
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Unauthorized communication detection in modern application

firewalls

Lukáš Hrdonka

Ing. Josef Kokeš, Ph.D.

Informatics

Information Security 2021

Department of Information Security

until the end of summer semester 2024/2025

Instructions

1) Describe basic security concepts of computer networks, particularly those based on

the TCP/IP protocol.

2) Analyze various firewall types. Focus particularly on the application firewalls, i.e. those

that apply rules to individual applications rather than protocols and ports. Research

common evasion techniques for these firewalls.

3) Using a set of application firewalls of your choice (approved by the supervisor), design

and implement a set of tests that would demonstrate the firewalls' ability (or inability) to

detect and prevent unauthorized network access.

4) Evaluate and discuss the results received from these tests. Propose recommendations

for the firewall setup that would maximize the security against unwanted

communications.

Electronically approved by prof. Ing. Róbert Lórencz, CSc. on 10 January 2024 in Prague.

Bachelor’s thesis

UNAUTHORIZED
COMMUNICATION
DETECTION IN MODERN
APPLICATION
FIREWALLS

Lukáš Hrdonka

Faculty of Information Technology
Department of Information Security
Supervisor: Ing. Josef Kokeš, Ph.D.
May 12, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Lukáš Hrdonka. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Hrdonka Lukáš. Unauthorized communication detection in modern application
firewalls. Bachelor’s thesis. Czech Technical University in Prague, Faculty of Information Technology,
2024.

Contents

Acknowledgments vii

Declaration viii

Abstract ix

List of abbreviations x

Introduction 1

1 Traffic Filtering Overview 3
1.1 Network Access Layer . 3

1.1.1 MAC Address . 5
1.1.2 VLANs . 5
1.1.3 Frame Check Sequence . 5

1.2 Internet Layer . 6
1.2.1 IP Address . 6
1.2.2 IP Address Filtering . 6
1.2.3 Header Checksum . 7

1.3 Transport Layer . 7
1.3.1 Transport Layer Protocols . 7
1.3.2 Port Number . 8
1.3.3 Port Number Filtering . 8

1.4 Application Layer . 9
1.4.1 Protocol HTTP . 9
1.4.2 Filtering Options . 11

2 Application Firewall 13
2.1 Phases of Attack . 13

2.1.1 Cyber Kill Chain . 13
2.2 Principle of an Application Firewall . 16

2.2.1 Trusted Application Definition . 16
2.2.2 Trusted Application Verification . 17

2.3 Common Evasion Techniques . 17
2.4 Popular products . 20

2.4.1 ESET Internet Security . 20
2.4.2 Avast Free Antivirus . 21
2.4.3 Windows Firewall . 22
2.4.4 TinyWall . 23
2.4.5 ZoneAlarm Firewall . 25

iii

iv Contents

3 Testing Environment Description 27
3.1 Operating System and Installed Programms . 27

3.1.1 Victim . 27
3.1.2 Attacker . 27

3.2 Application Firewalls . 28

4 Substitution 31
4.1 Attack Description . 31

4.1.1 Executable’s Name and Path . 31
4.1.2 Digital Certificates . 32
4.1.3 Attack Options . 38

4.2 ESET Internet Security . 39
4.3 Avast Free Antivirus . 43
4.4 Windows Firewall . 45
4.5 TinyWall . 47
4.6 ZoneAlarm Firewall . 49

5 Injection 53
5.1 Attack Description . 53

5.1.1 Code Explanation . 57
5.1.2 Practical Demonstration . 59

5.2 ESET Internet Security . 61
5.3 Avast Free Antivirus . 63
5.4 Windows Firewall . 65
5.5 TinyWall . 66
5.6 ZoneAlarm Firewall . 67

6 Discussion of Results 69
6.1 Substitution . 69
6.2 Injection . 70
6.3 Discussion . 70
6.4 Vendors Reaction . 72

7 Conclusion 75

Contents of the Attachment 83

List of Figures

1.1 Filtering Options Overview . 4
1.2 Comparsion of TLSv1.2 and TLSv1.3 Handshake 11

2.1 Cyber Kill Chain Model with Offensive and Defensive Actions 14
2.2 Common Principle of the Attacks . 18

4.1 Substitution Attacks Principle . 32
4.2 Digital Signature of OneDrive Executable . 35
4.3 OneDrive Certificate Chain . 36
4.4 Export Certificate to PFX Format . 37
4.5 Additional Parameters of Certificate Export . 38
4.6 Executable Signed By Untrusted Organization 39
4.7 Rule for Trusted OneDrive Application in ESET Internet Security 41
4.8 Warning about Application Modification in ESET Internet Security 41
4.9 Rule for Unrusted OneDrive Application in ESET Internet Security 42
4.10 Application Excluded from Modification Detection in ESET Internet Security . . 42
4.11 Rule for Trusted OneDrive Application in Avast Free Antivirus 43
4.12 Details of Default Rule for Trusted OneDrive Application in Avast Free Antivirus 43
4.13 Rule for Untrusted OneDrive Application in Avast Free Antivirus 44
4.14 Untrusted Certificate Detection by Avast Free Antivirus 45
4.15 Default Settings of Windows Firewall . 46
4.16 General Tab of Rule for Trusted OneDrive Application in Windows Firewall . . . 46
4.17 Details of Rule for Trusted OneDrive Application in Windows Firewall 47
4.18 Rule for Trusted OneDrive Application in TinyWall 48
4.19 Details of Rule for Trusted OneDrive Application in TinyWall 49
4.20 Rule for Untrusted OneDrive Application in TinyWall 49
4.21 Rule for Trusted OneDrive Application Definition in ZoneAlarm 50
4.22 Rule for Untrusted OneDrive Application Definition in ZoneAlarm 51

5.1 Injection Attacks Principle . 54
5.2 Legitimate Communication of Windows Explorer 55
5.3 Information about IP Address 52.109.28.46 in Shodan 56
5.4 Certificate of Signed DLL . 57
5.5 Launching the Injection Attack and Verification of the Result in the Task Manager 59
5.6 Listing of Linked DLLs in the Process Explorer 60
5.7 Communication Captured by Wireshark . 60
5.8 Communication of Trusted OneDrive Application in ESET Internet Security . . . 61
5.9 Communication of Injected OneDrive Application in ESET Internet Security . . 62
5.10 Exception Details in Avast Free Antivirus . 64
5.11 Attack Detection by Avast Free Antivirus . 64
5.12 Configuration of Code Integrity Guard In Windows Security Center 66
5.13 List of Active Connection in TinyWall . 67
5.14 Sensitivity Level Settings in ZoneAlarm Firewall 67

v

List of Tables

1.1 Port Number Classification . 8
1.2 Selected Well-known Ports . 9

3.1 Popular Application Firewalls . 29

4.1 Common Attributes of Distinguished Name . 33
4.2 Executables Used for Substitution Attack . 39
4.3 Terminology Used during the Testing . 40

6.1 Firewalls’ Ability to Detect Substitution Attacks 73
6.2 Firewalls’ Ability to Detect Injection Attacks . 73
6.3 Firewall Vendors Reactions . 73

List of Listings

1.1 Mutliple IP Addresses for Single Domain . 7

4.1 Create New Self-signed Certificate . 37
4.2 Sign Executable File Using Visual Studio Tools 38

5.1 Process Injection . 57

vi

I want to thank my thesis supervisor, Ing. Josef Kokeš, Ph.D.,
for the invaluable guidance, patience, and help provided while writing
the thesis. I also want to thank my family and friends for supporting
me not only during my studies.

vii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources
of information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act No.
121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Czech Technical
University in Prague has the right to conclude a licence agreement on the utilization of this thesis
as a school work pursuant of Section 60 (1) of the Act.

In Prague on May 12, 2024

viii

Abstract

The thesis provides an analysis of vulnerabilities in modern application firewalls.
In the research part, the various ways of traffic filtering are introduced. The common principles

behind the application firewall and the most commonly used evasion techniques are described,
too.

The practical part shows the implementation of substitution and injection attacks written
in C++ programming language using standard Microsoft Windows API functions. The tests
of the substitution and injection attacks are performed against five application firewalls and
the results are then discussed.

The main findings are that the application firewalls can detect substitution attacks as expected,
although the injection attack remains undetected in most application firewalls.

Keywords cybersecurity, penetration test, malware, network traffic filtering, application
firewall, firewall leak test, code injection, Microsoft Windows, DLL, C++

Abstrakt

Tato práce se zabývá analýzou zranitelnost́ı moderńıch aplikačńıch firewall̊u.
V teoretické části jsou představeny možnosti filtrace śıt’ového provozu, kĺıčové principy

aplikačńıho firewallu a nejčastěji použ́ıvané techniky pro testováńı jeho bezpečnosti.
Praktická část navazuje implementaćı útok̊u typu substitution a injection za využit́ı stan-

dardńıch API funkćı operačńıho systému Microsoft Windows. Tyto ukázky jsou implementovány
v programovaćım jazyce C++. Vytvořené programy jsou dále testovány za využit́ı celkem pěti
aplikačńıch firewall̊u. Výsledky test̊u jsou diskutovány v závěru práce.

Hlavńım zjǐstěńım v rámci této práce je, že aplikačńı firewally se chovaj́ı v souladu
s přepokládanou funkcionalitou při detekci útok̊u typu substitution. Většina aplikačńıch firewall̊u
však neńı schopna detekovat útoky typu injection.

Kĺıčová slova kybernetická bezpečnost, penetračńı testováńı, malware, filtrováńı śıt’ového
provozu, aplikačńı firewall, firewall leak test, code injection, Microsoft Windows, DLL, C++

ix

List of abbreviations

AI Artificial Intelligence
API Application Programming Interface

ARPANET Advanced Research Projects Agency Network
C&C Command and Control

CA Certificate Authority
DARPA Defense Advanced Research Projects Agency

DDE Dynamic Data Exchange
DHCP Dynamic Host Configuration Protocol

DiD Defense in Depth
DLL Dynamic Link Library
DLP Data Leakage Prevention
DNS Domain Name System
FCS Frame Check Sequence

FP False Positive
HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure
ISG Intelligent Security Graph

ISO/OSI International Organization for Standardization / Open Systems
Interconnection

MITM Man-in-the-Middle Attack
ML Machine Learning

MSRC Microsoft Security Response Center
NAT Network Address Translation
NTP Network Time Protocol

OS Operating System
PID Process Identifier
PKI Public Key Infrastructure
PoC Proof of Concept

QUIC Quick UDP Internet Connections
RAM Random Access Memory
RDP Remote Desktop Protocol
RFC Request For Comments

SCTP Stream Control Transmission Protocol
SOHO Small Office Home Office Network

SSH Secure Shell
TCP/IP Transmission Control Protocol / Internet Protocol

Telnet Teletype Network
TLS Transport Layer Security

UDP User Datagram Protocol
URL Uniform Resource Locator

UWP Universal Windows Platform
VLAN Virtual Local Area Network

WDAC Windows Defender Application Control
WSUS Windows Server Update Services

x

Introduction

With the growth in the usage of computers in recent years, the security of these end devices
has to be taken into account. In rough numbers, billions of malware instances were reported
during the last years [1]. Based on that number, one can see that a proper detection system is
needed in order to detect attacks and perform proper defense against them. However, proper
detection of the attack is extremely complicated. As written in IBM’s report for 2023 [2],
the average time needed to detect an attack was 277 days (almost 9 months).

Attackers often use vulnerabilities in a system to deliver and run their malware. The delivery
method may depend on various factors. For instance, attackers can abuse improper detection
mechanisms or use some form of social engineering. When the malware is installed on a device,
it usually needs to communicate with the attacker. This communication can be inspected
by application firewalls that apply rules to specific applications and thus allow traffic filtering
based on the origin of the application. From a practical point of view, users can specify which
applications are allowed to communicate with other devices in the network (or the internet
in general) and which ones are blocked from communication. The mentioned type of firewalls is
often used as a part of complex antimalware products.

This thesis shows common attacks used to bypass rules defined in the application firewalls,
with demonstrations performed on solutions used nowadays. A common concept of attacks
is to abuse a trusted application (i.e., one that is allowed to communicate) to hide malicious
communication.

It should be mentioned that these types of attacks were initially described in the first decade
of this century. However, for more than 15 years, only a minimal amount of information regarding
this type of attack has been found. Thus, one of the thesis’s goals is to analyze various approaches
to firewall leak testing and verify whether modern application firewalls are capable of detecting
the described attacks.

Selected techniques are demonstrated in 5 application firewalls. It was decided to test
the application firewall delivered within antimalware by ESET company as it is commonly used
software in the industry, then Avast as a representative of free and popular antimalware for home
environments and Windows Defender because it is delivered as a part of the Microsoft Windows
operating system. As representatives of dedicated application firewalls, TinyWall and ZoneAlarm
Firewall were used.

All tests are performed using the default configuration of the mentioned application firewalls
as it is expected that the vast majority of the users have only a limited understanding of the con-
figuration of the application firewall, antimalware, or even cybersecurity in general. Based on that,
the thesis shows how these implementations protect regular users against selected attacks.

1

2 Introduction

It is worth mentioning that this thesis focuses primarily on application firewalls (even though
they are often part of the complex antimalware program). Thus, the outcomes presented at the end
of the thesis inform about the ability of the actual application firewalls to detect potentially
malicious communication. The thesis does not solve the problem of delivering these executables
to the victim. It is thus possible that the executable files provided in the attachment would be
detected upon their delivery or while extracting the archive.

Chapter 1

Traffic Filtering Overview

As outlined in the Introduction part of the thesis, various ways of traffic filtering exist.
This chapter provides a classification of the filtering options based on the TCP/IP network
stack and thus presents how data can be filtered on different layers of TCP/IP.

At the beginning of this chapter, the difference between commonly used network protocols TCP/IP
and ISO/OSI is described while explaining why the decision to map filtering options to the first
one was made. [3, 4]

The OSI protocol stack was initially created to describe the concept of computer networks
and divide their functionality into seven logical layers. As the ISO organization designed it,
the protocol became an international standard. Its main advantage is the universality. However,
over time, it became clear that this protocol is unsuitable for practical applications as it is too
complicated and sometimes one service is spread between more than one layer.

Based on the needs of the ARPANET, the TCP/IP was designed by DARPA. The main
difference between these protocols is that the TCP/IP has only four layers (whereas ISO/OSI
has seven layers). Another advantage of the TCP/IP could be great scalability or the support
for various routing protocols. [5]

In summary, the ISO/OSI remained a theoretical (often called reference) model, whereas
TCP/IP became the most used protocol in current networks. Thus, TCP/IP became a standard
of modern computer networks and is used as a base in this document.

Figure 1.1 shows common differences between the ISO/OSI and TCP/IP models, as well
as filtering options on their layers. This figure is used only as an overview as the concepts are
explained in more detail later in the chapter. [6]

1.1 Network Access Layer

The Network Access layer is the lowest layer of the TCP/IP model. Encapsulated data on this
layer are called Ethernet frames (or sometimes simply frames).

The most important parts of the frame’s header1 are the MAC addresses. Similar to the
further layers described in this chapter, there are two types of addresses: destination and source.
However, there is a crucial difference between the other layers – the destination MAC address
precedes the source MAC address. This solution was chosen to speed up the process of switching.

1of course, from the filtering’s point of view

3

4 Traffic Filtering Overview

ISO/OSI

Application Layer

Presentation Layer

Relation Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

TCP/IP

Application Layer

Transport Layer

Internet Layer

Network Access Layer

Filtering

Based on application,
program or service

Pattern-based

Based on port number

Based on IP address

Based on MAC
address

VLAN
(for segmentation)

Considerations

Problematic mapping of appli-
cation’s processes

Multiple processes for a single
program

Operating system’s native fire-
wall is often left in its default
configuration

Well-known ports
needn’t match to the applica-
tion

Stateful filtering

Dynamic IP addresses

Load balancing

Virtual hosting

MAC address can be changed

Usable in local network only

Figure 1.1 Filtering Options Overview [3]

Network Access Layer 5

1.1.1 MAC Address
MAC address consists of 48 bits. While the first 24 bits are used to identify the vendor, the other
24 bits are used as a serial number. Based on that, the MAC address clearly identifies a device
on the local network. As a device can be identified this way, filtering based on the MAC address
is intended to be used.

This solution became extremely handy, especially in larger LANs like corporate or campus
networks. However, one can also use it in smaller networks2. These networks are often designed
so that users connect their devices to the network switch. In such a design, it is very beneficial
to determine devices that could be connected to the switch. If this limitation is not applied, every
device can communicate within the network, which is valuable for potential attackers.

