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Abstract

Nowadays, there is a tremendous popularity of technology called blockchain.
This technology has many usage cases, but one of them is allowing people to de-
velop applications and deploy them to the new environment, called blockchain,
and benefit from its features like code transparency and a decentralized way of
storing the code. Despite the advantages that blockchain offers, many issues
can occur because of insecure logic in the code. The thesis aims to improve
the security of on-chain deployed programs by scanning them for vulnerabil-
ities using a static analysis tool provided by the “Wake” framework without
interacting with an application.

Keywords blockchain, ethereum, smart contract, solidity, static analysis,
vulnerability
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Abstrakt

V současné době je nesmı́rně populárńı technologie zvaná blockchain. Tato
technologie má mnoho př́ıpad̊u využit́ı, ale jedńım z nich je umožnit lidem
vyv́ıjet aplikace a nasadit je do nového prostřed́ı, kterému se ř́ıká blockchain,
a využ́ıvat jeho vlastnost́ı, jako je transparentnost kódu a decentralizovaný
zp̊usob ukládáńı kodu. Navzdory výhodám, které blockchain nab́ıźı, může doj́ıt
k problémům kv̊uli nezabezpečené logice applikace. Ćılem této bakalářské
práce je zlepšit bezpečnost programů nasazených na blockchain t́ım, že ji bez
jakékoliv interakce s aplikaćı ověřit na zranitelnosti pomoćı nástroje statické
analýzy, který poskytuje framework “Wake”.

Kĺıčová slova blockchain, ethereum, smart contract, solidity, statická analýza
kódu, zranitelnost
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Introduction

The word ’cryptocurrency’ has become so popular [1] that it is impossible to
ignore anymore. However, we should research what stands by this word and
what opportunities it gives us. More and more scientists invest their energy and
time into exploring the possibilities of blockchain [2], the technology that allows
cryptocurrency to exist. Blockchain allows people to use their financial assets
without any intermediate entity being involved and without any censorship.
In my opinion, the blockchain and its primary usage, cryptocurrency, will soon
be part of our everyday lives. My goal is to make the new era of decentralized
finance even safer than centralized finance, regulated by a centralized authority.
However, nowadays, the blockchain community experiences a lack of security,
and several hacks in the blockchain environment arise [3]. To go mainstream
with the new era of decentralized finance, we need, as the community, to make
it secure in the first place.

The first chapter of the thesis introduces the world of blockchain, its prin-
cipal terms, and the technology in use. In addition, it provides information
about the programming language Solidity, which is used to develop on-chain
applications for the Ethereum blockchain.

The second chapter describes the static code analysis. After that, it de-
scribes the open-source Wake framework, which has the capability to provide
everyone the opportunity to design and implement a vulnerability detector.

The third chapter evaluates the performance of detectors described in the
previous chapter on a defined set of smart contracts and real-world smart
contracts on the main chains.

The fourth chapter introduces the new detector’s development process us-
ing tools provided by the Wake framework. Moreover, it describes challenges
that have been met during the implementation process.

The fifth chapter evaluates the performance of the implemented detector
and compares it with existing solutions.

1



Objectives

The main objective of this work is to analyze possible solutions to prevent
breaches and hacks on the blockchain by using static code analysis provided
by the Wake framework to identify vulnerable spots of the program during
the developing process. The Wake framework is an open-sourced tool for de-
veloping and auditing applications for blockchain in Solidity [4]. In addition,
there is an interface that allows everyone to design and develop a vulnerability
detector using static analysis. The goals of this thesis are:

analyze the design of already implemented detectors;

evaluate them on the provided set of the contracts;

implement the own detector;

evaluate its performance and compare with the same detector of state-of-
the-art static analysis tool.

1



Chapter 1

Theoretical background

This chapter provides basic theoretical information about blockchain tech-
nology, the Ethereum project, which is fully built on this, and describes the
main technological novelty brought by this project. The first chapter describes
blockchain technology and its main principles. After that, the second chapter
introduces Ethereum and its capabilities. The third chapter presents the lan-
guage for writing applications, which will be further deployed on the Ethereum
blockchain.

1.1 Blockchain

Blockchain is the technology that makes possible the realization of transparent
and append-only storage updated and shared across many computers in the
decentralized network. [5]

Block refers to data and state, which are being stored in sequential groups
known as blocks

Chain means that cryptography links each block to its parent block. This
creates a chain of blocks. The data in a block cannot be changed without
changing all blocks he follows, which would require the entire network to
validate these blocks again.

The blockchain is implemented as a mechanism for creating consensus between
decentralized entities that do not need to trust each other. Created consensus
means that a general agreement has been reached. The consensus mechanism
is the deterministic approach to making a decision on which data might be
added to the storage and which are not allowed. Every participating entity
needs to follow this mechanism to exist in the network.

2
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1.1.1 Consensus mechanisms
Numerous methodologies and strategies are available for constructing this
mechanism, reflecting the various range of consensus models favored by specific
blockchain networks and their operational requirements. [6].

1.1.1.1 Proof of Work

Proof-of-work (PoW) is an algorithm that sets the difficulty level and rules gov-
erning the activities of miners on PoW-based blockchains. Mining represents
the ’work’ needed to validate and append legitimate blocks to the blockchain.
This process is crucial as it directly affects the blockchain’s length, thereby
helping the network determine the most accurate progression of the chain.
As miners continue to solve complex mathematical problems, thereby adding
more blocks, the blockchain grows longer, which improves the network’s confi-
dence in the current state of the ledger. This chain lengthening also increases
security by making altering any information in previous blocks increasingly
difficult. This consensus mechanism is used in the most popular blockchain
implementation called Bitcoin [7].

Figure 1.1 Proof of work in Bitcoin [8]

1.1.1.2 Proof of Stake

Proof of Stake (PoS) is an essential consensus algorithm that defines the rules
and mechanisms for participants in PoS-based blockchains. In PoS, the pro-
cess of ’staking’—rather than mining—serves as the mechanism through which
validators are chosen to confirm transactions and create new blocks. Valida-
tors are selected based on the amount of cryptocurrency they hold and are
willing to ’stake’ as collateral. This process is critical as it helps ensure the
security and accuracy of the blockchain by encouraging validators to act hon-
estly to avoid losing their stakes. As more blocks are validated and added to
the chain, the blockchain becomes longer and more robust, thereby upgrading
the network’s trust in the current ledger. This method increases the efficiency
of the validation process and reduces the energy consumption compared to
proof-of-work systems, making it a more environmentally friendly alternative.
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The most used blockchain that uses the proof-of-stake mechanism is Ethereum
[9].

1.2 Ethereum

Ethereum, officially launched in 2015, became an evolution in blockchain tech-
nology by allowing developers to deploy decentralized applications (dApps1)
directly onto its platform. This innovation also uses the blockchain’s inherent
qualities of transparency, decentralization, and immutability, providing a ro-
bust environment for applications that benefit from these features.[10] Besides,
Ethereum introduced the concept of smart contracts, self-executing contracts
with the terms directly written into code, which automate and execute agree-
ments without intermediaries. This capability has broadened the scope of
blockchain, affecting industries ranging from finance to supply chain manage-
ment. [11] [12].

1.2.1 Ethereum Virtual Machine
The Ethereum Virtual Machine (EVM) is the engine that powers the Ethereum
network. [13] It acts like a global supercomputer, running the code for smart
contracts and keeping the network secure and functioning. When develop-
ers create smart contracts using programming languages like Solidity [14],
these contracts are compiled into bytecode, which is a low-level, machine-
understandable language. This bytecode is what the EVM reads and executes.

