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Abstract

This thesis explores the application of formal verification to ensure the security
and correctness of the implementation of Dijkstra’s algorithm. The text is
structured into seven chapters that will introduce the reader to graph theory,
the shortest path problem, Hoare logic and the Frama-c framework for analysis
of programs written in the C language. It will explain the internal plugins and
their use in formal verification, as well as how to properly annotate source
code using the ANSI/ISO Specification Language. The result of this thesis
is a verified implementation Dijkstra’s algorithm for solving the single source
shortest path problem.

Keywords Frama-c, ACSL, formal verification, shortest path problem, ver-
ified implementation

Abstrakt

Tato práce se zabývá využit́ım formálńı verifikace pro zajǐstěńı bezpečnosti
a správnosti implementace Dijkstrova algoritmu. Text je strukturován na
sedm kapitol, které seznámı́ čtenáře s teoríı graf̊u, problémem nejkratš́ı cesty,
Hoarovou logikou a frameworkem Frama-c, který slouž́ı k analýze programů
napsaných v jazyce C. Dále tento text vysvětĺı využit́ı interńıch plugin̊u na
formálńı ověřeńı a také jak správně přidat anotace ze specifikačńıho jazyka
ANSI/ISO do zdrojového kódu. Výsledek této práce je ověřená implementace
Dijkstrova algoritmu řeš́ıćı problém nejkratš́ı cesty z jednoho zdroje.

Kĺıčová slova Frama-c, ACSL, formálńı verifikace, problém nejkratš́ı cesty,
ověřená implementace
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Introduction

Every year, society’s reliance on digital technology grows. From critical infras-
tructure and financial systems to healthcare and everyday personal devices,
software plays an integral role in modern life. As this dependency increases, so
do the dangers stemming from flaws, failures, and vulnerabilities of software
systems.

To mitigate these dangers, applications should be properly tested. How-
ever, traditional testing and debugging methods do not offer a guarantee of the
absence of flaws. To obtain such a guarantee, we use a process called formal
verification, which utilizes formal methods of mathematics to prove or disprove
the correctness of a system regarding certain specifications.

One major approach to formal verification is deductive verification, which
consists of generating proof obligations from a system and its specifications.
These specifications are often written in formal specification languages, such
as ANSI/ISO C Specification Language, which provides a way to describe
preconditions, postcondition, invariants, and other properties that the software
must satisfy. The truth of proof obligations then implies that the system
conforms to its specifications. To prove them, we use automated theorem
provers and satisfiability modulo theories solvers.

The goal of this thesis is to implement Dijkstra’s algorithm and use deductive
verification to prove the implementation’s correctness regarding chosen speci-
fications. The theoretical portion of this thesis is focused on an introduction
to graph theory, the shortest path problem, and formal verification through
the use of the Frama-c platform and ANSI/ISO C Specification Language.

The first chapter introduces graph theory and the shortest path problem.
The second chapter focuses on Dijkstra’s algorithm. The third chapter de-
scribes the verification environment Frama-c. The fourth chapter is a brief
introduction to Hoare Logic. The fifth chapter describes the ANSI/ISO C
Specification Language. The sixth chapter documents the implementation and
verification of Dijsktra’s algorithm. The seventh chapter discusses the role of
formal verification in information security.

1



Chapter 1

Graph Theory and the
Shortest Path Problem

This chapter begins with an introduction to graph theory, focusing on the
definition of key terms necessary for formulating the shortest path problem.
Later, we discuss the problem itself, explore its different variations and the
problem’s overall importance in the field of computer science. The primary
resources for this chapter are the lecture presentations from the course BI-AG1
and monograph, Introduction to Algorithms [1].

1.1 Graph theory and definitions

The first term that must be defined is the graph itself, the fundamental building
block of graph theory.

▶ Definition 1.1.1 (Undirected Graph). An undirected graph (or a graph)
is an ordered pair (V,E) where:

V is a nonempty finite set of nodes or vertices.

E is a set of edges.

An edge is an unordered pair of nodes {u, v}, where u, v ∈ V. The set of all
possible edges for set V can be expressed as

(V
2
)
. Therefore E ⊆

(V
2
)
.

See Figure 1.1 for examples of undirected graphs.

2



Graph theory and definitions 3

Figure 1.1 Examples of (undirected) graphs.

▶ Definition 1.1.2 (Graph and edge terminology). Let e = {u, v} be an edge
in an undirected graph G = (V,E). We say:

V(G) and E(G) denote the sets of all nodes and edges in graph G.

nodes u and v are the endpoints of edge e.

node u is adjacent to node v and vice versa.

nodes u and v are incident with edge e.

▶ Definition 1.1.3 (Walk and path in a graph). Let G be a graph, then:

Walk of length k ≥ 0 in the graph G is a sequence of nodes and edges
v0, e1, v1, e2,..., ek, vk where ei = {vi−1, vi}, ei ∈ E(G) and vi ∈ V(G) for
all i = 1,...,k.

Path in the graph G is a walk with no repeated nodes and therefore no
repeated edges.

A path P with endpoints s = v0 and t = vk is a path from s to t,
alternatively an s-t-path.

The length of any path P is defined as the number of edges in P.

Let s, t ∈ V(G) be two nodes in graph G. The node t is called reachable
from s if there exists an s-t-path.

▶ Definition 1.1.4 (Graph connectivity). A graph G = (V,E) is connected
if there exists an s-t-path for each two nodes s, t ∈ V(G). Otherwise, the graph
is disconnected.
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▶ Definition 1.1.5 (Directed graph). A directed graph is an ordered pair
(V,E) where:

V is a nonempty finite set of nodes.

E is a set of oriented edges. E ⊆ V × V

A directed edge is an ordered pair of nodes (u, v) where u, v ∈ V. The node
u is called the predecessor of v and v is the successor of u. An edge (u, u)
is called a loop.

See Figure 1.2 for examples of directed graphs.

Figure 1.2 Examples of directed graphs.

▶ Definition 1.1.6 (Subgraph). Graph H = (V, E) is a subgraph of graph
G = (V, E), if V (H ) ⊆ V (G) and E(H ) ⊆ E(G).

▶ Definition 1.1.7 (Walk and path in a directed graph). Let G be a directed
graph, then:

Walk of length k ≥ 0 in the graph G is a sequence of nodes and directed
edges v0, e1, v1, e2,..., ek, vk where ei = (vi−1, vi), ei ∈ E(G) and vi ∈ V(G)
for all i = 1,...,k.

Path in the graph G is a walk with no repeated nodes.

A path P with endpoints s = v0 and t = vk is a path from s to t,
alternatively s-t-path.

The length of a path P is defined as the number of edges in P.

Let s, t ∈ V(G) be two nodes in graph G. The node t is called reachable
from s if there exists an s-t-path.
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▶ Definition 1.1.8 (Tree). Graph G = (V, E) is called a tree, if there exists
exactly one u-v-path for every pair of nodes u, v ∈ V.

▶ Definition 1.1.9 (Symmetrization). A symmetrization of a directed
graph G is an undirected graph sym(G) = (V, F) where V(G) = V (sym(G))
and {u, v} ∈ F if either (u, v) ∈ E or (v, u) ∈ E.

▶ Definition 1.1.10 (Weak connectivity). Let G be a directed graph, G is
weakly connected if symmetrization sym(G) is connected. If graph G isn’t
weakly connected, it is disconnected.

▶ Definition 1.1.11 (Strong connectivity). A directed graph G is strongly
connected if for every two nodes u,v ∈ V(G) there exists a u-v-path and a
v-u-path.

▶ Definition 1.1.12 (Weighted graph). Let G = (V, E) be a connected
undirected graph or a weakly connected directed graph, and let w a function
w: E → R. After assigning a value w(e) to each edge e ∈ E, the graph G
becomes a weighted graph.

In weighted undirected graphs, the value of each edge is understood as the
distance between the two endpoints. In weighted directed graphs, it represents
the distance from the predecessor to the successor.

▶ Definition 1.1.13 (Weight). Let G = (V, E) be a weighted directed graph
with a weight function w: E → R mapping edges to real-valued weights.
The weight w(P) of path P = ⟨v0, v1, . . . , vk⟩, where vi ∈ V(G) for every
i ∈ {0, 1, . . . , k} is the sum of the weights of its edges: w(p) =

∑k
i=1w(vi−1, vi)

▶ Definition 1.1.14 (Distance in weighted graphs). The distance d(u,v)
between two nodes u, v is the minimum among the weights of all u-v-paths;
or +∞, if there is no u-v-path. A shortest path from u to v is any path P
with weight w(P) = d(u, v).

Definitions 1.1.1 to 1.1.14 provide a way to describe several fundamental
properties of both directed and undirected graphs. The key property explored
in this thesis is the distance between any two given nodes u and v. To de-
termine whether this u-v-path exists and find the shortest possible distance is
commonly referred to as the shortest path problem.

1.2 The shortest path problem

A common variation of the problem poses the following task: given a graph G
and two nodes u, v ∈ V(G), find the shortest path from u to v.

The shortest path problem appears throughout society, which only serves
to underscore its importance. In computer science, it is crucial for mapping
software, data routing [2], and path-finding [3]. Logistics companies solve
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this problem to streamline delivery routes and maximize efficiency [4], while
urban planners use it to design entire road networks and public transportation
systems [5]. Given the problem’s prevalence, it is natural that many algorithms
have been proposed and developed to solve its many variations.

The problem given at the beginning of this section can also be referred
to as the single-pair shortest path problem, signifying that the solution
represents a path between two nodes only. Other variations include:

The single-source shortest path problem: The solution provides the
shortest path from a single node—called the source—to all other nodes
reachable in the graph. A notable algorithm solving this task is the Breadth-
first algorithm.

The all-pairs shortest path problem: The goal is to find the shortest
path between every possible pair of nodes in the graph.

1.2.1 Breadth-first search algorithm
The Breadth-first search algorithm (BFS for short) is a simple algorithm for,
e.g., searching a graph, solving the single-source shortest path problem, and
determining whether or not the given graph is connected. The proofs of the
algorithm’s properties are outside the scope of this thesis. The reason for
including this algorithm is to familiarize the reader with the key idea upon
which the algorithm is built. Many other algorithms expand on BFS: one such
algorithm is Dijkstra’s algorithm, which is the focus of this thesis.

Given a graph G = (V, E) and a source node v ∈ V(G), the algorithm
systematically explores all edges in G, starting from the edges incident to v. It
computes the distance from v to all other reachable nodes, where the distance
is equal to the smallest number of edges between the source and the node. In
doing so, it determines the length of the shortest path.

The name of the algorithm comes from the fundamental idea behind it. The
algorithm ’spreads out’ like a wave emanating from the source node, visiting
the adjacent nodes first. Specifically, it marks all the nodes one edge away from
the source v with a distance one. Then it marks all the nodes two edges away
with a distance of two, and so on, terminating when the last node reachable
from v has been marked.

The only data structure the algorithm uses is a first-in, first-out queue
containing some nodes at a distance k ∈ N, potentially followed by some nodes
at a distance k + 1. This is because the algorithm evaluates an entire wave
before it moves on.

