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Abstract

This bachelor’s thesis deals with the implementation of a platform for voltage glitching and clock
glitching. The platform is used to introduce fault insertion mechanisms with a minimal level of
abstraction.

The work contains an implementation of hardware in the Verilog language with firmware
written in C and an interface in Python for controlling the platform from a computer. Next, an
attack on AES is performed with the implemented platform by injecting faults between the 7th
and the 8th MixColumns operation and also between the 8th and the 9th.

The resulting platform is capable of injecting glitches into the power supply as well as a clock
signal and also supports the insertion of multiple glitches after one trigger event. The attacks
carried out on the AES cipher via fault injection with the implemented platform successfully
recovered the secret key.

The contribution of this work is the development of a fault injection tool on the Cmod S7
platform and of a programming interface that enable users to understand the mechanisms of
fault injection in detail.

Keywords fault injection tool implementation, fault injection, embedded systems security,
AES, FPGA, microcontroller, Verilog, C language, Python

Abstrakt

Tato bakalářská práce se zabývá implementaćı platformy pro vkládáńı poruch do napájeńı a do
signálu hodin. Platforma slouž́ı pro představeńı mechanismu vkládáńı poruch s minimálńı úrovńı
abstrakce.

Práce obsahuje implementaci hardwaru v jazyce Verilog s firmwarem v C a rozhrańım pro
ovládáńı z poč́ıtače v programovaćım jazyce Python. Dále se s implementovanou platformou
provád́ı útok na šifru AES vkládáńım poruch mezi 7. a 8. operaćı MixColumns a také mezi
8. a 9.

Výsledná platforma je schopná vkládat poruchy do napájeńı i do signálu hodin a také pod-
poruje vkládáńı v́ıce poruch při jednom spouštěćım signálu. Provedené útoky na šifru AES
vkládáńım poruch s použit́ım implementované platformy úspěšně odhalily tajný kĺıč.

Př́ınosem této práce je vývoj nástroje pro vkládáńı poruch na platformě Cmod S7 a pro-
gramovaćıho rozhrańı umožňuj́ıćıch uživatel̊um detailně pochopit mechanismy vkládáńı poruch.

Kĺıčová slova implementace nástroje pro vkládáńı poruch, vkládáńı poruch, bezpečnost ves-
tavných systémů, AES, FPGA, mikrontroler, Verilog, jazyk C, Python
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Introduction

In our everyday life, we rely on electronic devices such as computers and microcontrollers. We
use them for work, to exchange messages, to watch videos, and more. However, we often forget
that security is not given, but it is a never-ending cycle of discovering new attacks and inventing
software and hardware protections against them.

In 1997 the first fault injection attack was discovered. This started an endeavor to secure
software and microcontrollers against fault injection attacks. Since then, countless other fault
injection attacks and techniques have been discovered. To be ahead of adversaries, fault injection
tools need to be available for researchers.

This work is intended for those who would like to experiment with voltage glitching and
clock glitching attacks and gain knowledge of the inner workings of fault injection platforms.
We implement a tool that provides minimal abstraction of injection implementation to facilitate
that.

The main goal of this bachelor’s thesis is to implement a fault injection platform on an FPGA
(Field Programmable Gate Array) that communicates with a target device, a microcontroller,
and to perform a fault injection attack with the designed and implemented tool.

The objective of the research part is to study non-invasive fault injection attacks on micro-
controllers and fault injection techniques. Next, existing fault injection tools, such as NewAE
ChipWhisperer-Nano, are studied.

The aim of the practical part is to design and implement a voltage and clock glitching tool.
The tool is an FPGA that drives a crowbar circuit to inject power supply faults. Digilent Cmod S7
development board should be used as the FPGA platform. The practical part optionally includes
an implementation of clock glitching. The final goal of the practical part is to perform an attack
on a microcontroller. For example, an AVR running an AES cipher.

In chapter 1, we provide the necessary background for understanding this work. We explain
what side channels are and how they are relevant to fault injection. We study various non-invasive
fault injection techniques and fault injection attacks on microcontrollers. Special attention is paid
to a crowbar circuit. We also study existing voltage glitching tools.

The practical part is divided into the design and implementation sections and is further
subdivided into hardware, firmware, and software parts. In chapter 2, we describe the design
of the FPGA’s hardware, firmware, and software. In the following chapter 3, we implement
the hardware in Verilog and the firmware in C on top of that. In the same chapter, we also
create software in the Python programming language that controls the fault injection tool from
a computer.

In chapter 5, we perform an attack on the AES cipher running on an AVR microcontroller
using the implemented tool.

1



Chapter 1

Fault injection

A side channel is an unintended exchange of information between a cryptographic device and
its environment. Side channel attacks allow to bypass theoretical safety of cryptographic algo-
rithms by exploiting additional information gained via side channels. Side-channel attacks are
implementation-specific and device-specific due to the physical nature of side-channel attacks. [1]

There are many side channels. They include:

Timing side channel — Non-constant execution time of algorithms can reveal information
about handled data or secrets. [2, 1]

Power side channel — Power consumption of a target device can be measured to gain infor-
mation about processed input or secret. [3, 1]

Fault side channel — Consists of injection of faults into a target device and observation of
outputs returned by the targeted device. [4, 5]

Electromagnetic side channel — Electrical devices often generate electromagnetic radiation
that can be measured. [6]

Acoustic side channel — Acoustic emanations, such as keystrokes, can be used by an attacker
to obtain passwords or other secrets. [7]

Hardware attacks can be categorized based on two criteria. Firstly, attacks are divided into
categories based on their influence on a target device [8]:

Passive attacks – Such attacks don’t interfere with the target device, and only collect data
emitted by the target device.

Active attacks – Active attacks influence the behavior of the target device.

Passive and active combined attacks – This is a type of attack that combines both approaches.
A disturbance of a target device can leave it vulnerable to a passive attack. For instance,
one of the proposed passive and active combined attacks combines fault injection with power
analysis.

The other possible classification of hardware attacks is based on the required access to the
target device [9]:

Invasive attacks require chip depackaging and passivation layer removal.

Semi-invasive attacks require chip depackaging, but do not involve passivation layer removal.
An example of such an attack is an optical fault induction attack.

2



Non-invasive fault injection techniques 3

Non-invasive attacks do not involve chip depackaging, but exploit externally observable in-
formation such as electromagnetic emissions or power consumption.

Fault injection attacks (FIAs) are active hardware attacks. FIAs introduce faults into run-
ning code to reveal secret information by observing the target device’s behavior and collecting
erroneous outputs. However, some FIAs do not require erroneous outputs to successfully perform
the attack. For example, ineffective fault analysis [10] obtains information from fault injections
that leave the output unchanged, and safe-error analysis [11] only needs to distinguish between
faulted and correct outputs.

Faults can be introduced by various techniques. The techniques range from non-invasive
to invasive. Fault injection techniques can be further divided into low-cost and high-cost cate-
gories [12]. Low-cost fault injection techniques include underpowering, voltage glitching, clock
glitching, device heating, light radiation, etc. Examples of high-cost techniques are the focused
light beam, the laser beam, and the focused ion beam.

1.1 Non-invasive fault injection techniques
Non-invasive fault injection techniques are methods of inserting faults into the execution of
algorithms without the need to depackage the chips on which the algorithms run.

1.1.1 Clock glitching
Most of the digital circuits are synchronous. In other words, the movement of the data inside
them is driven by a clock signal. The clock period cannot be arbitrarily chosen for a circuit, but
it is constrained by the following equation [13]:

Tclk > Dclk2q + DpMax + Tsetup − Tskew (1.1)

In equation 1.1 Tclk denotes the clock period, and DpMax is the maximum propagation time
through a combinational logic. The maximum propagation time through a combinational logic
is given by a critical path, which is a path with the greatest delay from an input to an output of
not necessarily the same register.

“Besides, a precise writing of the timing constraint equation requires taking into account three
other parameters: Dclk2q delay elapsed between the clock rising edge and the actual update of a
register’s output; Tskew skew or slight phase difference that may exist between the clock signals
at the clock inputs of two different registers; Tsetup setup time which is the amount of time for
which a D flip-flop input must be stable before the clock’s edge to ensure reliable operation.” [13]

Faults induced by a clock glitch are generated by violating the circuit’s timing constraints.
Since an attacker controls the clock signal, he can decrease the clock period. The decrease of
the clock period can result in a metastable behavior due to the setup time violation. During a
metastable behavior, an arbitrary value is stored in DFF (D-type Flip Flop). Another option
is that the input signal stabilizes at some value that may or may not be the correct one. If the
value is not equal to the one achieved during normal operation, a fault occurs. [13]

In another paper, the influence of clock glitches on arithmetical/logical instructions, branch
instructions, and memory instructions was observed on an ARM Cortex-M0 with a three-stage
pipeline and a two-stage pipeline of an ATxmega256. Insertion of a clock glitch during the fetch
stage of an arithmetical/logical or a branch instruction led to the preservation of the previous
instruction in a fetch buffer and to the subsequent execution of the same instruction for the
second time. A clock glitch inserted during the execution stage of some arithmetical/logical
instructions causes the attacked instruction to store incorrect value in a destination register.
Memory instructions behaved on the tested platforms differently. When the fetch stage of AVR
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ARM Cortex-M0 was attacked, the stored or loaded value was zero. A clock glitch during the
execution stage of the ATxmega 256 caused the load instruction to load an arbitrary value. [14]

One disadvantage of clock glitching is that it requires access to the clock signal of the target
device. Therefore, this attack cannot be used against devices with internal clock oscillators.

1.1.2 Underpowering
Underpowering is another attack that works on the principle of a timing constraint violation
given by equation 1.2. Instead of decreasing the clock period, as is done in clock glitching, the
propagation time of signals is increased in the target device’s circuit.

For simplicity, the propagation delay TP LH is stated for the rise time of an inverter. In this
case is defined as “the difference between the time points at which the input and the output cross
VDD/2”. The propagation delay TP LH is given in equation 1.2. The equation for a high-to-low
delay would be similar. [15, 13]

TP LH =
CL

[
2|VT H |

VDD−|VT H | + ln
(

3− 4 |VT H |
VDD

)]
µpCox

W
L (VDD − |VT H |)

(1.2)

where CL denotes load capacitance, VT H denotes the threshold voltage of a PMOS, µp is the
mobility of holes, Cox is the gate capacitance per unit area, W and L respectively denote the
width of the PMOS transistor and its length.

Equation 1.2 implies that a decrease in VDD voltage will increase the propagation time in the
circuit [15, 13].

1.1.3 Voltage glitching
Voltage glitching is sometimes referred to as voltage fault injection or power supply glitching.
Voltage glitching, unlike underpowering, can be used to target specific instructions by inserting
a glitch at a specific time in the program execution. To inject a fault successfully, the right time
to insert a glitch must be discovered and a fault-inducing glitch length must also be found. The
glitch length must be long enough to induce a fault or multiple faults in an executed code, but
it cannot be too long to power down the device.

Voltage glitches can be positive [16] or negative depending on voltage change. Negative
voltage glitches decrease the power supply voltage for a short period of time, and positive voltage
glitches increase it.

Negative voltage glitches can be inserted with a crowbar circuit [17]. The crowbar circuit
consists of an N-Channel MOSFET (Metal Oxide Semiconductor Field Effect Transistor) that
shorts the power supply line of a target device to the ground when the MOSFET is driven high.
The crowbar circuit is shown in figure 1.1

Figure 1.1 Crowbar circuit. Source: preprint by O’Flynn [17]

Another voltage glitching technique uses an arbitrary waveform generator. Glitches with a
generated waveform had a higher success rate in attacks performed on microcontrollers compared
to negative voltage glitches inserted with a crowbar circuit. [18]
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Zussa et al. [13] carried out an experimental proof of the assumption that negative voltage
glitching faults are caused by timing constraint violations by comparing faults obtained by clock
glitching and voltage glitching. Because 70% of the time they were identical, they concluded
that voltage glitching causes timing constraint violations. However, there might be some spatial
effect involved in the case of voltage glitching.

In later work, Zussa et al. [19] observed that positive power supply glitches and negative
power supply glitches inject identical faults. Both voltage glitches induce oscillations in the
target’s power supply, and in both cases negative oscillations cause faults.