When a user or another contract on the Ethereum network wants to interact
with a smart contract, they send a transaction. This transaction specifies the
function they want to execute and any necessary data the function needs.
Once this transaction is confirmed and included in a blockchain block, the
EVM activates to execute the contract’s code as instructed by the transaction.
The EVM ensures that the contract follows the rules of Ethereum and that
everything operates seamlessly without allowing any party to cheat the system.
[15]

It is necessary to mention that there are two types of accounts in the
Ethereum environment:

Externally Owned Account (EOA). It is an account that is owned by
any external entity. Most commonly, it is referred to as a user account.
[16]

Smart Contract Account. It is an account that is owned by a smart
contract and often controlled by an EOA that interacts with the deployed
smart contract

1dApp - application, that uses blockchain as its storage on the backend.
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1.2.1.1 Gas

To ensure security, every operation in a smart contract requires a certain
amount of ”gas,” which is paid in Ethereum’s currency, Ether. [17] In the
Ethereum ecosystem, ”gas” refers to the unit that measures the computa-
tional effort required to execute specific operations on the Ethereum network.
Key aspects of the gas role in the Ethereum environment:

Transaction Execution and Limitation. Every Ethereum transaction,
whether a simple transfer of Ether or a complex smart contract interaction,
requires computational resources. Gas measures how much work is neces-
sary to perform a transaction or execute a smart contract. Each operation
in the Ethereum Virtual Machine (EVM) has a fixed gas cost.

Anti-Spam Mechanism. Gas serves as a constraint against spamming
the network. Since executing transactions and running smart contracts re-
quire gas, which costs Ether, malicious actors are discouraged from spam-
ming the network because it would be financially costly.

This gas system prevents people from running faulty or malicious code on
the network that could slow it down. Each operation has a gas cost, and
users set a gas limit when they send a transaction to indicate the maximum
they’re willing to spend. If the gas runs out before the operation is completed,
the transaction is reverted, but the gas spent is not refunded, protecting the
network from abuse.

1.2.1.2 Memory

The Ethereum Virtual Machine (EVM) uses several types of memory storage
to facilitate and optimize the execution of smart contracts. [18]

Storage. This is the EVM’s most permanent form of memory and is part
of the Ethereum blockchain’s state. Storage is used to hold the persistent
state of a smart contract, including variables declared by the contract. It is
relatively expensive because it is written directly to the blockchain, making
changes costly and permanent. Access to storage is slow compared to other
types of memory because changes need to be propagated and confirmed
across all nodes in the network.

Memory. This volatile type of memory is wiped clean after every trans-
action call. It is used to hold temporary values.

Stack. The stack is used for managing internal computations. It is a low-
level type of memory with a LIFO (last in, first out) structure, where data
can be pushed onto or popped off the stack. The stack has a maximum size,
and it is necessary to manage its use carefully to prevent overflow errors.
The stack is not directly accessible by the contract’s high-level code but is
manipulated through the EVM’s set of opcodes.
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Calldata. This read-only memory area contains the input data of a call
to a function in a smart contract. Calldata is immutable and persists for
the duration of a transaction call.

1.2.1.3 Architecture

The EVM operates in a completely sandboxed environment, ensuring that code
execution within the EVM cannot affect the host machine or the main network.
Each smart contract runs in its own isolated virtual space, preventing it from
interacting directly with the host’s system files or processes. In addition, the
EVM is a stack-based machine, meaning it performs most of its computations
using a stack data structure. It can push data to the stack, perform operations,
and pop the results off. The stack has a limited size, which helps prevent
excessive resource consumption.

Figure 1.2 EVM architecture overview [19]

A few essential points from this scheme must be described for clarifying
information:

Program Counter (PC). The program counter in the EVM tracks the
current instruction that it is executing. It moves sequentially but can be
altered by loop and branching instructions, similar to traditional CPUs
[20].

Gas. The gas icon in this scheme indicates where it is used. For example,
executing any instruction costs gas, and calling other contracts or accessing
the storage of the blockchain is even more gas-expensive.

EVM code. This area is immutable, meaning it cannot be changed during
execution. It typically holds the bytecode of the smart contract that is
being executed.
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Account Storage. Represented as a database icon, this is part of the
persistent state of the blockchain where the data of smart contracts (such
as balances and states) are stored permanently.

1.2.2 Smart Contracts (SCs)
Smart contracts are self-executing applications that run on a blockchain, which
makes them distributed and decentralized. [21] Smart contracts automate the
execution of a code so that all participants can be immediately sure of the
outcome without any intermediary’s involvement or time loss. The most im-
portant features of a smart contract, which differ it from a typical application,
are described below:

Automatic execution. Smart contracts operate automatically without
central authority or any other external entity. Once deployed on the
blockchain, they automatically execute in response to predefined condi-
tions or triggers.

Transparency. The decentralized nature of blockchain ensures that all
transactions and their outcomes are transparent and immutable. As a
result, everyone can see every call to a smart contract.

Security. Smart contracts use blockchain technology at their core, provid-
ing a high-security level. Thanks to cryptographic processes and decentral-
ized execution, smart contracts resist hacking and unauthorized changes.

1.2.2.1 Upgradeability of Smart Contracts

The immutability of smart contracts is an essential characteristic of blockchain
technology. This implies that once a smart contract is deployed on the blockchain,
its code cannot be altered; it is permanently recorded on the blockchain ledger.
This permanent nature ensures that the behavior of the contract cannot be
changed once it is in operation, which is critical for maintaining trust and
security within the Ethereum ecosystem.

Because of the immutability of smart contracts after deployment them on
the blockchain, several challenges must be addressed by developers:

Error Correction. Correcting these errors is not straightforward if bugs
or vulnerabilities are discovered in the smart contract code after deploy-
ment.

Upgrading Mechanisms. To address the issue of immutability and al-
low for improvements or bug fixes, developers often have to deploy a new
version of the contract. This involves creating an entirely new contract
and migrating all the existing data and digital assets from the old contract
to the new one, which can be complex, risky, and costly. It also involves
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additional steps to ensure that users interact with the updated version of
the contract.

Therefore, it is essential to prevent bugs and vulnerabilities in the process of
developing the smart contract.

1.2.3 Solidity
Solidity [22] is a statically typed object-oriented programming language. Its
most popular use is for writing smart contracts that run on an Ethereum
blockchain. [23]. This language was developed to be easy to use and with
restrictions to contain as few security issues as possible. For instance, no
pointers or simple data structures like queues or sets exist.

1.2.3.1 Elements of the language

For the purpose of this thesis, it is essential to understand what entities can
be met during static analysis, which are essential for the particular analysis,
and which are unnecessary to analyze and can be ignored.

Contract. This entity is a declaration of the smart contract and is the
most essential object in the Solidity programming language. It can have
external and internal functions, also called smart contract methods. Be-
sides, smart contracts can be abstract; in this case, not all their methods
need to be defined. This type of smart contract is used for inheritance, and
child contracts take on the burden of implementing abstract methods.

Modifier. A modifier in Solidity is a special construct similar to a deco-
rator in Python. It is used to change the behavior of functions in smart
contracts by wrapping additional logic around them. Unlike functions,
modifiers cannot be called directly as standalone entities. Instead, they are
declared with the modifier keyword and are invoked by appending them to
the function declaration. This allows them to execute logic before or after
the function they modify, depending on how the modifier is structured.

Variable. It represents a named object, which can store different values
depending on the variable type.

Event. This special Solidity entity is used for logging events on the
blockchain, where smart contracts run. It is declared in smart contract
objects and can be emitted after the execution of a specific branch of code
occurs.

Error. It represents custom types of errors defined by developers in the
scope of one smart contract.
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Structure. A ’structure’ entity is a definition of a new type of variable,
which is an association of the previously defined types.

Enumeration. It is a custom type of a variable that can be transformed
into an unsigned integer.

Interface. It is a special type of smart contract that can have function
declarations but cannot implement them.

Library. It is a custom smart contract deployed to the blockchain once and
has functions that other contracts can use and execute in their environment.

1.2.3.2 Types of variables

As mentioned above, the primary purpose of the Solidity programming lan-
guage is to serve as an instrument for writing smart contracts. Therefore, a few
particular types that make sense only in the smart contract environment are
also introduced in the list below. Value types are introduced at the beginning
of the list, and reference types are introduced at the end.

uint,int,float,bool. These are the simplest variable types, which have also
been inherent in different languages and actively used in Solidity

bytes. Data type that represents bytes. This data type can concatenate
the two values by converting them previously to bytes data type.

address. Special for the Solidity variable type, which represents the ad-
dress in the Ethereum network. This variable type has special attributes
and methods that can be used in the smart contract.

call, staticcall, delegatecall. These are different methods for invoking
functions at a specified address. Calling an address typically means
triggering a specific function on that address, particularly if the address
corresponds to a smart contract (SC).
transfer, send. These methods are available if the address is declared as
address payable. They send ether to a specified address and differ in
processing the error.
.balance. It is an attribute used to find out the amount of ether the
address owns.

