
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Security analysis of Globalping probes

Viktor Tyúkos

Ing. Martin Kolárik

Informatics

Information Security 2021

Department of Information Security

until the end of summer semester 2024/2025

Instructions

Globalping is an open-source platform that allows anyone to run networking commands

(ping, traceroute, dig, curl, and mtr) on probes distributed around the world. The probes

are run mainly by volunteers, often in their homes or other private networks.

Proceed in the following steps:

1. Familiarize yourself with the Globalping platform features, architecture, and security

practices.

2. Research selected competing platforms and compare them in terms of features and

security practices. Discuss security-sensitive areas of the probes, possible attacks, and

existing countermeasures.

3. Analyze the source code of a Globalping probe and discuss your findings in terms of

the probe’s security.

4. If any security issue is found, include a risk assessment and a recommendation for

resolving it.

Electronically approved by prof. Ing. Róbert Lórencz, CSc. on 18 December 2023 in Prague.

Bachelor’s thesis

SECURITY ANALYSIS OF
GLOBALPING PROBES

Viktor Tyúkos

Faculty of Information Technology
Department of Information Security
Supervisor: Ing. Martin Kolárik
May 16, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Viktor Tyúkos. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Tyúkos Viktor. Security analysis of Globalping probes. Bachelor’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2024.

Contents

Acknowledgments vi

Declaration vii

Abstract viii

List of Acronyms ix

Introduction 1

1 The Globalping platform 3
1.1 The Globalping platform . 3
1.2 Architecture . 5
1.3 Security practices . 5

2 Competing platforms 7
2.1 RIPE Atlas . 7

2.1.1 Features . 7
2.1.2 Feature Comparison . 8
2.1.3 Security practices comparison . 8

3 Used methods 11
3.1 Threat modeling . 11

3.1.1 Threat categorization . 12
3.2 Analysis . 13

3.2.1 Used methodologies . 13

4 Threat Modeling the Globalping platform 15
4.1 Scope . 15
4.2 Decomposing the application . 15

4.2.1 External dependencies . 15
4.2.2 Entry and exit points . 16
4.2.3 Assets . 16
4.2.4 Trust levels . 17

4.3 Data flow diagram . 17
4.4 Summary of threats . 17

4.4.1 Injection . 18
4.4.2 Spoofing the probe . 18
4.4.3 Denial of service . 19
4.4.4 Host system information disclosure . 19

iii

iv Contents

5 Analyzing the Globalping probe 21
5.1 Scope . 21
5.2 Validating the stated security claims . 21
5.3 External dependencies . 23
5.4 Source code analysis . 23

5.4.1 index.ts . 23
5.4.2 Commands . 24
5.4.3 Handlers . 26

5.5 Summary . 27

6 Findings and mitigation 29
6.1 Lack of authentication on the API . 29

6.1.1 Scoring . 29
6.1.2 Remediation . 30

6.2 Insufficient input validation . 30
6.2.1 Scoring . 30
6.2.2 Remediation . 30

6.3 Improper rate limiting . 31
6.3.1 Scoring . 31
6.3.2 Remediation . 31

6.4 Insecure communication . 31
6.4.1 Scoring . 31
6.4.2 Remediation . 32

6.5 Outdated dependencies . 32
6.5.1 Scoring . 32
6.5.2 Remediation . 32

7 Discussion 33

8 Conclusion 35

Content of annexes 39

List of Figures

1.1 Reply to the sample request to perform a measurement. 4
1.2 Architecture of the Globalping Platform . 5

4.1 Data flow diagram of the Globalping platform . 17

5.1 Trying to scan a private IP address . 22
5.2 Trying to run 2 Globalping probes on a single public IP address 22
5.3 Sample network traffic during a test . 22
5.4 Port scan using Nmap . 23

List of Tables

2.1 Comparison of Globalping and RIPE Atlas feature set 9

3.1 Breakdown of STRIDE categories . 12
3.2 Breakdown of DREAD categories . 13

4.1 Table of external dependencies . 16
4.2 Table of entry points . 16
4.3 Table of assets . 16
4.4 Table of assets . 17

5.1 Table of assets . 23

List of code listings

1.1 Sample request to the Globalping API to perform a measurement. 4

5.1 Example of a joi validation schema used in the DNS command. 25
5.2 Example of argument parsing for the dig utility. 25
5.3 Example of executing a Linux binary. 26

v

First, I would like to thank my supervisor, Ing. Martin Kolárik,
for providing me with his knowledge and expertise while writing this
thesis. Additionally, I would like to express my gratitude to my
family and friends for all the support that I have received during my
studies.

vi

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact
that the Czech Technical University in Prague has the right to conclude a license agreement on
the utilization of this thesis as a school work pursuant of Section 60 (1) of the Act

In Prague on May 16, 2024

vii

Abstract

This thesis covers the topic of security analysis of the Globalping probe. It begins by intro-
ducing the Globalping platform and comparing it to some of its competitors. The thesis then
proceeds to model the implementation of the probe itself and the threat environment in which
the Globalping probe operates. Following that, the focus shifts to analyzing the security features
of the probe and its implementation. This process involves validating all of the claims made by
the Globalping development team and conducting a security analysis of the probe source code.
Although some security issues were discovered, none of them are critical but there remains a
space for improvement. Finally, all of the findings are summarized, and recommendations for
their mitigation are provided.

Keywords network probe, source code analysis, Globalping, jsDelivr, vulnerability analysis,
threat modeling

Abstrakt

Tato práce se zabývá tématem bezpečnostní analýzy sondy Globalping. Začíná představením
platformy Globalping a jejím porovnáním s některými jejími konkurenty. Poté práce pokračuje
modelováním implementace samotné sondy a prostředí hrozeb, ve kterém sonda Globalping
pracuje. Poté se pozornost přesouvá na analýzu bezpečnostních prvků sondy a její implementace.
Tento proces zahrnuje ověření všech tvrzení vývojového týmu Globalping a provedení bezpečnos-
tní analýzy zdrojového kódu sondy. Přestože byly objeveny některé bezpečnostní problémy,
žádný z nich není kritický, ale zůstává prostor pro zlepšení. Na závěr jsou shrnuta všechna
zjištění a uvedena doporučení pro jejich zmírnění.