Also, it has been theoretically shown that voltage glitches, whose transitions do not occur
on clock edges, cannot change the value of a DFF. This was verified by simulation in the same
paper. [20]

1.1.4 Electromagnetic fault injection
Electromagnetic fault injection is a technique that does not require physical contact with a
target device. Electromagnetic fault injection techniques can be used to perform non-invasive as
well as semi-invasive attacks. It was observed that a successful attack is possible on depackaged
microcontrollers as well as on capsulated microcontrollers, and that chip packaging did not affect
the induced voltage when a fault was injected by a spark gap generator that was more than 10 mm
distant from the die’s surface of the chip [21].

A possible explanation of how the electromagnetic fault injection technique introduces faults
is that it mainly affects the power and ground networks in integrated circuits that have a 3D
mesh structure. According to a proposed model, the faults caused by electromagnetic fault
injection are sampling faults and not timing faults. This means that the propagation delay is not
increased, but rather the circuit’s voltage is altered and incorrectly sampled by the DFF. [22]

1.1.5 Heat fault injection
Heating of electronic components is another technique used to induce faults. For instance, a
50 W light bulb was used to inject faults into a DRAM (Dynamic Random Access Memory) by
heating it to 100 °C [23]. Another example of a heating attack is an attack on an ATmega162
microcontroller where heating it to 160 °C caused faults in a program execution that led to a
successful compromise of a RSA1 private key [24].

1.1.6 Row hammer attack
Increasing the density of cells in DRAM limits the ability of cells to store a charge and decreases
the distance between them. This makes DRAM cells susceptible to disturbances generated by
accessing nearby rows of cells. More specifically, a rapid opening and closing of a row accelerates
current leakage in nearby rows. The row hammer attack is a software fault injection attack, and
no special equipment is needed to carry it out. [25]

1.2 Fault injection attacks
Fault injection attacks can target implementations of cryptographic algorithms such as AES.
Various fault injection attacks on the AES have been proposed. Some attack the state of the
AES cipher, and others aim to disturb the key expansion algorithm. The attacks also differ in
the version of the AES that they target. [26]

1RSA is a public-key algorithm developed by Rivest, Shamir and Adelman.
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In subsection 1.2.2 a DFA (Differential Fault Analysis) attack [27] is described. In a DFA
attack, the attacker compares two outputs encrypted with a cipher with the same plaintext and
the same encryption key. If they are different, one of them is assumed to be faulty. Combinations
of original and erroneous ciphertexts can leak information about the encryption key. [4]

However, the implementation of encryption algorithms is not the only vulnerable code on
microcontrollers. Microcontrollers have debug interfaces that can facilitate, for example, firmware
readout. Therefore, it is important to protect debug interfaces of microcontrollers. FIAs can
overcome these protections [18].

Nashimoto et al. [28] proposed a hardware/software co-attack. The essence of the attack is
to skip instructions that prevent the buffer from overflowing.

1.2.1 Advanced Encryption Standard
This chapter is based on the Advanced Encryption Standard (AES) publication FIPS 197 [29].

AES (Advanced Encryption Standard) is a block cipher. There are three AES ciphers: AES-
128, AES-192, and AES-256. The main difference between them is in the key length and the
number of rounds, Nr, that are performed. In this work, only AES-128, with a key length of
128 bits and 10 rounds, is discussed and is denoted in the rest of the work as AES.

The input of the AES is a 128-bit key and 128 bits of input data. The output of the algorithm
is 128 bits of encrypted input data with the specified key. “Internally, the algorithms for the
AES block ciphers are performed on a two-dimensional (four-by-four) array of bytes called the
state.”[29]. The arrangement of bytes in the array is shown in figure 1.2.

Figure 1.2 AES state array input and output. Source: FIPS 197 [29]

Some transformations work with bytes of state as if they were elements of Galois field GF (28).
Byte b = b7b6b5b4b3b2b1b0 is represented in GF (28) as a polynomial b7x7 + b6x6 + b5x5 + b4x4 +
b3x3 + b2x2 + b1x + b0 that is marked as b(x). We also use hexadecimal notation with leading
zeros to represent elements of GF (28). For example, x + 1 is represented as 03.

The addition of two bytes in GF (28) is equivalent to performing a XOR operation on them,
denoted by ⊕. The multiplication of bytes b and c consists of their multiplication and modular
reduction of the product. The multiplication in GF (28) is defined by equation 1.3 and is denoted
by the symbol •.

a(x) • b(x) = a(x)b(x) mod x8 + x4 + x3 + x + 1. (1.3)
The cipher is composed of rounds during which four byte-oriented transformations transform

the state: SubBytes, ShiftRows, MixColumns and AddRoundKey. All of the transformations are
invertible, so the encrypted text can be decrypted. The order, in which the transformations are
called, is displayed in the pseudocode 1.1 where in denotes the input data, Nr represents the
number of rounds, and w is the expanded round key. The key expansion is described in the
algorithm 1.2

AddRoundKey transformation is a XOR operation of the state and a round key. The ith round
is denoted as Ki. The round keys are obtained by expanding the key that is equal to K0. The key
expansion generates 4 · (Nr + 1) four byte words that are denoted as wi for 0 ≤ i < 4 · (Nr + 1).
The AddRoundKey transformation can be written down as equation 1.4.
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Algorithm 1.1 AES encryption. Source: FIPS 197 [29], presentation slightly changed
1: procedure Cipher(in, Nr, w)
2: state← in
3: state← AddRoundKey(state, w[0 . . . 3])
4: for round from 1 to Nr − 1 do
5: state← SubBytes(state)
6: state← ShiftRows(state)
7: state← MixColumns(state)
8: state← AddRoundKey(state, w[4 · round . . . 4 · round + 3])
9: end for

10: state← SubBytes(state)
11: state← ShiftRows(state)
12: state← AddRoundeKey(state, w[4 ·Nr . . . 4 ·Nr + 3])
13: return state
14: end procedure


s′

0,c

s′
1,c

s′
2,c

s′
3,c

 =


s0,c

s1,c

s2,c

s3,c

⊕
w(4·round+c)

 (1.4)

SubBytes is a non-linear transformation that is applied to each byte of the state, and that is
composed of two transformations. The first transformation, described in equation 1.5, transforms
the byte into its inversion in GF (28). The transformation additionally calculates the inverse of
zero as zero. The second transformation is a modular reduction given by equation 1.6 in which
lower index i denotes the bit of the byte from the least significant bit to the most significant bit.

x̃ =
{

00 if x = 00
x−1 if x ̸= 00

(1.5)

x′
i = x̃i⊕x̃(i+4) mod 8⊕x̃(i+5) mod 8⊕x̃(i+6) mod 8⊕x̃(i+7) mod 8⊕bi where b = 63 ∈ GF (28)

(1.6)
Equation 1.6 is written in matrix form in equation 1.7, where subscript i denotes the ith bit

starting from the least significant one. ∗ is the multiplication of matrices over GF(2). Later in
the work, it is referred to the matrix as a and to the vector as b.

x′
0

x′
1

x′
2

x′
3

x′
4

x′
5

x′
6

x′
7


=



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1


∗



x̃0
x̃1
x̃2
x̃3
x̃4
x̃5
x̃6
x̃7


⊕



1
1
0
0
0
1
1
0


= a ∗



x̃0
x̃1
x̃2
x̃3
x̃4
x̃5
x̃6
x̃7


⊕ b (1.7)

ShiftRows is a transformation that cyclically shifts every row of the state array. Bytes in row
r are cyclically shifted r bytes to the left, where r is the index of the row. The transformation
is described in equation 1.8.

s′
r,c = sr,(c+r) mod 4 for 0 ≤ r < 4 and 0 ≤ c < 4 (1.8)



Fault injection attacks 8

MixColumns transformation multiplies every column by a matrix. The equation for the
transformation is given in equation 1.9.

s′
0,c

s′
1,c

s′
2,c

s′
3,c

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02




s0,c

s1,c

s2,c

s3,c

 for 0 ≤ c < 4 (1.9)

The round keys of the AES are obtained by expanding the key of the AES. The key expansion
is described by the algorithm 1.2 where the function RotWord rotates a sequence of four bytes to
the left by one position, i.e. RotWord([x0, x1, x2, x3]) = [x1, x2, x3, x0]. The operation SubWord
performs a byte-wise replacement defined by the same equation 1.7 as in SubBytes. Finally, Rcon
is an array of constants whose values are shown in table 1.1.

Table 1.1 Rcon array. Source: FIPS 197 [29]

j Rcon[j] j Rcon[j]
1 [01, 00, 00, 00] 6 [20, 00, 00, 00]
2 [02, 00, 00, 00] 7 [40, 00, 00, 00]
3 [04, 00, 00, 00] 8 [80, 00, 00, 00]
4 [08, 00, 00, 00] 9 [1b, 00, 00, 00]
5 [10, 00, 00, 00] 10 [36, 00, 00, 00]

Algorithm 1.2 AES key expansion algorithm. Source: FIPS 197 [29], presentation slightly
changed

1: procedure KeyExpansion(key)
2: i← 0
3: while i ≤ Nk − 1 do
4: w[i]← key[4 · i . . . 4 · i + 3]
5: end while
6: while i ≤ 4 ·Nr + 3 do
7: temp← w[i− 1]
8: if i mod Nk = 0 then
9: temp← SubWord(RotWord(temp)) ⊕Rcon[i/Nk]

10: else if Nk > 6 and i mod Nk = 4 then
11: temp← SubWord(temp)
12: end if
13: w[i]← w[i−Nk]⊕ temp
14: i← i + 1
15: end while
16: return w
17: end procedure

1.2.2 Attack on AES after the 8th MixColumns
and before the 9th MixColumns

This subsection describes the attack on AES that was proposed by Dussart et al. [30] The
aim of the attack is to recover the last round key K10, which is created by the key expansion
algorithm. It is possible to perform key expansion in reverse order to recover the AES key from
the knowledge of the key K10. The fault model for this attack allows an attacker to insert a
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random fault into the state during the execution of AES. This attack requires about 40 to 50
unique pairs of ciphertexts and faulty ciphertexts.

The attack starts with the injection of a fault between the 8th MixColumns and the 9th
MixColumns. For example, let us assume that a fault is inserted into the first byte s0,0 of the
AES state between the 8th MixColumns and the 9th MixColumns. The fault caused a one-byte
difference that is denoted as ε. After the ShiftRows transformation the difference between the
unaffected state and the erroneous state is equal to:

ε 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

 (1.10)

The 9th MixColumns transformation spreads the error:
02 • ε 00 00 00
01 • ε 00 00 00
01 • ε 00 00 00
03 • ε 00 00 00

 (1.11)

AddRoundKey and SubBytes, referenced as function s(x), changes the difference between
the original state and the erroneous state to the one in equation 1.12. The ε′

0, ε′
1, ε′

2, and ε′
3

represent the differences between the correct ciphertext and the faulty ciphertext at the end of
the encryption process. The values of x0, x1, x2, and x3 represent bytes of the AES state before
the last SubBytes transformation and are unknown to the attacker.

ε′
0 00 00 00

ε′
1 00 00 00

ε′
2 00 00 00

ε′
3 00 00 00

 where


ε′

0 = s(x0 ⊕ 02 • ε)⊕ s(x0)
ε′

1 = s(x1 ⊕ ε)⊕ s(x1)
ε′

2 = s(x2 ⊕ ε)⊕ s(x2)
ε′

3 = s(x3 ⊕ 03 • ε)⊕ s(x3)

(1.12)

The ShiftRows only rearranges the errors:
ε′

0 00 00 00
00 00 00 ε′

1
00 00 ε′

2 00
00 ε′

3 00 00

 (1.13)

Finally, the last transformation AddRoundKey does not affect the fault matrix. Therefore, the
difference between the original state and the state with an inserted fault is given by equation 1.13.

Information about the last round key K10 can be gained from the last SubBytes transformation
by solving a system of equations 1.14, where x0, x1, x2, x3, ε are unknown variables that represent
bytes of the AES state before the last SubBytes transformation.

ε′
0 = s(x0 ⊕ 02 • ε)⊕ s(x0)

ε′
1 = s(x1 ⊕ ε)⊕ s(x1)

ε′
2 = s(x2 ⊕ ε)⊕ s(x2)

ε′
3 = s(x3 ⊕ 03 • ε)⊕ s(x3)

(1.14)

The system of equations 1.14 can be generalized as a single equation 1.15.

ε′ = s(x⊕ c • ε)⊕ s(x) where c ∈ {01, 02, 03} (1.15)

It is possible to calculate a set of possible values of the inserted fault and four bytes of the
key K10 from the equation system in equation 1.14. Recovery of the key K10 consists of three
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steps. First, a set of possible values of ε is calculated. Then, a set of possible values of the AES
state is obtained. Finally, a set of possible values of a key K10 is calculated.

