
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Real-time Code Execution Analysis

Filip Touš

Ing. Jiří Dostál, Ph.D.

Informatics

Information Security 2021

Department of Information Security

until the end of summer semester 2024/2025

Instructions

1. Describe a problem of pinpointing specific functions in disassembled code,

emphasizing the limitations of conventional step debugging.

2. Design a method to locate functions by tracking code execution in real-time by

progressively filtering the program code until the target function is isolated, based on

events the reverse engineer can control or monitor.

3. Create a tool with a graphical user interface that applies the designed method

specifically tailored for modern Windows operating systems.

4. Showcase practical applications of the tool and its effectiveness.

Electronically approved by prof. Ing. Róbert Lórencz, CSc. on 24 January 2024 in Prague.

Bachelor’s thesis

REAL-TIME CODE
EXECUTION ANALYSIS

Filip Touš

Faculty of Information Technology
Department of Information Security
Supervisor: Ing. Jǐŕı Dostál, Ph.D.
May 16, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Filip Touš. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been sub-
mitted at Czech Technical University in Prague, Faculty of Information Technology. The thesis
is protected by the Copyright Act and its usage without author’s permission is prohibited (with
exceptions defined by the Copyright Act).

Citation of this thesis: Touš Filip. Real-time Code Execution Analysis. Bachelor’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2024.

Contents

Declaration viii

Abstract ix

List of abbreviations x

Introduction 1

1 The proposed method 5
1.1 Step-based approach . 5
1.2 Current solutions . 7

1.2.1 Step-debugging . 7
1.2.2 Tracing . 8
1.2.3 Record and replay debugging . 8

2 Monitoring code execution 11
2.1 Software breakpoints . 11

2.1.1 Handling a breakpoint exception 11
2.1.2 Implementing a persistent breakpoint 12
2.1.3 Overhead of software breakpoints 13

2.2 Inline function hooking . 14
2.2.1 Preserving the original functionality 14
2.2.2 Implementing the hook . 15
2.2.3 Overhead of inline hooks . 16

2.3 Unsuitable methods . 17
2.3.1 Hardware breakpoints . 17
2.3.2 Alternative hooking techniques and exceptions 18
2.3.3 Hardware-supported methods . 18

2.4 Obtaining function addresses . 19

3 Implementation – DLL 21
3.1 FLOC: Function Locator . 21
3.2 Data Types . 22

3.2.1 Vector . 22
3.2.2 Pool . 22

3.3 OS-specific functionality . 23
3.3.1 Privileges . 23
3.3.2 Memory Operations . 24
3.3.3 Target manipulation . 24

iii

iv Contents

3.3.4 Threads . 24
3.4 Trackers . 26
3.5 Context and multi-instancing . 26
3.6 Software breakpoints . 28

3.6.1 Creating a breakpoint tracker . 28
3.6.2 Starting the debug loop . 28
3.6.3 Enabling breakpoint trackers . 29
3.6.4 Breakpoint handler . 29
3.6.5 Disabling breakpoint trackers . 32
3.6.6 Halting the debug loop . 32
3.6.7 Target termination . 33
3.6.8 Foreign debug loop . 33

3.7 Inline Hooks . 33
3.7.1 Near and far pools . 34
3.7.2 Creating a hook tracker . 36
3.7.3 Enabling hook trackers . 39
3.7.4 Disabling hook trackers . 39

3.8 Workflow . 39
3.9 Exported Functions . 41

3.9.1 FLOCDLL Initialize . 41
3.9.2 FLOCDLL Uninitialize . 42
3.9.3 FLOCDLL TargetSet . 42
3.9.4 FLOCDLL DebugLoopStart . 42
3.9.5 FLOCDLL DebugLoopStop . 42
3.9.6 FLOCDLL DebugLoopOverride . 42
3.9.7 FLOCDLL CallExceptionBreakpointHandler 43
3.9.8 FLOCDLL TrackerAddBreakpoint 43
3.9.9 FLOCDLL TrackerAddHook . 44
3.9.10 FLOCDLL TrackerRemove . 44
3.9.11 FLOCDLL TrackerEnable . 44
3.9.12 FLOCDLL TrackerDisable . 44
3.9.13 FLOCDLL TrackerAllGet . 44
3.9.14 FLOCDLL TrackerAllReset . 45
3.9.15 FLOCDLL TrackerAllEnable . 45
3.9.16 FLOCDLL TrackerAllDisable . 45
3.9.17 FLOCDLL StepBegin . 45
3.9.18 FLOCDLL StepEnd . 45
3.9.19 FLOCDLL StepFilterOutExecuted 45
3.9.20 FLOCDLL StepFilterOutNotExecuted 46

3.10 File Structure . 46
3.11 Portability and compilation . 46
3.12 Optimization . 47
3.13 Interface . 48

Contents v

4 Implementation – GUI 51
4.1 Main form . 52

4.1.1 Left-hand side . 52
4.1.2 Right-hand side . 53
4.1.3 Middle section . 54

4.2 “Select a process” form . 55
4.3 “Add functions” form . 56
4.4 “Results” form . 56
4.5 FLOCDLL functions . 57

5 Demonstration 59
5.1 Notepad example . 59
5.2 Simple “crackme” . 61
5.3 Image processing software . 62
5.4 Virtual piano . 63
5.5 Video game . 65

6 Detectability and future work 67
6.1 Shortcomings . 68
6.2 Long-term plans . 68

7 Conclusion 69

A Function Locator GUI 71

Bibliography 73

Contents of the attachment 77

List of figures

1.1 Flowchart of the presented method . 6

3.1 FLOC.dll workflow . 40

4.1 Function Locator icon . 51
4.2 Function Locator GUI, left-hand side . 52
4.3 Function Locator GUI, right-hand side . 53
4.4 Function Locator GUI, middle section . 54
4.5 Function Locator GUI, “Select a process” form 55
4.6 Function Locator GUI, “Add functions” form 56
4.7 Function Locator GUI, “Results” form . 57

5.1 Notepad “Time and date” function . 59
5.2 Crackme . 61
5.3 Image processing software – Enhance button 63
5.4 Pianoteq chord identification . 64

List of tables

3.1 Custom integer data types . 22
3.2 The VECTOR data type . 23
3.3 The POOL data type . 23
3.4 OS-specific prefixes . 23
3.5 Target functions . 24
3.6 TRACKER data type . 26
3.7 FLOC CTX data type . 27
3.8 HOOK data type . 34
3.9 Overriding the debug loop . 43
3.10 Summary of source code files . 46
3.11 FLOC.dll compatibility requirements . 49

4.1 GUI buttons and their corresponding FLOC.dll functions 57

vi

List of code listings vii

List of code listings

2.1 IDA script to export function addresses and lengths 19
3.1 Data types for thread initialization . 25
3.2 Thread Start function . 25
3.3 Thread Init function . 25
3.4 FLOC CTX related code . 27
3.5 Target WaitForBreakpoint function . 30
3.6 Target BreakpointRemoveTriggered function 31
3.7 FindPrevFreeRegion function . 35
3.8 CalcSignedDisplacement32 function 36
3.9 Near-hook pseudocode . 37
3.10 Far-hook pseudocode . 38
3.11 Custom entry point function . 47
3.12 Optimized FLOC ContextGet function . 48
3.13 Vector AddressOf function . 49

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources
of information in accordance with the Guideline for adhering to ethical principles when
elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by
the Act No. 121/2000 Coll., the Copyright Act, as amended. In accordance with Section
2373(2) of Act No. 89/2012 Coll., the Civil Code, as amended, I hereby grant a non-
exclusive authorization (licence) to utilize this thesis, including all computer programs
that are part of it or attached to it and all documentation thereof (hereinafter collectively
referred to as the ”Work”), to any and all persons who wish to use the Work. Such
persons are entitled to use the Work in any manner that does not diminish the value of
the Work and for any purpose (including use for profit). This authorisation is unlimited
in time, territory and quantity.

In Prague on May 16, 2024

viii

Abstract

This thesis addresses the challenge of locating functions in disassembled binary files
without source code. It highlights the difficulties of this task in the absence of special-
ized tools and introduces a novel method to simplify the process. The method performs
dynamic analysis of the software, monitoring code execution in real-time. Starting with
a list of all function addresses in the binary, the reverse engineer using the tool progres-
sively isolates the target function by triggering or avoiding specific events. A library
was developed to implement this idea, adaptable by existing reverse engineering tools,
with a custom executable user interface for standalone use. The thesis demonstrates the
tool’s practical application and effectiveness through real-world scenarios, illustrating its
ability to simplify the reverse engineering process while also highlighting its limitations.

Keywords reverse engineering tool, dynamic software analysis, real-time analysis,
code execution monitoring, function localization, x86-64 architecture, Windows operat-
ing system, software breakpoints, function hooking

Abstrakt

Tato práce se zabývá problémem lokalizace funkćı v disasemblovaných binárńıch sou-
borech bez zdrojového kódu. Poukazuje na obt́ıže tohoto úkolu vzhledem k absenci
specializovaných nástroj̊u a představuje novou metodu, která tento proces zjednodušuje.
Metoda vykonává dynamickou analýzu softwaru a monitoruje prováděńı kódu v reálném
čase. Zač́ıná se seznamem všech adres funkćı v binárńım souboru ze kterého reverzńı
inženýr pomoćı tohoto nástroje postupně izoluje ćılovou funkci t́ım, že vyvolává speci-
fické události nebo se jim vyhýbá. Pro realizaci této myšlenky byla vyvinuta kni-
hovna, kterou mohou adaptovat stávaj́ıćı nástroje pro reverzńı inženýrstv́ı, s vlastńım
spustitelným uživatelským rozhrańım pro samostatné použ́ıváńı. Práce demonstruje
praktické použit́ı a efektivitu nástroje na reálných scénář́ıch, ilustruje jeho schopnost
zjednodušit proces reverzńıho inženýrstv́ı a zároveň poukazuje na jeho nedostatky.

Kĺıčová slova nástroj pro reverzńı inženýrstv́ı, dynamická analýza softwaru, analýza
v reálném čase, monitorováńı spouštěńı kódu, lokalizace funkćı, architektura x86-64,
operačńı systém Windows, softwarový breakpoint, hooking funkćı

ix

List of abbreviations

API Application programming interface
AVX Advanced vector extenions
CPU Central processing unit
DLL Dynamic load library
EAT Export address table
EPT Extended page tables
GUI Graphical user interface
IAT Import address table
IDE Integrated development environment
IDT Interrupt descriptor table

IP Instruction pointer
IPT Intel processor trace

LBR Last branch record
NPT Nested page tables

OS Operating system
TF Trap flag

VMT Virtual method table

x

Introduction

“Reverse engineering is a process where an engineered artifact (such as a car, a jet
engine, or a software program) is deconstructed in a way that reveals its innermost
details, such as its design and architecture. [. . .] In the software world reverse en-
gineering boils down to taking an existing program for which source-code or proper
documentation is not available and attempting to recover details regarding its design
and implementation.” [1]

This thesis deals specifically with what is commonly referred to as binary reverse engi-
neering. Binary reverse engineering techniques aim at extracting valuable information
from programs for which source code is unavailable. The goals of reverse engineering
software can vary. As per [2, 3], some examples are:

Achieving interoperability with proprietary systems and protocols.

Identifying vulnerabilities, security flaws, and potential attack vectors.

Extending or modifying behavior to enhance or change the user experience.

Studying malware to enhance antivirus solutions or to retrospectively map the prop-
agation of malware within a compromised system.

Bypassing copy protection and digital rights management technologies.

Understanding the features and designs of competing solutions.

Detecting patent violations or intellectual property theft.

The terms software reverse engineering, reverse engineering, or reversing for short,
are used interchangeably in this thesis. More specifically, the matter in this thesis is
discussed in the context of reverse engineering of software created for and running on
a modern Windows operating system (OS) on the x86 central processing unit (CPU)
architecture.

The idea of software reverse engineering has existed for decades [4], so it is no surprise
that many specialized tools and techniques have been developed, and are actively being
used, for this very purpose – disassemblers, decompilers, and debuggers are essential tools
in the reverse engineer’s toolkit, each serving distinct yet complementary purposes.

1

2 Introduction

Disassemblers, such as IDA Pro1 and Ghidra2, convert machine code into assembly
language, providing a human-readable representation of the executable code. Decompil-
ers, often bundled together with disassemblers, take this a step further by attempting to
reconstruct high-level source code from the assembly, aiding in understanding program
logic and behavior. Debuggers, such as WinDbg3 and x64dbg4, enable dynamic analysis
by allowing users to control program execution, inspect memory, and analyze runtime
behavior. Together, these tools empower reverse engineers to dissect, understand, and
manipulate software systems.

Generally, reverse engineering can be split into two approaches – static and dynamic
analysis. Static analysis involves examining the software without executing it, relying on
disassemblers and decompilers to gain insights into the inner workings of the program and
extracting useful information without the need for running the software. On the other
hand, dynamic analysis involves executing the software in a controlled environment and
observing its behavior in real-time, pausing the execution at will. Debuggers and other
dynamic analysis tools play a crucial role in this approach, allowing reverse engineers to
monitor and manipulate program execution.

Reverse engineering often involves the challenge of locating specific functions within
a disassembled binary. Here, the term “function” usually refers to finding the block of
instructions that get executed directly after a CALL instruction transfers the control flow
to its starting address and ends with a RET instruction. Due to compiler optimizations
this does not always correspond to a specific function defined in the source code and the
realization of the program flow in the binary may be further altered, hence this thesis
sometimes uses the terms functions and code (here referencing assembly or binary code)
interchangeably for simplicity. Locating specific code is then understood as the process
of pinpointing a small part of the binary as being responsible for a specific side effect to
further analyze or modify this specific behavior.

This task becomes particularly daunting in large and complex software systems where
the code base may span tens of thousands of lines. Suppose that a reverse engineer is
tasked with analyzing such a large binary executable to understand how it handles user
authentication. The engineer knows that upon entering incorrect credentials, the pro-
gram displays an error message indicating “Invalid username or password.” Despite the
seemingly straightforward nature of the functionality, pinpointing the specific function
responsible for this behavior within the vast expanse of the disassembled code can prove
to be a daunting task. Without clear markers or known entry points, the engineer must
navigate through countless instructions, functions, and control flow paths to locate the
relevant code segment. This process can be time-consuming and labor-intensive.

However, in this particular case, the reverse engineer is fortunate to have a clear
indicator in the form of the error message referenced within the binary. By tracing the
execution flow backward from the point where this string is referenced, the engineer can
identify the function responsible for handling authentication logic relatively easily. Un-
fortunately, not all reverse engineering tasks come with such obvious markers. In many
instances, the absence of identifiable strings, which often prove to be the easiest way

1https://hex-rays.com/ida-pro/
2https://ghidra-sre.org/
3https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/
4https://x64dbg.com/

https://hex-rays.com/ida-pro/
https://ghidra-sre.org/
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://x64dbg.com/

Introduction 3

to locate code, complicates the process significantly. Some other artefacts that reverse
engineers often use are leftover debug data, or application programming interface (API)
calls. But when no such clues are present, reverse engineers face a formidable challenge
in navigating the disassembled code base.

The primary objective of this thesis is to introduce and demonstrate a method aimed
at addressing the challenge outlined in the previous paragraphs. While the thesis en-
deavors to develop a complete working tool to showcase the method, special attention
is given to ensuring that its code is adaptable by existing reverse engineering tools and
frameworks. It’s important to note that the developed tool itself is not a fully-fledged
reverse engineering tool but rather a specific feature designed to aid in the reverse engi-
neering process.

The thesis focuses on the Windows 64-bit operating system running on x86-645 ar-
chitecture, specifically targeting userspace program analysis to avoid the need for reverse
engineers to load custom kernel drivers or hypervisors. Additionally, although a graph-
ical user interface (GUI) is developed to help showcase the method’s functionality, it’s
essential to emphasize that the GUI and the underlying logic are decoupled. This de-
liberate separation ensures that the method remains independent of any specific GUI
implementation, thereby enhancing its flexibility and adaptability for integration into
diverse reverse engineering environments.

In summary, the goals of this thesis are to introduce and demonstrate a method for
addressing the challenge of locating specific code segments within disassembled binaries,
develop a working tool to showcase the method’s functionality, and ensure the tool
is adaptable by existing reverse engineering tools and frameworks. The final point is
achieved in two ways: by ensuring maximum code portability and by crafting the tool
(sans the GUI) as a dynamic load library (DLL), rather than an executable file.

While reverse engineering is often associated with analysis of malware or other forms
of software that tries to protect itself from reverse engineering using anti-debug and
anti-analysis techniques, bypassing those protections is not in the scope of this thesis.
Although the aim is only on developing and demonstrating the method, the detectability
of the developed tool and the traces it leaves behind are still discussed.

The thesis first explains the proposed method in detail. Then, current available tools
and techniques (or the lack thereof) capable of achieving the desired goal are presented.
Chapter 2 deals with different methods of monitoring code execution, which are the
key building blocks that this project is built on. The main part of the thesis describes
in detail the design and practical implementation of the tool, including key snippets
of source code. A full chapter is reserved for both the “backend”, implementing the
logic and program code in realization of the proposed method as a DLL (chapter 3),
and the “frontend” – the graphical user interface used to control it (chapter 4). Next,
special focus is granted solely on showcasing the tool in different reverse engineering
scenarios, highlighting its strengths, and providing examples of its usage. It also presents
shortcomings associated with the tool developed or the method itself. Afterwards the
thesis discusses how the analyzed program might be able to detect the usage of the tool
and how to help prevent that from happening, and lists possible future work to improve
on the ideas presented in this thesis.

5Also called x86 64, x64, or amd64

4 Introduction

Chapter 1

The proposed method

The core idea of this thesis revolves around the concept of real-time monitoring of exe-
cuted functions during program execution, aimed at streamlining the process of locating
specific functions in a disassembled binary.

Imagine a scenario where a reverse engineer could dynamically observe program
execution, perform the desired action that triggers the relevant functions, and then
signal that to a system recording the executed functions without pausing the execution
flow. By progressively filtering out functions based on their execution status – retaining
only those functions that executed when the desired action occurred and excluding those
that did not (or vice versa) – the engineer could systematically narrow down the search
space until only a few or even a single function remains.

This approach should accelerate the process of identifying target functions and
provide a more intuitive and efficient methodology for such reverse engineering tasks.
The goal of this thesis is to develop and implement a tool that realizes this idea.

1.1 Step-based approach

In essence, the reverse engineer initiates the process with a comprehensive list of function
addresses extracted from the analyzed binary. Subsequently, they commence monitoring
the code execution, performing an unknown number of repeating “steps” until they
achieve a satisfactory reduction in the list of remaining functions, ideally culminating in
only a few addresses. This idea is illustrated in Figure 1.1.

At each step, the engineer discerns whether the desired function has been executed
or not. This is made through various means, including visual or auditory analysis of
the program’s behavior, or deliberately inducing or refraining from certain actions that
might trigger the function, provided such actions are feasible. The reverse engineer might
control the tool and interact with the analysis process by various means. One option
is through the use of keyboard shortcuts to signal the start and end of each step. This
provides a quick and efficient way to guide the analysis in real-time.

In order to achieve truly real-time analysis, it is imperative that the process main-
tains minimal overhead, allowing the program to continue functioning without disrup-
tion. This requirement is particularly crucial in scenarios where pausing the execution

5

6 The proposed method

flow or introducing significant overhead would render the analysis impractical or even
impossible.