Klíčová slova síťová sonda, analýza zdrojového kódu, Globalping, jsDelivr, analýza zranitel-
nosti, modelování hrozeb

viii

List of Acronyms

API Application Programming Interface
CDN Content Delivery Network

CVSS Common Vulnerability Scoring System
DDOS Distributed Denial of Service

DFD Data Flow Diagram
DNS Domain Name Service

HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure

IDE Integrated Development Environment
IP Internet Protocol

NAT Network Address Translation
NTP Network Time Protocol
SSL Secure Socket Layer

TCP Transmission Control Protocol
TLS Transport Layer Security

UDP User Datagram Protocol

ix

x List of Acronyms

Introduction

Globalping is an open-source platform that allows anyone to run networking commands like ping,
traceroute, dig, curl, and mtr on probes distributed around the world. These probes are mainly
run by volunteers, often within their homes or other private networks. For that reason, for this
network of probes to exist, the probes themselves need to be secure and trustworthy, to gain the
faith of the volunteers. Furthermore, the security of these probes is important to prevent the
disclosure of sensitive information or to prevent the abuse of this network as a botnet. Therefore,
the primary objective of this thesis is to perform a security analysis on these probes, ensuring
their safety and that they do not introduce new attack vectors on the machines or network of
the volunteers, who run them. As such this thesis will mainly be of interest to people that are
interested in hosting their probes and contributing to this global network.

Goals
The goal of this thesis is to perform a security analysis of the Globalping probes. In particular,
this thesis will consist of:

Analyzing the Globalping platform,

Exploring possible competitors and comparing them in terms of security and features,

Performing a threat model and source code analysis on the Globalping probes,

Suggesting remediation to any vulnerabilities discovered during the source code analysis.

My personal goals consist of:

Get hands-on experience with security analysis,

Broaden my horizons when it comes to the security of network probes,

Build upon the knowledge of computer networks that I acquired during my studies.

1

2 Introduction

Chapter 1

The Globalping platform

This chapter provides information about the features, architecture, and security practices of
the Globalping platform.

1.1 The Globalping platform
Globalping is a platform created by jsDelivr that enables users to execute networking commands
such as ping1, traceroute2, dig3 , curl4, or mtr5 on probes distributed all over the world
through a RESTful API (Application Programming Interface). This platform can be leveraged
to optimize your anycast network, monitor latency, debug routing, or even check for censorship
across different countries.

This is being accomplished through a series of probes, which can be hosted by anyone from
CDN (Content Delivery Network) providers to individual people. Access to this network of
probes can be achieved either through downloading a command-line application, usage of the
Globalping website or even taking advantage of Slack integration with their Slack app.

As for running a probe, it is as simple as downloading and running a docker container on a
machine connected to the internet or obtaining one of the hardware probes by donating to the
Globalping project.

To use the Globalping platform to perform tests, the users do not even need to be registered.
As such, anyone can run tests using Globalping. For a better understanding of these tests,
you can reference the sample request in Listing 1.1 and the sample reply in Figure1.1 on the
Globalping platform and the list of available tests below. [1]

Ping, allows for the measurement of network connectivity and latency between the probes
and the target.

Traceroute is used for displaying the network route and latency of each hop on the network.

DNS (Domain Name Service), using the dig command to query DNS records of the
specified domain.

HTTP (Hypertext Transfer Protocol), combines the curl GET and HEAD utilities and
the output is limited to 10kb.

1https://linux.die.net/man/8/ping
2https://linux.die.net/man/8/traceroute
3https://downloads.isc.org/isc/bind9/9.18.26/doc/arm/html/manpages.html#dig-dns-lookup-utility
4https://curl.se/
5https://linux.die.net/man/8/mtr

3

4 The Globalping platform

mtr, combines the utilities of the ping and traceroute commands.

{
"type":"ping",
"inProgressUpdates":true,
"target":"cdn.jsdelivr.net",
"limit":"10",
"locations":[

{
"magic":"World"

}
],
"measurementOptions":{

"packets":3
}

}

Listing 1.1 Sample request to the Globalping API to perform a measurement.

Figure 1.1 Reply to the sample request to perform a measurement.

Architecture 5

1.2 Architecture
The Globalping virtual probe is an open-source application written in TypeScript that has been
packaged in a Docker container, which allows it to run on any platform. When a user requests to
execute a network test, the Globalping API accepts the request and forwards it to the relevant
probe to be carried out. The probe then performs the test and replies to the API with the
results, which then replies to the user. For a more detailed look, you can refer to the data flow
diagram 1.2 below. [2]

Figure 1.2 Architecture of the Globalping Platform

1.3 Security practices
When it comes to security, the Globalping platform implements several security measures to
protect its users from any potential threats. The platform limits its users to hosting a single
probe per public IP (Internet Protocol) address, whether it is a software or hardware probe.
Additionally, the probe does not use a public IP address, making it possible to be placed inside a
private network behind NAT (Network Address Translation). Furthermore, the probe does not
open any TCP/UDP ports on the host machine.

All communication between the probe and the API is carried out through the HTTPS (Hy-
pertext Transfer Protocol Secure) protocol using TLS 1.3 (Transport Layer Security). Ensuring,
that the communication cannot be intercepted.

The Globalping platform limits its users to 100 POST requests to the API per minute per
IP address and a single measurement is limited to 200 probes in a single location or 500 probes
worldwide. Unauthenticated users can perform 100 tests per hour, while authenticated users
have this limit raised to 200 tests. A test is defined as a successful measurement, which means
that 100 tests can be understood as measuring 100 targets with a single probe or using 100
probes to measure a single target. This limitation helps prevent DOS (Denial of Service) attacks
on the probe or the platform as a whole. Additionally, it helps in preventing the flooding of the
user networks.

The Globalping platform keeps a database of domains and IP addresses associated with
malware or malicious activities and actively blocks them. The platform forbids and blocks the
measurement of private IP addresses, only public endpoints are valid targets for the tests. [3]

6 The Globalping platform

Chapter 2

Competing platforms

The following chapter will discuss the main competitors of the Globalping platform and their
approaches. Several platforms provide services that are similar to Globalping, some examples
may include DNSPerf, CDNPerf, PerfOps, and RIPE Atlas.

Most of these cannot be compared to Globalping as they either lack the features of Globalping,
do not offer an open network of probes, or both. As such it was decided to compare the Globalping
platform with the RIPE Atlas platform as it offers similar testing capabilities and uses an open
network of probes, at least partially hosted by users.

2.1 RIPE Atlas
RIPE Atlas, founded by the RIPE NCC (Network Coordination Centre), is a global network
of over 12000 probes. This platform offers capabilities to measure Internet connectivity and
reachability in real-time, providing insights into the state of the Internet. The data collected by
the platform is freely available, making the platform a popular choice with researchers.

While it is possible to create custom measurements, this feature requires credits that can be
earned either by hosting a probe or purchasing them. However, the process of hosting a probe is
not as straightforward as in the case of Globalping. If a user wants to host a RIPE Atlas probe,
first it is required to send a request to RIPE, which will then evaluate the need for a new probe
in the user’s location before deciding whether to send a probe to the new host. [4]

2.1.1 Features
The network of probes is used by RIPE Atlas to conduct the following types of measurements:

Ping, allows for the measurement of network connectivity and latency between the probes
and the target.