A set of possible values of the injected fault ε is calculated for every valid combination of the
differential fault ε′ and the coefficient c. The set of possible values of the injected fault ε for a
specific ε and c is denoted as Ec,ε′ . The formula for Ec,ε′ is written in equation 1.16.

Ec,ε′ = {ε ∈ GF (28) : ∃x ∈ GF (28), ε′ = s(x⊕ c • ε)⊕ s(x)} (1.16)

Then, a new set E is calculated that is an intersection of four Ec,ε′ sets. For example, with the
same fault location as in the fault propagation example, E would be as shown in equation 1.17.

E = E2,ε′
0
∩ E1,ε′

1
∩ E1,ε′

2
∩ E3,ε′

3
(1.17)

The values of the E set are used to calculate the possible values of bytes of the AES state
before the last SubBytes transformation. For every fault e ∈ E, equation 1.18 is solved with
the same combinations of c and ε′ as in the last step. Equation 1.18 can be obtained from
equation 1.15 by writing s(x) as a ∗ x−1 ⊕ b, which is the definition of SubBytes transformation,
and performing a few operations so that the equality still hold true.

x2 • (c • ε)−2 ⊕ x • (c • ε)−1 = (a−1 ∗ ε′)−1 • (c • ε)−1 (1.18)

By substituting x • (c • ε)−1 for t and the right-hand side for θ, we obtain equation 1.19.

t2 ⊕ t = θ (1.19)

Equation 1.19 has two solutions: α and β. We get y1 = α • c • ε and y2 = β • c • ε after
undoing the substitution for x • (c • ε)−1. There are two more solutions y3 = 0 and y4 = c • ε, if
θ = 01.

The possible values of the last round key K10 are obtained by calculating K10[i] = s(yk)⊕C ′[i],
where C ′ is the erroneous ciphertext, k ∈ {1, 2} or k ∈ {1, 2, 3, 4} based on the value θ, and i is
the index of a key byte that is being calculated. The XOR operation eliminates the value of the
state before the AddRoundKey operation and reveals a possible byte of key K10.

The calculations are repeated for other combinations of coefficients c, corresponding ε′ dif-
ferential faults and injected fault values ε from set E and with different ciphertext pairs, until
only one possible value of the four bytes of the key K10 is left. This process can be replicated
for the remaining twelve K10’s bytes to recover the whole last round key K10.

The algorithm 1.3 describes how to obtain four bytes of the AES’ last round key K10 using
the steps described above. The algorithm takes as input an array of correct ciphertexts cts,
an array of corresponding erroneous ciphertexts faulty cts, into which a fault has always been
injected into the same column of state, and an array of indices fault idx, which indicate the
faulty bytes, for example [0, 13, 10, 7].

Once the key K10 is recovered, the inverse key expansion algorithm 1.4 is performed to gain
the key K0, i.e. the AES encryption key.

1.2.3 Attacks on AES after the 7th MixColumns
and before the 8th MixColumns

Dussart et al. [30] also presented a fault injection attack on AES that requires only ten faults.
The main idea is that the fault inserted between the 7th and 8th MixColumns is transformed
into four faults after the 8th MixColumns. Then the key K10 is calculated from the faults in the
same way as in the attack described in the previous subsection. The only difference is that the
attack is carried out for all four columns of every ciphertext. This is the reason why only ten
ciphertext pairs are needed.
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Algorithm 1.3 Recovery of K10 with fault between the 8th and the 9th MixColumns. Source:
article by Dusart et al. [30], edited into pseudocode

1: procedure GetFaultValues(c, ε′)
▷ Faster way to calculate {ε ∈ GF (28) : ∃x ∈ GF (28), ε′ = s(x⊕ c • ε)⊕ s(x)}

2: ε set← {}
3: for t in {01, . . . , 1F, 40, . . . , 5F, A0, . . . , BF, E0, . . . , FF} do
4: ε set← ε set ∪ (c • (a−1 • ε′) • t)−1

5: end for
6: end procedure

7: procedure GetKeyValues(c, ε, ε′, fault)
8: θ ← ((a−1 ∗ ε′) • c • ε)−1 ▷ a is the matrix from SubBytes definition
9: α← solution of t2 ⊕ t = θ

10: β ← α⊕ 01
11: if θ ̸= 01 then
12: return {s(c • ε • α)⊕ fault, s(c • ε • β)⊕ fault}
13: else
14: return {s(c • ε • α)⊕ fault, s(c • ε • β)⊕ fault, b⊕ fault, s(c • ε)⊕ fault}
15: end if ▷ b on the line above is the constant from SubBytes definition
16: end procedure

17: procedure Recover89(cts,faulty cts,fault idx)
18: for i in fault idx do ▷ Possible K10’s bytes that match all ciphertext pairs
19: keys[i]← {00, . . . , FF}
20: end for
21: for ct, faulty ct in cts, faulty cts do ▷ For every pair of correct and faulty ciphertext
22: for i in fault idx do ▷ Possible K10’s bytes from a single fault
23: keys single set[i]← {}
24: end for
25: for coeffs in [[02, 01, 01, 03], [03, 02, 01, 01], [01, 03, 02, 01], [01, 01, 03, 02]] do

▷ Coefficients depend on the fault’s position in the state column
26: ε set← {00, . . . , FF} ▷ Set of possible values of the injected fault
27: for c, i in coeffs, fault idx do
28: ε′ ← faulty ct[i]⊕ ct[i] ▷ Difference between the ciphertexts
29: ε set← ε set ∩GetFaultValues(c, ε′)
30: end for
31: for c, i in coeffs, fault idx do ▷ Possible key values based on ε
32: ε′ ← faulty ct[i]⊕ ct[i] ▷ Difference between the ciphertexts
33: fault← faulty ct[i] ▷ Value of the faulty byte in the output of AES
34: for ε in ε set do
35: keys single set[i]← keys single set[i] ∪GetKeyValues(c, ε, ε′, fault)
36: end for
37: end for
38: end for
39: for i in fault idx do
40: keys[i]← keys[i] ∩ keys single set[i]
41: end for
42: end for
43: return keys
44: end procedure
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Algorithm 1.4 Inverse key expansion algorithm. Source: preprint by Dusart et al. [31]
1: procedure InverseKeyExpansion(K10)
2: i← Nb · (Nr + 1)− 1
3: j ← Nk − 1
4: while j ≥ 0 do
5: w[i]← K10[4 · j . . . 4 · j + 3]
6: i← i− 1
7: j ← j − 1
8: end while
9: while i ≥ 0 do

10: temp← w[i + Nk − 1]
11: if i mod Nk = 0 then
12: temp← SubWord(RotWord(temp)) ⊕Rcon[i/Nk + 1]
13: else if Nk > 6 and i mod Nk = 4 then
14: temp← SubWord(temp)
15: end if
16: w[i]← w[i + Nk]⊕ temp
17: i← i− 1
18: end while
19: return w
20: end procedure

To update the algorithm 1.3 to perform this improved variant of the attack, the lines 22-41
have to be nested into another for loop. The for loop iterates through every combination of four
faulty bytes, i.e. [[0, 13, 10, 7], [4, 1, 14, 11], [8, 5, 2, 15], [12, 9, 6, 3]], that are assigned to faulty idx
variable. Also, the code on the line 18 has to initialize all 16 sets. After the modifications, the
algorithm returns the whole K10 instead of four of its bytes.

Piret and Quisquater [32] proposed an attack on AES that needs only two erroneous ci-
phertexts. Based on their observation, two ciphertexts are sufficient in 77% of the cases. The
proposed attack applies to ciphers with a “Substitution-Permutation structure” [32] such as AES.
These ciphers can be described by equation 1.20. The last round of the cipher does not contain
the θ layer.

σ[KNr] ◦ γN r ◦ (◦Nr−1
r=1 σ[Kr] ◦ θr ◦ γr) ◦ σ[K0] where (1.20)

Nr denotes the number of cipher’s rounds.

“γr layer consists in the parallel application of n 8×8 S-boxes (not necessarily identical)” [32].

σr is a key addition layer σ[k](a) = b⇔ bj = aj ⊕ kj , 1 ≤ j ≤ n.

In the case of the AES, the θ layer is represented by the ShiftRows and MixColumns transfor-
mations, and the γ layer consists of the SubBytes operation. Because the additional ShiftRows
transformation “has no cryptographic significance” [32], the attack is applicable to AES.

The main idea behind the attack is to check for all possible values of K10, if the difference
between the correct ciphertext C and the erroneous ciphertext C ′ could be generated by a single-
byte fault transformed by the θ layer. The equation is given in equation 1.21, where D is a 16-byte
array with a single non-zero byte that represents the single-byte fault. [32]

θ(D) = γ−1
Nr ◦ σ[KNr](C)⊕ γ−1

Nr ◦ σ[KNr](C ′) (1.21)
Again, the equation can be written as equation 1.22 in the case of the AES. Because the AES

has ShiftRows operation after the last MixColumns, the bytes of the ciphertext pairs and of K10
must be reordered accordingly.
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MixColumns(ShiftRows(D)) = s−1(K10 ⊕ C)⊕ s−1(K10 ⊕ C ′) (1.22)
The attack consists of four phases. In the first phase, faults are injected between the 7th and

the 8th MixColumns of the AES. Then, the key space is reduced by finding possible values of the
key K10 byte by byte, if equation 1.22 is satisfied for selected bytes for two pairs of correct and
faulty ciphertexts. All obtained values of the key K10 are tested, whether they satisfy the same
conditions as in the search space reduction step, but this time only for all bytes at once. Keys
that fail the test are no longer considered. This is repeated until only one candidate for K10 is
left. Finally, an inverse key expansion is performed to recover the AES encryption key. [32]

The algorithm for steps two and three is located in appendix A due to its length. Instead,
the algorithm 1.5 shows a simplified version [33] of the attack that does not have the key space
reduction step.

The algorithm 1.5 solves the system of equations 1.23 [33]. The system of equations 1.23 is
from article [26].

The system of equations 1.23 is similar to equation 1.22. The difference is that the system
of equations 1.23 contains an equation only for four bytes of the last round key K10. Therefore,
K10 is recovered four bytes at a time.

2 • ε = s−1(C0,0 ⊕K10,0,0)⊕ s−1(C ′
0,0 ⊕K10,0,0)

ε = s−1(C1,3 ⊕K10,1,3)⊕ s−1(C ′
1,3 ⊕K10,1,3)

ε = s−1(C2,2 ⊕K10,2,2)⊕ s−1(C ′
2,2 ⊕K10,2,2)

3 • ε = s−1(C3,1 ⊕K10,3,1)⊕ s−1(C ′
3,1 ⊕K10,3,1)

(1.23)

Algorithm 1.5 takes as an input an array of correct ciphertexts cts, and an array of corre-
sponding erroneous ciphertexts faulty cts that were obtained by injecting a fault between the
7th and the 8th MixColumns transformation. It returns the key K10.

1.2.4 Attacks on debug interface protection
of microcontrollers

One of the microcontroller’s attack vectors is the debug interface. A debug interface enables, for
example, firmware programming and firmware reading. Therefore, it is necessary to secure these
interfaces. [18]

There are many different types of microcontrollers made by various manufacturers. Each
microcontroller might have its own debug interface protection mechanism. Due to this, attacks on
microcontrollers do not apply to all of them. This subsection describes a few security mechanisms
that can be defeated with voltage glitching.

STM32F103 microcontroller includes a Readout Protect command that enables the read pro-
tection feature. When an STM32F103 receives the Readout Protect command, it checks a readout
protection value before sending back a part of the firmware. This check can be overcome by in-
jecting a glitch during the check. [18]

Wiersma and Pareja [34] used voltage glitching to defeat different debug interface protections.
A different type of microcontroller protects the debug interface with a 128-bit password. Such
protections can be overcome with voltage glitching. Attack on another microcontroller tried to
change a JTAG configuration fetched from Read-Only memory via voltage glitching. The debug
interface of that microcontroller could also be unlocked by affecting the fetched value.

