flood PCAP statistics

Protocol Flows Packets Bytes

TCP 664 922 21 719 710 571 003 272
TCP (%) 45.3 72.9 88.4

UDP 712 037 7 075 196 68 891 392
UDP (%) 48.6 23.7 10.6

ICMP 18 069 240 589 1 011 196
ICMP (%) 1.2 0.8 0.15

DNS 465 360 1 024 139 20 482 756
DNS (%) 31.7 3.4 3.1

Total 1 464 887 29 790 632 645 897 256

Table 4.7 Comparison of flow hashing with and without sorting on Traffic PCAP

Hashing Hits Empty Not empty Exported Avg. lookup Var. lookup Time (s)

Unsorted 14 719 870 131 083 353 761 484 833 1.21 1.18 5.9
Sorted 14 719 801 131 083 353 830 484 902 1.21 1.18 5.3

Table 4.8 Comparison of flow hashing with and without sorting on Sh PCAP

Hashing Hits Empty Not empty Exported Avg. lookup Var. lookup Time (s)

Unsorted 45 852 498 719 233 0 719 190 1.0 0.01 12.4
Sorted 45 852 452 719 235 0 719 192 1.0 0.01 11.5

Table 4.9 Comparison of flow hashing with and without sorting on Tul PCAP

Hashing Hits Empty Not empty Exported Avg. lookup Var. lookup Time (s)

Unsorted 48 854 366 766 063 1 163 324 1 929 336 1.09 0.75 19.7
Sorted 48 854 559 767 514 1 163 700 1 929 123 1.09 0.75 16.5

Table 4.10 Comparison of flow hashing with and without sorting on Mawi PCAP

Hashing Hits Empty Not empty Exported Avg. lookup Var. lookup Time (s)

Unsorted 28 285 118 1 248 250 1476 1 247 388 1.22 0.99 11.4
Sorted 28 285 141 1 248 132 1597 1 247 391 1.22 0.99 10.0
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Table 4.11 Comparison of different hash functions on Traffic PCAP

Hashing Hits Empty Not empty Exported Avg. lookup Var. lookup Time (s)

XXH64 14 719 801 131 083 353 830 484 902 1.21 1.18 5.3
Toeplitz 14 755 882 131 749 317 749 448 821 1.2 1.12 5.9
CRC32c 14 719 537 131 083 354 094 485 166 1.21 1.18 6.3

XXH3 64bits 14 719 855 131 084 353 776 484 848 1.21 1.18 4.6
XXH3 128bits 14 719 810 131 083 353 821 484 893 1.21 1.18 4.8
MurMurHash 14 719 673 131 156 353 958 485 030 1.21 1.18 6.9

FarmHash 14 719 742 131 154 353 889 484 961 1.21 1.18 5.6
SuperFastHash 14 719 792 131 157 353 839 484 911 1.21 1.19 6.9

Table 4.12 Results of ipfixprobe run on Traffic PCAP with strict flow comparison by key fields

Hashing Hits Empty Not empty Exported Avg. lookup Var. lookup

Toeplitz hash with strict comparison 14 715 010 131 083 358 621 489 693 1.27 1.51

Table 4.13 Comparison of different hash functions on Sh PCAP

Hashing Hits Empty Not empty Exported Avg. lookup Var. lookup Time (s)

XXH64 45 852 452 719 235 0 719 192 1.0 0.01 11.5
Toeplitz 45 852 499 719 387 0 719 188 1.0 0.01 17.1
CRC32c 45 852 542 719 235 0 719 192 1.0 0.01 14.3

XXH3 64bits 45 852 482 719 235 0 719 192 1.0 0.01 9.3
XXH3 128bits 45 852 468 719 235 0 719 192 1.0 0.01 9.5
MurMurHash 45 852 497 719 391 0 719 192 1.0 0.01 15.8

FarmHash 45 852 481 719 391 0 719 192 1.0 0.01 13.0
SuperFastHash 45 852 512 719 386 0 719 187 1.0 0.01 14.7

Table 4.14 Comparison of different hash functions on Tul PCAP

Hashing Hits Empty Not empty Exported Avg. lookup Var. lookup Time (s)