Consider applications like video games or real-time audio software, where any inter-
ruption to the execution flow can lead to degraded performance, glitches, crashes, or
inability to perform the action the engineer searches for. In such contexts, the ability
to seamlessly monitor executed functions in real-time without impeding the program’s
normal operation is paramount. Therefore, the tool developed in this thesis is designed
with efficiency and low overhead as primary considerations.

Figure 1.1 Flowchart of the presented method

Current solutions 7

1.2 Current solutions

When static analysis methods prove insufficient for locating a function, reverse engi-
neers turn to dynamic analysis as a viable alternative. In dynamic analysis, engineers
exploit the runtime behavior of a program, sometimes relying on memory access patterns
to pinpoint specific functions. For instance, identifying a memory address accessed by
a function – whether for reading, writing, or both – can serve as a crucial anchor point.
By halting program execution upon memory access, engineers gain insight into the pre-
cise instructions within a function responsible for accessing the memory. Subsequently,
analyzing the call stack sheds light on the sequence of function calls leading up to the
memory access point, potentially revealing the sought-after function (if it was not the
one directly responsible for accessing the memory address).

Breaking execution on memory access can be realized through hardware breakpoints
or by altering memory protection to trigger an exception upon attempted read or write.
However, the efficacy of this approach hinges on the engineer’s ability to identify the
specific memory address accessed by the target function — an endeavor that can present
considerable challenges. An ideal scenario involves locating a numeric variable whose
value can be manipulated or at least observed. While such opportunities may arise, they
are often rare and only applicable to a few of the executable’s functions.

This approach might be viable in very specific scenarios, where the engineer can
either leverage the program’s intended behavior to manipulate and observe a specific
value, or observe externally inputted data that a function handles, for instance:

Identifying video game functions by tracing memory accesses related to variables
representing the player’s health or coordinates, which can be intentionally modified
by being hit by an opponent or moving in the game world.

Pinpointing functions responsible for parsing and handling network packets where
the engineer has access to the packets’ data before the program does.

When conventional approaches fall short in identifying a specific function, this thesis’
method emerges as a viable solution. Existing techniques capable of achieving its goal
are limited. The following subsections describe traditional methods that can be used to
come close to the desired functionality presented in this thesis, ranging from traditional
to specialized tools.

1.2.1 Step-debugging
Traditional step-debugging methods involve manually stepping through a program’s ex-
ecution, typically using a debugger. To simplify the search, the debugger can be config-
ured to only break on function calls and returns. This way, eventually the desired func-
tion might be found given enough time, but this approach is not only time-consuming
and impractical for this purpose but unfeasible for real-time systems. The process of
stepping through each function not only slows down the analysis but also disrupts the
program’s normal operation, making it unsuitable for scenarios where uninterrupted
execution is crucial [5].

8 The proposed method

1.2.2 Tracing
Tracing offers an alternative to manual step-debugging by automatically capturing pro-
gram execution and potentially generating a graph of function calls. It specifically
addresses one of the challenges highlighted in this thesis, as stated in the documentation
of GDB1, a popular debugger: “In some applications, it is not feasible for the debugger
to interrupt the program’s execution long enough for the developer to learn anything
helpful about its behavior. If the program’s correctness depends on its real-time behav-
ior, delays introduced by a debugger might cause the program to change its behavior
drastically, or perhaps fail, even when the code itself is correct. It is useful to be able to
observe the program’s behavior without interrupting it.” [5]

However, tracing still requires specifying a starting point for the trace, adding a level
of complexity and manual intervention that contrasts with the proposed method, where
monitoring begins immediately without the need for predetermined starting points [6].
Additionally, given that the aim of tracing is to facilitate comprehensive debugging, al-
beit retroactively, the process of generating the trace can still notably affect the perfor-
mance and speed of the program. This impact is dependent upon both the configuration
of the tool and the specifics of its implementation. [7]

Conventional methods involving breakpoints and the CPU’s TRAP flag prove inad-
equate for resource-intensive applications, as detailed in section 2.1. While advanced
debuggers including GDB can leverage hardware assistance from certain CPU models
for minimal overhead [8], this strategy does not align with the objectives outlined in this
thesis, as explained in subsection 2.3.3.

Alternatively, GDB utilizes an “In-Process Agent” for a rapid debugging model,
closely resembling the approach developed in this thesis (refer to section 2.2), albeit
with slightly higher overhead [7, 9]. While tracing indeed offers a more streamlined
approach compared to step-debugging with satisfactory performance, pinpointing a spe-
cific function among thousands can still prove immensely cumbersome. To the best of
the author’s knowledge and based on reviewed literature, no existing tools are explicitly
designed for such operations. This contrasts with the tool developed in this thesis, which
aims to significantly streamline this particular reverse engineering process.

1.2.3 Record and replay debugging
Similar to tracing, record and replay debugging provides a way to observe program
behavior without interrupting its execution. However, unlike tracing, which typically
generates a trace of function calls, record and replay debugging captures a more detailed
snapshot of the program’s state at each step of execution. This allows developers to
deterministically replay the recorded execution and precisely recreate the conditions
under which an issue occurred and investigate it thoroughly at an individual instruction
level as if they were step-debugging a live program. [8, 10]

Record and replay debugging naturally incurs a higher performance cost compared
to traditional tracing methods. However, specialized tools like rr2 demonstrate the
potential effectiveness of this approach in the context of locating functions. For instance,

1https://www.sourceware.org/gdb/
2https://rr-project.org/

https://www.sourceware.org/gdb/
https://rr-project.org/

Current solutions 9

a reverse engineer could manually log the exact time when a specific action occurred
and then analyze the trace or recorded execution at that precise moment (assuming
timestamps are saved) to narrow down the search. Conversely, they could filter out all
functions executed within a certain time frame where the desired action did not occur.
Nevertheless, this manual process would be laborious, and either only suitable for non-
resource-intensive applications, or it would again require hardware assistance, in which
case rr still reports a minimal overhead of 1.2x execution time [11].

10 The proposed method

Chapter 2

Monitoring code execution

Monitoring code execution of a different process from user space on Windows involves
leveraging Windows API functions to intercept and manipulate the control flow of the
target process. By gaining control over the target process’s execution flow, it is possible
to track the code execution in real time. The following methods are the essential building
blocks of this thesis.

2.1 Software breakpoints

One of the simplest and most widely used techniques for altering code execution in
user space on Windows is the use of software breakpoints. Software breakpoints involve
temporarily modifying the target process’s code to interrupt its execution at specific
points of interest. This is achieved by replacing the instructions at the desired breakpoint
location with a special instruction, such as INT3 (interrupt 3) on x86 CPUs.

When the CPU encounters the instruction, it generates a breakpoint exception. This
exception interrupts the normal flow of execution and triggers the CPU’s interrupt han-
dling mechanism. The CPU transfers control to the operating system’s interrupt handler,
which identifies the breakpoint exception and dispatches it to the appropriate routine
within the kernel. The OS notifies any attached debuggers about the breakpoint event.
The debugger gains control over the suspended process and can examine its memory,
registers, and other state information. The debugger may also execute custom code or
perform additional analysis as needed.

2.1.1 Handling a breakpoint exception
Depending on the debugger’s configuration and the user’s actions, the debugger may
resume execution of the target process, either allowing it to continue normally or step-
ping through instructions one at a time for further analysis, usually through the use of
a TRAP flag (TF) in the EFLAGS register. Since the insertion of a breakpoint requires
overwriting executable memory, it is necessary to restore the original instruction that
was replaced with the breakpoint opcode. This involves copying the original instruction
from a backup location back into the appropriate location in the target process’s address
space. Additionally, to ensure the target process continues execution seamlessly after the

11

12 Monitoring code execution

breakpoint is hit, the debugger typically decrements the instruction pointer (IP) by the
appropriate amount to reposition it at the original instruction’s address before resuming
execution. This meticulous restoration process ensures that the target process remains
in a consistent state and can continue executing normally after the debugging operation
is complete.

On the other hand, setting the TRAP flag for single-stepping purposes does not require
overwriting executable memory in the target process. Instead, the CPU automatically
generates traps after each instruction execution, providing a non-intrusive way to control
the program’s execution flow. When a trap occurs, the CPU again transfers control to
the operating system’s interrupt handler in a similar manner to the INT3 instruction.
This ultimately allows debuggers to place “persistent” breakpoints by reintroducing the
software breakpoint instruction immediately after the original code gets executed.

2.1.2 Implementing a persistent breakpoint
The steps outlined below depict how a debugger could establish a persistent breakpoint
at a specific address, assuming it has already enlisted itself as a debugger of the target
process using an OS function such as AttachDebugger:

1. Retrieve the original memory contents at the designated address and store them in
a backup location.

2. Replace the memory content with an INT3 instruction opcode.

3. Flush the instruction cache at the location within the target process to prevent the
CPU from executing outdated code [12].

With the breakpoint now in place, the OS will signal the debugger when it is executed.
The debugger awaits this notification in an infinite loop, managing the breakpoint debug
event within its dedicated handler, after ensuring that the exception was not triggered
by another debugger or other outside factors:

1. Obtain the context of the thread responsible for executing the INT3 instruction within
the target process.

2. Adjust the instruction pointer of the thread context to reference the beginning of the
original instruction.

3. Set the TRAP flag in the EFLAGS register of the thread context.

4. Restore the original memory contents at the breakpoint address.

5. Flush the instruction cache.

6. Finish the exception handling process and inform the OS that the thread can resume
execution.

Thanks to the TRAP flag, the debugger promptly receives a single-step exception
after the restored instruction is executed, allowing it to reintroduce the breakpoint by

Software breakpoints 13

again replacing the memory with an INT3 instruction opcode and flushing the instruction
cache. The TRAP flag is cleared automatically. This approach ensures that the breakpoint
is triggered every time the debugged program reaches its address.

In the context of this thesis, referencing the diagram of the proposed method (Figure
1.1), software breakpoints can be used as a tool for determining whether a function
was executed during each step of the analysis process. In this approach, breakpoint
persistency is not a necessity. Instead, the tool only has to ensure that breakpoints are
set on all remaining function addresses at the start of each step. Conversely, if a function
is filtered out during the analysis, the tool should remove the breakpoint associated with
that function, even if it was not executed.

2.1.3 Overhead of software breakpoints
While software breakpoints offer a straightforward and reliable way to monitor func-
tion execution, they entail significant overhead. The process of handling a breakpoint
exception on Windows involves many steps, as outlined in [13]:

1. The CPU hardware detects the exception and directs control to the appropriate
kernel trap handler based on the exception’s index in the interrupt descriptor table
(IDT).

2. This handler generates a trap frame and an exception record containing information
about the exception.

3. The exception record is sent to an exception dispatcher.

4. The exception dispatcher initially verifies whether the process responsible for the
exception is associated with a debugger process. If so, it dispatches a debugger
object message to the debugger process, signaling the occurrence of a breakpoint
exception.

5. The debugger thread returns from a WaitForDebugEvent call and may proceed to
handle the exception.

Even the final step alone incurs a notable CPU overhead. According to a disassembly
of the function and the subsequent calls made within it, the execution sequence involves
returning from the kernel mode nt!NtWaitForDebugEvent, then the native API function
DbgUiWaitStateChange (implying a mode switch to user mode), and finally reaching the
documented top-level Win32 API function WaitForDebugEvent.

Upon completion of these steps, the debugger can commence handling the exception.
After finishing and calling ContinueDebugEvent, control returns to the kernel. The
whole process concludes as the trap handler restores the thread context using the trap
frame created in step 2, allowing the CPU to resume execution of the thread.

While the breakpoint only needs to be triggered once during each step of the proposed
method, it imposes a significant performance penalty that amplifies with the number of
breakpoints deployed in the target process. Given the thesis’s focus on crafting a tool
with “efficiency and low overhead as primary considerations”, an alternative approach
is needed for analyzing resource-intensive software.

14 Monitoring code execution

2.2 Inline function hooking

Hooking a function alters the normal flow of execution within a program, typically to
collect information or modify the behavior of the specific function. In this thesis, focus
lies on the former objective. The concept revolves around intercepting the invocation
of a function, redirecting the execution flow to log its occurrence, and then seamlessly
allowing the original function to proceed without altering its outcome. [14]

Among the various methods of hooking, inline hooking stands out as one of the most
straightforward approaches. Fundamentally, it works by overwriting code in the running
program. Consequently, when the function is called, the attacker’s code is executed
instead of the original function. Typically, software performing inline hooking preserves
the initial few bytes of the target function, which are subsequently replaced with an
unconditional jump instruction, redirecting execution to the hook. The hook can then
invoke the original function using the preserved bytes of the target function that were
overwritten, potentially modifying the data returned by the original function. [15]

2.2.1 Preserving the original functionality
Preserving the original function with a persistent hook poses a greater challenge com-
pared to software breakpoints and the TRAP flag. A common solution involves the use
of a so called “trampoline” function. Once the hook completes its task, the trampoline
is responsible for executing the instructions that were overwritten at the beginning of
the original function and seamlessly transitioning back to continue execution from the
subsequent instruction (typically the first original instruction not overwritten by the
hook, but, as explained in the following paragraphs, this may vary) [15].

This approach presents two significant challenges. Firstly, the overwritten instruc-
tions within the trampoline are executed at a different address than inside the original
function. While typically the beginning of the function – where the prologue is located
– is overwritten, correct relocation of instructions in the trampoline might be required.
For instance, if the prologue is not position independent or is shorter than the jump to
the hook, careful adjustment of IP-relative instructions is necessary.

Moreover, due to the variable length of instructions, the hooking mechanism must
copy the appropriate number of bytes to ensure correct interpretation by the CPU. This
might be more than the amount of bytes overwritten by the jump. Ensuring proper
alignment to an instruction boundary is also crucial for the transition from the trampo-
line to the subsequent instruction of the original function. Failure to align this transition
could lead to the CPU interpreting a partial instruction as a completely different one,
resulting in unexpected behavior or even program crashes.

As a result, inline hooking libraries such as PolyHook 2.01 necessitate bundling with
a disassembler, significantly inflating the code size. Alternatively, libraries like minhook2

or subhook3 develop their own disassembly functionality, albeit often at the expense of
not supporting all instructions and, consequently, being unable to hook certain functions.

1https://github.com/stevemk14ebr/PolyHook_2_0
2https://github.com/TsudaKageyu/minhook
3https://github.com/Zeex/subhook

https://github.com/stevemk14ebr/PolyHook_2_0
https://github.com/TsudaKageyu/minhook
https://github.com/Zeex/subhook

Inline function hooking 15

Furthermore, runtime disassembly adds to the overall overhead of the hooking process
(but not the hook itself).

However, since a persistent hook is not required, as the function call only needs to
be detected once in every “step” of the proposed method, the implementation in the
context of this thesis can be simplified, similar to the approach described in the previous
chapter about software breakpoints. To preserve the original functionality, the hook
can reinstate the original function’s code, akin to how a debugger replaces an INT3
instruction with the original byte. This approach is unconventional, but it completely
bypasses the need for any relocations or disassembly. The hook can simply restore the
overwritten bytes and jump to the original function’s starting address.

2.2.2 Implementing the hook
The following steps outline how a non-persistent inline hook on the Windows OS might
be implemented:

1. Allocate executable memory in the target process where the hook code will be placed.

2. Prepare code that will facilitate the jump from the target function to the hook code.

3. Save the original bytes of the target function that will be overwritten with the jump.

4. Develop hook code responsible for logging the function call, restoring the overwritten
bytes, and jumping back to the start of the target function.

5. Write the hook code to the memory allocated in step 1.

6. Modify memory protection to allow overwriting of the target function.

7. Overwrite the beginning of the target function with the jump code and flush the
instruction cache.

Once these steps are completed, the hook code is executed when the program first
invokes the target function. On all subsequent calls, the jump code is no longer present in
the target’s memory. The tool developed in this thesis must ensure that at the beginning
of each “step” of the proposed method, the beginning of the function is again overwritten
with the jump code, i.e., step 7 from the above enumeration is repeated. It is worth
noting that step 6 is never reversed in this scenario. The logging of the function call
can be as straightforward as setting a byte in the hook code (placed after the jump back
to the original function to ensure it is never executed) to a value of 1. This byte can
then be read externally by the tool to determine whether the function was or was not
executed. Upon reinstating the hook (by repeating step 7), the byte must be reset to
zero.

In comparison to software breakpoints, where the INT3 instruction is a single byte,
a potential risk arises in multithreaded applications with inline hooking. Depending on
the implementation, the overwriting of the target function’s instructions is not guaran-
teed to be atomic. If a thread calls the function while another thread is in the midst
of a non-atomic restoration of the original function’s instructions (from within the hook
code), unforeseen consequences might occur, including a program crash due to the CPU

16 Monitoring code execution

attempting to execute invalid instructions. Although the likelihood of this happening
is very low since the memory overwrite should involve only a few instructions at most,
it is not entirely unrealistic depending on the design of the target application. The
same issue might arise during the tool’s execution of step 7 (externally overwriting the
beginning of the function). Overall, the risk is application, OS, and CPU specific and
challenging to predict. If it were to cause any trouble, modern x86 processors provide
the means to ensure the function overwriting is atomic, so that no threads need to be
suspended during the writes (which would nullify the performance gains of the hooking
method compared to breakpoints). This is further discussed in chapter 3.

2.2.3 Overhead of inline hooks

Inline hooks introduce minimal performance overhead. Unlike software breakpoints,
there is no need for context switching, mode switching from kernel to user space, or dis-
patching an exception to a debugger. The CPU seamlessly executes the instructions, and
no interrupts occur. The entire jump, hook, and jump back sequence can be implemented
in as few as 5 instructions. While it may be argued that the non-persistent approach
could introduce unnecessary overhead due to additional memory writes, in practice, this
again only results in a few extra instructions. In reality, immediately removing the jump
could improve performance if the function is called often, when jumping to the hook and
trampolining back every time would quickly add up to a more significant performance
penalty.

A potential source of overhead is the risk of cache misses due to the jumps. Similarly,
the processor’s snooping logic may invalidate the cache after the hook modifies the func-
tion’s code, leading to further cache misses. However, this is highly CPU-specific and
is typically considered a routine aspect of execution on modern processors, and there-
fore not explicitly addressed in this thesis. It’s noteworthy that the cache coherency
mechanism in modern x86 CPUs facilitates the functioning of self-modifying code, such
as the hook restoring the original instructions of the target function, without requiring
explicit cache invalidation. In some scenarios, the installation of the hook itself may
introduce more overhead than the hook’s actual execution, especially if the function
code is externally overwritten using the OS API, as implied in this and the preced-
ing chapters. In such cases, cache flushing becomes necessary as the tool operates in
a different address space than the target process. Ensuring all memory manipulations
are performed from within the target process, perhaps by creating a remote thread,
might be beneficial. However, this approach would incur additional overhead due to
inter-process communication, and in any case, cache invalidation remains inevitable yet
unpredictable. [16]

Overall, inline hooking is expected to have a negligible impact on performance com-
pared to software breakpoints, albeit with the limitation of being unable to hook func-
tions that are too short to accommodate the necessary jump instruction. Further details
on this topic are presented in chapter 3, while chapter 5 provides insight on the real
performance impact of both breakpoints and hooks.