1.2.5 Buffer overflow attacks with fault injection
Nashimoto et al. [28] proposed an attack that combines software and hardware attacks. They
demonstrated that the attack defeats input size limitation protections, i.e. functions that can
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Algorithm 1.5 Simplified recovery of K10 with fault between the 7th and the 8th MixColumns.
Source: tutorial by Shchavleva [33], modified for fault between the 7th and the 8th MixColumns

1: procedure Recover78Simple(cts, faulty cts)
2: keys← {[]} ▷ Possible values of K10
3: for mask in [[0, 13, 10, 7], [4, 1, 14, 11], [8, 5, 2, 15], [12, 9, 6, 3]] do

▷ For indices of every column after ShiftRows
4: for ct, faulty ct in cts, faulty cts do
5: key set← [{}, {}, {}, {}] ▷ For every ciphertext pair
6: for ε in {00, . . . , FF} do ▷ For possible faults that affected the column
7: for coeffs in [[02, 01, 01, 03], [03, 02, 01, 01], [01, 03, 02, 01], [01, 01, 03, 02]] do
8: for i in {0, 1, 2, 3} do
9: c← coeffs[i]

10: ct byte← ct[mask[i]]
11: faulty byte← faulty ct[mask[i]]
12: key byte← {k ∈ GF (28) : ε•c = s−1(k⊕faulty byte)⊕s−1(k⊕ct byte)}
13: key set[i]← key set[i] ∪ key byte
14: end for
15: end for
16: end for
17: keys← [key, k0, k1, k2, k3] : key ∈ keys, kj ∈ key set[j], j ∈ 0, . . . , 3

▷ Extend values in keys by all combinations of key’s bytes in key set
18: end for
19: end for
20: return ShiftRows(keys[0]) ▷ Arrange the bytes in the correct order
21: end procedure

limit the input size. An example of such function is strncpy().
Nashimoto et al. used clock glitching fault injection technique to insert faults into strncpy()

function that was running on an 8-bit ATmega163. They were targeting instruction in a for loop
that held the number of bytes to be written into a buffer. By skipping the decrement operation
of the mentioned variable five times, they were able to write five extra bytes out of the buffer.
The caused buffer overflow allowed them to hijack the program flow. They also successfully
performed the attack on a 32-bit ARM Cortex-M0+ microcontroller. [28]

1.3 Hardware prerequisites
In this section, we briefly describe some of the hardware terms that are mentioned later in this
work.

Field Programmable Gate Array (FPGA) is a semiconductor device that can be repro-
grammed after manufacturing. This is possible because it consists of configurable logic blocks
and programmable interconnects.

Block RAM (BRAM) is a type of memory resource in FPGAs. BRAM is a large chunk of
memory that is suitable for storing a few kilobytes of data. [35]

Advanced Microcontroller Bus Architecture Advanced eXtensible Interface
(AMBA AXI) is a transaction-based protocol with independent read and write channels. [36]

Serial Serial is an interface that transfers bits in series, or in other words, bit by bit. [37]
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Universal Asynchronous Receiver Transmitter (UART) is an integrated circuit that han-
dles asynchronous transmission. “Asynchronous serial data is usually sent one binary word
at a time. Each is accompanied by start and stop bits that define the beginning and end of
a word”. [37]

Serial Peripheral Interface (SPI) uses three wires for communication. Two of them are used
for data transmission, and the last determines with which slave is a master communicat-
ing. [37]

I2C (I2C) is two wire interface. One wire is used for the clock signal and the other is used for
sending data. [37]

Joint Test Action Group (JTAG) interface is used for circuit testing. It contains five signals,
two of which are used for data transmission. [37]

Smart card interfaces can be contactless or with contacts. Smart cards might have an ISO
7816 interface with contacts or a contactless ISO 14443 interface. [38]

1.4 Existing fault injection solutions
Here is given a brief overview of how a typical voltage and clock fault injection tool functions.
Some fault injection techniques, such as clock glitching or voltage glitching, require that the
glitch is inserted at a specific time in the execution of a program. One possible way to insert a
glitch at a specific time in the code execution is to wait for the reception of a trigger event. For
example, a logic level change of the target device’s output or a specific character received via
a communication interface. Then a given number of target’s clock cycles and an optional finer
offset later a glitch is inserted.

Another important factor is the duration of the glitch. Sometimes multiple glitches have to
be inserted for a successful fault injection attack. In that case, it is desirable to be able to control
each delay between inserted glitches and the length of each glitch individually.

A comparison of fault injection capabilities of various solutions can be done based on the
variety and flexibility of trigger mechanisms, glitch offset range and resolution, glitch width range
and resolution, a maximum count of inserted glitches and a voltage fault injection mechanism.
Then there are features for controlling a target device. These can include, but are not limited
to, target clock frequency generation range, communication with the target device, and ability
to program the target device.

1.4.1 NewAE ChipWhisperer
O’Flynn created an open source side-channel analysis platform that is capable of clock glitch-
ing and power trace capture. The original ChipWhisperer’s reference implementation runs on
a ZTEX Spartan 6 LX25 FPGA Module, but it can be programmed into the control FPGA on
SAKURA-G or SASEBO-W platform. The ChipWhisperer’s FPGA design is modular. Mod-
ularity is achieved by connecting all blocks, such as a glitch generator or a trigger unit, to a
central register controller. [17]

The original ChipWhisperer generates clock glitches by performing XOR or OR logical op-
eration of the clock signal with a glitch signal. The glitch width is controlled by shifting the
phase of the glitch signal and changing its delay. The original ChipWhisperer tool cannot insert
voltage glitches. [17]

O’Flynn founded in 2013 a NewAE Technology Inc. company [39] that manufactures a
product line of side-channel power analysis and fault injection devices named ChipWhisperer.
The company designed four ChipWhisperer devices: ChipWhisperer-Nano, ChipWhisperer-Lite,
ChipWhisperer-Pro, and ChipWhisperer-Husky. These tools are capable of voltage glitching
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and power trace capture, and all of them, except for the ChipWhisperer-Nano, are also capa-
ble of clock glitching. The voltage glitches are inserted with a crowbar circuit on all of the
platforms. [40]

ChipWhisperer-Nano is a low-cost platform that is mainly intended for side-channel power
analysis. The platform is based on a microcontroller that handles communication with a target
device and voltage glitch insertion. The microcontroller is used instead of an FPGA to reduce
the cost of the platform. The resolution of glitch width and glitch offset is about 8.3 ns, but it
suffers with high jitter. The ChipWhisperer-Nano is not capable of measuring the offset in terms
of the target’s clock cycles. [40, 41]

Both ChipWhisperer-Lite and ChipWhisperer-Pro upgraded their platform from a microcon-
troller to an FPGA. That allows them to generate almost any target clock frequency, measure
glitch offset in the target’s clock cycles, and perform voltage and clock glitching with sub 1 ns
resolution. [40, 42, 43]

ChipWhisperer-Husky is the successor to ChipWhisperer-Lite. The improvements include
a higher resolution of the glitch offset and the glitch width. The achievable glitch resolu-
tion is 833 ps. ChipWhisperer-Husky also introduces an option to insert multiple independent
glitches. [44]

1.4.2 Tools by Riscure
Riscure is another company that provides voltage glitching tools. Their FPGA-based tool named
Spider is capable of generating arbitrary waveforms with 4 ns resolution. The spider supports
SPI, JTAG, I2C, and UART protocols, and has an SDK that supports Python, Java, and C. [45]

Another tool offered by Riscure is a VC glitcher. The VC glitcher is built on an FPGA
as well. The key feature of the VC glitcher is glitch insertion with a programmable amplitude
and duration. Their tool is capable of generating voltage patterns with 2 ns resolution and 500
samples in length. [46]

1.4.3 Generic Implementation Analysis Toolkit
This section is about GIAnT (Generic Implementation Analysis Toolkit) presented in an arti-
cle [47] and later improved as a part of a Ph.D. thesis [48]. GIAnT is a low-cost platform for
performing non-invasive fault injection. GIAnT is an open source platform that is built around
Spartan6 FPGA. The platform is capable of manipulating the target’s supply voltage with a
16-bit DAC (Digital-to-Analog Converter) with a 10 ns resolution, measuring the target’s power
consumption with an ADC (Analog-to-Digital Converter) with the same maximum sample rate
of 100 MHz and triggering the glitch by detecting patterns in the target’s power consumption.

GIAnT can communicate with smartcards via an ISO 14443 reader, an ISO 7816-compliant
smartcard interface, and with other targets via GPIO (General Purpose I/O) pins. GIAnT
communicates with the PC via USB with the help of a microcontroller, which is part of the
platform. GIAnT can be controlled with an API (Application Programming Interface) that is
implemented in C++.

GIAnT is capable of injecting faults with various fault injection techniques. It can perform
optical fault injection with a modified electronic flash of a photo-camera. The flash can be
replaced with a coil to inject faults by generating an electromagnetic field.

Another type of attack that GIAnT is capable of is clock glitching. The platform inserts
clock glitches by generating two clock signals with the second one being slightly offset from the
first one. Then a logical AND or a logical OR operation is performed on both clock signals to
shorten or lengthen the output clock signal. The operations on the clock signal are performed
with external circuitry outside of the FPGA. The resolution of a clock glitch is 1/256th of a clock
period, which is 10 ns.
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1.4.4 µ-Glitch hardware framework
Saß et al. [49] present a hardware framework named µ-Glitch capable of injecting multiple con-
secutive voltage faults. Their framework consists of “the Clock Generation Unit, the Host Com-
munication Unit, the I/O Buffer Unit, internal Configuration Registers, the Multiple Voltage
Fault Unit and the Serial Target I/O Unit” [49].

Their Multiple Fault Injection Unit consists of multiple Single Fault Units. Single Fault Units
take as an input clock, trigger, offset and width, and they have two outputs: Fault Done and
Fault Out. The former is asserted for one clock cycle after executing a fault attempt. The latter
indicates that a glitch should be inserted. [49]

In the Multiple Fault Injection Unit, Single Fault Units are chained together to provide the
capability of inserting multiple faults triggered by a single trigger event. The chaining is done
in such a way that the Fault Done signal of the previous Single Fault Unit is connected to the
trigger input of the next Single Fault Unit in the chain via a demultiplexer. Demultiplexers are
used to control the count of inserted faults. The demultiplexers pass the Fault Done signal to
another Single Fault Unit in the chain or interrupt the chain by not passing the Fault Done to
the next Single Fault Unit. If a demultiplexer interrupts the chain, it signals the end of all fault
injections instead. Fault Out signals are connected with OR logic to provide one output that
activates the crowbar circuit. [49]

1.4.5 Summary
The capabilities of each platform are summarized in table 1.2
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Table 1.2 Capabilities of fault injection tools

Platform name Offset resolution Glitch resolution Glitch types
CW-Nano [50] 8.3 ns (high jitter) 8.3 ns (high jitter) Crowbar
CW-Lite [50] 0.4% of clock cycle 0.4% of clock cycle Crowbar, clock
CW-Pro [50] 0.4% of clock cycle 0.4% of clock cycle Crowbar, clock
CW-Husky [50] 0.833–1.666 ns 0.833–1.666 ns Crowbar, clock
Spider [51] N/A 4 ns Voltage waveform
VC glitcher [46] N/A 2 ns Voltage waveform, clock
µ-Glitch [49] N/A N/A Crowbar
GIAnT [48, 47] 10 ns 10 ns (voltage) Voltage waveform, clock,

0.4% (clock) optical, electromagnetic

Platform name Multiple fault injection Target clock frequency
CW-Nano [50] No 3.75, 7.5, 15, 30 or 60 MHz
CW-Lite [50] Consecutive clock cycles 5–200 MHz
CW-Pro [50] Consecutive clock cycles 5–200 MHz
CW-Husky [52] Yes, same glitch type 10–350 MHz
Spider [45] N/A N/A
VC glitcher [46] N/A N/A
µ-Glitch [49] Yes N/A
GIAnT [47] Yes, (different glitch types — N/A) N/A

Platform name Trigger types
CW-Nano [50] Rising edge
CW-Lite [50] Rising edge
CW-Pro [50] Rising edge, analog pattern, UART, SPI
CW-Husky [50] Edge/level, analog pattern and threshold, UART, ARM trace
Spider [45] N/A
VC glitcher [46] N/A
µ-Glitch [49] N/A
GIAnT [47] Rising edge

Platform name Programming API Communication with target
CW-Nano [53, 50] Python UART
CW-Lite [53, 50] Python UART
CW-Pro [53, 50] Python UART
CW-Husky [53, 50] Python UART
Spider [45] Python, Java, C SPI, JTAG, I2C, UART
VC glitcher [46] N/A Smart card connector
µ-Glitch [49] N/A Serial
GIAnT [47] C++ Serial, ISO 7816, ISO 14443



Chapter 2

Design

In this chapter, we design the fault injection platform based on Cmod S7. We took into consid-
eration the features of the Cmod S7 during the design process of the fault injection platform.