Filtering of unknown devices can be based on MAC addresses. The ideal way would be
to define a set of trusted MAC addresses and deny access from any other. However, the mentioned
solution has two significant problems.

First, it can be nearly impossible to maintain such a set of allowed MAC addresses in large
environments, especially in combination with the BYOD3 (Bring Your Own Device) principle.
Some switch vendors thus implement the option to allow only a limited number of MAC addresses
on physical switch ports, while ones beyond this threshold will be prevented from communication.
This principle is often called switch port security based on the number of MAC addresses and is
commonly used to prevent MAC flooding attacks. [7]

The second problem is that the attacker can change the MAC address of her computer and
thus bypass the rules. On the other hand (and with proper configuration), this attack can be
successful only if the attacker knows the allowed MAC address.

1.1.2 VLANs
When writing about the security on the Network Access layer, the concept of VLANs should also
be mentioned, although it is not a filtering option in the original way. [8]

VLAN can be defined as a logical partitioning of LAN on the Network Access layer of TCP/IP.
This concept is typically used to split different logical parts of the organizations, such as company
departments. Thanks to this, it is also possible to manage communication between the logical
parts4. It is usually done by adding an 802.1Q tag to the frame header.

Based on that, it is commonly used for segmenting logical parts within the organizations
(various company departments, for instance) and managing communication between them.

It is especially beneficial from the view of network design as the broadcast domain is reduced.
In the adequately configured network, it implies that the attacker has more limited attack options.
Consequently, VLANs have the potential to make the lateral movement more challenging.

1.1.3 Frame Check Sequence
Frame Check Sequence (FCS) is a value calculated from the entire frame and placed at its end.
The CRC-32 checksum algorithm computes the FCS value which is an error detection code based
on the polynomial division in the Galois field.

From the above mentioned, it is clear that it cannot be used for checking the integrity
of the message. For a better explanation, let us consider a message that an attacker intercepted.
The attacker can then change the content of the message. Because CRC-32 is a publicly
known algorithm, the new message could be created so that the FCS value remains the same
as in the original message. Based on that, the FCS can only be used for error detection
during transmission (caused by some interference on the medium, for instance).

2so-called SOHO networks
3users bring their own devices and use them in the corporate environment, for instance
4limit the communication between them, for instance

6 Traffic Filtering Overview

1.2 Internet Layer

From the information mentioned above, the Network Access layer is intended to connect the devices
to the local network and then identify these devices based on their MAC address. A motivation
for using the Internet layer of TCP/IP is to group those devices into an IP network and perform
routing5.

1.2.1 IP Address
The Internet layer uses the IP address to identify the device. Combined with a subnet mask6,
it forms a broadcast domain. A similar approach is impossible with MAC addresses alone
as the first part of the MAC address identifies the vendor. However, in one network, devices made
by various manufacturers could be used.

There are two commonly used types of IP addresses in today’s networks – IPv4 and IPv6.
IPv4 was described in RFC 791 (dated September 1981) and consists of 32 bits. It means that
there are 232 possible IPv4 addresses (in reality, this number is slightly less as some of them
cannot be used because they are reserved for specific usage). With the massive growth of IoT
in the recent years, it became clear that more IP addresses were needed. [9]

There are at least two possible solutions to this problem. The first solution is to use modern
IPv6 addresses. The significant difference to IPv4 is that their length is 128 bits. Thus, there are
2128 possible IPv6 addresses, at least in theory. However, as this was a new type of address, some
routers did not understand them in the past. The second solution is to continue using IPv4 and
implement NAT. Its principle is to create a set of private and public IPv4 addresses and perform
mapping between them. Whereas private IPv4 addresses can be used only in local networks,
public IPv4 addresses are primarily used for routing purposes. [10]

1.2.2 IP Address Filtering
Filtering on the Internet layer can be done by filtering the packet’s source or destination IP
address. This type of firewall is often deployed on the border of a local network. This approach is
called packet filter or stateless firewall. A typical representative is Cisco’s standard ACL (Access
Control List).

However, IP address filtering has limitations, too. These are introduced below with a demon-
stration of HTTP and DNS protocols.

Dynamic IP address. The IP address of the origin can be changed. Then the administrator
has to reconfigure the firewall. This can be difficult if a long list of firewall entries exists.

Load balancing. In load balancing, the requested service is deployed on more than one physical
device7. For instance, let us have a user who tries to access the website www.microsoft.com.
According to the DNS response listed in Code listing 1.1, five different IPv4 addresses can be
used for communication. Firewalls must be configured so that all communication is handled
in the same way.

Virtual hosting. It is a popular principle used by web hosting where multiple websites use
one public IP address. The actual website is determined by port number, or more often
by the Host: header used in HTTP protocol. From the filtering perspective, preventing one
IP address from communicating can consequently affect multiple domains.

5i.e., finding the best path to the destination
6devides the IP address to network and host parts
7often deployed in different geographical locations

Transport Layer 7

1 $ $ nslookup -type=A microsoft.com
2 Server: 147.32.88.4
3 Address: 147.32.88.4#53
4

5 Non-authoritative answer:
6 Name: microsoft.com
7 Address: 20.76.201.171
8 Name: microsoft.com
9 Address: 20.112.250.133

10 Name: microsoft.com
11 Address: 20.231.239.246
12 Name: microsoft.com
13 Address: 20.236.44.162
14 Name: microsoft.com
15 Address: 20.70.246.20

Code listing 1.1 Mutliple IP Addresses for Single Domain

1.2.3 Header Checksum
Similarly to the Network Access layer, there is a checksum that can be used for error detection
in the header. It is computed as a 2’s complement sum of all 16-bit words in the header8.
When thepacket arrives at another device, it can calculate the checksum in the same way and
then compare the results.

As this is only a sum, its value can be easily changed. Thus, it does not bring any additional
security.

1.3 Transport Layer
The previous sections described how the device can be identified in the local network based on its
MAC address, as well as the concept of IP addresses. The motivation behind the Transport layer
is to identify specific applications (or sometimes called services) running on the particular device.

Without this mechanism, only one application could communicate simultaneously, which
would be extremely slow and inefficient.

1.3.1 Transport Layer Protocols
Historically, two main protocols have been used on this layer – TCP and UDP. In modern
applications, SCTP or QUIC9 can also be used. [11]

Protocol TCP is connection-based and thus brings reliability into the connection. Before the ac-
tual data are sent over the network, there is a so-called 3-way handshake intended to establish
a channel between the source and destination. After the channel is established, the data are
divided into parts and sent over the network. Those parts of data are tagged by their sequence
number, which is used to acknowledge that this part successfully arrived at the destination
and to present the parts in the correct order10. When all the data are transferred, the channel

8i.e., the header is divided into parts of 16 bits and then summed
9QUIC is included in this section, although sometimes it is called an extension of UDP and included in the set

of Application layer protocols
10as parts might be delivered in a different order

8 Traffic Filtering Overview

between the source and destination is closed using a so-called 4-way handshake.
On the other hand, UDP is a connectionless protocol, which, rather than creating a channel11,

just sends the data over the network. This protocol does not care whether the data arrives
at the destination at all or in which order. Typical usage of this protocol is live-streaming or voice
conferences.

Protocol SCTP was designed to support the simultaneous parallel transfer of multiple inde-
pendent flows. The core principle of SCTP is UDP, but data can be acknowledged. This protocol
is commonly used in telecommunications, especially in 5G networks.

As SCTP was designed for telecommunication networks, protocol QUIC was created to improve
the efficiency of HTTP communications. It is a relatively new protocol which was described
in RFC 9000 only a few years ago. A significant built-in mechanism of QUIC is connection
migration. This means that the device can change the IP address12, which does not affect
the whole communication process. This protocol is used in protocol HTTP/3. [12, 13]

1.3.2 Port Number
A specific application running on the system is, from the perspective of network communication,
identified by its port number. The port number is a 16-bit identifier. Thus, there can be at most
216 applications that communicate at the same time.

As listed in Table 1.1, port numbers can be divided into three categories.

Table 1.1 Port Number Classification

Name First port number Last port number
well-known ports 0 1023
registered ports 1024 49151
private and dynamic ports 49152 65535

Table 1.2 shows selected well-known services and their port numbers. However, the actual
usage of ports can vary based on the administrator’s decision13. In reality, it can happen that
SSH14 would communicate via port 80, a well-known port for HTTP. On the other hand, keeping
the port number for well-known applications is a recommended practice.

1.3.3 Port Number Filtering
Filtering on this layer is based on the source or destination port number, commonly used
in combination with IP addresses on the lower layer. This combination can determine a specific
network service running on the particular device. However, there are a few limitations that have
to be taken into account.

Well-known ports. As described in the previous section, it could happen that the service does
not match a well-known port. Administrators have to set up the filtration by taking this
into account.

Stateful filtering. In this section, various protocols operating on the Transport layer were
introduced. Especially for protocol TCP, confirmation messages are sent back, and those
should also be allowed. If they are not allowed, an acknowledgment message does not arrive
to the sender and data needs to be retransmitted. As a consequence, failure to do so usually
ends with a timeout of the communication.

11i.e., performing a handshake between the source and destination
12due to switching between Wi-Fi and mobile data connection, for instance
13the administrator can decide which port number is used for a particular application
14which should be communicating via port 22

Application Layer 9

Table 1.2 Selected Well-known Ports [14]

Port number Transport Layer Protocol Application Short Description
22 TCP SSH secure remote login and

command execution
23 TCP Telnet unencrypted text commu-

nications
53 TCP or UDP DNS translation of domain

names to IP address
67, 68 UDP DHCP automatic assignment of IP

address
80 TCP or UDP or QUIC HTTP communication

between a web client
and a server

123 UDP NTP time synchronization
443 TCP or UDP or QUIC HTTPS same as HTTP, but com-

munication is encrypted us-
ing TLS

Combination with Internet layer. It is common to combine filtration on this layer with IP
addresses (if there is no such interaction with the lower layer, the whole service is blocked15.
Thus, the disadvantages written in the previous section must also be considered.

1.4 Application Layer

A specific application used in a network communication is identified on the Transport layer by its
port number. The main goal of the Application layer is to provide an interface through which
users can communicate with the particular network application. The inputs from the users are
then transformed into the format that supports lower layers of the TCP/IP model and then
transported over the network.

1.4.1 Protocol HTTP
As regular users are often in contact with the HTTP protocol, the principle of this layer is
demonstrated on its basis. Another aspect is that this protocol typically has less strict rules than
others. In comparison, when using the DNS, only a significantly reduced set of servers can be
contacted and thus it is possible to whitelist them. However, this can be challenging for HTTP
because users usually want to access various sites. The actual set is unknown in advance and is
nearly impossible to predict.

To better understand the motivation behind the Application layer, let us imagine a situation
where a user would like to view some website. The user initially opens some web browser, such
as Google Chrome, Microsoft Edge, or others. Opening the web browser starts at least one
process16. The user enters a domain name of the requested site and the web browser then performs
the necessary steps to initiate HTTP communication – it converts the user’s request into a HTTP
request which is then processed by the lower layers of the TCP/IP model.

When the response arrives, the goal of the Application layer is to decode the message and
then present it to the user by using the defined application (a web browser, in this example).

15no device listening on the particular port number cannot be reached
16in reality, often more than one

10 Traffic Filtering Overview

1.4.1.1 Methods
As one can see, HTTP is a complex protocol that covers multiple actions for a given resource.
In reality, users often need to view a website’s content, but sometimes, they also need to send some
data, for instance, when they would like to log into their account17. Various types of requests are
served by HTTP methods. Below is a list of the most common methods. It should be mentioned
that the listing is not complete as there are other, rarely-used methods. [15]

GET. This method is used to retrieve data from the specified resource. It is possible to send
some users’ data with this method, but it should be used only in reasoned cases as the actual
data can only be sent as a part of the URL and often in plain text. Furthermore, the URL is
usually present in the network device logs. Attackers can then obtain sensitive data when
the logs leak. Another aspect is that the data length is limited. It is not a good idea to send
sensitive information using this method.

HEAD. This method has a similar meaning to the GET method described above. The only
difference is that the response only contains the headers, not the body with the actual resource
representation. This method can be used alongside a caching mechanism. For example,
a browser can send a HEAD request and thus obtain current headers. Based on the obtained
information (especially in the header Last-Modified:), the browser can decide whether
the current representation of the resource has been already stored in the browser’s cache
or whether the GET request is needed. This method is commonly used as it can save some
time.

POST. This method can be used to transfer users’ data to the specified resource. The actual
data are transferred in the body of the message and thus attackers cannot obtain them as
easily as in the GET method. Also, the length of the actual data is extended. It is the most
recommended method for carrying user data.

PUT. The PUT method creates or updates the representation of specified resources. For in-
stance, users can upload some images on the server using this method.

DELETE. As the name indicates, this method deletes a particular resource on the server.

1.4.1.2 Return Codes
As users need to be informed about the results of their requests, HTTP return codes are used
for this purpose. The protocol describes the following classes of return codes (the class is identified
with the first number in the 3-digit code). [16]

1xx. These return codes are used only for information purposes.

2xx. This class of return codes indicates that the request was successfully processed and is
often sent within the actual representation of the resource.

3xx. Return codes that begin with number 3 indicate that the location of the resource was
(either temporarily or permanently) moved. A client then needs to request its new location.

4xx. This class represents client-side errors. It can cover situations where the user does not
have enough rights to view the resource, authentication is required, or the resource cannot be
found.

5xx. The 5xx messages represent server-side errors and are often sent due to serious problems
with the server or its configuration.

17generally, provide some data

Application Layer 11

TLSv1.2

Client Server

ClientHello

ServerHello
Certificate

ServerKeyExchange
CertificateRequest

ServerHelloDone

Certificate
ClientKeyExchange

CertificateVerify
ChangeCipherSpec

ClientFinished

ChangeCipherSpec

Finished

Data Data

TLSv1.3

Client Server

ClientHello

ServerHello
EncryptedExtensions

CertificateRequest

ServerCertificate
CertificateVerify

Finished
Data

Certificate
CertificateVerify

Finished

Data Data

Figure 1.2 Comparsion of TLSv1.2 and TLSv1.3 Handshake [17]

1.4.1.3 Security
As HTTP is a text-based protocol, additional security must be applied to ensure the integrity
and confidentiality of the carried data.

For that purpose, the TLS is used. Its main functionality is to establish a secure channel
for ongoing HTTP communication. The actual data transported in the channel is then enciphered
using symmetric cryptography. Keys for this cipher are exchanged during the initial phase of TLS
(typically using the Diffie-Hellman key exchange).

Protocol TLS is also responsible for authentication, meaning that the server needs to prove
its identity18. It can be done by using certificates or, more precisely, the concept of PKI.

Currently, two versions of TLS are used in modern applications – TLSv1.2 and TLSv1.3.
Although TLSv1.2 was released in 2008, it can still be used in current applications. In protocol
TLSv1.3, messages are sent in a different order, and thus, data can be enciphered earlier
in the communication. The order of messages can be seen in Figure 1.2. Despite TLSv1.2
supporting a large variety of cryptographic functions, in TLSv1.3, many of them were removed
to prevent weak algorithms from being used. [17, 18, 19]

1.4.2 Filtering Options
There are also a few different approaches to data filtration on the Application layer.

Type of application. This approach is typically used in close integration with the Transport
layer. This means that the specific network protocol19 is prevented from communication.
From the point of view of configuration, this is usually done by whitelisting or blacklisting
the specific port used.

18in some cases, it is needed to prove the client’s identity as well
19such as HTTP, DNS, DHCP, etc.

12 Traffic Filtering Overview

Pattern-based filtering. Some protocols have a unique sequence or format of messages used
in the communication. The format of DHCP messages or messages for establishing a TLS
channel can be used as an example. However, this filtering type is rarely used, mainly because
it is a time-consuming and thus ineffective solution.

Filtering based on application, program, or service. As described in the previous section, there
are always some applications that present actual data to users. Managing communication
only from, or to a trusted set of processes is sometimes beneficial. However, this approach has
limitations as it is challenging to map all processes responsible for communication. For web
browsers, these include the core, rendering engine, and even more. This principle is discussed
in more detail further in the thesis.