Unsuitable methods 17

2.3 Unsuitable methods

Apart from software breakpoints and inline hooking, other techniques also exist. How-
ever, for various reasons, these alternative methods are not deemed suitable for inte-
gration into the tool developed in this thesis. The following subsections explain the
limitations and drawbacks of these alternative approaches, highlighting the reasoning
behind the selection of software breakpoints and inline function hooking as the only
mechanisms for tracking function execution in this thesis.

2.3.1 Hardware breakpoints

Hardware breakpoints represent an alternative approach to monitoring code execution
compared to their software counterparts. While they offer certain advantages, their
suitability for this thesis is minimal.

One notable advantage of hardware breakpoints is their non-invasive nature. Unlike
software breakpoints, which involve patching memory with specific instructions to trigger
an interrupt, hardware breakpoints utilize special CPU hardware registers, known as
debug registers. This mechanism allows for monitoring code execution without directly
modifying the target program’s memory space.

Despite their differences in implementation, the execution flow from the CPU to the
kernel dispatcher and an attached debugger remains largely consistent between hardware
and software breakpoints. Therefore, the overall debugging process follows a similar
trajectory and performance overhead as with software breakpoints.

One significant feature of hardware breakpoints is their ability to break on memory
read or write operations, in addition to code execution. This flexibility allows developers
to halt execution when specific memory addresses are accessed, as mentioned in the
chapter 1.2. However, for the purposes of the tool developed in this thesis, which focuses
on tracking function execution, this additional functionality is not beneficial.

Despite their advantages, hardware breakpoints have limitations that render them
almost useless for function localization. One critical constraint is the limited number
of available hardware registers. On x86 platforms, typically only four debug registers
are available, each set up to trigger a breakpoint at a specific address. Consequently,
this means that only four hardware breakpoints can be active simultaneously. This lim-
itation becomes problematic when dealing with a large number of function addresses,
as it significantly slows down the analysis process by restricting the monitoring capa-
bility to only four functions at once, in contrast to potentially monitoring thousands
with software breakpoints. Moreover, since debug registers are implemented per pro-
cess thread4, setting up hardware breakpoints for function calls necessitates configuring
debug registers for each thread within the target process. [17]

4This is OS specific, based on the implementation of multitasking and context switching. From
the CPU’s perspective, registers, including debug registers, are assigned per-core, or per-thread (CPU
thread) in the case of hyperthreading.

18 Monitoring code execution

2.3.2 Alternative hooking techniques and exceptions
While inline hooking offers a versatile approach for intercepting code execution, other
function hooking techniques exist. However, these techniques may not be suitable for
the purposes of this thesis due to their inherent limitations. The following is a list of
some of the most common ones, adapted from [18]:

Import address table (IAT) / Export address table (EAT) Hooking: This method
targets functions imported from DLLs or exported by a module. It modifies the IAT
or EAT to redirect calls to a hook function. However, this approach is limited to
functions that are explicitly imported or exported, severely hindering its versatility.

Virtual method table (VMT) Hooking: This technique leverages virtual functions
commonly found in object-oriented programming, particularly C++. It modifies the
VMT pointer (or the pointers inside of it) to redirect calls to hook functions. While
powerful in applicable contexts, VMT hooking is not suitable for this thesis as it is
programming language and function specific.

Pointer swapping: This method involves replacing pointers that reference the target
function with pointers to a hook function. It requires the target function to be called
via a function pointer, limiting its applicability in scenarios where the target function
is referenced directly, which constitutes the majority.

Overwriting call instructions: Instead of overwriting the beginning of a function with
a jump, it is possible to overwrite the call instructions to the function itself. This
eliminates the need to preserve the original functionality, which is addressed in this
thesis through non-persistent hooking, and alternatively trampolining. However, it
comes at the significant cost of rewriting all calls to the function, which can be
numerous and dynamically generated at runtime.

Similarly, software breakpoints are not the sole type of exception that can be triggered
and subsequently handled. While it is feasible to induce a different exception, such
as a division by zero, by modifying the code, there is no rationale for pursuing this
approach in the context of this thesis. It adds unnecessary complexity compared to
the relatively straightforward mechanism of software breakpoints (INT3). This method
is sometimes termed “forced exception hooking”. Another commonly used exception
involves tagging a memory page with the PAGE GUARD or NO ACCESS flag to provoke
a STATUS GUARD PAGE VIOLATION exception. However, due to the size of the pages (4096
bytes on Windows), it becomes impractical to trigger specifically on a particular function
or instruction using this method. Instead, it typically entails single-stepping until the
desired address is encountered, resulting in a significant performance impact. [19]

2.3.3 Hardware-supported methods
As discussed in section 1.2, some tools leverage modern CPU functionalities to offer low-
overhead methods for monitoring and analyzing execution. These features include Intel
processor trace (IPT) and hypervisor and virtualization functions. However, utilizing
these features would contradict one of the goals of this thesis, which is to avoid the

Obtaining function addresses 19

necessity of kernel-mode or hypervisor components. Additionally, these features are
CPU-model specific and not universally supported across the x86-64 architecture.

IPT is a powerful tracing tool, described by GDB’s documentation as having “very
low overhead” [8]. According to [20], IPT can add as little as 5% more execution time.
However, it is only supported on modern Intel processors starting from the Broadwell
micro architecture [21], and AMD does not offer a competitive counterpart. Alternative
solutions, such as Branch trace store, are also Intel-specific and entail additional polling
overhead due to the tracing data being saved in a ring buffer. While these advanced
CPU features offer impressive capabilities, their lack of universal support make them
unsuitable for the tool being developed in this thesis, which can be run on any modern
64-bit Windows OS in user mode.

2.4 Obtaining function addresses

To track the execution of functions based on their addresses, it is essential to first obtain
them. However, when debug data such as program databases (PDB file extension) or
debugging maps (MAP file extension) is unavailable to the reverse engineer, extract-
ing the call graph and determining the addresses where functions start can become an
exceptionally complex task which is still a hot topic for researchers [22, 23]. Attempt-
ing to implement this functionality is out of the scope of this thesis since it would be
unnecessary and is left to existing software.

Reverse engineers using the tool developed in this thesis are expected to utilize
a disassembler initially to extract the necessary addresses. To streamline this process
with IDA, the de facto industry standard for static analysis and disassembly, a special
script has been created. Given that modern executables are predominantly position-
independent, the resulting addresses are treated relative to the base address of the image
(an EXE or DLL file).

Code listing 2.1 IDA script to export function addresses and lengths

1 auto imagename , imagebase , func;
2 auto start , end , offset , name , prefix , length ;
3 imagename = get_root_filename ();
4 imagebase = get_imagebase ();
5 func = get_next_func (0);
6 while (BADADDR != func)
7 {
8 start = get_func_attr (func , FUNCATTR_START);
9 end = get_func_attr (func , FUNCATTR_END);

10 offset = start - imagebase ;
11 name = get_func_name (func);
12 prefix = substr (name , 0, 4);
13 length = end - start;
14 if (strstr (prefix , "sub_") != -1)
15 {
16 msg("%s+%016X:%u\n", imagename , offset , length);
17 }
18 func = get_next_func (func);
19 }

20 Monitoring code execution

The provided script from Code listing 2.1 should be executed either in IDA’s com-
mand line or in the “Execute script” window (accessible via the keyboard shortcut
Shift+F2). Written in IDC, IDA’s proprietary C-like scripting language, the script
generates output where each line represents one function. It includes the image name,
offset in hexadecimal, and function length in decimal. The inclusion of length is crucial
to ensure the function has sufficient space for writing the jump instruction required for
the hook, when software breakpoints are not employed. The output is formatted as
follows: filename.exe+0x1234ABCD:17. The script ignores functions that IDA already
knows the name of (line 14 of the script).

Chapter 3

Implementation – DLL

This chapter offers a comprehensive exploration of the design and implementation of the
primary output of this thesis: a 64-bit DLL file designed to aid reverse engineers in
locating functions within a target process on Windows OS, leveraging the approach pre-
sented in chapter 1. It also documents the specific implementation of the code execution
monitoring methods introduced in chapter 2 and sheds light on the technical intricacies
involved in creating the tool, including its architecture, functionality, and underlying
logic.

3.1 FLOC: Function Locator

The method proposed in this thesis has been dubbed “Function Locator”, or FLOC for
short. Throughout the code base, FLOC is frequently used as part of a name where
appropriate. For instance, all exported functions are prefixed with FLOCDLL . Devel-
oped in the C programming language, the DLL is crafted using the Visual Studio 2022
integrated development environment (IDE), resulting in the filename FLOC.dll. Addi-
tionally, the corresponding Visual Studio project, FLOC DLL.vcxproj, is included in the
Visual Studio solution file FLOC.sln.

The code style heavily mirrors existing C code bases found in popular public reposi-
tories like MemProcFS1, as well as Microsoft’s Win32 API2. Specifically, the code adopts
Hungarian notation and camel case for variables, pascal case for function names (with
an underscore following a file name prefix, such as File ExampleFunctionName), and
macro case (also known as screaming snake case) for constants, macros, and data types.
Additionally, the code emphasizes defensive programming, const correctness, and the
use of “Yoda conditions”3 to prevent inadvertent assignments in conditional statements.
The complete source code and the compiled DLL are provided in the attachments ac-
companying this thesis.

1https://github.com/ufrisk/MemProcFS
2https://learn.microsoft.com/en-us/windows/win32/stg/coding-style-conventions
3See https://en.wikipedia.org/wiki/Yoda_conditions for an example.

21

https://github.com/ufrisk/MemProcFS
https://learn.microsoft.com/en-us/windows/win32/stg/coding-style-conventions
https://en.wikipedia.org/wiki/Yoda_conditions

22 Implementation – DLL

3.2 Data Types

The source code introduces custom names for specific numeric data types, ensuring
consistency and clarity throughout the code base while specifying the bit width of the
variables. Table 3.1 outlines these types, as defined in the header file types.h using
the typedef keyword in C. Additionally, the file defines three macros using the #define
directive: TRUE and FALSE, equating to (1) and (0), respectively, which are utilized for
the BOOL data type. Moreover, NULL is defined to expand to (0), serving as a zero value
for pointers and handles.

Table 3.1 Custom integer data types

Defined as True type Size Usage
U64 unsigned long long 8 bytes Default integer type
U32 unsigned long 4 bytes Where smaller size is appropriate.
BOOL int 4 bytes A boolean data type.
BYTE unsigned char 1 byte Buffers, pointer arithmetic.
ADDRESS unsigned long long 8 bytes Addresses in target memory.

Employing a dedicated data type for addresses within target (remote) processes
offers numerous advantages over using a void*. Specifically, it prevents inadvertent
dereferencing of the values, facilitates accurate addition or subtraction of bytes to the
addresses without requiring recasting, and explicitly denotes the variable’s purpose.

3.2.1 Vector
The code features a custom, rudimentary implementation of a vector (dynamically sized
array) data structure. The vector itself is defined as a struct data type, and its com-
ponents are detailed in Table 3.2. The header file vector.h declares four vector-specific
functions:

Vector Init: Initializes the vector’s variables and allocates sufficient memory.

Vector AddressOf: Retrieves the address of a specific element based on its index in
the vector.

Vector PushBackCopy: Inserts a new element into the vector behind the last one
by copying the element into the correct memory address. It reallocates memory if
additional space is required and returns the address of the newly added element.

Vector Free: Releases the allocated memory and resets the vector’s variables to
zero.

3.2.2 Pool
Pools represent sections of executable memory reserved within the target process to
accommodate hook code. Pools are defined as a struct data type, and their attributes
are described in Table 3.3. Unlike vectors, pools are not expandable in size. For a deeper
understanding of their usage and significance, refer to section 3.7.

OS-specific functionality 23

Table 3.2 The VECTOR data type

Data type Variable name Purpose
void* pData Pointer to the beginning of the allocated memory.
U32 uElemCapacity Current total capacity of elements.
U32 uElemCount Current number of elements saved in the vector.
U32 uElemSize Size of one element in bytes.
BYTE[4] padding Explicit alignment to 8 bytes.

Table 3.3 The POOL data type

Data type Variable name Purpose
ADDRESS aStartAddress Addr. of the start of the allocated memory.
ADDRESS aCurrentFreeAddress Address of the first free byte.
U64 uPoolSize Total size of the allocated memory.
U64 uFreeSize Current remaining free bytes.

3.3 OS-specific functionality

All data types and functions that rely on the Windows API are consolidated within
the files os.h and os.c. This not only enhances the organization of the code but also
facilitates potential portability of the tool to other operating systems. These files are
already structured to accommodate both Windows and Unix implementations through
#ifdef WIN32 and #ifdef LINUX compiler directives, though currently only the former
is implemented, aligning with the thesis’ objectives.

In order to merge all OS-specific functionalities into a single file, the function nam-
ing convention is disregarded. Instead, more descriptive prefixes are utilized beyond
a simple OS prefix. Table 3.4 outlines the various prefixes used and their respective
purposes. Within this thesis, terms like “target”, “foreign”, or “remote” process denote
the analyzed process, while the process where the DLL is loaded is referred to as “local”.

Table 3.4 OS-specific prefixes

Prefix Purpose
Process Checking or acquiring privileges of the local process.
Memory Memory allocations and transfers in the local process’ address space.
Target Operations involving the target process and its address space.
Thread Support for multi-threading within the local process.

3.3.1 Privileges
The Process prefix is solely linked to the Process CheckPrivileges function. This
function validates local process privileges to manipulate a target process, essential for
Target functions. It verifies the presence of the SE DEBUG NAME privilege, attempting
acquisition via AdjustTokenPrivileges, and returns whether it succeeded or not.

24 Implementation – DLL

3.3.2 Memory Operations
The tool incorporates functions essential for dynamic memory management within the
local process. Primarily, Memory Alloc and Memory Free serve as wrappers for the
Windows API functions HeapAlloc and HeapFree, respectively. Additionally, a custom
memcpy implementation is included via Memory Copy, which closely resembles existing
public domain source code.

3.3.3 Target manipulation
The code offers several functions dedicated to interacting with a target process. These
functions are listed in Table 3.5 and are further explained in relevant sections.

Table 3.5 Target functions

Name (no prefix) Purpose
BreakpointAdd Writes INT3 at a specified address, flushes the cache.
B[...]RemoveDormant Removes a dormant b.p. (restores the byte and flushes).
B[...]RemoveTriggered Removes a triggered b.p. (also decrements the IP).
DebugBreak Injects a breakpoint exception in the target process.
DebuggerAttach Registers the local process as a debugger of the target.
DebuggerDetach Unregisters the local process as a debugger of target.
HandleAcquire Acquires a handle to the target.
HandleRelease Closes a handle to the target.
Is64bit Returns whether a target process is 64-bit.
IsDebuggerAttached Checks whether any process debugs the target.
MemoryAllocExec Allocates executable memory in target at any address.
MemoryAllocExecNear Like MemoryAllocExec, but near a specified address.
MemoryFree Releases allocated memory in the target address space.
MemoryRead Copies memory from target to local address space.
MemoryUnprotect Sets page protection to PAGE EXECUTE READWRITE.
MemoryWrite Copies memory from local to target address space.
MemoryWriteFlush Like MemoryWrite, but also flushes the cache.
WaitForBreakpoint Waits for and handles a debug event.

3.3.4 Threads
The code facilitates the creation of new threads within the local process by leveraging
the Windows API. For compatibility with the CreateThread API function, the os.h
header exposes a function prototype THREAD INIT FUNC (see Code listing 3.1). A function
pointer of this type is passed to the DLL’s Thread Start function along with a pointer to
a parameter that the provided function will receive upon invocation in the newly created
thread. The thread initialization process first encapsulates both the function and its
parameter into a THREAD INIT INFO structure (Code listing 3.1), and then the thread
begins execution with the static (unexposed) function Thread Init. Upon success, the
Thread Start function provides a handle to the newly created thread via an output

OS-specific functionality 25

parameter pThread. This mechanism is detailed in Code listing 3.2. Subsequently, the
Thread Init function invokes the THREAD INIT FUNC and passes the parameter to it.
After the function returns, Thread Init is responsible for deallocating the memory of
the THREAD INIT INFO structure (see Code listing 3.3). The code also provides functions
to wait for a thread to finish executing given a timeout in milliseconds, and to close the
handle to the thread. These are functions Thread WaitExit and Thread Close, which
are wrappers for Windows API WaitForSingleObject and CloseHandle respectively.

Code listing 3.1 Data types for thread initialization

1 typedef void (* THREAD_INIT_FUNC)(void *);
2 typedef struct tdTHREAD_INIT_INFO {
3 THREAD_INIT_FUNC fnFunc ;
4 void* pParam ;
5 } THREAD_INIT_INFO ;

Code listing 3.2 Thread Start function

1 BOOL Thread_Start (THREAD_INIT_FUNC const fnFunc ,
2 void* const pParam , THREAD * const pThread)
3 {
4 THREAD_INIT_INFO * const pInitInfo =
5 Memory_Alloc (sizeof (THREAD_INIT_INFO));
6 if (NULL == pInitInfo)
7 {
8 * pThread = NULL;
9 return FALSE;

10 }
11 pInitInfo -> fnFunc = fnFunc ;
12 pInitInfo -> pParam = pParam ;
13 HANDLE const hThread = CreateThread (NULL , 0, Thread_Init ,
14 pInitInfo , 0, NULL);
15 if (NULL == hThread)
16 {
17 * pThread = NULL;
18 return FALSE;
19 }
20 * pThread = hThread ;
21 return TRUE;
22 }

Code listing 3.3 Thread Init function

1 static DWORD WINAPI Thread_Init (void* lpParam)
2 {
3 THREAD_INIT_INFO * const pInitInfo =
4 (THREAD_INIT_INFO *) lpParam ;
5 pInitInfo -> fnFunc (pInitInfo -> pParam);
6 Memory_Free (pInitInfo);
7 return 0;
8 }

26 Implementation – DLL

3.4 Trackers

The tool introduces the concept of a “Tracker” to represent a function in the target
process whose execution is being monitored. The TRACKER data type encompasses all
necessary information about the tracker, as detailed in Table 3.6, including a union
representing both means of tracking function execution: either a software breakpoint
or an inline hook. The specific data types in the union (BREAKPOINT and HOOK) are
described in their respective sections. The TRACKER TYPE enumeration data type is
defined as either TRACKER TYPE BREAKPOINT SW (1) or TRACKER TYPE HOOK INLINE (2),
alternatively TRACKER TYPE DELETED (0).

Table 3.6 TRACKER data type

Data type Var. name Purpose
ADDRESS aAddress Address of the function in the target process.
TRACKER TYPE eType Number representing the tracker type.
BOOL bEnabled Value indicating if the tracker is currently active.
BOOL bHit Value indicating if the function was executed.
BYTE[4] padding Explicit alignment to 8 bytes.
union u Union of specific tracker-type data types.

3.5 Context and multi-instancing

The tool maintains a context structure with variables that track the current analysis
state, such as the target process, a vector of all trackers, and whether a step is currently
active. A comprehensive overview of the corresponding FLOC CTX data type is provided
in Table 3.7. The tool supports the existence of multiple contexts simultaneously. While
this usage scenario is not anticipated, it eliminates the need to load the DLL multiple
times if any software utilizing this tool requires it. This functionality is realized by
maintaining a global array of contexts called gContexts. By default, the maximum
number of contexts is set to four.