To keep track of progress, the algorithm places each node in one of three
states:

Undiscovered nodes are those that have not been reached by a wave yet
and are, therefore, still waiting to be put into the queue.
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Discovered nodes are those currently placed in the first-in, first-out queue.

Closed nodes are the nodes that have been removed from the queue.

The algorithm also stores the predecessor of each node. Whenever it sets
a node to the discovered state, it also marks the current node as the predecessor
of the newly discovered node.

The pseudocode for the breadth-first-search procedure ”BFS” on the fol-
lowing pages assumes that graph G is represented via adjacency lists. This
simplifies the look-up of the neighbouring nodes at line 12. The algorithm also
adds three attributes to each node in the graph:

State holds the information about the node’s state.

Distance represents the wave in which the node has been discovered, thus
the value is equal to the distance to the source.

Parent is a pointer to the previous node.

The distance and parent attributes may be omitted, depending on the desired
outcome of the algorithm. The distance attribute provides information about
the length of each path discovered, whereas the parent attribute allows for
the reconstruction of the full path from the source to any discovered node.
Without these two attributes, the algorithm can still be used to determine if
the given graph is connected.

The procedure works as follows. On lines 1–4 all nodes u are set to an
undiscovered state. Their parent pointer gets set to NULL and the distance
gets set to +∞. Since the source node is always the first node that gets
discovered, its attributes are set even before the main loop. On lines 5–7 the
source node’s state, distance and parent are set to discovered, 0 and NULL
respectively. Lines 8–9 initialize the queue Q with the first and only node
being the source node.

The while loop at 10–18 runs until the queue becomes empty, which will
only happen when all discovered nodes get closed and there are no more
reachable undiscovered nodes. The loop invariant is as follows: At line 10,
the queue Q contains all nodes in the discovered state and no other nodes.

Line 11 removes the next node u to be processed from the queue Q. The for
loop at lines 12–17 checks all the adjacent nodes v to node u and if any of them
are undiscovered (line 13), then on lines 14–17 they become discovered. This is
done by setting their state to discovered, setting v.distance to u.distance + 1,
and marking u as v’s parent in v.parent. On line 17 the newly discovered node
gets added to the end of the queue Q.

Finally, after all the neighbouring nodes of the node u have been checked,
u gets closed on line 18. Thus rendering all attempts at opening it again, on
line 13, futile.
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Code listing 1.1 BFS pseudocode

BFS(graph G , source node s )
1 for each node u ∈ V(G)
2 u.state = undiscovered
3 u.distance = +∞
4 u.parent = NULL
5 s.state = discovered
6 s.distance = 0
7 s.parent = NULL
8 queue Q = Empty Set
9 Enqueue(Q , s )
10 while Q is not empty
11 u = Dequeue(Q )
12 for each node v adjacent to u
13 if(v.state == undiscovered)
14 v.state = discovered
15 v.distance = u.distance + 1
16 v.parent = u
17 Enqueue(Q , v )
18 u.state = closed

The algorithm takes O(|V |+ |E|) time to complete for a graph G = (V, E).
The time complexity of initialization is O(|V |). Each node can be enqueued
and dequeued at most once. These two operations take O(1 ) time and so
the time spent on queue operations is O(|V |). Each node’s adjacency list gets
scanned only when the node has been dequeued, therefore, it is scanned at
most once. Given that the combined length of all adjacency lists is Θ(|E|),
the total time dedicated to scanning the adjacency lists equals O(|V | + |E|).
Thus the total time complexity of the BFS procedure is O(|V | + |E|).

1.2.2 Other notable algorithms
There are many algorithms designed to solve the shortest path problem, but
as stated earlier, the problem is not uniform. Therefore, each algorithm has a
set of preconditions that have to hold for the algorithm to be applicable.

Dijkstra’s algorithm
This algorithm will be discussed in detail in Chapter 2.

Bellman–Ford algorithm
The Bellman-Ford algorithm solves the single-source shortest path problem for
weighted directed graphs. It allows for some edges to have negative values. For
the algorithm to solve the problem, however, it requires that the graph does
not contain a negative cycle. Such a cycle makes it impossible to calculate the
shortest path, as any path with a node on the cycle could be made shorter
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by taking another walk around it. The Bellman-Ford algorithm is capable of
detecting and reporting such a cycle.

It runs with O(|V |2 + |V | · |E|) time complexity when the graph is rep-
resented by adjacency lists. This is because the algorithm finds the shortest
paths in at most |V | – 1 iterations and in each iteration, it scans all the edges.
After the last iteration, it performs a final check of each edge, and if it finds a
shorter path, it means there is a negative cycle.

A* search algorithm
The A* algorithm solves the single-pair shortest path for weighted graphs with
non-negative weights. It is an informed search algorithm relying on a heuristic
to speed up the solving process. The heuristic must be admissible for the
specific graph being solved, such as the Manhattan or Euclidean distance in
grid-based maps.

Due to the efficiency of its heueristic approach, the A* algorithm is used
in various fields requiring optimal pathfinding solutions. Particularly, it is
often used for AI pathfinding in games [6] and robotics [7]. The strength of
this algorithm lies in the adaptability of the heueristic function, allowing for
implementations that can work under specific constrains.

Floyd-Warshall algorithm
The Floyd-Warshall algorithm is dynamic-programming solution to the all-pair
shortest-paths problem. It runs in Θ(|V |3) time and is designed for weighted
directed graphs. It allows for the existence of negative edges, but not negative
cycles.

Johnson’s algorithm for sparse graph
Johnson’s algorithm finds the shortest path between all pairs of nodes in
O(|V |2 lg |V | + |V | · |E|) time. It is designed to be asymptotically faster for
sparse graphs (graphs with a low number of edges) than the Floyd-Warshall
algorithm. It uses Dijkstra’s algorithm and the Bellman-Ford algorithm as
subroutines.

In order for the algorithm to use Dijkstra’s algorithm, it has to perform
a preprocessing of the given graph G to eliminate negative edges. This takes
O(|V | · |E|) time.

The Bellman-Ford algorithm, apart from being used in the calculations,
also provides Johnson’s algorithm with the ability to detect and report a neg-
ative cycle.

See table 1.1 for a comparison of the discussed algorithms.
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Name of the algorithm Time complexity Space complexity
Breadth-first search algorithm O(|V | + |E|) O(|V |)
Dijkstra’s algorithm O(|V | lg |V | + |E|) O(|V |)
Bellman-Ford algorithm O(|V |2 + |V | · |E|) O(|V |)
Floyd-Warshall algorithm Θ(|V |3) O(|V |2)
Johnson’s algorithm for sparse graph O(|V |2 lg |V | + |V | · |E|) O(|V |2)

Table 1.1 A list of algorithms for the shortest path problem



Chapter 2

Dijkstra’s algorithm

Dijkstra’s algorithm solves the single-source shortest-paths problem, as de-
scribed in 1.2, on a weighted directed graph with non-negative weights on all
edges. The original version conceived by Edsger W. Dijkstra in 1956 solved
only the single-pair shortest-path problem, but most variations today fix one
node as the source.

The theory, procedure and proofs in this chapter are based on the mono-
graph Introduction to Algorithms[1].

Dijkstra’s algorithm can be thought of as a generalization of the breadth-
first search algorithm to weighted graphs. A wave spreads out from the source,
but the time it takes to reach a node is given by the weight of the edge it travels
over, as opposed to taking a uniform unit of time as in breadth-first search.

That algorithm always selects the node with the shortest distance, but the
shortest path to that node might not have the fewest edges. This means that
the discovered node with the shortest distance might have been added after
other discovered nodes. Therefore, a simple first-in, first-out queue will not
suffice for selecting the node from which the next wave goes out.

Instead, the algorithm maintains a set S of all nodes with their final path
lengths from the source determined. The algorithm then repeatedly selects
a node u with the lowest shortest-path estimate from among the remain-
ing nodes: u ∈ V \ S. It adds this node to the set S and relaxes all edges
leaving u.

2.1 Relaxation

Relaxation is a technique used in multiple single-source shortest paths algo-
rithms, including Dijkstra’s algorithm. It is used to reevaluate the attributes
v.d and v.parent, both maintained for each node v ∈ V by the algorithm. The
attribute v.d is called the shortest-path estimate. It represents the length
of the shortest path from the source found at any moment during runtime.

11



Relaxation 12

Thus the value of the attribute can only decrease as shorter paths are found.
The attribute v.parent stores the predecessor of the node v.

Relaxation first requires the initialization of both attributes for each node
using the procedure Initialize-Single-Source 2.1. This procedure runs
in Θ(V ) time and ensures that the source node s ∈ V has its attributes set to
s.d = 0 and s.parent = NULL. Each node v ∈ V \ {s} has its attributes set
to v.d = ∞ and v.parent = NULL.

Code listing 2.1 Initialize-Single-Source pseudocode

Initialize-Single-Source(graph G , source node s )
1 for each node v ∈ V(G)
3 v.d = +∞
4 v.parent = NULL
5 s.d = 0

The process of relaxing an edge (u,v) where u, v ∈ V(G) consists of cal-
culating whether going through the edge to node v improves the shortest path
to v found so far. If so, update v.d and v.parent. The Relax 2.2 procedure
runs in O(1) time. Figure 2.1 shows two examples of relaxing an edge, one
which decreases the shortest-path estimate and one in which nothing changes.

Figure 2.1 Relaxing two different edges, one with w(u, v) = 3 and one with
w(u, v) = 7. The shortest-path estimate appears over each node. (a) The estimate
changes because the inequality u.d < v.d − w(u, v) holds prior to relaxation. (b)
Because prior to relaxation, the inequality u.d < v.d − w(u, v) does not hold, the
relaxation step leaves the attributes unchanged.

Code listing 2.2 Relax pseudocode

Relax(node u , node v , edge weight w )
1 if u.d < v.d - w(u, v)
2 v.d = u.d + w(u, v)
3 v.parent = u
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Relaxation is the only means by which the shortest-path estimate and pre-
decessor attributes can change. Dijkstra’s algorithm relaxes each edge exactly
once.

2.2 Properties of Shortest Paths

To prove the theorems in the next section, we establish several properties of
shortest-path estimates.

▶ Lemma 2.1 (Upper-bound property). For all nodes v ∈ V and a source
node s ∈ V, the inequality v.d ≥ d(s, v) is always true. Once v.d = d(s, v),
the shortest-path estimate v.d never changes.

▶ Corollary 2.2 (No-path property). If there is no path from the source s to
node v, the shortest-path estimate v.d = d(s, v) = ∞.

▶ Lemma 2.3 (Convergence property). If s-u-path extended to node v by
adding the edge (u, v), is a shortest path in G for some u, v ∈ V(G), and if
u.d = d(s, u) before relaxing the edge(u, v), then v.d = d(s, v) at all times
after relaxing the edge (u, v).

▶ Lemma 2.4 (Predecessor-subgraph property). Once v.d = d(s, v) for all
nodes v ∈ V, the predecessor subgraph is a shortest-paths tree rooted at s.

2.3 Dijkstra procedure

The procedure maintains a set S of nodes whose final shortest-path esti-
mate has already been determined. The algorithm then repeatedly selects
a node u whose shortest-path estimate is the lowest among the remaining
nodes: u ∈ V \ S. The procedure stores these remaining nodes in a min-priority
queue Q, keyed by the value of their d attribute.