Another group of variables in Solidity are reference-type variables, distinct
from value-type variables. Unlike value types that store data directly, reference
types store references to the locations in memory where the actual data is held.
The Ethereum Virtual Machine (EVM) processes different memory types such
as storage, memory, and calldata in distinct ways. The example of reference-
type variables are:
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string. It is a dynamic array that stores a set of characters consisting of
numbers, special characters, spaces, and alphabets.

mapping. This type maps keys to values, which are hashed into a 32-
byte hash. This hash determines the storage slot in which the value is
placed. Unlike arrays or strings, mappings are only stored in storage and
not available in memory or calldata.

1.2.3.3 Solidity functions

There are several types of functions in smart contracts. [24]

public and external functions. These functions can be called by anyone in
the environment of the Ethereum blockchain. An example of this function
is displayed below:

function giveMagicNumber() public returns(uint256) {
return 42;

}

private and internal functions. These functions can be called only in-
ternally inside of the contracts or by a child contract, which inherits the
internal function from the parent contract. An example of the usage of this
function can be seen below:

function _internalMagicNumber() private returns(uint256){
return 1337;

}

function giveMagicNumber() public returns(uint256) {
return _internalMagicNumber();

}

1.2.3.4 Usage of smart contract functions

Smart contracts provide opportunities for users, and other smart contracts
call their external functions. This is one of the most critical features in the
Ethereum ecosystem, as it lets smart contracts use each other functions and
benefit from it. A smart contract can call external functions of another contract
using different types of calls.

.call(): it is a common call from one contract to another with or without
specification of the function to call and parameters that the calling smart
contract wants to pass to the function. This call can change the state of
the blockchain and be executed in the called contract environment.
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.staticcall(): it is a similar call as .call() except that it reverts if a
state change of the blockchain happens. Using this type of call, sending
ether to another smart contract is impossible.

.delegatecall(): it is a call that executes the code of another contract,
which is called, but in the environment of the calling contract.

1.2.3.5 Compilation and Deploying process

A smart contract code is typically compiled by an official solc [25] compiler.
After compilation, ’solc’ generates bytecode and Application Binary Interface
ABI.

bytecode. It is a sequence of bytes that EVM can read. Besides, there
are two main parts of the bytecode (can be seen in the Figure 1.4):

Contract creation bytecode. It is bytecode, which is executed during the
initialization of the contract
Contract runtime bytecode. It is bytecode, which is executed when any
interaction with the deployed smart contract is happened.

ABI. JSON-formatted description of how to interact with a smart contract,
including its methods and structures.

Figure 1.3 Outputs from compilation process by solc [26]
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Figure 1.4 Deploying the bytecode to the Ethereum blockchain [27]



Chapter 2

The Wake framework

This chapter provides an overview of Wake’s static analysis process. Firstly, it
describes the static code analysis procedure and the main challenges. Secondly,
it introduces how Wake does static analysis and what tools are already built-in
in Wake to enable static analyzer developers to use them. Finally, it presents
examples of detectors that have already been implemented. A detector is a
tool that detects an insecure or unwanted program behavior.

2.1 Static analysis

Static code analysis [28] is a process of reasoning about a code without run-
ning it. The programs that reason about another program are called program
analyzers. Static analysis has found various applications during the process of
the development of programs, such as:

finding the errors, bugs, and vulnerabilities in code without any interaction
with it;

optimization of the code by a compiler;

coding support, e.g., providing a recommendation for refactoring;

2.1.1 Process of static analysis
Taking into consideration that the process of every program analyzer can differ,
the static code analysis can be universally divided into the following steps:

1. Code Parsing. A program analyzer parses the application’s source code
into a structured format called abstract syntax tree(AST), which represents
the syntactic structure of the code. An example of an Abstract Syntax tree
is shown in Figure 1.1.

13
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Figure 2.1 Example of Abstract Syntax Tree

2. Intermediate Representation (IR). In this step, the program analyzer
builds an intermediate representation of a program on top of AST. IR
might be defined strictly by the compiler or the program analyzer. The
main reason to use IR rather than AST is IR is more structured and can
be proceeded by a program analyzer more efficiently.

3. Semantic analysis. Once the IR is built, the program analyzer can ex-
amine the program using the following methods:

Type checking. The tool looks into operations between variables and
checks if an operation can be performed on compatible types.
Data Flow analysis. This involves analyzing the paths through which
data flows through the code and helps identify potential issues. This
kind of analysis can be useful when combined with control flow analysis.
Control Flow analysis. This involves inspecting the paths along which
the program’s control can flow. This analysis helps identify logical er-
rors, such as infinite loops, unreachable code, and incorrect branch han-
dling.

4. Rule-Based Analysis. In this step, the tool tries to detect issues in the
code by searching for predefined patterns. These rules can cover code style
or potential bugs.

5. Metric Calculation. The tool calculates various metrics, such as cyclo-
matic complexity, which measures the complexity of a program based on
the number of independent paths through the code. High complexity can
indicate code that is difficult to test and maintain.
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6. Security Analysis. The program analyzer scans the code for patterns
that match common security vulnerabilities.

7. Reporting. In this final step, the tool reports findings that were indicated
previously.

The order of steps is not strictly defined and can differ from tool to tool.
Besides, steps 2-6 are optional and may not be provided by some program
analyzers.

2.1.2 Challenges of static analysis
Even though correctly developed program analyzers can improve the security
of written code, they mainly face the following comprehensive problems:

Amount of False Positives. Most program analyzers use a heuristic
rather than a systematic approach when examining a program. Heuristics
are alternatives that aim to provide quick answers without analyzing every
possible scenario or state in a program. These rules rely on generalizations
that might not consider all specific details and context. However, if a
static analyzer uses a more systematic approach, it can reduce the number
of mistakes.

Performance cost. Due to the amount of work a static analyzer has
to accomplish, the analysis process may be time and resource-consuming.
This can slow development, especially if the analysis is integrated into the
build process.

2.2 Wake internal model

Wake is the open-source Python-based Solidity development and testing frame-
work that provides functionality for:

Developing smart contracts;

coding support;
deployment on local chain or mainnet;

Auditing smart contracts using:

fuzzing;
static code analysis;

Manager of solidity compilers;

We will mainly focus on capabilities for static analysis from Wake.
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2.2.1 Preparation of IR
Wake utilizes the solc-bin1 compiler to compile all smart contracts within the
codebase into bytecode, readable by the Ethereum Virtual Machine (EVM) and
to generate an Abstract Syntax Tree (AST) for each contract. Subsequently,
Wake parses and unifies these ASTs, enriching them with additional attributes
and functions to facilitate future analysis and converting them into Python
objects represented by Intermediate Representation (IR).

Additionally, during post-processing of the entities, Wake serializes Inter-
mediate Representation (IR) objects and uses Python’s pickle module2 to save
the representations in the file located at .wake/build/build.bin. Additionally,
Wake generates a local cryptographic key to sign the hash of the dump file con-
taining all generated objects. This signature is stored in .wake/build/build.bin.sig
and is verified each time Wake accesses this file. This security mechanism pre-
vents the risks of importing maliciously crafted Python serialization files.

2.2.2 Built-in tools for static analysis
The Wake framework provides a platform for designing and developing vul-
nerability and bug detectors, accessible to everyone through an open-source
approach. It is equipped with advanced built-in functionalities such as the
generation of Control Flow3 and Data Flow4 graphs. These tools enable a
more precise code base analysis, significantly reducing the amount of False
Positives5, which is challengeable for any program analyzer.