Cmod S7 is a board with an FPGA designed for use with breadboards because it has 32
digital I/O pins at the bottom of the board. The FPGA on Cmod S7 is Xilinx Spartan-7. It
is also equipped with a PMOD (Peripheral Module) connector, which has 8 additional I/O pins
and 2 pairs of pins dedicated to ground and power delivery. Another feature of the CMod S7 is
a USB-UART bridge, which can be used for communication with a computer. [54]

This chapter is divided into three parts. First, we focus on the hardware design that is
implemented using the flexible logic inside of the FPGA. Then, we design the firmware that
controls the hardware. Lastly, we design an interface that runs on the computer. The interface
allows users of the platform to control the glitch parameters and retrieve the results in a simple
way.

2.1 Hardware design
The foundation of every platform is a well-designed hardware. The functional requirements for
the hardware are the following:

Capability to insert voltage glitches.

Ability to insert clock glitches.

Controllable glitch offset and delay.

Controllable glitch width.

Capability to trigger glitch insertion.

Generation of a clock for a target.

Interface for communication with a target device.

Adjustable glitch parameters from a computer.

2.1.1 Voltage glitch insertion
One of the requirements is the voltage glitching capability. The voltage glitch is inserted via a
crowbar circuit. The crowbar circuit can be driven by a single signal. Therefore, we need to

19
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design a mechanism to control the glitch signal. The signal can be set to high to activate a glitch
by driving a transistor in the crowbar circuit, or set to low to not insert a glitch.

The glitch insertion is also controlled by offset, delay, and width of the glitch. These param-
eters are described in the following subsections.

2.1.2 Clock glitch insertion
The clock has its own glitch insertion signal that can be enabled independently of the voltage
glitch insertion signal, but it is controlled by the same offset, delay, and width parameters. When
the clock glitch is enabled, it flips the value of the target clock signal by using the XOR operation
on the target clock signal.

2.1.3 Glitch offset
To be able to insert glitches precisely at the desired time, we decided to use two parameters:
glitch offset and glitch delay. The two parameters are used to enable long delays between a
trigger and an injected glitch and also to ease the synchronization of the glitch insertion with
the target’s clock for the user of the platform.

The glitch offset parameter determines how many target clock cycles it takes to insert a glitch.
The glitch offset is also synchronized with the target’s clock. That means that a fault injection
without using a glitch delay always activates at the rising edge of the target’s clock. This is
especially necessary for clock glitching, where it is desirable to have control over the glitch’s
position relative to a target clock signal.

The delay parameter is implemented in the same way as the glitch width, and for that reason,
it is described in the subsection 2.1.4 together with the glitch width.

2.1.4 Glitch width and glitch delay
We designed the hardware so that the glitch width and the glitch delay share the same hardware.
What differs between a glitch delay and a glitch width is another parameter named glitch type.
The glitch width and glitch delay parameters are stored as an array of integers. An additional
array of glitch-type variables specifies whether a glitch should be inserted and eventually what
type of glitch should be inserted. To unify the naming of the glitch widths and delays in the first
array, we call the array glitch duration array and the values in it glitch duration.

Storing both width and delay as a single variable together with a glitch type in a glitch
duration array has also an added benefit. By increasing the array size to more than two, our
design is capable of inserting multiple glitches in succession. For example, a multiple glitch
configuration would contain glitch durations in one array and alternating glitch-on and glitch-off
values in the second array.

The glitch type can also specify that both clock glitching and voltage glitching should be
active at the same time.

Figure 2.1 shows the difference between the glitch offset and the glitch duration. The reso-
lution of the offset is in target clock cycles and the resolution of the durations is in the FPGA’s
clock cycles. Alternatively, duration 1 and duration 2 could be denoted as the glitch delay and
the glitch width, respectively.

2.1.5 Target clock generation
The target clock is generated from the FPGA’s clock by dividing it. Doing it this way ensures
that its rising edges are synchronized with the FPGA’s clock. The downside of this design is
that the target clock frequency generator does not support fractional divisors. If we allow the
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Figure 2.1 Difference between glitch offset and glitch duration

generation of an arbitrary clock frequency of the target clock signal, the glitches would not always
be inserted at the same position in the target clock cycle.

2.1.6 Glitch trigger
The glitch is generally inserted relative to some reference point. The reference point can be an
event in the target device, such as a rising edge of an output signal.

We designed three trigger options:

Falling edge of the target reset signal.

Rising edge of the external trigger signal.

Manual trigger.

The falling edge of the target reset signal is useful in situations when the target runs an
algorithm after it is reset. The rising edge of an external trigger can be used in instances that
do not involve resetting the target device. Finally, the primary purpose of the manual trigger is
for testing.

The external trigger goes through two registers in a series before its input is used in further
logic. This is because of a clock domain crossing that exists between the FPGA’s clock and the
microcontroller’s clock.

2.1.7 Communication interfaces
We chose the UART interface as the communication interface between the FPGA and the PC
since the CMod S7 comes with a USB-UART bridge.

For data transfer between the FPGA and the target, we also used a UART interface. Hence,
the FPGA design contains two UART interfaces.

2.1.8 Adjustable glitch parameters
To make the glitch parameters configurable, the glitch settings must be stored in configuration
registers, which are accessible from a PC. In our design, a microprocessor receives commands
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from the USB-UART connection to the PC and then configures the configuration registers via
AXI.

The AXI is inserted between the microprocessor and the configuration registers together
with the fault injection hardware to make the glitch insertion circuitry independent from other
components of the fault injection platform, i.e. the microprocessor and the communication
interfaces. We selected the AXI because of the support provided by the tools, which we name in
the implementation section.

2.2 Firmware design
Because our design uses a microprocessor to transfer data between the UART interfaces and
the fault injection peripheral, we need to design firmware for the microprocessor as well. The
functional firmware requirements are as follows:

Capability to forward data from the target device to the PC.

Ability to forward data from the PC to the target device.

Capability to receive commands from the computer.

We use interrupts to copy the input from both UART interfaces into two circular buffers. The
interrupts are used to avoid missing data transmissions while the processor is executing other
code. The main program routine then performs the necessary operations on the received data.
Sending data is also handled via interrupts, and there are two circular buffers for sending data
as well.

The commands can vary in length and content. Some of them might set glitch parameters,
and others might have data that need to be forwarded to the target. Every command starts with
a one-byte header, which contains a command identifier. The command identifier determines
how many bytes of data are there to read, what the data represent, and what action should be
performed on the received data.

No response is sent back from the FPGA after receiving the data or executing a command
unless an error occurs. The data received from the target device are sent immediately, as well as
any error messages.

2.3 Software design
Another part of the fault injection platform is the software, which runs on a computer. The
software offers an easy-to-use programming interface, and servers as an abstraction from data
encoding. The software requirements include the following:

Capability to set control the glitch parameters.

Capability to receive data from the target.

We designed the software to be a counterpart of the firmware. The software includes control
over the glitch parameters and the configuration of both UART interfaces. The software converts
function calls into commands that are then encoded for transfer and sent over the USB-UART
connection.



Chapter 3

Implementation

In this chapter, we implement the designed hardware, firmware, and software. We also write
about the technologies we used during the implementation.

3.1 Hardware implementation
The hardware description is written in the Verilog hardware description language. We chose
Verilog because of our prior experience with it and because it is supported by Vivado [55] design
software for FPGAs, which we used to implement the hardware.

3.1.1 Hardware overview
The majority of the hardware blocks at the highest level of the design are connected via AXI4-
Lite, which is a subset of AXI4. In this work, we will refer to the AXI4-Lite as the AXI for
brevity.

The hardware consists of a MicroBlaze processor, glitch peripheral, GPIO AXI peripheral,
two UART interfaces, Clocking Wizard, and other components that are required by the ones
mentioned above, such as memory, AXI interrupt controller, and AXI interconnect.

We use a 32-bit MicroBlaze processor. MicroBlaze [56] is a RISC (Reduced Instruction Set
Computer) processor, is synthesizable on an FPGA, and supports AXI. We chose MicroBlaze
because it is supported by Vivado design tool, and it supports AXI, which can be used to connect
it to other components. The processor has 64 KB of memory at its disposal. Originally it was
32 KB large, but the complete firmware couldn’t fit in it.

A Clocking Wizard block generates a 100 MHz clock that drives every block in the design.
The frequency of this generated clock also determines the glitch resolution.

There are two UART 16650 interfaces with configurable baud rates. One of them is used for
communication with a computer, and the other for communication with a target device. The
design also contains one GPIO block that controls a programming signal from the FPGA to the
target. All three of these components are connected to the Microblaze via an AXI interconnect.

Last, a glitch IP (Intellectual Property)1 is connected to MicroBlaze via an AXI. The periph-
eral is described in detail in the following section.

The top level diagram of the hardware is shown in figure 3.1. The glitch IP is highlighted in
green.

1Intellectual property is a term used for reusable units.
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3.1.2 Glitch IP
The glitch IP is a standalone unit that can be connected to existing designs via AXI. This
peripheral is responsible for glitch insertion, target clock generation, and trigger event processing.
It is divided into three modules:

AXI module that also contains configuration registers.

Glitch module that is responsible for glitching.

FIFO adapter module that removes the need for the glitch module to know the exact addresses
of glitch durations and glitch types.

The glitch parameters are transferred over the AXI to the configuration registers, and the
values from the status registers are sent back. In addition to the AXI, the glitch IP has other
inputs and outputs:

External trigger input signal.

Target clock output signal.

Glitch output signal that controls the crowbar circuit.

Inverted target reset output signal.

The modules of the glitch IP are parameterized to provide a good foundation for possible
future modifications of the glitch module. The maximum glitch duration, the count of glitch
signals, the number of trigger inputs, and the maximum glitch count are all configurable using
parameters of the Verilog module.

3.1.3 AXI module
The AXI logic of this module was generated with a Vivado IP creator. Then, we modified the
AXI module to output glitch parameters to the glitch module and to the FIFO adapter. The
glitch parameters are the following:

Offset.

Flags.

Divisor.

Glitch count.

Glitch array data that contain glitch duration and glitch type pairs.

We also added a three port memory to the configuration registers for storing thousands of
glitch duration and glitch type pairs, which are used to insert multiple glitches. The three port
memory was implemented to use FPGA’s memory resources efficiently.
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3.1.4 Three port memory
We implemented the three port memory so that it might be instantiated as BRAM, or in other
words BRAM can be inferred from the code. An option to infer BRAM from the code is better
than forced BRAM because the synthesis tools can choose the optimal way to generate it in the
hardware. Also, the code is platform independent since it does not contain anything platform
specific.

However, BRAM has some limitations. BRAM on the FPGA of CMod S7 supports up to
three ports, but we needed three ports. We solved this by combining two memories together.
Since we needed only one write port and two read ports, we write the same data to both memories
and use the second port of every memory for reading.

BRAM inferring did not work, when we added byte write enables that are required by the
AXI protocol. We had to simulate a byte write enable by reading the current value from one of
the memories before writing. Another problem that we had to deal with was a mismatch between
data sizes that are transferred over AXI and data sizes that are read by the glitch module through
the FIFO adapter. We solved it by changing one of the memories to an asymmetric type. That
means that the widths of the ports are different.

The inputs and outputs of the three port memory are shown in figure 3.2.

Figure 3.2 Three port memory I/O

3.1.4.1 True dual port memory
True dual port memory module is part of the three port memory and contains Verilog code for
inferring true dual port BRAM. The memory is called true dual port because it contains two
independent ports that can be used to read data from the memory and to write data to the
memory.

One port of true dual port memory is used for getting the data requested via AXI and the
other port is used for simulating byte write enable for this memory and the asymmetric memory
since they contain the same data, and additionally, asymmetric memory does not support two
read ports.

3.1.4.2 Asymmetric memory
Asymmetric memory is the second submodule of the three port memory. It contains a code
for inferring asymmetric BRAM. It has one write port and one read port, which might be of a
different width than the write port. The different read port widths are needed because the glitch
duration and glitch type pair may not have the same width as the width of the data on the AXI
bus, which are 32 bits wide.
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Figure 3.3 FIFO adapter IO

3.1.5 FIFO adapter
We opted for inserting an adapter between the three port memory and the glitch module to
abstract the location of data in the memory from the glitch module. The implementation of
the FIFO adapter does not add any additional delay to the path between the memory and the
glitch module because an increase in the read latency of the glitch parameters would not allow
the MGIC (Multiple Glitch Insertion Controller), which is part of the glitch module, to function
properly.