Before initiating any operations, the exported function FLOCDLL Initialize must
be invoked. This function inserts a new context into the array, returning a FLOC HANDLE
variable to the caller via an output parameter. When interacting with the tool through
every other exported function, this handle must be provided as the first parameter. The
DLL interprets the handle as a pointer to the context (FLOC CTX). If found in the global
array, the tool proceeds with the invoked function relative to the specific context. Upon
a call to FLOCDLL Uninitialize, the context is removed from the array, making room
for a new one.

The FLOC HANDLE data type is implemented as an abstract pointer, ensuring that
a handle obtained from outside the DLL’s scope is never directly dereferenced. Instead,
it is first validated by FLOC ContextGet, which accesses the gContexts array, returning
a valid FLOC CTX pointer or NULL. The context data type and related functions are
declared in the floc.h header file, which generally contains additional code for the
exported functions in flocdll.h that did not fit within. Code listing 3.4 illustrates the
implementation of this functionality, excluding FLOC ContextGet – see section 3.12 for its

Context and multi-instancing 27

source code. Additional functions FLOC ContextGetCount and FLOC ContextGetMax are
employed within FLOCDLL Initialize to ensure the array is not full before attempting
to insert a new context.

Table 3.7 FLOC CTX data type

Data type Variable name Purpose
VECTOR vecTrackers Vector of all TRACKERs.
VECTOR vecPools Vector of all POOLs.
THREAD thrDebug Handle to the thread running a debug loop.
PID pidTarget Identifier of the target process.
BOOL bForeignDebugLoop A foreign debug loop is used (true / false).
BOOL bIsStepActive A step is currently active (true / false).
BOOL bDbgLoopRunning A debug loop (any) is running (true / false).
BOOL bIsPendingReset Pending tracker reset / filter after step end.
BOOL bStopDebugLoop Flag to stop the debug loop thread.
BOOL bTargetDied Flag indicating the target process died.
BYTE[4] padding Explicit alignment to 8 bytes.

Code listing 3.4 FLOC CTX related code

1 # define MAX_CONTEXTS_COUNT 4
2 static FLOC_CTX * gContexts [MAX_CONTEXTS_COUNT] = { 0 };
3 static U32 gContextCount = 0;
4 typedef struct tdFLOC_HANDLE * FLOC_HANDLE ;
5 void FLOC_ContextInsert (FLOC_CTX * const pCtx)
6 {
7 for (U32 i = 0; i < MAX_CONTEXTS_COUNT ; i++)
8 {
9 if (NULL == gContexts [i])

10 {
11 gContexts [i] = pCtx;
12 gContextCount ++;
13 break ;
14 }
15 }
16 }
17 void FLOC_ContextClear (FLOC_CTX const * const pCtx)
18 {
19 for (U32 i = 0; i < MAX_CONTEXTS_COUNT ; i++)
20 {
21 if (pCtx == gContexts [i])
22 {
23 gContexts [i] = NULL;
24 gContextCount --;
25 break ;
26 }
27 }
28 }

28 Implementation – DLL

3.6 Software breakpoints

Software breakpoints represent one of the two methods utilized for monitoring code
execution. This section details their specific implementation. The BREAKPOINT struc-
ture, encapsulated within the union inside TRACKER, contains only one variable, BYTE
uOriginalByte. This variable is accessed as TRACKER.u.bp.uOriginalByte. It holds
the byte read from the function’s address in the target memory, to preserve the original
functionality after being overwritten with the INT3 instruction.

3.6.1 Creating a breakpoint tracker
To create a breakpoint tracker, FLOCDLL TrackerAddBreakpoint is invoked, requiring
the function’s address as a parameter alongside FLOC HANDLE. Upon successful execution,
the breakpoint remains “dormant”, meaning it is inactive in the target process and ready
to be enabled, and FLOC STATUS SUCCESS is returned. For more information about the
return type, refer to section 3.9. The function follows this sequence of events:

1. Validates the handle (returns FLOC STATUS INVALID HANDLE on failure).

2. Ensures a target process is set (FLOC STATUS TARGET NOT SET).

3. Checks for an existing tracker with this address (FLOC STATUS TRACKER ALREADY -
EXISTS).

4. Creates a TRACKER structure, setting aAddress to the specified address, eType to
TRACKER TYPE BREAKPOINT SW, and bEnabled and bHit to FALSE.

5. Acquires a handle to the target process (FLOC STATUS PROCESS HANDLE ACQUIRE -
FAIL).

6. Reads target’s memory and saves the byte at the specified address to uOriginalByte
(FLOC STATUS MEMORY READ FAIL).

7. Closes the handle.

8. Adds the tracker to vecTrackers, the vector of trackers in the context (FLOC STATUS-
VECTOR PUSHBACK FAIL).

3.6.2 Starting the debug loop
Before enabling the breakpoint, a debugger must be attached to the target process and
a debug loop started to handle the incoming debug events. This is achieved by calling
FLOCDLL DebugLoopStart. The function validates the following conditions:

The context handle is valid (FLOC STATUS INVALID HANDLE).

A target process is set (FLOC STATUS TARGET NOT SET).

The target process is alive, i.e., a handle to it can be acquired (FLOC STATUS INVA-
LID TARGET).

Software breakpoints 29

A debug loop is not already running (FLOC STATUS DEBUG LOOP ALREADY RUNNING).

A debugger is not already attached to the target process (FLOC STATUS DEBUGGER-
ALREADY ATTACHED, or FLOC STATUS TARGET CANNOT CHECK DEBUGGER if the infor-

mation cannot be obtained from the operating system).

If all the conditions are met, the function starts a new thread via Thread Start.
The THREAD INIT FUNC passed is the function FLOC DebugLoop, along with a pointer to
the current context as its parameter. If the thread creation succeeds, the context value
bDbgLoopRunning is set to TRUE, bForeignDebugLoop to FALSE (its usage is explained
in section 3.6.8), and thrDebug is assigned a handle to the newly created thread.

When invoked in the debugging thread, FLOC DebugLoop attempts to register the
local process as a debugger of the target via Target DebuggerAttach. This function calls
the Windows API functions DebugActiveProcess, and DebugSetProcessKillOnExit
with the parameter set to FALSE to ensure the target is not terminated if the debugging
thread exits without detaching the debugger. If successful, it then enters an infinite
loop calling Target WaitForBreakpoint until it is signaled to stop or the target process
terminates, after which the thread finishes execution.

3.6.3 Enabling breakpoint trackers
Enabling a breakpoint tracker can be done either via FLOCDLL TrackerEnable, referenc-
ing the tracker by the function’s address, or through FLOCDLL TrackerAllEnable. If at-
tempted without a running debug loop, FLOC STATUS ENABLING BREAKPOINT WITHOUT -
DEBUGGING is returned. However, the latter function still proceeds to enable all remaining
hook trackers, exempt from this requirement.

The actual activation process resides within FLOC TrackerEnable to avoid redun-
dancy between the two FLOCDLL functions. Upon invocation, the necessary conditions
are already verified and a handle to the target process is acquired. Subsequently, it
calls the appropriate function for the tracker type (Target BreakpointAdd). Upon suc-
cess, it marks the tracker’s bEnabled field as TRUE. This function embeds the INT3
instruction at the tracker’s designated address in the target memory and flushes the in-
struction cache at that location using the Windows API functions WriteProcessMemory
and FlushInstructionCache.

3.6.4 Breakpoint handler
This section focuses on the Target WaitForBreakpoint function, integral to the debug
loop. To maintain separation between Function Locator logic and OS-specific operations,
a function pointer is employed. FLOC BreakpointHandler is the designated function,
accepting the current context pointer as a parameter. A condensed representation of the
debugger functionality is provided in Code listing 3.5. It is crucial to note that when an
EXCEPTION DEBUG EVENT with a code different than EXCEPTION BREAKPOINT is received,
the function signals that it does not handle such an exception. Otherwise, the target
process might freeze due to an infinite loop scenario, where this identical exception would
be received again and again since there is no other debugger to handle it, and the process
would not be terminated in situations where expected [24].

30 Implementation – DLL

Code listing 3.5 Target WaitForBreakpoint function

1 typedef BOOL (* BREAKPOINT_HANDLER_FUNC)(void*,ADDRESS ,BYTE *);
2 BOOL Target_WaitForBreakpoint
3 (
4 BREAKPOINT_HANDLER_FUNC const pBreakpointHandler ,
5 void* const pParam /* FLOC_CTX * */
6)
7 {
8 /* Indentation modified . */
9 DEBUG_EVENT DE;

10 DWORD dwContinueStatus = DBG_CONTINUE ;
11 WaitForDebugEvent (&DE , INFINITE);
12
13 /* Switch statement begin. */
14 switch (DE. dwDebugEventCode)
15 {
16 case EXCEPTION_DEBUG_EVENT :
17
18 if(EXCEPTION_BREAKPOINT ==
19 DE.u. Exception . ExceptionRecord . ExceptionCode)
20 {
21 ADDRESS const aAddress =
22 DE.u. Exception . ExceptionRecord . ExceptionAddress ;
23
24 BYTE uOriginalByte = 0;
25 BOOL bRemoveBreakpoint = pBreakpointHandler (pParam ,
26 aAddress ,
27 & uOriginalByte);
28 if (bRemoveBreakpoint)
29 {
30 Target_BreakpointRemoveTriggered (DE. dwProcessId ,
31 DE.dwThreadId ,
32 aAddress ,
33 uOriginalByte);
34 }
35 }
36 else /* Exception code != EXCEPTION_BREAKPOINT . */
37 {
38 dwContinueStatus = DBG_EXCEPTION_NOT_HANDLED ;
39 }
40
41 break ;
42 /* Other debug event codes are omitted . */
43 }
44 /* Switch statement end. */
45
46 ContinueDebugEvent (DE. dwProcessId ,
47 DE.dwThreadId ,
48 dwContinueStatus);
49 /* ... */
50 }

Software breakpoints 31

As documented by the code, the breakpoint handler (FLOC BreakpointHandler)
determines whether the breakpoint should be removed, indicating if it genuinely corre-
sponds to a tracker and was not triggered by external factors. If this condition is met
and a step is currently active, it updates the relevant tracker’s bHit field to TRUE and
bEnabled to FALSE. Additionally, the original byte of the function saved in the tracker
(uOriginalByte) that should replace the INT3 instruction is passed to the caller through
an output parameter. Following this, Target BreakpointRemoveTriggered is called to
execute this task. Its source code is shown in Code listing 3.6. The code mirrors the steps
outlined in subsection 2.1.2, albeit without the single-stepping (TRAP flag) functionality
as announced.

Code listing 3.6 Target BreakpointRemoveTriggered function

1 void Target_BreakpointRemoveTriggered (PID const pidProcess ,
2 TID const tidThread ,
3 ADDRESS const aAddress ,
4 BYTE const uOrigByte)
5 {
6 HANDLE const hThread = OpenThread (THREAD_ALL_ACCESS ,
7 FALSE ,
8 tidThread);
9 if (NULL == hThread)

10 {
11 return ;
12 }
13 CONTEXT threadContext ;
14 threadContext . ContextFlags = CONTEXT_ALL ;
15 if (! GetThreadContext (hThread , & threadContext))
16 {
17 goto ret;
18 }
19 threadContext .Rip -= 1;
20 if (! SetThreadContext (hThread , & threadContext))
21 {
22 goto ret;
23 }
24 BYTE const byte = uOrigByte ;
25 HANDLE const hProc = OpenProcess (PROCESS_ALL_ACCESS ,
26 FALSE ,
27 pidProcess);
28 if (NULL == hProc)
29 {
30 goto ret;
31 }
32 WriteProcessMemory (hProc ,(LPVOID)aAddress ,&byte ,1, NULL);
33 FlushInstructionCache (hProc , (LPCVOID)aAddress , 1);
34 CloseHandle (hProc);
35 ret:
36 CloseHandle (hThread);
37 return ;
38 }

32 Implementation – DLL

3.6.5 Disabling breakpoint trackers
Breakpoint trackers can be disabled either individually using FLOCDLL TrackerDisable,
by specifying the function address, or collectively through FLOCDLL TrackerAllDisable,
either manually or as part of the uninitialization process in FLOCDLL Uninitialize. Sim-
ilar to the enabling process, the underlying functionality is encapsulated in a helper func-
tion – FLOC TrackerDisable. This function then invokes Target BreakpointRemove-
Dormant, passing the original byte as a parameter, and sets the bEnabled field of the
tracker to FALSE. Removal of the breakpoint entails overwriting the INT3 instruction
with the original byte and flushing the instruction cache.

3.6.6 Halting the debug loop
To stop the debug loop, either via FLOCDLL DebugLoopStop or internally through FLOC-
DLL Uninitialize, the context value bStopDebugLoop is set to TRUE. This flag serves
as a signal for the debug loop to conclude. Before raising the flag, any remaining
enabled breakpoint trackers in the target process are attempted to be disabled to prevent
unhandled exceptions. The following return values document the possible scenarios
where the function fails to proceed:

FLOC STATUS INVALID HANDLE

FLOC STATUS TARGET DIED (see subsection 3.6.7)

FLOC STATUS DEBUG LOOP ALREADY STOPPED

FLOC STATUS DEBUG LOOP FOREIGN (see subsection 3.6.8)

FLOC STATUS PROCESS HANDLE ACQUIRE FAIL

In the absence of any issues, the flag is set, prompting the infinite loop in FLOC Debug-
Loop to break. Subsequently, Target DebuggerDetach is invoked, memory allocated for
the THREAD INIT INFO structure is deallocated, and the thread concludes its execution.
FLOCDLL DebugLoopStop waits for this to occur using Thread WaitExit with a 100 ms
timeout. If the thread has not yet finished within this time frame, it indicates that the
debug loop might still be awaiting a return from a WaitForDebugEvent call (see Code
listing 3.5, line 11), and thus, unable to notice the termination flag.

In order to wake up the thread, a breakpoint exception is deliberately triggered
within the target process using Target DebugBreak, a wrapper for the API function
DebugBreakProcess. This action generates a debug event, affording the debugging
thread an opportunity to read the bStopDebugLoop value. A lengthier timeout is ap-
plied, and upon completion, if the thread indeed concludes its execution, the handle
to it is closed (Thread Close), and the bDbgLoopRunning and bStopDebugLoop val-
ues are reset to FALSE in the context. Should Target DebugBreak encounter failure
or the second timeout expires, the function returns FLOC STATUS DEBUG BREAK FAIL or
FLOC STATUS DEBUG LOOP STOP FAIL, respectively.

Inline Hooks 33

3.6.7 Target termination
When the target process terminates, the debugging thread receives a notification through
a debug event with either the code EXIT PROCESS DEBUG EVENT or RIP EVENT [25]. This
prompts Target WaitForBreakpoint to return TRUE, which is detected within FLOC De-
bugLoop. Consequently, the loop is broken, and the debugger is detached, mimicking
the behavior triggered by raising the bStopDebugLoop flag. Additionally, before the
thread concludes its execution, it sets the context value bTargetDied to TRUE. This
flag is subsequently checked in FLOC IsTargetDead as part of the higher-level functions
FLOCDLL DebugLoopStop, FLOCDLL StepBegin, and FLOCDLL StepEnd. Essentially, it
resets the context. However, unlike a full uninitialization, it does not deallocate the
vector of trackers and preserves the context in gContexts, allowing the software utilizing
this tool to retain the last state of the analysis if desired.

3.6.8 Foreign debug loop
Given that this tool is intended for integration within existing reverse engineering soft-
ware and frameworks, it is probable that such software may function as a debugger
and run its own debug loop for various purposes. To prevent potential conflicts be-
tween different debuggers and to ensure that the software retains full control over debug
events, the DLL provides a FLOCDLL CallExceptionBreakpointHandler function. This
function should be invoked when a breakpoint exception occurs during debugging. The
debugger running outside of Function Locator’s scope is referred to as “foreign”, in
contrast to “native”, which represents the DLL’s own debugger.

Before utilizing this function, the context must be informed about the usage of a for-
eign debugger through FLOCDLL DebugLoopOverride. This function utilizes a BOOL pa-
rameter to indicate the start or stop of the foreign debug loop. Most functions within
the DLL do not differentiate between a native or foreign debugger, and all features of
the tool are supported in both scenarios.

FLOCDLL CallExceptionBreakpointHandler requires specific information that only
the debugging thread possesses, namely the thread identifier where the exception oc-
curred and the corresponding address. The function ensures that a foreign debug
loop is active and then proceeds to invoke the same breakpoint handler utilized by
a native debugger (FLOC BreakpointHandler). If the handler returns true, indicating
that the breakpoint corresponds to a tracker and should be removed, the function calls
Target BreakpointRemoveTriggered as well.

3.7 Inline Hooks

Hook trackers are managed similarly to breakpoint trackers from an external perspective,
with the primary difference being the dedicated creation function for each tracker type –
FLOCDLL TrackerAddHook for hooks. Additionally, hooks do not require a debug loop to
be running. The HOOK data type, which is part of the TRACKER’s union, is more complex,
occupying 40 bytes. Table 3.8 provides an overview of its fields.

34 Implementation – DLL

Table 3.8 HOOK data type

Data type Variable name Purpose
ADDRESS aHookAddress Address where the hook code starts.
U32 uJumpBytesLen Length of the jump code in bytes.
U32 uHitOffset Offset of the “hit” byte from aHookAddress.
BYTE[14] uJumpBytes Buffer for the jump code.
BYTE[2] padding Explicit alignment to 8 bytes.

3.7.1 Near and far pools
As discussed in subsection 3.2.2, pools represent executable memory allocated in the tar-
get process where the hook code is placed. Utilizing pools instead of allocating memory
for each hook individually optimizes long-term operations. This approach minimizes the
total number of allocations and reduces overall memory overhead, as the Windows API
always rounds memory allocations up to the nearest page boundary (4096 bytes) [26],
even if the hook code requires only a fraction of that space.

When a new pool is created, it is added to the vector of pools (pVecPools) in the
context. The pool fields aStartAddress (the starting address of the allocated memory
in the target) and uPoolSize (the size of the allocated memory) remain constant after
creation. However, other fields, namely aCurrentFreeAddress (the first free address
after the last hook code) and uFreeSize (the total remaining free space), are updated
each time new code is added to the pool.

The code distinguishes between “near” and “far” pools. A pool is considered near
a target address if the absolute distance from the pool’s aCurrentFreeAddress to the
target address is less than 2 GB, meaning the relative distance can be represented by
a signed 32-bit integer. When creating a hook, a near pool is preferred, even if it
requires allocating a new pool. This preference is due to the shorter jump code (5 bytes
vs. 14 bytes) required for near pools, which allows shorter functions to be hooked and
reduces the hook code size (30 bytes vs. 64 bytes), saving memory and CPU instructions.
Further details are provided in the next subsection. The pool.h file exposes a single
function, Pool FindOrCreateBest, which takes a pointer to the context’s vector of pools,
an address the pool should be near, the required free space, the near distance (±2 GB),
and a handle to the target process. The “best” pool is determined based on the following
criteria, ranked from most to least preferred:

1. An existing near pool with enough free space.

2. A newly allocated near pool.

3. An existing far pool with enough free space.

4. A newly allocated far pool.

For far pools, the function Pool CreateAnywhere requests the OS to allocate 64 kB
of memory anywhere in the target process, sufficient for 1000 far hook instances. It calls
Target MemoryAllocExec, a wrapper for Windows’ VirtualAllocEx function, and sets
aStartAddress and aCurrentFreeAddress to the returned value (or returns FALSE if

Inline Hooks 35

it is NULL), and uPoolSize and uFreeSize to 64 kB, returning TRUE. All memory is
allocated with the PAGE EXECUTE READWRITE protection constant.