Code listing 2.3 Dijkstra’s algorithm pseudocode

Dijkstra (graph G , source node s , edge weights w )
1 Initialize -Single - Source (G, s )
2 S = Empty Set
3 Q = Empty Queue
4 for each node u ∈ V (G)
5 Insert(Q, u )
6 while Q is not empty
7 u = Extract-Min(Q )
8 S = S ∪ {u}
9 for each node v in G.Ajd[u]
10 Relax(u, v, w )
11 if the call of Relax decreased v.d
12 Decrease -Key(Q, v, v.d )
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Line 1 initializes d and parent attributes and line 2 initializes the set S
to an empty set. Lines 3–5 initialize the min-priority queue Q to contain all
nodes in V(G). The algorithm maintains the invariant Q = V – S at the start
of each while loop iteration on lines 6–12. The invariant is maintained because
in every iteration, a node u is extracted from Q on line 7 and added to S on
line 8. As such, vertex u has the smallest shortest-path estimate out of any
node in V – S. Then, lines 9–12 relax each node v incident to node u, updating
the v.parent and decreasing v.d if the path going through u is shorter than the
path found so far, or if it is the first path found.

The min-priority queue Q is increased exclusively on lines 4–5. During the
while loop, the number of nodes in the queue only decreases. This decrease,
on line 7, is guaranteed to happen during each iteration, therefore, there are
exactly |V | iterations of the 6–12 while loop.

The selection of the node u on line 7 is based on its lowest shortest-path es-
timate. This can be thought of as a greedy strategy. Such strategies do not al-
ways result in optimal solutions, but in the case of Dijkstra’s algorithm, it does
lead to computing the shortest path. The key is to prove that u.d = d(s, u)
each time the node u is added to set S.

▶ Theorem 2.5 (Correctness of Dijkstra’s algorithm).
Dijkstra’s algorithm, run on a weighted, directed graph G = (V, E) with non-
negative weight function w and source node s, terminates with u.d = d(s, u)
for all nodes u ∈ V(G).

Proof. To prove Theorem 2.5 we will show that v.d = d(s, v) holds for every
node v ∈ S at the start of each iteration of the while loop on lines 6–12. This
is enough because the algorithm terminates when S = V.

The proof is by induction on the number of iterations of the while loop,
which is equal to |S| at the start of every iteration. There are two initial
cases: for |S| = 0, so that S = ∅ and the claim is true, and for |S| = 1, so that
S = {s} and s.d = d(s,s) = 0.

The induction hypothesis, for the induction step, is that v.d = d(s, v) for
all v ∈ S. After extracting the node u on line 7, and adding it to S on line
8, the shortest-path estimate u.d never changes. Therefore we need to show
that u.d = d(s, u) on lines 7–8. First, if there is no path from s to u, then,
by the no-path property, we are done. Second, if there is an s-u-path, then let
y be the first node on the shortest s-u-path that is not in S, and let x be its
predecessor on the shortest path. Because all weights are non-negative and y
comes before u, we have d(s, y) ≤ d(s, u). Because the call of Extract-Min
on line 7 returned node u as having the minimal shortest-path estimate u.d of
all nodes in V – S, we also have u.d ≤ y.d. The upper-bound property gives
us d(s, u) ≤ u.d.

Because x ∈ S, the induction hypothesis states that x.d = d(s, x). During
the iteration of the while loop that added x to S, all edges outgoing from
x, including the edge (x, y) were relaxed. By the convergence property, the
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node y was assigned the value d(s, y) as its shortest-path estimate at that
time. Therefore, we have d(s, y) ≤ d(s, u) ≤ u.d ≤ y.d and y.d = d(s, y).
That gives us d(s, y) = d(s, u) = u.d = y.d, hence u.d = d(s, u), and by the
upper-bound property, this value never changes again.

▶ Corollary 2.6. After Dijkstra’s algorithm is run on a weighted, directed
graph G = (V, E) with nonnegative weight function w and source node s, the
predecessor subgraph Gparent is a shortest-paths tree rooted at s.

Proof. Theorem 2.5 establishes, that after Dijkstra’s algorithm terminates,
the equality v.d = d(s, v) holds for all nodes v ∈ V. Therefore, the corollary
is proved by the predecessor-subgraph property.

Analysis
The time complexity of Dijkstra’s algorithm depends on the implementation
of the min-priority queue Q. To maintain this queue, the algorithm performs
three distinct operations: Insert on line 5, Extract-Min on line 7, and
Decrease-Key on line 12. Both Insert and Extract-Min are called ex-
actly once for each node, while Decrease-Key is called at most once for every
edge.

A simple implementation stores each shortest-path estimate in an array,
where the index of each estimate corresponds to a node. The Insert and
Decrease-Key operations take O(1) time and each Extract-Min takes
O(|V |) time since it has to search through the entire array. This gives a total
time of O(|V |2+ |E|) = O(|V |2).

A more efficient implementation uses a Fibonacci heap [8], which can im-
prove the time to O(|V | lg |V | + |E|). This improvement is because the
Fibonacci heap decreases the amortized cost of each of the |V | Extract-Min
operations to O(lg |V |) while keeping the amortized cost of every Decrease-
Key operation at O(1) time.

It is worth noting, that this procedure is best suited for connected graphs,
as there are iterations of the while loop on lines 6–12 even for unreachable
nodes. To avoid unnecessary calculations, the graph can be preprocessed with
an algorithm like BFS in Section 1.2.1 to create a subgraph containing only
reachable nodes.

In practice, the while loop would be adjusted to terminate once a node u
with an estimate equal to the initial value, often INT MAX, was extracted.
A different approach is to introduce a state attribute to each node, similar
to BFS, to keep track and select from only discovered nodes. However, such
adjustments can lead to a loss of certainty as to when the algorithm will
terminate. This certainty plays an important part in the verification of loop
variants, as will be discussed in future chapters.



Chapter 3

Verification environment
Frama-c

3.1 Frama-c

Frama-c (Framework for Modular Analysis of C programs) is a platform built
for the analysis of source code written in C. By combining several analysis tech-
niques into a single framework, Frama-c allows analyzers to use, and expand
upon, the results already computed by other analyzers.

Frama-c can serve as a tool for several purposes, such as code analysis
or lightweight semantic extraction. However, the focus of this thesis is to
use Frama-c for formal verification through the use of ACSL (ASNI/ISO C
Specification Language) 5 specifications.

3.2 Installation

Frama-c is distributed as source code, which includes the Frama-c kernel and a
base set of open-source plug-ins used in the verification process. It is available
on Linux, Mac, and Windows through the use of WSL (Windows Subsystem
for Linux).

In this thesis, the operating system used is a Linux distribution Ubuntu
18.04, while Frama-c (v27.1 Cobalt) was installed via the recommended method
using the OCaml package manager [9], opam.

First, install opam by running the following script:
1 bash -c "sh <(curl -fsSL

https :// raw. githubusercontent .com/ ocaml /opam/ master / shell / install .sh )"

After installation, opam needs to be initialized and a new opam switch has
to be created.

16
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opam init
opam switch create 4.11.2
eval $(opam env)

Initialization of the opam switch takes time and disk space because it down-
loads and builds an OCaml compiler. After installing and initializing opam,
run the following command to obtain the command-line frama-c executable;
the graphical interface frama-c-gui; and ivette, the newest GUI.
opam install frama -c

Note that Ivette’s dependencies are not included in opam, however, they
are automatically downloaded from npm when ivette is run for the first time.

Frama-c version 27.1 comes with the external prover Alt-Ergo. Any addi-
tional provers, such as Z3 [10], CVC4 [11], Gappa [12], and PVS [13], can be
installed at any time.

3.3 Plugins and Solvers

The Frama-c platform is designed to support two types of plug-ins: external
and internal. These types differ in their distribution. The internal plug-ins
are distributed within the Frama-c kernel, whereas the external are distributed
independently.

These plug-ins expand the framework’s capabilities. In this thesis, we will
focus on plug-ins designed for formal verification.

3.3.1 Plugin: WP
This internal plugin is an implementation of the Weakest Precondition calcu-
lus and computes proof obligations of programs annotated with ACSL anno-
tations. It is designed to not only use its own prover Qed, but also external
automated provers such as Alt-Ergo or Z3-solver [10] through the use of the
Why3 platform. Furthermore, it is capable of using interactive proof assistants
such as Coq [14].

Frama-c/WP use the following heuristic for discharging proof obligations:

1. try internal prover Qed,

2. try any SMT [15] prover,

3. try the Coq interactive proof assistant,

4. try any Tactic alternative,

5. try any remaining prover alternatives.



Plugins and Solvers 18

The WP plug-in is complementary to an older plug-in named Jessie, which
is also an implementation of the weakest precondition calculus. Unlike Jessie,
WP uses three different memory models: Hoare model, Typed model, and Bytes
model. It also allows the user to combine the weakest precondition calculus
with other techniques, like the EVA plug-in.

3.3.2 Plugin: EVA - Evolved Value Analysis
The internal plug-in EVA is founded on Abstract Interpretation. This method
allows EVA to approximate the sets of values that variables might hold. With
sufficient precision, the plug-in is capable of detecting potential runtime errors,
such as out-of-bounds accesses, divisions by zero, and uses of uninitialized
variables. The precision is set by the user through the use -eva-precision
option. The allowed values are 0–11. This option offers a trade-off between
precision and analysis time. A lower setting can lead to false positives, so it is
important to find a proper precision.

3.3.3 Plugin: RTE - Runtime Error Annotation Gen-
eration

RTE is an internal plug-in that analyzes the source code and generates addi-
tional ACSL annotations for common runtime errors.

RTE is the most valuable in a modular setting, where its main purpose is
to provide supplementary proof obligations to more advanced plug-ins, such
as WP.

3.3.4 Solver: Alt-Ergo
Alt-Ergo is an open-source automatic solver of mathematical formulas, de-
signed for program verification. It is based on Satisfiability Modulo Theories,
SMT for short.

Originally developed at LRI (Laboratoire de Recherche en Informatique)
[16] for the Why3 [17] platform, Alt-Ergo is now maintained and further
developed by OCamlPro [18], in collaboration with Why3 [17]. Its use has
also expanded; Alt-Ergo is now employed in SPARK [19] to verify formulas
produced from Ada programs, in cryptographic protocols verification, and in
B methods [20].

According to OCamlPro [21], Alt-Ergo is currently capable of reasoning
in the combination of the following theories:

the free theory of equality with uninterpreted symbols,

linear arithmetic over integers and rationals,

fragments of non-linear arithmetic,
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polymorphic functional arrays with extensionality,

enumerated datatypes,

record datatypes,

associative and commutative (AC) symbols,

fixed-size bit-vectors with concatenation and extraction operators.

3.3.5 Solver: Z3
Z3, first released in September 2007, [10] is a powerful SMT solver developed
by the Research in Software Engineering group at Microsoft Research. Z3 has
been released as open source in 2015 and is now available on GitHub [22].