Traceroute is used for displaying the network route and latency of each hop on the network.

DNS (Domain Name Service), using the dig command to query DNS records of the
specified domain.

SSL (Secure Socket Layer)/TLS, allows displaying of the TLS certificate used by the
target.

NTP (Network Time Protocol), allows for the measurement of the time difference be-
tween a target and the probes.

7

8 Competing platforms

HTTP (Hypertext Transfer Protocol), allows for sending curl HEAD requests and
measuring the latency of the connection to the target.

RIPE Atlas provides two types of measurements: built-in and custom (user-defined).
Built-in measurements consist of ping, traceroute, DNS, SSL/TLS, and limited HTTP.

These measurements are automatically performed by all probes at regular intervals, using root
DNS servers and also some parts of the RIPE Atlas infrastructure as their targets. The results
of these measurements are publicly available on the RIPE Atlas website.

User-defined measurements can be carried out by RIPE Atlas probe hosts, anchor hosts,
sponsors, and NCC members. These custom measurements allow users to perform network tests
tailored to their individual needs. To create a custom measurement, the user is required to obtain
credits through hosting a probe, being a sponsor, being a RIPE NCC member, purchasing, or
through a transfer from another user.

A RIPE Atlas anchor acts both as an enhanced probe with higher measuring capacity, as
well as a regional target within the global RIPE Atlas network, making them able to collect
information from a number of RIPE Atlas probes. [5]

2.1.2 Feature Comparison
Both platforms offer their unique benefits. While Globalping by JsDelivr is geared more towards
the average user with its free real-time measurements, more streamlined UX, and a more modern
open-source approach, RIPE Atlas offers a more detailed and regular network analysis with
publicly available internet health data, which could be more beneficial to researchers and network
administrators. A more detailed comparison of features can be found in Table 2.1 below.

[6]

2.1.3 Security practices comparison
RIPE Atlas and Globalping share several security measures. These measures include avoiding
the opening of new TCP/UDP ports, supporting only outbound connections, and prohibiting
measurements of private networks.

In addition to these measures, RIPE Atlas uses mutual authentication between hosts and
infrastructure components. This makes obtaining a probe more difficult and helps prevent at-
tackers from connecting to the RIPE Atlas network with a spoofed probe.

While RIPE Atlas uses a more precise probe location, the exact location is obfuscated in a
radius of 1km to maintain user privacy.

The RIPE Atlas platform is built using shell, which may not be as secure as TypeScript.
However, the platform conducts periodic security tests on its infrastructure and publishes the
findings on its website. This demonstrates an initiative to keep the probe secure and up-to-date
with modern security standards. [7]

RIPE Atlas 9

Platform Globalping RIPE Atlas
Probe Network Quickly growing network, where

anyone can host a probe
Extensive global network. You
need to apply for the
opportunity to host a probe

Measurement
types

Real-time focused measurements
of: ping, traceroute, DNS,
HTTP (including SSL), and mtr.

Scheduled measurements of
ping, traceroute, DNS, HTTP,
SSL, and NTP.

Measurement and
Costs

Free of charge, but rate limited,
the limit can be raised by
becoming a sponsor

Measurements locked behind
credits, that need to be obtained

Internet Health
Monitoring

Does not offer public internet
health monitoring

Offers public access to all
measurements

Custom
monitoring
capabilities

yes yes

Use cases Designed to be used by users of
various backgrounds

Tailored for use by researchers,
academics or anyone who need
aggregated internet connectivity
data

Commercial use Does not differentiate between
private and commercial use

You need to follow certain rules
for commercial use

Data usage Measurement results are stored
only temporarily and only users
with the measurement link can
view them

All measurements are publicly
available

Tools and Integra-
tion

Provides user-friendly tools and
integration for custom develop-
ment

It is possible to find open-source
tools

Getting Involved Encourages users to host probes
or to contribute on GitHub

Encourages you to host probes or
anchors and to create open-source
tools

Table 2.1 Comparison of Globalping and RIPE Atlas feature set

10 Competing platforms

Chapter 3

Used methods

This section will cover the methodologies and general approach taken during the security analysis
of the Globalping platform.

The whole process can be divided into two parts. First, it is necessary to create a threat
model of the Globalping probe to assess possible threats and areas of focus for the analysis.
Then, the analysis itself will be performed. Both of these parts will require the usage of several
methodologies when it comes to achieving their respective goals and then evaluating and scoring
the results of these processes.

The following sections will provide further insight into both of these parts.

3.1 Threat modeling
Threat modeling is a process used to identify, understand, communicate, and mitigate threats
within a given context. A threat model is a structured representation of these findings, which
can be used to give a view into the environment through the lens of security. A typical threat
model includes:

Description of the subject to be modeled.

Assumptions that can be checked or challenged in the future as the threat landscape changes.

Potential threats to the system.

Actions that can be taken to mitigate each threat.

A way of validating the model, threats, and the verification of the actions taken to mitigate
these threats.

By combining all of this information it is possible to create a prioritized list of security
improvements to the concept, requirements, and implementation of the application. Threat
modeling should be a continuous process throughout the whole life cycle of the application.
It should begin during the initial planning phase and continue through the development and
implementation stages. [8]

In the context of security testing, threat modeling helps in focusing resources on the areas of
the system that are under a threat of being exploited. Thus, making the process of identifying
vulnerabilities more effective.

11

12 Used methods

3.1.1 Threat categorization
It is important to not only identify system threats but also to categorize and rank them. We
utilize the STRIDE and DREAD methodologies for categorization and ranking, respectively.

3.1.1.1 STRIDE
STRIDE is a threat modeling methodology used for categorizing threats into the following six
categories:

Spoofing,

Tampering,

Repudiation,

Information Disclosure,

Denial of Service,

Elevation of Privilege.

The goal of STRIDE is to provide each threat with a category, that can be used to create a
scenario of possible exploitation. For a more detailed description of these categories, please refer
to table 3.1

Threat type Description
Spoofing Using stolen or forged credentials to access a restricted resource.
Tampering Changing data in order to breach system security.
Repudiation Occurs when there is no proof of actions being performed.
Information Disclosure Disclosure of information to users, that do not have the authoriza-

tion to see it.
Denial of Service Is a type of attack that threatens the ability of a valid user to access

a resource.
Elevation of Privilege Is an attack where an unprivileged user gains privileged status.

Table 3.1 Breakdown of STRIDE categories

[9]

3.1.1.2 DREAD
Determining the potential occurrence and location of a threat to a tested application is not
sufficient. It is also crucial to evaluate the severity of the identified threats. DREAD is an
acronym that outlines the following criteria.