Windows services. Although Microsoft Windows is a popular operating system, its service
structure could sometimes be challenging to understand. Microsoft Windows comes with a pre-
pared antimalware solution called Microsoft Defender, which also has its own application
firewall called Windows Firewall. However, even with the cleanly installed operating sys-
tem, many rules are defined that apply to communication. As administrators usually have
only a limited understanding of the actual function of those services, the initial set-up is often
left in the system. In consequence, this can provide an opportunity for attackers.

Chapter 2

Application Firewall

In this chapter, the main principle of the application firewalls is described, as well as a moti-
vation for using the application firewalls. Alongside that, the most common evasion techniques
are shown. This chapter also introduces popular application firewalls used in the industry.

2.1 Phases of Attack
The previous chapter of the thesis shows the common filtering mechanisms used on various
layers of TCP/IP. This section provides a slightly different approach to presenting the motivation
for using the application firewalls as it introduces the Cyber Kill Chain model. It was initially
designed by Lockheed Martin company to describe the actual steps taken by attackers to perform
successful attacks.

2.1.1 Cyber Kill Chain
In 2021, Lockheed Martin company introduced the Cyber Kill Chain framework1 as a part
of the Intelligence Driver Defense model. Cyber Kill Chain was designed to help organizations
through a deeper understanding of the attackers’ steps that need to be performed to make
an attack successful2. [20]

As the attackers’ steps are described with this model, it can also help to understand how
to prevent attacks and thus create a more secure environment. However, prevention has to be
considered in all steps of the Cyber Kill Chain to ensure a so-called defense in depth (DiD)
approach. It means preparing an environment in which attackers must overcome all of the security
mechanisms to achieve their objectives. These mechanisms thus can make the attack more
challenging.

The stages of the Cyber Kill Chain framework within the offensive and defensive actions taken
on particular stages are shown in Figure 2.1.

1inspired by a military concept called Kill Chain
2typically means gain control of the device or its part

13

14 Application Firewall

Stage

1. Reconnaissance

2. Weaponization

3. Delivery

4. Exploitation

5. Installation

6. Command and Control

7. Actions on objectives

Offense

Planning the attack

Offline and online research

Collecting of information about the target

Preparation of the malware

Actual payload creation based on the in-
formation obtained in the previous stage

Transfer malware to the device (various
ways exists)

Vulnerability or weakness exploitation to
gain access to the system

Backdoor creation (can be done with the
help of DLL Hijacking or a change of the
Registry keys, for instance)

Opening of a communication channel with
attackers’ infrastructure

Tunnelling of common network services

Data exfiltration

Encryption with ransomware

Lateral movement

Defense

Limit exposured information

Detection of network scans

Network traffic monitoring

Patch management

Vulnerability analysis

Penetration testing

Train users about social engineering

Endpoint security deployment

Web filtering, email filtering, etc.

Detailed antivirus inspections

Usage of sandbox to for testing of potential
malware

Isolation of the processes

Detailed malware analysis

Principle of the least privilege

Application firewalls

Proper network monitoring

Network segregation

Zero Trust model follow-up

Proper incident response procedures

Figure 2.1 Cyber Kill Chain Model with Offensive and Defensive Actions [20, 21]

Phases of Attack 15

There are seven steps3 described in this framework. [21]

Reconnaissance. In this phase, the attacker is trying to obtain as much information about
the target as possible. This step can be done offline or online. While offline means researching
pieces of information that are disclosed to the public4, online is done by communication with
the actual device maintained by the target organization5. The target organization has only
a limited set of countermeasures at this stage. However, the most recommended steps are
disclosing only reasonably acceptable information and applying proper mechanisms to detect
network scans.

Weaponization. Based on the information obtained at the previous stage, the actual malicious
code is prepared on the attackers’ side. These exploits typically use some vulnerability
or weakness found in the system. Common automated tools6 can help attackers prepare
the exploit accordingly. On the side of the target, proper patch management, vulnerability
analysis, and regular penetration testing have to be performed to maximize the level of security
at this step.

Delivery. At this stage, malware is delivered to the target device. This can be achieved
with the help of social engineering, phishing emails7, or malicious USB sticks, for instance.
From the target’s point of view, this is the first step where the actual attack can be effectively
detected as it enables the use of filters in communication, endpoint security, or training users
to handle suspicious activities properly.

Exploitation. As the malware has already been delivered to the target devices, the system’s vul-
nerability is exploited. In order to prevent exploitation, a proper detection mechanism should
be applied. For instance, when opening the file, it should be at least checked by antimalware
or opened in sandbox.

Installation. When the actual vulnerability in the system is exploited, the next goal is to achieve
persistence8. Sometimes, this is called a backdoor and can be gained using hijacking, injection,
or changes in registry settings. From the defense point of view, proper process isolation and
following the principle of the least privilege is needed.

Command and Control (C2, C&C). At this step, malware initializes the communication with
the attacker as it opens the channel to the attacker’s infrastructure. That communication is
often tunneled over known protocols, such as HTTP or DNS. From the target’s point of view,
turning off remote access tools (such as SSH or RDP) alongside proper traffic filters should be
used to detect and prevent such communication. Thus, this is a nice use case for application
firewalls.

Actions on objectives. This is the last stage that attackers need to complete to achieve
the attack’s goal. It can mean leakage of sensitive data, encrypting data using ransomware,
or a lateral movement to infect more devices. This is also the last step where the attacker
can be detected. A proper detection system with Data Leakage Prevention (DLP) or proper
network design can be helpful when mitigating the risk.

3sometimes called stages
4including social networks or specialized sites such as Shodan
5often with the help of the Nmap tool to find open ports, for instance
6also known as “Malware as a Service” (MaaS)
7typically in combination with insufficient spam filters
8attackers will still have access to the device even when the device is restarted, for instance

16 Application Firewall

2.2 Principle of an Application Firewall
As written in the previous chapter, filtering based on the network protocol can be deployed
to limit communication. However, the main disadvantage of this solution is that it is based
on the type of the application9. [22]

Another aspect is that there is only a minority of people familiar with these protocols as a vast
majority of the users only use the Graphical User Interface (GUI), which transforms their requests
into the language of the network protocol. For instance, users open the web browser to access
the website and usually do not care that there are some protocols, such as DNS or HTTP,
in the background.

While referring to the explanation given in the above sections, the principles in this section
are also demonstrated mainly on the HTTP protocol. The reason is that attackers often abuse
this protocol to hide their communication because the HTTP protocol often has less strict rules
than other protocols.

From the perspective of end devices, the source application of the communication could be
identified as there is always some running process responsible for the communication. In an ideal
world, it is thus possible to detect whether the communication is initiated from a trusted web
browser or some malware.

2.2.1 Trusted Application Definition
In order to perform filtration based on the source application, a list of trusted applications should
be created. The actual set of rules can be generated in several ways.

All outgoing communication is permitted. Even though no filtering of outgoing communication
is in place, this is the one that is usually used as a default configuration of a vast majority
of solutions used nowadays. This option does not bring any additional security to outgoing
traffic as the rules are applied only to incomming traffic.

Users have to create a list of trusted applications manually. Initially, there is an empty list
of trusted applications and users must decide which application is trusted and which is not.
This option has a tendency to be the most secure one. However, it has to be said that a
deep knowledge about the system is needed to manage rules correctly as a large number
of applications usually needs to communicate10. Thus, users often need to confirm many
applications during the initial phase. This is an ideal opportunity to overlook the malicious
ones.

Predefined set of trusted applications. Vendors of application firewalls usually come with a pre-
defined set of essential applications. This often includes the most commonly used web browsers,
as well as system processes. When the users want to add other applications to the list, it can
be done similarly to the previous option.

9HTTP, DNS, DHCP, and even more
10various processes of Microsoft Windows operating system, for instance

Common Evasion Techniques 17

2.2.2 Trusted Application Verification
When traffic filtering based on the rules created by one of the described ways is present, those
rules must be applied to the communication. There are a few ways in which it can be decided
whether a trusted application is communicating.

Name of the process. When the rule is created, the name of the trusted process is stored
in the internal database. When a communication is detected, its source is compared
to the records in the database. This is the most naive approach that can be easily bypassed
because the attacker can prepare a malicious executable with the same name as the trusted
one.

Location of the binary file. The actual location, from which the binary is launched, is stored
in the database alongside its name. This can be considered an extension of the previous
one. On the other hand, it is more secure solution as the location of the binary file is often
in the more protected filesystem’s part. Local administrator rights are typically needed
to write to these locations.

Hash of the binary file. When the rule is created, a hash of the binary file is stored
in the database. This hash is then compared with the actual communication attempt. This
approach has the main disadvantage in that the rule must be set up again when an application
update is installed (as the hash of the executable is then changed).

Digital signature of the binary file. This principle uses the PKI mechanisms. The main idea is
that the vendor digitally signs the binary file. Then, applications from known publishers can
be considered as trusted ones. Digital signature thus overcomes the problems with updates
described in the previous point.

2.3 Common Evasion Techniques
An “Evasion technique” is a term used to describe the concept of bypassing the defined rules
in firewalls. It is also known as a leak test.

As outlined in the previous section, application firewalls need a defined set of rules for their
operation. These rules typically include a list of trusted applications permitted to communicate
with other devices over the network. A core principle of the test is to abuse these trusted
applications to hide malicious communication. This principle is shown in the Figure 2.2. The goal
of attacks can be achieved in the ways described further in the section. [23, 24]

Substitution. The principle behind this technique is that the untrusted application tries
to identify itself as a trusted one. As the name indicates, this usually includes changing
the name of its process to the trusted one, replacing the executable file on the drive, or sub-
stituting processes’ data in the random access memory (RAM). The actual success depends
on the implementation of the firewalls. Consequently, users typically have only a very limited11

set of possibilities for mitigation by some configuration. Firewalls can use, for instance,
hash functions to identify the application and thus help to verify a particular application12.
To mitigate the risk of potential attacks, it is recommended to store executable files in the lo-
cation where regular users have limited write permissions13 and use as many digitally signed
applications as possible. An additional check of their vendors can then be applied by using
certificates, or more precisely, the concept of public key infrastructure (PKI).

11or sometimes none
12based on their irreversibility
13default settings of Microsoft Windows operating system is to use C:\Program Files\

18 Application Firewall

Applications

Untrusted Application

Trusted Application

Rules

Deny

Permit ✓

Figure 2.2 Common Principle of the Attacks. In the ideal situation, permit rules are applied to trusted
applications only, while untrusted applications are prevented from communication by applying the deny
rule. In the figure, this is highlighted by solid lines. However, a common goal of the attackers is
to overcome the firewall in the way highlighted by the dotted line.

Launching. This method is based on the fact that some of the applications14 have also
implemented a command line interface and it is thus possible to initiate a defined behavior
from the command prompt. Based on that, it is possible to add some parameters to the com-
mand prompt that can help to bypass the rules. Another subtype of this attack is to launch
the untrusted executable from the trusted one. For instance, while the process explorer.exe
can be defined as a trusted one, it could be possible to launch an untrusted application in its
context. From a command line point of view, it is entered as a parameter.

DLL Injection. In this scenario, attackers create a malicious dynamic link library (DLL) which
is then loaded into the address space of the trusted application’s process. When the DLL is
loaded, it acts as a part of the trusted application and thus has the same rights. This primarily
means applying the same firewall rules as for a trusted application. It is one of the most
commonly used evasion techniques.

Code Injection. This technique is similar to the previous one, although the executable
code is injected into the address space instead of using DLL. In theory, this can be done
manually as the attackers modify the actual address space of the process. Sometimes, creating
a remote thread (by the CreateRemoteThread Windows API function, for instance) and
running malicious code in this threat can be more valuable. As in the previous technique,
it runs as a part of a trusted application, and thus, the rules of the trusted application are
applied.

Race conditions. As application firewalls may need the process identifier (PID) to apply
particular rules, the concept of this technique is to change the PID of the untrusted process
to one that is trusted. In improper implementations, an application firewall may consider this
communication as legitimate. PID is a number that uniquely identifies the running process.
It is usually given by the OS and can be changed by restarting the process.

14at least most of the browsers

Common Evasion Techniques 19

Browser services. This approach combines built-in functionalities of the OS and web browsers
responsible for interaction between processes. For instance, attackers can send Windows
messages to the web browser window and thus actually change its state. Another example
used primarily in the earlier implementations, browsers’ Dynamic Data Exchange (DDE),
which was responsible for data exchange between two processes, could be abused.

System services. In general, this technique is almost the same as the previous one, although it
uses program interfaces given by the OS. Those include services like Windows Server Update
Services (WSUS), which is responsible for downloading the updates in the background. Also,
DNS API functions can be abused to encapsulate outgoing messages to the DNS request.

Default rules. Many firewalls come with a predefined set of rules applied to particular
applications. These would contain essential services of the OS15 or the most common web
browsers. For the vast majority of users, this is the configuration they use. From an attackers’
perspective, it means they can install the application firewall on their device and have a deeper
look at them. Thus, it is not the evasion technique in its original meaning, but it can help
attackers prepare for the actual attack.

Custom protocol driver. While the main functionality of the application firewall is based
on the TCP/IP protocol stack, another stack would be used in this method. In the core
principle of this low-level technique, attackers can develop their own protocol stack that will
communicate directly with the network adapter. Thus, the parallel protocol can be created
to bypass the filtration mechanism of the deployed application firewall. As an example,
the mentioned protocol can be based on the Winpcap library.

Unhooking. In general, packet filtering hooks are used to intercept system functions to provide
the basis for the subroutines responsible for the actual filtering. If this intercept is disabled,
the application firewall cannot work correctly and thus does not effectively apply rules
on the traffic. Although it is not an evasion technique in its original meaning, it had been
decided to include it in the listing as it is a common goal of the attacker to turn off the firewall
completely. [25]

15responsible for DHCP, DNS, and even more

20 Application Firewall

2.4 Popular products
Application firewalls can be deployed as standalone software or, most commonly, as a part
of complex antimalware solutions. This section presents the most popular application firewalls.

2.4.1 ESET Internet Security
ESET is a very popular security product vendor, at least in Central Europe. Internet Security is
the leading product of this Slovak company.

The product offers a 30-day trial version that supports all the features included in the regular
version. After 30 days, users can decide whether they want to pay for the subscription or use
other products. Based on that, it was decided to perform the test during the trial period and
thus test whether the additional fee provides an adequate level of security. [26]

2.4.1.1 Application Firewall Modes
An application firewall called ESET Internet Security Firewall is delivered as part of the Internet
Security.

Before its filtering modes are presented, the order of the evaluation for the rules should be
explained. In contrast to the older versions of the software, where the actual order depended
on the defined priority level, the most recent products evaluate the rules in the order they appear
in the rules list while applying first-match concept16.

Users can define several modes in which the ESET’s application firewall operates. These are
listed below within a short explanation.

Automatic mode. This mode is the default one and is intended for users who are not interested
in the actual setup but accept a limited level of security. Its main disadvantage is that all
outgoing connections are enabled, while rules are applied only to incoming connections. This
could be an ideal opportunity for several malware families, such as Trojan horses.

Policy-based mode. In this scenario, a defined set of rules is evaluated within each communi-
cation. If any rule matches the communication requirements, it is applied. If no such rule is
found, then the communication is blocked by the firewall.

Interactive mode. This one is similar to the previous one, but there is a difference at the end
of the evaluation. In the previous mode, communication was blocked when no matching rule
was found. In this case, the message is then displayed to prompt users to confirm whether they
trust the application that attempted to communicate. Users can view additional information
about the application17 and decide whether to create permit or deny rule.

Learning mode. This mode does not bring any additional security as it automatically creates
rules for each application that is trying to communicate with the outside world. Although
the vendor recommends using this mode in the initial phase of firewall setup, it is worth
mentioning that when the computer is infected with some malware, its malicious communication
is added as a rule to the list without any notification to the user.

16the first match that for the rule is applied and thus the actual evaluation ends
17such as its certificate

Popular products 21

2.4.1.2 Application Modification Detection
In the Internet Security settings, there is a built-in feature called Application Modification
Detection, which aims to detect changes in evaluated applications.

In the default configuration, this feature is enabled, although there is another limitation.
The “Allow modification of signed (trusted) applications” checkbox is also enabled. Thus, this
additional check is not applied for signed applications18.

If such modification is found, the product shows the information to users and lets them decide
whether they still trust the modified application. Even though attackers can modify the executable
file, the root cause can be legitimate. It can be caused by the application’s update, for instance.

2.4.2 Avast Free Antivirus
While ESET products are popular within organizations, Avast products are often considered
a good option for end users. From the perspective of end users, the most significant benefit
of the product is the stable free version. Even though there is no additional fee for the Avast Free
Antivirus product, it is often listed at the top of antivirus rankings.