2.2.3 Interface for developing detectors
The Wake framework provides an easy way of implementing additional de-
tectors. The new detector can be initialized by manually creating the file
in a Wake project directory as ”detectors/name-of-the-detector.py” file. The
structure of a simple detector is introduced by the code below:

1https://github.com/ethereum/solc-bin/
2https://docs.python.org/3/library/pickle.html
3completely open-sourced
4currently under development, close-sourced for now
5incorrect detections

https://github.com/ethereum/solc-bin/
https://docs.python.org/3/library/pickle.html
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class MyNewDetector(Detector):
_detections: List[DetectorResult]

def __init__(self) -> None:
self._detections = []

def detect(self) -> List[DetectorResult]:
return self._detections

@detector.command(name="my-detector")
def cli(self) -> None:

pass

The MyNewDetector class inherits the Detector class from the library pro-
vided by Wake. The new class has to implement the following functions to be
executed by the Wake static analyzer.

1. init (self) → None function. It is mainly a constructor for the detector,
where all needed variables might be specified.

2. detect(self) → List[DetectorResult] function. This function is executed at
the end of the detector work, and the main objective is to return the results
of the detector’s work. This function returns the list of DetectorResult
objects found. DetectorResult is the single object generated by helper
functions that we look at next.

3. cli(self) → None function. It is a command line interface method that uses
the Click6 library to provide a simple and structured command line inter-
face. In this function, we define the name using which specified detector
can be used.

Even though the needed parts of the detector have been introduced, special
methods exist, which start from the visit word. These methods are inherited
from the ’Visitor’ class and could tremendously help during static analysis. A
simple diagram of classes in the detector may be seen in Figure 1.2.

6https://click.palletsprojects.com/en/8.1.x/

https://click.palletsprojects.com/en/8.1.x/
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Figure 2.2 ’Detector’ class inheritance

2.2.3.1 ’visit ’ inherited methods

The inherited Visitor class provides methods with a particular purpose within
Wake static analysis. The visit_ methods are dedicated to analyzing all
the types of Solidity abstract syntax tree (AST) nodes. These functions
are automatically called by the execution engine when running the detec-
tor. It should be noted that all AST nodes have intermediate representa-
tions (IR) nodes, which are the ones analyzed by Wake’s static analysis.
The specific visit_ method visits every IR node with the same type of IR
node as the parameter in this method. An example of the visit_ method,
implemented in the MyNewDetector class, iterates over all IR nodes of the
ir.ContractDefinition type that represents contract definition and prints
all the names of the examined smart contracts to the console.

class MyNewDetector(Detector):
_detections: List[DetectorResult]

def __init__(self) -> None:
self._detections = []

def detect(self) -> List[DetectorResult]:
return self._detections



Wake internal model 19

def visit_contract_definition(self, node: ir.ContractDefinition):
print(node.name)

@detector.command(name="my-new-detector")
def cli(self) -> None:

pass

2.2.4 Basics of working with IR
Wake IR is constructed based on AST generated by the solidity compiler. It is
a tree representation of the source code, enriched with additional information
that helps during the static analysis process. All nodes in Wake’s IR model
could be divided into 5s categories:

Declarations. Nodes that represent declarations of variables, functions,
structs, and other similar elements.

Statements. Nodes that manage the execution flow (if, for, while, etc.)
and nodes that represent a standalone operation ending with a semicolon
(assignment, function call, etc.).

Expressions. Nodes that commonly have a value (literals, identifiers,
function calls, etc.).

Type names. Nodes that represent a name of a type (unit, bytes, etc.)
are normally used in a VariableDeclaration class.

Meta. Nodes not belonging to the above categories are commonly used as
helpers.

2.2.4.1 IR Nodes structure

The structure of IR nodes can be complex. There are a few rules that help to
orientate within it.

SourceUnit IR class is the root node of every tree

FunctionDefinition and ModifierDefinition classes hold statements.

Statements might hold other statements and expressions.

There are a few cases when expressions may be used without a parental
statement:

in an InheritanceSpecifier argument list: contract A is B(1, 2) {}

in a VariableDeclaration initial value: uint a = 1;
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in an ArrayTypeName fixed length value: uint[2] a;

Only a few nodes might reference other nodes:

Identifier, which refers to a variable declaration (example: owner
references the VariableDeclaration object);
MemberAccess, representing member access (example: owner.balance
references the global symbol ADDRESS BALANCE);
UserDefinedTypeName, as a reference to a user-defined type (example:
MyContract in new MyContract());
Other cases also exist but occur less frequently than those mentioned.

The following example shows the whole IR tree for the following Solidity code
snippet:

pragma solidity ˆ0.8;

contract SimpleContract{
function SimpleFunction(uint256 a, uint256 b) pure public

returns(uint256){
uint256 c;
if (a < 100){

c = a + b;
}
return c;

}
}
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Figure 2.3 Example of IR tree
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2.3 Built-in tools for static analysis in Wake

The structural approach for developing detectors is preferred. Because of that,
developers of the Wake framework implemented the following helper tools,
which will significantly assist in developing detectors.

2.3.1 Control Flow Graph
A Control Flow Graph (CFG) is a computer science data structure used pri-
marily in program static code analysis. It represents all paths in the single
graph that might be traversed through a program during its execution. The
Wake framework provides. Components of the control flow graph:

Nodes. Each node represents a basic block, a sequence of statements or
instructions with one or more entry points and one or more exit points.
A basic block is a straight-line code sequence with no branches. In the
Intermediate Representation model, nodes are objects of CfgNode type.
This object contains a few attributes, such as:

id. It is the unique identifier of the node in the single CFG.
statements. This attribute contains the list of all statements that are
in this particular node.
control statement. It is an optional attribute that identifies if any
control statement is at the end of the CfgNode.

Edges. Edges in the CFG represent the control flow from one block to
another. An edge from block A to block B means that the execution can
pass from the end of A block to the beginning of B block. These can be
due to different reasons, such as:

direct jumps;
loops;
conditional branches.

This structure helps to analyze the flow and structure of program execution,
making the CFG a mandatory tool for static code analysis. An example of the
Control Flow graph for the code presented above can be seen below:

In addition, it is worth mentioning that every function of a smart contract
has its own Control Flow Graph.

2.3.2 Data Dependency Graph
A Data Dependency Graph (DDG) is a tool used in computer science, partic-
ularly in compiler design, software engineering, and program optimization, to
represent the dependencies of data elements on each other within a program.
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Figure 2.4 Example of Control Flow Graph

This graph illustrates how data values are related based on the program’s op-
erations, and it is used in static code analysis to optimize the program and
find potential security issues. The components of a Data Dependency Graph
are:

Nodes. In a DDG, each node typically represents an operation or instruc-
tion within the program that produces or consumes data. For example, a
variable in DDG is represented as a node.

Edges. The edges between the nodes represent the data dependencies.
An edge from node A to node B indicates that the operation at node
B somehow depends on data produced by the operation at node A. Be-
sides, the Wake framework has the functionality to differ between types
of edges. For example, edges representing assignment operation have type
DdgEdgeKind.ASSIGNMENT. This built-in feature enables one to distinguish
between different edges and make decisions depending on the kind of edge.

DDGs aid in understanding complex program behaviors, debugging, and per-
forming static code analysis to find potential issues like deadlocks, unnecessary
serialization and issues like ’write-after-write’. The example of the part of the
DDG is depicted below:
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Figure 2.5 Example of Data Dependency Graph for one variable

2.4 Existing detectors

The primary motivation for developing such a structured and comprehensive
IR model of the programs is the opportunity to design and implement detectors
that will have the capability to discover complex bugs, errors, or vulnerabilities.
This section describes the design and implementation of the 2 detectors using
the Wake framework that have been specifically chosen after consultation with
the thesis supervisor. These detectors have been chosen as they have the
most common characteristics of the Wake realized detectors and can represent
issues that can be met during the implementation process of the tool for static
analysis.

2.4.1 ’Call options not called’ detector
The Ethereum Virtual Machine (EVM) allows smart contracts to call functions
of other smart contracts on the same chain. This functionality significantly
extends the capabilities of smart contracts, enabling more complex, intercon-
nected systems within the blockchain environment. For instance, a smart
contract can leverage the functionality and state of another contract to receive
data from it. A smart contract can do that by making a call with appropriate
data to the address where another contract is located. A smart contract that
initiates a call to another smart contract can configure the following parame-
ters:

amount of internal currency of blockchain that smart contract wants
to send to another contract;



Existing detectors 25

gas limit, which calling smart contract agrees to pay;

data payload, where the called function is specified with appropriate
parameters;

call type, different call types are described in Chapter 1.