Damage potential

Reproducibility

Exploitability

Affected users

Discoverability

Analysis 13

To calculate the score for a particular threat, we assign a numerical value from 1 to 10 to
each factor based on its severity level, with 1 being the lowest and 10 being the highest. We then
add up the values assigned to these criteria and divide the resulting sum by 5. The higher the
score, the more critical the threat. The DREAD methodology is divided into categories, which
are explained in detail in Table 3.2. [9]

Threat type Description
Damage potential Assessing the damage resulting from an attack.
Reproducibility A measure of how successful an attacker will be in reproducing the

attack.
Exploitability Describes the ease of the attack and the required skill level of the

attacker.
Affected users Describes the scale of the user base, that is going to be affected by

this attack.
Discoverability Describes how easy it is for the threat to be identified by an attacker.

Table 3.2 Breakdown of DREAD categories

3.2 Analysis
Source code analysis, also known as static code analysis, is usually carried out early in the
implementation phase of the secure software development life cycle. It is performed as a part
of white box testing. Source code analysis commonly refers to running automated tools that
attempt to identify potential security vulnerabilities in a static, not running, source code. Many
of these tools are now integrated into programming IDEs (Integrated Development Environment).
However, it is important to note that these tools can not give definitive answers and there still
exists a need to manually analyze the source code of the application. [10]

3.2.1 Used methodologies
There are various methods used to analyze source code. Some examples may include Data flow
analysis, Taint analysis, and Lexical analysis. This work will utilize taint analysis to perform
source code analysis and CVSS 3.1 (Common Vulnerability Scoring System Version 3.1) to assign
scores to any vulnerabilities discovered during the analysis.

3.2.1.1 Taint analysis
In taint analysis, we attempt to identify variables that have been influenced by user input
(‘tainted’) and trace them to vulnerable functions, also known as ’sinks’. If the tainted vari-
able gets passed to a sink without being sanitized or validated, it is flagged as a vulnerability.
[10]

3.2.1.2 CVSS 3.1
The Common Vulnerability Scoring System 3.1 (CVSS 3.1) is a qualitative measure of severity.
It consists of three metric groups: base, temporal, and environmental. The base metric results
in a score from 0 to 10, which can then be further modified by the temporal and environmental
metrics. CVSS is an industry standard in scoring and ranking vulnerabilities, which is why it is
the preferred methodology for this thesis. [11] The base metric consists of the following metrics:

Attack Vector

14 Used methods

Attack Complexity

Privileges Required

User Interaction

Scope

Confidentiality

Integrity

Availability

Chapter 4

Threat Modeling the Globalping
platform

This section will contain the threat modeling of the Globalping probe and discuss possible threats,
their classification, and mitigation.

4.1 Scope
The purpose of this threat model is to get familiar with the Globalping probe application and
how it interacts with other entities. Based on this collected information, I will assess the security
threats to the probe, the host system, and the network of the host system. For this purpose, I
will create a data flow diagram to help visualize the inner workings of the probe. Utilizing this
new information will help in discovering and categorizing possible threats to the probe.

4.2 Decomposing the application
Application name: Globalping probe

Application version: 0.29.01,

Commit hash: bcf95e75927b89834fc17af982665990de67a112,

Description: The Globalping platform allows users to run a variety of networking commands
on probes distributed around the world. Users can choose to host their own probe and
contribute to this network. This analysis will further explore potential threats to these
probes.

4.2.1 External dependencies
External dependencies are libraries outside the control of the development team. As such, from
a security standpoint, it is important to monitor them for potential new vulnerabilities that then
may be introduced into the application through their usage. Hence, it is paramount to keep
these dependencies up-to-date.

Table 4.1 below contains the complete list of the external dependencies for the Globalping
probe, that were discovered during the analysis of the source code.

1https://github.com/jsdelivr/globalping-probe/tree/v0.29.0

15

16 Threat Modeling the Globalping platform

ID Name Version Description
1 Docker The probes run in a Docker container on the host

machines.
2 Websocket The communication with the API is done through

Websockets.
3 execa 7.2.0 Execa runs commands in applications.
4 got 12.6.1 An HTTP request library.
5 http2-wrapper 2.2.0 Use http2 as http1
6 joi 17.11.0 A schema description language and data validator.
7 lodash 4.17.21 A JavaScript utility library delivering modularity.
8 physical-cpu-count 2.0.0 Physical CPU core detection
9 socket.io-client 4.7.2 Realtime application framework
10 throng 5.0.0 A multiplexor written in Java
11 tldts 6.0.15 A library to extract hostnames, domains, public suf-

fixes, top-level domains, and subdomains from URLs.
12 winston 3.10.0 A simple and universal logging library.

Table 4.1 Table of external dependencies

4.2.2 Entry and exit points
Entry and exit points refer to the locations, where an application either receives or sends data. In
the case of the Globalping probe, all of the communication occurs with the Globalping API. This
communication flows through Websocket and all of the data supplied to the probe is the user
input. This can lead to potential injection attacks. Therefore, it is important to take additional
care during the analysis, especially in the area of sanitation and validation. 4.2

ID Name Description
1 Socket The node listens for requests to perform tests. These requests arrive

from the Globalping API.
Table 4.2 Table of entry points

4.2.3 Assets
Some assets of interest for the potential attacker might be the history of scans, but that is stored
on the API side and is out of the scope of our analysis. That leaves us with the computing
resources of the machine, that the probe is being run on and the network that it is connected to
as the main points of interest for the attacker. The complete list with more detailed descriptions
can be found in the Table 4.3 below:

ID Description
1 Host system
2 Host data
3 Host network

Table 4.3 Table of assets

Data flow diagram 17

4.2.4 Trust levels
During our analysis, we differentiate between 2 trust levels. The first one is assigned to processes
that are a part of the Globalping platform and the second one is assigned to external services,
that are in use by the platform, but are less trusted, as they are not under the control of the
Globalping development team.

ID Name Description
1 Trusted Components under the control of the development team at Globalping.
2 Untrusted External components. that are not under the control of the Globalping team.
Table 4.4 Table of assets

4.3 Data flow diagram
Based on the information received and analysis of the source code, a data flow diagram (DFD)4.1
has been compiled. The DFD represents the flow of data in the Globalping platform, with a
focus on the probe part of the platform. The circles on the diagram represent logical processes
running on the platform, whereas the arrows represent the flow of data.

Using this diagram and the information gathered, we have created a list of potential threats
that will be useful in the next chapter. Please note that the API is not included in this analysis,
but has been included in the diagram for the sake of clarity.

Figure 4.1 Data flow diagram of the Globalping platform

4.4 Summary of threats
This section will provide the summary and classification of threats. These threats are based on
the information obtained from the threat modeling process and require further validation. Each
threat contains a short description and is classified using the STRIDE methodology. Additionally,
each threat is rated according to the DREAD metric.