Another positive aspect could be that Avast is often called to be one of the biggest propa-
gators of using artificial intelligence (AI) and machine learning (ML) for behavioral detection.
As the company writes on its site, it takes only a couple of hours to create an actual malware
definition model for a new threat. [27]

2.4.2.1 Firewall Rules
As well as other solutions, the Avast Free Antivirus Firewall has several operation modes.
In principle, these are the same as in ESET Internet Security, although there are some minor
differences. [28]

Smart mode. In this mode (which is the default one), Avast decides whether the communication
is blocked or permitted based on the application’s trustworthiness. We can only guess how
this trustworthiness is defined as no reliable source describes the process. It is considered
a business secret.

Allow mode. As the name indicates, this option allows communication from all unknown
applications. It means that the actual rule list is evaluated, and when no matching rule is
found, the application’s communication is enabled.

Block mode. This operation mode is complementary to the previous one. In its principle,
communication is blocked when no matching rule is found.

Ask mode. The fourth mode lets users decide whether to trust newly discovered applications.
Thus, users must decide whether to permit or deny communication for the new applications.

2.4.2.2 Behavior Shield
As an additional layer of security, Behavior Shield can be deployed. While enabled in the default
configuration, it offers real-time scanning for the applications’ suspicious behavior, indicating
the presence of malware in the system. In its principle, Behavior Shield is trying to map suspicious
activity to known threats. [29]

There are three options in which Behavior Shield can be configured in the Avast product.

Always ask. If the threat is detected, Behavior Shield may ask the users to decide whether
the detection is true positive. Thus, users can manually decide whether any or no action has
to be taken.

18most of the system processes or web browsers

22 Application Firewall

Automatically move detected threats to Quarantine. The actual behavior of the application
is compared to the list of known threats. If there is a similarity, then the application is
moved to Quarantine. Quarantine can be defined as a safe place used for storing and testing
potentially malicious files which is completely isolated from the rest of the operating system.

Automatically move known threats to Quarantine. As with the previous method, actual
behavior is compared to the list of known threats. If there is a match, then the application
is moved to Quarantine. If there are doubts or similarities, the users are asked to make
the final decision. Users can thus decide whether the application is safe or has to be moved
to the Quarantine.

2.4.3 Windows Firewall
Windows Defender is the built-in and enabled-by-default antivirus in any current Microsoft
Windows operating system edition. It is a complex software that includes Windows Firewall used
for network traffic filtering based on IP address, port number, or the application. [30]

As the vendor is the same for the product and operating system, one can say that it should
match the system’s requirements best, compared to other solutions. On the other hand, even
though a brand new Windows operating system is installed, the Windows Firewall contains many
rules. Those are applied mainly to Windows processes and thus are often left in the default
configuration because regular users typically have only a limited understanding of these processes.

2.4.3.1 Firewall Profiles
The Windows Firewall has three predefined profiles that specify rules applied in a defined
environment. For example, let us say there is a corporate network with some database server
that can be accessed only from that corporate network. On the client computer, there is some
database client. It may make sense to enable communication from the client only if connected
to the corporate network and not a public one.

As already mentioned, there are three profiles defined in the Windows Firewall. These are
listed below.

Domain network. This profile is used for a corporate network. Apart from the others, it
cannot be assigned manually. The profile becomes active when the computer joins the Active
Directory network or, more precisely, when the domain controller (DC) for the particular
network becomes available.

Private network. This profile is intended for home networks and usually means that less strict
rules are applied to decrease latency caused by additional inspection. Thus, this mode should
be active only in the network users trust. Users with local administrator rights can manually
set it on a network interface.

Public network. It is a default profile that is applied when connected to unidentified networks.
It is supposed to be the environment with higher security risk as it covers public wireless
networks at various places or Wi-Fi hotspots.

Popular products 23

2.4.3.2 Firewall Rules
Just like the other solutions, Windows Firewall needs a list of defined rules.

Unlike the other products introduced in this section, Windows Firewall enables the identifi-
cation of actual communication on several layers at once as a rule can combine the application,
service, source and destination IP address, common service, transport layer protocol, or even
interface type. The principle behind rule evaluation is that the incoming traffic is blocked but can
be enabled by a rule, and all outgoing traffic is allowed but can be disabled by some matching
a rule.

As written in the official manual for Windows Defender, it is recommended to allow all
communication from the device. “When designing a set of firewall policies for your network,
it’s a recommended practice to configure allow rules for any networked applications deployed
on the host. Having the rules in place before the user first launches the application helps to ensure
a seamless experience.” [31] However, with the growth of allowed applications, the attack surface
is increasing and the probability of the attack’s success is also more significant.

In the default setup, new rules for particular applications are added automatically during the in-
stallation process of the new application. When not added for whatever reason, the users are
asked to allow or block the communication when the application tries to communicate for the first
time. The local administrator’s rights are needed to add a permanent rule to the list.

2.4.3.3 Windows Defender Application Control
When talking about filtering network traffic based on the application, the Windows Defender
Application Control (WDAC) concept should be mentioned. [32]

The WDAC was introduced within the Microsoft Windows 10 operating system. It allows
controlling which applications can run on the device and which cannot19. WDAC can be deployed
in all of the currently supported versions and brings the ability to control applications based
on the attributes of the codesigning certificate, other attributes of the binary file, or the process
that launched the actual binary.

A set of rules can be defined and evaluated. More often, Microsoft’s Intelligent Security Graph
(ISG) is used to define the application’s reputation.

Before the introduction of WDAC, AppLocker was used. This one was introduced in Windows 7
and brings only limited possibilities compared to WDAC. Thus, Microsoft recommends using
WDAC instead of AppLocker whenever possible.

2.4.4 TinyWall
TinyWall is used as a representative of dedicated application firewalls as it is not part of a complex
antimalware product. As written on the vendor’s site, it should be an application firewall that
is lightweight, user-friendly, secure, and fully compatible with Microsoft Windows operating
systems. TinyWall’s target groups are computers deployed in small office or home office (SOHO)
networks. It should provide an additional level of security without the need for a complicated
setup from the users’ side. [33]

While evaluating the rules, the firewall in default settings blocks all communication except
these defined by the rules. It is a crucial difference from other solutions described in the chapter
as they often leave outgoing communication unblocked.

On the other hand, based on the non-intrusive operation feature, the users are not informed
about the actual result of the evaluation. Thus, if a user launch an untrusted application,
the communication is automatically blocked but no information is displayed to the user. Then,
if the untrusted application has not implemented error messages regarding invalid network
communication, troubleshooting may become challenging.

19e.g., limitation not only from networking view

24 Application Firewall

2.4.4.1 Trusted Application Definition

If the users want to enable communication from untrusted applications, it is possible to do so
in the TinyWall Firewall settings on the “Application Exception” tab. In the default configuration,
there are only a few rules defined20.

Users can decide whether the actual exception rule would be defined based on the following
parameters.

Process. In this option, users can choose a process on the computer whose communication
should have been permitted. Internally, a specific process is identified by its executable file21.
As a consequence, this option is almost the same as the following one.

File. Users can create exceptions for particular executable files whose processes should
have been allowed to communicate. These executable files can be stored in any location
in the filesystem.

Service. In this option, users can define exceptions for various Microsoft Windows operating
system services. These include Remote Desktop Services or Windows Updates, for instance.
Their executables are often stored in the location C:\Windows\system32\.

Universal Windows Platform (UWP) application. This option enables the creation of excep-
tions for particular UWP packages. UWP is a Microsoft application development platform.
Applications developed in UWP can be used not only on Microsoft computers but even
on mobile phones or tablets. Actual applications can be distributed via Microsoft Store,
for instance. [34]

2.4.4.2 Operation Modes

Similarly to other solutions described in this chapter, TinyWall comes with several modes in which
the firewall operates. These are described below.

Normal protection. This is the vendor’s default and most recommended mode. While this
mode is enabled, all communication22 is blocked unless a matching exception exists.

Block all. This mode blocks all of the device’s communication. Consequently, no application
on the device is allowed to communicate over the network.

Allow outgoing. This mode is similar to the ones recommended by other vendors. It allows all
outgoing communication and thus applies rules only to incoming traffic.

Disable firewall. With this option, all communication is allowed. Thus, it is the same situation
as if the application firewall was not installed at all.

Autolearn. In this operation mode, all communication is allowed, and the firewall automatically
adds the rules to its list. It is recommended to run this mode only when having clean installation
of the operating system and not for a long time. In this mode, if there is some malware
installed on the device, it can be automatically added as an exception.

20applied to Internet Explorer or Microsoft Edge and its updater
21more precisely path to the executable
22both, outgoing and incoming

Popular products 25

2.4.5 ZoneAlarm Firewall
ZoneAlarm Firewall is another representative of standalone application firewalls. This prod-
uct is very popular and awarded one. It is intended for end users with limited knowledge
about the problematics. On the other hand, users have only extremely limited possibilities
of the actual setup. Just like some other products described in this chapter, ZoneAlarm enables
all outgoing communication. [35]

When a new application wants to perform network communication, creating a new rule
by hand is impossible as there is no such option in the product’s configuration. The only possible
workaround is to let ZoneAlarm add exception for the application. Then, the new application
is shown in the exception list with “Allow connection” property. Users can then change this
property to the “Block connection”.

2.4.5.1 Filtering Modes
The actual filtering rules are applied based on the network where the device is located. Two types
of networks can be set in the firewall – Public and Trusted. While networks in the Trusted zone
are defined in the firewall’s settings, the Public zone covers all the remaining networks.

As written above, users have only limited settings options in this product. Regarding actual
filtering, users can only decide on the filtration level they would like to use. [36]

High. All outgoing communication is enabled in this mode, while defined rules are applied
only to incoming communication. It is also the default configuration for Public zones.

Medium. This mode is almost the same as the previous one, but it lets users use some
network-sharing services. For instance, other devices on the network can access shared folders
on the device, which is protected by this application firewall. It is the default filtering mode
for Trusted networks.

Off. When applying this option, the firewall is not in operation. Thus, no additional protection
is applied.

26 Application Firewall

Chapter 3

Testing Environment Description

This chapter provides an overview of actual programs and operating systems used during the test-
ing. Whenever possible, a link to download the product is given. Due to license terms, it is not
allowed to provide the virtual machine used for testing, although these pieces of information
are sufficient to create the same testing environment.

3.1 Operating System and Installed Programms

There are two virtual machines used in the practical part of the thesis. For further description,
these are called Victim and Attacker.

3.1.1 Victim
For the Victim machine, the Microsoft Windows operating system was chosen as the most used
operating system for desktops and laptops. All the following tests are performed on edition
Windows 11 Pro, version 10.0.22621. The actual version of the Microsoft Windows operating
system is available on the vendor’s website1.

For a compilation of the source codes for Windows devices, Microsoft Visual Studio Community
2022 was used (version 17.9.4). The online installer is available on Microsoft’s site2.

If Visual Studio is not installed on the device, at least Microsoft Visual C++ Redistributable
has to be installed to run the executables provided. For testing purposes, version 14.38.33135.0
was used. Microsoft Visual C++ Redistributable is available on its vendor site3.

3.1.2 Attacker
For the Attacker machine, Kali Linux 2024.1 was used as it offers preinstalled software needed
for security testing. Kali Linux can be downloaded from the official website4. However, it
should be mentioned that any other Linux distributions can be used. The only required tools
for the actual testing are the g++ compiler and Wireshark to monitor network traffic. It should
be mentioned that both tools can be obtained using the package manager of the particular Linux
distribution.

1https://www.microsoft.com/software-download/windows11
2https://visualstudio.microsoft.com/
3https://learn.microsoft.com/en-GB/cpp/windows/latest-supported-vc-redist?view=msvc-170
4https://www.kali.org/get-kali/

27

https://www.microsoft.com/software-download/windows11
https://visualstudio.microsoft.com/
https://learn.microsoft.com/en-GB/cpp/windows/latest-supported-vc-redist?view=msvc-170
https://www.kali.org/get-kali/

28 Testing Environment Description

3.2 Application Firewalls
As described in the previous chapter, application firewalls can be deployed as a standalone program
or as a part of robust antimalware products. In Table 3.1, there is a listing of the application
firewalls used in this thesis for vulnerability testing. It should be mentioned that Table 3.1 is
the basis of the following chapters, as the first column (“Name”) is used as an alias for the particular
firewall in the text.

A
pplication

F
irew

alls
29

Table 3.1 Popular Application Firewalls

Name Vendor Product Version Licence Download link
Eset Internet Security ESET Internet Security 17.0.16.0 Free (30-day trial) Download5

Avast Free Antivirus AVAST Free Antivirus 24.2.6105
(virus definitions 240327-2)

Free Download6

Windows Firewall Microsoft Defender Firewall 4.18.24020.7
(virus definitions 1.407.664.0)

Windows Built-in N/A

TinyWall TinyWall TinyWall 3.3.1 Free Download7

ZoneAlarm Firewall ZoneAlarm Free Firewall 4.2.712.19773 Free Download8

5https://download.eset.com/com/eset/apps/home/eis/windows/latest/eis_nt64.exe
6https://www.avast.com/en-us/free-antivirus-download
7https://tinywall.pados.hu/download.php
8https://www.zonealarm.com/software/free-firewall/download

https://download.eset.com/com/eset/apps/home/eis/windows/latest/eis_nt64.exe
https://www.avast.com/en-us/free-antivirus-download#pc
https://tinywall.pados.hu/download.php
https://www.zonealarm.com/software/free-firewall/download
https://download.eset.com/com/eset/apps/home/eis/windows/latest/eis_nt64.exe
https://www.avast.com/en-us/free-antivirus-download
https://tinywall.pados.hu/download.php
https://www.zonealarm.com/software/free-firewall/download

30 Testing Environment Description

Chapter 4

Substitution

This chapter describes the substitution attack in more detail. In this chapter, the mentioned
application firewalls are tested, whether they are able to detect such type of attack, where
attackers completely substitute trusted executables with untrusted ones.

4.1 Attack Description

As written in the chapter abstract, the principles described in this chapter closely follow the in-
formation described in the theoretical part of the thesis that focuses on the trusted application
definition.

To briefly refresh the information written in the previous chapters, there are several options
for how the application firewalls can save pieces of information about the executables. For in-
stance, it is possible to identify these applications based on their process name, the location
of the executable on the filesystem, or by using PKI1. It should be mentioned that we can only
guess the internal implementation of the tested application firewalls because it is considered
a business secret.

The common principle of this type of attack is shown in Figure 4.1. The attack options are
described further in the thesis.

4.1.1 Executable’s Name and Path
As the rules are often identified by application name, one of the possible approaches is to verify
the actual application based on the executable’s name. As one can see, this is the most naive
approach that can be easily bypassed.

For instance, let us have an executable OneDrive.exe. When the application is launched,
at least one process is created. As OneDrive seems to be a trusted application, it could have
a permit rule set in the list. On the other hand, attackers have a malicious application that
can be easily renamed to OneDrive.exe. In improper implementations, application firewalls can
consider the malicious application trusted (they have the same name) and thus allow malicious
communication.

A partial mitigation against this attack can be checking the whole path to the executable, not
just the name. Modern operating systems are designed so that the executables are stored in more
protected parts of the system where regular users have only limited access rights2 to these locations.

1more precisely, using some items listed in executables’ digital certificate
2only read permissions, in most cases

31

32 Substitution

Applications

Untrusted Application

Trusted Application

Rules

Deny

Permit ✓

RAM

Untrusted Process

Trusted Process

Figure 4.1 Substitution Attacks Principle. The figure shows the common principle behind substitution
attacks. It should be mentioned that trusted and untrusted applications often have the same name.
Sometimes, more circumstances need to be achieved to perform the attack successfully.

Consequently, local administrator rights are typically needed to change3 the applications. Based
on the need for evaluated rights, the attack is more difficult for the attacker.

However, as described in the section on Cyber Kill Chain, attackers often need to establish
a communication channel with the victim’s device. With the local administrator rights, it should
be possible to entirely turn off the firewall functionality or add new rules to the list. For potential
attackers, it is often more beneficial to abuse the current state of security mechanisms to remain
undetected. There is a higher probability that the attackers become detected if new rules are
added to the list. Instead, attackers can use the executable stored in the filesystem and change
it to another one with the same name. If the original functionality of the application remains
the same after the executables switch, the attack need not be detected.