It supports linear real and integer arithmetic, fixed-size bit-vectors, ex-
tensional arrays, un-interpreted functions and quantifiers. Z3 is used in a
wide range of software engineering applications, including program verification,
compiler validation, model-based software development, and network verifica-
tion.

3.4 Example of Using Frama-c

To check whether the installation was successful and show how to use Frama-c,
we will attempt to verify the program in Code listing 3.1. At first glance, the
source code contains peculiar comments on lines 2, 6, and 10. These are ACSL
notations and they will be explained in Chapter 5, for now, we won’t focus on
their meaning.

Code listing 3.1 Source code of an example program caption
1 //@ assigns \ nothing ;
2 int addition (int x, int y){
3 return x + y;
4 }
5 //@ assigns \ nothing ;
6 int subtraction (int x, int y) {
7 return x - y;
8 }
9 //@ assigns \ nothing ;

10 int main (){
11 int x = 2147483646;
12 int y = 3;
13 int result = subtraction (x,y);
14 result = addition (x,y);
15 return 0;
16 }
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Figure 3.1 Result of the verification of the example program in Code listing 3.1.

Verification from the command line
To verify the program using the Frama-c framework, we will use the command
frama-c in a terminal. This command accepts several options: the specific
plug-ins to be used, the name of the file containing the source code, and the
-save option followed by a filename where the result of the analysis, and the
current session, will be stored.

frama -c -wp -rte example .c -save example .sav

If everything was installed and configured properly, the syntax of both
ACSL and C was followed, then Frama-c completes the analysis and provides
the results that can be seen in Figure 3.2.

To display the results again in the future, or continue with the session,
we can use the option -load followed by a valid filename (in this case exam-
ple.sav), and potentially other plug-ins which hadn’t been used yet.

frama -c -load example .sav -eva

If we hadn’t used the -save option, the session would end upon completing
the command. The contents of the .sav files are not human readable, to view
them, the commands frama-c-gui or ivette are necessary.

Output analysis
In the output 3.1, it is clear that Frama-c first used RTE plug-in to add new
ACSL annotations to functions addition, main, and subtraction. The WP
plug-in was then scheduled to prove 12 goals. It succeeded at proving 8 of
them, using WP’s built-in solver Qed. The remaining 4 were judged to be too
complex for Qed and were handed off to the more capable Alt-Ergo. However,
Alt-Ergo reached a timeout limit, resulting in an unknown status for these 4
goals.

Timeout setting
The timeout limit can be set manually, using the -wp-timeout option followed
by the maximum allowed time in seconds.
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frama -c -wp -wp - timeout 5 -rte example .c

Keep in mind that this limit will be applied to every goal scheduled, which
can drastically prolong the verification time. Therefore, it might be benefi-
cial to split the code into multiple header and source files and verify them
independently.

Solver specification
Because no solver was specified, Frama-c defaulted to connect Alt-Ergo to
WP. Frama-c is capable of using multiple solvers at once. To select them, use
the option -wp-prover followed by a list of solvers, separated by a comma.

frama -c -wp -wp - prover z3 ,alt -ergo -rte example .c

Analysis improvement
Notice that the four failed goals shown in Figure 3.1 all contain “rte”, that
is because the annotations, that led to the scheduling of these goals, were
created by the RTE plug-in. To come to any conclusion about these goals, an
additional plug-in—one specialised in run-time errors—is required. We will
run the command again, but this time with the EVA plug-in.

frama -c -wp -rte -eva example .c -save example .sav

The outcome shown in Figure 3.2 of the analysis is now completely different.
Every line, except the first and the last 3, is an output from the EVA plugin.

EVA structures its output into three categories: the analysis, the values
computed, and the analysis summary. In the first part, we can see that EVA
raised an alarm about a potential signed overflow and created an ACSL assert
notation. Two lines later it evaluated the assertion as invalid and stopped the
analysis. Invalid annotations indicate that the code is confirmed to behave in
opposition to the behaviour specified with the ACSL notation.

The premature end to the analysis can also be seen in the third part, the
analysis summary. It states that out of all the functions analyzed, only 70%
of statements have been reached. This indicates that EVA has either stopped
analysing, or it calculated that some part of the code will never be executed;
perhaps due to variables never satisfying an if statement.

As mentioned previously, EVA may report false positives. By increasing the
precision through -eva-precision, these alarms can be eliminated. However,
in this example, increasing precision would not achieve anything, because all
variables are set and never change. Therefore, EVA knows the exact values of
x and y at any given moment.
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Figure 3.2 Result of the verification of the example program 3.1 using EVA.

The last thing to note is the complete success of the WP plug-in. In this case,
EVA has handled all annotations regarding runtime, leaving WP with only the
goals it is capable of proving.

Graphical interface of Frama-c
To use the graphical interface, we only change the command from frama-c
to frama-c-gui.

frama -c-gui -wp -rte -eva example .c -save example .sav

The graphical interface, as seen in Figure 3.3, has five important parts:

Plug-in view: In the bottom left corner is a menu of options for each
plug-in and other capabilities of the framework. Adjusting these options,
coupled with the -save and -load commands, can help in fine-tuning the
verification process.

File tree: This tab shows the structure of the source code files. It di-
vides them into functions and specific ACSL structures such as predicates.
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Selecting different parts changes the main view in the middle.

Normalized source code view: The largest window in the middle shows
the selected part of the file tree. Clicking on any line will display the
corresponding information in the ”Information” tab of the messages view.

Original source code view: In this view, we can see the original source
code.

Messages view: This view is comprised of several tabs:

Information: displays a brief report on the currently selected object.
Messages: shows messages generated by the Frama-c kernel and plug-
ins. It also shows all raised alarms.
Console: Contains the same output as if the frama-c command was
used.
Properties: shows the statuses of properties.
Values: displays information pertaining to the EVA plug-in.
Red Alarms: displays properties evaluated as invalid or invalid under
hypotheses.
WP Goals: displays information related to the WP plug-in.

Figure 3.3 Example of a graphical interface: frama-c-gui.



Example of Using Frama-c 24

From the normalized source code view in Figure 3.3, we can see the result
of the attempted verification. A couple of properties were successfully verified,
one was verified partially and one was deemed invalid. The red parts of the
normalized code highlight lines which will never be executed or weren’t reached
by the framework. In this case, they are red because EVA stopped the process
upon evaluating the assertion in the addition function.

Each property, that the framework attempted to prove, is marked with a
symbol of a colored circle.

A green circle means the property is always valid.

Half green, half orange circle means the property is valid under hypotheses.
This means it is verified, but has dependencies with unknown status.

Half green, half black circle denotes that the verification process never
reached the property because that part of the code will never execute.

A yellow circle symbolizes a failure in the verification of the property.

Half red, half yellow circle stands for an invalid property.

An empty blue circle means verification was not attempted.

A half green, half blue circle means Frama-c considers the property valid
but did not attempt verification; leaving the proof to be done outside the
framework. This can be seen with axiomatic properties.

Viewing results using Ivette
Ivette is a new Graphical User Interface developed for Frama-c, meant to
replace the old GTK-based frama-c-gui user interface. The GUI desktop
application uses HTML5 and NodeJS [23] JavaScript runtime engine of the
Electron [24] platform. The entire GUI code base is written in TypeScript
[25].

The first preview came out with Frama-c version 25.0 (Manganese). Its
current interface, as seen in Figure 3.3, is based on modifiable views comprised
of components. This design offers much greater versatility compared to the
old frama-c-gui interface.

However, Ivette is still several versions away from becoming the default
Frama-c GUI, as it currently supports only the EVA plug-in. Other plug-ins,
including WP, will follow in future versions.
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Figure 3.4 Example of a graphical interface: Ivette.



Chapter 4

Hoare Logic

Hoare logic, or Floyd–Hoare logic, is a formal system for reasoning about prop-
erties of programs [26]. The original ideas were proposed by Robert W. Floyd
in 1967, who had developed a similar system for flowcharts [27]. The theory
and examples in this chapter are adapted from Hoare’s paper An axiomatic
basis for computer programming[26] and the text ACSL by Example [28].

In his original paper, Hoare introduced a new notation:

P {Q} R (4.1)
This notation has evolved over the years to:

{P} Q {R} (4.2)
Where P is a logical expression called a precondition, Q is a program, and

R is a logical expression called the postcondition, which describes the result of
the execution of Q.

The triple (4.2), known today as the Hoare Triple, has become the basis
of Hoare logic. It describes how the execution of code changes the state of the
computation.

The precondition P represents the requirements needed for the proper ex-
ecution of code Q, and it is up to the caller to guarantee that the precondition
holds. The entire triple can be understood as ”If the assertion P is true before
initiation of code Q, then the assertion R will be true upon its completion.”

An example of the Hoare triple, written in C, can be seen in code Code
listing 4.1. There, the precondition is that the number x is odd, the code
increases the value by one, and the postcondition states that x is now even.

Code listing 4.1 Hoare triple in C - Example 1

1 //@ assert x % 2 == 1;
2 x++;
3 //@ assert x % 2 == 0;

26
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Notice that the code does not perform any form of validation of whether x
is odd, as the precondition states. This property of x has to be ensured before
this code is executed.

Now consider the Code listings 4.2. In this example, the code is the same
as in Code listing 4.1, but both the precondition and the postcondition differ.
There is no single correct precondition or postcondition for code Q. The choice
of the formulas depends on the property that is to be verified.

Also, notice that the variable y does not appear in the code of the second
example. The pre- and postconditions can be relative to the state of other
variables.

Code listing 4.2 Hoare triple in C - Example 2

1 //@ assert 0 <= x <= y;
2 x++;
3 //@ assert 0 <= x <= y + 1;

The assignment rule
The assignment rule, in the form

P{x → e} (4.3)

substitutes each occurrence of variable x in the predicate P by the expression
e. For example, given the following predicate P

P = {x > 0 ∧ x < z} (4.4)

and the rule P {x → y+1}, the resulting substitution would be

P = {y + 1 > 0 ∧ y + 1 < z} (4.5)

An example of this rule used in C is in the Code listing 4.3.

Code listing 4.3 Example of the assignment rule in C

1 //@ assert y+1 > 0 && y+1 < z;
2 x = y+1;
3 //@ assert x > 0 && x < z;

The sequence rule
The sequence rule, shown in Code listing 4.4, combines two codes Q and S
to a single piece of code Q ; S. This transformation is only possible when the
postcondition of Q is identical to the precondition of S.

Code listing 4.4 The sequence rule

//@ assert P; //@ assert R; //@ assert P;
Q; and S; −→ Q ; S;
//@ assert R; //@ assert T; //@ assert T;
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The implication rule
The implication rule, shown in Code listing 4.5, allows to tighten the precon-
dition P and weaken the postcondition R. This is possible if R =⇒ R’ and
P’ =⇒ P.

Code listing 4.5 The implication rule

//@ assert P; //@ assert P ’;
Q; −→ Q;
//@ assert R; //@ assert R ’;

The choice rule
The choice rule allows the verification of conditional statements in the form

if (C) X;
else Y;

The rule unites Hoare triples with identical postconditions, but differing codes
and preconditions (shown in the Code listing 4.6), into a single Hoare triple
seen in Code listing 4.7.

