
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Registration of labeled point clouds

Tomáš Laurin

Ing. Jan Glaser

Informatics

Artificial Intelligence 2021

Department of Applied Mathematics

until the end of summer semester 2024/2025

Instructions

A registration of two point clouds is a fundamental task in 3D reconstruction.

The focus of the thesis is to create a pipeline for registration of labeled point clouds, and

explore the possibilities of registration using the label information or different distance

metrics.

1) survey the topic and existing solutions

2) create a pipeline for segmentation and labeling of point clouds

3) explore the possibilities of registration using the label information of the point clouds

4) experiment with using different distance metrics in the ICP registration algorithm

5) choose an appropriate metric for evaluating these experiments

6) discuss the results of these experiments

References:

1) TRUONG, Giang, et al. Fast point cloud registration using semantic segmentation. In:

2019 Digital Image Computing: Techniques and Applications (DICTA). IEEE, 2019. p. 1-8.

2) YANG, Jiaolong, et al. Go-ICP: A globally optimal solution to 3D ICP point-set

registration. IEEE transactions on pattern analysis and machine intelligence, 2015, 38.11:

2241-2254.

3) JOST, Timothée; HÜGLI, Heinz. Fast ICP algorithms for shape registration. In: Pattern

Recognition: 24th DAGM Symposium Zurich, Switzerland, September 16–18, 2002

Proceedings 24. Springer Berlin Heidelberg, 2002. p. 91-99.

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 22 November 2023 in Prague.

4) HUANG, Jing; YOU, Suya. Point cloud labeling using 3d convolutional neural network. In:

2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, 2016. p.

2670-2675.

5) ZHANG, Liqiang, et al. Large-scale urban point cloud labeling and reconstruction. ISPRS

Journal of Photogrammetry and Remote Sensing, 2018, 138: 86-100.

6) WIRTH, Florian, et al. Pointatme: efficient 3d point cloud labeling in virtual reality. In:

2019 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2019. p. 1693-1698.

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 22 November 2023 in Prague.

Bachelor’s thesis

REGISTRATION OF
LABELED POINT
CLOUDS

Tomáš Laurin

Faculty of Information Technology
Katedra aplikované matematiky
Supervisor: Ing. Jan Glaser
May 12, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Tomáš Laurin. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Laurin Tomáš. Registration of labeled Point Clouds. Bachelor’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2024.

Contents

Acknowledgments ix

Declaration x

Abstract xi

List of abbreviations xii

Introduction 1

1 Analysis 3
1.1 LiDAR . 3
1.2 Point Clouds . 4
1.3 Data Structures and algorithms . 4

1.3.1 K-d Tree . 5
1.3.2 Principal Component Analysis . 6
1.3.3 DBSCAN . 6
1.3.4 RANSAC . 7
1.3.5 Transformation Matrix . 9

1.4 Point Cloud Segmentation . 10
1.5 Machine Learning . 10

1.5.1 Feedforward Neural Network . 10
1.5.2 Convolutional Neural Network . 13

1.6 Machine Learning on Point Clouds . 14
1.6.1 PointNet . 14
1.6.2 Convpoint . 15

1.7 Point Cloud Registration . 15
1.7.1 Registration in CloudCompare . 15
1.7.2 Global Registration . 18
1.7.3 Iterative Closest Point . 19

1.8 Evaluation of Registration . 20
1.9 Existing Solutions . 21
1.10 Our Approach . 21

2 Implementation 23
2.1 Programming Tools and Packages . 23
2.2 Datasets . 24

2.2.1 Stanford 3D Indoor Scene Dataset . 24
2.2.2 Nuage de Points et Modélisation 3D . 25
2.2.3 Semantic3D . 26

2.3 Proposed Method . 27
2.4 Segmentation Network . 27

2.4.1 Model Training and Evaluation . 27
2.4.2 Model Predictions . 29

iii

iv Contents

2.5 Data Preprocessing . 30
2.5.1 Data Reduction . 30
2.5.2 Normalization . 30
2.5.3 Noise Reduction . 31

2.6 Registration . 31
2.6.1 ICP Threshold Calculation . 32
2.6.2 Choosing the best Registration . 32
2.6.3 Global Registration . 32
2.6.4 Distance functions in ICP . 35

2.7 Final Pipeline . 37

3 Results 39
3.0.1 Experimental Results on S3DIS . 39
3.0.2 Results on NPM3D . 41
3.0.3 Results on Semantic3D . 43

3.1 Summary of the Results . 47

4 Discussion 49
4.1 Contributions . 49
4.2 Limitations . 49
4.3 Future Work . 50

5 Conclusion 51

Attachments 59

List of Figures

1.1 Schematic of a LiDAR sensor with its core components labeled: laser source that
emits the beam, a receiver that detects the reflected light, a tilting mirror for
directing the laser, and two optical rotary encoders connected to a servo motor
for angular measurement of the device’s orientation [15]. 3

1.2 Point cloud representation of a chair scan [15]. 4
1.3 Visualisation of a 2D k-d tree showing spatial data partitioning. On the left, a

diagram of a k-d tree, showing the space partition with vertical red and horizontal
blue lines, and on the right, the corresponding binary tree structure [17, p. 60]. . 5

1.4 Three-dimensional visualization of a k-d tree with points represented by white
spheres and partitioning of the space shown by blue, red, and green lines corre-
sponding to divisions along the x, y, and z-axes, respectively [18]. 5

1.5 A visual representation of PCA, where the blue dots represent a dataset and
vectors show the principal components, highlighting the sub-spaces characterized
by the least variance within the dataset. 6

1.6 Example of a DBSCAN result: core points are colored red, reachable points are
yellow, and outliers blue. The circles mark the search radius for each point [22]. . 7

1.7 A visual representation showcases DBSCAN clustering applied to a real-world
outdoor dataset [23]. Each distinct color represents a unique cluster identified by
DBSCAN. Points that were marked outliers were removed from the image. 7

1.8 A dataset with many outliers for which a line has to be fitted [25]. 8
1.9 Fitted line, which is a result of RANSAC algorithm; The algorithm successfully

identifies the inliers (blue points) consistent with the model (blue line) while dis-
regarding the outliers (red points), resulting in an accurate estimation [26]. . . . 8

1.10 RANSAC used for plane detection on an indoor dataset. A different color marks
different planes [24]. 8

1.11 Example of semantic segmentation result from a neural network. The input con-
sists of raw indoor point cloud data. The output is a segmented point cloud where
different regions within the indoor space are highlighted [12]. 10

1.12 Example of a Feedforward Neural Network [31] where the input layer (red) re-
ceives the data, the hidden layer (blue) performs the computation, and the output
layer (green) produces the final result. Each layer is interconnected, with indi-
vidual connections characterized by weights representing the significance of their
respective interactions. Each circle represents a single neuron. 11

1.13 Model of a single neuron, also called a perceptron. The inputs marked x are
multiplied by weights w and summed together. The result is fed into the activation
function f . 11

1.14 Most commonly used activation functions in neural networks [33]. 12
1.15 Schematic of a convolutional neural network. An input flows through feature

extraction with a single convolutional and pooling layer and is interpreted by a
fully connected layer [38]. 13

v

vi List of Figures

1.16 Visualization depicting the convolution operation layer by layer. The original
image of a car is visible on the left, undergoing successive passes through different
layers of the neural network. Convolutional layers detect patterns such as edges
and shapes. ReLU layers introduce nonlinearity through the application of a
nonlinear function. Pooling layers decrease spatial dimensions while preserving
essential features. The gradual reduction in dimensions can be observed in the
car, with the final pooling layer containing only a few pixels. Finally, the fully
connected layer processes these features, recognizing the image as a car [38]. . . . 14

1.17 PointNet architecture [12]. The numbers in brackets are layer sizes; Batchnorm
is used for all layers with ReLU. Dropout layers are used for the last MLP in the
classification net . 15

1.18 CloudCompare interface, illustrating the process of aligning point clouds by se-
lecting corresponding points atop a church tower. Points prefixed with ’A’ denote
the target point cloud, while those beginning with ’R’ represent the source point
cloud. 16

1.19 Visualization of the result after the rough transformation calculated from the point
selection is applied. 16

1.20 A CloudCompare dialog window showing the fine registration settings. 17
1.21 Visualization of the sub-optimal result after fine registration, when the overlap

was set to 60%. 17
1.22 Point cloud scan of Des Moines in Iowa with low readability where it is difficult

to identify the key points. 18
1.23 The influence region diagram for a point feature histogram. The query point (red)

and its k-neighbors (blue) are fully interconnected in a mesh [41]. 18
1.24 Idea behind the iterative closest point algorithm [45]. The source object is colored

red, and the target is blue. 19

2.1 Schematic of the S3DIS dataset [55]. It is composed of six areas. At the top, raw
scans with color values are displayed. At the bottom, areas are annotated with
semantic labels. The color of each respective semantic label is displayed at the
bottom. 24

2.2 Result on the copy room 1 point cloud after the data preparation. The original
point cloud was divided into two, translated and rotated. 25

2.3 Example from the Lille NPM3D dataset [56]. Colors are semantic labels, where
roads are gray, vehicles are red, buildings are beige, and vegetation is green. . . . 25

2.4 Example of point cloud pairs for registration Bildstein 1 – Bildstein 3 and Stgal-
lencathedral 1 – Stgallencathedral 3 [58]. 26

2.5 Proposed pipeline for labeled point clouds. The segmentation network separately
takes two point clouds and the predicted labels. The registration algorithm is
discussed in section 2.6. 27

2.6 Change in metrics on the Semantic3D training dataset over 100 epochs. 28
2.7 Prediction of the neural network on Bildstein 1 dataset. Different Colors are

different predicted labels. 29
2.8 Individual predicted labels on the Bildstein 1 dataset. 29
2.9 Illustration of voxel-grid filtering: (a) voxel grid; (b) unfiltered unit voxel; and (c)

the center of mass of the unit voxel [61]. 30
2.10 Three most prominent principal axes on the subsampled dataset. The source point

cloud is yellow, and the target point cloud is blue. 33
2.11 Aligned principal components after finding the transformation between them. . . 33
2.12 Example of a rotated point cloud around one of the principal axes. 34
2.13 Point cloud from Fig. 2.12 after ICP registration was completed. 34
2.14 The best transformation from Fig. 2.13, shown on the entire point cloud. 35

2.15 Illustration of the final pipeline, the downsampling uses a voxel size of 0.005, and
DBSCAN uses a search radius twice that. Choosing the best registration is done
using the formula described in section 2.6.2 . 37

3.1 Results of different registration algorithms. Only SPCR-PCA found the correct
alignment. 40

3.2 Results of different registration algorithms. SPCR-PCA found the correct alignment. 40
3.3 Result of the tested registration algorithms. All methods found a correct alignment. 42
3.4 Result of the tested registration algorithms. All methods except PCR-PCA found

the correct alignment. PCR-PCA got stuck in a local minima 42
3.5 Result of the tested registration algorithms. All methods except PCR-PCA found

the correct alignment. PCR-PCA got stuck in a local minima 43
3.6 Result of the tested registration algorithms. All methods except PCR-PCA found

the correct alignment. PCR-PCA got stuck in a local minima. 45
3.7 Result of the tested registration algorithms. All methods except PCR-PCA found

the correct alignment. PCR-PCA got stuck in a local minima. 45
3.8 Result of the tested registration algorithms. All methods found the correct align-

ment. 46
3.9 Result of the tested registration algorithms. No method had found the correct

alignment, however SCPR-PCA found the best alignment. 46
3.10 Result of the tested registration algorithms. All methods except PCR-PCA found

the correct alignment. PCR-PCA got stuck in a local minima. 47

List of Tables

2.1 Model accuracy on the training set. The number of epochs for each of the datasets
is written in brackets. 28

2.2 Average improvement of different distance metrics compared to the Euclidean
distance on the Semantic3D dataset. 36

3.1 Average results of the methods on S3DIS dataset. Higher fitness and lower RMSE
is better. 39

3.2 Average results of the methods on NPM3D dataset. Higher fitness and lower
RMSE is better. 41

3.3 All results on the NPM3D dataset. Higher fitness and number of correspondences
are better, and lower RMSE is better. 41

3.4 Average results of the methods on Semantic3D dataset. Higher fitness and lower
RMSE is better. 43

3.5 Numerical results from the registration process on the Semantic3D dataset. Higher
fitness and num. correspondences are better, and lower RMES is better. 44

vii

viii List of Algorithms

List of Algorithms

1 Iterative Closest Point . 20

Firstly, I thank my supervisor, Ing. Jan Glaser, for his advice,
guidance, and time spent on this work. Next, I thank my family and
girlfriend, who supported me throughout my studies.

ix

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular that the Czech Technical
University in Prague has the right to conclude a license agreement on the utilization of this
thesis as a school work under the provisions of Article 60 (1) of the Act.