The input and output signals of these modules are shown in figure 3.3.When the next is set
high, FIFO retrieves new data from the asymmetric port of the three port memory, increments
the internally stored memory address, and sends the fetched data. When no new data are
available for reading, the FIFO asserts the empty signal. The availability of data is recognized
by comparing an address with the glitch count value. The glitch count indicates how many
records should be read from the memory. Therefore, it also determines the number of inserted
glitches. Lastly, the reset signal sets the internally stored address to zero.

3.1.6 Glitch module
The glitch module is a wrapper for a group of modules that together perform all operations
related to glitching, including trigger signal processing and clock generation. The connection of
the modules is shown in figure 3.4.

Here we list the most important modules contained in the glitch module:

Target clock generator — Generates the target clock signal.

Glitch trigger module — Controls, when the glitch insertion starts.

Offset countdown module — Delays the glitch insertion by a fixed number of the target clock
cycles.

Multiple glitch insertion controller (MGIC) — Controls durations and types of the injected
glitches.

3.1.6.1 Flags splitting module
The flags splitting module splits data from a flags configuration register into individual signals.
Therefore, this module defines what bits of the flags mean. The meaning of the individual bits
is shown in table 3.1.
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Table 3.1 Meaning of flags bits

Bit Flag Meaning
0 skip offset When set to high, glitch insertion skips offset countdown.
2 manual trigger Triggers glitch immediately.
3 reset trigger Starts glitching after reset is set to low.
4 external trigger Allows an external signal to trigger glitching.

30 target reset Controls the output of the reset signal to the target.
31 glitch enable Enables glitch injection. It must be set low after an insertion.

3.1.6.2 Target clock generator module
This module generates a target clock signal by dividing the main 100 MHz clock that is generated
by the Clocking Wizard. Divisor input determines how many clock cycles of the main clock a
half-period of the target clock lasts. This module also generates a signal one clock cycle before
the rising edge of the target clock to allow other modules to synchronize the glitch insertion with
the target clock.

The inputs and outputs are shown in figure 3.5, and the clock generator state diagram is
shown in figure 3.6.

Figure 3.5 Target clock generator I/O

Figure 3.6 Target clock generator state
machine

3.1.6.3 Target reset module
The value of target reset is controlled by a single bit from the flags register, which is denoted
as the target reset flag. When the reset flag transitions to low, the reset signal does too, but
the transition of the reset signal from high to low only occurs on the rising edges of the target
clock to ensure that the trigger signal, to which the target reset is connected, always occurs at
the same time relative to the target clock.

3.1.6.4 Glitch trigger module
The glitch trigger component evaluates the state of the flags register and trigger signals, and
outputs a single trigger signal enables offset countdown module or MGIC, if the offset countdown
is skipped. The trigger is set high when an input trigger signal is set high, a corresponding flag
is asserted, and the glitching is enabled. Only one of the trigger signals with its enable signal
has to be set high to assert the trigger signal.
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3.1.6.5 Offset countdown module
The offset countdown module delays the glitch insertion by a number of target clock cycles,
which is stored in a glitch offset configuration register. The countdown starts when the trigger
signal from the glitch trigger module is asserted. This module can be skipped during a glitch
insertion by setting a flag in a configuration register. After the countdown has finished, the offset
countdown done signal is set high.

The module’s I/O and its state diagram are shown in figures 3.7 and 3.8 respectively.

Figure 3.7 Offset countdown I/O

Figure 3.8 Offset countdown state diagram

3.1.6.6 Multiple glitch insertion controller
Multiple glitch insertion controller manages when glitches are inserted and what types of glitches
are injected. This module does not handle how glitches are inserted, but it generates enable
signals for the modules that do the actual glitching.

The glitching starts if one of two conditions is satisfied. Either the offset countdown done is
set high, or a trigger event is received, and the skip offset is asserted via its flag bit.

First, we describe the general principle behind the MGIC. The controller receives glitch
duration and glitch type pairs from the FIFO adapter, and outputs the received glitch type for
the number of clock cycles specified by the glitch duration. After the duration has passed, another
glitch type is output for a new glitch duration that is again received from the FIFO. This continues
until the FIFO asserts the empty signal. After that, a MGIC done signal is set high to signal
that the glitching is completed.

Now we write about the MGIC implementation in greater detail. This module supports
glitch durations of one clock cycle and longer. The upper limit is given by the width of the
glitch duration input bus. Since the memory behind the FIFO adapter has a one clock-cycle
read latency, we fetch the glitch parameter pairs before the previous glitch duration passes.

When the glitching starts, the second glitch type and glitch duration pair is requested from
the FIFO by raising the next signal. The second pair is requested before a glitch is inserted
because there would not be enough time to insert the second glitch on time if the first glitch
duration was a single clock cycle.

After the second glitch pair is requested, a first glitch is inserted for the number of FPGA’s
clock cycles specified by the glitch duration. In the last cycle of a glitch, another pair of parame-
ters is requested. This continues until the FIFO adapter asserts empty signal, which means that
all glitches were inserted. After that, all glitch signals are cleared and a MGIC done signal is set
high, and written into a status register in a separate module.

The MGIC introduces a two-cycle delay on the glitch type bus. Due to this, the target clock
signal has to be also delayed by two clock cycles to preserve their relative offset. The target clock
is delayed even when the glitching is not active to keep the period of the target clock stable.
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Figure 3.9 Multiple glitch insertion controller I/O

To better vizualize the function of this module, we provide an I/O diagram in figure 3.9, and
the state diagram in figure 3.10

3.1.6.7 Register row module
We used this module to introduce signal delay for synchronization purposes of a target clock and
glitch signals and to prevent clock domain crossing issues when reading trigger signals from the
target.

3.1.6.8 Clock glitch module
The clock glitch module performs the XOR operation of a target clock signal and a glitch signal,
which is generated by the MGIC. The clock glitch is controlled by the lowest bit of the glitch
signal.

3.1.6.9 Status register module
The status register gives feedback on the progress of the glitch insertion process to the user. It
tracks the following events and signal values:

External trigger values.

Glitch triggered event.

End of the offset countdown.

End of the whole glitch insertion process, i.e. the moment after all glitches are inserted.

Target reset signal value.

The external trigger values are cleared after the glitch insertion is disabled because otherwise
short signals could easily be missed when reading the value of the status register.

3.2 Firmware implementation
The role of the firmware is to provide an interface through which the platform can be config-
ured. The firmware receives commands from a computer, and then it either configures the glitch
insertion parameters or interacts with the target.

We wrote the firmware in C programming language because it is supported by the Vitis [57]
integrated development environment. We used Vitis for firmware development and for FPGA
programming.
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Figure 3.10 Multiple glitch insertion controller state diagram
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3.2.1 Commands
Communication between the computer and the FPGA is command-based. The PC sends a
command, and the FPGA performs an operation defined by the command and optionally sends
some data back. Commands are identified by the first byte of a transfer. The length of the
command’s content depends on the command. The available commands are:

Forward data that forwards the received data to the target.

Set offset that writes the value to the glitch offset register in the glitch IP.

Set flags command that sets glitch flags.

Set divisor command sets the ratio between the target clock and the FPGA’s 100 MHz clock.
The sent value defines how many clock cycles a target’s clock half-period lasts.

Set glitch count that determines how many elements are valid in the glitch array.

Set glitch array that overwrites the glitch type and the glitch duration pairs from a specified
offset.

Get glitch status that returns the content of the status register in the glitch IP.

Get info command returns the platform’s hardware capabilities such as maximum glitch
count.

Read register reads any register in the glitch IP.

Write register writes to any register in the glitch IP.

Enter programming mode command starts infinite forwarding of data between the PC and
the target without the need for the send data command, and asserts the programming signal.

Set PC UART baud rate changes the baud rate of the UART that is connected to the
computer.

Set target UART baud rate changes the baud rate of the target facing UART.

The data that are received from the target, are immediately forwarded to the PC.
Upon receiving an invalid message, the program execution stops in order not to cause any

harm to the target by executing invalid commands. The platform has to be reset by pressing
BTN0 on Cmod S7.

3.2.2 AXI glitch
Constants such as glitch type width, glitch delay width, and maximum glitch count are defined as
macros. When the hardware configuration is changed, these values have to be manually updated
to correspond with the hardware’s capabilities.

3.2.3 Circular buffer
We implemented a circular buffer to store data received over UART in an interrupt service
routine. A circular buffer is a fixed-size structure that maintains a pointer to the start and the
end of the stored data. Retrieving data moves the pointer pointing at the start of the data and
writing moves the second pointer.

Data from our implementation of the circular buffer are obtained by requesting a pointer
to the start of the data. After the required operation is performed on the data, the data are
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removed from the buffer by calling a function that moves the start of the buffer. The two-step
process is used to avoid creating unnecessary copies of the data that could be used directly from
the buffer.

3.2.4 UART
Both UART interfaces are configured to eight bits of data length with one stop bit and without
parity. Also, they feature 16 character transmit and receive FIFOs. The default baud rate of
both UART interfaces is 9600 bauds. The baud rate can be changed by sending a designated
command to the FPGA.

The two UART interfaces are interrupt-driven. We set up interrupt service routines to store
the received data in circular buffers. Each UART has its own buffer. The UARTs can transmit
data from the circular buffers, or a different buffer can be specified.

3.3 Software implementation
We created an interface for communication with the FPGA in the Python programming lan-
guage. We implemented the interface in the form of a Python class that stores the hardware
configuration and provides abstraction from the communication protocol between the computer
and the FPGA. The software includes functions that send all of the commands mentioned in the
firmware implementation section 3.2.1. In addition, there is a function for reading data from the
UART interface, and there are also some other functions that improve the code readability and
user experience.

We implemented the software in such a way that it does not abstract from the inner workings
of the fault injection platform. Listing 3.1 shows an example of how to insert a clock glitch with
the implemented interface. In the example, the clock glitch is inserted with offset of one and
duration of two and is triggered by an external trigger.

Code listing 3.1 Clock glitch insertion example using our platform

dev. set_offset (1)
dev. set_glitch_count (1)
dev. set_glitch_array ([( dev. GLITCH_CLOCK , 2)], 0)
dev. set_flags (dev. FLAG_GLITCH_ENABLE |

dev. FLAG_FIRST_EXTERNAL_TRIGGER )

We used the pySerial module to handle communication over the serial line. pySerial [58] is
a Python module for accessing serial ports. The software also provides the option to log the
communication and the option to send all data in one burst.

We also created a file with examples that show how to use the platform. The examples are also
in Python. The examples include clock glitching, voltage glitching, various trigger possibilities,
and multiple fault injection. The examples are implemented in file Examples.ipynb.
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Hardware testing

Due to the complexity of the hardware, we created simulation testbenches for every module
in the glitch IP. We wrote the testbenches in Verilog. The testbenches cover all of the glitch
peripheral’s Verilog modules. It was important to catch hardware design and implementation
errors before working on the software because it decreased the time spent debugging the code.

We also checked the glitch output of the implemented fault injection platform with an oscillo-
scope. Figure 4.1 shows three clock and voltage glitches with widths of 10 ns, 50 ns, and 100 ns.
The delays between glitches were 10 ns, and 50 ns. Figure 4.2 shows 10 clock glitches and 10
voltages glitches with duration of 10 ns and delays of 10 ns synchronized with target clock rising
edge. Lastly, figure 4.3 shows also 10 glitches but with a greater magnification.

In all three figures, channel one is target clock, channel two is trigger, and channel three
is glitch signal, which is connected to the MOSFET of the crowbar circuit. Channel four is
unimportant. All shown glitches were triggered by the trigger signal from a target.

Figure 4.1 10 ns, 50 ns and 100 ns clock and voltage glitches inserted using our platform
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Figure 4.2 10 10 ns clock and voltage glitches inserted using our platform

Figure 4.3 Closeup of 10 10 ns clock and voltage glitches inserted using our platform
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Fault injection attacks
implementation and results

First, we describe the target device. Then, we write about the attacks that we carried out on
the AES cipher. We performed two attacks on the AES using our fault injection platform and
one using the ChipWhisperer-Nano for comparison.

In this chapter, we use the term glitch delay to refer to a delay in FPGA’s clock cycles before
a glitch is inserted, and the term glitch width to refer to a duration of the glitch. However, both
are implemented as a glitch duration in the hardware. We write about the glitch duration in
subsection 2.1.4.