An example of such a call is provided below in the code:

function send_call_to_contract(address arbitraryContract) public {
arbitraryContract.call{value: 1000, gas: 10000}(

abi.encodeWithSignature("deposit(uint)", 0)
);

}

In this snippet of code, the common call to another contract can be divided
into the following parts:

{value: 1000} - amount of internal cryptocurrency is to be sent;

{gas: 10000} - amount of gas that the contract is willing to pay for this
call

.(abi.encodeWithSignature("deposit(uint)", 0)) - data payload, where
we use abi.encodeWithSignature() function to encode the selector of
function the smart contract wants to call and specified parameters.

.call - the call the smart contract is programmed to execute.

It should be mentioned that this code is unsafe; it is provided only as an
example of the function call and is not recommended for use in a production
environment.

Besides, it should be mentioned that in older Solidity versions before 0.7.0,
it could be possible to make a call from the contract using the syntax demon-
strated below:

contract AContract {
function foo(address arbitraryAddress) public payable {

arbitraryAddress.call.value(1).gas(1)("");
}

}

Where parameters value, gas, and other possible ones are passed using ’func-
tion calling’ syntax. Now, it is deprecated and cannot be compiled with new
solidity compilers due to TypeError. However, the code can be refactored to
the up-to-date syntax:
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contract AContract {
function foo(address arbitraryAddress) public payable {

arbitraryAddress.call{value:1,gas:1}("");
}

}

There is a possibility in Solidity that the function call is omitted, and
instead of an actual call, the access to the member .call is done. The primary
purpose of the ’Call options not called’ detector is to search for this omitting.

2.4.1.1 Design of the detector

It is essential to design detectors compatible with older versions of the an-
alyzing programming language. Therefore, during the design process, it is
important to examine all possible older structures of the version with which
the detector has to be compatible.

The example of insecure code compiled with an older Solidity version is
stated below:

contract AContract {
function foo(address arbitraryAddress) public payable {

arbitraryAddress.call.value(1).gas(1);
}

}

The program uses call options, but it does not call address. In the newer
version of the solidity, the finding appears in this code:

contract AContract {
function foo(address arbitraryAddress) public payable {

arbitraryAddress.call{value: 1, gas: 1};
}

}

There are two intermediate representation classes by iterating on which the
needed information for catching the error can be extracted.

ir.FunctionCallOptions - this class represents the IR node, which is
responsible for call options (for example: {value: 1, gas: 1} in
randomAddress.call{value:1, gas:1}().

ir.MemberAccess - this class represents the IR node responsible for ac-
cessing the object member. IR nodes of this type have the property
.referenced_declaration, which represents the accessed attribute or
function.

It is beneficial to introduce a few more entities from IR that aid in the imple-
mentation process:
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ir.enums.GlobalSymbol.FUNCTION_GAS,
ir.enums.GlobalSymbol.FUNCTION_VALUE - symbols that are codified by
the IR model and can only be referenced by
Identifier (wake.ir.expressions.identifier.Identifier) nodes. In
this case, the symbols are specifically ’value’ and ’gas’.

ir.FunctionCall - IR node represents all operations using () symbols.
In the particular case of implementation of this detector, this class will
represent function calls.

Detector for an older version can be implemented in a few steps:

1. Iterate by every ir.MemberAccess entity;

2. if the property .referenced_declaration of the ir.MemberAccess entity
is not:

ir.enums.GlobalSymbol.FUNCTION_VALUE

ir.enums.GlobalSymbol.FUNCTION_GAS

detector continue on the next ir.MemberAccess entity;

3. the detector needs to parse through every valid parameter of calling options
(e.g., .valid() or .gas()). It continues to iterate by parameters going
upper in the IR model tree.

4. When it ends parsing through calling options, the IR node must be the
type of ir.FunctionCall. If it is not, it indicates that call options are not
called.

The code snippet that demonstrates the explained logic behind the detector is
introduced below:

def visit_member_access(self, node: ir.MemberAccess):
if node.referenced_declaration not in {

it. enums.GlobalSymbol.FUNCTION_GAS,
ir.enums.GlobalSymbol.FUNCTION_VALUE,

}:
return

expr = node
while True:

if (
isinstance(expr, ir.MemberAccess)
and isinstance(expr.parent, ir.FunctionCall)
and expr.referenced_declaration
in {

ir.enums.GlobalSymbol.FUNCTION_GAS,
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ir.enums.GlobalSymbol.FUNCTION_VALUE,
}

):
expr = expr.parent.parent

elif isinstance(expr, ir.FunctionCallOptions):
expr = expr.parent

else:
break

if not isinstance(expr, ir.FunctionCall):
# Finding
pass

Detector for a new version can almost be implemented similarly but with
iterations by IR nodes of type ir.FunctionCallOptions. The complete code
of this detector can be found in the attached file.

2.4.2 ’Struct mapping deletion’ detector
In Solidity, mappings within a struct are not cleared when the delete keyword
is used on the struct instance. This is due to the inherent nature of how
mappings work in Solidity. Mappings are a key-value data structure used
extensively due to their efficiency and flexibility. When a mapping is declared
within a struct, it embeds a potentially dynamic associative array inside a
more statically defined object.

The problem occurs in the following code:

contract A {
struct Account {

string name;
mapping(uint => uint) balances;

}

mapping(uint => Account) accounts;

function clearAccount(uint id) internal {
delete accounts[id];

}
}

The function clearAccount is intended to delete all information from the
struct object ’Account’ connected to the specified key of unsigned integer type.
However, due to the dynamic nature of the mapping ’balances’ structure, it
cannot be deleted with a simple delete keyword. For example, the static
attribute ’name’ of the ’Account’ struct can be cleared with delete keyword
in the way that the value of the Account.name will be empty string ("").
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2.4.2.1 Design of the detector

To find this issue, we need to iterate through all calls of delete and find if
the second operand has in itself a struct with mapping. IR nodes that can be
used during the implementation of this detector are displayed below:

ir.UnaryOperation - IR node that represents any unary operation. It has
as attributes two following IR nodes:

_sub_expression: ExpressionAbc - represents an expression on which
operation is executed;
it is worth to mention that every ExpressionAbc object has attribute
types.TypeAbc, which can identify the type of variable.
_operator: UnaryOpOperator - represents operation, that executes on
expression;

The algorithm for finding this error is straightforward:

1. Iterate by every delete operation, which is represented in the IR tree as
ir.UnaryOperation node;

2. Check if the deleted type has mapping, which is nested to the struct;

This detector implementation is displayed below:

class StructMappingDeletionDetector(Detector):
_detections: List[DetectorResult]

def __init__(self) -> None:
self._detections = []

def detect(self) -> List[DetectorResult]:
return self._detections

def _check_struct_mapping(
self,
t: types.TypeAbc) -> Set[ir.VariableDeclaration]:
if instance(t, types.Array):

return self._check_struct_mapping(t.base_type)
elif isinstance(t, types.Struct):

ret = set()
for m in t.ir_node.members:

if isinstance(m.type, types.Mapping):
ret.add(m)

else:
ret.update(self._check_struct_mapping(m.type))

return ret
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else:
return set()

def visit_unary_operation(self, node: ir.UnaryOperation):
if node.operator != ir.enums.UnaryOpOperator.DELETE:

return

t = node.sub_expression.type
assert t is not None
members = self._check_struct_mapping(t)
if len(members) > 0:

# FINDING
pass

The function visit_unary_operation iterates over all ir.UnaryOperation
nodes and check if the operation is the delete. After that, the algorithm
verifies whether the deleted type includes a nested mapping within the struct.