In Praze on May 12, 2024

x

Abstract

This thesis delves into developing a pipeline for registering partially overlapping large-scale point
clouds and measuring the influence of semantic label information in the registration process. The
result of this work is a method that uses the additional information obtained from convolutional
neural networks to partition the point clouds and align local structures using principal component
analysis. This method was tested against traditional methods on publicly available datasets.
Experiments have shown that aligning smaller subsets proved much more stable and accurate
than traditional approaches.

Keywords ICP, point cloud, point set registration, principal component analysis, semantic
segmentation

Abstrakt

Tato práce se zabývá vývojem metody pro registraci částečně překrývaj́ıćıch se mračen bod̊u
a zjǐstěńı vlivu sémantických informaćı v procesu registrace. Výstupem práce je metoda, která
využ́ıvá informace źıskané z konvolučńıch neuronových śıt́ı pro rozděleńı mračen bod̊u a zarovnáńı
lokálńıch struktur pomoćı analýzy hlavńıch komponent. Tato metoda byla testována proti
tradičńım metodám na veřejně dostupných datasetech. Experimenty ukázaly, že registrace
menš́ıch celk̊u vedla k mnohem stabilněǰśım a přesněǰśım výsledk̊um než tradičńı př́ıstupy.

Kĺıčová slova analýza hlavńıch komponent, ICP, mračno bod̊u, registrace mračen bod̊u,
sémantická segmentace

xi

List of abbreviations

LiDAR Light Detection and Ranging
3D Three-Dimensional

ICP Iterative Closest Point
KNN K-Nearest Neighbors
PCA Principal Component Analysis

DBSCAN Density-Based Spacial Clustering of Application with Noise
FFN Feedforward Neural Network
CNN Convolutional Neural Network
ReLu Rectified Linear Unit
MLP Multi-Layer Perceptron

OA Overall Accuracy
IoU Intersection over Union

CPU Central Processing Unit
GPU Graphical Processing Unit
RAM Random Access Memory

RMSE Root Mean Square Error
RANSAC Random Sample Consensus

FPFH Fast Point Feature Histograms

xii

Introduction

The accessibility and affordability of 3D scanning technologies, such as LiDAR sensors, have
seen a notable rise [1, p. 3]. This trend has led to their integration into a wide array of applica-
tions, including autonomous vehicles [2, 3], robotics [4], archaeology [5], and object scanning for
computer software [6]. LiDAR sensors generate data in the form of point clouds, representing
real-world 3D objects with numerous data points. Such a 3D scan of a chair is shown in Fig. 1.2.

In many scenarios, multiple scans acquired from different camera angles contribute to the
scene reconstruction process [7]. For instance, in object scanning for computer graphics, several
scans are taken from various angles and merged to reconstruct the complete object. This process,
known as registration, aligns two or more point clouds into a unified coordinate system. However,
while effective in many cases, traditional registration methods like Iterative Closest Point (ICP)
often struggle with noisy, large-scale real-world data [8, 9], resulting in sub-optimal final point
set alignment. Therefore, more robust and efficient approaches are needed.

Segmentation of point clouds is another critical task in 3D data analysis. At its core, segmen-
tation refers to identifying objects within a scene. It is usually done using convolutional neural
networks. Previously, when segmenting point clouds, they would often be converted into struc-
tured formats, such as 2D images [10] or voxel grids [11], that can be fed into the neural network.
However, recent advancements in 3D deep learning have introduced sophisticated architectures
capable of directly processing unstructured and unordered point cloud data [12, 13, 14].

This thesis delves into developing a pipeline that utilizes state-of-the-art deep-learning tech-
niques for label acquisition to improve registration accuracy through dataset partitioning. The
proposed model is evaluated on large-scale datasets and compared against traditional registration
approaches.

1

2 Introduction

Chapter 1

Analysis

This chapter describes the individual parts and technologies needed for our pipeline. First,
we discuss scanning technologies and the acquisition of point clouds. Then, we discuss point
cloud properties and the essential algorithmic concepts, focusing on processing 3D data and
fundamental machine learning algorithms. Lastly, we explore existing solutions to the problem
and present our approach.

1.1 LiDAR
LiDAR, which stands for light detection and ranging, is a remote sensing technology that cal-
culates distances by emitting laser beams toward an object and measuring the time it takes for
the reflection to return. This time-of-flight data is converted into distance measurement, each
corresponding to a specific point in space. A single LiDAR device can emit thousands of pulses
per second, enabling it to gather data over a large area quickly. These distance measurements
together form a point cloud, representing the 3D model of the scanned area.

LiDAR sensors are commonly mounted on drones or revolving platforms, enabling them to
collect data from multiple angles. An example of a LiDAR schematic on a rotating platform is
depicted in Fig. 1.1.

Figure 1.1 Schematic of a LiDAR sensor with its core components labeled: laser source that emits
the beam, a receiver that detects the reflected light, a tilting mirror for directing the laser, and two
optical rotary encoders connected to a servo motor for angular measurement of the device’s orientation
[15].

3

4 Analysis

1.2 Point Clouds
Point clouds are a simple data representation that store information about 3D objects as a set of
points; an example of a scanned chair can be seen in Fig. 1.2. Each point consists of coordinates
(x, y, z) and possibly other features like color, surface normals, or semantic labels.

Figure 1.2 Point cloud representation of a chair scan [15].

Point clouds have unique properties that are important to consider during analysis and pro-
cessing. Among the most prominent properties is that point clouds are unordered, invariant
under transformation, and points interact with neighboring points [12]. A brief description of
the most prominent properties is provided below:

Unordered: Unlike images, point clouds are a set of points without any specific order. This
means the data will remain unchanged if we shuffle the points. As a result, the algorithms
cannot assume any order in the representation and must be invariant to every possible per-
mutation.

Invariance under transformation: The point cloud represents the same structure regard-
less of orientation and position. Rotating, scaling, or moving a point cloud does not change
the information inside the point cloud.

Interaction among neighboring points: Similarly to images, the neighborhood of a point
in a point cloud holds valuable information for object detection, for example, the structure
and shape of parts of the scan. For instance, in a densely populated point cloud representing
a forest, the proximity and arrangement of points can help identify individual trees, their
canopy sizes, and the underbrush.

1.3 Data Structures and algorithms
The density and size of point clouds vary significantly amongst different datasets. However,
larger scans of cities or ground areas have millions of points. When working with such large
data, implementing efficient algorithms is paramount. Algorithms for registration often require
operations such as finding the nearest neighbors of a point, which would be computationally
intensive if we had to check each point due to the unordered property of point clouds. Therefore,
various data structures and algorithms have been developed to address these challenges for
efficient data processing. We discuss the ones we use in our project.

Data Structures and algorithms 5

1.3.1 K-d Tree
A k-d tree, short for k-dimensional tree, is a space-partitioning data structure stored as a binary
tree that organizes points in a multidimensional space and is designed to have fast search queries.
The data structure works by continuously dividing the space along each axis to halve the number
of points. By dividing the points into nested half-spaces, the tree reduces the average search time
in the point cloud with n points to log(n) time rather than n time [16]. A 2D visualization of a
k-d tree and its appropriate data representation can be seen in Fig. 1.3 and a 3D representation
can be seen in Fig. 1.4.

Figure 1.3 Visualisation of a 2D k-d tree showing spatial data partitioning. On the left, a diagram
of a k-d tree, showing the space partition with vertical red and horizontal blue lines, and on the right,
the corresponding binary tree structure [17, p. 60].

Figure 1.4 Three-dimensional visualization of a k-d tree with points represented by white spheres
and partitioning of the space shown by blue, red, and green lines corresponding to divisions along the
x, y, and z-axes, respectively [18].

6 Analysis

1.3.2 Principal Component Analysis
Principal Component Analysis (PCA) is a statistical method that uses an orthogonal transfor-
mation to convert a set of possibly correlated variables into linearly uncorrelated variables called
principal components. It is most commonly used in dimensionality reduction, where PCA can
be used to identify the main components of the data and remove the less dominant ones [19]. In
Fig. 1.5, we can see the principal components of a sample 2D data.

Figure 1.5 A visual representation of PCA, where the blue dots represent a dataset and vectors show
the principal components, highlighting the sub-spaces characterized by the least variance within the
dataset.

In the context of point clouds, PCA can be used to identify the main directions of data
variation, which can help us understand the underlying structure of the point cloud data. By
analyzing the principal components, one can infer the dominant spatial orientation [20], which
can be critical for alignment and registration. Alignment using PCA is visually represented in
Fig. 2.10 – 2.14.

1.3.3 DBSCAN
Density-Based Spatial Clustering of Application with Noise (DBSCAN) is a data clustering
algorithm. When given a set of points in space, DBSCAN groups points that are closely packed
together and removes points that lack neighbors, marking them outliers. The algorithm identifies
points in high-density areas and marks them as core points. These core points are iteratively
expanded by including directly reachable points in their neighborhood. If a point lacks neighbors,
it is marked as an outlier [21]. The process is visible in Fig. 1.6. The use of DBSCAN on real-
world data can be seen in Fig. 1.7.

Data Structures and algorithms 7

Figure 1.6 Example of a DBSCAN result: core points are colored red, reachable points are yellow,
and outliers blue. The circles mark the search radius for each point [22].

Figure 1.7 A visual representation showcases DBSCAN clustering applied to a real-world outdoor
dataset [23]. Each distinct color represents a unique cluster identified by DBSCAN. Points that were
marked outliers were removed from the image.

1.3.4 RANSAC
Random sample consensus (RANSAC) is an iterative method used to estimate parameters of
a mathematical model from a set of observed data points containing outliers. It is effective in
scenarios where a simple model can describe most of the data, but outliers make it hard to create
such a model. RANSAC iteratively selects random subsets of data points, fitting the model to
each subset and evaluating it based on a predefined threshold. Points consistent with the model
within the threshold are considered inliers, while points outside the threshold are considered
outliers and are discarded.

8 Analysis

A simple example is fitting a line to two-dimensional data. Fig. 1.8 illustrates 2D data to
which we want to fit a line. Fig. 1.9 then shows the fitted line using RANSAC. A more complex
example can be seen in Fig. 1.10, where RANSAC was used on an indoor point cloud to detect
surface planes [24].

Figure 1.8 A dataset with many outliers for
which a line has to be fitted [25].

Figure 1.9 Fitted line, which is a result of
RANSAC algorithm; The algorithm successfully
identifies the inliers (blue points) consistent with
the model (blue line) while disregarding the out-
liers (red points), resulting in an accurate estima-
tion [26].

Figure 1.10 RANSAC used for plane detection on an indoor dataset. A different color marks different
planes [24].

Data Structures and algorithms 9

1.3.5 Transformation Matrix
Transformation matrix M is a matrix that transforms one vector space into another. It encapsu-
lates the combined effect of translation vector t⃗, rotation matrix R, and scaling matrix S within
a single matrix [27]. Such matrix can be seen below:

M =

S00R00 R01 R02 t⃗0
R10 S11R11 R12 t⃗1
R20 R21 S22R22 t⃗2
0 0 0 1

 (1.1)

To obtain a transformed point p′ in the new coordinate system, we can use the transformation
matrix with the point using the following equation:

p′ =

S00R00 R01 R02 t⃗0
R10 S11R11 R12 t⃗1
R20 R21 S22R22 t⃗2
0 0 0 1

 ·

px

py

pz

1

 (1.2)

When talking about point sets, we want to find the translation t⃗ and rotation R that maps one
point cloud to another [28]. Given a source point cloud A = {(x1, y1, z1), (x2, y2, z2), ..., (xn, yn, zn)},
target point cloud B = {(x1, y1, z1), (x2, y2, z2), ..., (xm, ym, zm)}, rotation matrix R ∈ R3, and
translation vector t⃗ ∈ R3 we can find the transformation from A to B using the equation:

B = {R · a + t⃗ | ∀a ∈ A} (1.3)

Translation vector t⃗ between set A to B, can be found as: t⃗ = centroidB − centroidA. The
centroid of a set of points is the mean point position, that is, the sum of points divided by
the number of points. Given a point cloud P = {(x1, y1, z1), (x2, y2, z2), ..., (xn, yn, zn)} with n
points the centroid is given by:

(x̂, ŷ, ẑ) =
(

1
n

n∑
i=0

xi,
1
n

n∑
i=0

yi,
1
n

n∑
i=0

zi

)
(1.4)

Rotation matrix R can be found using singular value decomposition (SVD) of the familiar
covariance matrix of the point clouds. Let A and B represent the source and target point clouds
respectively, represented as matrices. We start by centering the point clouds and finding the
familiar covariance matrix H:

H = (A− centroidA) · (B − centroidB)T (1.5)

Next, we can calculate the SVD to decompose the matrix H, with a size of m×n, into a complex
unitary matrix U of size m ×m, a rectangular diagonal matrix S of size m × n, and a complex
unitary matrix V of size n× n.

U · S · V = SVD(H) (1.6)

U, and VT represent rotation and reflection of the space, while S represents the scaling. Finally,
the rotation can be found using:

R = V · UT (1.7)

10 Analysis

1.4 Point Cloud Segmentation
Point cloud segmentation is a part of spatial data analysis. It involves the classification of
point clouds into distinct, homogeneous regions, where points within each region share similar
properties. This segmentation process plays a pivotal role in automatic scene understanding,
enabling the identification and differentiation of various elements within a 3D environment based
on shared characteristics. This characteristic, for instance, could be membership in a category
such as chair or table, as seen in Fig 1.11 below.