5.1 Target device
An ATmega8L was chosen as the target of the attacks carried out with our fault injection
platform. It was chosen because the AES implementation for the microcontroller was provided
by the supervisor. ATmega8L [59] is an 8-bit microcontroller built on top of an AVR RISC
architecture.

ATmega8L microcontroller has some features that we used to carry out the attacks. We
used a feature of ATmega8L to run off an external clock signal to synchronize glitches with the
target’s clock. Also, we used the ATmega8L’s external reset as another type of synchronization
between the target and the fault injection device.

Brown-out detection of the microcontroller was turned off prior to carrying out the attacks.
The target clock frequency of the microcontroller was 1 MHz. The target clock signal was
generated by our fault injection platform.

We used the same plaintext and ciphertext for all attacks using our platform. The plain-
text encrypted by the AES was in the hexadecimal notation 50DBE8E2 4B20B170 8E1EFBE7
B31FDADB. 123456AB 254600FF DEADBEEF 00CAFE34 was the key that we used to encrypt
the plaintext.

5.2 Wiring of our platform
The wiring consisted of the Cmod S7 development board, a perfboard with ATmega8L, a crowbar
circuit, and a PMOD header. The perfboard was provided by the supervisor. However, we added
connections for programming and external trigger signals.

37
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We routed the I/O pins of the hardware implemented on Cmod S7 to its PMOD header. The
I/O pins were assigned as follows:

J2 (Pin 1) — Sout, data to the microcontroller.

H2 (Pin 2) — Sin, data from the microcontoller.

H4 (Pin 3) — Reset signal.

F3 (Pin 4) — Target clock signal.

Pin 5 — GND.

Pin 6 — VCC.

H3 (Pin 7) — Trigger signal.

H1 (Pin 8) — Programming signal.

G1 (Pin 9) — Unassigned.

F4 (Pin 10) — Glitch signal.

Pin 11 — GND.

Pin 12 — VCC.

The PMOD header of Cmod S7 was connected to a PMOD header on the perfboard. A circuit
diagram of the perfboard is shown in figure 5.1. Q1 denotes an N-channel BS170 MOSFET, and
RV1 is a 200 Ω multi-turn trimmer potentiometer, or to be more exact, M64Y201KB40 made
by Vishay. We set the resistance RAB of the trimmer RV1 to 150 Ω, and the resistance RBC to
50 Ω. We started with these resistances, and we found that voltage glitching was successful with
them. We did not experiment with adjusting the resistances.

Figure 5.2 shows Cmod S7 that is connected to the perfboard with ATmega8L, which is the
28-pin package in the figure. MOSFET, trimmer, and some pins for observing signals with an
oscilloscope are also visible.

5.3 Attack on AES between the 8th and the 9th
MixColumns using our platform

This section contains the implementation of the attack and the results of the attack on AES by
injecting a fault between the 8th and the 9th MixColumns.

5.3.1 Implementation
This attack requires multiple pairs of ciphertexts and erroneous ciphertexts. Erroneous cipher-
texts are obtained by injecting a fault between the 8th MixColumns and the 9th MixColumns.

To insert glitches at a specific point in the AES execution, we reset the target device before
every fault injection. Then, we injected the glitch after a certain number of target clock cycles
after setting the target reset signal low.

Firstly, we had to determine when to insert glitches. We obtained the approximate offsets
from the power trace of the ATmega8L by inserting glitches at various offsets and observing the
power trace. The offset specified after how many target clock cycles from lowering the target reset
signal a glitch was inserted. The power trace is shown in channel four in figure 5.3. We assumed
that the 10 peaks in figure 5.3 corresponded to 10 AES rounds and chose offsets based on that
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Figure 5.1 Circuit diagram of the perfboard with ATmega8L

assumption. Further investigation was not necessary because this attack does not require precise
timing, and we confirmed the correctness of our assumption by the characteristic placement of
the four faults in the faulty ciphertexts and successfully carrying out the attack.

We tried voltage glitching and clock glitching to induce faults between the 8th and the 9th
MixColumns of the AES. In both cases, we injected faults at offset in range 12700–13800 since this
range corresponded to the 8th and 9th peak in power consumption in the power trace mentioned
above. While voltage glitching, we tried different widths of the glitch in increments of 1 µs, but
we kept the glitch delay at zero. We inserted clock glitches with the shortest possible width of
10 ns. We tried locations near target clock edges by adjusting the delay of the glitch. Since the
target clock frequency was 1 MHz. Glitches with delays from 0 to 49 were inserted when the
target clock signal was set high, and the glitches with delays from 50 to 99 were injected when
the target clock signal was set low. The code for injecting faults is in file fi_cmod.ipynb.

We implemented algorithm 1.5 in Python without modification for the attack with injected
faults between the 8th and the 9th MixColumns to recover the last round key. The algorithm
is implemented in file dfa_89.ipynb. Also, we implemented functions to filter out ciphertexts
that did not have four faults in the required bytes. These functions are implemented in file
aes_masks. This file also contains the definitions of the required positions of faulty bytes in
the ciphertexts. Finally, we implemented the inverse key expansion algorithm in a separate file
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Figure 5.2 Picture of Cmod S7 connected to the perfboard with ATmega8L

Figure 5.3 AES power trace

aes_inverse_key_expansion.ipynb, so it can be reused for the other attack on the AES.
Then, we performed the attack with the described glitch settings and the implemented algo-

rithms.

5.3.2 Results
We injected 10 voltage glitches at each offset. In figure 5.4, the number of faulty ciphertexts
is shown based on the offset and the affected column of the AES state. Each unit of offset
corresponds to one target clock cycle, which was 1 µs long. Figure 5.5 shows how the number
of recovered faulty ciphertexts changed with the width of the voltage glitch. One unit of width
and glitch delay is equal to 10 ns. Voltage glitching was the most effective with the glitch width
set to 1 µs or 2 µs.

We inserted 8 faults when using clock glitching. Figure 5.6 shows how the number of erroneous
ciphertexts changes with the glitch offset. The ciphertexts were divided into groups based on
the column into which a fault was inserted. The effects of the delay of the glitch on the number
of induced faults are shown in figure 5.7. The best clock glitching location is right before and
right after the rising edge of the target clock.
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Figure 5.4 Voltage glitching faults by offset obtained by glitching with widths from 100 to 1000 in
increments of 100 using our platform

Figure 5.5 Voltage glitching faults by width obtained by glitching with offsets from 12700 to 13800
using our platform
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Figure 5.6 Clock glitching faults by offset obtained by glitching with delays of 1, 2, 48, 49, 51, 52,
98, and 99 using our platform

Figure 5.7 Clock glitching faults by delay obtained by glitching with offsets from 12700 to 13800
using our platform



Attack on AES between the 7th and the 8th MixColumns 43

The ciphertexts obtained via voltage glitching are available in file aes_voltage_reset_89.npy
and the data from the graph are stored in aes_voltage_reset_89_settings.npy. The file with the
erroneous ciphertexts obtained via clock glitching is named aes_clock_reset_89.npy, and the file
that contains the data on the success rate of clock glitching is aes_clock_reset_89_settings.npy.

We ran the key recovery algorithm for the ciphertext pairs obtained by voltage glitching and
clock glitching. In both cases, we were able to successfully recover the AES encryption key after
the inverse expansion of the last round key, which was returned by the implemented key recovery
algorithm. The value of the recovered key was 123456AB 254600FF DEADBEEF 00CAFE34.

5.4 Attack on AES between the 7th and the 8th
MixColumns using our platform

We also carried out attacks on the AES by injecting faults between the 7th and the 8th Mix-
Columns. We used only voltage glitching this time.

5.4.1 Implementation
We injected voltage glitches into every 10th offset from 11600 to 13000. The glitch delay was set
to zero or 50 and the widths of the glitches that we tried were 100, 200, 300, and 400 duration
units of our platform, which are equal to 10 ns. The glitch was triggered by the rising edge of
inverted target reset signal. We used our Python API to insert glitches with our platform. The
code for injecting faults is in file fi_cmod.ipynb.

We implemented algorithms 1.5, A.1, and 1.3, which was modified for the attack between
the 7th and the 8th MixColumns. They were implemented in Python and are located in the
files dfa_78_simple.ipynb, dfa_78_piret.ipynb, and dfa_78_dusart, respectively. We also imple-
mented algorithm A.2 to reduce the key space for algorithm A.1.

We used the implementation of algorithm 1.5 to find ciphertext pairs that would lead to
successful key recovery. To achieve this, we tried combinations of two of the obtained plaintext
and ciphertext pairs to recover the 10th round key. We search for combinations of two ciphertext
pairs because some erroneous ciphertexts could have a fault that could not be used to recover
the last round key.

If we get combinations of ciphertexts that led to a successful recovery from algorithm 1.5 in
dfa_78_simple.ipynb, we would only validate the implementations of algorithms A.2 and 1.5 by
executing them with the working combinations of ciphertext pairs.

The recovered last round keys had to go through an inverse key expansion, which was imple-
mented in aes_inverse_key_expansion.ipynb.

5.4.2 Results
We were able to recover the encryption key 123456AB 254600FF DEADBEEF 00CAFE34 that
matched the encryption key on the target. Table 5.1 contains 10 ciphertext pairs that lead
to a successful key recovery using algorithm 1.5. All obtained erroneous ciphertexts are avail-
able in file aes_voltage_reset_78_cts.npy. We also collected data on the glitching success rate,
which contain counts of faulty ciphertexts per glitch offset and glitch width. They are stored in
aes_voltage_reset_78_settings.npy.

The implementation of algorithm A.1 with the key space reduction algorithm A.2 needed the
first two pairs of ciphertexts from table 5.1 to recover the last round key. After executing inverse
key expansion algorithm, the encryption key was recovered.

Finally, the implementation of algorithm 1.3 needed all 10 ciphertext pairs listed in table 5.1
to recover the last round key.
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Table 5.1 Pairs of correct and erroneous ciphertexts obtained by injecting faults between the 7th and
the 8th MixColumns

Correct ciphertexts Erroneous ciphertexts
EA5B2DC7 D39C2B38 170AC892 24539B1F 7A9FD066 4ED51722 61E72800 1FC89FE2
EA5B2DC7 D39C2B38 170AC892 24539B1F A7254265 89D1E066 E26F84AE 9FBD2770
EA5B2DC7 D39C2B38 170AC892 24539B1F 52F85501 8B4374C5 1AAB9A34 02010748
EA5B2DC7 D39C2B38 170AC892 24539B1F BAC9F0C6 B08D35FB D9D542EC 7177A4C0
EA5B2DC7 D39C2B38 170AC892 24539B1F 29BFFF75 B1223E8A B24411CC D451D53C
EA5B2DC7 D39C2B38 170AC892 24539B1F 42D4395B 380FC4F3 B0B260DE 1534C982
EA5B2DC7 D39C2B38 170AC892 24539B1F BF36E1B0 0C25CE24 03F6D19E DEB16C5E
EA5B2DC7 D39C2B38 170AC892 24539B1F B20F9734 D93D8166 2928A763 8D585C25
EA5B2DC7 D39C2B38 170AC892 24539B1F 19FDD1EC 636C19CA 92022F80 90C033CD
EA5B2DC7 D39C2B38 170AC892 24539B1F 2F78A85E B15CA2C3 CB52208C F26BBC1A

5.5 Attack on AES between the 8th and the 9th
MixColumns using ChipWhisperer-Nano

We also performed the attack on AES that exploits faults between the 8th and the 9th Mix-
Columns with ChipWhisperer-Nano.

5.5.1 Implementation
We carried out the attack with ChipWhisperer-Nano on a different target. The target was the
built-in STM32F303F4P6. The firmware version of ChipWhisperer-Nano was 0.65.0. The AES
key on the target was 01020304 05060708 090A0B0C 0D0E0F10, and the plaintext was equal to
00000000 00000000 00000000 00000000.

Before the attack, we found that the glitch settings with repeat of 3 with combination of
30 MHz target clock frequency induced the faults the most reliably. The repeat is equal to glitch
duration setting on our platform. We obtained the offsets, which correspond to the interval
between the 8th MixColumns and the 9th MixColumns, from the power traces. They were
captured using the ADC on the ChipWhisperer-Nano. The offset range used was 33000–35000.