XXH64 48 854 559 767 514 1 163 700 1 929 123 1.09 0.75 16.5
Toeplitz 48 854 686 765 422 1 163 684 1 929 055 1.09 0.75 18.9
CRC32c 48 854 470 765 862 1 163 410 1 929 220 1.09 0.75 19.1

XXH3 64bits 48 854 637 765 809 1 163 314 1 929 072 1.09 0.75 12.8
XXH3 128bits 48 854 331 765 739 1 163 638 1 929 327 1.09 0.75 14.0
MurMurHash 48 854 325 766 650 1 164 811 1 929 373 1.09 0.75 19.1

FarmHash 48 854 369 767 478 1 163 936 1 929 323 1.09 0.75 15.9
SuperFastHash 48 854 385 768 285 1 163 094 1 929 284 1.09 0.75 17.8
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Table 4.15 Comparison of different hash functions on Mawi PCAP

Hashing Hits Empty Not empty Exported Avg. lookup Var. lookup Time (s)

XXH64 28 285 141 1 248 132 1597 1 247 391 1.22 0.99 10.0
Toeplitz 28 295 152 1 240 217 900 1 237 305 1.22 0.98 11.0
CRC32c 28 285 146 1 248 712 986 1 247 358 1.22 0.99 11.1

XXH3 64bits 28 285 051 1 248 091 1652 1 247 405 1.22 0.99 8,6
XXH3 128bits 28 285 079 1 248 086 1640 1 247 388 1.22 0.99 8,9
MurMurHash 28 285 128 1 256 681 1587 1 247 380 1.22 0.99 11.8

FarmHash 28 285 128 1 256 632 1664 1 247 408 1.22 0.99 9.8
SuperFastHash 28 285 105 1 256 595 1683 1 247 383 1.22 0.99 12.7

Table 4.16 Comparison of different row policies on Traffic PCAP

Hashing Hits Empty Not empty Exported Avg. lookup Var. lookup Time (s)

LRU 14 719 801 131 083 353 830 484 902 1.21 1.18 5.3
LRU - heap 14 712 720 131 154 360 911 491 983 3.23 5.5 5.9
LIRS(1:15) 14 499 773 128 617 576 559 708 915 1.8 0.6 7.4

LRU - 2Q - simplified(1:1) 14 710 690 268 711 225 403 494 013 1.24 1.5 5.0
LRU - 2Q - simplified(1:3) 14 666 492 331 365 206 905 538 211 1.2 1.1 4.8
LRU - 2Q - simplified(3:1) 14 718 996 250 398 235 406 485 707 1.26 2.0 5.2

LRU - 2Q - full(5:5:6) 14 713 047 168 952 322 785 498 812 7.6 19.5 5.9
LRU - 2Q - full(2:1:1) 14 706 709 165 555 332 521 504 330 8.2 27.5 5.9
LRU - 2Q - full(1:2:1) 14 703 743 198 062 302 970 508 904 8.8 29.5 5.3
LRU - 2Q - full(1:1:2) 14 713 951 165 648 325 186 497 420 6.5 12.1 5.8

Flow-driven 14 652 373 131 458 425 144 556 216 6.0 24.9 11.8

Table 4.17 Comparison of different row policies on Sh PCAP

Hashing Hits Empty Not empty Exported Avg. lookup Var. lookup Time (s)

LRU 45 852 452 719 235 0 719 192 1.0 0.01 11.5
LRU - heap 45 852 452 719 391 0 719 192 2.2 1.5 15.8
LIRS(1:15) 45 851 396 720 710 0 918 242 1.8 0.12 20.7

LRU - 2Q - simplified(1:1) 45 860 512 715 148 0 712 858 1.06 0.92 13.4
LRU - 2Q - simplified(1:3) 45 862 959 715 024 0 712 720 1.06 0.92 12.4
LRU - 2Q - simplified(3:1) 45 859 343 715 299 0 713 251 1.06 0.92 14.4