Figure 1.11 Example of semantic segmentation result from a neural network. The input consists of
raw indoor point cloud data. The output is a segmented point cloud where different regions within the
indoor space are highlighted [12].

1.5 Machine Learning
Machine learning, a subset of artificial intelligence, focuses on developing statistical algorithms
that learn from data and make generalizations, allowing them to perform tasks on new, unseen
data. In recent years, such algorithms have rapidly gained popularity. They are utilized across
various disciplines to recognize objects, particularly in computer vision [29].

1.5.1 Feedforward Neural Network
A feedforward neural network (FNN) is a computational model inspired by biological processes
that try to simulate how neurons interact in the human brain. FNN consists of layers of neurons,
where information goes from left to right, hence its name [30]. Fig. 1.12 presents a simple neural
network outline.

Machine Learning 11

Figure 1.12 Example of a Feedforward Neural Network [31] where the input layer (red) receives the
data, the hidden layer (blue) performs the computation, and the output layer (green) produces the final
result. Each layer is interconnected, with individual connections characterized by weights representing
the significance of their respective interactions. Each circle represents a single neuron.

The structure of a neural network begins with the input layer, which receives the raw data.
Each neuron in this layer represents a data feature, such as the pixel’s intensity in an image.
Following the input layer are one or more hidden layers of neurons that carry out computations
and feature transformation. Each neuron applies a weighted sum of the input and passes the
sum into a nonlinear activation function. Activation functions are crucial as they introduce
nonlinearity into the network, allowing it to handle linearly non-separable cases. These functions
vary, but common examples include ReLU, leaky RELU, SELU, and tanh [32]. For their
visual representation, refer to Fig. 1.14. Visualization of a single neuron from a neural network
can be seen in Fig. 1.13

x1

x2

...

xn

∑w1

w2

wn

f
Output

Figure 1.13 Model of a single neuron, also called a perceptron. The inputs marked x are multiplied
by weights w and summed together. The result is fed into the activation function f .

.

12 Analysis

Figure 1.14 Most commonly used activation functions in neural networks [33].

The network ends with an output layer, marked with green color in Fig 1.12, which returns
the result. This layer’s design and activation function are specific to the network’s task. For
instance, a softmax activation function might be employed for a multi-class classification problem
to produce probabilities that add up to one. In contrast, binary classification might use a single
neuron with sigmoid activation.

The learning process of a feedforward neural network involves adjusting the weights within
the network in such a way that it makes better predictions. This adjustment is typically achieved
through backpropagation combined with an optimization algorithm, such as gradient descent.
During training, the neural network makes predictions on the input data. It then calculates the
error of these predictions against the actual targets. Backpropagation computes the gradient of
the loss function concerning each weight using the chain rule 1, effectively propagating the error
gradient back through the network. Given a loss function L, the gradient respect to weight w in
the network is calculated as follows:

∂L

∂w
= ∂L

∂y
· ∂y

∂w
. (1.8)

Where ∂L
∂y is the derivative of the loss function concerning the output of the neural network,

and ∂y
∂w is the derivative of the output concerning the weight.

Gradient descent then uses the calculated gradient to update the weights of the neural net-
work:

wnew = wold − η
∂L

∂w
(1.9)

Where η ∈ (0, 1] is the learning rate, a small positive scalar determining the size of the
algorithm’s step in the negative gradient direction [34].

This iterative process of calculating the error gradient and updating the weights continues un-
til the network’s performance meets predetermined stopping criteria, such as a specified number
of iterations called epochs or a minimum change in the loss between iterations.

1The chain rule, describes how we can differentiate composite functions as h′ = (f ◦ g)′ = (f ′ ◦ g) · g′, enabling
the calculation of derivatives across multiple layers in neural networks.

Machine Learning 13

1.5.2 Convolutional Neural Network
Convolutional Neural Networks (CNN) are a special type of deep neural networks that make use
of the convolution operation and are highly effective in analyzing visual imagery [35, p. 811]. A
CNN architecture is primarily composed of three-layer types: convolutional layers, pooling
layers, and fully connected layers. A typical architecture of a CNN can be seen in Fig.
1.15. The convolutional layer is a CNN core building block, applying kernels to the input to
create a feature map that summarizes the presence of detected information in the input [36].
Pooling layers follow the convolutional layers and perform down-sampling operations to reduce
the dimensionality of the features, thus decreasing the computational complexity and chances of
over-fitting 2. The effect of convolutional and pooling layers can be seen in Fig. 1.16. Lastly, fully
connected layers, which come after several convolutional and pooling layers, perform classification
based on the features extracted and down-sampled by the previous layers [37].

The learning process in CNNs involves adjusting the weights of the kernels within the
network, similarly to FNNs [32]. CNNs show superior results to regular FNNs on visual data,
as they have far fewer learnable parameters to adjust, making learning more straightforward on
complex data.

Figure 1.15 Schematic of a convolutional neural network. An input flows through feature extraction
with a single convolutional and pooling layer and is interpreted by a fully connected layer [38].

2Over-fitting means the model is tuned too much to the training data and is not generalized, resulting in poor
performance on new data

14 Analysis

Figure 1.16 Visualization depicting the convolution operation layer by layer. The original image of
a car is visible on the left, undergoing successive passes through different layers of the neural network.
Convolutional layers detect patterns such as edges and shapes. ReLU layers introduce nonlinearity
through the application of a nonlinear function. Pooling layers decrease spatial dimensions while pre-
serving essential features. The gradual reduction in dimensions can be observed in the car, with the final
pooling layer containing only a few pixels. Finally, the fully connected layer processes these features,
recognizing the image as a car [38].

1.6 Machine Learning on Point Clouds
The unique properties of point clouds discussed in section 1.2, pose difficult challenge for deep
learning. Due to their unordered nature, convolution neural networks, which excel with grid-
like data, cannot be directly applied. Therefore, most researchers tended to transform point
clouds into regular formats, like 3D voxels [11], where a 3D convolutional neural network could
be applied or created a set of images (e.g., views), which would be processed by a 2D neural
network [10]. However, such representations would significantly increase the memory needed for
processing and time spent on data conversion. Advancements in neural network architectures,
beginning with pointnet [12] have proved, that using symmetric functions to transform the points
into descriptors allows us to apply the neural network on raw point data. We discuss two modern
architectures below.

1.6.1 PointNet
PointNet was a revolutionary method introduced in 2016 to classify and segment raw point
cloud data [12]. Fig. 1.17 shows the classification and segmentation network diagram. The neural
network first learns an affine transformation using a small T-Net neural network to transform the
input. The network then tries to understand the local structures using shared MLP. After learning
the local features, a max-pooling layer aggregates the points into a global vector, representing the
entire point cloud. As the max-pooling function is symmetric, it ensures permutation invariance,
meaning the order of input points is irrelevant. The classification network has an output for k
classes. The segmentation network is an extension of the classification network. By concatenating
global and local features, per-point scores are calculated as output.

Point Cloud Registration 15

Figure 1.17 PointNet architecture [12]. The numbers in brackets are layer sizes; Batchnorm is used
for all layers with ReLU. Dropout layers are used for the last MLP in the classification net

1.6.2 Convpoint
ConvPoint is a more modern approach for larger point clouds [14]. The method uses continuous
convolutions for point cloud processing. It applies dynamic kernel convolutions, which capture
local geometry. The process begins with extracting local features around each point, utilizing
learnable kernels that adapt based on the point’s neighborhood. This approach ensures that
the model is sensitive to the local context of each point. Following this, ConvPoint employs a
hierarchical learning strategy, progressively aggregating these local features to capture higher-
level structures within the data.

ConvPoint architecture also ensures the essential properties described in section 1.2, like
permutation and transformation invariance.

For classification tasks, ConvPoint produces a global descriptor that summarizes the entire
point cloud, enabling the identification of the object or scene category. ConvPoint extends its
framework in an encoder-decoder-like structure to combine global and local features in segmen-
tation tasks, providing per-point predictions.

1.7 Point Cloud Registration
The process of finding a spatial transformation that aligns two point clouds is called registra-
tion. The fundamental aim of finding such a transformation is to align multiple data sets with
overlapping features within a unified coordinate system [39]. Such alignment can be seen in
Fig. 2.14. The process is often divided into two separate algorithms. The initial step, known as
global registration, focuses on achieving a rough alignment that brings the two datasets in close
proximity. Subsequently, a fine registration, often done by algorithms like ICP, is used to refine
the fit and achieve a closer alignment.

1.7.1 Registration in CloudCompare
CloudCompare [40] is an open-source 3D point cloud processing software. The program provides
most point cloud algorithms with a simple user interface and can serve as a demonstration of
how registration is implemented in most 3D software. Registration in CloudCompare is done in
two steps. The global registration is calculated using user-specified points. Then, an automatic
fine registration algorithm is applied. The workflow is as follows:

16 Analysis

First, the user is tasked with finding the corresponding points on both point clouds as in Fig.
1.18.

Figure 1.18 CloudCompare interface, illustrating the process of aligning point clouds by selecting
corresponding points atop a church tower. Points prefixed with ’A’ denote the target point cloud, while
those beginning with ’R’ represent the source point cloud.

The program calculates the rigid transformation with minimum error on the user-provided
points. We then have to apply the transformation manually. The result of the transformation
can be seen in Fig. 1.19.

Figure 1.19 Visualization of the result after the rough transformation calculated from the point
selection is applied.

For fine registration, we are tasked with filling in a dialog window, see Fig. 1.20, with the
theoretical overlap and squared error between the points. After pressing OK, we get the fine

Point Cloud Registration 17

registration result.

Figure 1.20 A CloudCompare dialog window showing the fine registration settings.

This provides a simple yet effective demonstration of how registration can be achieved with
more complex point sets. However, as can be seen, much user input and expertise is required.
We must choose the theoretical overlap of the two point clouds and the root mean squared error.
For more complex point clouds, this could be very difficult, if impossible, to estimate accurately,
leading to incorrect results, see Fig. 1.22. Such an incorrect result can be seen in Fig 1.21, where
we have incorrectly estimated the overlap of the point clouds as 60%.

Figure 1.21 Visualization of the sub-optimal result after fine registration, when the overlap was set
to 60%.

18 Analysis

Figure 1.22 Point cloud scan of Des Moines in Iowa with low readability where it is difficult to
identify the key points.

1.7.2 Global Registration
An effective and often cited automated method for global registration is using fast point feature
histograms (FPFH) [41] for a key-point matching algorithm. FPFH represents each point in a
point cloud by its local geometric properties, such as surface normals or curvatures. It computes
a feature histogram based on the relationships between neighboring points called the influence
region. The influence region of a point can be seen in Fig. 1.23.

This representation gives each point descriptive features, allowing us to find a similar point
from the opposing point cloud. After finding the FPFH, RANSAC finds matching correspon-
dences between points, fits a transformation model to each subset, and evaluates its consistency
with the best correspondences. As the algorithm uses random searches, the point cloud must be
highly sub-sampled to run in an acceptable time.

Figure 1.23 The influence region diagram for a point feature histogram. The query point (red) and
its k-neighbors (blue) are fully interconnected in a mesh [41].

Point Cloud Registration 19

1.7.3 Iterative Closest Point
Iterative Closest Point (ICP) and its variations are classical approaches to local registration
on point clouds. The basic principle is to find a spatial transformation from a source point
cloud to a target point cloud; the idea of the transformation is illustrated in Fig. 1.24. The
algorithm primarily comprises the following steps: point matching, rotation and translation
estimation, point transformation, and an iterative process. Point-to-point ICP [42] matches each
point in the source point cloud to its nearest point in the target cloud, minimizing the distance
function. Point-to-plane ICP [43] extends this by considering distances from each source point
to the tangent plane of its corresponding point in the target cloud, which is especially useful
for irregular surfaces. Generalized ICP [44] further extends the algorithm by combining both
Point-to-Point ICP and Point-to-Plane ICP into a single probabilistic framework, improving the
robustness and accuracy.

Figure 1.24 Idea behind the iterative closest point algorithm [45]. The source object is colored red,
and the target is blue.

The steps of the ICP algorithm are described in more detail below:

1. Point Matching: For each point within the source point cloud, the algorithm identifies the
nearest point with a maximum radius in the reference point cloud.

2. Rotation and Translation Estimation: Using a distance metric minimization technique,
the algorithm estimates the optimal rotation and translation. This estimation aims to align
each source point with its corresponding match obtained in the previous step.

3. Point Transformation: Utilizing the derived transformation from the previous step, the
algorithm transforms the source points accordingly.

4. Iterative Process: The algorithm iterates through steps 1 – 3, refining the alignment until
specific criteria are satisfied, such as reaching a predefined maximum number of iterations or
achieving an error less than the previously specified threshold.