Allocating near memory is more complex and is handled by Target MemoryAlloc-
ExecNear, which requires the address, near distance, and minimum size to be supplied.
While a desired starting address may be specified for VirtualAllocEx, it will fail if the
specific pages are not free, while a different address within 2 GB might be available.
Similarly, the required size might not be accommodated, but a smaller size would suc-
ceed. On the other hand, the tool might miss out on allocating more bytes than it tried
to. The code uses the VirtualQueryEx API function to find the closest region of free
pages before attempting allocation of its entire length.

After calculating the “near” boundary from the ±2 GB distance around the address
or the minimum and maximum application addresses obtained from GetSystemInfo,
whichever is stricter, it uses the DLL’s FindPrevFreeRegion function, descending the
address space and searching for a free region. It accounts for allocation addresses
being rounded down to the nearest multiple of the “allocation granularity”, which
is also obtained from GetSystemInfo and should be 64 kB [27]. If successful, the
function returns the address of the beginning of the found free region and passes its
size via an output parameter, as shown in Code listing 3.7. If no suitable region is
found, FindNextFreeRegion is called to search upwards. Finally, when one is located,
VirtualAllocEx is invoked to allocate the entire range of pages in the region.

Code listing 3.7 FindPrevFreeRegion function

1 static ADDRESS FindPrevFreeRegion (PROCESS const hProcess ,
2 ADDRESS const aAddress , ADDRESS const aMin ,
3 U32 const uAllocGranularity , U64* const puRegionSize)
4 {
5 ADDRESS aTry = aAddress ;
6 aTry -= (aTry % uAllocGranularity) + uAllocGranularity ;
7 while (aTry >= aMin)
8 {
9 MEMORY_BASIC_INFORMATION mbi;

10 if (! VirtualQueryEx (hProcess , (LPVOID)aTry ,
11 &mbi , sizeof (mbi)))
12 {
13 break ;
14 }
15 if (MEM_FREE == mbi.State)
16 {
17 * puRegionSize = mbi. RegionSize ;
18 return aTry;
19 }
20 if ((U64)mbi. AllocationBase < uAllocGranularity)
21 {
22 break ;
23 }
24 aTry = (U64)mbi. AllocationBase - uAllocGranularity ;
25 }
26 return NULL;
27 }

36 Implementation – DLL

3.7.2 Creating a hook tracker
When attempting to create a new hook tracker via FLOCDLL TrackerAddHook, the func-
tion might return a FLOC STATUS HOOK CREATE FAIL code, in addition to the return
values seen in FLOCDLL TrackerAddBreakpoint. This occurs when the internal hook
creation in Hook Create fails, for instance, due to an insufficient function length, which
must be provided to the DLL via the uFuncLen parameter. If all required conditions
are met, the DLL creates a tracker of type TRACKER TYPE HOOK INLINE and calls the
Hook Create function, passing pointers to the vector of pools and the tracker, a handle
to the target process, and the function length.

The hook creation code first attempts to obtain a pool from Pool FindOrCreateBest.
If this function returns NULL, hook creation fails, and FALSE is returned. Otherwise, the
hook creation proceeds to the appropriate function, depending on whether the pool is
near (CreateHookRel32) or far (CreateHookAbs64).

The jump code is shorter when a near pool is used because the x86-64 architecture
provides the JMP rel32 instruction, which can jump a maximum distance of a signed
32-bit integer, but takes only five bytes – a 0xE9 opcode and a four-byte signed dis-
placement [28]. Therefore, if a near pool is available and the offset from the function’s
address to the hook code fits within a 32-bit signed integer, any function longer than
four bytes can be hooked. The hook code is also shorter because fewer bytes need to be
overwritten when reinstating the original function.

The function CalcSignedDisplacement32, shown in Code listing 3.8, calculates the
signed 32-bit displacement between two addresses (64-bit unsigned integers). Inside the
CPU, the jump instruction effectively adds the displacement to the current value of the
instruction pointer (IP = IP + rel32), but it is important to note that when executing
this instruction, the IP register already holds the address of the next instruction in
memory.

Code listing 3.8 CalcSignedDisplacement32 function

1 typedef signed long I32;
2 static I32 CalcSignedDisplacement32 (U64 const a, U64 const b)
3 {
4 U64 const uAbsDiff = (a > b) ? (a - b) : (b - a);
5 return (a > b) ? (-1) * (I32) uAbsDiff : (I32) uAbsDiff ;
6 }

CreateHookRel32 is responsible for creating the shell code for both the jump and
the hook. It sets the uJumpBytesLen value inside the HOOK structure to five, reads the
function’s original bytes, and embeds them into the hook code. The hook code takes
29 bytes of instructions, followed by the “hit” byte, which is set by the hook code to
a value of one to indicate the function was executed. The offset of this byte (29) is saved
to the hook’s uHitOffset value.

The code is written into the pool using Target MemoryWriteFlush, and the func-
tion’s bytes are ensured to be modifiable with a Target MemoryUnprotect call, allow-
ing the hook to later overwrite them. If everything succeeds, the pool’s uFreeSize is
decremented and aCurrentFreeAddress is incremented, according to the hook code size
(30 bytes). The entire jump and hook shellcode is documented in Code listing 3.9.

Inline Hooks 37

Code listing 3.9 Near-hook pseudocode

1 ; JUMP:
2 ; Bytes: E9 78 56 34 12,
3 ; 78 ... 12 is 32- bit displacement from RIP to hook
4 ; Opcode : E9 cd ; Instruction : JMP rel32 (RIP = RIP + rel32)
5 JMP 0 x12345678
6 ;
7 ; HOOK: Set hit byte to 1
8 ; Bytes offset 0x0: C6 05 16 00 00 00 01
9 ; 16 ... 00 is 32- bit displacement from RIP to hit byte (0 x16)

10 ; Opcode : C6 /0 ib ; Instruction : MOV r/m8 , imm8
11 MOV BYTE PTR [RIP +0 x16], 0x1
12 ;
13 ; HOOK: Restore original function (bytes 0-4)
14 ; Bytes offset 0x7: C7 05 xx xx xx xx AA BB CC DD
15 ; xx is 32- bit displacement from RIP to function
16 ; AA -DD are function original bytes 0-4
17 ; Opcode : C7 /0 id ; Instruction : MOV r/m32 , imm32
18 MOV DWORD PTR [RIP+xx], 0 xDDCCBBAA
19 ;
20 ; HOOK: Restore original function (byte 5)
21 ; Bytes offset 0x11: C6 05 xx xx xx xx EE
22 ; xx is displacement from RIP to (function + 4)
23 ; EE is fifth original function byte
24 ; Opcode : C6 /0 ib ; Instruction : MOV r/m8 , imm8
25 MOV BYTE PTR [RIP+xx], 0xEE
26 ;
27 ; HOOK: Jump back to original function
28 ; Same instruction as jump code , displ. from RIP to function
29 ;
30 ; HOOK: hit byte
31 ; Bytes offset 0x1D: 00

The architecture does not support an instruction for a relative 64-bit jump, nor
does it provide an absolute jump to a 64-bit immediate value [28]. When a far pool
is used and the offset does not fit in a 32-bit value, the absolute value must either be
loaded into a register or an indirect approach must be employed. Common methods for
implementing 64-bit jumps include:

1. Using a MOV reg / CALL reg pair, alternativelly MOV reg / JMP reg

2. Pushing the address onto the stack and executing a RET instruction.

3. Indirect CALL QWORD PTR [Pointer to address to jump to] or JMP QWORD PTR.

With the first variant necessitating backing up and restoring the register from the
stack, all three methods require 14 bytes to implement. The third approach, using an
indirect JMP instruction, was chosen because it avoids using any registers or the stack
and does not disrupt the CPU’s return address branch prediction, thereby preventing
unnecessary performance overhead [29]. While this approach adds two layers of indirec-
tion, in practice, the absolute address can be placed immediately after the opcode by

38 Implementation – DLL

jumping to [RIP + 0x00]. For the hook code, a register must be used since there is no
way to transfer the bytes directly across a 64-bit distance. The RAX register is pushed
and then popped from the stack. The complete far-hook implementation is documented
in Code listing 3.10.

Code listing 3.10 Far-hook pseudocode

1 ; JUMP:
2 ; Bytes: FF 25 00 00 00 00 xx xx xx xx xx xx xx xx
3 ; 00 ... 00 is 32- bit offset from RIP
4 ; xx is the absolute address of hook
5 ; Opcode : FF /4 ; Instruction : JMP r/m64 (RIP = [RIP+rel32])
6 ; Zeroed out rel32 translates to RIP = [RIP +0] = [RIP]
7 JMP QWORD PTR [RIP]
8 ;
9 ; HOOK: Set hit byte

10 ; Bytes offset 0x0: C6 05 38 00 00 00 01
11 ; 38 ... 00 is offset from RIP to hit byte (0 x38)
12 ; Opcode : C6 /0 ib ; Instruction : MOV r/m8 , imm8
13 MOV BYTE PTR [RIP +0 x38], 0x1
14 ;
15 ; HOOK: Backup RAX register
16 ; Bytes offset 0x7: 50
17 ; Opcode : 50+ rd ; Instruction : PUSH r64
18 PUSH RAX
19 ;
20 ; HOOK: Move original function (bytes 0-7) to RAX
21 ; Bytes offset 0x8: 48 B8 77 66 55 44 33 22 11 00
22 ; 00 -77 are function original bytes 0-7
23 ; Opcode : REX.W + B8+ rd io ; Instruction : MOV r64 , imm64
24 MOVABS RAX , 0 x0011223344556677
25 ;
26 ; HOOK: Restore original function from RAX (bytes 0-7)
27 ; Bytes offset 0x12: 48 A3 77 66 55 44 33 22 11 00
28 ; 77 ... 00 is absolute address of function
29 ; Opcode : REX.W + A3 ; Instruction : MOV moffs64 , RAX
30 MOVABS QWORD PTR [0 x0011223344556677], RAX
31 ;
32 ; HOOK: Repeat above for original function bytes 8-F
33 ;
34 ; HOOK: Restore RAX register
35 ; Bytes offset 0x30: 58
36 ; Opcode : 58+ rd ; Instruction : POP r64
37 POP RAX
38 ;
39 ; HOOK: Jump back to original function
40 ; Same instruction as jump code , absolute address of function
41 JMP QWORD PTR [RIP]
42 ;
43 ; HOOK: hit byte
44 ; Bytes offset 0x3F: 00

Workflow 39

Section 2.2 raised concerns about the atomicity of function overwrite operations. Al-
though the approaches shown in the previous source codes are not atomic, testing did not
reveal any problems. However, the architecture does allow for atomic implementations.
For near-hooks, the five-byte jump code fits into a standard 64-bit register, making atom-
icity relatively easy to achieve by backing up three additional bytes. This approach must
correctly handle cases where the excess bytes belong to a different function. The far-
hook implementation already copies two additional bytes beyond the length of the jump
code. For atomic far-hooks, AVX instructions can be used if the CPU supports them.
To maximize performance, address alignment must be considered and the appropriate
instruction selected. Alternatively, some processors implement the MOVDIR64B instruc-
tion, which does not require AVX and its registers. This instruction “[moves] 64-bytes as
a direct-store with guaranteed 64-byte write atomicity from the source memory operand
address to the destination memory address specified [. . .] in the register operand”, which
is sufficient to handle both hook sizes atomically. [30]

3.7.3 Enabling hook trackers
After a hook tracker is created, it is not immediately active, similar to breakpoints.
The hook code is prepared in the pool, and the jump code is prepared in the HOOK field
uJumpBytes, but it is not yet written into the target’s memory. When enabling a hook, ei-
ther directly or through FLOCDLL TrackerAllEnable, the function FLOC TrackerEnable
calls Hook Enable and sets the bEnabled field to TRUE if the operation succeeds. Similar
to breakpoints, the enabling process is straightforward, but before overwriting the func-
tion with the jump code, the “hit byte” (accessed via TRACKER.u.hook.aHookAddress
+ TRACKER.u.hook.uHitOffset) must be reset to zero. Additionally, when a step is
ended (FLOCDLL StepEnd), the tracker’s bHit value must be manually updated by read-
ing the byte from target memory, because unlike breakpoints, there is no handler to do
it immediately after function execution.

3.7.4 Disabling hook trackers
When a hook tracker is disabled, the only action taken is setting the bEnabled field to
FALSE. There are no functions to remove the hook from the target. If it is currently
active, the jump code will be removed on the first execution of the function. Thus, the
tracker can be safely kept in the target’s memory even after Function Locator is closed.
Manually replacing the jump code with the original bytes would incur more overhead
than allowing the hook to handle it autonomously. Similarly, the hook code and the
pool’s allocated memory are never released. These resources are intentionally leaked
because there is no need to release them. It would only add unnecessary complexity and
overhead to the tool. Unlike breakpoints, a leftover hook does not pose any risk.

3.8 Workflow

The standard workflow when using this tool is depicted in the flowchart in Figure 3.1.
Before starting the analysis, the reverse engineer must obtain the function addresses,
possibly using the IDA script provided in section 2.4, and launch the target process.

40 Implementation – DLL

Figure 3.1 FLOC.dll workflow

Exported Functions 41

After loading the DLL, initializing a context, and setting the target PID to a running pro-
cess, the reverse engineer is expected to load the function addresses (create the trackers),
start the debug loop if breakpoints are used, and begin analysis by enabling all trackers
and starting the first step. After observing the desired action or intentionally triggering
other actions, the step is ended and the trackers are filtered. This process continues by
re-enabling all remaining trackers and starting another step until a satisfactory reduction
in the number of functions is achieved. The engineer then saves the resulting addresses
from the vector and uninitializes the tool. Chapter 5 provides tips for achieving optimal
results more quickly.

While the flowchart shows FLOCDLL TrackerAllGet being called only once, it is
important to remember that after each new tracker is added, the vector might be re-
allocated. Therefore, this function should be called again, and the previously reported
memory should not be accessed. The flowchart does not cover alternative workflows,
such as using a foreign debug loop where FLOCDLL DebugLoopStart is replaced with
FLOCDLL DebugLoopOverride, or bypassing tracker filtering before a new step, i.e., ig-
noring the step and calling FLOCDLL TrackerAllReset. Another option not shown is
enabling only selected trackers to minimize the number of active trackers at any given
time, thus reducing overhead at the cost of a longer analysis, if maximum performance
is required.

3.9 Exported Functions

This section provides a summary of each exported function and its respective purpose.
The return value for all functions is a FLOC STATUS data type, which translates to a 32-bit
unsigned integer. The value FLOC STATUS SUCCESS is defined as zero, while any other
value indicates a failure. The file status.h defines a total of 45 distinct error codes
to specify the reason for function failure. If a relevant status is not defined, a generic
FLOC STATUS FAILURE (1) is returned. With the exception of FLOCDLL Initialize, all
exported functions require a valid FLOC HANDLE as the first parameter. If an invalid
handle is provided, FLOC STATUS INVALID HANDLE is returned.

All exported functions are declared within the file flocdll.h, which is partially seg-
mented between Windows and Unix implementations using #ifdef directives. However,
this segregation is solely to ensure the functions are exported. The FLOC EXPORT direc-
tive is utilized for this purpose. In Windows, where the usage of MSVC is expected,
this directive is not translated to anything, as a module definition (.def) file is pro-
vided to the linker instead. Additionally, the file includes an #error directive to prevent
compilation on architectures other than x86-64.

3.9.1 FLOCDLL Initialize
Initializes a new context. Upon successful initialization, it provides the caller with
a handle to the new context via an output parameter (a pointer to a FLOC HANDLE
data type). Unlike other functions, this one does not expect a valid FLOC HANDLE to be
passed. Initialization fails under the following conditions: if the process cannot acquire
the required privileges from the OS, if the global array of contexts is full, or due to an
internal error such as memory allocation or vector initialization failure.

42 Implementation – DLL

3.9.2 FLOCDLL Uninitialize
This function disables all active trackers (by invoking FLOCDLL TrackerAllDisable)
and attempts to halt the debug loop (via FLOCDLL DebugLoopStop) if it is currently
running and not foreign. If no errors occur, it proceeds to free all allocated memory and
clears the context from the global array.

3.9.3 FLOCDLL TargetSet
If a target process has not already been set, and the process exists and is 64-bit, this
function sets the target in the context to the provided value, which is of PID data type.
Once set, the target cannot be changed until the context is uninitialized and reinitialized
again.

3.9.4 FLOCDLL DebugLoopStart
This function attempts to initiate a debug loop under the following conditions:

The debug loop is not already running.

A foreign debug loop is not utilized.

The target process is set.

The target process is running.

The OS confirms that no other debugger is currently attached to the target process.

If successful, a new thread is created to initiate a debug loop, responsible for handling
all debug events, including breakpoint exceptions triggered by breakpoint trackers.

3.9.5 FLOCDLL DebugLoopStop
This function attempts to halt the debug loop if it is currently active and not foreign.
It proceeds only when all active breakpoint trackers are successfully disabled, as they
could otherwise trigger unhandled exceptions, leading to a program crash. It signals the
debug thread to cease operation by modifying a value in the context, accessible to the
thread. However, the thread becomes aware of this change only after returning from
a Target WaitForBreakpoint call, which occurs after the OS dispatches a debug event
to the debugger. If the wait for the thread to finish times out, a debug break is enforced
in the target process, followed by another wait.

3.9.6 FLOCDLL DebugLoopOverride
This function serves to notify the context when a foreign (caller-owned) debug loop
has been initiated or terminated. It verifies the caller’s assertion with the assistance
of a Target IsDebuggerAttached call. Table 3.9 outlines all scenarios handled by the
function, with only the first two specific situations considered valid.

Exported Functions 43

Table 3.9 Overriding the debug loop

P
re

se
nt

Fo
re

ig
n

R
un

ni
ng

O
ve

rr
id

e

Su
cc

es
s

Foreign debugger is:
✓ × × ✓ ✓ Confirmed to be activated.
× ✓ ✓ × ✓ Confirmed to be deactivated.
× ∗ ∗ ✓ × Claimed to be turned on but none was found.
✓ × ✓ ✓ × Claimed to be turned on but a native loop is running.
✓ ✓ ✓ × × Claimed to be turned off but a debugger is still attached.

Present is a boolean value indicating whether any debugger is attached to the target
process according to the OS. Foreign represents the current value stored in the context,
denoting whether a foreign debug loop is being utilized or not (bForeignDebugLoop).
Running is another context value indicating the current status (running or stopped)
of the loop, regardless of whether it is foreign or not (bDbgLoopRunning). Override
is the parameter passed to the function (BOOL data type), asserting the current status
of a foreign debug loop (either running or stopped). The symbol ∗ serves as a wild-
card. Any case not explicitly mentioned in the table is handled generically, returning
a FLOC STATUS ILLOGICAL OVERRIDE value. As the tool lacks control over the caller’s
debug loop, it does not verify the presence of any remaining active breakpoints in the
target process. The responsibility for removing them before halting the loop lies with
the caller.