2.4.3 ’msg-data in Keccak’ detector
Randomness is crucial in smart contracts due to security reasons. In contexts
such as decentralized finance (DeFi) [29], randomness serves as an essential
mechanism for allocating roles, resources, or rewards. Predictability in such
cases could lead to vulnerabilities where an attacker could manipulate out-
comes to their benefit, potentially stealing assets or corrupting the system.
Besides, randomness is used to ensure that outcomes cannot be anticipated
beforehand. In various decentralized applications, this unpredictability is es-
sential to maintain trust and integrity within the system.

The Keccak hash function, part of the SHA-3 family, is commonly used in
blockchain technologies, including Ethereum, for generating pseudo-random
numbers within smart contracts. The following points explain why it is im-
portant to pass true random data to the Keccak hash function:

Prevent Exploitation. If the input to the Keccak function is predictable,
then the output also becomes predictable. This can lead to exploitation,
where an attacker might predict the next state of a contract or the result
of a transaction before it occurs.

Avoid Manipulation. Smart contracts often use events or states that
involve financial transactions. If the output of the Keccak function (used,
for instance, in a lottery smart contract) can be influenced by manipulating
the input data, it can result in financial loss or unfair advantages.

The primary purpose of the ’msg-data in Keccak’ detector is to identify
the use of predictable data, specifically msg.data, which represents the data
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passed with a call to a smart contract. Since the Keccak function is open-
source, anyone can use it to predict the hash generated from msg.data. As a
result, using Keccak in this manner undermines its effectiveness. The simplest
example of a code snippet where the detector needs to detect the issue:

function badRandomness() pure public returns(bytes32) {
bytes32 upredictable_data = keccak256(msg.data);
return upredictable_data;

}

In this code block, msg.data is used as a single parameter for the Keccak hash
function, eliminating any randomness.

2.4.3.1 Design of the detector

Data Dependency Graph (DDG) and Control Flow Graphs (CFG) are integral
parts of the implementation of this detector. To address the security vulner-
ability arising from the predictable usage of the msg.data parameter in the
Keccak hash algorithm, our approach identifies relevant nodes in the DDG
representing:

DdgNode. Data from msg.data;

DdgNode. Hash created by the Keccak function.

This identification is done by the helper functions available within the Wake
framework.

The algorithm for finding this security issue is straightforward but resource-
consuming compared to others.

1. The detector takes previously found DdgNodes, that represents msg.data
and Hash created by the Keccak function. As a result, we have only two
nodes, which collect all occurrences of msg.data and Hash data from Kec-
cak.

2. The detector finds all paths in DDG from msg.data node to the hash data
node.

3. The detector checks if at least one path from DDG can be reproduced in
any CFG or, in other words, in any function of the smart contract.

4. The detector reports a detailed summary of the found security issue.

Due to the detector’s closed-source manner, no code can be disclosed in
this thesis. However, the archive with the explained detectors is given to the
commission. As a result, the code of this detector can be found there.
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2.4.3.2 Detector’s problems

During analysis of this detector, it has been found that it cannot identify the
problem if msg.data variable is passed to any global function, and the output
of this function is given to the Keccak hash function. The simplest example of
code, where the detector does not identify the issue, can be seen below:

function badRandomness() pure public returns(bytes32) {
bytes32 hash_data = keccak256(abi.encode(msg.data));
return hash_data;

}



Chapter 3

Performance evaluation

This chapter describes the evaluation of existing detectors introduced in the
previous chapter. In the beginning, it defines metrics and approaches for its
evaluation. After that, the results of the measurement are introduced.

3.1 Evaluation system design

We decided to perform two different experiments to evaluate the detectors’
effectiveness. The first experiment will be on the created test suites. The
second experiment will be on real smart contracts on the different chains used
nowadays. In the evaluation of the effectiveness of the implemented Wake
detectors, the following attributes are used:

Precision. The positive predictive value measures the ratio of predicted
true positives among all instances classified as positive.

Precision = TruePositive
TruePositive + FalsePositive (3.1)

Recall. Also known as the true positive rate, it calculates the proportion
of correctly predicted True Positives out of all False Negatives.

Recall = TruePositive
TruePositive + FalseNegative (3.2)

F1-Score. The harmonic mean between precision and recall.

F1-Score = 2 ∗ Precision ∗ Recall
Precision + Recall (3.3)

As the Wake framework static analysis tool has a decent amount of detectors,
it is impossible to evaluate them all correctly. It has been decided to evaluate
only detectors described in the previous chapter, such as ’Call options not
called’ and ’Struct mapping deletion’ detectors.
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3.2 Measurements

3.2.1 First experiment
The first test suite for the detector ’Call options not called’ is composed of
different variants of calls. It contains:

new version of ’call’ syntax;

old version of ’call’ syntax;

combination of old and new version of ’call’ syntax;

call using interfaces.

The second test suite is written explicitly for ’Struct mapping deletion’,
consisting of comprehensive nested structures with mappings.

The third test is defined for testing the performance of the ’msg-data in
Keccak’ detector. It consists of simple tests and nested tests.

The test shows that implemented detectors succeeded in defining almost
every True Positive and every Negative Positive. These results have been
achieved with the help of a structural approach and not a heuristic. The used
test suite can be found in the archive, which is attached to this thesis. However,
it should be mentioned that this detector solves a trivial and straightforward
task. More difficult implementations of the detector will be introduced in the
next chapter.

Table 3.1 Performance Metrics

Name of the detector Precision Recall F1-Score
Call options not called 100% 100% 100%

Struct mapping deletion 100% 100% 100%
msg-data in Keccak 100% 90% 94,74%

3.2.2 Second experiment
A total of 500,508 contracts, sourced from various blockchain networks such
as the Binance Chain and Ethereum Chain, have been selected for the evalua-
tion of specific detectors, including ’Call options not called,’ ’Struct mapping
deletion,’ and ’msg-data in Keccak’. Due to time constraints, it was not fea-
sible to quantify the prevalence of False Negatives within these contracts. As
a result, the analysis was restricted to the assessment of True Positives and
False Positives.

The results collected from this experiment are remarkable, given that the
underlying complexities of the issues these detectors address are not difficult.
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Table 3.2 Performance Metrics for the Second experiment

Name of the detector True Positive False Positive Number of findings
Call options not called 100% 0% 86

Struct mapping deletion 100% 0% 8
msg-data in Keccak 100% 0% 193

The simple nature of the problem has led to the creation of detector designs
that are straightforward yet highly effective in their performance

These detectors demonstrate remarkable precision, as evidenced by the
results, which confirm their capability to accurately identify only those issues
that are True Positives.

3.3 Conclusion of existing detectors’ analysis

These detectors have been selected as the most representative examples of
analyzers implemented using the Wake framework. They distinctly illustrate
the unique advantages of detectors developed through a structured approach,
specifically their ability to accurately identify security issues without flagging
non-existent problems. Developers of Wake have tried to develop tools that
facilitate both high-quality and structured code analysis. Tools like Data De-
pendency and Control Flow Graphs are the most powerful tools in the Wake
framework, and they can be used for designing and implementing sophisticated
detectors.



Chapter 4

Implementation of the
detector

This chapter describes a development process if the detector ’write-after-write’
has. Firstly, it introduces the problem this detector intends to solve. Secondly,
it proposes the design of this detector. Thirdly, the implementation of the
detector using the Wake framework is stated. Lastly, it depicts challenges that
have been encountered during the development process.

4.1 Problem ’write-after-write’

The main problem that this detector aims to solve is to find writing to a
variable value that will not used after that in the code. A simple example of
the problem is presented below:

// FINDING
function simpleFunc() public returns (uint){

uint a;
a = 42;
a = 1337;
return a;

}

This code snippet depicts the variable a that has been overwritten two times,
but only the last value assigned to it has been somehow used. The problem is
that the first assigned value to the a will not be used. Firstly, it is not suitable
for user experience and contracts because almost every operation in the EVM
costs gas, and whoever uses this function will need to pay an additional price
for the gas. Secondly, it can indicate that a value is not used in the code after
being previously assigned, which is an even bigger problem and can create
security issues.
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However, it should be mentioned which cases are not the issues. When
’write-after-write’ occurs only in specific cases, it is not the problem.