In addition, accompanied by the description, a pseudocode representation of the algorithm is
provided below.

20 Analysis

Algorithm 1 Iterative Closest Point
1: procedure ICP(S, D, θ)
2: Input: source point cloud A, destination point cloud B, convergence threshold θ
3: Output: transformed source point cloud S′

4: Initialize transformation T with identity matrix
5: error ←∞
6: while error > θ do
7: Find closest point pairs between A and B
8: Estimate the transformation Tnew to align A to B
9: Apply the transformation: A′ = Tnew ·A

10: Calculate the error between A′ and B
11: Update transformation T: T← Tnew
12: end while
13: return A′

14: end procedure

1.8 Evaluation of Registration
The primary objective of the registration process is to ensure a high degree of point overlap
between the source point cloud and the target point cloud (fitness, correspondence set) and to
minimize the distance between those overlapping points (RMSE).

However, these metrics can be misleading. High overlap and low distance between points
do not guarantee successful registration, especially when the characteristics of the registration
outcome are unknown. Therefore, visually checking the registration result is also needed.

The metrics are described in more detail below:

Visual Check – A fundamental yet indispensable step is manually visualizing and access-
ing the registration result. This is because the minimization algorithm attempts to reduce
the distance between points. However, these metrics might not yield the best registration,
especially when dealing with partially overlapping datasets.

Correspondence Set - refers to a collection of pairs of points, each from a different point
cloud. Two points are considered corresponding if the following conditions are met: the
distance between them is the smallest among all points within a specified proximity, and
this distance is smaller than a predefined threshold. It is believed that the pair represents
the same physical point in space. Determining correspondence sets is a critical step in the
registration process, and the higher the number of correspondence sets, the more we can trust
the algorithm result. Fitness and inlier RMSE metrics are calculated from the correspondence
set.

Fitness – Fitness is closely linked to the correspondence set. It measures the proportion of
points in one point cloud that have corresponding points in the other point cloud within the
specified distance threshold after registration. Fitness is expressed as a value between 0 and
1, where a value closer to 1 indicates a higher percentage of the source points that fit well
with the target, suggesting a successful registration. Given a source point cloud A, target
point cloud B and a registration result with n number of correspondences, the fitness f is
calculated as:

f = n

|B|
. (1.10)

Inlier RMSE – is a metric used to quantify the accuracy of point cloud registration. It is
computed on points from the correspondence set and measures the average Euclidean distance

Existing Solutions 21

between corresponding points using the equation 1.11. This metric provides insight into how
closely the point clouds are aligned. Lower RMSE indicates a higher accuracy.
Given a registration of two point clouds with n corresponding points, for each pair of corre-
sponding points, where pi = (xi, yi, zi) is from the source point cloud and p̂i = (x̂i, ŷi, ẑi) is
the corresponding nearest point in the target point cloud, the inlier RMSE is calculated as:

RMSE =

√√√√ 1
n

n∑
i=1

(√
(x̂i − xi)2 + (ŷi − yi)2 + (ẑi − zi)2

)2
(1.11)

1.9 Existing Solutions
As described in the previous section, most software working with point clouds implement regis-
tration algorithms. These algorithms rely on user input to estimate the initial transformation
between the point clouds and then apply algorithmic fine registration to smooth out the result.

Automatic registration processes that detect key points through local feature analysis, like
FPFH, are often used in robotics and other sectors where autonomous alignment is needed
[46]. Nevertheless, these techniques are not without problems. A significant limitation is their
vulnerability to inconsistencies in point cloud densities. Additionally, those algorithms assume
that the geometrical structure around a point carries enough information for unique identification.
This assumption can be problematic in areas characterized by uniform patterns.

Automatic registration of point clouds using deep learning methods to identify correspon-
dences has been an area of focus for several years [47], and research has focused primarily on
the use of neural networks to detect the corresponding parts of point clouds to find an optimal
transformation [48, 49]. However, these methods show a significant disparity between synthetic
and real-world data [50].

1.10 Our Approach
This work aims to develop a framework that improves the registration of partially overlapping
point clouds and investigates the integration of semantic labels in the alignment process. We
establish two distinct pipelines: one incorporating semantic labels for dataset partitioning and
one using a traditional approach. We do not use neural networks to predict transformations;
instead, we use conventional algorithmic approaches and only use deep learning for segmentation,
where the networks tend to perform very robustly. We assess the performance of our pipelines on
large-scale datasets against traditional global registration using FPFH features and different ICP
algorithm variants. We also propose changes to the ICP algorithm by using different distance
metrics and the semantic label to perform per-part ICP.

22 Analysis

Chapter 2

Implementation

This chapter introduces the programming tools we use for the implementation and explores
the datasets we use for testing. Next, we propose the outline of the pipeline, describe the
preprocessing methods, and go through the pipeline implementation process.

2.1 Programming Tools and Packages
Machine learning and algorithms working with point clouds are computationally demanding and
require large code optimization. Fortunately, open-source libraries and software make this easier
by providing us with efficient implementations that we can use as a foundation for this work.
Below are the most prominent libraries we use in our implementation:

Cython is an open-source language that enhances Python by allowing static typing and com-
piling into C [51]. It allows the call of functions implemented in C/C++ directly from Python.
This helps us optimize Python code for performance-critical applications by combining the
simplicity of Python with the speed of C/C++.

Pytorch is an open source, high-performance deep learning library developed by Meta and
is intended to be used with Python and C++ [52]. It is one of the most popular frameworks
for neural network design due to its simple interface and efficient C++ core. We use this
framework for the segmentation network implementation.

Open3d is a open source library developed to work with 3D data [53]. It provides useful
functionality ranging from efficient data structures and algorithms to visualization functions.

Scikit-Learn is an open-source library containing implementations of a wide array of machine
learning algorithms [54]. It offers a high-level interface for preprocessing, model selection,
and evaluation tasks.

23

24 Implementation

2.2 Datasets
This section discusses the datasets selected to evaluate our registration method against state-
of-art solutions. We specifically chose segmentation benchmarks as they are pre-annotated,
simplifying the process of training the neural network for semantic label acquisition.

2.2.1 Stanford 3D Indoor Scene Dataset
The Stanford Large-Scale 3D Indoor Spaces Dataset (S3DIS) [55] offers a comprehensive collec-
tion of the Stanford campus’s indoor point clouds comprising six areas encompassing over 70,000
square meters. The areas are divided by room, where each semantic object is stored in a separate
file, together forming the room. The point cloud of each room consists of millions of points and
features coordinates (x, y, z), color values (r, g, b), and semantic labels. A schematic of the
dataset can be seen in Fig. 2.1.

Figure 2.1 Schematic of the S3DIS dataset [55]. It is composed of six areas. At the top, raw scans
with color values are displayed. At the bottom, areas are annotated with semantic labels. The color of
each respective semantic label is displayed at the bottom.

We use areas 1 – 5 for training the neural network and area 6 for registration. S3DIS alone does
not have point clouds with partial overlap, which would be suitable for registration. Therefore,
we have to prepare the dataset manually.

Datasets 25

Initially, we split each point cloud into two parts based on the mean value of the x-coordinates,
with a 30% overlap. This ensures that the two dataset parts have a shared region in the middle.
Then, we iteratively swap parts of the halved point clouds by randomly choosing a fixed-size
block, moving it to the second half, and leaving random sub-sampled points. This ensures that
both point clouds have shared parts different from those in the center. Lastly, rotation and
translation are applied to the source point cloud. This simulates real-world scenarios where data
might be captured from different viewpoints or at different times. An example of a proceed point
cloud pair using the above-described method can be seen in Fig. 2.3.

Figure 2.2 Result on the copy room 1 point cloud after the data preparation. The original point
cloud was divided into two, translated and rotated.

2.2.2 Nuage de Points et Modélisation 3D
The Nuage de Points et Modélisation 3D (NPM3D) dataset [56] is an outdoor semantic segmen-
tation benchmark. The data was produced by a mobile laser system consisting of six dense,
annotated point clouds from two urban locations, Paris and Lille. Three point clouds are used
for training the neural network, and three for testing. Individual points have spatial coordinates
(x, y, z), reflectance values, and a semantic label.

Figure 2.3 Example from the Lille NPM3D dataset [56]. Colors are semantic labels, where roads are
gray, vehicles are red, buildings are beige, and vegetation is green.

26 Implementation

Like the S3DIS dataset, the NPM3D dataset also lacks overlapping point clouds that could
be directly registered. As the point clouds were very complex, we manually parted them using
CloudCompare.

2.2.3 Semantic3D
Semantic3D dataset [57] provides us with large-scale, human-annotated, outdoor point clouds.
The dataset consists of thirty point clouds, split into training and testing groups, each with
fifteen point clouds. Each point cloud has coordinate (x, y, z), intensity, and color (r, g, b)
information. Point clouds from the training set also have label information saved in a separate
file.

Unlike previous datasets, Semantic3D has multiple scans from the same location, meaning
they can be registered as is. Upon inspecting the data, we selected five point cloud pairs with
sufficient overlap suitable for registration. These are: Bildstein 1 – Bildstein 3, Untermaeder-
brunnen 1 – Untermaederbrunnen 3, Domfountain 1 – Domfountain 3, Marketsquarefeldkirch 1
– Marketsquarefeldkirch 4, Stgallencathedral 1 – Stgallencathedral 1. Other point clouds did not
have a corresponding pair, and we did not use them further.

Two pairs from the datasets are illustrated in Fig. 2.4. However, it is essential to note that
several datasets, specifically the Bildstein, Untermaederbrunner, and Domfound, are part of the
training dataset. We incorporate them into the testing data and disregard the labels associated
with these datasets—consequently, the neural network training proceeds with the rest of the
training data.

(a) Bildstein 1 (b) Bildstein 3

(c) Stgallencathedral 1 (d) Stgallencathedral 3

Figure 2.4 Example of point cloud pairs for registration Bildstein 1 – Bildstein 3 and Stgallencathedral
1 – Stgallencathedral 3 [58].

Proposed Method 27

2.3 Proposed Method
We propose a registration method utilizing divide-and-conquer paradigm, where we will split
the point clouds into logical segments using convolutional neural network, perform registration
on the corresponding logical pairs and then choose the best overall transformation on the whole
data. We use the label information to divide the dataset and perform principal component
alignment with ICP smoothing to align local structures. We start with raw point clouds, apply
preprocessing methods, and pass the point clouds along to the segmentation network, which adds
label information to each point. We then split the data by the label and pass it to the modified
registration algorithm to find the transformation matrix. We named this method Semantic Point
Cloud Processing using Principal Component Analysis (SPCR-PCA), and its schema can be seen
in Fig. 2.5. In order to properly test whether adding the semantic label into the registration
process improves the accuracy, we also implemented a method without the use of semantic labels,
called Point Cloud Processing using Principal Component Analysis (PCR-PCA), which works in
a similar matter, omitting the first preprocessing step, segmentation network, and batching.

Figure 2.5 Proposed pipeline for labeled point clouds. The segmentation network separately takes
two point clouds and the predicted labels. The registration algorithm is discussed in section 2.6.

2.4 Segmentation Network
In this section, the implementation of the segmentation network is discussed. For this purpose,
we use the ConvPoint architecture and its corresponding implementation [14, 59].

2.4.1 Model Training and Evaluation
The training process was carried out in the same way, as described in section 1.6.2. A random
point is selected at training time, and all points are extracted in an infinite vertical column
centered around the point. The column is eight meters wide. 8192 points are randomly selected
for each column and fed into the neural network. We use the Adam optimizer to determine the
step size and cross-entropy as the loss function. Training is carried out throughout 100 epochs.

28 Implementation

The ConvPoint method uses three metrics to evaluate the precision of the neural network.
They are listed below:

Overall Accuracy: Describes the overall accuracy of the model predictions. It can be expressed
as:

OA = Sum of True Positives across all classes
Total Number of Observations

Average Accuracy Per Class: Describes the mean of per class accuracy, where the class
accuracy is computed as:

Accuracy(i) = True Positives of Class i
Total Samples of Class i

Intersection Over Union (Jaccard index): measures the similarity between sample sets, defined
as the intersection’s size divided by the union’s size. The equation is provided below:

J(A, B) = |A ∩B|
|A ∪B|

where |S| denotes the cardinality of a set S.

We use all those metrics to evaluate the neural network. The change in the values of the
metrics on the Semantic3D dataset can be seen in Fig. 2.6. The final overall accuracy, per class
accuracy, and IoU of the model on all the datasets can be seen in Table 2.1.

0 10 20 30 40 50 60 70 80 90 10
0

0.5

0.6

0.7

0.8

0.9

1

Number of Epochs

Va
lu

e

Overall Accuracy
Per Class Accuracy

IoU

Figure 2.6 Change in metrics on the Semantic3D training dataset over 100 epochs.

Table 2.1 Model accuracy on the training set. The number of epochs for each of the datasets is
written in brackets.