We controlled the ChipWhisperer-Nano via its Python API. The code responsible for injecting
faults is located in file fi_89_cw_nano.ipynb. Then we used algorithm 1.5 in file dfa_89.ipynb
without modification for the attack between the 7th and the 8th MixColumns to recover the
last round key. Then, we used the implemented inverse key expansion algorithm 1.4, which is
implemented in file aes_inverse_key_expansion.ipynb.

5.5.2 Results
By performing the steps in the implementation section, we successfully recovered the AES en-
cryption key. We also collected data on glitching success rate. The data are stored in file
cw_nano_graph.npy. The captured ciphertexts are located in cw_nano_cts.npy.

The number of ciphertexts captured by offset is shown in figure 5.8. We inserted ten faults
at each offset. The faults are divided into four groups based on the column into which they were
inserted.

We also tried to decrease the time required for the attack by using only the offsets obtained
from figure 5.8, but the results were inconsistent and the only way to obtain enough ciphertexts
was to try all the offsets in the range mentioned earlier, i.e. 33000-35000. This behavior might
be due to the high jitter of the glitch insertion mechanism of the ChipWhisperer-Nano.
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Figure 5.8 Faults by offset on the ChipWhisperer-Nano



Chapter 6

Conclusion

The goal of this work was to study non-invasive fault injection attacks on microcontrollers and
existing voltage glitching tools, to implement a fault injection platform on Cmod S7 capable of
voltage glitching and possibly clock glitching, and then to perform an attack using the imple-
mented platform.

In this work, we studied and provided an overview of non-invasive fault injection techniques
and attacks. We also provided an overview of the existing voltage glitching tools.

In the practical part, fault injection hardware was implemented in Verilog. The hardware
is capable of voltage glitching, clock glitching, inserting multiple glitches, and the ability to
insert different types of glitches independently. The voltage glitches are inserted using a crowbar
circuit. Next, a firmware for the platform and a computer program were created to enable users
to control the platform from their computers.

The implemented platform was successfully tested by means of attacking the AES cipher
running on an ATmega8L microcontroller. Both voltage and clock faults successfully induced
erroneous results in the encryption process of the AES. With the obtained ciphertexts, we re-
covered the secret AES key stored on an ATmega8L microcontroller. The attack on AES by
injecting faults between the 7th and the 8th MixColumns was successful as well as the attack on
AES with faults injected between the 8th and the 9th MixColumns.

The implemented fault injection platform could be further extended. A trigger module with
UART communication eavesdropping could be implemented. Another option could be to modify
the implemented platform and software to support a digital-to-analog converter that could be
used to control the shapes of the inserted glitches.
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Appendix A

Attack on AES by Piret et al.

Here we give the algorithm for the attack on AES proposed by Piret et al. The algorithm A.1
describes how to recover the key, where cts is the array of correct ciphertexts, faulty cts is the ar-
ray with corresponding erroneous ciphertexts, and Inv suffix denotes the inverse transformation.
Algorithm A.2 shows how to decrease the search space.

Algorithm A.1 Recovery of K10 with fault between the 7th and the 8th MixColumns. Source:
article by Piret et al. [32], modified into pseudocode

1: procedure Recovery78Piret(cts, faulty cts)
2: D ← {}
3: for every 16-byte array a with one non-zero byte do

▷ Differences between ciphertexts at the output of θR−1 layer
4: D ← D∪ MixColumns(ShiftRows(a))
5: end for
6: key candidates← ReduceSearchSpace(cts[0], faulty cts[0], cts[1], faulty cts[1])
7: for c in {0, 4, 8, 12} do ▷ For every quartet of K10 key’s bytes
8: idx← 0
9: while |key candidates| > 1 do ▷ Until there is only one candidate left

10: ct← ShiftRowsInv(cts[idx]) ▷ Reorder bytes by applying inverse of ShiftRows
11: faulty ct← ct
12: faulty ct[c . . . c + 3]← ShiftRowsInv(faulty cts[idx])[c . . . c + 3]

▷ Keep faults only in one column
13: key candidates′ ← {}
14: for key guess in key candidates do
15: d← SubBytesInv(ct⊕ key guess)) ⊕ SubBytesInv(faulty ct⊕ key guess))

▷ γ−1 ◦ σ[key guess](ct)⊕ γ−1σ[key guess](faulty ct)
16: if d ∈ D then
17: key candidates′ ← key candidates′ ∪ key guess
18: end if
19: end for
20: key candidates← key candidates′

21: idx← idx + 1
22: end while
23: end for
24: return ShiftRows(key candidates[0]) ▷ Correctly arrange the bytes of K10
25: end procedure
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Algorithm A.2 Search space reduction. Source: article by Piret et al. [32], modified into
pseudocode

1: procedure ReduceSearchSpace(ct1, faulty ct1, ct2, faulty ct2)
2: D ← {}
3: for every 16-byte array a with one non-zero byte do

▷ Differences between ciphertexts at the output of θR−1 layer
4: D ← D∪ MixColumns(ShiftRows(a))
5: end for
6: key candidates← {} ▷ Set of key candidates
7: for c in {0, 4, 8, 12} do ▷ For every column to obtain four times four bytes of K10
8: for i in {1, 2} do ▷ Transform both ciphertext pairs
9: ct′

i ← ShiftRowsInv(cti) ▷ Reorder bytes by applying inverse of ShiftRows
10: faulty ct′

i ← ct′
i

11: faulty ct′
i[c . . . c + 3]← ShiftRowsInv(faulty cti)[c . . . c + 3]

▷ Keep faults only in one column
12: end for
13: D′ ← {d[c : c + 1] : d ∈ D} ▷ Set of values from D restricted to only two bytes
14: L← {} ▷ Possible bytes of K10
15: for kc in {00, . . . FF} do
16: for kc+1 in {00, . . . FF} do ▷ For every first two bytes of a key K10 in column c/4
17: key guess← [00, . . . , 00, kc, kc+1, 00, . . . , 00] ▷ Pad with c and 14− c zeroes
18: d1 ← SubBytesInv(ct′

1⊕ key guess)) ⊕ SubBytesInv(faulty ct′
1⊕ key guess))

19: d2 ← SubBytesInv(ct′
2⊕ key guess)) ⊕ SubBytesInv(faulty ct′

2⊕ key guess))
▷ γ−1 ◦ σ[key guess](ct′

i)⊕ γ−1σ[key guess](faulty ct′
i)

20: if d1[c : c + 1] ∈ D′ and d2[c : c + 1] ∈ D′ then
▷ Compare differences with those in D′.

21: L← L ∪ key guess
22: end if
23: end for
24: end for
25: for j in {c + 2, c + 3} do ▷ Extend the key guesses to four bytes
26: D′ ← {d[c : j] : d ∈ D} ▷ Restrict values in D to j − c + 1 bytes
27: L′ ← {} ▷ Contains keys from L extended by one byte
28: for guess ∈ L do
29: for kj in {00, . . . , FF} do
30: guess′ ← [00, . . . , 00, guess, kj , 00, . . . , 00] ▷ Pad with c and 15− j zeroes
31: d1 ← SubBytesInv(ct′

1 ⊕ guess′)) ⊕ SubBytesInv(faulty ct′
1 ⊕ guess′))

32: d2 ← SubBytesInv(ct′
2 ⊕ guess′)) ⊕ SubBytesInv(faulty ct′

2 ⊕ guess′))
33: if d1[c : j] ∈ D′ and d2[c : j] ∈ D′ then
34: L′ ← L′ ∪ guess′

35: end if
36: end for
37: end for
38: L← L′

39: end for
40: key candidates← concatenate values from L to candidates in key candidates
41: end for
42: return key candidates

▷ Bytes of key candidates are not in the correct order, but they are not reordered since
they would be transformed back in the main function

43: end procedure



Appendix B

Tutorial on fault injection
using our platform

We also created a tutorial in Python in the form of a Jupyter Notebook. The tutorial offers step-
by-step instructions for carrying out an attack on AES using the platform that was implemented
in this work. The notebook contains only the fault injection part of the attack because its main
purpose is to familiarize users with the tool.

The code is broken up into functions that the user has to fill in to perform the attack. By
following the tutorial, the user can learn how to use both voltage glitching and clock glitching.
The notebook also lets the user choose between two glitch trigger types. The glitches can be
triggered on a reset of a target device or after receiving a trigger signal from the target. The
latter allows the user to change the encryption key and the plaintext, which is encrypted by the
target.

The first notebook is in a file FaultInjectionTemplate.ipynb. There is also a second notebook
FaultInjectionFull.ipynb with all the missing code filled in.

We were also able to get feedback on the tutorial from a student. We edited task assignments
based on the observation that they did not contain enough information.
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Appendix C

Build manual

The build process consists of three parts. First, the hardware platform has to be built in Vivado.
During the second part, the application for the MicroBlaze is compiled. Then, the compiled
application can be loaded onto the FPGA. Optionally, the FPGA’s flash is programmed.

The build can be done manually by following the steps in sections C.1 and C.2, or by running
the provided build_all.py script. The two programming sections are not automated.

The build process was tested with version 2023.2 of Vivado and the same version of Vitis.

C.1 Building hardware
To generate the platform, follow these steps:

1. Open Vivado (preferably version 2023.2)

2. Click on Tools in the top navigation bar.

3. Select Run Tcl Script. . .

4. Select project glitch.tcl and proceed with OK.

5. After the project is created, select in Flow Navigator, which is on the left side of the screen,
Generate Bitstream under PROGRAM AND DEBUG.

6. Synthesis is Out-of-date dialog window might pop up. Press Yes.

7. Then a Launch Runs window appears.

8. Optionally, change in the window Number of jobs to speed up the synthesis process. Then
click OK.

9. When the synthesis and implementation finish, another dialog window with header Device
Image Generation Completed will appear, and press Cancel.

Now, the platform is ready to be exported for use in Vitis:

1. In the top navigation bar of Vivado, select File, Export, Export Hardware. . . .

2. Click Next in the Export Hardware Platform window.

3. As output select option Include bitstream.
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4. Continue by clicking Next.

5. In the Files window, the file can be named and it’s location can be changed.

6. Then click on Finish button.

The hardware platform is exported, and Vivado can be closed.

C.2 Building application
First, the hardware platform has to be added:

1. Open Vitis.

2. In the top navigation, select Open Workspace.

3. Select the parent directory of app glitch.

4. In the top navigation bar, select File, New Component, Platform.

5. Name the platform and click on Next.

6. In the Hardware Desing (XSA) field, choose the .xsa file created in the previous section.

7. Click Next twice and then click on Finish.

8. Locate FLOW in the left third of the screen.

9. Click on Build in the FLOW window.

Then, the application has to be created:

1. In the top navigation bar, select File, New Component, Application.

2. Name the application and click on Next.

3. Select the platform from the previous step and proceed by clicking Next.

4. Click Next again and then Finish.

5. Copy files from app glitch\src into name of the application\src.

6. Locate FLOW in the left third of the screen.

7. Click on Build in the FLOW window.

C.3 Device programming
1. Open Vitis.

2. Open the workspace with app glitch vitis.

3. Connect the Digilent Cmod S7 to the PC.

4. The built application can be run by pressing Run in the FLOW menu under the Build button.
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Figure C.1 Program Device window
.

C.4 Flash programming
The flash can be programmed to permanently store the hardware configuration and the program
in a non-volatile memory of the FPGA. Follow these steps to store the program in the FPGA’s
flash memory:

1. Open Vitis and the same workspace as in the previous sections.

2. Connect the Digilent Cmod S7 to the PC.

3. In the top navigation bar, select Vitis, Program Device.

4. Choose app glitch vitis in the Project dropdown menu.

5. Select hardware.bit in the Bitstream/PDI field.

6. Select hardware.mmi as the BMM/MMI File.

7. Select app glitch vitis.elf in the microblaze 0 field.

8. The window should look like the one in the figure C.1. The content of the Project field should
contain the name of the application from section C.2, and might differ from the one in the
picture.

9. Click on Generate.

10. Wait for Vitis to generate download.bit file, and close the Program Device window.

11. Then, select Vitis, Program Flash in the top navigation bar.
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Figure C.2 Program Flash window

12. Select app glitch vitis in the Project field.

13. Select download.bit file as Image File.

14. Choose mx25l3273f-spi-x1_x2_x4 as Flash Type.

15. Select app glitch vitis.elf file as the Init File.

16. Check Blank check after erase and Verify after flash checkboxes.

17. The window should look like the one in the figure C.2. Again, the Project field’s content
might be different.

18. Click on Program to program the flash.

19. Disconnect the Digilent Cmod S7 from to PC after the flash programming is done.
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