4.1.2 Digital Certificates
Before diving into the usage of digital certificates for the digital signing of executables, the key
concept behind digital certificates should be explained.

A digital signature is a mechanism that can be used to ensure the document’s authenticity
based on the private key ownership. To explain the previous sentence, let us consider a scenario
where we must digitally sign a file. At the beginning, the hash code4 of the file is calculated using
a hash function. Its result is a fixed-size5 binary string. While using asymmetric cryptographic
mechanisms, this hash code is then enciphered with the private key. The final value is known
as a digital signature and can be sent to other users alongside the original file. As asymmetric
cryptography is based on a pair of public and private keys, the public one can be disclosed.

When the second party receives the file with its digital signature, it is possible to calculate
the hash value using the same hash function. Because the first party’s public key was disclosed,
it is also possible to decipher the digital signature and thus obtain the hash value. Then, if these
two hash values are equal, the file’s legitimacy is proven.

The principle described above has one significant problem that needs to be considered –
the distribution of public keys. If their legitimacy is unchecked, an attacker could set herself

3or install, for instance
4sometimes called a digest
5actual size depends on the hash function used

Attack Description 33

into the so-called Man-in-the-Middle (MITM) position. In this way, the attacker can eavesdrop
or even modify the actual communication. This problem can be solved by the use of digital
certificates.

A digital certificate is a structure that consists of a public key and other items needed
to identify the resource6, which are verified and signed by a trusted third party called Certificate
Authority (CA). It can be said that the digital certificate is a proof of private key7 ownership.
The digital certificate can be sent publicly, similarly to the digital signature described in previous
paragraphs.

It was mentioned that the certificate contains several items. The ones that are relevant
to the further sections are listed here.

Public Key. This field contains the actual public key for which the certificate was created.

Subject. This field is used for resource identification. It is in the form of a Distinguished name
that describes the resource in further detail.

Issuer. This field is used for signer identification. As with the previous one, the Distinguished
name format is used.

Not before. This one represents the date before which the certificate is not valid.

Not after. This one represents the date after which the certificate is not valid.

Key usage. In this field, the purpose of the certificate can be specified. It could include
information on whether it is possible to use it for signing files or signing further certificates8.

As written above, the information about the Subject and Issuer is stored in the format
of a Distinguished name. Table 4.1 summarizes the most used fields of the format.

Table 4.1 Common Attributes of Distinguished Name

Abbreviation Full Name Usage
CN Common Name Subject name

(typically DNS name for server certificates,
or name and surname for personal certificates)

O Organization Name of the organization
L Locality Name of the city
S State or Province Name of the state
C Country State code according to ISO 3166

(CZ = Czech Republic, US = United States, etc.)
OU Organizational Unit Department of company

When the digital certificate arrives on the device, it must be checked whether the public key
provided can be considered as trusted. It can be done by verifying all the certificates in the chain.
It should be mentioned that each operating system has its certificate storage with defined trusted
root certificates.

For the purposes of the thesis, discussing all the aspects of certificate verification is unnecessary
as the process is quite complicated. It should be only mentioned that the initial certificate is
trusted if and only if all the certificates in the chain to some of the trusted root certificates are
successfully verified. Otherwise, the certificate is untrusted.

6name, organizational unit, location, and even more
7corresponding to public key included in the certificate
8and thus create a so-called certificate chain

34 Substitution

4.1.2.1 Microsoft Certificate Manager

As the main part of the testing is performed on the Microsoft Windows operating system, its
certificate store, Certificate Manager, should be introduced.

Certificate Manager is a built-in tool in every modern Microsoft Windows operating system
edition. It consists of two different parts9 described below. [37, 38]

Local Machine. This one covers certificates for the whole device which are valid for every user
logged in to the device. Because the changes in these settings affect all device users, local
administrator rights are needed to add, remove or modify the certificates. The settings are
stored under the HKEY LOCAL MACHINE root in the registry.

Current User. This one covers certificates valid for the particular user10. Thus, certificates
under this component could be different for every device user. On the other hand, the basis
should be the same as the Current User component inherits11 from the Local Machine compo-
nent. While talking about the registry, these settings are stored under the HKEY CURRENT USER
root.

These components consist of several containers12 that classify the particular types of certificates.
The most commonly used of them are briefly introduced below.

Personal (My). This container is used for the certificates for which the user or machine owns
the private key.

Trusted Root Certification Authorities. This container contains certificates of trusted certifi-
cation authorities. In more detail, certificates in this container are self-signed and provide
a trusted anchor for certificate validation. Users and administrators should carefully decide
which certificates could be added as trusted root and which not.

Intermediate Certification Authorities. Intermediate certification authorities are used to create
a certificate chain. In reality, the client certificates are not often signed directly by a root
certification authority but some intermediate authority. This intermediate authority has its
certificate issued by other intermediate authority or a root certificate authority itself. This
principle is called certificate chain and refers to all the certificates that should be verified
to ensure trustworthiness of a client certificate.

Trusted Publishers. In this container, trusted signing certificates are stored. The crucial
difference to the Trusted Root Certification Authorities container is that adding the certificate
to the Trusted Publishers container does not make all certificates issued by this certificate
authority trusted. [39]

Untrusted Certificates. This container includes explicitly untrusted certificates. Thus, if
the user does not trust the particular certificate, it could be moved to this container.

Smart Card Trusted Roots. Trusted root certificates for smart cards are kept in this store.
This one is extremely handy, especially in corporate networks where users use smart cards as
an authentication factor.

9sometimes called components
10who is currently logged in to the device
11except for the Personal (My) certificates
12sometimes called stores

Attack Description 35

4.1.2.2 Code signing
The concept behind the digital signature is often used to sign executable files to ensure their
authenticity and integrity. It is highly beneficial because executables run their code, which can be
potentially malicious. However, the digital signature is used only as an additional and optional
security feature.

When the executable is launched, the operating system tries to find information about the dig-
ital signature. The digital signature is an optional feature, so it does not need to be included.
If the signature is found, then the trustworthiness of its signer can be verified. It is done using
the verification process of the signer’s certificate.

Information about the signer can be used as a parameter of trusted application identification.
For instance, while having enabled the mode in which users need to decide on rule creation,
information about the signer can be displayed to the user. Some products can also indicate
whether the signer’s certificate can be successfully verified.

This approach can be helpful in cases where the trusted application is often updated. During
the testing, it was seen that some application firewalls use the validity of the signer’s certificate
to decide whether the application matches the rule. As an example, let us consider the application
OneDrive. As it can be seen from Figure 4.2, the OneDrive.exe is signed by Microsoft Corporation.
The certificate chain of OneDrive executable can be seen in Figure 4.3. When the OneDrive
application is updated, and the same signer signs this version, it can happen that the updated
one will still match the rules. On the other hand, the signer’s name does not need to be unique.

The question is what happens when attackers prepare the executable named OneDrive.exe
signed by any other certificate with the same subject as the original certificate. This concept is
tested in this chapter.

Figure 4.2 Digital Signature of OneDrive Executable. On the left side of the figure, one can see that
the signature for this executable is valid, and it is signed by Microsoft Corporation. Its certificate can
be shown by clicking on the View Certificate button. Additional details about the certificate are shown
on the right side of the figure. In the Subject field, there is information about the signer in the form
of a Distinguished name. Other items discussed earlier in the thesis can also be seen in the certificate.

36 Substitution

Figure 4.3 OneDrive Certificate Chain. On the left side of the figure, the actual certificate chain of
the OneDrive executable can be seen. On the right side, one can see the self-signed certificate of the root
CA.

4.1.2.3 Signing Demonstration Using Microsoft Tools
In this section, detailed instructions on how to set up an environment for code signing are given.
Thus, further in the section, creating a new self-signed certificate13 is shown, as well as signing
executable binary using the certificate created.

In the thesis attachment, there is a demonstration C++ code with the corresponding executable.
Its code is similar to the dllmain.cpp described further in the thesis, although any other binary
can also be used for demonstration purposes. On the other hand, the binary must communicate
with some resources over the network to verify that the application matches the rules of the original
application.

As the first step, creating the certificate, whose purpose is code signing, is necessary. Microsoft
Windows tools can be used as there is only a need for one certificate, which is self-signed.
On the other hand, if we need to create a certificate chain, it would be more convenient to use
an open-source utility called OpenSSL.

To create a new self-signed certificate, Microsoft Powershell launched with local administrator
rights should be used. The only thing needed is to run the cmdlet New-SelfSignedCertificate
with the parameters described in the Code listing 4.1. For more information on how the
distinguished name can be defined, it is possible to refer to Figure 4.2 where the original certificate
of Microsoft Corporation is shown and also to Table 4.1 where the format of a Distinguished
name is explained.

When the cmdlet finishes successfully, the newly created certificate should appear in the Cer-
tificate Manager. If Cert:\CurrentUser\My was used, it should be located in the Personal
certificates as displayed in Figure 4.4.

Figure 4.4 also shows the initial phase of exporting the certificate to the PFX format supported
by the signtool utility used for actual signing later.

To export the certificate from the Certificate Manager, it is necessary to right-click the one
that needs to be exported, select “All tasks” and then the “Export” button. As a next step, users

13meaning that the subject and issuer are the same

Attack Description 37

1 # <Distinguished-Name> = information shown in the certificate subject and
issuer fields↪→

2 # -Type codesigning = certificate is used for signing executables
3 # Cert:\CurrentUser\My = location where the certificate appears
4

5 PS> New-SelfSignedCertificate -Subject "<Distinguished-Name>" -Type
CodeSigning -CertStoreLocation Cert:\CurrentUser\My↪→

Code listing 4.1 Create New Self-signed Certificate

Figure 4.4 Export Certificate to PFX Format

have to select that the private key would be included in the exported structure14 and choose
PFX format. Also, marking the checkbox “Export all extended properties” is needed, as shown
in Figure 4.5. This ensures that each property defined in the certificate is exported. As a last
step, the location of the exported certificate and the password for future usage should be specified.
The PFX file should be found in the specified location when the export is completed.

The example certificates used in the thesis are also included in the attachment. The author
is fully aware that the private key and the password for the certificate structure should never
be published. On the other hand, these certificates were explicitly created for demonstration
purposes and do not have any additional value.

While having the certificate in the PFX format, it is possible to perform the actual signing
of the executable, which is done using the signtool utility. The tool could be accessed from De-
veloper Powershell for VS 2022, installed as a part of Microsoft Visual Studio. To digitally sign
an executable, the syntax is shown in Code listing 4.2.

However, there is a security issue while using this command. As one can see, the password
is entered as a plain text. Thus, while the command is running, the password can be visible
in the Process Monitor and later also searchable in the command history. For sensitive certificates,
a better solution is to create a batch file containing this command and run this batch file.

By the time the command successfully finishes, the executable is digitally signed. It can be
verified with the file properties on the “Digital Signature” tab. An example of a digitally signed
binary by an untrusted organization is shown in Figure 4.6.

In the screenshot, it can be seen the executable is signed by Microsoft Corporation. However,
this fake self-signed certificate is, by default, untrusted in the operating system.

14needed for actual signing

38 Substitution

Figure 4.5 Additional Parameters of Certificate Export

1 # <Path-to-Certificate> = path to certificate in PFX format
2 # <Certificate-Password> = password created when exporting certificate
3 # <Hash-Function> = hash function used for digital signature, SHA256 can be

used in most cases↪→

4 # <Executable-to-Sign> = path to exutable that will be signedd
5 # /t <Timestamp-Authority-URL> = optional parameter specifying location of

timestamp authority↪→

6

7 PS> signtool.exe sign /v /f <Path-to-Certificate> /p <Certificate-Password>
/fd <Hash-Function> /t <Timestamp-Authority-URL> <Executable-to-Sign>↪→

Code listing 4.2 Sign Executable File Using Visual Studio Tools

4.1.3 Attack Options
From the pieces of information written above, it can be seen that many variants of the attack
exist. These are tested in further sections of the thesis.

Before the actual testing, executable files used should be introduced. It is worth mentioning that
the actual executables are the same. The only difference is their digital signature. These differences
are shown in Table 4.2.

It can be seen that fake Microsoft certificates are used for testing purposes. The reason is
that the tests are focused on trusted executables natively presented in the Microsoft Windows

15timestamp authority is used for confirmation of the file state at the time of signing

ESET Internet Security 39

Figure 4.6 Executable Signed By Untrusted Organization

Table 4.2 Executables Used for Substitution Attack

Folder in the Attachment Digital Signature Used
substitution1 None
substitution2 Lukas Hrdonka (self-signed)
substitution3 Lukas Hrdonka (self-signed),

with timestamp authority verification15

substitution4 Microsoft Corporation (self-signed)
substitution5 Microsoft Code Signing PCA 2010 (self-signed)

operating system. In the real Microsoft application16, the certificate of “Microsoft Corporation”
is used as the end certificate in the certificate chain. “Microsoft Code Signing PCA 2010” is then
used as the issuer of the original “Microsoft Corporation” certificate.

It was decided to perform all the tests on the OneDrive application. Thus, executables given
in the particular folders in the attachment will be launched. Each application will be launched
twice – from the untrusted location (such as the Desktop folder) and a trusted location (where
the operating system expects the legitimate executable OneDrive.exe17). Then, falsified root
certificates will be added to the relevant stores of the Microsoft Certificate Manager and the tests
will be repeated.

Table 4.3 provides an overview of the terminology used further in the chapter during the
testing.

4.2 ESET Internet Security
In this section, the ESET Internet Security application is tested to determine whether it is capable
of detecting substitution attacks.

At the beginning of the testing, there is a valid permit rule for the OneDrive application defined
in the product. This one was created based on the legitimate traffic and is shown in Figure 4.7.

16such as OneDrive.exe, msedge.exe, and even more
17C:\Users\<username>\AppData\Local\Microsoft\OneDrive\OneDrive.exe, for current versions

40 Substitution

Table 4.3 Terminology Used during the Testing

Definition Meaning
trusted application original OneDrive application digitally signed by real Microsoft

Corporation certificate
untrusted application one of the applications provided in the thesis attachment
trusted location location where trusted application should be placed
untrusted location any location on the filesystem

In general, if a new permit rule for the executable is created and its digital signature is present,
ESET stores the information about it. In the future, the same signer is required to match this
rule. If no digital signature is provided when creating the rule, then the rule in the list is identified
only based on the application location and name.

For the OneDrive application, the rule identification consists of the executable name, location,
and digital signature.

As a first test, all the provided applications were launched from potentially untrusted loca-
tions, such as Documents, Downloads, or Desktop. While having “Interactive mode” enabled18,
all the attempts end with a request to create a new rule.

The next set of tests was performed using the trusted location where the operating system
expects the valid OneDrive executable. Provided malicious files were thus copied to the trusted
location. At this time, no request to add a new rule is displayed to the users, but there is always
a message saying that the application was modified. Then, it is up to the user to decide whether
to proceed with the communication. This situation is shown in Figure 4.8.

If the user decides to keep the initially defined rules, the new rule is created as shown in Fig-
ure 4.9. As it can be seen from the screenshot, ESET Internet Security did not verify the certificate
successfully and thus created a rule based only on the location and name of the executable file.

A scenario where the certificates used were added as root certificates to the Windows Certificate
Manager was also tested. Even though the root certificate was included in all the relevant stores
of Microsoft Certificate Manager, the attack remained detected. It thus seems that the ESET
Internet Security comes with its own set of trusted root certificates independent of the ones
defined in the Certificate Manager.

Based on the tests above, the ESET Internet Security seems to work according to the expec-
tations and can detect such attacks in its default configuration.

On the other hand, in the default configuration, application modification19 is enabled only
for digitally signed executables. However, the product allows manual exclusion of executables
from modification detection. This seems to be a reasonable alternative for applications that
are not directly trusted by ESET Internet Security but need to be updated frequently without
the need to prompt the user every time.

While testing this functionality, it was found that the rules in “List of applications excluded
from detection”, that should enable the modification of the listed executable files, consists only
of the name and path of the executable files as shown in Figure 4.10. On the other hand,
the decision to adopt this approach is quite logical as ESET Internet Security could not verify
the certificate accordingly based on the root certificates defined in the product.

On the other hand, the possibility of adding some trusted root certificates became extremely
handy in corporate networks as users often need to use corporate applications that are trusted
from the company’s point of view but not from the general perspective of ESET Internet Security.
If there is a need for customization of root certificates, the company could use ESET PROTECT
Server which can be used for centralized management of devices from a security perspective and
also for the definition of custom root certificates.