Code listing 4.6 Hoere triples used in the choice rule

//@ assert P && C; //@ assert P && !C;
Q; and S;
//@ assert R; //@ assert R;

Code listing 4.7 Result of choice rule

//@ assert P;
if (C) X;
else Y;
//@ assert R

The loop rule
The loop rule, shown in Code listing 4.8 serves to verify a while loop. It
requires an appropriate formula P, called a loop invariant, which is true at
every iteration of the loop.

This rule does not guarantee that the loop will ever terminate, it merely
states that if it does, the postcondition will hold.

Code listing 4.8 The loop rule

//@ assert P;
while (B) \{
Q;
\}
//@ assert P;
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Derived rules
The mentioned rules do not cover many statements allowed in C. However,
such statements can be rewritten into a form that is semantically equivalent
to those covered by Hoare rules.

A switch statement can be rewritten as a sequence of nested if statements,
which are covered by the choice rule.

Of special note is the expression of a for loop
for (P; Q; R) {

S;
}

as a while loop
P;
while (Q) {

S;
R;

}

which will be heavily used in Chapter 6.
The only statement that cannot be rewritten this way is goto, which can

render an entire source code unverifiable using Hoare logic. Programs with
arbitrary jumps can, however, be analysed using the calculus proposed by
Robert W. Floyd [27].



Chapter 5

ANSI/ISO C Specification
Language

In this chapter, we will go over the ANSI/ISO C Specification Language
(ACSL) [29] and explain what it is, how it relates to Frama-c, and how to
use it in the process of formal verification.

The main resource of this chapter is the documentation ANSI/ISO C Spec-
ification Language [30].

ACSL is a Behavioral Interface Specification Language [31] implemented
in Frama-c. It specifies the behavioural properties of C programs in terms
of preconditions, postconditions, and invariants. This is achieved through the
use of annotations in the source code comments. These annotations are then
used by Frama-c to verify that the code adheres to the specifications.

Lexical rules
To signal to Frama-c that a comment is an ASCL annotation, the symbol ’@’
is used at the beginning of the comment, as can be seen in Code listing 5.1.
At any other place, the symbol ’@’ is equivalent to a space character.

Comments can be put in the ACSL annotations, and they follow the single-
line C++ comment format.

Code listing 5.1 Forms of single-line and multi-line annotation comments
1 //@ A single - line annotation comment
2

3 /*@
4 A multi - line annotation comment
5 */

30
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5.1 Function contract

A fundamental concept of ACSL is the function contract, which represents the
Hoare triple. The preconditions P and postconditions R are specified in the
annotations, while the code Q is a specific function f. This concept forms a
contract between the caller and the function f. Each caller of f must uphold
the preconditions, while the f guarantees that the postconditions are true on
return.

The clause requires signifies that the following predicate P is a precon-
dition. The clause ensures combined with a predicate R represents a post-
condition. We will now take a look at a specific example of a simple function
contract at Code listing 5.2.

Code listing 5.2 Example of a simple function contract
1 /*@
2 requires y != 0;
3 ensures \ result == x / y;
4 */
5 int division (int x, int y) { return x / y; }

The precondition in the example states that y cannot be equal to 0. Again,
the function does not check whether or not the precondition holds; if it gets
called with y = 0, it will proceed and cause a division by zero error. It is up
to the caller of the function to guarantee that y will not be 0.

The ensure clause uses the construct \result which refers to the return
value of the function. This construct can only be used in contracts of functions
that do not return void. In this case, it states that division returns the
expected value x/y.

Now we will expand the program by adding a main function, which will
call the division function, and we will attempt a verification. See Code listing
5.3 for the expanded source code.
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Code listing 5.3 Example source code
1 # include <limits .h>
2 # include <stdio .h>
3

4 /*@
5 requires y != 0;
6 ensures \ result == x / y;
7 */
8 int division (int x, int y) { return x / y; }
9

10 int main ()
11 {
12 int res = division (104 , 46);
13 res = division (116 , 33);
14 res = division (42 , 0);
15 res = division (10 , 0);
16 return 0;
17 }

Figure 5.1 Output of attempted verification in frama-c-gui using WP and EVA
plug-ins.

Figure 5.1 displays the normalized source code view. Frama-c has deter-
mined that the precondition for the division function is valid in three out of
four calls. The framework correctly identified a violation of the precondition
in the third call.

Because Frama-c used the EVA plug-in, the analysis concluded after the
third call. The fourth call, which was not analyzed, was still marked as valid
by Frama-c.

If the EVA plug-in is not used, the error is much less apparent, as can be
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seen in Figure 5.2.

Figure 5.2 Output of attempted verification in frama-c-gui using the WP plug-in.

In this case, Frama-c has evaluated the precondition for the third call as
’unknown’ and continued. This led to a contradiction, and according to the
principle of explosion, ”from contradiction, anything follows.”

Another construction prevalent in function contracts is \old(e), which de-
notes the value of predicate or term e in the pre-state. Frama-c automatically
adds this construction to the normalized code, as can be seen in Figure 5.2.
Note that working with the values of both x and y in their pre-state makes
sense, as they are passed by value. Any modification made to them would not
propagate to the rest of the program. The most common use of the \old(e)
construction is when e is a pointer. In such cases, the ensure clauses can
include both pre-state a post-state values of the same variable. An example of
the \old(e) construction paired with a pointer can be seen in Code listing 5.4.

Code listing 5.4 Example of the \old(e) construction.
1 /*@
2 requires \ valid (x) && *x < INT_MAX ;
3 ensures *x == \ old (*x) + 1;
4 */
5 void increment (int* x) { ++(*x); }

The normalized code of line 3 is as follows
//@ ensures *\old(x) ≡ \old(*x) + 1;

and states that the post-state value of x is equal to the pre-state value
of x plus one.
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Pointers and Arrays
Pointers are an integral part of the C language; therefore, Frama-c is well-
equipped to handle them. Along with \old(e) construct, the framework also
provides two built-in predicates to address the validity of pointers and arrays.
A pointer p is valid if dereferencing p produces a definite value according to
the C standard. An array a of size n is valid if every pointer from a+0 to
a+n-1 is valid.

\valid(s), where s is a set of l-values. This predicate holds if and only
if dereferencing any pointer p ∈ s is safe, both for reading from *p and
writing to it.

\valid read(s), where s is a set of l-values. It holds if and only if it is
safe to read from all pointers p in the s.

See Code listing 5.5 for an example showcasing the use of these constructions.

Code listing 5.5 Example of \valid and \valid read
1 /*@
2 requires \ valid (p);
3 requires \ valid (x + (0 .. x_size -1))
4 requires \ valid_read (y + (0 .. y_size -1));
5 requires x_size > 0 && y_size > 0;
6 */
7 void foo( int* x, int x_size ,
8 int* y, int y_size , int* p);

Behaviors
Behaviors expand function contracts by specifying what behavior can be ex-
pected from a function based on parameters. Each behavior can have addi-
tional ensure clauses and the selection of which behavior applies to a specific
call is done through the assumes clause. Behaviors can be labelled with:

complete behaviors to indicate that the behaviors cover all contexts,

disjoint behaviors to indicate that the behaviors cover disjoint cases.

Frama-c will attempt to verify both labels. See Code listing 5.6 for an example
of behavior usage.
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Code listing 5.6 Example of the bahviors
1 /*@
2 requires \ valid (x) && \ valid (a) && \ valid (b);
3 behavior a_less :
4 assumes *a < *b;
5 ensures *x == *a;
6 behavior b_less_eq :
7 assumes *a >= *b;
8 ensures *x == *b;
9 complete behaviors a_less , b_less_eq ;

10 disjoint behaviors a_less , b_less_eq ;
11 */
12 void set_pointer_to_min (int* x, int* a, int* b){
13 if (*a < *b)
14 *x = *a;
15 else
16 *x = *b;
17 }

Assign clause
Every example of ACSL annotations shown up to this point was missing an
important part. The assigns clause. This clause states if and how a function
modifies memory outside its local variables. If the clause is missing, the func-
tion can modify any visible variable, which can significantly complicate the
verification process. If no such memory is altered then the \nothing clause
can be used to indicate this. See Code listing 5.7 for an example of the assigns
clause.

An experimental feature of ACSL expands the assigns clause with an ad-
ditional clause: \from. This clause indicates that assigned values can only
depend on the locations specified with the \from clause.

Code listing 5.7 Example of the assigns clause
1 /*@
2 requires \ valid (p);
3 requires \ valid (x + (0 .. x_size -1));
4 requires x_size > 0;
5 assigns x[0 .. x_size -1] , *p;
6 */
7 void foo(int* x, int x_size , int* p);

5.2 Loops

Loops pose a challenge for verification and analysis, as the number of iterations
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of any loop may be unknown. Therefore, ACSL has a clause loop invariant
predicate P which solves the problem by specifying the correct state of the
program in each iteration. The predicate P in this clause must hold before
entering the loop and at the start of every iteration.

A second important clause is the loop assigns locations L clause which
lists parts of the memory the loop manipulates.

The final loop clause used in this thesis is loop variant integer m. This
is an optional clause with the following semantics: the value of m at the
beginning of each iteration must be nonnegative, and for each loop iteration
that ends normally or with a continue statement, the value of m at the end of
the iteration must be smaller than its value at the beginning of the iteration.

The code in Code listing 5.8 shows the annotations for a for loop and a
nested for loop, each using all the loop clauses mentioned.

Code listing 5.8 Example of the loop clauses
1 /*@
2 loop invariant 0 <= i <= NumOfVer ;
3 loop invariant \ forall int k,l; 0 <= k < i
4 ==> 0 <= l < NumOfVer ==> graph [k][l] == 0;
5 loop assigns i,
6 graph [0 .. NumOfVer - 1][0 .. NumOfVer - 1];
7 loop variant NumOfVer -i;
8 */
9 for (int i = 0; i < NumOfVer ; i++){

10 /*@
11 loop invariant 0 <= j <= NumOfVer ;
12 loop invariant \ forall int m,n; 0 <= m < i
13 ==> 0 <= n < j ==> graph [m][n] == 0;
14 loop assigns j,
15 graph [0 .. NumOfVer - 1][0 .. NumOfVer - 1];
16 loop variant NumOfVer -j;
17 */
18 for (int j = 0; j < NumOfVer ; j++)
19 graph [i][j] = 0;
20 }

5.3 Predicates

ACSL allows for the declaration of new logic predicates. These allow for the
expression of complex conditions through a simple logical expression. This im-
proves the readability, modularity and maintainability of formal specifications.

Code listing 5.9 shows the definition of a new predicate which specifies that
all elements in a 2D array are within a specified range.
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Code listing 5.9 Example of predicate definition
1 /*@
2 predicate
3 Valid_2D_Array_Values {L}( int * array ,
4 int size_of_array ,
5 int lower_bound
6 int upper_bound ) =
7 \ forall integer i, j; 0 <= i < size_of_array
8 && 0 <= j < size_of_array ==>
9 (*( graph + i * size_of_array + j) >= lower_bound

10 && *( graph + i * size_of_array + j) <= upper_bound );
11 */

A predicates may also be defined inductively in the following form
/*@ inductive P(x1, . . . , xn) {

case c1 : p1;
...

case ck : pk ;
}
*/

where each ci is an identifier and each pi is a proposition.