LRU - 2Q - full(5:5:6) 45 852 459 719 387 0 723 123 2.2 2.4 14.2
LRU - 2Q - full(2:1:1) 45 852 452 719 391 0 719 255 2.2 1.5 13.3
LRU - 2Q - full(1:2:1) 45 852 503 719 376 0 730 758 2.5 5.9 12,7
LRU - 2Q - full(1:1:2) 45 852 503 719 376 0 730 728 2.3 3.0 14.2

Flow-driven 45 848 909 726 924 0 731 882 2.0 1.5 24.5
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Table 4.18 Comparison of different row policies on Tul PCAP

Hashing Hits Empty Not empty Exported Avg. lookup Var. lookup Time (s)

LRU 48 854 559 767 514 1 163 700 1 929 123 1.09 0.75 16.5
LRU - heap 48 839 271 719 391 1 688 819 1 942 761 3.3 6.0 19.4
LIRS(1:15) 48 768 200 1 158 234 865 095 2 030 254 1.8 0.6 22.9

LRU - 2Q - simplified(1:1) 48 853 095 939 740 994 757 1 929 930 1.09 0.77 14.8
LRU - 2Q - simplified(1:3) 48 814 557 941 892 1 028 081 1 966 928 1.07 0.55 14.7
LRU - 2Q - simplified(3:1) 48 848 316 1 100 131 839 811 1 935 663 1.11 1.15 16.6

LRU - 2Q - full(5:5:6) 48 849 066 708 100 1 228 684 1 940 834 8.3 17.5 18.7
LRU - 2Q - full(2:1:1) 48 843 505 636 025 1 305 556 1 945 230 9.1 26.1 17.9
LRU - 2Q - full(1:2:1) 48 845 101 673 763 1 266 157 1 945 283 9.8 25.9 16.8
LRU - 2Q - full(1:1:2) 48 847 310 794 650 1 144 004 1 941 877 7.13 10.6 18.1

Flow-driven 48 808 366 1 028 793 979 030 2 006 332 6.2 18.2 32.4

Table 4.19 Comparison of different row policies on Mawi PCAP

Hashing Hits Empty Not empty Exported Avg. lookup Var. lookup Time (s)

LRU 28 285 141 1 248 132 1597 1 247 391 1.22 0.99 10.0
LRU - heap 28 285 218 1 255 763 2438 1 247 313 2.6 4.7 10.7
LIRS(1:15) 28 281 284 1 263 536 2888 1 380 331 2.1 0.85 14.2

LRU - 2Q - simplified(1:1) 28 318 367 1 252 540 964 1 213 247 1.5 5.3 9.8
LRU - 2Q - simplified(1:3) 28 257 153 1 298 764 350 1 276 214 1.4 5.3 9.0
LRU - 2Q - simplified(3:1) 28 316 730 1 250 889 1234 1 214 387 1.5 5.3 9.5

LRU - 2Q - full(5:5:6) 28 298 868 1 252 215 1538 1 304 653 3.8 14.7 9.8
LRU - 2Q - full(2:1:1) 28 287 860 1 255 539 1622 1 287 123 3.3 10.8 9.7
LRU - 2Q - full(1:2:1) 28 294 863 1 256 626 968 1 306 702 4.5 24.7 10.8
LRU - 2Q - full(1:1:2) 28 304 334 1 250 511 1603 1 296 226 3.6 11.6 10.0

Flow-driven 28 353 325 1 354 645 2355 1 357 378 3.1 5.4 20.1

Table 4.20 Comparison of configurations found by genetic algorithm and simulated annealing against
the default LRU policy on Traffic PCAP

Algorithm Hits Empty Not empty Exported Avg. lookup Var. lookup Time (s)

Genetic algorithm 14 720 426 131 154 353 205 484 277 1.23 1.46 4.9
Simulated annealing 14 720 434 131 154 353 197 484 269 1.23 1.46 4.9

Original LRU 14 719 855 131 084 353 776 484 848 1.21 1.18 4.6
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Table 4.21 Comparison of configurations found by genetic algorithm and simulated annealing against
the default LRU policy on Sh PCAP with cache size reduced to 211

Algorithm Hits Empty Not empty Exported Avg. lookup Var. lookup Time (s)

Genetic algorithm 45 735 221 3327 828 988 832 135 1.1 0.67 9.8
Simulated annealing 45 735 031 3092 829 413 832 324 1.1 0.66 9.8