// NOT FINDING
function simpleFunc(uint256 b ) public returns (uint){

uint a;
a = 42;
if (b == 100){

a = 1337;
}
return a;

}

The main principle for developing this detector is to make it as accurate as
possible. We have decided to implement this detector with the following main
idea: ”When at least one path to use the assigned value for the variable exists
- it is not considered an issue.”

4.2 ’write-after-write’ detector

4.2.1 Design of the detector
The main goal of the detector is to be as precise as possible and, ideally,
not to generate False Positives at all. The analysis will primarily be based
on nodes and edges of DDG, where the detector examines all writes to the
variable and all its usages, called ’reads’ of the variable in another way, in the
code. However, defining the order in which writes and reads are executed is
impossible without analyzing CFG. Therefore, this tool will also be used.

4.2.1.1 Algorithm to find an issue

Every write operation for every variable will be analyzed. The detector will
distinguish between first write operation under analysis and a list of other write
operations on this variable. If the situation where first write operation will not
be used in any existing path of CFG because of being overwritten by another
write operation from other write operations list occurs, the detector will high-
light that the first write operation is not used and have been overwritten. If
put more simply, this algorithm can be described using a modified child game
called ’Tag’. In this game, children are divided into two groups. One group
is supposed to come to the exit, and the second group tries to catch them.
In our case, the member of the first group is a single element from first write
operations. The second group consists of elements from other write operations
group, which are also connected with the same variable as the first write op-
eration, which is now under analysis. The exit, where element from the first
group aims to come, are read operations and end blocks of the CFG. The game
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field, which, in this case, is all possible paths, is provided by CFG. In other
words, we can describe the overview of this algorithm in the following steps:

1. Collect all variables by using a Data Dependency Graph with type
VariableDdgNode that are not state variables.

2. For variable, find all the edges connected to and out of this variable in the
Data Dependency Graph.

3. Find every representation statement in the Control Flow Graph for the
Data Dependency Graph edge. (Figure 3.3)

4. Divide these statements by different Control Flow Graphs.

5. Analyze every write operation of this variable, as it is first write operation.
Collect other writes, previously named as other write operations, which
connects with first write operation. In addition, collect all read operations
on the variable and end node of the CFG. This list will present the possible
exits. Find out if at least one path by which first write operation can come
to any elements from the exit list bypassing all other write operations exist.
If possible, then first write operation is safe, and no finding is reported. If
no path exists, the ’write-after-write’ for a particular analyzed first write
operation is reported. Algorithm goes to step 2.

The algorithm finishes at the moment when all non-state1 variables of the
smart contract have been analyzed. The simplified scheme of the algorithm is
introduced in Figure 3.4.

4.2.2 Challenges during implementation
A few challenges have appeared during implementation. Part of these chal-
lenges were due to Solidity features, and another part was due to the insuffi-
ciently deep implementation of built-in tools in the Wake framework.

4.2.2.1 Function arguments

Detector has to to process variables that specially are function arguments, as
one write operation already has been performed on them. For example, if the
detector analyzes these variables in the same way as common variables, there
will be no finding in the code below:

function simpleFunc(uint a) public returns (uint){
a = 42;
return a;

}
1state variable - a variable whose value is permanently stored in contract storage, for

example, attribute of smart contract
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Figure 4.1 Extracting information from CFG using DDG

However, if it is a function argument, it already has passed value due to a
function call. Thus, we need to add one write operation to the start block of
the function CFG. In this case, an additional write operation will always be
the first in the CFG of the called function.

4.2.2.2 Function arguments and modifiers

There is a possibility that passed function arguments will be used by the
modifier of this function, as in the example below:

function simpleFunc(uint a) bar(a) public returns (uint){
a = 42;
return a;

}

If this is the case, we need to add one additional read operation to every
variable from function arguments used by modifiers.

4.2.2.3 Representation of shortcut for assignments in DDG

During process development, it has been found that the Data Dependency
Graph created by the Wake framework does not correctly represent assign-
ment shortcuts. The operation i += 1 only creates one write operation to
the variable i in DDG. However, a hidden read operation of i variable exists
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Figure 4.2 Algorithm to find write-after-write
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before the write operation because shortcut i += 1 stands for i = i + 1. For
instance, the described problem can be seen in the code below and in Figure
3.5, which represents the DDG graph of the variable i:

function simpleFunc() public {
uint i;
i = 0;
i += 1;

}

Figure 4.3 The DDG graph of the i variable

As can be noticed, there is no edge from the i variable. In this case, an
additional edge from the i variable to itself has to be added to the implemen-
tation code.

4.2.2.4 Representation of loops in CFG

In the Wake framework, it was discovered that the control statement for loop
iteration is stored not within a Control Flow Graph (CFG) node but instead
on an edge. This positioning means the control statement doesn’t appear in
the list of a block’s statements. Consequently, any analysis based on the list
of statements within CFG nodes may overlook the loop control mechanisms,
potentially impacting the accuracy of the analysis. An example of the function
that replicates this behavior and its CFG graph is introduced below:
function simpleFunc() pure public returns (uint){

uint b;
b = 10;
for (int a = 0; a < 10; a++){

b = b + 1;
}

}
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Figure 4.4 The CFG graph of the “simpleFunc” function

Wake framework’s The Control Flow Graph (work uniquely stores control
statements. These statements are positioned on the edges rather than within
the nodes of the CFG, which differs from typical CFG implementations. This
distinctive architecture requires an additional step in the analysis process. For
accurate analysis, it is essential to integrate the control statements from the
edges into the corresponding CFG node blocks. By manually appending these
control statements to the end of node blocks from which the edges originate,
we can remedy the gap and maintain the integrity of the analysis.

4.2.3 Unsolved challenges
During the implementation process, we found problems that could not be
solved by simply modifying the algorithm logic. A new approach to solving
them must be chosen.

4.2.3.1 State variable problem

In smart contracts, there is no one main execution flow. A smart contract is a
set of functions that can be called and used. A state variable is a variable that
is saved in a smart contract as its attribute, so it can be changed not only by
the called function but also by another function of the same smart contract
that the called function uses. Coming out of all of the above, for analyzing
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a state variable, we have to analyze all possible sequences of smart contract
functions that can somehow influence a state variable. Thus, the introduced
algorithm for finding ’write-after-write’ issues cannot be used for detecting
the same issue for the state variables. The code below demonstrates a simple
example of why it is not possible to analyze state variables in the same way:

contract BContract{
unit a;
bool notEntered;
function foo(bool notEntered) public {

if (notEntered == false){
a = 42;

}
}
modifier bar(uint b){

notEntered = false;
_;
notEntered = true;

}
function simpleFunc(uint b) bar(b) public {

foo(notEntered);
}

}

The modifier function bar() performs two write operations on the variable
notEntered. The algorithm previously described might flag this as an is-
sue. However, such a flag would be incorrect because a function that utilizes
the notEntered state variable is called between these write operations. The
Control Flow Graph (CFG) of the modifier function does not detect the read
operation inside the other function. This oversight occurs because the state
variable notEntered exists within the scope of the smart contract, not just
within a single function.

4.2.3.2 Assignments in the loop

The detector has to identify all unnecessary or forgotten write operations.
However, there is an example where the write operation wily be unnecessary
only in the specific path. A simple example of it is introduced in the code
below:

function simpleFunc() pure public {
uint a;
for (int i = 0; i < 10; i++){

a = 10;
}

}
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While looking into the code, it can be seen that the assignment operation for
a variable can be executed after the loop, as the operation assigns the same
value every iteration. Nevertheless, there is only one possible path in the CFG
where the flow of the program can go. Due to the compilation phase, there
is no possibility of finding out that the for loop will be executed exactly ten
times. As a result, the designed algorithm has it is not identified as an issue.

4.2.4 Future work
Several improvements could be made to the detector to extend its capability
to identify a broader range of issues. These improvements would involve refac-
toring the underlying algorithm and expanding the scope of conditions that
the detector monitors.

4.2.4.1 Structure compatibility

Detector can be improved by taking into account structure objects. For in-
stance, it can analyze simple attributes of the structure objects and find issues
connected with objects. As a result, the detector can analyze more complex
data structures. The code that can create an issue is located below.

contract BContract {
struct S {

uint x;
}

function foo(S memory s) pure public {
s.x = 5;
s.x = 6;

}
}

Here, the issue occurred due to overwriting the value of the structure object’s
attributes s.x without using the first assigned value.