Metric Overall Accuracy Per Class Accuracy IoU
S3DIS (250) 0.95726 0.93094 0.88003
NPM3D (100) 0.99330 0.94647 0.91402
Semantic3D (100) 0.98096 0.95024 0.91459

Segmentation Network 29

2.4.2 Model Predictions
Making predictions using the trained model is similar to the training process. A 2D occupancy
pixel map is computed with a pixel size of 0.5 meters by projecting vertically on the horizontal
plane. For each column, 8192 points are randomly selected and fed into the network. The output
scores are summed at a point level. The points that were not selected and labeled receive the
label of their nearest neighbor. Prediction on the Bildstein 1 dataset can be seen in Fig. 2.7 and
the same image split into individual labels in Fig. 2.8.

Figure 2.7 Prediction of the neural network on Bildstein 1 dataset. Different Colors are different
predicted labels.

(a) man-made terrain (b) natural terrain (c) high vegetation (d) low vegetation

(e) buildings (f) hard scape (g) scanning artefacts (h) cars

Figure 2.8 Individual predicted labels on the Bildstein 1 dataset.

30 Implementation

2.5 Data Preprocessing
In this section, we discuss the preprocessing methods from the above-described pipeline. The
preprocessing steps are applied on each batch from the neural network separately.

2.5.1 Data Reduction
The point clouds from the datasets are too dense to be used in an iterative algorithm, as it would
take too long to run. To eliminate this, we subsample each data set, reducing the number of
points but keeping the essential structure. We chose to use a voxel grid filter, as it is known for
efficient downsampling while preserving the core structure of the data [60].

The process of voxel down-sampling can be broken down into two steps. The points are
divided into a regular voxel grid in the first step, creating a structured data representation.
In the second step, each voxel generates a single point by averaging all the points it contains.
This averaging process also extends to the point properties, such as color or label. For a visual
representation of this process, refer to Fig. 2.9.

Figure 2.9 Illustration of voxel-grid filtering: (a) voxel grid; (b) unfiltered unit voxel; and (c) the
center of mass of the unit voxel [61].

While subsampling does not alter the algorithm’s output, as the transformation matrix can be
applied to the original dense point cloud, it is essential to note that it does introduce a trade-off
between speed and precision resulting from information loss.

Data reduction proved necessary for efficient implementation. We have experimented with
many sizes and have experimentally deduced that the best trade-off between speed and accuracy
was to choose a voxel size for clustering of 0.005. This value splits the unit ball into a space
of 400x400 voxels. This leaves enough information inside the dataset but dramatically increases
the algorithm’s speed.

2.5.2 Normalization
Normalization is an important preprocessing step in many methods. It encloses all points in a
common boundary, typically within the (-1, 1) range, without sacrificing any information. The
process can be visualized as scaling the point cloud within a unit sphere 1. Given a point cloud
P , centroid of the point cloud p̂, the normalized point cloud C can be found using:

C =

 p− p̂

max
p′∈P

(||p′ − p̂||) | ∀p ∈ P

 (2.1)

1A unit sphere is a sphere with a diameter equal to one

Registration 31

The data values fluctuate highly between different point cloud pairs. We use normalization
to remove this inconsistency. To uniformly scale both clouds by the same proportion, we have
modified the normalization equation to take the maximum of both point clouds. Given point
clouds A and B, their respective centroids â, b̂, we define a distance function M that returns the
maximum distance, calculated from each point to its respective centroid. This equation can be
seen below:

M(A, B) = max
(

max
a∈A

(∥a− â∥), max
b∈B

(∥b− b̂∥)
)

(2.2)

The normalized point cloud A′ is calculated using the equation 2.3 and point cloud B′ using
the equation 2.4.

A′ =
{

a− â

M(A, B) | ∀a ∈ A

}
(2.3)

B′ =
{

b− b̂

M(A, B) | ∀b ∈ B

}
(2.4)

This method ensures that both A′ and B′ are scaled by the same proportion, ensuring the
relative dimensions between the point clouds remain unchanged.

Given the significant variations in the data, normalization proved crucial. Choosing and
calculating parameters, such as the epsilon value for noise reduction and threshold for the ICP
algorithm, was much more straightforward.

2.5.3 Noise Reduction
Noise reduction is a common preprocessing step. It refines the point cloud by removing outliers
that do not contribute to the primary structure of the data, cleaning the point cloud, and ensuring
it consists only of relevant points.

We use the DBSCAN algorithm for effective noise reduction. DBSCAN distinguishes between
core points (central points), border points (at the edges of a cluster), and noise (isolated points
not part of a cluster) as in Fig. 1.6. The algorithm is explained in detail in section 1.3.3.

Unlike other clustering algorithms that require parameter tuning, DBSCAN requires minimal
hyperparameter tuning, as it can run entirely without hyperparameters. We utilize the scikit-
learn implementation of DBSCAN [62], which offers a straightforward and efficient approach to
applying the algorithm to our data.

When DBSCAN was applied without parameters, it did not filter any data, resulting in
the entire point cloud being in a single cluster. Therefore, we set the epsilon value, which
determines the distance within which each point considers its neighborhood, to 2·voxel size. This
decision was made after experimental adjustments to optimize the balance between sensitivity
and specificity in the clustering process. By setting epsilon to twice the voxel size, we ensure that
the neighborhood of each point encompasses a sufficiently large area to include directly adjacent
points while filtering out outliers.

2.6 Registration
The initial alignment of the point clouds is the biggest precondition for a successful fine reg-
istration using ICP. If the point clouds are roughly aligned, the ICP algorithm likely succeeds
in finding the close-to-optimal solution. If the initial position of the point clouds is off, the
algorithm likely converges toward local minima far away from a successful registration.

Similarly to most software solutions, we have divided the registration process into two steps:
a global registration, which aims to roughly align the two overlapping point clouds, and a fine

32 Implementation

registration using ICP, which smooths the registration. We also proposed changes to the ICP
by adding different distance metrics to the algorithm. Additionally, we implemented a per-part
ICP using label information.

We have created two distinct approaches, one incorporating label information (SPCR-PCA)
and one without the information (PCR-PCA). However, before discussing the registration pro-
cess, it is essential to look into the calculation of the ICP threshold and explore methods for
estimating the best registration results.

2.6.1 ICP Threshold Calculation
An important step when using ICP is to estimate a reasonable ICP threshold that allows the
registration to converge successfully. We use the calculations from this section in both the global
registration and fine registration process. Firstly, we tried to calculate the threshold t by finding
the mean of the minimum Euclidean distances between each point in the source point cloud
A with n points and its closest counterpart in the target point cloud B. Mathematically, this
process can be represented as:

t = 1
n

∑
a∈A

min
b∈B
∥a− b∥ (2.5)

This approach has, however, returned large values, as the point clouds overlap only partially,
meaning distant points strongly influence this calculation.

Next, we utilized the fact that we have already defined a neighborhood in the noise reduction
section 2.5.3 as 2·v, where v is the voxel size, which is essentially the resolution of the point clouds.
We used this to calculate the threshold as the mean value of points that have corresponding points
in their neighborhood.

t = 1
|A|

∑
a∈A

(
minb∈B

{{
||a− b|| if ||a− b|| < 2 · v
0 otherwise

})
(2.6)

This approach gave excellent threshold approximation for both rough and fine registration.

2.6.2 Choosing the best Registration
As the pipeline requires automatic selection of the best registration, we had to create a scoring
function for them. Choosing a single metric proved to be inaccurate in many circumstances. We
combined all three metrics, as it was the most robust method. Given a registration with fitness
f , correspondence set c and RMSE r, each registration is given a score of:

bi = fi

fmax
+ ci

cmax
− ri

rmax
(2.7)

fmax, cmax, and rmax are the largest values observed in their respective fields compared to the
registration being evaluated. The registration with the highest score bi is then the best one.

2.6.3 Global Registration
This section explains the global registration method incorporating label information (SPCR-
PCA). The method working on the entire point cloud (PCR-PCA) is implemented similarly,
omitting batching.

Firstly, we split both point clouds by the label information. We run the following algorithm
separately for each corresponding pair of labels. We demonstrate the algorithm on the Bildstein
1 point cloud from the Semantic3D dataset with the ”buildings” batch:

Registration 33

1. Firstly, we find the principal axes of each point cloud, as seen in Fig. 2.10, showing us the
subspace with the most significant amount of variance in the data.

Figure 2.10 Three most prominent principal axes on the subsampled dataset. The source point cloud
is yellow, and the target point cloud is blue.

2. Next, we align the principal axes by finding the translation and rotation between the principal
vectors, using the equations 1.3 – 1.7. The result of this transformation aligns the axes, as
in Fig. 2.11.

Figure 2.11 Aligned principal components after finding the transformation between them.

34 Implementation

3. Because PCA provides us with a sub-space (plane in case of a 3D point cloud) with the
most significant variance, not vectors, we should also consider vectors going in the opposite
directions. Therefore, we append all possible rotations around the principal axes. Fig. 2.12
below shows rotation around one principal component.

Figure 2.12 Example of a rotated point cloud around one of the principal axes.

4. For each rotation, we run the ICP algorithm to find a better correspondence and refine the
alignment. Such alignment refinement from Fig. 2.12 can be seen in Fig. 2.13.

Figure 2.13 Point cloud from Fig. 2.12 after ICP registration was completed.

Registration 35

5. Finally, from all the refined alignments, we choose the one that fits the original dataset the
best. The alignment from Fig. 2.13 on the entire dataset is visualized in Fig. 2.14.

Figure 2.14 The best transformation from Fig. 2.13, shown on the entire point cloud.

After we have completed this for each batch of labels, we can estimate the best rough trans-
formation, either by programmatically choosing the best transformation or averaging the results.

2.6.4 Distance functions in ICP
We took two approaches to improve the fine registration process. We have modified the open3d
[53] implementation of point-to-point ICP to accept additional distance metrics and allow per-
part ICP. We examine whether using different distance metrics or per-part registration can affect
the process.

We have implemented the distance metrics listed below. Let p1 = (x1, y1, z1) and p2 =
(x2, y2, z2) represent two points in a 3D point cloud.

Euclidean Distance is widely used for point cloud registration and represents the straight line
distance between two points. It is defined as:

DE =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (2.8)

Chebyshev Distance is the maximum absolute difference along any coordinate dimension
between two points. For 3D points, it is defined as:

DC = max (|x2 − x1|, |y2 − y1|, |z2 − z1|) (2.9)

Minkowski Distance generalizes the Euclidean and Manhattan distances. For 3D point clouds,
it is given by:

DM = (|x2 − x1|p + |y2 − y1|p + |z2 − z1|p)
1
p , (2.10)

where p is a hyperparameter that adjusts the metric. Specifically, p = 2 yields the Euclidean
distance, and p = 1 results in the Manhattan distance.

36 Implementation

We used a similar method described in the initial alignment section 2.6.3 for the per-part
registration. We used the label information to create batches, which we then registered separately.
However, we do not apply any preprocessing steps.

After applying these above-described changes, we have deduced that the changes did not
produce significant improvements. The per-part registration proved to be slightly more accurate
regarding fitness and RMSE, but there were problems with merging the parts, as some batches
would collapse in entirely wrong directions. Different distance metrics also did not provide
significant improvements; an overview of the mean percentage improvement on the Semantic 3D
dataset can be seen in Table 2.2. As the original ICP algorithm was very effective after the
global registration itself and inaccuracies were made by subsampling rather than inaccurate fine
registration, we did not look deeper into this problem.

Table 2.2 Average improvement of different distance metrics compared to the Euclidean distance on
the Semantic3D dataset.

Metric Fitness increase RMSE increase Correspondence set increase
Euclidean 0% 0% 0%
Chebyshev -1.60% 0.41% -1.60%
Minkowski (p=3) -0.23% 0.01% -0.23%

Final Pipeline 37

2.7 Final Pipeline
Based on the experimental results, the final registration pipeline preserves the outline presented
in the implementation chapter 2, with the preprocessing steps discussed above. It uses the
ConvPoint neural network architecture [59] and per-part registration, which was more robust in
complicated data sets.

Figure 2.15 Illustration of the final pipeline, the downsampling uses a voxel size of 0.005, and DB-
SCAN uses a search radius twice that. Choosing the best registration is done using the formula described
in section 2.6.2

.

38 Implementation

Chapter 3

Results

This chapter explores how adding label information to SPCR-PCA impacted the results com-
pared to PCR-PCA. We also compare our methods against global registration using FPFH with
different ICP algorithm variants implemented in Open3D. We use all the metrics described in
section 1.8 to evaluate the results. These are visual check, fitness, correspondence set size, and
RMSE.

All algorithms ran on a computer with the specifications listed below.

CPU: Amd Ryzen 9 5950X 16-core

GPU: Nvidia RTX 4070, 12 Gb.

RAM: 128 Gb.

3.0.1 Experimental Results on S3DIS
Overall, 48 point clouds from the S3DIS dataset were used to evaluate our proposed method
against traditional approaches. The average fitness and RMSE of the tested algorithms can be
seen in Table 3.1. SPCR-PCA performed the best, having the highest average fitness and RMSE,
finding correct alignment on all tested point clouds. Methods utilizing feature histograms with
ICP smoothing also performed well on most data.