Original LRU 45 727 525 2636 837 348 839 807 1.1 0.59 9.3

Table 4.22 Comparison of configurations found by genetic algorithm and simulated annealing against
the default LRU policy on Tul PCAP

Algorithm Hits Empty Not empty Exported Avg. lookup Var. lookup Time (s)

Genetic algorithm 48 860 695 727 291 1 202 999 1 927 393 1.4 1.19 13.5
Simulated annealing 48 860 495 767 791 1 162 866 1 928 240 1.27 0.87 13.2

Original LRU 48 854 637 765 809 1 163 314 1 929 072 1.09 0.75 12.8

Table 4.23 Comparison of configurations found by genetic algorithm and simulated annealing against
the default LRU policy on Mawi PCAP with cache size reduced to 211

Algorithm Hits Empty Not empty Exported Avg. lookup Var. lookup Time (s)

Genetic algorithm 25 402 836 6100 4 118 823 4 120 993 3.22 15.4 9.1
Simulated annealing 25 398 664 6245 4 122 996 4 125 165 3.2 15.7 9.1

Original LRU 25 058 603 4154 4 463 114 4 465 193 3.09 13.2 11.1
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As Traffic PCAP does not contain any expired flow, the only interesting part is the time,
where we can observe a significant improvement of 35%. The Sh PCAP file has good statistics,
too; exporting once per 1700ms is enough to achieve results similar to the original implementation
while having an advantage in time over 24%. Exporting once per 900ms is enough to achieve
almost equal results to the original implementation, still having an advantage in time. For the
Tul PCAP, higher export frequency is required to achieve original results. Export once per 10ms
achieves original results while still having an advantage in time of 5%.

Mawi PCAP acts very similar to Tul PCAP.
Multithread optimization seems useful; we add this feature for live test builds with a sleep

time of 1500ms.

4.6 Flood detection
As we can see on a graph of new flows (Figure 4.9), the record contains one peek of attacks – a
first peek at 7:00:46. Two other peeks seem to be significant too, but the count of new flow is
comparable to the peek of Tul PCAP (Figure 4.5).

Figure 4.11 Illustration of flood detection.

Comparison of the St and the threshold Tcusum,t illustrated in Figure 4.11. The algorithm
detects (ignoring the initial peak) only the attack at 7:00:46 but not the subsequent peaks.
This behavior occurs because of the algorithm design: the calculations of the cumulative sum
are connected with the average count of cache misses, which is very high after the first peak,
meaning that the first high peak blocks the detection of other subsequent peaks with a lower
count of cache misses.



Chapter 5

Conclusion

In our work, we analyzed the cache of the ipfixprobe flow exporter with a focus on the performance
of the current implementation. We compared it with other existing solutions and identified
performance issues. To address found issues, we proposed a few approaches:

We experimentally tested many hash functions: XXH3 64bits, XXH3 128bits, XXH64,
CRC32c, FarmHash, Murmurhash, SuperFastHash, and Toeplitz hash on samples of real
traffic and found the best non-cryptographic hash function for the task of flow hashing.

Row management policies: LRU, LRU on the heap, LIRS, 2Q in simplified and full variants,
flow-driven rule caching; all replacement policies were tested on real traffic records.

We implemented an adaptive replacement policy based on a genetic algorithm with the pre-
dictor of the next packet arrival time. Based on that policy, we created our adaptive replace-
ment policy, which uses simulated annealing with a taboo list to search configurations. Both
configurations were tested on traffic records and compared.

We implemented and tested multi-thread optimization that effectively divides the work of
the cache into separate threads.

Flood detection system using exponentially weighted moving average extended by thresholds
and a cumulative sum was implemented and successfully tested on the record of DDoS attacks.

The most efficient and universal changes were added to the test version. According to the work
objectives, the cache was refactored. Finally, the cache, improved, refactored, and approved by
its maintainers, was sent back to the original repository with a pull request. After the effectivity
of the new version is tested on high loads, changes will become a part of the original repository,
making a new version that brings a higher cache hit ratio, lower working time, and more features,
i.e., increased service level, available for users.