18to clearly see if the previously created rule matches or not
19which detected the attack

ESET Internet Security 41

Figure 4.7 Rule for Trusted OneDrive Application in ESET Internet Security. From the figure,
one can see that the ESET Internet Security successfully verified the trustworthiness of the OneDrive
application as the information about the digital certificate is included in the rule. There is one other
important observation from the figure – the default behavior of ESET Internet Security is to enable
outgoing communication with every device using every available port number.

Figure 4.8 Warning about Application Modification in ESET Internet Security

42 Substitution

Figure 4.9 Rule for Unrusted OneDrive Application in ESET Internet Security. As can be seen, ESET
Internet Security did not successfully verify the certificate of the fake OneDrive executable, and the rule
is thus based only on the name and location of the executable.

Figure 4.10 Application Excluded from Modification Detection in ESET Internet Security. The figure
shows a list of example applications excluded from modification detection. As can be seen, the applications
are identified based on their name and location only.

Avast Free Antivirus 43

4.3 Avast Free Antivirus

Just like with ESET Internet Security, a valid record about the trusted application OneDrive was
created. The exception rule can be found in Figure 4.11. There is also one similarity to the ESET
Internet Security – in the default configuration, whole communication for the OneDrive executable
is enabled by default. In Avast Free Antivirus, the situation is quite worse as it enables both,
incomming and outgoing, communication by default20. This can be seen in Figure 4.12 where
the details of “Default Rule” are shown.

Figure 4.11 Rule for Trusted OneDrive Application in Avast Free Antivirus

Figure 4.12 Details of Default Rule for Trusted OneDrive Application in Avast Free Antivirus

In contrast to the solution provided by ESET, the rule created by Avast Free Antivirus does
not record any information about the digital certificate used. The reason is that Avast software
uses another approach to match the rules.

Unlike the majority of solutions tested, Avast Free Antivirus comes with its own list of trusted
certificate authorities. It does not use the host operating system’s certificate management. Instead
of the traditional approach, Avast uses its Avast Threat Labs.

Thus, if publishers want to make their product trusted by Avast software, they have to provide
the executable to the Avast team for further investigation. If it is not considered malware21, the

20ESET Internet Security enables only outgoing in its default configuration
21and meets other Avast’s requirements

44 Substitution

executable file can be whitelisted. Then, Avast Free Antivirus might not report any issues while
using the application. This concept is called File whitelisting. [40]

Another option for the File whitelisting is the approach based on the digital certificate. If
the publisher is publicly known, it is possible to request the whitelisting of all executables signed
by this publisher. However, obtaining this type of exception may be challenging as it is provided
only to a limited set of publishers.

Before the actual testing, the product’s settings were changed to ask if a new application
initialized network communication. This was done to make sure that the rules for the original
(trusted) application were applied.

The first set of tests using this application firewall consists of launching the executable files
from untrusted locations. It was found that the application firewall is capable of detecting this
type of attack as the product only shows requests to create rules for a new application.

Launching the untrusted executable files from the trusted locations was also tested. Based
on the fact that OneDrive is considered a trusted application and probably has the exception set
directly in Avast’s definitions22, every attempt to execute the untrusted executable from the trusted
location was unsuccessful. The program only displays the information that an executable
with an untrusted certificate is trying to communicate. Based on that, applications provided
in the attachment can be detected in trusted locations.

It was also tested the addition of root certificates of the fake executable files to Certificate
Manager. Even though the root certificates were placed to the Certificate Manager, this did not
make the attack successful, which corresponds to the philosophy of File whitelisting described
in more detail in the previous paragraphs.

However, when the rule for untrusted application is created, it seems almost the same
as a trusted one. The only difference that can be seen is the icon of the application. While
the trusted OneDrive application shows its icon23, the rule for untrusted OneDrive application
shows only the default icon. This rule can be seen in Figure 4.13.

Figure 4.13 Rule for Untrusted OneDrive Application in Avast Free Antivirus

On the other hand, the situation became interesting for the applications that Avast does not
directly whitelist. For those executables, Avast is capable of showing the executable’s signer.
However, the certificate is always marked as untrusted24. This detection can be seen in Figure 4.14.

As mentioned earlier, Avast stores only the information about the executable’s name and
location on the filesystem. No other information was found in the rules. As an example, let
us consider an application that Avast does not directly whitelist. Then, this executable can
be replaced by any other and match the original rules. In this concept, whether the second
application is digitally signed or not does not matter.

In summary, Avast uses quite a different approach from ESET, which is capable of detecting
the substitution attack of executables verified by Avast Threat Labs. On the other hand,

22not managed by regular users
23a blue cloud
24even in Microsoft Windows operating system can be the certificate verified in a standard way

Windows Firewall 45

Figure 4.14 Untrusted Certificate Detection by Avast Free Antivirus

a substitution attack can be performed without any problems for applications considered untrusted
by this team.

4.4 Windows Firewall
While the Windows Firewall is in operation, the default settings enable all outgoing traffic unless
it matches a deny rule and prevent all incoming traffic unless it matches a permit rule. It should
be kept in mind that Microsoft recommends keeping this setting to maximize user experience
from the system25. These default settings can be seen in Figure 4.15. On the other hand, this
approach provides more possibilities for potential attackers. [31]

On the other hand, users can change the firewall’s settings to apply a default deny rule and
permit only whitelisted applications. It can be done by right-clicking on the “Windows Defender
Firewall with Advanced Security” button situated in the left pane of Figure 4.15, selecting
“Properties” and then specifying the required settings. Microsoft recommends sufficient testing
of the firewall’s functionality if the decision to adopt this approach is made. The primary worries
from the vendor’s side are probably caused by dependencies between the applications and services
used within the Microsoft Windows operating system.

During the tests performed in the thesis, the firewall was set to block every communication
attempt unless it came from trusted applications. This change in settings was made to determine
whether an untrusted application could match the rules initially created for a trusted one.

During the testing and manual creation of the new rules, it was seen that the rules are
based only on the application name and its path. This can be seen in Figures 4.16 and 4.17
where the rule for the trusted application OneDrive was created. While Figure 4.16 shows

25i.e., preventing communication from trusted applications and associated troubleshooting

46 Substitution

Figure 4.15 Default Settings of Windows Firewall

that the communication is enabled for the OneDrive application, Figure 4.17 shows that the
rule is identified only based on the executable’s name and path. It should be mentioned that
the path in Figure 4.17 shows the abbreviation %USERPROFILE% which is later expanded to
C:\Users\<username>\.

Figure 4.16 General Tab of Rule for Trusted OneDrive Application in Windows Firewall

The first set of tests is used to determine whether the application firewall can detect the launch-
ing of untrusted applications from untrusted locations. From the rule format defined in Windows
Firewall, one can think that the attack ends with an unsuccess. This hypothesis was confirmed
during the testing as the attack was always detected.

The situation became more interesting for locations where the application firewall expects
the trusted executables. When the trusted one is substituted with the untrusted one in this

TinyWall 47

Figure 4.17 Details of Rule for Trusted OneDrive Application in Windows Firewall

location, the attack may stay undetected.
The last set of tests is performed after adding the root certificates of untrusted executables

to the Certificate Manager. Based on the format of firewall rules, it is not a surprise that this
addition did not change the result of the attack – the attack remained undetected from the trusted
location.

Thus, if the attacker can write to a trusted location26, it is possible to perform the attack
successfully. The firewall does not check any additional properties of the executable.

There is also one consideration that can prevent this type of attack. While having the complex
antimalware solution called Windows Security enabled as a whole, it is possible that the anti-
malware engine would detect the malicious executable. During this process, the trustworthiness
of the code signing certificate can be checked using standard Windows tools and the result can
be presented to the users.

On the other hand, the firewall should detect application modification, as its rules can contain
additional information to better identify trusted processes.

4.5 TinyWall

This application firewall covers only a limited number of applications permitted in the default
configuration. Furthermore, new rules for the application must be created manually or by using
the Autolearn mode.

Autolearn mode was used to create the rule for the trusted OneDrive application. The rule can
be seen in Figure 4.18 alongside only a few other applications included in the default configuration
of the product.

The details of the rule for trusted application are then shown in Figure 4.19. As seen
from the screenshot, the application is identified only based on the path and name, and the default

26where the firewall expects trusted code

48 Substitution

Figure 4.18 Rule for Trusted OneDrive Application in TinyWall

state is to permit communication with any other resource27 on the internet.
From the information obtained from Figure 4.19, it can be clear that no information about

the digital signature is used during application identification.
Before describing the actual testing, it should be revised to say that TinyWall does not inform

the user about the actual result of rule evaluation. As a consequence, there are no settings that can
help with the determination of success as in the previous application firewalls tested. On the other
hand, communication can always be eavesdropped on the attacker’s device28 to confirm the result
of the attack.

Just like the other application firewalls, this one was also tested to detect attacks that
substitute only the name of the process. It was found that this attack was unsuccessful.

Similarly to Windows Firewall, TinyWall cannot detect the attack where the untrusted
application is placed in the location defined in the rule for the trusted one. Then, the attack is
undetected.

However, there is one other observation that must be mentioned. While the rule for the trusted
application is created (as shown in Figure 4.18), then its executable is substituted with the
untrusted one and launched, the actual rule is changed in TinyWall settings as the icon of the
executable is changed. Other information remains unchanged. This can be seen in Figure 4.20.
Based on this observation, it seems that TinyWall updates its rules every time the application is
launched.

In summarisation of the information provided above, the attack is possible when the attacker
obtains access to the locations where TinyWall expects the executable for which the original rule
was created. Then, the only thing needed is to place an executable with the same name in this
trusted location. TinyWall does not implement any additional checks based on the trustworthiness
of the signer or publisher of the executable file.

27i.e., any IP address and port number
28using Wireshark software, for instance

ZoneAlarm Firewall 49

Figure 4.19 Details of Rule for Trusted OneDrive Application in TinyWall

Figure 4.20 Rule for Untrusted OneDrive Application in TinyWall

4.6 ZoneAlarm Firewall

As mentioned earlier in the thesis, in ZoneAlarm Firewall, regular users have only a minimal
possibility of setting up the product. Another aspect is that all the outgoing communication
is enabled by default, and users can only blacklist applications that had been at least once
communicating in the past.

50 Substitution

Based on the information provided in the previous paragraph, this type of attack is always
possible as a new permit rule is created for every application that initializes the communication
from the device. When a new rule is created, users can only change a switch and thus deny
the communication. As it can be seen in Figure 4.21, on the bottom of the image, there is a
button saying “Allow Connection”. Then, switching this one to “Block Connection” is possible.

As shown in Figure 4.21, ZoneAlarm Firewall seems to be capable of working with digital
signatures as in the valid rule of the trusted OneDrive application, information about the exe-
cutable’s signer and root signer are presented alongside their hash values. Thus, when another
application29 is placed instead of this one, the new rule is created and the communication is then
permitted. This situation is shown in Figure 4.22 where the executable file is signed by “Lukas
Hrdonka”.

As previously mentioned, all types of attacks tested in this part of the thesis were performed
with success. The worst thing behind this type of attack is that no option was found in the product
that was capable of detecting application modification on the filesystem level.

Figure 4.21 Rule for Trusted OneDrive Application Definition in ZoneAlarm

29different version, signer, root signer, etc.

ZoneAlarm Firewall 51

Figure 4.22 Rule for Untrusted OneDrive Application Definition in ZoneAlarm

52 Substitution

Chapter 5

Injection

In this chapter, application firewalls are tested to determine whether they can detect the injection
of untrusted code into the trusted application. At the beginning of the chapter, there is
a detailed description of the attack alongside an explanation of critical parts of the code used
for exploitation. This malicious code is then launched on the device running the above-described
application firewalls.

5.1 Attack Description
To explain this attack, let us consider having some trusted application. In most cases, it
should be some web browser or some native application installed in the operating system. Based
on the information provided in the previous chapters, when these applications are launched, at least
one process is created1. When considering the Microsoft Edge web browser, several processes
named msedge.exe start, as well as msedgewebview2.exe2 when launching the application. [41]

As a representative of native Windows applications, we can use File Explorer and its pro-
cess named explorer.exe. Process explorer.exe has a significant property for attackers – if
the computer with Microsoft Windows is running, there is almost always at least one such process.
If there is no such process, users typically encounter a blackscreen3.

The principle of this attack is thus to abuse these well-known and trusted applications
to run malicious code in their context. Then the communication may seems like an actual part
of the trusted application wants to communicate, not the malicious one.

It may be possible to gain access to the trusted process. In Microsoft’s language, it means
to create a handle for the process. While opening the handle, the requested rights have to be
provided. It should be mentioned that opening the handle to the process has legitimate usage as
debuggers often use it.

At this moment, it is possible to allocate additional memory for the process. Theoretically,
machine code can be written into this allocated memory space and run. The attack described
in this thesis shows another option, as the allocated space is abused to link a malicious DLL library.
It means that the further malicious code is written in this dynamically linked library, which may
then run malicious code on the device. For instance, it can initialize network communication
with the attacker’s servers.

The principle behind this attack is summarized in Figure 5.1.
However, some aspects can prevent the attack. These are listed below.

1these can be seen in the Task Manager, for instance
2specialized process responsible for additional features not only for Microsoft Edge but other Microsoft

applications as well
3due to corrupted system files or incorrect Windows configurations, for instance

53

54 Injection

Applications

Untrusted Application

Untrusted DLL

Trusted Application

Rules

Deny

Permit ✓

RAM

Untrusted Process

Trusted Process
Linked DLL

Additional Memory Allocation

1

2
4

Figure 5.1 Injection Attacks Principle. The figure shows the core principle behind this attack.
In an ideal world, only solid lines are applied. The attacker’s goal is to perform communication using
the permit rule on the firewall, as shown by the dotted line in the picture. In order to do so, attacker has
to open the handle to process, expand its memory space and link the malicious DLL. These steps are
demonstrated using dashed lines with numbers which correspond to Code listing 5.1 described below
in the thesis.

Handle creation. The handle to the trusted process may not be created successfully. During
the testing, it was found that the OpenProcess function returned the error code 5 (0x05)
when the handle had not been created. This error code was obtained using the GetLastError
function. The mentioned error code generally means that access to the specified process was
denied (ERROR ACCESS DENIED). This behavior was seen while accessing the system processes
and processes that were launched using another user account. According to the official docu-
mentation of the OpenProccess function, this is expected behavior. The documentation also
says: “If the specified process is the System process or one of the Client Server Run-Time Sub-
system (CSRSS) processes, this function fails and the last error code is ERROR ACCESS DENIED
because their access restrictions prevent user-level code from opening them.” [42] This behavior
was also seen during the testing. [43]

Additional memory allocation. Some applications have built-in mechanisms that can recognize
unauthorized access to their memory and thus prevent the allocation of additional memory
space.

Unsuccessful DLL linkage. Even though the CreateRemoteThread function returns handle
to the created thread4, the actual linkage of DLL could be unsuccessful. This situation
is also described in the documentation of the CreateRemoteThread function: “Note that
CreateRemoteThread may succeed even if lpStartAddress points to data, code, or is not
accessible. If the start address is invalid when the thread runs, an exception occurs, and
the thread terminates.” [44] It should be mentioned that the lpStartAddress represents
the address of the LoadLibraryA function in Code listing 5.1. This behavior was especially
seen when trying to inject the DLL into the code of the most popular web browsers.

Firewalls’ application modification detection. Application firewalls should implement mecha-
nisms that recognize a modification of the trusted application. In an ideal world, the application
firewall should be the last point of attack detection in case the others fail.

4signalizing the success of the function

Attack Description 55

These limitations were seen during the testing as some processes are thus not vulnerable to this
type of attack. The applications installed by default within the operating system were tested
primarily as no additional action is needed from the users’ side. Based on that, the probability
of a successful attack is higher.

While having all the native Windows security features disabled, it was found that all of the fol-
lowing processes are vulnerable to injection attacks – explorer.exe, msedgewebview2.exe,
msteams.exe, cmd.exe, powershell.exe, svchost.exe, dllhost.exe, OneDrive.exe,
notepad.exe, and even more. In consequence, attackers may run any code within the vul-
nerable process, of course, with the rights of the vulnerable process’s owner.

Based on the listing of processes in the previous paragraph, one can suspect that processes
such as notepad.exe or explorer.exe need not communicate with other resources on the inter-
net. Surprisingly, while testing, it was observed that at least process explorer.exe initiated
a legitimate network connection to the Microsoft server with IP address 52.109.28.46. This
communication was seen while testing ESET Internet Security and the screenshot of the commu-
nication request is shown in Figure 5.2. According to Shodan5, Microsoft Corporation uses the
IP address mentioned. Information obtained from Shodan can be seen in Figure 5.3.