5.4 Labels and Construct \at

Statements will oftentimes require an additional construct \at(e, id) referring
to the value of the expression e in the state at label id.

ACSL comes with seven predefined logic labels, the three used in this thesis
are: Pre, LoopEntry, LoopCurrent.

The Pre label can be used in statement annotations and refers to the pre-
state of the enclosing function.

The LoopEntry and LoopCurrent labels can be used in loop annotations
and loop statements. LoopEntry refers to the state prior to first loop entry,
while LoopCurrent refers to the state at the beginning of the current loop
iteration.



Chapter 6

Verified implementation of
Dijkstra’s algorithm

This chapter will show and discuss a specific implementation of Dijkstra’s
algorithm from Chapter 2, using the programming language C. Then, we will
add ACSL annotations and attempt to verify the implementation with the
Frama-c platform.

The first goal of the verification is to show a complete absence of runtime
errors and undefined behaviors. Later, we will attempt to prove the correctness
of the results and showcase the problems that occurred in the process.

6.1 Implementation

The entire program was written using static memory. Though it is a subop-
timal approach in terms of efficiency, it allows Frama-c to perform a more
comprehensive analysis. As of writing this thesis, verification of dynamic mem-
ory is an experimental feature not fully implemented in Frama-c.

The complete source code is split into three files. File main.c contains the
initial entry point and is responsible for reading and storing user input, calling
the dijkstra() function, and displaying the results.

The implementation of Dijkstra’s algorithm itself is split into the two re-
maining files. The header file dijkstra.h contains the necessary constants,
the data structure for representing nodes and the function prototypes. The
source file dijkstra.c contains the implementation of each function declared in
dijkstra.h.

6.1.1 main.c
The main purpose of the functions in main.c is to create and store a represen-
tation of a weighted graph. The edges of the graph are stored as an adjacency

38
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matrix in a 2D static array static graph. The dimensions of the array are
given by a constant NumOfVer declared in dijkstra.h. The nodes of the graph
are stored in a static array, called node array, of length NumOfVer.

The code of file main.c contains three function:

read input() which assigns an integer to source node representing the
index of the source node. Then it loads a set of integers representing
the weights of the edges and assigns them to the 2D array static graph.
The allowed range for source node is 0 ≤ source node < NumOfVer − 1.
The weights of the graph are similarly constrained to a range from 0 to
MaxWeight, a constant from dijkstra.h. When the weight of the edge is set
to 0, it is understood as an absence of an edge. Before the function returns,
it also eliminates any self-loop that may have been inserted. It does so by
setting the entire diagonal of the matrix to zero.

print solution() is a function that displays the shortest-path estimates
of each node in the graph. If the estimate is still at ∞, represented as
INT MAX, it states that the node is unreachable.

main() is the entry point of the program. It declares the array node array
and the 2D array static graph, then it calls the dijkstra() function and
print solution() function before exiting.

6.1.2 dijkstra.h
Contents of dijkstra.h can be seen in Code listing 6.1. The file contains the
definition of struct node, which holds two integers and a pointer:

int distance is the shortest-path estimate, used as described in Section
2.1.

int id is a unique integer assigned to every node. It can be used as
an index to access either the node from node array or the corresponding
row/column from static graph.

struct node* parent is a pointer to the node’s predecessor.

Next, the file contains two constants, NumOfVer specifies the expected num-
ber of nodes in the given graph, and MaxWeight states the maximum allowed
weight of any given edge.

Lastly, the file contains declarations of function prototypes, which are im-
plemented in dijkstra.c. The function prototypes are as follows:

void initialize() initializes the nodes in the array node array with
appropriate values.
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int min node() iterates over an array of node pointers in the range from
0 to int size ≤ NumOfVer, and returns the index of the pointer to the
node with the lowest distance.

void swap() swaps the value of two pointers to struct node.

struct node* extract min() extracts the node with the lowest shortest-
path estimate from the array set Q, in the range from 0 to q size. It then
fixes the structure of the array and returns a pointer to the extracted node.

void relax() is a variation on the Relax procedure from Section 2.1.
This function always replaces the shortest-path estimate of node v with
the estimate of u plus the weight of the edge and sets u as the predecessor
of v.

void dijkstra() is the central function of the implementation. It cal-
culates the shortest-path estimate of each node from the source node and
stores their predecessors. The function does not return anything, but all
the necessary information is stored in the array node array.
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Code listing 6.1 Contents of file dijkstra.h
1 # ifndef DIJKSTRA_H
2 # define DIJKSTRA_H
3

4 # include <limits .h>
5 # define NumOfVer 9
6 # define MaxWeight 100
7

8 struct node {
9 int distance ;

10 int id;
11 struct node* parent ;
12 };
13

14 void initialize ( struct node node_array [ NumOfVer ]);
15

16 int min_node ( struct node* set_Q [ NumOfVer ], int size );
17

18 void swap( struct node ** pointer_1 , struct node ** pointer_2 );
19

20 struct node* extract_min ( struct node* set_Q [ NumOfVer ],
21 int q_size );
22

23 void relax ( struct node* u, struct node* v, int weight );
24

25 void dijkstra ( struct node node_array [ NumOfVer ],
26 int static_graph [ NumOfVer ][ NumOfVer ],
27 int sourceNode );
28

29 # endif // DIJKSTRA_H

6.1.3 dijkstra.c
This file contains the definition of the function prototypes declared in dijk-
stra.h. The functions swap, min node, and extract min can be thought of
as ”outside” the Dijkstra’s algorithm, as they are a consequence of the data
structures used.

The min node performs a linear search over an array of node pointers. The
swap function swaps the values using a temporary variable.

The function extract min relies on both the min node and the swap func-
tions. Because the min-priority queue set Q is implemented as a static array,
extracting an element does not decrease its size. Therefore, an integer q size
is maintained to track the number of elements considered active in the queue,
starting from index 0. To remove an element, it is swapped with the element
at index q size−1. After the swap, q size is decremented by one to indicate
the removal of the element.

The source code of these three functions is in Code listing 6.2.
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Code listing 6.2 swap, min node, and extract min functions from dijkstra.c
1 # include <stdlib .h>
2 # include " dijkstra .h"
3

4 int min_node ( struct node* set_Q [ NumOfVer ], int size ){
5 int min = 0;
6 for (int i = 0; i < size; i++)
7 if( set_Q [i] != NULL && set_Q [min] != NULL)
8 if ( set_Q [i]-> distance < set_Q [min]-> distance )
9 min = i;

10 return min;
11 }
12

13 void swap( struct node ** pointer_1 , struct node ** pointer_2 ){
14 struct node* tmp = * pointer_1 ;
15 * pointer_1 = * pointer_2 ;
16 * pointer_2 = tmp;
17 }
18

19 struct node* extract_min ( struct node* set_Q [ NumOfVer ], int q_size ){
20 int index = min_node (set_Q , q_size );
21 struct node* res = set_Q [ index ];
22 swap (& set_Q [ index ], & set_Q [q_size -1]);
23 return res;
24 }

The remaining three functions: dijkstra, relax, and initialize closely
resemble the procedures introduced in Chapter 2. The differences are:

The if statement from the Relax procedure was moved to the dijkstra
function.

The Initialize-Single-Source sets the shortest-path estimate of source
node s to zero. This functionality was moved from initialize to the
dijkstra function.

Unlike the Dijkstra procedure, the dijkstra function does not maintain
the set S. This set is useful for proving the correctness of the algorithm but
otherwise serves no purpose. However, the function uses the size that set S
should have at any given point as a control variable of the main for loop.

The lack of adjacency lists forces the dijkstra function to iterate over
every node v and check whether there is an edge between v and the current
node u.

The Decrease-Key operation is omitted, as the elements in the array
set Q are not keyed by any value.

See Code listing 6.3 for the source code of these functions.
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Code listing 6.3 initialize, relax, and dijkstra functions from dijkstra.c
1 void initialize ( struct node node_array [ NumOfVer ]) {
2 for (int i = 0; i < NumOfVer ; i++){
3 node_array [i]. distance = INT_MAX ;
4 node_array [i]. parent = NULL;
5 node_array [i]. id = i;
6 }
7 }
8

9 void relax ( struct node* u, struct node* v, int weight ){
10 v-> distance = u-> distance + weight ;
11 v-> parent = u;
12 }
13

14 void dijkstra ( struct node node_array [ NumOfVer ],
15 int static_graph [ NumOfVer ][ NumOfVer ],
16 int sourceNode ){
17

18 struct node* set_Q [ NumOfVer ] = { NULL };
19 int q_size = NumOfVer ;
20 node_array [ sourceNode ]. distance = 0;
21 node_array [ sourceNode ]. parent = & node_array [ sourceNode ];
22

23 for (int i = 0; i < NumOfVer ; i++)
24 set_Q [i] = & node_array [i];
25 struct node* u;
26

27 for (int s_size = 0; s_size < NumOfVer ; ++ s_size ){
28 u = extract_min (set_Q , q_size );
29 q_size --;
30 for (int i = 0; i < NumOfVer ; i++)
31 if( static_graph [u->id ][i] > 0 && u-> distance
32 < node_array [i]. distance - static_graph [u->id ][i])
33 relax (u, & node_array [i], static_graph [u->id ][i]);
34 }
35 }

6.2 Annotation with ACSL

With the implementation ready, we will now specify the desired behavior using
ACSL annotations, focusing on a lack of runtime errors and proper handling
of arrays and pointers. We will start by crafting the function contracts.

6.2.1 Function contracts
Contract: swap()
The function has two pointers as parameters and the only requirement of the
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function is their validity. The only location in memory the function manipu-
lates is the location of the two pointers, and lastly, the function guarantees a
swap. The complete contract is at Code listing 6.4.

Code listing 6.4 Function contract of swap
1 /*@
2 requires valid : \ valid ( pointer_1 )
3 && \ valid ( pointer_2 );
4

5 assigns * pointer_1 , * pointer_2 ;
6

7 ensures swap : * pointer_1 == \ old (* pointer_2 )
8 && * pointer_2 == \ old (* pointer_1 );
9 */

10 void swap( struct node ** pointer_1 , struct node ** pointer_2 );

Contract: relax()
The next function is relax. The preconditions will be the validity of pointers
u and v, the appropriate value of weight, and assurance that the shortest-path
estimate of u + weight will not cause an overflow by exceeding INT MAX.
Next, the function modifies v, and lastly, it guarantees that u will become the
predecessor of v and v’s shortest-path estimate is decreased. The contract is
at Code listing 6.5

Code listing 6.5 Function contract of relax
1 /*@
2 requires valid : \ valid (u) && \ valid (v);
3 requires overflow : u-> distance < v-> distance - weight ;
4 requires bound : 0 < weight < INT_MAX ;
5

6 assigns *v;
7

8 ensures parent : v-> parent == u;
9 ensures decrease : v-> distance < \ old (v-> distance );

10 */
11 void relax ( struct node* u, struct node* v, int weight );

Contract: initialize()
The initialize function requires a valid array of nodes, which it also modifies.
The function guarantees that the attributes of each node get set to proper
default values.
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Code listing 6.6 Function contract of initialize
1 /*@
2 requires valid_array : \ valid ( node_array + (0 .. NumOfVer -1));
3

4 assigns node_array [0 .. NumOfVer -1];
5

6 ensures valid_distance : \ forall int i; 0 <= i < NumOfVer
7 ==> node_array [i]. distance == INT_MAX ;
8 ensures valid_id : \ forall int i; 0 <= i < NumOfVer
9 ==> node_array [i]. id == i;

10 ensures valid_parent : \ forall int i; 0 <= i < NumOfVer
11 ==> node_array [i]. parent == NULL ;
12 */
13 void initialize ( struct node node_array [ NumOfVer ]);

Contract: min node()
The preconditions for this function are the validity of the array set Q from 0 to
size, where size is greater than 0 and less or equal to NumOfVer. The function
is non-mutating, so it does not manipulate memory outside its stack.