Due to theme complexity and size, we didn’t manage to cover many other essential aspects of
flow cache optimizations, such as more profound research of possible usages of machine learning
in the area of flow processing or processor acceleration – usage of special fast processor instruction
in the task of flow caching, which can be a good theme for further researches in this area.
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Appendix A

Appendix

This chapter is dedicated to the less important data from the main chapters.

Detailed description of inner algorithms of ipfixprobe’s process packet can be found in algorithms
13-18

Algorithm 13 find flow
Input: Integer flow index, Packet packet
Output: Integer flow index, Boolean found - true if the flow was found
hash direct = XXH64(packet.src ip, packet.dst ip, packet.src port, packet.dst port,

packet.protocol, packet.ip version, packet.vlan id)
row begin = get row begin(low bits(hash direct))
for row begin ≤ i < row begin + cache line length do

if flow table[i].hash == hash direct then
flow index = i
return true

end if
end for
hash reversed = XXH64(packet.dst ip, packet.src ip, packet.dst port, packet.src port,

packet.protocol, packet.ip version, packet.vlan id)
row begin = get row begin(low bits(hash reversed))
for row begin ≤ i < row begin + cache line length do

if flow table[i].hash == hash reversed then
flow index = i
return true

end if
end for
return false
return

Additional algorithms for adaptive row policy are at table A.1 and alg. 19-29
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Algorithm 14 enhance flow position
Input: index of the flow to enhance flow index
row begin = get row begin(flow index)
circular shift(row begin, flow index)
//Flow that was on position flow index is now on row begin
return

Algorithm 15 create new flow
Input: index of the row start row begin, IP Packet packet
empty place = find empty place(row begin)
if empty place == NO EMPTY PLACE then

empty place = free place in row(row begin)
end if
create(empty place, packet)
return

Algorithm 16 find empty place
Input: index of the row start row begin
Output: index of the empty cell
for row begin ≤ i < row begin+cache line length do

if flow table[i].is empty() then
return i

end if
end for

Algorithm 17 circular shift
Input: index of the shift start start,index of the shift end end
temporary = flow table[start]
for start < i ≤ end do

flow table[i] = flow table[i − 1]
end for
flow table[start] = temporary
return

Algorithm 18 free place in row
Input: index of the row start row begin
Output: index of the empty cell
last row record = row begin + cache line length − 1
row middle index = row begin + cache line length

2
circular shift(row middle index, last row record)
export(row middle index)
return row middle index
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Algorithm 19 binary tournament
Input: generation to choose from generation
Output: best of two randomly chosen configurations
first = generation[random(0, generation.size()−1)]
second = generation[random(0, generation.size()−1)]
if first < second then

return first
else

return second
end if

Algorithm 20 create generation
Input: configuration to create generation from configuration
Output: generation created from seed
output = EMPTY GENERATION
while output.size() < generation size do

new solution = configuration
new solution.mutate()
output.add(new solution)
repeat

output.last configuration().mutate()
//If we discover, that a duplicate to an existing configuration was generated, we call
mutation operation until the configuration is unique.

until NOT output.all configurations are unique()
end while
return output

Algorithm 21 mutate
Input: configuration to mutate configuration
Output: mutated configuration configuration
repeat

new solution = configuration
new solution.mutate counts()
new solution.fix counts()
new solution.mutate counts by one()
new solution.fix counts()
new solution.mutate increment()
new solution.fix targets()
new solution.mutate targets()
new solution.fix targets()
new solution.mutate targets by one()
new solution.fix targets()
new solution.mutate insert position()

until new solution == configuration
return new solution
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Algorithm 22 mutate counts
Input: configuration to mutate configuration
Output: mutated configuration configuration
flows in row = configuration.length()
for all tuple in configuration do

if random(0.2) then
tuple.count = random(1, flows in row

4 )
end if

end for

Algorithm 23 fix counts
Input: configuration to fix configuration
Output: fixed configuration configuration
flows in row = configuration.length()
repeat

sum = 0
for all tuple in configuration do

sum += tuple.count
end for
random tuple index = random(0, configuration.tuple count() − 1)
if sum > flows in row AND configuration.tuples[random tuple index].count > 1 then