3.9.7 FLOCDLL CallExceptionBreakpointHandler
When utilizing a foreign debug loop, this function should be invoked each time the
loop encounters a breakpoint exception. Its purpose is to enable the tool to appropri-
ately handle triggered breakpoint trackers. First, it verifies that a foreign debug loop
is presently active within the context. If confirmed, it redirects execution to the same
handler utilized by the tool’s native debug loop and removes the breakpoint if its address
corresponds to a tracker. The caller is responsible for supplying all necessary parame-
ters: the process identifier (PID), the thread identifier (TID), and the address where the
exception occurred (ADDRESS).

3.9.8 FLOCDLL TrackerAddBreakpoint
This function attempts to establish a new software breakpoint tracker for the specified
address (parameter of ADDRESS data type). It fails if there is already an existing tracker
associated with this address, if a handle to the target process cannot be acquired, if the
byte at the address cannot be read from the target process, or due to an internal error
(such as a failure to allocate memory or an unsuccessful vector pushback operation).
After invoking this function, the breakpoint remains in an inactive state.

44 Implementation – DLL

3.9.9 FLOCDLL TrackerAddHook
This function attempts to create a new inline hook tracker for the specified address (pa-
rameter of ADDRESS data type). It fails if there is already an existing tracker associated
with this address, if a handle to the target process cannot be acquired, if the creation
of the hook fails (as indicated by a Hook Create call), or due to an unsuccessful vector
pushback operation. Additionally, it requires the provision of the function length via
a U32 parameter. Upon calling this function, the hook remains inactive.

3.9.10 FLOCDLL TrackerRemove
Attempts to remove a tracker specified by its address (parameter of ADDRESS data type).
If applicable, it removes the associated breakpoint from the target process. However,
hooks, even if enabled, are disregarded, as the hook will safely remove its own jump code
eventually. The function fails if the tracker is not found. Upon removal, the eType field
of the tracker is set to TRACKER TYPE DELETED, ensuring it will be ignored in all FLOCDLL
functions, while other fields are zeroed out.

3.9.11 FLOCDLL TrackerEnable
This function attempts to enable a tracker specified by its address (parameter of ADDRESS
data type). For a software breakpoint, this involves writing the INT3 instruction into the
target process memory. For hooks, the beginning of the function is overwritten with the
pre-prepared jump code from a previous FLOCDLL TrackerAddHook call. If successful, it
sets the field bEnabled of the tracker to TRUE. However, it fails if a handle to the process
cannot be acquired, if the tracker is a breakpoint and the debug loop is not running, or
if the tracker is not found. If the tracker is already enabled, FLOC STATUS SUCCESS is
immediately returned.

3.9.12 FLOCDLL TrackerDisable
This function attempts to disable a tracker specified by its address (parameter of ADDRESS
data type). For a software breakpoint, this entails restoring the original byte at the
function address, which was overwritten with an INT3 instruction beforehand. Hooks are
left within the target process, even if currently enabled, as the jump code will eventually
be automatically removed by the hook code. If successful, it sets the field bEnabled of
the tracker to FALSE. However, it fails if a handle to the process cannot be acquired or
if the tracker is not found. If the tracker is already disabled, FLOC STATUS SUCCESS is
immediately returned.

3.9.13 FLOCDLL TrackerAllGet
This function allows the caller to access the vector of trackers (vecTrackers), providing
awareness of their status. Instead of copying the vector to a caller-owned destination, it
provides the address of the vector in memory via an output parameter (implemented as
a double pointer to a VECTOR const data type).

Exported Functions 45

3.9.14 FLOCDLL TrackerAllReset
This function sets the bHit field of all trackers and the context value bIsPendingReset
to FALSE. By doing so, it enables the caller to start a new step without filtering out any
trackers using FLOCDLL StepFilterOutExecuted or FLOCDLL StepFilterOutNotExecu-
ted. It fails if a step is currently active.

3.9.15 FLOCDLL TrackerAllEnable
This function attempts to enable all trackers. It fails if a handle to the target process
cannot be acquired. It returns FLOC STATUS SUCCESS even if some trackers fail to be
enabled, except when attempting to enable a breakpoint tracker while a debug loop is
not running. In this case, the function still attempts to enable all hook trackers, but it
returns FLOC STATUS ENABLING BREAKPOINT WITHOUT DEBUGGING.

3.9.16 FLOCDLL TrackerAllDisable
This function attempts to disable all trackers. It fails if a handle to the target process
cannot be acquired. It returns FLOC STATUS SUCCESS even if some trackers fail to be
disabled.

3.9.17 FLOCDLL StepBegin
Initiates a new step by setting the context value bIsStepActive to TRUE. Fails if a step
is already active or if the target process has terminated. If bIsPendingReset is TRUE
(indicating that trackers were not filtered out or reset), the function manually calls
FLOCDLL TrackerAllReset. If the reset operation succeeds, bIsPendingReset is set to
FALSE; otherwise, FLOC STATUS TRACKER RESET FAIL is returned.

3.9.18 FLOCDLL StepEnd
Concludes an active step by setting the context values bIsStepActive to FALSE and
bIsPendingReset to TRUE. Fails if the step is already stopped, the target process has
terminated, or a handle to the target process cannot be acquired. Updates the bHit
value of all hook trackers by reading the byte in the hook code where the value resides.
The Hook IsHit function, which is responsible for this task, also sets the tracker value
bEnabled to FALSE if the function was executed. If bHit is true, it indicates that the
hook removed itself as part of the hook code. This mechanism differs from breakpoints,
which automatically update their bHit and bEnabled values in the breakpoint handler.

3.9.19 FLOCDLL StepFilterOutExecuted
Removes all trackers that were triggered (executed) during the previous step. Re-
sets the remaining trackers (bHit is set to FALSE) in preparation for the next step.
Sets the context value bIsPendingReset to FALSE. Fails if a step is currently active
(FLOC STATUS STEP ACTIVE is returned).

46 Implementation – DLL

3.9.20 FLOCDLL StepFilterOutNotExecuted
Removes all trackers that were enabled but not triggered (not executed) during the
previous step. Resets the remaining trackers (bHit is set to FALSE) in preparation for
the next step. Sets the context value bIsPendingReset to FALSE. Fails if a step is
currently active (FLOC STATUS STEP ACTIVE is returned).

3.10 File Structure

Table 3.10 provides an overview of all the source files comprising the DLL and their
respective purposes. Disregarding file extensions (.c and .h), the C header and imple-
mentation files are merged for simplicity. The “.h only” field in the table indicates when
only the header file is present. Not included are flocdll.def, which contains the names
of exported functions for the linker, as well as the Visual Studio project and solution
files.

Table 3.10 Summary of source code files

File .h only Purpose
floc × FLOC CTX and helper functions for flocdll.
flocdll × x86-64 arch. compilation guard and all exported functions.
hook × Creation and management of inline hooks.
os × All OS-specific functionality (Process, Memory, Target, Thread).
pool × Location or creation of a (preferably near) pool for hooks.
status ✓ FLOC STATUS data type and all status code definitions.
tracker ✓ TRACKER TYPE enum, TRACKER and BREAKPOINT data types.
types ✓ Custom integer data types, definitions of TRUE, FALSE, and NULL.
vector × VECTOR data type implementation.

3.11 Portability and compilation

One of the primary objectives of this thesis is to ensure the tool’s adaptability by exist-
ing reverse engineering tools and frameworks and achieving maximum code portability.
To accomplish this, the tool has been designed with minimal dependencies. With the
exception of os.c, which includes the Windows.h header file, the tool relies on absolutely
no external libraries, not even the C runtime. In total, the DLL imports three functions
from the ADVAPI32 library, and 28 functions from the KERNEL32 library.

This independence is achieved through the /NODEFAULTLIB linker switch. This
change, however, leads to the linker not finding the DllMainCRTStartup symbol, the
expected entry point of the DLL. To address this, a custom entry point named DllMain
is specified using the /ENTRY:"DllMain" switch. This function mirrors the example
user-defined entry function from Microsoft’s documentation and is invoked on DLL load
and unload, as well as when a thread is created or terminated in the process [31]. The
only function of this custom entry point is to disable these unnecessary thread calls, as
illustrated in Code listing 3.11, which is a potential optimization strategy [32].

Optimization 47

Code listing 3.11 Custom entry point function

1 BOOL WINAPI DllMain (HANDLE const hHandle ,
2 DWORD const dwReason ,
3 LPVOID const lpReserved)
4 {
5 (void) lpReserved ;
6 if (DLL_PROCESS_ATTACH == dwReason)
7 {
8 DisableThreadLibraryCalls ((HMODULE) hHandle);
9 }

10 return TRUE;
11 }

The code is intended to be compilable with an ISO C994 conforming compiler. How-
ever, this was not directly tested as the project is compiled using what Microsoft terms
the “MSVC legacy” standard. This mode implements ANSI C89 but includes certain
Microsoft extensions, some of which align with ISO C99 standards. However, it does
not fully support C99 either, making strict conformance to C99 impossible [33]. In any
case, C11 and C17 extensions are not necessary for compilation. The code is compilable
by both C and C++ compilers, facilitated by the #ifdef cplusplus directive and
extern "C" declarations where necessary.

The code is not compatible with ISO C89 due to aspects such as declaration and
statement mixing, as well as control variable declaration within for loop statements.
While these issues could be addressed through rewriting, it would come at the expense of
const correctness and scope limiting. However, the more critical factor is its dependency
on the (unsigned) long long int data type, which was introduced in ISO C99 [34].

3.12 Optimization

The compiler settings are configured to prioritize maximum optimization (/O2 switch)
and speed over code size (/Ot). Inline function expansion is set to “Any Suitable” (/Ob2),
which is the default for /O2. Despite these settings, the resulting file size is a modest
18 kB. However, the most aggressive inlining switch (/Ob3) cannot be utilized because it
leads to the compiler emitting memcpy calls despite the unavailability of the C runtime.

The compiler inlines nearly all non-exported functions anyways, except for certain
cases such as the debug loop and breakpoint handler code, which are executed from
a different thread and the former is passed around with a function pointer. Functions
responsible for installing hook code, a segment of the pool allocating code, and the
Vector PushBackCopy function are also excluded from inline expansion. As expected,
the compiler does not employ Advanced vector extensions (AVX) instructions in the
generated code, so their generation is disabled.

The only case of source code micro-optimization is observed in the FLOC ContextGet
function, which is invoked within every exported function requiring a FLOC HANDLE.
It ensures that the handle corresponds to a valid FLOC CTX pointer stored in the global
array of contexts (gContexts). Since it is anticipated that multi-instance use of the tool

4An informal name for the the ISO/IEC 9899:1999 C programming language standard.

48 Implementation – DLL

would be rare, the context is expected to be located in the first element of the array
(gContexts[0]). Additional compiler-specific or standard-specific keywords would be
required to hint the compiler about this behavior, which led to a manual rewriting of
the function to explicitly achieve the desired assembly, as depicted in Code listing 3.12.
This approach yielded the fastest code path for the expected scenario when compared
to several alternative variants. However, it still results in a redundant NULL compar-
ison (corresponding to the validation of FLOC ContextGet’s return value in the caller
function), as the compiler fails to optimize it away. Although manually inlining the
function to facilitate immediate return of FLOC STATUS INVALID HANDLE from the caller
upon exiting the loop was considered, it was deemed too extreme.

Code listing 3.12 Optimized FLOC ContextGet function

1 FLOC_CTX * FLOC_ContextGet (FLOC_HANDLE const hHandle)
2 {
3 if (gContexts [0] == (FLOC_CTX *) hHandle)
4 {
5 return (FLOC_CTX *) hHandle ;
6 }
7 for (U32 i = 1; i < MAX_CONTEXTS_COUNT ; i++)
8 {
9 if (gContexts [i] == (FLOC_CTX *) hHandle)

10 {
11 return (FLOC_CTX *) hHandle ;
12 }
13 }
14 return NULL;
15 }

3.13 Interface

For a program to effectively utilize the functions provided by the DLL, it must define
all fields listed in Table 3.11 to ensure compatibility. Understanding all the different
FLOC STATUS codes is not mandatory. Interpreting any non-zero value as a failure is
sufficient. While not all member variables of the TRACKER and VECTOR structures need to
be known, it is expected that the structure data types will be defined in their entirety.
Afterwards, all the function declarations can be adapted from the file flocdll.h.

Additionally, the program must be able to accurately interpret the vector of trackers.
This requires either the TRACKER’s binary size or the vector’s uElemSize field to be
defined, and a function to read each element of the vector must be implemented. This
function can adhere to the original C code as depicted in Code listing 3.13, which includes
boundary checking. Alternatively, it can use the following equation, assuming that the
first element (index 0) is represented by N = 1:

Address of Nth element = pData + [(N − 1) · uElemSize]

Interface 49

Table 3.11 FLOC.dll compatibility requirements

Type FLOC.dll name Equivalent
Data type FLOC HANDLE 64-bit unsigned integer
Data type ADDRESS 64-bit unsigned integer
Data type U32 32-bit unsigned integer
Data type PID 32-bit unsigned integer
Data type TID 32-bit unsigned integer
Data type TRACKER TYPE 32-bit unsigned integer
Data type FLOC STATUS 16-bit unsigned integer
Data type BOOL 32-bit signed integer
Constant TRACKER TYPE DELETED 0
Constant TRACKER TYPE BREAKPOINT SW 1
Constant TRACKER TYPE HOOK INLINE 2
Constant FLOC STATUS SUCCESS 0
Struct. size sizeof(TRACKER) 56 bytes
Struct. member TRACKER.aAddress Offset: 0, type: ADDRESS
Struct. member TRACKER.eType Offset: 8, type: TRACKER TYPE
Struct. member TRACKER.bEnabled Offset: 12, type: BOOL
Struct. member TRACKER.bHit Offset: 16, type: BOOL
Struct. member VECTOR.pData Offset: 0, type: 64-bit pointer
Struct. member VECTOR.uElemCount Offset: 8, type: U32
Struct. member VECTOR.uElemSize Offset: 12, type: U32

Code listing 3.13 Vector AddressOf function

1 void* Vector_AddressOf (VECTOR const * pVec , U32 const uIndex)
2 {
3 BYTE* const pRes = ((BYTE *)pVec ->pData
4 + ((U64) uIndex * pVec -> uElemSize));
5 BYTE const * const pBegin = (BYTE *)pVec ->pData;
6 BYTE const * const pEnd =
7 pBegin + ((U64)pVec -> uElemCapacity * pVec -> uElemSize);
8 BOOL const valid = pRes >= pBegin && pRes < pEnd;
9 return valid ? pRes : NULL;

10 }

50 Implementation – DLL

Chapter 4

Implementation – GUI

This chapter introduces an executable program featuring a graphical interface to control
the FLOC.dll module. Named Function Locator.exe, it is accompanied by a custom
icon shown in Figure 4.1. The GUI executable aims to offer a user-friendly approach to
utilizing the developed tool and achieving the objectives outlined in the thesis. Moreover,
it is designed to facilitate the utilization of all features provided by the DLL. Developed
using Visual Studio 2022 and written in the C# programming language, it leverages the
Windows Forms graphical class library included as part of Microsoft’s .NET Framework.
The project file FLOC GUI.csproj is included in the same Visual Studio Solution file as
the DLL, FLOC.sln.

The executable requires the FLOC.dll file to be present in the folder where the tool
is being executed from, and the .NET framework to be installed on the system. Rather
than focusing on the source code, which is relatively straightforward and does not adhere
to specific code conventions, this chapter aims to present the practical design and usage
of the GUI.

Figure 4.1 Function Locator icon

51

52 Implementation – GUI

4.1 Main form

This section focuses on specific components of the main window visible to the user. For
a comprehensive overview of the entire graphical user interface, please refer to Appendix
A for a screenshot. While the DLL itself safeguards against illegal operations, such as
attempting to initiate a step without selecting a target, the GUI incorporates a simplified
version of the context to intelligently disable buttons when they would lead to an illegal
action. It is worth noting that encountering a failure status from the DLL is quite
uncommon and typically indicates an internal error like target termination, rather than
any fault on the user’s part.

4.1.1 Left-hand side

Figure 4.2 Function Locator GUI, left-hand side

On the left-hand side of the GUI, as depicted in Figure 4.2, are the primary controls
for managing the context. These controls include buttons for initializing the context,
selecting the target process, initiating and halting the debug loop, and uninitializing

Main form 53

the context. Beneath these buttons are greyed-out (unclickable) checkboxes serving as
status indicators for the current context.

If the “Use DLL loop” checkbox is unchecked before commencing the debug loop, the
GUI’s own (foreign) debugger is activated and utilized. Once a debug loop is started,
regardless of type, this checkbox becomes disabled. Additionally, the button at the
bottom allows for creating a new instance of the main form, facilitating multi-instancing.
Behind the scenes, there is an invisible “Owner form” that manages all instances of the
main form, ensuring that closing the first instance does not terminate all subsequently
created instances derived from it.

4.1.2 Right-hand side

Figure 4.3 Function Locator GUI, right-hand side

On the right-hand side, depicted in Figure 4.3, users wield controls to manage the
analysis process. They can add new functions (trackers), commence or conclude a step,
filter trackers based on the last step results, or reset their hit status and ignore the
previous step. Users can activate all trackers with the “Activate all” button, or opt for
automatic activation via the “Auto activate all” checkbox. As a reminder, trackers are in

54 Implementation – GUI

a disabled state after being triggered, requiring reactivation for the next step. For added
convenience, users can initiate and conclude steps using keyboard shortcuts (F9 to start
and F10 to end), particularly useful when analyzing full-screen applications. In this
situation, the GUI provides auditory feedback, signaling the initiation or termination of
a step. The filtering buttons are color-coded; green signifies the retention of executed
functions and removal of unexecuted ones, while red indicates the opposite, serving as
a visual aid to prevent the user from selecting the wrong option.

4.1.3 Middle section

Figure 4.4 Function Locator GUI, middle section

The central section features a scrollable list of all remaining1 functions. Each line
corresponds to a single tracker or function, displaying its address, current activation
status (under the “Active” column), and whether it represents a hook or a breakpoint.
The GUI enhances this information by adding details about the module to which the
function belongs and the offset from the module’s base address, information that the
DLL does not possess. The GUI achieves this through its own module enumeration
function. The color of each row provides crucial insight – following a step’s conclusion,
rows are colorized based on the bHit field of the tracker: green if executed and red

1“Remaining” are those trackers not marked with the type TRACKER TYPE DELETED due to being filtered
out or explicitly removed.

“Select a process” form 55

if not. This color scheme corresponds with the color-coded buttons, reinforcing their
functionality – clicking the green button retains the green (executed) functions while
removing the red (non-executed) ones.

Users can select one or more rows using familiar methods such as clicking, dragging, or
using the keyboard, akin to popular office applications. Actions on the selected trackers
are then executed via the buttons at the bottom of the form, leveraging the one-by-
one functions of the DLL in a loop. The “Export results” button serves as a standout
feature, enabling users to copy and paste the remaining function addresses in a format
reminiscent of the one offered by the IDA script in section 2.4, once they are content
with the list’s size. The window’s title follows the format “Function Locator - PID X -
Y functions” indicating to users the number of remaining unfiltered functions.