The first postcondition is simple; it states that the return value is from the
interval ⟨0, size). However, the other postconditions are more challenging to
specify. They need to express that the node at index \result has the lowest
shortest-path estimate among all nodes in the array. Additionally, if multiple
nodes share the same shortest-path estimate, the function returns the index of
the first such node.

To properly express these postconditions, we will introduce three predi-
cates: Lower Bound, Strict Lower Bound, and Min Element.

Code listing 6.7 Array predicates
1 /*@
2 predicate
3 Lower_Bound {L}( struct node ** nodes ,
4 integer n, struct node * value )
5 = \ forall integer i; 0 <= i < n ==>
6 value -> distance <= nodes [i]-> distance ;
7

8 predicate
9 Strict_Lower_Bound {L}( struct node ** nodes ,

10 integer n, struct node * value )
11 = \ forall integer i; 0 <= i < n ==>
12 value -> distance < nodes [i]-> distance ;
13

14 predicate
15 Min_Element {L}( struct node ** nodes , integer n, integer min )
16 = 0 <= min < n && Lower_Bound (nodes , n, nodes [min ]);
17 */
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Using these predicates, we can complete the function contract as seen in
Code listing 6.8.

Code listing 6.8 Function contract of min node
1 /*@
2 requires bound : 0 < size <= NumOfVer ;
3 requires valid_array : \ valid_read ( set_Q + (0.. size -1));
4

5 assigns \ nothing ;
6

7 ensures valid_result : 0 <= \ result < size ;
8 ensures minimum : Min_Element (set_Q , size , \ result );
9 ensures first : Strict_Lower_Bound (set_Q ,

10 \ result , set_Q [\ result ]);
11 */
12 int min_node ( struct node* set_Q [ NumOfVer ], int size );

Contract: extract min()
Now that both swap and min node have their contracts, we can form the
contract for extract min.

The function requires a valid array set Q and proper an integer size in a
proper range. The function then manipulates set Q via the swap function.
Lastly, it ensures set Q is still valid and that the returned pointer points to a
node with the lowest shortest-path estimate.

Code listing 6.9 Function contract of extract min
1 /*@
2 requires valid_array : \ valid ( set_Q + (0 .. NumOfVer -1));
3 requires bound : 0 < q_size <= NumOfVer ;
4

5 assigns set_Q [0 .. NumOfVer -1];
6

7 ensures Lower_Bound (set_Q , q_size , \ result );
8 ensures \ valid ( set_Q + (0 .. NumOfVer -1));
9 */

10 struct node* extract_min ( struct node* set_Q [ NumOfVer ], int q_size );

Contract: dijkstra()
To avoid runtime errors, the dijkstra function requires a valid array node array,
a valid 2D array graph, and an integer sourceNode from a proper interval. The
function modifies only the array node array and ensures it stays valid.
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Code listing 6.10 Function contract of dijkstra
1 /*@
2 requires valid_array : \ valid ( node_array + (0 .. NumOfVer -1));
3 requires valid_graph : \ valid_read ( graph + (0 .. NumOfVer -1))
4 && \ forall int i; 0 <= i < NumOfVer ==>
5 \ valid_read ( graph [i ]+(0.. NumOfVer -1));
6 requires valid_index : 0 <= sourceNode < NumOfVer ;
7

8 assigns node_array [0 .. NumOfVer -1];
9

10 ensures valid_array : \ valid ( node_array + (0 .. NumOfVer -1));
11 */
12 void dijkstra ( struct node node_array [ NumOfVer ],
13 int graph [ NumOfVer ][ NumOfVer ], int sourceNode );

6.2.2 Loop annotations
With the function contracts ready, we now can delve into the code of each func-
tion and add loop annotations that will allow Frama-c to verify the assigns
and ensures clauses.

The functions swap, relax, and extract min, do not contain any cycles,
so they are ready for verification. Out of the remaining three, we will start
with initialize.

Loop annotations: initialize()
The function contains a single for loop which makes three assignments to a
node from node array during every iteration.

The invariant of the loop states that every node processed by the loop
has its attributes—distance, parent, and id—set to INT MAX, NULL, and i,
respectively.
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Code listing 6.11 Loop annotations of initialize
1 void initialize ( struct node node_array [ NumOfVer ])
2 {
3 /*@
4 loop invariant bound : 0 <= i <= NumOfVer ;
5 loop invariant distance : \ forall int k; 0 <= k < i
6 ==> node_array [k]. distance
7 == INT_MAX ;
8 loop invariant parent : \ forall int k; 0 <= k < i
9 ==> node_array [k]. parent

10 == NULL ;
11 loop invariant id: \ forall int k; 0 <= k < i
12 ==> node_array [k]. id == k;
13

14 loop assigns i, node_array [0 .. NumOfVer -1];
15

16 loop variant end: NumOfVer -i;
17 */
18 for (int i = 0; i < NumOfVer ; i++)
19 {
20 node_array [i]. distance = INT_MAX ;
21 node_array [i]. parent = NULL;
22 node_array [i]. id = i;
23 }
24 }

Loop annotations: min node()
The function contains a single for loop which assigns only local variables. The
loop invariant states that the node at set Q[min] has the lowest shortest-path
estimates of all scanned nodes and is the first node to have such a value.

The annotations of the invariant once again use the axiomatic predicates
defined in Code listing 6.7.
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Code listing 6.12 Loop annotations of min node
1 int min_node ( struct node* set_Q [ NumOfVer ], int size)
2 {
3 int min = 0;
4 /*@
5 loop invariant bound : 0 <= i <= size ;
6 loop invariant min: 0 <= min < size ;
7 loop invariant valid_array : \ forall int k; 0 <= k < i
8 ==> \ valid ( set_Q [k ]);
9 loop invariant lower : Lower_Bound (set_Q ,

10 i, set_Q [min ]);
11 loop invariant first : Strict_Lower_Bound (set_Q ,
12 min , set_Q [min ]);
13 loop assigns min , i;
14 loop variant size -i;
15 */
16 for (int i = 0; i < size; i++) {
17 if( set_Q [i] != NULL && set_Q [min] != NULL ){
18 if ( set_Q [i]-> distance < set_Q [min]-> distance )
19 min = i;
20 }
21 }
22 return min;
23 }

Loop annotations: dijkstra()
The dijkstra function contains three for loops, first at lines 23–24, second at
lines 27–34, and the third is nested at lines 30–33, in Code listing 6.3.

The first loop fills the min-priority queue set Q with nodes from node array.
The second loop extracts node u from set Q and, using the third loop, it relaxes
each outgoing edge from node u.

The annotations for the first loop are straightforward.

Code listing 6.13 Annotations of the first loop in dijkstra
1 /*@
2 loop invariant bound : 0 <= i <= NumOfVer ;
3 loop invariant assigned : \ forall int k; 0 <= k < i
4 ==> set_Q [k] == & node_array [k];
5 loop assigns i, set_Q [0 .. NumOfVer -1];
6 loop variant NumOfVer - i;
7 */
8 for (int i = 0; i < NumOfVer ; i++)
9 set_Q [i] = & node_array [i];

Before annotating the second loop at lines 27–34, we analyse and annotate
the nested loop at lines 27–34. This loop calls the relax function, which
according to its contract, modifies the second argument. Therefore, the loop
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assigns node array.
The loop at lines 27—34 maintains an invariant stating that the number of

nodes in set Q plus the number of nodes with their final shortest-path estimate
determined equals the overall number of nodes in the graph. The loop assigns
the current node u and set Q through extraction on line 28, q size on line 29
and node array through the inner loop.

See Code listing 6.14 for annotations of the second and third loops.

Code listing 6.14 Annotations of the second and third loops in dijkstra
1 /*@
2 loop invariant bound : 0 <= q_size <= NumOfVer ;
3 loop invariant q_size + s_size == NumOfVer ;
4 loop assigns u, set_Q [0 .. NumOfVer -1] ,
5 q_size , s_size , node_array [0 .. NumOfVer -1];
6

7 loop variant NumOfVer - s_size ;
8 */
9 for (int s_size = 0; s_size < NumOfVer ; ++ s_size ){

10 u = extract_min (set_Q , q_size );
11 q_size --;
12 /*@
13 loop invariant bound : 0 <= i <= NumOfVer ;
14 loop assigns i, node_array [0 .. NumOfVer -1];
15 loop variant end: NumOfVer -i;
16 */
17 for (int i = 0; i < NumOfVer ; i++)
18 if( static_graph [u->id ][i] > 0 && u-> distance
19 < node_array [i]. distance - static_graph [u->id ][i])
20 relax (u, & node_array [i], static_graph [u->id ][i]);
21 }

6.3 First Verification

With the added annotations, the program is ready for verification. We will
use the plug-ins WP, RTE, and EVA, combined with solvers Alt-Ergo and Z3
introduced in Section 3.3.

The results of the analysis are seen in Figures 6.1 and 6.2.
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Figure 6.1 EVA summary of the analysis. The analysis has reached all statements
in the source code and generated one integer overflow warning. This warning is in
the relax function, specifically at the assignment of the new shortest-path estimate.
However, the annotation generated by this warning was verified, proving that an
overflow cannot occur.

Figure 6.2 WP summary of the analysis. All but three goals have been proven
valid. The three goals that had reached the timeout limit were proof obligations in the
readu input function. These failures occurred due to the use of the unsafe function
scanf but have overall no bearing on this implementation of Dijsktra’s algorithm, and
therefore, are not even listed in this thesis.

It is worth noting, that the required precision set by -eva-precision has
to be adjusted based on the number of nodes specified by the NumOfVer in
dijkstra.h. The more nodes we allow the graph to have, the higher the precision
has to be to match the increase in space complexity. With the increase of both
the number of nodes allowed and the precision of the analysis, the time it
takes Frama-c to complete the analyses grows drastically. For example, with
only twenty nodes and a precision of two, the process takes only a couple of
seconds. Whereas with one hundred nodes and a precision of five, the analysis
took several minutes. An increase to thousands of nodes and a precision of
eight or more would lead to the analysis lasting hours.