configuration.tuples[random tuple index].count -= 1
else if sum < flows in row then

configuration.tuples[random tuple index].count += 1
end if

until sum ̸= flows in row

Algorithm 24 mutate counts by one
Input: configuration to mutate configuration
Output: mutated configuration configuration
for all tuple in configuration do

if random(0.4) then
if random(0.5) AND tuple.count ̸= 1 then

tuple.count -= 1
else

tuple.count += 1
end if

end if
end for

Algorithm 25 mutate increment
Input: configuration to mutate configuration
Output: mutated configuration configuration
for all tuple in configuration do

if random(0.3) then
tuple.increment = NOT tuple.increment

end if
end for
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Algorithm 26 fix targets
Input: configuration to fix configuration
Output: fixed configuration configuration
for 0 ≤ tuple index < configuration.tuple count() − 1 do

current tuple = configuration.tuples[tuple index]
next tuple = configuration.tuples[tuple index + 1]
if current tuple.increment == true AND current tuple.target + current tuple.count >
next tuple.target then

next tuple.target = current tuple.target + current tuple.count
else if current tuple.target > next tuple.target then

swap(current tuple.target, next tuple.target)
end if
if next tuple.target > current tuple.target then

next tuple.target = current tuple.target + current tuple.count
end if

end for

Algorithm 27 mutate targets
Input: configuration to mutate configuration
Output: mutated configuration configuration
possible target maximum = 0
for all tuple in configuration do

possible target maximum += tuple.count
if random(0.2) then

tuple.count = random(0,possible target maximum − 1)
end if

end for

Algorithm 28 mutate targets by one
Input: configuration to mutate configuration
Output: mutated configuration configuration
//Exclude the first and the last tuple from the loop
for 1 ≤ i < configuration.tuples count() − 1 do

tuple = configuration.tuples[i]
if random(0.4) then

if random(0.5) then
tuple.target -= 1

else
tuple.target += 1

end if
end if

end for
last tuple = configuration.tuples[configuration.tuples count() − 1]
if random(0.4) then

tuple.target -= 1
end if
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Table A.1 Random generation functions.

The function random(p) returns true with probability p.

The function random(a,b) returns a random integer number from the uniform distribution
over the interval [a, b].

Algorithm 29 mutate insert position
Input: configuration to mutate configuration
Output: mutated configuration configuration
flows in row = configuration.length()
if random(0.2) then

configuration.insert position = random(0, flows in row − 1)
end if
if random(0.2) then

configuration.offset short = random(− cache line length
2 , cache line length

2 )
end if
if random(0.2) then

configuration.offset medium = random(configuration.offset short, cache line length
2 )

else
configuration.offset medium =
max(configuration.offset medium, configuration.offset short)

end if
if random(0.2) then

configuration.offset long = random(configuration.offset medium, cache line length
2 )

else
configuration.offset long =
max(configuration.offset long, configuration.offset medium)

end if
if random(0.2) then

configuration.offset never = random(configuration.offset long, cache line length
2 )

else
configuration.offset never =
max(configuration.offset never, configuration.offset long)

end if
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Appendix

This section is dedicated to compilation and run of ipfixprobe.

B.1 Compilation

Code listing B.1 Steps required to compile ipfixprobe
autoreconf -i
./ configure # or ./ configure --with -pcap to compile with pcap plugin
make
sudo make install

B.2 Run

Code listing B.2 Examples of ipfixprobe run with different plugins
# Capture from eth0 interface using raw sockets , print flows to console
./ ipfixprobe -i ’raw;ifc=eth0 ’ -o ’text ’

#Read input by pcap plugin from eth0 using cache with cache size 2ˆ16
and row length 2ˆ4 with output including mac addresses printed to
console

./ ipfixprobe -i ’pcap;ifc=eth0 ’ -s ’cache;’ -o ’text;m’

#Read input by pcap plugin from eth0 using cache with cache size 2ˆ17
and row length 2ˆ3 with output including mac addresses printed to
console

./ ipfixprobe -i ’pcap;ifc=eth0 ’ -s ’cache;s=17;l=3’ -o ’text;m’
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