18 Threat Modeling the Globalping platform

4.4.1 Injection
A component is vulnerable to injection attacks when user input is incorrectly interpreted and
executed as code, instead of being handled correctly as data.

In the case of the platform, user input is forwarded to the probe to be executed as the payload
of a shell function. As a result, attackers could exploit this vulnerability to try and execute their
commands on the machines hosting the probes.
Classification
Classifying injection under the STRIDE methodology is a bit difficult, as it does not really fit
any of the categories, or depending on the viewpoint, fits multiple. For this thesis, I have opted
to go with the following categorization.

STRIDE: Tampering

DREAD: Injection vulnerabilities have the potential to cause a lot of damage to the appli-
cation or its host. These types of attacks are not always straightforward and often require
a certain level of skill to craft the right payload, but on the other hand, they can be easily
replicated. As all of the users host the same probe, the whole network would be affected in
case of an injection vulnerability. That gives a score of 7.6 with a more detailed breakdown
below.

Damage potential: 9
Reproducibility: 8
Exploitability: 6
Affected users: 9
Discoverability: 6

4.4.2 Spoofing the probe
Spoofing occurs when a process or entity is disguised as something other than its claimed identity
in order to deceive another party.

In the context of the Globalping platform, insufficient authentication of the connected probes
could lead to an attacker connecting a program to the Globalping network, causing the platform
to return incorrect values to supplied queries, collection of data by the attacker or other malicious
activities.
Classification Classifying this threat is quite self-explanatory, which leads to the following
classification:

STRIDE: Spoofing

DREAD: Spoofing the probe gives the attacker a reduced potential for damage. As the
Globalping probe is an open-source application, the potential attacker does not need a lot of
effort to change the source code, to alter the functionality of the probe. All of this combined
produces the following score of 6.8.

Damage potential: 6
Reproducibility: 8
Exploitability: 8
Affected users: 6
Discoverability: 6

Summary of threats 19

4.4.3 Denial of service
A component is vulnerable to Denial of service attacks when it can not serve legitimate incoming
requests due to external factors.

In the case of the probe, it means that the probe is not able to perform measurements
requested by the API, or even worse the probe can paralyze the API itself.
Classification
Denial of Service has its own category in STRIDE, which makes classifying it easy.

STRIDE: Denial of service

DREAD: Denial of service is not a difficult type of attack to be performed and can be
easily reproduced. Nevertheless, it does not have a significant impact on the users hosting
the probes. This gives us a score of 5.4.

Damage potential: 4
Reproducibility: 6
Exploitability: 7
Affected users: 4
Discoverability: 6

4.4.4 Host system information disclosure
Information disclosure occurs when a component reveals more information than the user is au-
thorized to access.

As the probes are hosted on user machines, it is important to ensure that the probe does not
disclose any information about the host machine.
Classification
Again, information disclosure has its own category under the STRIDE methodology, which makes
classifying this threat straightforward.

STRIDE: Information disclosure

DREAD: Probes leaking host information would affect the whole Globalping network. Based
on the associated infrastructure of the attack, this could prove to be trivial or quite difficult
to exploit. As such it is scored as 7.

Damage potential: 6
Reproducibility: 6
Exploitability: 8
Affected users: 9
Discoverability: 6

20 Threat Modeling the Globalping platform

Chapter 5

Analyzing the Globalping probe

Using the threats identified in the previous chapter, let us focus our attention on the in-depth
source code analysis of the Globalping probe application.

5.1 Scope
The main focus of this analysis is based on the findings from the threat modeling, where the main
focus will be on checking for various injection vulnerabilities in the codebase of the Globalping
probe application. These vulnerabilities pose the greatest threat to the application and it is
imperative. That the user-supplied input is correctly sanitized and validated. Naturally, the
scope will not be limited only to these vulnerabilities, and tests for other types of attack will
also be carried out. The tested version of the probe will be 0.29.0 with the particular git commit
being: bcf95e75927b89834fc17af982665990de67a112.

5.2 Validating the stated security claims
Let us begin by verifying the security features of the Globalping probe. Some of these features
can be considered to be out of scope as they involve the API, but after consultation, it was
decided to include them in this analysis.

Private IP detection
As can be seen in the provided example 5.1, the API correctly filters private IP addresses and
this validation is not being done on the browser as it could not be circumvented by altering
the request using BurpSuite. This feature also correctly detects domains, that have a DNS
A record towards a private IP address.

Single probe per Public IP address
As can be seen in Figure 5.2, when trying to run 2 probes on a Single machine or using a
separate virtual machine, the probe correctly detects another running instance and kills one
of the instances.

No public IP address for the probe
From the packet capture 5.3, it can be deduced that the probe does not use a public IP
address to perform tests or communicate with the API, as it uses the same private IP address
as the host PC.

21

22 Analyzing the Globalping probe

Figure 5.1 Trying to scan a private IP address

Figure 5.2 Trying to run 2 Globalping probes on a single public IP address

HTTPS communication
Below is a packet capture of the probe performing a test after receiving a request from the
API. As can be seen, not all of the transmitted data is secured.

Figure 5.3 Sample network traffic during a test

Rate limiting
The Globalping platform states a limit of 100 tests per hour for unauthenticated users and a
limit of 200 tests for authenticated users per hour. In practice, none of these limits apply as
even an unauthenticated user can perform thousands of measurements and what is more, at
the moment there is no way to log in as an authenticated user.
After clarifying this issue with the Globalping team, the authentication feature was confirmed
as currently in development, and as such these limits are currently not enforced.
This may lead to an attacker abusing the Globalping platform to perform DOS attacks on
other services.

Outgoing connections only
The probe does not establish incoming connections, as the probe initializes the connection to
the API and there are no services to connect to on the probe.

External dependencies 23

No additional ports
Running a probe does not in fact open new ports on the host machine as can be proven by
the Nmap scan 5.4 showcased below.

Figure 5.4 Port scan using Nmap

5.3 External dependencies
The external dependencies used by the application are secure, and there are currently no known
vulnerabilities found in the versions, that are in use. However, the application uses dated versions
of these libraries and thus, it is recommended to update these dependencies to their current
versions. Below in Table 5.1 is a list of all outdated dependencies and their newest versions at
the time of writing.

Name Used version Current version
Execa 7.2.0 9.0.2
Got 12.6.1 14.2.1

http2-wrapper 2.2.0 2.2.1
joi 17.11.0 17.13.1

socket.io-client 4.7.2 4.7.5
tldts 6.0.15 6.1.19

winston 3.10.0 3.13
Table 5.1 Table of assets

5.4 Source code analysis
The following section will cover the source code analysis of the Globalping probe.

5.4.1 index.ts
The class index takes care of initializing the probe after it is launched. It also handles establishing
a connection with the API and managing errors. Additionally, the class manages the calls to the
functions for running tests after receiving a request.