4.2 “Select a process” form

When the user clicks the “Select process” button, a new form emerges, presenting a list
of all 64-bit processes currently running on the system, as illustrated in Figure 4.5. This
list displays the PID value alongside the corresponding executable names, enabling users
to select their desired target process.

Figure 4.5 Function Locator GUI, “Select a process” form

56 Implementation – GUI

4.3 “Add functions” form

Upon clicking the “Add functions” button, users are presented with a scrollable text
box, as depicted in Figure 4.6. Here, they are prompted to input or paste function
addresses following the same format generated by the IDA script, although the inclusion
of function length is optional for breakpoints. Within this interface, users have to make
the choice whether the entered functions should be added as breakpoint or hook trackers.

Figure 4.6 Function Locator GUI, “Add functions” form

4.4 “Results” form

Upon reaching a satisfactory selection of function addresses, users can click the “Export
results” button to access a small form, as shown in Figure 4.7. This form features
a text box populated with the remaining functions, formatted identically to the output
generated by the IDA script, albeit without the function lengths. For added convenience,
a button labeled “Copy to clipboard” transfers the contents of the text box to the user’s
Windows clipboard.

FLOCDLL functions 57

Figure 4.7 Function Locator GUI, “Results” form

4.5 FLOCDLL functions

Table 4.1 GUI buttons and their corresponding FLOC.dll functions

Form Button name FLOC.dll function
Main Initialize tool FLOCDLL Initialize
Main Uninitialize FLOCDLL Uninitialize
Main Start debug loop FLOCDLL DebugLoopStart
Main Stop debug loop FLOCDLL DebugLoopStop
Main Start / Stop debug loop FLOCDLL DebugLoopOverride
Main Activate all / Start step [F9] FLOCDLL TrackerAllEnable
Main Start step [F9] FLOCDLL StepBegin
Main Stop step [F10] FLOCDLL StepEnd
Main Keep executed [...]StepFilterOutExecuted
Main Keep not executed [...]StepFilterOutNotExecuted
Main Reset and keep all FLOCDLL TrackerAllReset
Main Activate selected FLOCDLL TrackerEnable
Main Deactivate selected FLOCDLL TrackerDisable
Main Remove selected FLOCDLL TrackerRemove
Add functions Add breakpoints FLOCDLL TrackerAddBreakpoint
Add functions Add hooks FLOCDLL TrackerAddHook
Select a process Select FLOCDLL TargetSet

Table 4.1 provides an overview of which buttons correspond to specific functions ex-
ported by FLOC.dll. The GUI integrates all functions except FLOCDLL TrackerAllDis-
able, as the DLL automatically invokes it during uninitialization. FLOCDLL CallExcept-
ionBreakpointHandler is invoked by the foreign debugger when in use. The GUI’s de-
bug loop essentially mirrors the functionality of the Target WaitForBreakpoint func-
tion, rewritten in C# with the breakpoint handler replaced by the DLL’s export. Addi-
tionally, the GUI invokes FLOCDLL TrackerAllGet following any context alteration/

58 Implementation – GUI

Chapter 5

Demonstration

This chapter provides a comprehensive demonstration of the usage and effectiveness of
the tool in real-world scenarios, highlighting its capabilities and addressing some of its
limitations. Through a series of select examples, it explores how the tool performs in both
basic and complex situations. These demonstrations aim to give a clear understanding
of how to leverage the tool, providing tips and strategies for optimizing its usage.

5.1 Notepad example

Windows Notepad, a simple text editor bundled with the operating system, was used
during development for testing. Although it is a basic application with no significant
performance demands, it sufficiently tests all features of the tool. This example provided
valuable insights on how to use the tool most effectively. The target was the code
responsible for inserting the current time and date into the text. This feature was
chosen for two reasons: it is easy to trigger or avoid, and it can be activated either by
clicking a button or using a keyboard shortcut. Additionally, searching for this code
is not entirely unrealistic since Notepad does not offer built-in options to alter this
behavior. The user interface and the function’s effect are shown in Figure 5.11

Figure 5.1 Notepad “Time and date” function

The IDA script exported over 4,200 different function addresses. All of them could
be added as breakpoint trackers, and only nine failed to be added as hooks due to their
lengths. During an example run, after starting the first step, clicking the “Time and
date” button, and immediately stopping it, 141 functions remained after filtering out

1The image is modified to provide an English translation. Does not represent actual software.

59

60 Demonstration

the not executed ones. This highlights an important lesson about the logic employed to
make the analysis process as efficient as possible. When clicking the Notepad’s button,
many other functions are inadvertently triggered. The following list provides examples
of events likely causing a function call in the first step, even though it was not explicitly
desired:

Window focus change.

Mouse click.

Opening the “Edit” menu.

Mouse movement and button highlight.

Adding and pasting new text.

Moving the cursor.

Character count change.

Since the target code should be specific and not dependent on whether the button or
keyboard shortcut was used, a logical second step could involve pressing F5 and retaining
the executed functions, ideally using Function Locator’s F9 and F10 shortcuts to bypass
the window focus change. This reduces the remaining functions to 113. To significantly
reduce this number further, the next step should involve triggering as many functions
as possible, except for the one being searched for.

Ultimately, the “ideal” strategy was determined: only two steps are needed. First,
clicking the “Time and date” button and retaining the executed functions. Then, click-
ing a different button, using a different keyboard shortcut, moving and minimizing the
window, pasting text from the clipboard, writing, deleting, and selecting text, and re-
taining the not executed functions. This leaves only two functions, which is the optimal
state of the analysis in this scenario. Both functions are called whenever the correct
button is clicked or F5 is pressed, and otherwise, they are never triggered. A recording
of Function Locator being used in this specific scenario is provided in thesis’ attachments
as a video example.

Further analysis reveals that only the first function contains the desired code, al-
though the second one is invoked by the first and could therefore be considered part
of the correct result. In any case, this level of localization is satisfactory, as manually
analyzing only two functions is quick. In this specific version of Notepad, the functions
are Notepad.exe+0x7CA30 and Notepad.exe+0x86C70. Static analysis in IDA reveals
that the former includes GetLocalTime, GetLocaleInfoW, GetUserDefaultUILanguage,
GetDateFormatW, and GetTimeFormatW Windows API calls and text formatting code.
The latter function was analyzed dynamically yet its purpose was not researched further
as it did minimal work—performing one comparison and returning, skipping almost all
remaining instructions.

The strategy of first performing a “Keep executed” step followed by the opposite
proved effective in other use cases as well, provided it is feasible. Additionally, an event
not mentioned here but common in many applications, especially those with infinite loops
running in the background (such as video games, video players, and audio software), or

Simple “crackme” 61

those implementing some sort of heartbeat or polling, can cause functions to be invoked
frequently just by being run. In such cases, it might be worthwhile to let the program
idle for a bit and filter out these functions before executing the desired actions.

5.2 Simple “crackme”

A “crackme” is a file designed to test and improve reverse engineering skills by presenting
various tasks, usually created by reverse engineers themselves [35]. This example aims
to illustrate a scenario similar to the one described in the thesis’ introduction while also
discussing some shortcomings of the tool. A crackme with a graphical interface was
selected, featuring a button to click and an error message for incorrect keys, as depicted
in Figure 5.2.

Figure 5.2 Crackme

One initial challenge was quickly evident: the executable file was packed, and since
Function Locator cannot extract function addresses directly from the target’s memory,
it relies on the reverse engineer’s skills to obtain them. In this simple scenario, dumping
the executable from memory allows IDA to correctly analyze the binary and provide the
function addresses.

Finding the relevant function responsible for validating the key is straightforward
with static analysis, and Function Locator makes this task even simpler. However, a dif-
ferent crackme was chosen to highlight another deficiency, which is more relevant to the

62 Demonstration

specific design of the GUI rather than anti-analysis methods. This crackme only provides
a command line (console) interface and allows the user only one attempt at inputting the
correct password before immediately terminating. The GUI does not offer any means to
automatically re-add the remaining functions into a new instance of the process. Since
the functions are treated as image-relative, new addresses can be recalculated easily, but
the DLL does not offer a method for efficiently “retargeting” the tool. This requires
reinitializing the context before continuing with a new PID. Consequently, in situations
where the reverse engineer can perform only a limited number of steps before needing to
restart the application, the current design of the tool necessitates exporting intermediate
results from the GUI and reinserting them to continue the analysis. While this does not
critically impede functionality, it can prove to be an inconvenience. Both crackmes were
obtained from [36].

5.3 Image processing software

Unlike the previous examples, this section presents a real-world reverse engineering and
debugging scenario. Despite originating from the author’s own needs, it serves as a per-
fect example of yet more complexity: a multi-module scenario within a large and complex
application. Additionally, it implements the aforementioned challenge of having only one
chance to trigger the event per each start of the program (further explained below). The
analyzed software is Adobe’s Photoshop Lightroom Classic2, an image organization and
processing tool. Excluding OS and shared libraries, the software loads a total of 75 DLL
files, with the desired functionality potentially residing in any of these modules or the
executable itself. The tool does not distinguish between different modules and is capa-
ble of supporting all of them simultaneously. The GUI tracks the modules and provides
correct module-relative results to the reverse engineers, making multi-module analysis
feasible.

The targeted functionality is the loading of “Enhance data” after pressing the “En-
hance” button in the “Photo” drop-down menu, as depicted in Figure 5.3. This process
occasionally causes a full system freeze of the author’s computer when hardware accel-
eration is enabled, presenting a challenging problem to debug due to the lack of logs
and the need for a forced system reset after encountering this problem. Identifying the
responsible functions in the extensive code base would enable step-debugging to analyze
the issue and locate potential problems. This could involve tracing or record-and-replay
debugging to capture the freeze event (which, due to the system halting, would require
a remote analysis approach or a tool capable of saving intermediate records to disk
immediately).

It is expected that “loading the enhance data” will invoke numerous functions, with
the goal being to identify the initiation of the process. Despite starting with 38,000
breakpoint trackers, the target application remained highly responsive. This large num-
ber of trackers only burdened the GUI, which is understandable given its code. This
resulted in a brief period of unresponsiveness while the trackers were loaded from the
DLL’s vector into the middle section of the GUI. However, the underlying FLOCDLL
operations remained very fast.

2https://www.adobe.com/products/photoshop-lightroom-classic.html

https://www.adobe.com/products/photoshop-lightroom-classic.html

Virtual piano 63

Despite the software’s complexity, the initial step filtered the number of functions
down to a remarkable 28. This outcome demonstrates the efficacy of this method com-
pared to existing methodologies. Although the program required a restart to force
a reload of the enhance data, the analysis process remained swift. Hook trackers were
also tested to ensure they did not cause any problems, and the test was successful. The
process involved starting a step with the F9 key press, clicking the “Enhance” button,
and immediately stopping the step with F10. After the 28 remaining functions were
exported from the GUI, the process continued with a fresh restart of Lightroom Classic
and a reinitialization of the context.

Figure 5.3 Image processing software – Enhance button

5.4 Virtual piano

Virtual musical instruments, samplers, and synthesizers are essential in music production
and live performance. These programs run on consumer operating systems and are often
compiled as Virtual studio technology plugins, with file extensions .dll or .vst3, to
be used inside digital audio workstations, or as standalone executables. Due to strict
latency requirements, audio buffers at a 44.1 kHz sample rate can be as short as 64
samples, necessitating audio rendering every 1.5 milliseconds or faster to avoid pops,
cracks, and glitches. This makes it an ideal scenario to showcase the tool’s ability to
identify functions executed repeatedly and rapidly.

The selected virtual instrument is Pianoteq3, a virtual piano software. It was config-
ured to play a MIDI file and produce audio in real-time. When using breakpoint trackers,
occasional audio glitches were heard, especially as more breakpoints were triggered in
a short time frame. However, the first step concluded successfully, reducing the initial
31,000 functions to about 1,600.

3https://www.modartt.com/pianoteq_overview

https://www.modartt.com/pianoteq_overview

64 Demonstration

Soon, the challenge of not being able to filter out non-executed functions became
evident. Without a “Keep not executed” filter, the process slowed significantly, reducing
the remaining functions by only about 200 per step. The software simply had too
many functions invoked repeatedly with each audio buffer iteration. Some functions
were executed so quickly that the GUI could not reload the list in time after enabling
them – the trackers were immediately reported as inactive because of the breakpoint
handler being faster than the GUI. They would correctly show up green after a step
was concluded, but since coloration is not applied beforehand it created the illusion
that the trackers were never enabled. At 279 functions, it became clear that all these
remaining trackers were triggered immediately after being enabled. Although this test
did not target any specific code, reducing from 31,000 to under 300 functions provides
some assistance, but the reverse engineer would still have work to do.

Figure 5.4 Pianoteq chord identification

A real function target was then selected so as to avoid the aforementioned problem
but still add some complexity. Pianoteq’s interface can show the name of the currently
played chord on the keyboard, as shown in Figure 5.4. The goal was to locate the code
performing this auto-detection of chords from pressed keys. Seeing the chord name is less
straightforward than pressing a button, but not playing any notes can avoid triggering
the function.

The analysis utilized the strategy suggested at the end of section 5.1. Initially,
the program ran by itself, and functions running constantly without any user action
were filtered out. Subsequently, the usual “executed, then not executed” steps were
performed. A chord was played, the name displayed, and only executed functions were
kept, narrowing the search to about 1,000 functions. In the next step, single notes
were played (but not chords), and only non-executed functions were kept, resulting in
43 functions. After a few more steps, only three functions remained. It is essential to
remember that assumptions about a function’s behavior can lead to early mistakes in
filtering. If the chord recognition function triggered periodically and without any notes
being played, it would have been mistakenly filtered out.

When attempting to use hooks, the application crashed. Based on the last status of
all trackers, potential culprits can be identified, or trackers that did get executed simply
replaced with breakpoints in subsequent attempts until only functioning hooks remain.
This approach was used, and the issue was not further investigated. The GUI does not
explicitly support this kind of crash analysis. Adding such a feature could be highly
beneficial.

Video game 65

5.5 Video game

The ultimate test aimed to gauge the tool’s performance overhead under demanding
conditions, using Counter-Strike 2, a popular video game released in 2023. The analysis
focused solely on the game’s executable cs2.exe and the module client.dll, known
repositories of game-specific code. With a total of 70 thousand addresses to sift through,
expectations for performance were tempered.

Initial trials with breakpoint trackers revealed significant problems. Attempting to
enable all trackers simultaneously resulted in game freezes and crashes, necessitating
a more cautious approach. Enabling trackers in smaller batches proved more manage-
able, allowing the game to remain functional albeit with occasional stutters and freezes,
particularly noticeable when multiple breakpoints were triggered simultaneously.

Transitioning to inline hooks, the experience was notably smoother despite encoun-
tering a few crashes. The chosen non-persistent hook approach, emphasized in this
thesis, demonstrated its value. Once triggered, trackers remained essentially invisible,
their impact on performance non-existent, which was expected. Utilizing smaller batches
of trackers at the beginning further mitigated stutters and other issues, with the tool
facilitating such selective activation through both the GUI’s tracker selection feature and
the DLL’s provision of one-by-one tracker enabling functions FLOCDLL TrackerEnable.

66 Demonstration

Chapter 6

Detectability and future work

The tool does not attempt to conceal its manipulation of the target process. When using
breakpoints, the simplest anti-analysis method the target might employ is querying the
Windows API to check if a debugger is attached. This can be bypassed by hooking the
API calls, although numerous and advanced anti-debugging techniques exist, as detailed
in [37]. For greater stealth, hooks should be preferred, although they too leave many
traces.

With inline hooks, the most conspicuous evidence is the use of Windows API func-
tions to manipulate the target’s memory. These functions might be hooked by the target,
or open handles to the target could be analyzed or blocked. If the reverse engineer can-
not hide API usage, they might directly invoke syscalls. Ideally, these operations should
be performed from the kernel instead.

Memory modifications still present a challenge, even if done from the kernel. The
target might detect pool allocations, memory protection changes, or perform integrity
checks on executable sections to identify instruction changes. If directly attacking the
target’s defense mechanisms is impractical, advanced methods could be employed. One
possibility is to use a hypervisor and leverage the CPU’s Second level address translation
– referred to as “Extended page tables” (EPT) on Intel and “Nested page tables” (NPT)
on AMD – to split memory between read/write and execute access. This technique is
sometimes called EPT hooking [38, 39].

In these extreme cases, the tool’s effectiveness diminishes because bypassing detec-
tions requires creating a specialized environment where kernel access and virtualization
are necessary and any real-time software running is unexpected. Consequently, the tool
is not designed for analyzing protected software. Moreover, heavily virtualized code,
such as that protected by VMProtect1, renders the concept of “locating functions” ob-
solete. Disassemblers will not generate a sensible list of addresses, and the whole idea
of functions is undermined as the target may self-modify anyways.

As a user-friendly debugging tool or a tool for reverse engineering generic software,
it is highly effective, even allowing real-time analysis of resource-intensive applications
like video games. However, it is unexpected that a malware analyst would find this tool
very useful.

1https://vmpsoft.com/

67

https://vmpsoft.com/

68 Detectability and future work

6.1 Shortcomings

The demonstrations in chapter 5 reveal certain shortcomings of the tool in its current
state, which could be addressed in future updates. These issues can mostly be resolved
through improvements to the GUI. For instance, the tool currently lacks the function-
ality to seamlessly continue analysis after a target process is restarted by automatically
recalculating the module-relative addresses. Additionally, it cannot launch the target
under debugging conditions and can only attach to a running process. This limitation
means that functions executed only during initialization cannot be monitored without
using a third-party debugger to launch the process in a suspended state.

In section 5.4, the inline hooks caused the target to crash. The vector of trackers
was subsequently analyzed to identify potential problematic addresses. Adding this func-
tionality and additional crash support to the GUI could enhance the tool’s robustness.
Furthermore, both the GUI and the DLL encounter issues with processes started with
administrator rights. Although running Function Locator at the same privilege level
resolves this, the tools do not provide feedback indicating this requirement. Specifically,
the GUI fails to display the process in the “Select a process” form, and the DLL only
returns an “invalid target” status code because it cannot acquire a handle to the process.

Perhaps the most severe problem currently is the GUI’s handling of a large number of
trackers. The process of loading trackers from the vector into the scrollable list should
be done in the background, allowing more critical operations, such as controlling the
analysis, to proceed without interruption. At present, the GUI can freeze for several
seconds during this loading process.

6.2 Long-term plans

In the long term, several additional features could enhance the tool’s capabilities. First,
bundling the DLL with a disassembler library such as Zydis2 or Capstone3 would elim-
inate the need for reverse engineers to rely on third-party tools to obtain function ad-
dresses. Additionally, adding support for Unix-based operating systems could broaden
the tool’s reach, as the code is already prepared for such an extension. Furthermore,
adapting the tool to target 32-bit applications would require minimal changes, and the
hooking process would be simplified since a 32-bit relative jump would always suffice.

Addressing the atomicity of memory writes within hook code and during the instal-
lation of jump code is another potential improvement. While the thesis raised concerns
and suggested solutions, it did not address the issue further. For near-hooks, optimizing
the hook code by using a single 8-byte move instruction, rather than the current 4 + 1
variant, would enhance performance while ensuring atomicity.