Figure 5.2 Legitimate Communication of Windows Explorer

5search engine used to gather information about devices connected to the internet,
available from https://www.shodan.io/

https://www.shodan.io/

56 Injection

Figure 5.3 Information about IP Address 52.109.28.46 in Shodan

Besides the applications mentioned above, various web browsers were also tested. The test
included Google Chrome version 123.0.6312.59, Mozilla Firefox version 124.0.1, and Microsoft
Edge version 122.0.2365.92. During the testing, it was discovered that most of their processes
were not vulnerable to this type of attack. However, there can be some processes that are still
vulnerable. Thus, the attack is possible, at least in theory, but it is not guaranteed that it is
always successful6.

According to the blog post on Microsoft’s website, the vendor implemented protection against
DLL injection into the Microsoft Edge application in 20157. Since then, every DLL linked
into the Microsoft Edge must be Microsoft-signed or WHQL-signed. WHQL8 is used to certify
Windows-compatible devices and ensure the legitimacy of their drivers. Even though no official
information about implementing such a mechanism in other web browsers was found, it is more
than likely that they have implemented it as well. [45, 46]

6as it is for Windows processes listed above
7more precisely, alongside the introduction of EdgeHTML 13
8Windows Hardware Quality Labs

Attack Description 57

This observation was also included in the tests as the malicious DLL was signed using a
fake certificate of Microsoft Corporation created in Chapter 4. For the actual signing, the
signtool.exe was used as described in Code listing 4.2 in the previous chapter. The digital
certificate was then added to the relevant store of the Certificate Manager9. The validation of the
digital signature alongside the certificate details can be seen in Figure 5.4. This DLL was tested
while injecting msedge.exe process but the digital signature did not make the attack successful
as the DLL was not linked to the msedge.exe process.

Figure 5.4 Certificate of Signed DLL

5.1.1 Code Explanation
Based on the information above, the actual malicious code is divided into two parts. While
the first one is responsible for the injection into the trusted process, the code of DLL is the actual
malicious code.

5.1.1.1 Inject.cpp
The code listed in Code listing 5.1 shows the main principle of injection to the code of the trusted
application.

1 HANDLE hProcess = OpenProcess(PROCESS_VM_WRITE | PROCESS_VM_OPERATION |
PROCESS_CREATE_THREAD, FALSE, pid);↪→

2 auto p = VirtualAllocEx(hProcess, nullptr, 1 << 12, MEM_COMMIT | MEM_RESERVE,
PAGE_READWRITE);↪→

3 auto w = WriteProcessMemory(hProcess, p, argv[2], strlen(argv[2]) + 1,
nullptr);↪→

4 auto hThread = CreateRemoteThread(hProcess, nullptr, 0,
(LPTHREAD_START_ROUTINE) GetProcAddress(GetModuleHandle(L "kernel32.dll"),
"LoadLibraryA"), p, 0, nullptr);

↪→

↪→

Code listing 5.1 Process Injection

9decribed in more detail in Section 4.1.2.1

58 Injection

The first line shows the handle opening for the trusted process. The actual process is
defined by its process identifier (PID), which is used as the last parameter of the OpenProcess
function. The first attribute of the function represents the permissions needed to perform
the attack successfully. In this case, the PROCESS VM WRITE and PROCESS VM OPERATION are
needed to make the necessary changes in the memory space of the trusted process. Then, the
PROCESS CREATE THREAD is needed to create a new thread in the context of the target process. [42,
47]

When the handle to the process is obtained, the code tries to allocate additional memory space
by using the VirtualAllocEx function on line 2. As a third parameter, the VirtualAllocEx
function expects the actual size of additional virtual memory space to be allocated. In this
case, the value of 212 is used10. This value corresponds to 4096 Bytes, which is the default
size of a memory page used in the 64-bit architecture of the Microsoft Windows operating
system. As the fourth parameter, the type of memory allocation is expected. In Code listing 5.1,
a combination of MEM RESERVE and MEM COMMIT is used. Whereas MEM RESERVED is used to reserve
a range within the virtual address space, MEM COMMIT commits the reserved memory pages.
MEM COMMIT also ensures that the initial content of allocated memory is filled by zeros. It should
be mentioned that the physical pages are not allocated until the virtual addresses are accessed.
As the last parameter, memory protection specification is needed. PAGE READWRITE is used in this
example as there is a need to write some data into the allocated address space and then read
these data when creating a new thread. [48, 49]

The absolute path to the malicious DLL is then written in this allocated memory. In this
case, the path is entered as a second parameter of the executable.

The last line of the listing is quite complicated, so it is described in more detail. The
CreateRemoteThread function is used to create a new thread that runs in the address space
of another process. As a fourth argument, the function expects an entry point to the func-
tion to be executed. In this scenario, the function LoadLibraryA, whose address is obtained
from kernel32.dll with the help of the GetModuleHandle function, is used. It has to be
mentioned that the kernel32.dll is linked to each process running on the Microsoft Win-
dows operating system, and LoadLibraryA function is included in it. As the fifth parameter
of the CreateRemoteThread, there is the newly allocated memory space address containing
the absolute path to malicious DLL. This one is used as a parameter to the function defined
as the fourth argument. [44]

Eventually, a new thread is created. This thread runs the LoadLibraryA function. Thanks
to this, the malicious DLL is loaded into the context of the trusted process.

As part of the thesis, the executable version of this source code is provided11. It can be run on
a Microsoft Windows 11 device using the command line interface. The application expects the
PID of the trusted process as the first parameter and then the absolute path to the malicious
DLL library as the second one.

5.1.1.2 Dllmain.cpp
The code of dllmain.cpp gives an example of malicious DLL. In this particular case, the Winsock2
library is used to create a communication channel with the attacker’s server. An example Winsock
client code available on the Microsoft site was used as a base for this code. [50]

The main modification is that this code waits in its while loop for the commands from the at-
tacker. These commands are launched using the WinExec function. In the example scenario,
the attacker can send the message "calc.exe" and this application is then launched on the victim’s
device. Consequently, complete code is a straightforward version of the reverse shell.

The compiled DLL library is presented in the thesis attachment12, too. The DLL is currently
10written with the use of binary left shift operator
11file Inject.exe in the attachment
12file DLLSocket.dll in the attachment

Attack Description 59

preconfigured to initiate a communication channel with server 192.168.1.1:80. This parameter
can be changed in the provided source code, and then a new version of DLL can be created using
Microsoft Visual Studio 2022 built-in tools.

5.1.1.3 Server.cpp
As the name suggests, the source code of server.cpp is used to run on the attacker’s machine.
Its purpose is to listen to the specified port on any device’s IP address and process the requests.
For simplicity, the server will read the request from the client and reply with the string "calc.exe".
As written in the previous parts, this string is then used as a parameter of the WinExec function
on the client side.

Actual executable binary code is included as the attachment of the thesis13. It is possible
to run the application using the command line interface of the Linux distribution. The executable
expects one parameter – the port on which the server listens.

5.1.2 Practical Demonstration
In this section, a practical demonstration of the attack is shown alongside the screenshots that
provide proof of a successful attack. The binary files used in the demonstration can be found
in the thesis attachment.

The first step of the attack is to identify the PID of the trusted process. This information can
be obtained from the Task Manager on the “Details” tab. As mentioned above, several processes
are vulnerable to this type of attack. OneDrive.exe was decided to be used for demonstration
purposes as well as in the previous chapter.

While having the PID of the trusted process noted, Inject.exe can be launched from the com-
mand line interface. From the upper part of Figure 5.5, one can see its actual launching. The first
argument represents the PID of trusted process14, and the second one is the absolute path
to the malicious DLL. Process OneDrive.exe, with its PID 8112, is used there.

Figure 5.5 Launching the Injection Attack and Verification of the Result in the Task Manager

13file Server.out in the attachment
14obtained from the previous steps

60 Injection

When the code is successfully launched, a message box appears in the context of the trusted
application. This can be seen in the lower part of Figure 5.5 as there is the application named
“Microsoft OneDrive” and its context window named “Injection”.

It is also possible to verify the result of linking of the malicious DLL in the Process Explorer.
The Process Explorer is software developed by Sysinternals that provides more detailed information
about processes running on a particular device. The newest version of the application can be
obtained from the vendor’s site. [51]

As can be seen in Figure 5.6, there is a highlighted row15 with process OneDrive.exe and its
PID 8112. Further, in the listing of linked DLLs, our DLLSocket.dll is shown.

Figure 5.6 Listing of Linked DLLs in the Process Explorer

The whole client-server communication can be captured using Wireshark software. Its output
is shown in Figure 5.7. The highlighted line shows the command "calc.exe", which is sent
from the server to the client. Captured communication is provided as an attachment to the thesis,
too.

Figure 5.7 Communication Captured by Wireshark

15row number 3 in the upper part

ESET Internet Security 61

5.2 ESET Internet Security

The ESET Internet Security product includes the first application firewall tested in this chapter.
Just like in the previous chapter, the rule for trusted OneDrive application was created.

This communication request can be seen in Figure 5.8. It can be seen that the OneDrive
executable tries to communicate with remote host 68.219.88.225 using port number 443. Based
on the information from the screenshot, the IP address 68.219.88.225 is used by Microsoft
Corporation16 and the communication seems to be enciphered by using TLS which was discussed
in more detail in Section 1.4.1.3.

While referring to Figure 5.8, changing the switch to “Create rule and remember permanently”
and hitting the “Allow” button results in the creation of a rule such as the one shown in Figure 4.7.

Figure 5.8 Communication of Trusted OneDrive Application in ESET Internet Security

In the beginning, the mentioned code was tested using the default configuration of the product.
The test discovered that the ESET’s application firewall is unable to prevent this type of attack
in the default configuration settings.

The “Application modification detection” feature can be17 used to prevent this type of attack.
During the testing, it was discovered that this detection is insufficient for this type of attack as
it probably checks for changes only at the start of the trusted application. Consequently, it is
possible to successfully perform the attack even if the “Application modification detection” is
enabled.

Another important thing that has to be mentioned is that in the default configuration,
“Application modification detection” is enabled but only for applications without valid certificates.

16also verified using Shodan
17at least according to the vendor

62 Injection

If the application has a valid certificate at the time of rule creation, when later applying the actual
rule it is only checked whether the same digital certificate is used in the digital signature18.

Various product settings were also tested, such as the aggressivity of the detections or additional
detection mechanisms. However, there was no such option in the firewall’s settings found that is
able to prevent this type of attack.

Another aspect related to the topic is the actual information about the untrusted appli-
cation when creating the rule. As shown in Figure 5.9, it can be seen that despite the fact
the OneDrive.exe was injected, there is no information regarding reduced trustworthiness. This
screenshot was obtained after the rule for the trusted OneDrive executable had been deleted.
The figure thus simulates the initial communication of the injected executable.

From the regular user perspective, it seems that the legitimate application, which is digitally
signed with a valid certificate of Microsoft Corporation, would like to communicate with some
remote address. The only suspicious thing is that the remote computer is set to 192.168.1.1.
In reality, an attacker should use some public IP address. On the other hand, regular users
typically have a minimal understanding of IP addresses and are typically unable to verify their
trustworthiness19. Another aspect is that doing this check for every communication attempt
could be demanding and time-consuming. Thus, end users could consider this communication
legitimate and create a permanent rule.

Figure 5.9 Communication of Injected OneDrive Application in ESET Internet Security

18vendor arguments with potential problems with updating the trusted application
19i.e., whether it is maintained by a trusted party

Avast Free Antivirus 63

5.3 Avast Free Antivirus
In this section, the result of Avast Free Antivirus testing on the vulnerability of injection type is
given.

First of all, it was verified that the rule for the trusted OneDrive application is included
in the product’s list of rules. The same rule for trusted application was used as in Figure 4.11.

Then, just like the other implementation, the code was initially launched while the default
settings were set in the product. The attack was not successful because the Behavior shield
detected it.

A Behavior shield is an additional feature that should provide an additional level of security
as it detects anomalies in trusted binaries. It was originally introduced in 2017 and has been
included in all Avast antimalware products since then. On the other hand, at least at its
beginning, there was a higher false positive (FP) rate, as may be seen on Avast’s forums. However,
over time the FP ratio started decreasing as the detection mechanism was about to begin using
artificial intelligence for behavioral detection. It saves the default behavior of trusted applications
during the initial phase20 and then compares this with the actual state. [52]

This feature is enabled by default in the product. However, it is still possible to turn off
the feature. It can be done in the “Protection tab”, by selecting “Core Shields” and then toggling
the button under “Behavior Shield”. During the testing, this feature was temporarily disabled
to prove that the Behavior shield is the only mechanism that can detect the attack.

Another option to a disable specific shield for a particular application is using the “Exceptions”.
The actual settings can be found under “Settings” on the “General” tab. It should be mentioned
that the actual exceptions are identified using the name and path of the executable. As can
be seen in Figure 5.10, several shields could be excluded for a particular executable. These are
explained in the listing below. [53, 54]

Apply to all scans. By selecting this one, all the scans of the defined executable are disabled.

Apply to Behavior Shield. Selecting this one results in disabling the Behavior shield. This
means that the executable file defined has no longer been checked for runtime changes.

Apply to File Shield. By selecting this item, the specified program is not scanned for malicious
threats anymore when the file is opened, run or even modified.

CyberCapture. CyberCapture is used to analyze unrecognized files and warn about new
threats.

Hardened Mode. Hardened Mode should be used to determine which executable files are safe
to open based on their reputation.

In Figure 5.11, the actual detection can be seen. The executable file was also moved to some
potentially trusted locations, but the only difference was the name of the detection category –
from the “IDP.Generic”, it changed to “IDP.ALEXA.54”. However, no official documentation
regarding the detection classes was found. On the other hand, when trying to search for more
information about the specified detection class, it can be found that this one has sometimes been
considered as FP detection, at least in the past.

When is the message in Figure 5.11 shown, users can decide whether to move the threat
to the Quarantine or create an exception. The exception means that Avast stores the information
that this action is expected and updates the expected behavior in its structure.

If the users decide to move the executable to the Quarantine, the file is placed in a spe-
cial environment where the files are entirely isolated from the rest of the operating system.
As a consequence, they cannot be accessed by any other processes. From the users’ perspective,
the executable disappears from its original location. [55]

20initial scan right after the installation of Avast product

64 Injection

Figure 5.10 Exception Details in Avast Free Antivirus

Figure 5.11 Attack Detection by Avast Free Antivirus

There is one other limitation that should be taken into account. When the users click the “Move
to Quarantine” button, they are prompted to restart the computer to complete the action. It
was tested that the DLL library is successfully loaded into the address space of the trusted
process, and it can communicate with the attacker’s device until the computer is restarted. Thus,
if the users decide to restart the computer later, the malicious DLL can run on the device until
that moment.

Windows Firewall 65

5.4 Windows Firewall
Binaries introduced in the previous sections were tested on the Windows Defender and its firewall,
Windows Firewall, too.

Just like the other solutions tested in this chapter, a rule for the trusted OneDrive executable
was created in the product. This rule is the same as the one shown in Figures 4.16 and 4.17.

While having default configuration enabled, the attack can be completed successfully. Based
on that, attackers can link malicious DLLs into the trusted process and create a communication
channel with the attackers’ devices without causing any violation from the side of native Windows
security tools.

On the other hand, some settings can be helpful in attack prevention. These settings are
located in the Windows Security Center on the “App & Browser Protection” tab. When selecting
“Exploit Protection”, there are two tabs with additional security features. While “Program settings”
are applied only to the specified applications, “System settings” are applied to all remaining
applications. Based on the fact that all settings relevant to the problematics of injection are
enabled on the “System settings” tab by default, further paragraphs are focused on the options
under “Program settings”.

However, these additional features are enabled for each application separately. Thus, when we
consider having ten applications and want to enable the same security feature for all of them, it
has to be done in ten places in the product configuration.

A list of additional security features is provided further in the chapter. These may be used
to ensure an additional level of security. It should be mentioned that all of them are disabled
by default. [56, 57]

Arbitrary Code Guard. This option should enable additional checks regarding code page
modification. However, during the testing, it was found that this additional setting does not
prevent this attack.

Validate Handle Usage. An additional check regarding the handle reference is applied when
this option is enabled. It may raise an exception if an invalid handle reference is detected.