Table 3.1 Average results of the methods on S3DIS dataset. Higher fitness and lower RMSE is better.

Method Fitness RMSE Num. of correspondences
SPCR-PCA 0.74782 0.00102 504 820
PCR-PCA 0.48820 0.00216 339 998
FPFH + Point2Point ICP 0.64201 0.00137 460 018
FPFH + Point2Plane ICP 0.67368 0.00123 473 165
FPFH + Generalized ICP 0.67758 0.00124 479 693

The decrease in fitness across all algorithms using FPFH is because of inconsistency in data
with many points with similar features like hallways or pantries, where the RANSAC algorithm
needed to match the corresponding points correctly. This can be seen in Fig. 3.1 – 3.2.

This dataset has shown that SPCR-PCA is more stable than traditional approaches, espe-
cially on point clouds that lack significant characteristics. PCR-PCA performed the worst of all
methods, only working on approximately half of the tested point clouds and showing the worst
overall fitness and RMSE.

39

40 Results

Hallway 3

(a) Initial Alignment (b) SPCR-PCA (c) PCR-PCA

(d) FPFH + Point2Point ICP (e) FPFH + Point2Plane ICP (f) FPFH + Generalized ICP

Figure 3.1 Results of different registration algorithms. Only SPCR-PCA found the correct alignment.

Pantry 1

(a) Initial Alignment (b) SPCR-PCA (c) PCR-PCA

(d) FPFH + Point2Point ICP (e) FPFH + Point2Plane ICP (f) FPFH + Generalized ICP

Figure 3.2 Results of different registration algorithms. SPCR-PCA found the correct alignment.

41

3.0.2 Results on NPM3D
Three manually parted point clouds were used from the NPM3D dataset, and the average result
of fitness and RMSE can be seen in Table 3.2. All tested methods except PCR-PCA performed
exceptionally, finding the correct alignment for all point clouds.

Table 3.2 Average results of the methods on NPM3D dataset. Higher fitness and lower RMSE is
better.

Method Fitness RMSE Num. of correspondences
SPCR-PCA 0.65017 0.00041 4 774 984
PCR-PCA 0.49463 0.00147 3 627 842
FPFH + Point2Point ICP 0.65037 0.00041 4 776 499
FPFH + Point2Plane ICP 0.65014 0.00041 4 774 738
FPFH + Generalized ICP 0.65017 0.00041 4 774 981

Results on each of the datasets separately can be seen in Table 3.3. We can see that PCR-
PCA failed in two of three cases, ending in a local minima. The visualization of the registration
result from the Table 3.3 can be seen in Fig. 3.3 – 3.5. The differences in metrics between FPFH
and SPCR-PCA methods are insignificant and result from the different fine alignment metrics
used in the ICP.

Table 3.3 All results on the NPM3D dataset. Higher fitness and number of correspondences are
better, and lower RMSE is better.

Method Fitness RMSE Num. of correspondences
Ajaccio 2

SPCR-PCA 0.50408 0.00066 3 994 296
PCR-PCA 0.50407 0.00066 3 994 276
FPFH + Point2Point ICP 0.50457 0.00066 3 998 162
FPFH + Point2Plane ICP 0.50396 0.00066 3 993 385
FPFH + Generalized ICP 0.50406 0.00066 3 994 129

Ajaccio 57
SPCR-PCA 0.69953 0.00024 6 462 677
PCR-PCA 0.44708 0.00189 4 130 338
FPFH + Point2Point ICP 0.69957 0.00025 6 463 044
FPFH + Point2Plane ICP 0.69956 0.00024 6 462 901
FPFH + Generalized ICP 0.69955 0.00024 6 462 872

Dijon 9
SPCR-PCA 0.74690 0.00033 3 867 980
PCR-PCA 0.53274 0.00186 2 758 911
FPFH + Point2Point ICP 0.74696 0.00033 3 868 290
FPFH + Point2Plane ICP 0.74689 0.00033 3 867 927
FPFH + Generalized ICP 0.74690 0.00033 3 867 941

42 Results

Ajaccio 2

(a) Initial Alignment (b) PCR-PCA (c) SPCR-PCA

(d) FPFH + Point2Point (e) FPFH + Point2Plane (f) FPFH + Generalized

Figure 3.3 Result of the tested registration algorithms. All methods found a correct alignment.

Ajaccio 57

(a) Initial Alignment (b) SPCR-PCA (c) PCR-PCA

(d) FPFH + Point2Point ICP (e) FPFH + Point2Plane ICP (f) FPFH + Generalized ICP

Figure 3.4 Result of the tested registration algorithms. All methods except PCR-PCA found the
correct alignment. PCR-PCA got stuck in a local minima

43

Dijon 9

(a) Initial Alignment (b) SPCR-PCA (c) PCR-PCA

(d) FPFH + Point2Point ICP (e) FPFH + Point2Plane ICP (f) FPFH + Generalized ICP

Figure 3.5 Result of the tested registration algorithms. All methods except PCR-PCA found the
correct alignment. PCR-PCA got stuck in a local minima

3.0.3 Results on Semantic3D
Five point cloud pairs were used from the Semantic3D dataset, and the average fitness and RMSE
of the tested methods can be seen in Table 3.4. Again, we can see similar results in fitness and
RMSE for all FPFH methods. SPCR-PCA has better average fitness, resulting from finding a
better fit on the Marketplace Feldkirch 1–4 point clouds. However, It did not find the correct
alignment; this is most likely because this dataset consists mainly of building, meaning the label
distribution is not widespread enough for the semantic part to play a significant role.

Table 3.4 Average results of the methods on Semantic3D dataset. Higher fitness and lower RMSE is
better.

Method Fitness RMSE Num. of correspondences
SPCR-PCA 0.58478 0.00124 474 004
PCR-PCA 0.34507 0.00168 241 432
FPFH + Point2Point ICP 0.53773 0.00128 447 272
FPFH + Point2Plane ICP 0.53547 0.00126 446 111
FPFH + Generalized ICP 0.52181 0.00135 438 446

Table 3.5 shows the numerical results on individual point cloud pairs. And the corresponding
images in Fig. 3.6 – 3.10. Like in previous datasets, the results are similar on most point clouds.
However, SPCR-PCA performs better on the Marketplace Feldkirch 1–4 point clouds. Even
though it is not a perfect alignment, it roughly aligned the point clouds into close proximity.
Other methods failed.

44 Results

Table 3.5 Numerical results from the registration process on the Semantic3D dataset. Higher fitness
and num. correspondences are better, and lower RMES is better.

Method Fitness RMSE Num. of Correspondences
Bildstein 1–3

SPCR-PCA 0.49758 0.00167 261 354
PCR-PCA 0.29649 0.00256 155 731
FPFH + Point2Point ICP 0.49855 0.00167 261 865
FPFH + Point2Plane ICP 0.49942 0.00167 262 320
FPFH + Generalized ICP 0.49779 0.00167 261 466

Untermaederbrunnen 1–3
SPCR-PCA 0.54095 0.00096 259 840
PCR-PCA 0.21710 0.00177 104 280
FPFH + Point2Point ICP 0.54122 0.00098 259 969
FPFH + Point2Plane ICP 0.54150 0.00097 260 105
FPFH + Generalized ICP 0.54104 0.00097 259 885

Domfountain 1–3
SPCR-PCA 0.76144 0.00092 301 073
PCR-PCA 0.76138 0.00092 301 051
FPFH + Point2Point ICP 0.76328 0.00099 301 801
FPFH + Point2Plane ICP 0.76280 0.00094 301 610
FPFH + Generalized ICP 0.76191 0.00094 301 260

Marketplace Feldkirch 1–4
SPCR-PCA 0.41898 0.00181 236 562
PCR-PCA 0.14792 0.00197 83 521
FPFH + Point2Point ICP 0.18097 0.00190 102 178
FPFH + Point2Plane ICP 0.16858 0.00185 95 185
FPFH + Generalized ICP 0.10324 0.00236 58 294

St. Gallen Cathedral 1–3
SPCR-PCA 0.70497 0.00084 1 311 190
PCR-PCA 0.30247 0.00115 562 577
FPFH + Point2Point ICP 0.70462 0.00086 1 310 545
FPFH + Point2Plane ICP 0.70505 0.00084 1 311 337
FPFH + Generalized ICP 0.70504 0.00084 1 311 326

45

Bildstein 1 – 3

(a) Initial Alignment (b) SPCR-PCA (c) PCR-PCA

(d) FPFH + Point2Point ICP (e) FPFH + Point2Plane ICP (f) FPFH + Generalized ICP

Figure 3.6 Result of the tested registration algorithms. All methods except PCR-PCA found the
correct alignment. PCR-PCA got stuck in a local minima.

Untermaederbrunnen 1 – 3

(a) Initial Alignment (b) SPCR-PCA (c) PCR-PCA

(d) FPFH + Point2Point ICP (e) FPFH + Point2Plane ICP (f) FPFH + Generalized ICP

Figure 3.7 Result of the tested registration algorithms. All methods except PCR-PCA found the
correct alignment. PCR-PCA got stuck in a local minima.

46 Results

Domfountain 1 – 3

(a) Initial Alignment (b) SPCR-PCA (c) PCR-PCA

(d) FPFH + Point2Point ICP (e) FPFH + Point2Plane ICP (f) FPFH + Generalized ICP

Figure 3.8 Result of the tested registration algorithms. All methods found the correct alignment.

Marketplacefeldkirch 1 – 4

(a) Initial Alignment (b) SPCR-PCA (c) PCR-PCA

(d) FPFH + Point2Point ICP (e) FPFH + Point2Plane ICP (f) FPFH + Generalized ICP

Figure 3.9 Result of the tested registration algorithms. No method had found the correct alignment,
however SCPR-PCA found the best alignment.

Summary of the Results 47

St. Gallen Cathedral 1 – 3

(a) Initial Alignment (b) SPCR-PCA (c) PCR-PCA

(d) FPFH + Point2Point ICP (e) FPFH + Point2Plane ICP (f) FPFH + Generalized ICP

Figure 3.10 Result of the tested registration algorithms. All methods except PCR-PCA found the
correct alignment. PCR-PCA got stuck in a local minima.

3.1 Summary of the Results
Integrating semantic labels into the SPCR-PCA significantly improved alignment accuracy and
stability compared to the label-less PCR-PCA across all datasets. The addition of semantic
labels helps SPCR-PCA distinguish and align local structures rather than focusing on the entire
complex environment.

All algorithms using FPFH showed good accuracy on most available data. However, SPCR-
PCA exhibited better stability on point clouds that lacked distinct features, such as alleys and
hallways, where FPFH failed to match corresponding points. This enhanced stability of SPCR-
PCA explains the observed differences in average fitness and RMSE on the S3DIS and Seman-
tic3D datasets. The change was made because several point clouds were completely misaligned
by the FPFH algorithm, significantly reducing the average performance metrics.

This experiment shows the potential of semantic label integration in the point cloud reg-
istration process, improving the accuracy and reliability of 3D data alignment across diverse
environments and datasets.

48 Results

Chapter 4

Discussion

This work proposed two methods to register partially overlapping large-scale point clouds. SPCR-
PCA, which utilizes label information, performs a per-part global registration, and PCR-PCA
performs the global registration on the entire point clouds. We predicted that the SPCR-PCA
would be superior, as it would align local structures rather than focus on the entire point cloud,
which is a more complex task. This hypothesis was experimentally proven to be correct, as
the label method performed exceptionally well on most datasets, while the traditional approach
only worked on significantly directionally oriented data. Additionally, compared to traditional
registration approaches using FPFH, our method proved to be more robust, finding correct
alignment on a more significant number of point clouds.

We thoroughly surveyed the topic in the analysis chapter 1. We discussed and evaluated the
creation of a segmentation pipeline in section 2.4. We successfully explored and implemented
the registration algorithm in the initial alignment section 2.6.3. The implementation of distance
metrics was discussed in section 2.6.4, where we concluded that they do not significantly affect
the results. We presented the evaluation metrics in section 1.8 and the results in section 3.
Therefore, we can confidently state that we have completed all the assigned tasks.

4.1 Contributions
This work presents a promising new method for registering large-scale, partially overlapping
point clouds. The proposed methods, focusing on aligning local structures and utilizing label
information, hold great potential for improving the accuracy and robustness of point cloud reg-
istration.

4.2 Limitations
The pipeline demonstrated robust performance when datasets, comprised of indoor and outdoor
scans with a wide label distribution, were applied. However, we have seen the method perform
suboptimally on dataset where one label group had significant representation and others carried
little to no information. It is also important to note that the pipeline’s reliance on centralizing
point clouds may lead to suboptimal outcomes in scenarios where the overlap between datasets
is minimal, further complicating the registration task.

49

50 Discussion

4.3 Future Work
In ongoing work, we are committed to further testing and refining the proposed methods. We plan
to evaluate the pipeline on various indoor and outdoor datasets, including those with imbalanced
label representation. Additionally, we aim to enhance the initial alignment method to effectively
handle cases with a strong representation of points within a single-label group.