4.2.4.2 Detect assigning of the default value

Developers may occasionally assign a default value to a variable despite its
unnecessary nature, as variables declared in the Ethereum Virtual Machine
(EVM) inherently have a zero value. Technically, it is not a security issue but
a code style. However, the designed algorithm doesn’t consider it for now, and
assigning the default value is an issue. The code snippet below introduces the
typical example of the described problem:

function simpleFunc(uint b) pure public {
uint a = 0;
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if (b == 10){
a = 42;

}else {
a = 43;

}
}

The detector can be modified to ignore the default value assigned during vari-
able declaration, treating it as a non-write operation. This prevents any issue
arising from default value assignment from being detected.



Chapter 5

Testing & Results

This chapter describes a performance evaluation of the implemented ’write-
after-write’ detector and compares it with the Slither ’write-after-write’ de-
tector. The system to evaluate the detector’s performance is defined in the
first chapter. The second section introduces the results of the experiments,
which compare the results of the two implementations on the prepared set of
contracts. After that, the second experiment is shown, where both detectors
have been tested on an extensive set of vulnerable smart contracts.

5.1 Testing methodology

Evaluating a detector’s performance using static code analysis to find security
issues is crucial to ensuring the accurate identification of vulnerabilities and
minimizing false positives and false negatives. This evaluation also ensures the
detector can be integrated into existing development workflows, allowing for
efficient and practical use in real-world scenarios.

5.1.1 Evaluating the result from the first experi-
ment

As the limited number of prepared smart contracts need to be audited, they
can be analyzed manually. Therefore, we can assess the evaluator using them
more precisely. The following metrics are used:

Precision

Recall

F1-Score

Given that the above-mentioned metrics were already described in Chapter 3,
reiterating them is unnecessary.
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5.1.2 Evaluating the result from the second experi-
ment

The already analyzed dataset by Slither detector is taken for analyzing. [30]
Due to the analysis of approximately 10,000 smart contracts in the second ex-
periment, manual inspection of each one is impractical. Therefore, to manage
time effectively, 50 flagged smart contracts from each detector were randomly
selected for evaluation. Besides, a set of contracts in which Slither has detected
the issue and Wake has not found, were analyzed. The following metrics were
chosen for assessment:

False Positive amount;

True Positive amount;

Precision;

Number of found issues

These metrics are well-suited for conducting comprehensive analyses while
maintaining quality standards. By using these measures, we can ensure robust
evaluation outcomes that accurately reflect the performance and effectiveness
of the detectors.

5.2 Performance evaluation

5.2.1 First experiment
Exactly 34 prepared smart contracts have been tested during this experiment.
These smart contracts are specially developed for testing the ’write-after-write’
detector. They contain simple cases and edge cases, which are difficult to
find. The set of these smart contracts can be found in the attachment to this
document.

After a manual review of the contracts, it was found that there are 14
contracts that do not have the ’write-after-write’ issue and 20 contracts that
are found to have this finding. The results are introduced below:

Table 5.1 Performance Evaluation

Slither Wake
Precision 7

7+0 = 100% 16
16+0 = 100%

Recall 7
7+14 = 33.33% 16

16+5 = 76.19%
F1-Score 2∗100%∗33.33%

100%+33.33% = 50% 2∗100%∗76.19%
100%+76.19% = 86, 49%

It should be mentioned that the purpose of this set of smart contracts is
to test detectors on simple and edge cases.
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5.2.2 Second experiment
This investigation selected a subset of vulnerable smart contracts from the
dataset by Rossini (2022) [31]. This dataset includes the results of an analysis
conducted by Slither’s ’write-after-write’ detector, and due to its size, only
15,000 entries were chosen. The processing of this dataset followed these steps:

1. The addresses to analyze were extracted.

2. The findings from Slither’s ’write-after-write’ detector were retrieved for
the extracted address.

3. The findings from Wake’s ’write-after-write’ detector were obtained by an-
alyzing the same set of addresses.

4. As Slither detected fewer findings than Wake, it was decided to manually
analyze findings that were not found by the Wake framework that had been
identified by Slither.

5. Due to time constraints, it was impossible to analyze all smart contracts
manually. Therefore, a random set of 50 smart contracts has been chosen
to be evaluated.

Besides, it should be mentioned that the Wake detector ’write-after-write’ can
not scan smart contracts if at least one of the following restrictions is in place.

Smart contract compiled by the Solidity compiler with version below 0.6.2;

Sent to Etherscan samreen2021smartscan smart contract uses absolute
paths.

As a result, only 9388 out of 15.000 smart contracts have been analyzed by
implementing the ’write-after-write’ detector in the Wake framework.

There are 63 contracts that Slither flagged Wake did not flag. The list
of these contracts can be found in the appendix. These contracts have been
analyzed, and the results of the analysis of Slither findings can be seen below
in the table:

Table 5.2 Performance Metrics for Slither’s additional findings

Metrics True Positive False Positive Precision
Slither 10 53 15.9 %

These results show that most of the findings, which have been detected by
Slither and have not been detected by Wake, are False Positives.

The next table displays the number of findings identified by Wake and
Slither. It can be seen that the amount found by the realization of the detector
using the Wake framework is bigger. As seen by previous and further statistics,
the Wake detector has better precision, which is close to 100 percent.
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Table 5.3 Number of found issues by Wake and Slither

Metrics Number of findings
Slither 199
Wake 672

The following table provides an overview of the analysis, for which 50 smart
contracts have been randomly chosen and manually analyzed. Thus, we did
not identify any ’write-after-write’ issue in 12 contracts, and 38 contracts have
been flagged as having security issues.

Table 5.4 Performance Evaluation between Slither and Wake on example ’write-
after-write’ detector

Slither Wake
Precision 19

19+3 = 86.36% 36
36+0 = 100%

Recall 19
19+19 = 50% 36

36+2 = 94.74%
F1-Score 2∗86.36%∗50%

50%+86.36% = 63.33% 2∗100%∗94.74%
100%+94.74% = 97.29%

This table with results shows that the implemented ’write-after-write’ de-
tector using the Wake framework has more precise results than Slither’s im-
plementation of the detector.

5.3 Summary

Due to time constraints, it was impossible to evaluate the results using metrics
that typically involve assessing a number of false negatives. Consequently,
evaluating the performance of the detectors is not straightforward. However,
based on the analysis of the results presented, the following conclusions can
be drawn:

Based on results from Table 5.1, Table 5.2, and Table 5.4, the Wake detector
demonstrates greater precision than the Slither detector.

Based on results from Table 5.3, the Wake detector identifies more security
issues than the Slither detector.



Conclusion

The first goal of the thesis was to analyze the design of already implemented
detectors – the second chapter presented the design and implementation of the
existing detectors: ’Call options not called,’ ’Struct mapping deletion’, and
’msg-data in Keccak’. Besides, the Intermediate Representation (IR) model of
the Wake framework used in these detectors has been described in the design
discussion.

The second goal was to evaluate existing detectors on a provided set of
contracts. In the third chapter, the evaluation system design was defined, and
measurements were done on a prepared set of smart contracts hosted on real
production chains, such as the Ethereum mainnet.

The third goal was to implement a vulnerability detector using the Wake
framework. The fourth chapter describes the process of developing the new
’write-after-write’ detector using the Wake framework. Besides, it introduces
the challenges met in the development process and how they have been solved.
In addition, ideas on how the detector can be improved are introduced.

The fourth goal was to evaluate the performance of the implemented de-
tector compared to the same detector of a state-of-the-art analysis tool. In
chapter five, an evaluation of the implemented ’write-after-write’ detector us-
ing the Wake framework and the existing ’write-after-write’ implemented by
Slither was done. Therefore, it has been proved statistically that the imple-
mented detector outperforms the existing Slither detector, which addresses the
same security issue.

This thesis provides enough information about the static analysis vulner-
ability detector’s implementation processes; hence, every reader interested in
designing their own detector could implement a simple one and improve the
overall security of the blockchain environment.
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