Let us break down these processes:
Initialization: During initialization, the probe checks if it is on the latest version, if not,
then the probe terminates itself and initiates a self-update mechanism. This process is accom-
plished by sending a GET request to the Globalping API and parsing the reply to obtain the

24 Analyzing the Globalping probe

new version of the probe. This is then compared to the current version and if a mismatch is
detected, the self-update mechanism starts. During this, the versions are once again checked,
the latest version of the probe is downloaded using curl and the files in the /app directory
are replaced by these new ones. This process is a standard way of handling updates on ap-
plications running in containers and can be considered secure as the source is the Globalping
API from where the new files are safely downloaded.
After this step is completed, the probe sets up periodic restarts and checks if the unbuffer
binary is installed on the system and again if not, then it is downloaded and installed. After
these steps are completed, the probe attempts to connect to the API.

Connection: The module then handles the connection to the API. During this process,
the node generates a random ID using the randomUUID() function from the node:crypto
library. This value is then used as a unique identifier of the probe. At no point during
the connection process does the API perform verification of the probe. This leaves the
possibility of an attacker posing as a probe while using a malicious program to spoof the
API. This connection is established using the WebSocket with the sw protocol, which creates
an unencrypted connection.

Connection error handling: In the case of a connection error, the probe tries to reconnect
after an established timeout period. This helps in not flooding the API with connection
requests if there is a problem with the probe.

Command handling: After receiving a request to perform a test, the module calls the
respective handler of the test and forwards the parameters to that handler.

Termination: After receiving the SIGTERM message from the API, the module handles the
graceful shutdown of the probe.

5.4.2 Commands
All of the commands except the HTTP command (which will be covered separately) are imple-
mented in a similar fashion. First, the handler function takes the user-supplied data. The user
input is then validated against a joi schema and fed to the function argbuilder to be turned
into arguments for the binary, that will be executed. Finally, the binary is executed using the
execa library, before parsing the output of the measurement and sending it back to the API.

This section deserves a closer look, as it takes, processes, and supplies user input to the
underlying binary file. We can define the argument options of the run method as a source and
the call to the execa function as a sink. Let us take a closer look at the flow of data between
these two points.

We begin by analyzing the joi data validation schema 5.1, as it is the first place the data
enters. We can see that most elements are properly validated with required types, default values,
or even lists of allowed values. But the element target is not being validated in all commands,
except html. Furthermore, when it comes to the mtr and traceroute commands we find that the
protocol element is not validated. Finally, in the DNS command, we can find an unvalidated
element resolver.

The user input is then forwarded to the argBuilder 5.2 function, where it is turned into
arguments for the respective function. Additionally, this function adds a number of predefined
arguments. All of this then gets returned as an array of all arguments.

If we return to the elements, that we defined as unvalidated in the paragraph before this
one, we can observe that the unvalidated element protocol, from the traceroute command, is
thrown out, if it does not equal TCP, thanks to the line:
const port = options.protocol === 'TCP' ? ['-p', `${options.port}`] : [];. The
element resolver from the DNS command, and the element protocol from the mtr command are

Source code analysis 25

const dnsOptionsSchema = Joi.object<DnsOptions>({
type: Joi.string().valid('dns'),
inProgressUpdates: Joi.boolean(),
target: Joi.string(),
resolver: Joi.string().optional(),
protocol:

Joi.string().valid(...allowedProtocols).optional().default('udp'),↪→

port: Joi.number().optional().default('53'),
trace: Joi.boolean().optional().default(false),
query: Joi.object({

type:
Joi.string().valid(...allowedTypes).optional().default('A'),↪→

}),
});

Listing 5.1 Example of a joi validation schema used in the DNS command.

forwarded as @${options.resolver}. and --${options.protocol} respectively. That leaves
us with the element target, which is added to the array as is, without any changes.

export const argBuilder = (options: DnsOptions): string[] => {
const protocolArg = options.protocol.toLowerCase() === 'tcp' ? '+tcp' :

[];↪→

const resolverArg = options.resolver ? `@${options.resolver}` : [];
const traceArg = options.trace ? '+trace' : [];
const queryArg = options.query.type === 'PTR' ? '-x' : ['-t',

options.query.type];↪→

.

.

.

return args;
};

Listing 5.2 Example of argument parsing for the dig utility.

The command is then ran using the execa function with the unbuffer binary so that the
output is received in one go. Below is an example with the dig binary.5.3.

It is important to note, that the user-supplied data is also validated on the API level, where
the validation is much more thorough but we will not go into more detail as the API is out of
scope for this analysis. But, this fact does not excuse the weaker authentication on the probe,
even though it does not introduce a vulnerability, it violates the principle of defense in depth.

Continuing to the output handling. The application parses the output and sends the parsed
data back to the API. During the parsing process, the application performs checks for private
IP addresses using a blocklist implemented in the class private-ip. If a private IP address
is detected, an error is returned to the API.

26 Analyzing the Globalping probe

export const dnsCmd = (options: DnsOptions): ExecaChildProcess => {
const args = argBuilder(options);
return execa('unbuffer', ['dig', ...args]);

};

Listing 5.3 Example of executing a Linux binary.

5.4.2.1 http-command
The http command is singled out because, in contrast to other commands, that execute Linux
binaries, this command is implemented directly in the source code. The structure is the same as
the other commands.

To begin with, the user input is validated using a Joi schema with the correct level of strict-
ness. However, unlike the other commands, there is no argbuilder function. Instead, the
urlBuilder function takes the user-supplied data and builds the target URL using it.

Next, the data moves to the httpCmd function, which builds the HTTP request and sends it
to the target. One possible improvement to this function would be to separate the building of the
request into a separate function to keep the pattern more in line with the rest of the codebase.

It is interesting to note that the check if the target is a private IP address happens in the
DNS resolver.

Finally, the implementation then continues with parsing the output. Again, unlike the other
command implementations, the parsing is implemented in the HttpCommand class, instead of
being implemented in a helper class as is the case with other commands.

5.4.3 Handlers
Handlers represent a group of functions to parse output from the dig, http, mtr, and ping
commands. Each of these utilities has its dedicated parser, that properly handles any non-
standard output states. The output from these binaries is parsed, converted to JSON, and
finally sent back to the API. The content is parsed based on regular expressions. The only
outlier is again the http utility, which instead of a parser implements a DNS resolver in the
handler folder.

5.4.3.1 Sending data to the API
The classes progress-buffer-overwrite and progress-buffer are responsible for sending measurement
data back to the API and the user. As their names suggest, these classes accumulate data before
periodically sending it in predefined intervals after a timeout is triggered. This is helpful in not
flooding the network with unnecessary messages. The timeout period is set sensibly and there
are no security issues with the implementation.