6.4 Additional Annotations

In the first verification, we have shown that the implementation properly works
with memory and we did not reveal any runtime errors. In the second verifica-
tion, we will show the after running the dijkstra function, the shortest-path
estimate of every node will either stay the same or decrease.
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First, we will add the following ensures clause to the function contract of
dijkstra and label this clause estimate decrease

1 /*@
2 ensures estimate_decrease : \ forall int i;
3 0 <= i < NumOfVer
4 ==> node_array [i]. distance
5 <= \ old( node_array [i]. distance );
6 */

Next, we move the call of the function initialize outside dijkstra, oth-
erwise, the construct \old in the newly added ensures clause would reference
uninitialized values. Furthermore, this change requires an addition of new re-
quires clauses to the contract. These will specify that the attributes of all
nodes were initialized properly. See Code listing 6.15 for the full function
contract.

Code listing 6.15 The complete function contract of the dijkstra function
1 /*@
2 requires valid_array : \ valid ( node_array + (0 .. NumOfVer -1));
3 requires valid_graph : \ valid_read ( graph + (0 .. NumOfVer -1))
4 && \ forall int i; 0 <= i < NumOfVer ==>
5 \ valid_read ( graph [i ]+(0.. NumOfVer -1));
6 requires valid_index : 0 <= sourceNode < NumOfVer ;
7 requires valid_distance : \ forall int i; 0 <= i < NumOfVer ==>
8 node_array [i]. distance == INT_MAX ;
9 requires valid_id : \ forall int i; 0 <= i < NumOfVer ==>

10 node_array [i]. id == i;
11 requires valid_parent : \ forall int i; 0 <= i < NumOfVer ==>
12 node_array [i]. parent == NULL ;
13

14 assigns node_array [0 .. NumOfVer -1];
15

16 ensures valid_array : \ valid ( node_array + (0 .. NumOfVer -1));
17

18 ensures estimate_decrease : \ forall int i;
19 0 <= i < NumOfVer
20 ==> node_array [i]. distance
21 <= \ old( node_array [i]. distance );
22 */
23 void dijkstra ( struct node node_array [ NumOfVer ],
24 int graph [ NumOfVer ][ NumOfVer ], int sourceNode );

The next steps consist of propagating the implications of the ensure de-
crease, the clause at line 9 in Code listing 6.5, all the way to the ensure
estimate decrease. We will achieve this by adjusting the loop annotations
and adding assertions to guide Frama-c in the verification process.

Because we cannot use the \old construct outside function contracts, we
rely on the \at construction with appropriate labels instead. The added as-
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sertions are as follows:
1 /*@ assert node_array [ sourceNode ]. distance
2 < \at( node_array [ sourceNode ]. distance , Pre );
3 */
4 /*@ assert \ forall int g; 0 <= g < NumOfVer
5 ==> node_array [g]. distance
6 <= \at( node_array [g]. distance , Pre );
7 */
8 /*@ assert \ forall int g; 0 <= g < NumOfVer
9 ==> node_array [g]. distance

10 == \at( node_array [g]. distance , LoopCurrent );
11 */
12 /*@ assert ( node_array [i]. distance
13 < \at( node_array [i]. distance , LoopCurrent ));
14 */
15 /*@ assert \ forall int g; 0 <= g < NumOfVer
16 ==> node_array [g]. distance
17 <= \at( node_array [g]. distance , LoopCurrent );
18 */

The first assertion is located after initializing the source node. The second
assertion is after the insertion of every node into the array set Q. The third
assertion is in the main loop, right after the extraction of the node with the
lowest shortest-path estimate. The fourth assertion is located after calling the
relax function. The fifth assertion is just before the end of every iteration of
the main loop.

To properly adjust the loop annotations, we introduce three new loop
invariants. The first is an invariant of the main loop and states that after
every iteration, the shortest-path estimate of every node is either lower or
equal to its value before entering the loop.

The second loop invariant is added to the nested loop which attempts to
relax every edge outgoing from the current node u. This invariant states: in
each iteration, the shortest-path estimate of every node v incident to one of
the edges already processed is either lower or equal to its value before entering
the loop.

The third loop invariant is added to the same loop as the previous invariant.
It states: the shortest-path estimate of every node v incident to an edge not
yet processed by the loop is equal to its value before entering the loop.

See Code listing 6.16 for the adjusted loop annotations.
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Code listing 6.16 Loop annotations with three new loop invariants
1 /*@
2 loop invariant bound : 0 <= q_size <= NumOfVer ;
3 loop invariant q_size + s_size == NumOfVer ;
4

5 loop invariant \ forall int k; 0 <= k < NumOfVer
6 ==> node_array [k]. distance
7 <= \at( node_array [k]. distance , LoopEntry );
8

9 loop assigns u, set_Q [0 .. NumOfVer -1] ,
10 q_size , s_size , node_array [0 .. NumOfVer -1];
11

12 loop variant NumOfVer - s_size ;
13 */
14 for (int s_size = 0; s_size < NumOfVer ; ++ s_size ){
15 u = extract_min (set_Q , q_size );
16 q_size --;
17 /*@
18 loop invariant bound : 0 <= i <= NumOfVer ;
19

20 loop invariant \ forall int k; 0 <= k < i
21 ==> node_array [k]. distance
22 <= \at( node_array [k]. distance , LoopEntry );
23 loop invariant \ forall int k; i <= k < NumOfVer
24 ==> node_array [k]. distance
25 == \at( node_array [k]. distance , LoopEntry );
26

27 loop assigns i, node_array [0 .. NumOfVer -1];
28 loop variant end: NumOfVer -i;
29 */
30 for (int i = 0; i < NumOfVer ; i++)
31 if( static_graph [u->id ][i] > 0 && u-> distance
32 < node_array [i]. distance - static_graph [u->id ][i])
33 relax (u, & node_array [i], static_graph [u->id ][i]);
34 }

Although the third loop invariant does not directly state anything about
the potential decrease of shortest-path estimates, it is necessary. Without it
Frama-c is unable to verify the other invariants. That is because the annota-
tion loop assigns node array[0 .. NumOfVer-1]; signals to Frama-c that each
iteration can modify the entire array, so without an invariant that expresses
the state of that entire array in each iteration, Frama-c cannot know how
exactly the state changes after every iteration.

6.5 Second Verification

With the adjustments done, we will perform another analysis. Once again, we
will use the WP, RTE, and EVA plugins, combined with solvers Alt-Ergo and Z3.
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Figures 6.3, 6.4, and 6.5 showcase the output of the analysis.

Figure 6.3 EVA summary of the second analysis. There are very few differences,
as the added annotations are outside the purpose of the EVA plugin.

Figure 6.4 WP summary of the second analysis. The new annotations created
eleven new goals, eight of which had to be discharged to an external solver. The three
goals that caused a timeout from the read input function.

Figure 6.5 The function contract of function dijkstra showcasing the successful
verification.



Chapter 7

Verification and security

As new software technologies are developed and the number of applications
grows, so does the number of vulnerabilities in software. In 2023, over 29,000
new CVE numbers were issued for newly discovered vulnerabilities. This is
nearly double the number from 2017 and almost five times that of 2016 [32].

These vulnerabilities pose various threats to both the software system and
its users. Code security is therefore employed to reduce the volume and sever-
ity of the vulnerabilities. Traditional methods, such as static and dynamic
analysis, code reviews, and penetration testing, serve an important purpose in
identifying potential threats.

These methods are effective for discovering vulnerabilities that arise from:

Configuration issues, such as incorrect settings in deployment environ-
ments. These issues are often detectable during runtime.

Poor security practices, such as weak password policies or inadequate access
control.

Integration issues, where flaws occur from the interaction between different
components, such as APIs.

Flawed user interface design, including forms of cross-site scripting, which
often arise from poor input validation.

Race conditions, deadlocks, and performance limitations stemming from
an inadequate system design, which can be discovered by dynamic analysis
and stress tests.

Flawed third-party libraries or dependencies.

However, some vulnerabilities and errors are better discovered by using
formal verification. These include:
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Memory safety issues. A verified specification can guarantee exactly which
parts of memory a program will manipulate, eliminating, for example,
buffer overflow attacks. Furthermore, a verified implementation can guar-
antee that the program does not contain vulnerabilities such as use-after-
free.

Race conditions and deadlocks caused by improper implementation of multi-
threaded programs.

Arithmetic errors. Formal verification can prove that arithmetic operations
cannot cause an overflow, underflow, or division by zero.

To showcase the importance of formal verification in information security
we will introduce several notable examples of its real-world applications.

seL4 microkernel
The seL4 is a high-assurance, high-performance operating system microkernel
[33]. It is unique because of its comprehensive and well-documented formal
verification [34, 35] using the Isabelle automated theorem prover [36]. It is
proven to enforce integrity and confidentiality, under certain assumptions.

OpenSSL HMAC
Researchers at Princeton University and Harvard University have proven, with
Coq [14], that an OpenSSL [37] implementation of HMAC with SHA-256
correctly implements its functional specification and that these specifications
guarantee the expected cryptographic properties [38].

Smart contracts
In the blockchain domain, formal verification is used to improve smart contract
security. Smart contracts are a type of Ethereum [39] account but without a
user. Instead, they are deployed and run as programmed. Formal verification
is used to ensure that smart contracts are free from vulnerabilities and behave
as intended [40].

Formal verification is a powerful tool in the development of secure appli-
cations, but it has disadvantages. The process of formal verification can be
extremely time-consuming and complex. In addition, formal verification tools
may not scale very well for large projects, leading the developers to verify only
a portion of their work or forgo the process altogether.



Conclusion

The goals of this thesis were to create a study of Dijkstra’s algorithm and for-
mal verification through the use of the Frama-c platform, implement Dijkstra’s
algorithm in the C programming language and perform formal verification of
this implementation.

The practical portion of this thesis began with an implementation of Dijk-
stra’s algorithm using only static memory. The implementation was expanded
by annotations written in the ANSI/ISO C Specification Language. Lastly,
it was concluded by a successful verification of the implementation, with an
emphasis on the absence of runtime errors. Furthermore, the implementation
also satisfies an important property of the algorithm. To perform the formal
verification, it used the Frama-c platform together with internal plugins WP
and EVA.

In Chapter 1, the theoretical portion of the thesis introduces the reader
to graph theory, the shortest path problem, and algorithms designed to solve
it. Chapter 2 explains Dijkstra’s algorithm and proves its correctness. Chap-
ter 3 describes the Frama-c platform for formal verification of programs and
shows its basic usage on examples. Chapter 4 serves as a brief introduction to
Hoare logic and its rules. Chapter 5 describes the ANSI/ISO C specification
language which was used in Chapter 6 to verify the implementation of Dijk-
stra’s algorithm, thus fulfilling the main goal of this thesis. Finally, Chapter
7 discusses the various vulnerabilities and flaws that formal verification can
effectively detect and its use in real-world examples.

This thesis can be expanded upon by implementing a verified data struc-
ture, such as a Fibonacci heap, to increase the efficiency of the implementation.
Other properties of Dijkstra’s algorithm could be verified as well, such as the
correctness of the predecessor subgraph, or proving that the final calculated
shortest-path estimate of each node is truly the shortest distance from the
source.
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Contents of the attachment

kupsaja1-thesis.pdf................compiled thesis in the PDF format
src

main.c....................source file for running Dijkstra’s algorithm
dijkstra.h........................header file of Dijkstra’s algorithm
dijkstra.c........................source file of Dijkstra’s algorithm

thesis.........................................the thesis LATEX source
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