Chapter 5

Conclusion

We have successfully created a pipeline for the automatic registration of partially overlapping
point clouds and completed all points from the assignment. We have experimentally deduced that
incorporating semantic labels into the alignment phase has significantly improved the precision of
the initial registration step. By leveraging these labels, our method has shifted the focus towards
localized structural features, facilitating a more nuanced understanding of the point cloud data
rather than treating it as a whole. This has drastically improved the overall accuracy on all
evaluated point clouds.

51

52 Conclusion

Bibliography

1. WANG, Xin; PAN, HuaZhi; GUO, Kai; YANG, Xinli; LUO, Sheng. The evolution of Li-
DAR and its application in high precision measurement. IOP Conference Series: Earth and
Environmental Science [online]. 2020, vol. 502, no. 1, p. 1208. issn 1755-1315. Available
from doi: 10.1088/1755-1315/502/1/012008.

2. LI, You; IBANEZ-GUZMAN, Javier. Lidar for Autonomous Driving: The Principles, Chal-
lenges, and Trends for Automotive Lidar and Perception Systems. IEEE Signal Processing
Magazine [online]. 2020, vol. 37, no. 4, pp. 50–61. issn 1053-5888. Available from doi:
10.1109/MSP.2020.2973615.

3. GÖHRING, Daniel; WANG, Miao; SCHNÜRMACHER, Michael; GANJINEH, Tinosch.
Radar/lidar sensor fusion for car-following on highways. In: The 5th International Confer-
ence on Automation Robotics and Applications [online]. IEEE, 2011, pp. 407–412. Available
from doi: 10.1109/ICARA.2011.6144918.

4. YANG, Tao; LI, You; ZHAO, Cheng; YAO, Dexin; CHEN, Guanyin; SUN, Li; KRAJNÍK,
Tomás; YAN, Zhi. 3D ToF LiDAR in Mobile Robotics: A Review. ArXiv [online]. 2022,
vol. abs/2202.11025. Available from doi: 10.48550/arXiv.2202.11025.

5. CHASE, Arlen; CHASE, Diane; WEISHAMPEL, John; DRAKE, Jason; SHRESTHA, R.;
SLATTON, K.; AWE, Jaime; CARTER, William. Airborne LiDAR, archaeology, and the
ancient Maya landscape at Caracol, Belize. Journal of Archaeological Science [online]. 2011,
vol. 38, pp. 387–398. issn 0305-4403. Available from doi: 10.1016/j.jas.2010.09.018.

6. WANG, Ruisheng. 3D building modeling using images and LiDAR: a review. International
Journal of Image and Data Fusion [online]. 2013, vol. 4, no. 4, pp. 273–292. issn 1947-9832.
Available from doi: 10.1080/19479832.2013.811124.

7. KÜHNER, Tilman; KÜMMERLE, Julius. Large-Scale Volumetric Scene Reconstruction
using LiDAR. In: 2020 IEEE International Conference on Robotics and Automation (ICRA)
[online]. IEEE, 2020, pp. 6261–6267. Available from doi: 10 . 1109 / ICRA40945 . 2020 .
9197388.

8. ZHANG, Juyong; YAO, Yuxin; DENG, Bailin. Fast and Robust Iterative Closest Point.
IEEE Transactions on Pattern Analysis and Machine Intelligence [online]. 2022, vol. 44,
no. 7, pp. 3450–3466. issn 0162-8828. Available from doi: 10.1109/TPAMI.2021.3054619.

9. BOUAZIZ, Sofien; TAGLIASACCHI, Andrea; PAULY, Mark. Sparse iterative closest point.
In: Computer graphics forum [online]. Wiley Online Library, 2013, vol. 32, pp. 113–123. No.
5. issn 1467-8659. Available from doi: 10.1111/cgf.12178.

53

https://doi.org/10.1088/1755-1315/502/1/012008
https://doi.org/10.1109/MSP.2020.2973615
https://doi.org/10.1109/ICARA.2011.6144918
https://doi.org/10.48550/arXiv.2202.11025
https://doi.org/10.1016/j.jas.2010.09.018
https://doi.org/10.1080/19479832.2013.811124
https://doi.org/10.1109/ICRA40945.2020.9197388
https://doi.org/10.1109/ICRA40945.2020.9197388
https://doi.org/10.1109/TPAMI.2021.3054619
https://doi.org/10.1111/cgf.12178

54 Bibliography

10. BOULCH, Alexandre; GUERRY, Joris; LE SAUX, Bertrand; AUDEBERT, Nicolas. Snap-
Net: 3D point cloud semantic labeling with 2D deep segmentation networks. Computers &
Graphics [online]. 2018, vol. 71, pp. 189–198. issn 0097-8493. Available from doi: 10.1109/
ICCVW.2017.85.

11. MATURANA, Daniel; SCHERER, Sebastian. Voxnet: A 3d convolutional neural network
for real-time object recognition. In: 2015 IEEE/RSJ international conference on intelligent
robots and systems (IROS). IEEE, 2015, pp. 922–928. issn 2153-0858. Available from doi:
10.1109/IROS.2015.7353481.

12. QI, Charles R; SU, Hao; MO, Kaichun; GUIBAS, Leonidas J. Pointnet: Deep learning
on point sets for 3d classification and segmentation. Proceedings of the IEEE conference
on computer vision and pattern recognition [online]. 2017, pp. 652–660. issn 1063-6919.
Available from doi: 10.1109/CVPR.2017.16.

13. QI, Charles Ruizhongtai; YI, Li; SU, Hao; GUIBAS, Leonidas J. Pointnet++: Deep hier-
archical feature learning on point sets in a metric space. Advances in neural information
processing systems [online]. 2017, vol. 30. issn 1049-5258. Available from doi: 10.48550/
arXiv.1706.02413.

14. BOULCH, Alexandre. ConvPoint: Continuous convolutions for point cloud processing. Com-
puters & Graphics [online]. 2020, vol. 88, pp. 24–34. issn 0097-8493. Available from doi:
10.48550/arXiv.1904.02375.

15. OPEN3D DEVELOPMENT TEAM. open3d::basic::PointCloud Class Reference [online].
Open3D Documentation, 2022. Available also from: https://www.open3d.org/docs/
latest/tutorial/Basic/pointcloud.html. [Accessed 2024-04-03].

16. BENTLEY, Jon Louis. Multidimensional binary search trees used for associative searching.
Communications of the ACM [online]. 1975, vol. 18, no. 9, pp. 509–517. issn 0001-0782.
Available from doi: 10.1145/361002.361007.

17. GARCIA-GARCIA, Alberto. Towards a real-time 3D object recognition pipeline on mobile
GPGPU computing platforms using low-cost RGB-D sensors [Bachelor Thesis]. University
of Alicante, 2015.

18. BTYNER. 3dtree [online]. Wikimedia Commons, 2006. Available also from: https : / /
commons.wikimedia.org/wiki/File:3dtree.png. [Accessed 2024-01-30].

19. MAĆKIEWICZ, Andrzej; RATAJCZAK, Waldemar. Principal components analysis (PCA).
Computers Geosciences [online]. 1993, vol. 19, no. 3, pp. 303–342. issn 0098-3004. Available
from doi: https://doi.org/10.1016/0098-3004(93)90090-R.

20. LI, Wei; LI, Zhibin; ZHU, XinKai; CHANG, JiaWei. Point Cloud Registration Algorithm
Fusing PCA and NDT. In: 2023 38th Youth Academic Annual Conference of Chinese Asso-
ciation of Automation (YAC) [online]. 2023, pp. 75–80. issn 2691-1242. Available from doi:
10.1109/YAC59482.2023.10401822.

21. SCHUBERT, Erich; SANDER, Jörg; ESTER, Martin; KRIEGEL, Hans Peter; XU, Xiaowei.
DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN. In: ACM
Transactions on Database Systems [online]. New York, NY, USA: Association for Comput-
ing Machinery, 2017, vol. 42. No. 3. issn 0362-5915. Available from doi: 10.1145/3068335.

22. CHIRE. DBSCAN illustration [online]. Wikimedia Commons, 2011. Available also from:
https://commons.wikimedia.org/wiki/File:DBSCAN-Illustration.svg. [Accessed
2024-01-21].

23. C., Bodenstein. Analysis of 3D Point Clouds using a Parallel DBSCAN Clustering Algo-
rithm [online]. Jülich Supercomputing Centre (JSC), Germany, 2015. Available also from:
https://juser.fz-juelich.de/record/276079/files/inside_autumn15-32.pdf.

https://doi.org/10.1109/ICCVW.2017.85
https://doi.org/10.1109/ICCVW.2017.85
https://doi.org/10.1109/IROS.2015.7353481
https://doi.org/10.1109/CVPR.2017.16
https://doi.org/10.48550/arXiv.1706.02413
https://doi.org/10.48550/arXiv.1706.02413
https://doi.org/10.48550/arXiv.1904.02375
https://www.open3d.org/docs/latest/tutorial/Basic/pointcloud.html
https://www.open3d.org/docs/latest/tutorial/Basic/pointcloud.html
https://doi.org/10.1145/361002.361007
https://commons.wikimedia.org/wiki/File:3dtree.png
https://commons.wikimedia.org/wiki/File:3dtree.png
https://doi.org/https://doi.org/10.1016/0098-3004(93)90090-R
https://doi.org/10.1109/YAC59482.2023.10401822
https://doi.org/10.1145/3068335
https://commons.wikimedia.org/wiki/File:DBSCAN-Illustration.svg
https://juser.fz-juelich.de/record/276079/files/inside_autumn15-32.pdf

Bibliography 55

24. LI, Lin; YANG, Fan; ZHU, Haihong; LI, Dalin; LI, You; TANG, Lei. An Improved RANSAC
for 3D Point Cloud Plane Segmentation Based on Normal Distribution Transformation
Cells. Remote Sensing [online]. 2017, vol. 9, no. 5. issn 2072-4292. Available also from:
https://www.mdpi.com/2072-4292/9/5/433.

25. MSM. Line with outliers [Online]. Wikimedia Commons, 2007. Available also from: https:
//commons.wikimedia.org/wiki/File:Line_with_outliers.svg. [Accessed 12-04-2024].

26. MSM. Fitted line [Online]. Wikimedia Commons, 2007. Available also from: https : / /
commons.wikimedia.org/wiki/File:Fitted_line.svg. [Accessed 12-04-2024].

27. OPEN3D DEVELOPMENT TEAM. Transformation [online]. Open3d, 2020. Available also
from: https://www.open3d.org/docs/latest/tutorial/Basic/transformation.html.
[Accessed 27-03-2024].

28. NGHIAHO. Finding optimal rotation and translation between corresponding 3D points [on-
line]. 2011. Available also from: https://nghiaho.com/?page_id=671. [Accessed 01-04-
2024].

29. KHAN, Asharul Islam; AL-HABSI, Salim. Machine learning in computer vision. Procedia
Computer Science [online]. 2020, vol. 167, pp. 1444–1451. issn 1877-0509. Available from
doi: 10.1016/j.procs.2020.03.355.

30. MAIND, Sonali B; WANKAR, Priyanka, et al. Research paper on basic of artificial neural
network. International Journal on Recent and Innovation Trends in Computing and Com-
munication [online]. 2014, vol. 2, no. 1, pp. 96–100. issn 2321-8169. Available from doi:
10.1002/agj2.21185.

31. GLOSSER. Colored neural network [online]. Wikimedia Commons, 2013. Available also
from: https://commons.wikimedia.org/wiki/File:Artificial_neural_network.svg.

32. SHARMA, Sagar; SHARMA, Simone; ATHAIYA, Anidhya. Activation functions in neural
networks. Towards Data Science [online]. 2017, vol. 6, no. 12, pp. 310–316.

33. VAŠATA, Daniel. Vı́cevrstvé neuronové śıtě [Handout presentation]. Czech Technical Uni-
versity, 2023. Lecture notes for Machine Learning 2.

34. JAIN, Anil K; MAO, Jianchang; MOHIUDDIN, K Moidin. Artificial neural networks: A
tutorial. Computer [online]. 1996, vol. 29, no. 3, pp. 31–44. issn 0018-9162. Available from
doi: 10.1109/2.485891.

35. NORVIG, P Russel; INTELLIGENCE, S Artificial. A modern approach. Prentice Hall
Upper Saddle River, NJ, USA: Rani, M., Nayak, R., & Vyas, OP (2015). An ontology-
based adaptive personalized e-learning system, assisted by software agents on cloud storage.
Knowledge-Based Systems. 2002, vol. 90, pp. 811–813. isbn 978-0136042594.

36. LE, Quoc V et al. A tutorial on deep learning part 2: Autoencoders, convolutional neural
networks and recurrent neural networks. Google Brain [online]. 2015, vol. 20, pp. 1–20.
Available also from: https://cs.stanford.edu/˜quocle/tutorial2.pdf.