5.4.3.2 Error handling and logging
Logs are created using the Winston library and each scope has its own logger. This helps the
readability of the logs. The logs are only local and are not being sent to the API. Their structure
is well-defined and readable. All of this is handled by the class logger.

When it comes to error handling the probe defines the class internal-error that extends the
default error class. API errors are handled by the api-error-handler. And the execa errors are
handled by the execa-error check. If an error occurs, it is well handled and logged.

Summary 27

5.5 Summary
In summary, the Globalping probe has the following vulnerabilities: Lack of authentication
on the API, Insufficient input validation, Improper rate limiting, Insecure communication, and
outdated dependencies. None of these pose a significant threat to the hosts of the probe, as the
platform also validates input at the API, and the other vulnerabilities pose a bigger threat to
the platform, than to the individual hosts. All of these vulnerabilities will be discussed in more
detail in the next chapter. Other than that, the application shows a well thought out design
with good security practices.

28 Analyzing the Globalping probe

Chapter 6

Findings and mitigation

The findings of the security analysis of the Globalping platform are summarized in the following
chapter. The security analysis consisted of validating the individual security claims made by
the Globalping team, followed by a security analysis of the source code of the application. This
analysis uncovered the following findings:

Lack of authentication on the API

Insufficient input validation

Improper rate limiting

Insecure communication

Outdated dependencies

Under correct circumstances, these flaws could lead to a breach of confidentiality and integrity
in the future.

For a more detailed description of these vulnerabilities, please refer to the rest of the chapter.

6.1 Lack of authentication on the API
The probe does not perform any kind of authentication upon establishing a connection with the
API. This can lead to an attacker connecting a malicious program to the Globalping network,
that pretends to be a probe while performing other actions.

While it is understood, that as an open network of probes, that gives anyone the freedom
to contribute, this issue is difficult to mitigate. A possible alternative would be to implement
manual authentication of probes, as is the case with RIPE Atlas, but that would lead to a more
closed network, which conflicts with the values set by the Globalping team.

6.1.1 Scoring
Attack Vector: Network

Attack Complexity: High

Privileges Required: None

User Interaction: None

29

30 Findings and mitigation

Scope: Unchanged

Confidentiality None

Integrity Low

Availability None

Supplying the values above into a CVSS calculator gives a score of 3.7, which is considered a
vulnerability of low severity.

6.1.2 Remediation
As discussed above, mitigating this vulnerability is not possible without imposing additional
restrictions on the network of probes, which is in direct conflict with the philosophy of the
team at Globalping. As such the only recommendation is to remain vigilant and proactive in
monitoring the behavior of the devices connected to the Globalping network.

6.2 Insufficient input validation
In the case of DNS, mtr, ping, and traceroute commands, the element target is not validated.
There is no rule to ensure that the value supplied is an IP address or valid domain. Which means
that, a potential attacker may abuse this vulnerability to inject and execute code on the probe.

Thanks to the data validation on the API this vulnerability does not have an impact on the
security of the probe. Still, it is important to mention because it could possibly turn into an
exploitable vulnerability in the future.

6.2.1 Scoring
Attack Vector: Network

Attack Complexity: High

Privileges Required: None

User Interaction: None

Scope: Unchanged

Confidentiality None

Integrity None

Availability None

As it was not possible to exploit this vulnerability during testing, this is only considered as an
informative finding with a CVSS score of 0.

6.2.2 Remediation
It is recommended to implement expanded validation schemas for the DNS, mtr, ping, and
traceroute commands. Mainly to validate the target element of the user-supplied data.

Improper rate limiting 31

6.3 Improper rate limiting
The platform fails to implement rate limiting in the specified range. The current limit is set at100
000 tests instead of the claimed 100 tests for unauthenticated users or 200 tests for authenticated
users. While it is understood, that this finding is out of the scope of this analysis, as it involves
the Globalping API and not the probe, I felt that it was important to mention this finding.

Another caveat is the fact, that authentication for the users is still a feature in development
but the claimed limit should represent the actual limit that is set.

6.3.1 Scoring
Attack Vector: Network

Attack Complexity: Low

Privileges Required: None

User Interaction: None

Scope: Unchanged

Confidentiality None

Integrity None

Availability Low
Calculating the score of this vulnerability gives us a value of 5.3, which makes this vulnerability
of medium severity.

6.3.2 Remediation
It is recommended to change the limit to the claimed value or edit the documentation to reflect
the real state.

6.4 Insecure communication
The application uses an insecure WebSocket protocol to establish a connection to the API.

6.4.1 Scoring
Attack Vector: Network

Attack Complexity: Low

Privileges Required: None

User Interaction: None

Scope: Unchanged

Confidentiality Low

Integrity None

Availability None
As the vulnerability has an impact on the confidentiality of the information, it is per the break-
down above, assigned a score of 5.3, which is considered of medium severity.

32 Findings and mitigation

6.4.2 Remediation
Use wss instead of ws when establishing a connection to the API, as wss establishes a TLS
encrypted connection.

6.5 Outdated dependencies
The application uses outdated dependencies, which may lead to a potential introduction of a
vulnerability into the probe, through insufficient patching.

6.5.1 Scoring
Attack Vector: Network

Attack Complexity: High

Privileges Required: None

User Interaction: None

Scope: Unchanged

Confidentiality None

Integrity None

Availability None

As none of these dependencies are vulnerable in their current state, this finding is considered
informative in nature and is assigned a score of 0.

6.5.2 Remediation
Update all of the dependencies to their latest version and periodically check for updates to these
dependencies.

Chapter 7

Discussion

The analysis of the Globalping probe uncovered the following security vulnerabilities: Lack
of authentication on the API, Insufficient input validation, Improper rate limiting, Insecure
communication, and outdated dependencies. While these may sound severe, for the probe, in
the context of the platform as a whole they do not pose a notable threat. The insufficient input
validation is mitigated on the API level and this finding is more informative in nature as in
suggesting best practices of defense in depth. The authentication on the API is a design choice
as it is complicated to implement in an open-source application. When it comes to the Insecure
communication and Outdated dependencies, these issues were already fixed in a newer version of
the probe during the testing process. As this update came out during the testing process, these
findings remained in the listing of vulnerabilities, although they are already mitigated. Finally,
the improper rate limiting is a misleading entry in the documentation, as the documentation
includes features, not yet implemented in the probe, and still remains an issue.

Taking all of this information into account and combining it with the outcome of the whole
thesis, it can be said that hosting the tested version of the probe should be secure. There are
minor issues for the development team to stay on top of, but these do not pose a threat to the
end users.