2https://zydis.re/
3https://www.capstone-engine.org/

https://zydis.re/
https://www.capstone-engine.org/

Chapter 7

Conclusion

This thesis has introduced a method for efficiently locating specific functions within disas-
sembled binary files, addressing a challenge in software reverse engineering. The method
streamlines the process and provides a simplified approach to the task.

First, the thesis thoroughly explored the problem and identified the shortcomings
of current solutions in the field. Subsequent chapters focused on the technical aspects
of real-time code execution monitoring, highlighting software breakpoints and inline
function hooking as the chosen solutions.

The primary aim of the thesis was to develop a tool compatible with all modern
64-bit Windows systems, avoiding the need for hypervisors or kernel access. Moreover,
the tool was designed to allow seamless integration with existing reverse engineering
frameworks and to be able to effectively analyze resource-intensive software like video
games in real-time.

All goals of the thesis have been met. The tool was divided into two parts: a robust
and portable dynamic link library written in the C programming language providing the
core functionality, and a user-friendly graphical interface written in C# to harness the
DLL’s features. The method proved to be valuable as the tool performed beyond expec-
tations, swiftly filtering tens of thousands of functions down to a few dozen in a matter
of moments and demonstrating real-time analysis capabilities even with demanding ap-
plications such as modern video games. While the tool has shown promising results, its
effectiveness varies in certain scenarios, and opportunities for future enhancements exist.

In conclusion, this thesis contributes to the field of reverse engineering by provid-
ing a solution to a specific task. The thesis, along with its associated source code and
binaries, is freely available under the thesis’ specified license, encouraging further devel-
opment.

69

70 Conclusion

Appendix A

Function Locator GUI

71

72 Function Locator GUI

Bibliography

1. EILAM, Eldad. Reversing: Secrets of Reverse Engineering. Indianapolis, Indiana:
Wiley Publishing, 2005, p. xxiv. ISBN 978-0-7645-7481-8.

2. EILAM, Eldad. Reversing: Secrets of Reverse Engineering. Indianapolis, Indiana:
Wiley Publishing, 2005, chap. 1, pp. 4-9. ISBN 978-0-7645-7481-8.

3. QUARKSLAB. Reverse engineering: a threat to intellectual property of innovations.
Online. In: Quarkslab. Offensive and Defensive Security Solutions. N. d. Available
from: https://www.quarkslab.com/article-reverse-engineering-threat-
to-intellectual-property-innovations/. [cited 2024-05-11].

4. CHIKOFSKY, Elliot and CROSS, James. Reverse engineering and design recov-
ery: a taxonomy. In: IEEE Software. 7. Los Alamitos, California: IEEE Computer
Society Press, 1990, pp. 13-17. ISSN 0740-7459. Available from: https://doi.org/
10.1109/52.43044. [paywall]. [cited 2024-05-11].

5. STALLMAN, Richard M.; PESCH, Roland and SHEBS, Stan. Debugging with
GDB: The GNU Source-Level Debugger. Online. Tenth edition. Boston, Massachu-
setts: Free Software Foundation, 2024, chap. 13. ISBN 978-0-9831592-3-0. Available
from: https://sourceware.org/gdb/current/onlinedocs/gdb.pdf. [cited 2024-
05-11].

6. SIKORSKI, Michael and HONIG, Andrew. Practical Malware Analysis: The Hands-
On Guide to Dissecting Malicious Software. San Francisco, California: no starch
press, 2012, chap. 9, pp. 192-194. ISBN 978-1-59327-290-6.

7. SUCHAKRA. Fast Tracing with GDB. Online. In: Tuxology. 29 June 2016. Avail-
able from: https://suchakra.wordpress.com/2016/06/29/fast- tracing-
with-gdb/. [cited 2024-05-11].

8. STALLMAN, Richard M.; PESCH, Roland and SHEBS, Stan. Debugging with
GDB: The GNU Source-Level Debugger. Online. Tenth edition. Boston, Massachu-
setts: Free Software Foundation, 2024, chap. 7. ISBN 978-0-9831592-3-0. Available
from: https://sourceware.org/gdb/current/onlinedocs/gdb.pdf. [cited 2024-
05-11].

9. FREE SOFTWARE FOUNDATION. FastTracepoints. Online. In: GDB wiki. Last
modified 18 September 2013. Available from: https://sourceware.org/gdb/
wiki/FastTracepoints. [cited 2024-05-11].

73

https://www.quarkslab.com/article-reverse-engineering-threat-to-intellectual-property-innovations/
https://www.quarkslab.com/article-reverse-engineering-threat-to-intellectual-property-innovations/
https://doi.org/10.1109/52.43044
https://doi.org/10.1109/52.43044
https://sourceware.org/gdb/current/onlinedocs/gdb.pdf
https://suchakra.wordpress.com/2016/06/29/fast-tracing-with-gdb/
https://suchakra.wordpress.com/2016/06/29/fast-tracing-with-gdb/
https://sourceware.org/gdb/current/onlinedocs/gdb.pdf
https://sourceware.org/gdb/wiki/FastTracepoints
https://sourceware.org/gdb/wiki/FastTracepoints

74 Bibliography

10. HONARMAND, Nima and TORRELLAS, Josep. Replay Debugging: Leveraging
Record and Replay for Program Debugging. Online. In: ISCA ’14: Proceeding of
the 41st annual international symposium on Computer architecuture. Minneapolis,
Minnesota, 14-18 June 2014. IEEE Press, 2014, pp. 445-447. ISBN 978-1-4799-4394-
4. Available from: https://dl.acm.org/doi/abs/10.5555/2665671.2665737.
[paywall]. [cited 2024-05-11].

11. rr: lightweight recording & deterministic debugging. Website. Available from: https:
//rr-project.org/. [cited 2024-05-11].

12. MICROSOFT. FlushInstructionCache function (processthreadsapi.h). Online. In:
Microsoft. Microsoft Learn: Build skills that open doors in your career. Last mod-
ified 22 February 2024. Available from: https://learn.microsoft.com/en-us/
windows/win32/api/processthreadsapi/nf-processthreadsapi-flushinstru
ctioncache. [cited 2024-05-11].

13. RUSSINOVICH, Mark; SOLOMON, David A. and IONESCU, Alex. Windows In-
ternals Part 1. 6th ed. Redmont, Washington: Microsoft Press, 2012, chap. 3, pp.
123-126. ISBN 978-0-7356-4873-9.

14. QUINN, Sam. Function Hooking for Recon and Exploitation. Online. Musarubra
US, 2022. Available from: https : / / www . trellix . com / assets / docs / atr -
library/tr- function- hooking- for- recon- and- exploitation.pdf. [cited
2024-05-11].

15. HOGLUND, Greg and BUTLER, James. Rootkits: subverting the Windows kernel.
Stoughton, Massachusetts: Pearson Education, 2005, chap. 4, pp. 74–76. ISBN 0-
321-29431-9.

16. INTEL. Intel 64 and IA-32 Architectures Software Developer’s Manual: Volume 3A:
System Programming Guide, Part 1. Online. Intel, 2024, chap. 12. Last modified
March 2024. Available from: https://cdrdv2.intel.com/v1/dl/getContent/
671190. [cited 2024-05-11].

17. MICROSOFT. Processor Breakpoints (ba Breakpoints). Online. In: Microsoft. Mi-
crosoft Learn: Build skills that open doors in your career. Last modified 29 Au-
gust 2023. Available from: https://learn.microsoft.com/en- us/windows-
hardware/drivers/debugger/processor- breakpoints--- ba- breakpoints-.
[cited 2024-05-11].

18. ECKELS, Stephen. PolyHook 2.0: C++20, x86/x64 Hooking Libary v2.0. Online.
In: GitHub. Last modified 10 May 2024. Available from: https://github.com/
stevemk14ebr/PolyHook_2_0. [cited 2024-05-11].

19. BUI, Hoang. Vectored Exception Handling, Hooking Via Forced Exception. Online.
In: Medium. Medium – Where good ideas find you. 13 January 2019. Available
from: https://medium.com/@fsx30/vectored-exception-handling-hooking-
via-forced-exception-f888754549c6. [cited 2024-05-11].

20. BAKHVALOV, Denis. Enhance performance analysis with Intel Processor Trace.
Online. In: Denis Bakhvalov. Easyperf. 23 August 2019. Available from: https:
//easyperf.net/blog/2019/08/23/Intel-Processor-Trace. [cited 2024-05-11].

https://dl.acm.org/doi/abs/10.5555/2665671.2665737
https://rr-project.org/
https://rr-project.org/
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-flushinstructioncache
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-flushinstructioncache
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-flushinstructioncache
https://www.trellix.com/assets/docs/atr-library/tr-function-hooking-for-recon-and-exploitation.pdf
https://www.trellix.com/assets/docs/atr-library/tr-function-hooking-for-recon-and-exploitation.pdf
https://cdrdv2.intel.com/v1/dl/getContent/671190
https://cdrdv2.intel.com/v1/dl/getContent/671190
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/processor-breakpoints---ba-breakpoints-
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/processor-breakpoints---ba-breakpoints-
https://github.com/stevemk14ebr/PolyHook_2_0
https://github.com/stevemk14ebr/PolyHook_2_0
https://medium.com/@fsx30/vectored-exception-handling-hooking-via-forced-exception-f888754549c6
https://medium.com/@fsx30/vectored-exception-handling-hooking-via-forced-exception-f888754549c6
https://easyperf.net/blog/2019/08/23/Intel-Processor-Trace
https://easyperf.net/blog/2019/08/23/Intel-Processor-Trace

Bibliography 75

21. INTEL. Which Intel Processor Models Support Intel Processor Trace (Intel PT)?.
Online. In: Intel. Intel Support. Last modified 7 August 2021. Available from:
https://www.intel.com/content/www/us/en/support/articles/000056730/
processors.html. [cited 2024-05-11].

22. HARRIS, Laune C. and MILLER, Barton P. Practical analysis of stripped binary
code. In: ACM SIGARCH Computer Architecture News. 2005, vol. 33, pp. 63-68.
ISSN 0163-5964. Available from: https://doi.org/10.1145/1127577.1127590.
[paywall]. [cited 2024-05-11].

23. ANDRIESSE, Dennis; CHEN, Xi; VEEN, Victor van der; SLOWINSKA, Asia
and BOS, Herbert. An In-Depth Analysis of Disassembly on Full-Scale x86/x64
Binaries. In: 25th USENIX Security Symposium (USENIX Security 16). Austin,
Texas: USENIX Association, 2016, pp. 583-600. ISBN 978-1-931971-32-4. Available
from: https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/andriesse. [cited 2024-05-11].

24. MICROSOFT. ContinueDebugEvent function (debugapi.h). Online. In: Microsoft.
Microsoft Learn: Build skills that open doors in your career. Last modified 13
October 2021. Available from: https://learn.microsoft.com/en-us/windows/
win32/api/debugapi/nf-debugapi-continuedebugevent. [cited 2024-05-11].

25. MICROSOFT. Debugging Events. Online. In: Microsoft. Microsoft Learn: Build
skills that open doors in your career. Last modified 7 January 2021. Available from:
https://learn.microsoft.com/en- us/windows/win32/debug/debugging-
events. [cited 2024-05-11].

26. MICROSOFT. VirtualAllocEx function (memoryapi.h). Online. In: Microsoft. Mi-
crosoft Learn: Build skills that open doors in your career. Last modified 27 July
2022. Available from: https://learn.microsoft.com/en-us/windows/win32/
api/memoryapi/nf-memoryapi-virtualallocex. [cited 2024-05-11].

27. CHEN, Raymound. Why is address space allocation granularity 64KB?. Online. In:
Microsoft. The Old New Thing. 27 July 2022. Available from: https://devblogs.
microsoft.com/oldnewthing/20031008-00/?p=42223. [cited 2024-05-11].

28. INTEL. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume
2A: Instruction Set Reference, A-L. Online. Intel, 2024, chap. 3, pp. 556-564. Last
modified March 2024. Available from: https : / / cdrdv2 . intel . com / v1 / dl /
getContent/671199. [cited 2024-05-11].

29. WONG, Henry. Microbenchmarking Return Address Branch Prediction. Online. In:
Henry Wong. Blog. 18 April 2018. Available from: http://blog.stuffedcow.net/
2018/04/ras-microbenchmarks.

30. INTEL. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume
2B: Instruction Set Reference, M-U. Online. Intel, 2024, chap. 4, pp. 63-76. Last
modified March 2024. Available from: https : / / cdrdv2 . intel . com / v1 / dl /
getContent/671241. [cited 2024-05-11].

https://www.intel.com/content/www/us/en/support/articles/000056730/processors.html
https://www.intel.com/content/www/us/en/support/articles/000056730/processors.html
https://doi.org/10.1145/1127577.1127590
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/andriesse
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/andriesse
https://learn.microsoft.com/en-us/windows/win32/api/debugapi/nf-debugapi-continuedebugevent
https://learn.microsoft.com/en-us/windows/win32/api/debugapi/nf-debugapi-continuedebugevent
https://learn.microsoft.com/en-us/windows/win32/debug/debugging-events
https://learn.microsoft.com/en-us/windows/win32/debug/debugging-events
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex
https://devblogs.microsoft.com/oldnewthing/20031008-00/?p=42223
https://devblogs.microsoft.com/oldnewthing/20031008-00/?p=42223
https://cdrdv2.intel.com/v1/dl/getContent/671199
https://cdrdv2.intel.com/v1/dl/getContent/671199
http://blog.stuffedcow.net/2018/04/ras-microbenchmarks
http://blog.stuffedcow.net/2018/04/ras-microbenchmarks
https://cdrdv2.intel.com/v1/dl/getContent/671241
https://cdrdv2.intel.com/v1/dl/getContent/671241

76 Bibliography

31. MICROSOFT. Dynamic-Link Library Entry-Point Function. Online. In: Microsoft.
Microsoft Learn: Build skills that open doors in your career. Last modified 7 Jan-
uary 2021. Available from: https://learn.microsoft.com/en- us/windows/
win32/dlls/dynamic-link-library-entry-point-function. [cited 2024-05-
11].

32. MICROSOFT. DisableThreadLibraryCalls function (libloaderapi.h). Online. In: Mi-
crosoft. Microsoft Learn: Build skills that open doors in your career. Last modified
22 February 2024. Available from: https://learn.microsoft.com/en-us/window
s/win32/api/libloaderapi/nf-libloaderapi-disablethreadlibrarycalls.
[cited 2024-05-11].

33. MICROSOFT. /std (Specify Language Standard Version). Online. In: Microsoft.
Microsoft Learn: Build skills that open doors in your career. Last modified 22
February 2024. Available from: https://learn.microsoft.com/en- us/cpp/
build/reference/std-specify-language-standard-version?view=msvc-170.
[cited 2024-05-11].

34. ISO/IEC 9899:1999. Programming languages – C.
35. ARNOUD, Stanislas. FAQ. Online. In: Stanislas Arnoud, Crackmes. N. d. Available

from: https://crackmes.one/faq. [cited 2024-05-11].
36. ARNOUD, Stanislas. Crackmes. Website. Available from: https : / / crackmes .

one/. [cited 2024-05-11].
37. CHECK POINT RESEARCH. Anti-Debug Tricks. Website. Available from: https:

//anti-debug.checkpoint.com/. [cited 2024-05-11].
38. TANDA, Satoshi. SimpleSvmHook. Online. In: GitHub. Last modified: 18 February

2021. Available from: https://github.com/tandasat/SimpleSvmHook. [cited
2024-05-11].

39. HYPERDBG. Design of !epthook. Online. In: HyperDbg. HyperDbg Documenta-
tion. Last modified 2022. Available from: https://docs.hyperdbg.org/design/
features/vmm-module/design-of-epthook. [cited 2024-05-11].

https://learn.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-entry-point-function
https://learn.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-entry-point-function
https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-disablethreadlibrarycalls
https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-disablethreadlibrarycalls
https://learn.microsoft.com/en-us/cpp/build/reference/std-specify-language-standard-version?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/reference/std-specify-language-standard-version?view=msvc-170
https://crackmes.one/faq
https://crackmes.one/
https://crackmes.one/
https://anti-debug.checkpoint.com/
https://anti-debug.checkpoint.com/
https://github.com/tandasat/SimpleSvmHook
https://docs.hyperdbg.org/design/features/vmm-module/design-of-epthook
https://docs.hyperdbg.org/design/features/vmm-module/design-of-epthook

Contents of the attachment

Release directory with a compiled version of the tool
FLOC.dll.................................DLL implementation of the method
Function Locator.exe........................executable GUI using the DLL

Source. directory with source code of the complete tool
DLL directory with source code of the DLL
GUI.....................................directory with source code of the GUI

Example.mp4.............................video with an example usage of the tool
FLOC.sln...Visual Studio Solution file
IDA script.txt..............................plain text version of the IDA script
Thesis.pdf ... this thesis in PDF format

77

	Declaration
	Abstract
	List of abbreviations
	Introduction
	The proposed method
	Step-based approach
	Current solutions
	Step-debugging
	Tracing
	Record and replay debugging

	Monitoring code execution
	Software breakpoints
	Handling a breakpoint exception
	Implementing a persistent breakpoint
	Overhead of software breakpoints

	Inline function hooking
	Preserving the original functionality
	Implementing the hook
	Overhead of inline hooks

	Unsuitable methods
	Hardware breakpoints
	Alternative hooking techniques and exceptions
	Hardware-supported methods

	Obtaining function addresses

	Implementation – DLL
	FLOC: Function Locator
	Data Types
	Vector
	Pool

	OS-specific functionality
	Privileges
	Memory Operations
	Target manipulation
	Threads

	Trackers
	Context and multi-instancing
	Software breakpoints
	Creating a breakpoint tracker
	Starting the debug loop
	Enabling breakpoint trackers
	Breakpoint handler
	Disabling breakpoint trackers
	Halting the debug loop
	Target termination
	Foreign debug loop

	Inline Hooks
	Near and far pools
	Creating a hook tracker
	Enabling hook trackers
	Disabling hook trackers

	Workflow
	Exported Functions
	FLOCDLL_Initialize
	FLOCDLL_Uninitialize
	FLOCDLL_TargetSet
	FLOCDLL_DebugLoopStart
	FLOCDLL_DebugLoopStop
	FLOCDLL_DebugLoopOverride
	FLOCDLL_CallExceptionBreakpointHandler
	FLOCDLL_TrackerAddBreakpoint
	FLOCDLL_TrackerAddHook
	FLOCDLL_TrackerRemove
	FLOCDLL_TrackerEnable
	FLOCDLL_TrackerDisable
	FLOCDLL_TrackerAllGet
	FLOCDLL_TrackerAllReset
	FLOCDLL_TrackerAllEnable
	FLOCDLL_TrackerAllDisable
	FLOCDLL_StepBegin
	FLOCDLL_StepEnd
	FLOCDLL_StepFilterOutExecuted
	FLOCDLL_StepFilterOutNotExecuted

	File Structure
	Portability and compilation
	Optimization
	Interface

	Implementation – GUI
	Main form
	Left-hand side
	Right-hand side
	Middle section

	``Select a process'' form
	``Add functions'' form
	``Results'' form
	FLOCDLL functions

	Demonstration
	Notepad example
	Simple ``crackme''
	Image processing software
	Virtual piano
	Video game

	Detectability and future work
	Shortcomings
	Long-term plans

	Conclusion
	Function Locator GUI
	Bibliography
	Contents of the attachment