37. ALBAWI, Saad; MOHAMMED, Tareq Abed; AL-ZAWI, Saad. Understanding of a convo-
lutional neural network. In: 2017 International Conference on Engineering and Technology
(ICET) [online]. 2017, pp. 1–6. Available from doi: 10.1109/ICEngTechnol.2017.8308186.

38. BALAJI, Sai. Binary Image classifier CNN using TensorFlow [online]. Wikimedia Com-
mons, 2019. Available also from: https://commons.wikimedia.org/wiki/File:Colored_
neural_network.svg. [Accessed 2024-07-04].

39. PROCHÁZKOVÁ, Jana; MARTIŠEK, Dalibor. Notes on Iterative Closest Algorithm. In:
17th Conference on Applied Mathematics Aplimat 2018 Proceedings [online]. Institute of
Mathematics and Physics, Faculty of Mechanical Engineering, Slovak University of Tech-
nology in Bratislava, 2018, pp. 876–884. isbn 978-80-227-4765-3. Available also from: http:
//hdl.handle.net/11012/70943. [Accessed 2024-04-08].

https://www.mdpi.com/2072-4292/9/5/433
https://commons.wikimedia.org/wiki/File:Line_with_outliers.svg
https://commons.wikimedia.org/wiki/File:Line_with_outliers.svg
https://commons.wikimedia.org/wiki/File:Fitted_line.svg
https://commons.wikimedia.org/wiki/File:Fitted_line.svg
https://www.open3d.org/docs/latest/tutorial/Basic/transformation.html
https://nghiaho.com/?page_id=671
https://doi.org/10.1016/j.procs.2020.03.355
https://doi.org/10.1002/agj2.21185
https://commons.wikimedia.org/wiki/File:Artificial_neural_network.svg
https://doi.org/10.1109/2.485891
https://cs.stanford.edu/~quocle/tutorial2.pdf
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg
https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg
http://hdl.handle.net/11012/70943
http://hdl.handle.net/11012/70943

56 Bibliography

40. GIRARDEAU-MONTAUT, Daniel. CloudCompare. Vol. 11 [online]. EDF R&D Telecom
ParisTech, 2016. No. 5. Available also from: https://www.cloudcompare.org.

41. RUSU, Radu Bogdan; BLODOW, Nico; BEETZ, Michael. Fast point feature histograms
(FPFH) for 3D registration. In: 2009 IEEE international conference on robotics and au-
tomation [online]. IEEE, 2009, pp. 3212–3217. issn 1049-3492. Available from doi: 10.
1109/ROBOT.2009.5152473.

42. ARUN, K. S.; HUANG, T. S.; BLOSTEIN, S. D. Least-Squares Fitting of Two 3-D Point
Sets. IEEE Transactions on Pattern Analysis and Machine Intelligence [online]. 1987,
vol. PAMI-9, no. 5, pp. 698–700. issn 0162-8828. Available from doi: 10.1109/TPAMI.
1987.4767965.

43. BESL, P.J.; MCKAY, Neil D. A method for registration of 3-D shapes. IEEE Transactions
on Pattern Analysis and Machine Intelligence [online]. 1992, vol. 14, no. 2, pp. 239–256.
issn 0162-8828. Available from doi: 10.1109/34.121791.

44. SEGAL, Aleksandr; HAEHNEL, Dirk; THRUN, Sebastian. Generalized-icp. In: Robotics:
science and systems [online]. Seattle, WA, 2009, vol. 2, p. 435. No. 4. Available from doi:
10.15607/RSS.2009.V.021.

45. BIGGERJ1. Illustration of the idea behind the Iterative Closest Point Algorithm [Online].
Wikimedia Commons, 2020. Available also from: https://commons.wikimedia.org/wiki/
File:Idea_closest_point_algorithm.svg. [Accessed 02-04-2024].

46. GAWEL, Abel; DUBÉ, Renaud; SURMANN, Hartmut; NIETO, Juan; SIEGWART, Roland;
CADENA, Cesar. 3D registration of aerial and ground robots for disaster response: An eval-
uation of features, descriptors, and transformation estimation. In: 2017 IEEE International
Symposium on Safety, Security and Rescue Robotics (SSRR) [online]. IEEE, 2017, pp. 27–
34. Available from doi: 10.1109/SSRR.2017.8088136.

47. DONG, Zhen; LIANG, Fuxun; YANG, Bisheng; XU, Yusheng; ZANG, Yufu; LI, Jianping;
WANG, Yuan; DAI, Wenxia; FAN, Hongchao; HYYPPÄ, Juha; STILLA, Uwe. Registration
of large-scale terrestrial laser scanner point clouds: A review and benchmark. ISPRS Journal
of Photogrammetry and Remote Sensing [online]. 2020, vol. 163, pp. 327–342. issn 0924-
2716. Available from doi: https://doi.org/10.1016/j.isprsjprs.2020.03.013.

48. DENG, Haowen; BIRDAL, Tolga; ILIC, Slobodan. PPFNet: Global Context Aware Local
Features for Robust 3D Point Matching. CoRR [online]. 2018, vol. abs/1802.02669. Available
from arXiv: 1802.02669.

49. ZENG, Andy; SONG, Shuran; NIESSNER, Matthias; FISHER, Matthew; XIAO, Jianxiong.
3DMatch: Learning the Matching of Local 3D Geometry in Range Scans. CoRR [online].
2016, vol. abs/1603.08182. Available from arXiv: 1603.08182.

50. ZHANG, Zhiyuan; DAI, Yuchao; SUN, Jiadai. Deep learning based point cloud registration:
an overview. Virtual Reality Intelligent Hardware [online]. 2020, vol. 2, no. 3, pp. 222–246.
issn 2096-5796. Available from doi: https://doi.org/10.1016/j.vrih.2020.05.002.
3D Visual Processing and Reconstruction Special Issue.

51. BEHNEL, Stefan; BRADSHAW, Robert; CITRO, Craig; DALCIN, Lisandro; SELJEBOTN,
Dag Sverre; SMITH, Kurt. Cython: The best of both worlds. Computing in Science & En-
gineering [online]. 2010, vol. 13, no. 2, pp. 31–39. issn 1521-9615. Available from doi:
10.1109/MCSE.2010.118.

52. PASZKE, Adam; GROSS, Sam; MASSA, Francisco; LERER, Adam; BRADBURY, James;
CHANAN, Gregory; KILLEEN, Trevor; LIN, Zeming; GIMELSHEIN, Natalia; ANTIGA,
Luca; DESMAISON, Alban; KÖPF, Andreas; YANG, Edward; DEVITO, Zach; RAISON,
Martin; TEJANI, Alykhan; CHILAMKURTHY, Sasank; STEINER, Benoit; FANG, Lu;
BAI, Junjie; CHINTALA, Soumith. PyTorch: An Imperative Style, High-Performance Deep
Learning Library [online]. 2019. Available from doi: 10.48550/arXiv.1912.01703.

https://www.cloudcompare.org
https://doi.org/10.1109/ROBOT.2009.5152473
https://doi.org/10.1109/ROBOT.2009.5152473
https://doi.org/10.1109/TPAMI.1987.4767965
https://doi.org/10.1109/TPAMI.1987.4767965
https://doi.org/10.1109/34.121791
https://doi.org/10.15607/RSS.2009.V.021
https://commons.wikimedia.org/wiki/File:Idea_closest_point_algorithm.svg
https://commons.wikimedia.org/wiki/File:Idea_closest_point_algorithm.svg
https://doi.org/10.1109/SSRR.2017.8088136
https://doi.org/https://doi.org/10.1016/j.isprsjprs.2020.03.013
https://arxiv.org/abs/1802.02669
https://arxiv.org/abs/1603.08182
https://doi.org/https://doi.org/10.1016/j.vrih.2020.05.002
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.48550/arXiv.1912.01703

Bibliography 57

53. ZHOU, Qian-Yi; PARK, Jaesik; KOLTUN, Vladlen. Open3D: A modern library for 3D
data processing. arXiv preprint arXiv:1801.09847 [online]. 2018. Available from doi: 10.
1145/3386569.3392393.

54. PEDREGOSA, F.; VAROQUAUX, G.; GRAMFORT, A.; MICHEL, V.; THIRION, B.;
GRISEL, O.; BLONDEL, M.; PRETTENHOFER, P.; WEISS, R.; DUBOURG, V.; VAN-
DERPLAS, J.; PASSOS, A.; COURNAPEAU, D.; BRUCHER, M.; PERROT, M.; DUCH-
ESNAY, E. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Re-
search [online]. 2011, vol. 12, pp. 2825–2830. issn 1533-7928. Available from doi: 10.48550/
arXiv.1201.0490.

55. ARMENI, I.; SAX, A.; ZAMIR, A. R.; SAVARESE, S. Joint 2D-3D-Semantic Data for
Indoor Scene Understanding. ArXiv e-prints [online]. 2017. Available from arXiv: 1702.
01105 [cs.CV].

56. ROYNARD, Xavier; DESCHAUD, Jean-Emmanuel; GOULETTE, François. Paris-Lille-3D:
A large and high-quality ground-truth urban point cloud dataset for automatic segmentation
and classification. The International Journal of Robotics Research [online]. 2018, vol. 37,
no. 6, pp. 545–557. issn 0278-3649. Available from doi: 10.1177/0278364918767506.

57. RUSU, Radu Bogdan. Semantic 3D object maps for everyday manipulation in human living
environments. KI-Künstliche Intelligenz [online]. 2010, vol. 24, pp. 345–348. issn 0933-1875.
Available from doi: 10.1007/s13218-010-0059-6.

58. HACKEL, Timo; SAVINOV, N.; LADICKY, L.; WEGNER, Jan D.; SCHINDLER, K.;
POLLEFEYS, M. Lare-Scale Point Cloud Classification Benchmark [online]. 2017. Available
also from: https://www.semantic3d.net. [Accessed 07-04-2024].

59. BOULCH, Alexandre. Convpoint [online]. GitHub, 2019. Available also from: https://
github.com/aboulch/ConvPoint. [Accessed 2024-04-07].

60. HAN, Xian-Feng; JIN, Jesse S.; WANG, Ming-Jie; JIANG, Wei; GAO, Lei; XIAO, Liping.
A review of algorithms for filtering the 3D point cloud. Signal Processing: Image Commu-
nication [online]. 2017, vol. 57, pp. 103–112. issn 0923-5965. Available from doi: https:
//doi.org/10.1016/j.image.2017.05.009.

61. CHEN, Liang-Chia; HUANG, Sheng-Hao; HUANG, Bo-Han. Precise 6DOF Localization of
Robot End Effectors Using 3D Vision and Registration without Referencing Targets. In:
2022. isbn 978-1-83769-987-2. Available from doi: 10.5772/intechopen.107968.

62. SCIKIT-LEARN DEVELOPMENT TEAM. sklearn.cluster.DBSCAN - scikit-learn Docu-
mentation [online]. Scikit-Learn, 2024. Available also from: https://scikit-learn.org/
stable/modules/generated/sklearn.cluster.DBSCAN.html. [Accessed on 2024-03-15].

https://doi.org/10.1145/3386569.3392393
https://doi.org/10.1145/3386569.3392393
https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/10.48550/arXiv.1201.0490
https://arxiv.org/abs/1702.01105
https://arxiv.org/abs/1702.01105
https://doi.org/10.1177/0278364918767506
https://doi.org/10.1007/s13218-010-0059-6
https://www.semantic3d.net
https://github.com/aboulch/ConvPoint
https://github.com/aboulch/ConvPoint
https://doi.org/https://doi.org/10.1016/j.image.2017.05.009
https://doi.org/https://doi.org/10.1016/j.image.2017.05.009
https://doi.org/10.5772/intechopen.107968
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html

58 Bibliography

Attachments

README.md..brief description of the media content
src

impl..source files of the implementation
thesis..source files of the thesis in LATEX

text...text
thesis.pdf...thesis in the form of a PDF file

59

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Analysis
	LiDAR
	Point Clouds
	Data Structures and algorithms
	K-d Tree
	Principal Component Analysis
	DBSCAN
	RANSAC
	Transformation Matrix

	Point Cloud Segmentation
	Machine Learning
	Feedforward Neural Network
	Convolutional Neural Network

	Machine Learning on Point Clouds
	PointNet
	Convpoint

	Point Cloud Registration
	Registration in CloudCompare
	Global Registration
	Iterative Closest Point

	Evaluation of Registration
	Existing Solutions
	Our Approach

	Implementation
	Programming Tools and Packages
	Datasets
	Stanford 3D Indoor Scene Dataset
	Nuage de Points et Modélisation 3D
	Semantic3D

	Proposed Method
	Segmentation Network
	Model Training and Evaluation
	Model Predictions

	Data Preprocessing
	Data Reduction
	Normalization
	Noise Reduction

	Registration
	ICP Threshold Calculation
	Choosing the best Registration
	Global Registration
	Distance functions in ICP

	Final Pipeline

	Results
	Experimental Results on S3DIS
	Results on NPM3D
	Results on Semantic3D

	Summary of the Results

	Discussion
	Contributions
	Limitations
	Future Work

	Conclusion
	Attachments