When it comes to future work on this topic, it should be noted that security reviews should
be a periodic action happening at least once a year. The Globalping platform would also benefit
from penetration testing of not only the probe but also the API.

33

34 Discussion

Chapter 8

Conclusion

The goal of my thesis was to perform a security analysis of the Globalping probe. To accomplish
this goal, first, it was crucial to get familiar with the Globalping platform as described in the first
chapter. Then to gain further perspective I have also taken a look at some of the competitors
to the Globalping platform and the security measures, that they implement on their platforms.
Armed with this knowledge I was able to complete a threat model of the Globalping platform,
thus summarizing the biggest threats to the platform and its users, helping me focus on the most
important parts of the Globalping probe during the analysis. Finally, I performed a security
code review of the source code of the Globalping probe to identify any potential vulnerabilities
and recommended possible mitigation.

During the analysis of the Globalping probe, I did not manage to uncover any severe vulner-
abilities in the application. The few vulnerabilities, that were identified, are mostly informative
in nature. As a result of these steps, I produced a security report on the Globalping probe, which
is a valuable resource for both the developers of the Globalping platform and also for the users
who aim to host a probe themselves.

However, it is important to note that this conclusion is not final, as security is an ongoing
process. Therefore, it is crucial to ensure that this analysis is not a one-time event but a regular
part of the development cycle of the Globalping probe.

Regarding my personal objectives, I believe that I have met the goals that I set out to
accomplish. I am confident that the hands-on experience will prove useful in the future.

35

36 Conclusion

Bibliography

1. Globalping - Internet and web infrastructure monitoring and benchmarking — jsdelivr.com
[online]. jsDelivr. Available also from: https://www.jsdelivr.com/globalping. [Accessed
09-03-2024].

2. GitHub - jsdelivr/globalping: A global network of probes to run network tests like ping,
traceroute and DNS resolve — github.com [online]. jsDelivr. Available also from: https:
//github.com/jsdelivr/globalping. [Accessed 05-05-2024].

3. GitHub - jsdelivr/globalping-probe: The globalping probe code that runs on your hardware
and connects to the global community network of probes — github.com [online]. jsDelivr.
Available also from: https://github.com/jsdelivr/globalping-probe. [Accessed 05-
05-2024].

4. RIPE Atlas and Globalping: Choosing the Right Network Measurement Platform | Hacker-
Noon — hackernoon.com [online]. Available also from: https://hackernoon.com/ripe-
atlas-and-globalping-choosing-the-right-network-measurement-platform. [Ac-
cessed 23-04-2024].

5. RIPE Atlas - RIPE Network Coordination Centre — atlas.ripe.net [online]. RIPE NCC.
Available also from: https://atlas.ripe.net/. [Accessed 09-03-2024].

6. RIPE Atlas and Globalping: Choosing the Right Network Measurement Platform — dev.to
[online]. Available also from: https://dev.to/globalping/ripe-atlas-and-globalping-
choosing-the-right-network-measurement-platform-487f. [Accessed 09-03-2024].

7. RIPE Atlas docs | Security and Privacy | Docs — atlas.ripe.net [online]. RIPE NCC. Avail-
able also from: https://atlas.ripe.net/docs/faq/security- and- privacy.html.
[Accessed 23-04-2024].

8. Threat Modeling | OWASP Foundation — owasp.org [online]. OWASP. Available also from:
https://owasp.org/www-community/Threat_Modeling. [Accessed 19-03-2024].

9. DOMARS. Threat Modeling for Drivers - Windows drivers — learn.microsoft.com [on-
line]. Microsoft. Available also from: https://learn.microsoft.com/en-us/windows-
hardware / drivers / driversecurity / threat - modeling - for - drivers # the - dread -
approach-to-threat-assessment. [Accessed 13-04-2024].

10. Static Code Analysis | OWASP Foundation — owasp.org [online]. OWASP. Available also
from: https://owasp.org/www-community/controls/Static_Code_Analysis. [Accessed
14-04-2024].

11. NVD - Vulnerability Metrics — nvd.nist.gov [online]. NIST. Available also from: https:
//nvd.nist.gov/vuln-metrics/cvss. [Accessed 27-04-2024].

37

https://www.jsdelivr.com/globalping
https://github.com/jsdelivr/globalping
https://github.com/jsdelivr/globalping
https://github.com/jsdelivr/globalping-probe
https://hackernoon.com/ripe-atlas-and-globalping-choosing-the-right-network-measurement-platform
https://hackernoon.com/ripe-atlas-and-globalping-choosing-the-right-network-measurement-platform
https://atlas.ripe.net/
https://dev.to/globalping/ripe-atlas-and-globalping-choosing-the-right-network-measurement-platform-487f
https://dev.to/globalping/ripe-atlas-and-globalping-choosing-the-right-network-measurement-platform-487f
https://atlas.ripe.net/docs/faq/security-and-privacy.html
https://owasp.org/www-community/Threat_Modeling
https://learn.microsoft.com/en-us/windows-hardware/drivers/driversecurity/threat-modeling-for-drivers#the-dread-approach-to-threat-assessment
https://learn.microsoft.com/en-us/windows-hardware/drivers/driversecurity/threat-modeling-for-drivers#the-dread-approach-to-threat-assessment
https://learn.microsoft.com/en-us/windows-hardware/drivers/driversecurity/threat-modeling-for-drivers#the-dread-approach-to-threat-assessment
https://owasp.org/www-community/controls/Static_Code_Analysis
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss

38 Bibliography

Content of annexes

readme.txt................................a brief description of the content of the medium
src

thesis..source thesis in LATEX format
text..the text of the thesis

thesis.pdf..text of the thesis in PDF format

39

	Acknowledgments
	Declaration
	Abstract
	List of Acronyms
	Introduction
	The Globalping platform
	The Globalping platform
	Architecture
	Security practices

	Competing platforms
	RIPE Atlas
	Features
	Feature Comparison
	Security practices comparison

	Used methods
	Threat modeling
	Threat categorization

	Analysis
	Used methodologies

	Threat Modeling the Globalping platform
	Scope
	Decomposing the application
	External dependencies
	Entry and exit points
	Assets
	Trust levels

	Data flow diagram
	Summary of threats
	Injection
	Spoofing the probe
	Denial of service
	Host system information disclosure

	Analyzing the Globalping probe
	Scope
	Validating the stated security claims
	External dependencies
	Source code analysis
	index.ts
	Commands
	Handlers

	Summary

	Findings and mitigation
	Lack of authentication on the API
	Scoring
	Remediation

	Insufficient input validation
	Scoring
	Remediation

	Improper rate limiting
	Scoring
	Remediation

	Insecure communication
	Scoring
	Remediation

	Outdated dependencies
	Scoring
	Remediation

	Discussion
	Conclusion
	Content of annexes