Validate Image Dependency Integrity. It may be used to detect code substitution for statically
linked DLLs by Windows binaries.

Code Integrity Guard. It ensures that all executables loaded into a trusted process are digitally
signed by the same publisher. Consequently, if some custom application requires loading its
own DLLs to a digitally signed binary, then this guard should prevent the attack. However,
it is not intended for all applications21. It is the only option that can prevent this type
of attack. During testing, it was verified that allocating additional memory is impossible.
Consequently, attackers need to find other ways to link malicious DLLs because the procedure
described in this chapter cannot be used.

The actual configuration of the Code Integrity Guard for the OneDrive.exe can be found
in Figure 5.12.

In summary, the attack can be successfully performed in the default configuration of Windows
Firewall. There is an additional security feature called Code Integrity Guard that can prevent
a successful attack.

21for instance, third-party applications may not work correctly while having this feature enabled

66 Injection

Figure 5.12 Configuration of Code Integrity Guard In Windows Security Center

5.5 TinyWall
TinyWall’s default configuration has the potential to prevent this type of attack. However, the only
thing that helps prevent the attack is that the default configuration contains only a limited set
of trusted applications. This set does not include applications that are reliably vulnerable to this
type of attack. To explain the word “reliably” in the previous sentence, it should be mentioned
that the list includes processes such as msedge.exe. As written above, most of Microsoft Edge’s
processes are not vulnerable to injection attacks, but some may still be vulnerable.

On the other hand, it is still possible to add new rules for applications that users consider
as trusted. When applications such as Microsoft Teams or Microsoft OneDrive are added
to the exception list, the attack is successfully performed using these applications. The rule
created for OneDrive application is shown in Figures 4.18 and 4.19.

Just like in the other solutions tested in this chapter, the attack was performed using the trusted
OneDrive executable. The attack’s success can be verified using the list of active connections
within the Tinywall as shown in Figure 5.13.

The actual settings of the TinyWall firewall are relatively simple. Users thus have only
limited possibilities for settings. Consequently, no option regarding the detection of application
modification was found in the firewall settings.

Another aspect of this solution is that it is not intended to work with digital certificates.
In the competing solutions, it is possible to define application certificate details which are validated
when matching the rules. In these solutions, for instance, the certificate’s validity and its issuer
can be additionally checked. No such option was found in TinyWall’s settings.

In summary, the application firewall can, using the default settings, prevent this type of attack
to some extent. On the other hand, when applications such as Microsoft OneDrive are added,
the firewall cannot detect the attack.

ZoneAlarm Firewall 67

Figure 5.13 List of Active Connection in TinyWall

5.6 ZoneAlarm Firewall
This application firewall comes with only fairly limited configuration as it targets the users who
would prefer to spend less time setting up the firewall.

While testing its configuration, it was discovered that the attack was successful using the fire-
wall’s default configuration. As mentioned above, users have only minimal setting options. These
only include the specification of network prefixes, which are considered private, and the sensitivity
of the firewall. Even if the sensitivity is set to the highest value, this attack remains undetected.
These settings can be seen in Figure 5.14.

Figure 5.14 Sensitivity Level Settings in ZoneAlarm Firewall

68 Injection

In this implementation, all outgoing communication is always permitted. Thus, applications
are always automatically added as rules with the predefined option “Allow communication”
enabled. It can be quite confusing for the regular users. When they would like to block some
applications, it has to be performed in a unique way – when the application is added to the list,
users can toggle the button to value “Block communication”. Based on these pieces of information,
ZoneAlarm Firewall works in the blocklisting mode, which is not a good security principle.

Due to its simple configuration, no attack mitigation option was found. For instance, no options
to enable something like detection of application modification can be set.

Thus, this attack is always possible in whatever configuration is deployed, and there is
no possible mitigation using this application firewall.

Chapter 6

Discussion of Results

In this chapter, the results of the tests described in more detail in the previous chapters are
provided alongside their discussion. The chapter also provides a quick overview of firewalls’
ability to prevent the mentioned attacks, recommendations for firewall setup, and reactions
from the firewall vendors.

6.1 Substitution
Chapter 4 provides a detailed overview of substitution attacks. In this section, the results
of the testing are given. As already written, many variants of the attack exist. The actual ability
of tested firewalls to prevent particular attack variants is shown in Table 6.1.

Based on the mentioned chapter’s information, the testing uncovers how the mentioned
application firewalls evaluate their rules. For clarification, it should be reminded that the default
settings of tested firewalls were changed to ask if communication from a new application is
detected1.

As seen in Table 6.1, Avast Free Antivirus and ESET Internet Security are capable of
detecting all of the attempts described above. One of the pros behind these solutions is that they
probably use their own set of trusted root certificates, independent of the ones defined in the
operating system. Thus, the user can always be informed about the communication originating
from untrusted applications.

In order to prepare a similar environment for testing, the Windows Firewall was set to block all
outgoing communication until it matched the allowed rule (as the default settings of the product
allow all outgoing communication). While an implicit block for outgoing communication is
enabled, the attack remains undetected for locations where Windows Firewall expects a valid
executable. Based on that, it is clear that the product uses only the executable’s path and name
when evaluating the rule.

On the other hand, all three application firewalls described in the previous paragraphs are
delivered as a part of complex antimalware products. Thus, the executable may be detected as
malicious by the antimalware engine. Then the attack is not completed successfully.

TinyWall uses an approach in which the rule is identified only based on the executable’s path
and name. Thus, if the attacker obtains access to the location where TinyWall expects a trusted
executable, it can be changed to another, and the product cannot detect this change.

1if this option is available in the product

69

70 Discussion of Results

ZoneAlarm Firewall uses a similar approach to Windows Firewall in its default configuration
as it enables all the outgoing communication. The critical difference to Microsoft’s solutions is
that users cannot change this setting. Based on that, the untrusted executable can be launched
from any location on the filesystem and the application can communicate over the network.

6.2 Injection
In Chapter 5, the principle of injection attack and the actual testing in selected application
firewalls are provided. In this section, an analysis of the results is given.

Before diving into the analysis, it may be mentioned that the ability of tested firewalls to detect
this attack is summarised in Table 6.2 listed below in the thesis. As seen from Table 6.2, most
of the application firewalls tested cannot detect this attack.

The core principle of the attack is to open the handle to a trusted process and perform
necessary changes to it in order to link a malicious DLL to it. The DLL can then perform network
communication and application firewalls often consider this traffic legitimate because it originates
from a trusted application.

During the testing, it was found that only Avast Free Antivirus can detect this type of attack.
More precisely, its Behavior shield detected the attack. However, the steps after the detection
could be handled better as the product moves only the executable performing linking of DLL,
not the DLL itself, to the Quarantine. Thus, the malicious DLL can be successfully loaded
into the trusted process and run until the computer is restarted. This time could be extremely
long for servers in a production environment, for instance.

The Windows Firewall was the next product tested in the thesis. It was found that this
application firewall cannot detect this attack in its default configuration. On the other hand,
there is an additional check called Code Integrity Guard. While this guard is enabled, the attack
cannot be performed successfully. However, the main con is that the Code Integrity Guard must
be set up separately and manually for every application.

In other products tested in the thesis, ESET Internet Security, TinyWall, and ZoneAlarm
Firewall, the attack can be performed successfully without any detection from the application
firewall or even the antimalware solution itself2. Furthermore, no additional settings were found
to help with the attack detection and, thus, its mitigation.

Overall, only two of five3 application firewalls are capable of detecting this type of attack.
However, the detection seems not to be the domain of application firewalls but the antimalware
solution behind them. This opinion is based on the observation that both detection engines,
the Behavior shield used by Avast and the Code Integrity Guard used by Microsoft, are part
of the antimalware program, not the application firewall itself.

6.3 Discussion
During the testing of the substitution attack, it was seen that most of the products behaved as
expected.

However, Avast’s and ESET’s approaches should be highlighted as they use their own set
of trusted root certificates. Thus, the attackers cannot bypass the rules by adding the trusted root
certificate to the certificate store located directly in the operating system. However, for publishers
of new applications, the deployment process can be more difficult as they have to prove that their
product is not considered malicious. It usually includes deeper testing on the side of firewall
vendors and their malware laboratories.

It was also seen that some of the products enable all outgoing communication in the default
configuration. As a Microsoft Windows operating system vendor, Microsoft also recommends this

2if delivered within the product
3only one of five in the default configuration

Discussion 71

approach to ensure a seamless user experience from the system. This approach extends the attack
surface and thus gives more options for potential attackers. Thus, the probability of a successful
attack is also higher. This approach is an excellent example of the contrast between security
and user-friendliness of the application. Generally, this dependency says that the application’s
security decreases with higher user-friendliness and vice versa.

After testing of substitution attack4, the thesis also shows an attack which focuses on the change
of the trusted process’ code while it is running. Based on the testing, a deeper check of the trusted
application’s integrity seems to happen only when the application is launched. This means that if
the application is changed and then launched, it can be detected in most products. On the other
hand, when some changes are made during the trusted application run, these changes often remain
undetected. Thus, the application firewall does not check which part of the trusted application
communicates within the internet.

In this discussion, the detection used by Avast Free Antivirus should be highlighted as
this product is the only one that can detect this type of attack in its default configuration.
As the product was tested, it was seen that its part called Behavior shield, which uses ML and
AI principles, can detect this attack with certainty. On the other hand, the product detects only
the untrusted executable file, not the malicious DLL itself. Thus, the main recommendation
while using this product is to follow the instructions given by the product. If those are followed5,
the product fully protects the device against this attack. On the other hand, when the instructions
are not followed6, the attack can continue.

Furthermore, the ability to detect attacks from the side of the Windows Firewall may be
discussed, too. Even though the firewall is not able to detect the attack in its default configuration,
an additional setting called Code Integrity Guard can be helpful with the detection. The main
disadvantage behind this setting is that it must be done for each application separately, as
no setting in the configuration was found to enable it globally for any application running
in the operating system. While Code Integrity Guard is enabled, the attack can be detected,
although the setup can be pretty annoying. It would be better if the vendor provided the possibility
to enable this one globally.

At this point, it should be mentioned that the Behavior shield and the Code Integrity Guard
are not the features of application firewalls but the antimalware program as a whole. Consequently,
the attack is not detected by the application firewall but by the more complex antimalware
solution. This detection should be done directly in the application firewall during the rules
evaluation.

Other application firewalls tested in the thesis could not detect this attack. Even more,
no settings in their configuration were found that could help with attack detection. Based on that,
the attack can be successfully performed in these firewalls without any notification to the user.
As the users cannot prevent this attack by changing the product configuration, the only possible
solution is to appeal to firewall vendors to consider this vulnerability and prepare adequate
patches for their products.

As has already been mentioned in the thesis, all of the vendors were confronted with the test
results. Their reaction can be found in a separate section further in the chapter.

Based on the information above, it seems the tested programs can only detect a situation
where the executable is changed before the initial launch. While it is running, changes to its code
can be done using the principles of injection. Except for Avast Free Antivirus, this attack ends
with success in the firewall’s default configuration.

4considered as being detected in expected way
5means restarting the device after attack detection
6it may be impossible to restart servers in the production environment, for instance

72 Discussion of Results

6.4 Vendors Reaction
All the weaknesses found in the thesis were reported to firewall vendors. At the time of submitting
the thesis, only three vendors responded to the reported findings. More information can be found
in the following overview.

ESET Internet Security. The vendor of this product, Slovak company ESET, was informed
about the potential vulnerability found in their product. The finding was identified to be out
of scope. Thus, the code presented in the thesis was also sent using the form for false negative
detections. Besides the general, automatically generated confirmation of successful delivery,
no other response from the vendor has been received until the submission date.

Avast Free Antivirus. Avast was also informed about the improper detection. I want to remind
that the Avast product successfully detected the attack. However, if the user does not follow
the instructions from the product7, the attack can continue. According to the information
provided after submitting the form, Avast should update the database of malicious files within
48 hours. No other information from the vendor has been delivered since then.

Windows Firewall. Microsoft, as a vendor of Windows Firewall, was informed about the vul-
nerability using the Microsoft Security Response Center (MSRC). After delivering all the exe-
cutables, source codes, and other materials relevant to reproducing the issue, the vulnerability
is under the vendor’s deeper investigation.

TinyWall. The email was sent to the email address obtained from the product’s official website.
However, no response has been delivered until the submittion of the thesis.

ZoneAlarm Firewall. The information about the testing was sent to the vendor of this product,
too. The procedure was almost the same as Microsoft’s. The vendor asked for additional
information, PoC, which is needed for vulnerability reproducing. The issue is now in the phase
of deeper investigation on the vendor’s side.

All the information described in this section is summarised in Table 6.3, which can be used
as a quick overview of the vendor’s reaction.

7especially to restart the device

V
endors

R
eaction

73
Table 6.1 Firewalls’ Ability to Detect Substitution Attacks

Executable
Location

Executable
Signed By

Root Certificate
Added to Store

Eset
Internet Security

Avast
Free Antivirus

Microsoft
Defender TinyWall ZoneAlarm

Firewall
Any Not signed No ✓ ✓ ✓ ✓
Any Lukas Hrdonka No ✓ ✓ ✓ ✓
Any Lukas Hrdonka Yes ✓ ✓ ✓ ✓
Any Microsoft Corp. No ✓ ✓ ✓ ✓
Any Microsoft Corp. Yes ✓ ✓ ✓ ✓
Same as trusted Not signed No ✓ ✓
Same as trusted Lukas Hrdonka No ✓ ✓
Same as trusted Lukas Hrdonka Yes ✓ ✓
Same as trusted Microsoft Corp. No ✓ ✓
Same as trusted Microsoft Corp. Yes ✓ ✓

Table 6.2 Firewalls’ Ability to Detect Injection Attacks

Attack Variant Eset
Internet Security

Avast
Free Antivirus

Microsoft
Defender TinyWall ZoneAlarm

Firewall
Default configuration ✓
Additional detection enabled
(if available in the product)

✓ ✓

Table 6.3 Firewall Vendors Reactions

Event Eset
Internet Security

Avast
Free Antivirus

Microsoft
Defender TinyWall ZoneAlarm

Firewall
First Response Time 2 hours N/A 24 hours N/A 24 hours
Current status declared as out of scope N/A under investigation N/A under investigation

74 Discussion of Results

Chapter 7

Conclusion

This chapter provides a brief overview of all the information mentioned in the thesis. This
chapter thus can serve as a summarisation of essential parts described in the thesis.

At the beginning of the thesis, the traffic filtering on different layers of the TCP/IP model was
analyzed, with the main focus on the application layer because most of the thesis uses principles
of this layer. The way of malware delivery was also mentioned in the theoretical part of the thesis.
Alongside this, the motivation behind using an application firewall was introduced.

Then, the most common principles of application firewalls were introduced alongside the most
common evasion techniques. As the mentioned techniques need to be reviewed and better
documented, one of the thesis’s goals was to analyze them and provide their overview.

Substitution and injection were selected from the described techniques for detailed analysis and
testing in defined application firewalls. These two were selected as there is a higher probability that
potential attackers would use these as the most straightforward solution to hide their malicious
communication.

It had been decided that the tests were performed in five application firewalls – ESET
Internet Security, Avast Free Antivirus, Windows Firewall, TinyWall, and ZoneAlarm Firewall.
The motivation behind selecting these products was also explained in the document.

During the testing of the substitution attack, it was described that the tested products behave
according to the expectation and provided documentations. On the other hand, some vendors
use more secure approaches as they define their hierarchy of trusted certificates for application
signatures.

The ability to detect injection attacks was also tested in selected application firewalls. It
was found that only one of five tested products is capable of detecting such type of attack in its
default configuration. One more product has an additional setting that can help with attack
detection. However, it was found that the detection is not a domain of application firewalls but
an antimalware solution in general.

At the end of the thesis, the analysis of the practical part is provided. During the testing,
it was surprising that the principles described almost 20 years ago can still be used to bypass
firewall rules. Alongside the analysis, the discussion and reaction from the side of firewall vendors
are also given.

75

76 Conclusion

As the thesis shows only two of many possible attacks, more attack types could be added
to create a complex tool capable of evaluating the firewall’s ability and effectiveness in preventing
leaks. The idea for future work is to create an application that users launch, and the strength
of the firewall configuration is evaluated and shown to the users.

Last but not least, the essential parts of the thesis will be used as a basis for materials
used in lectures and tutorials on subjects taught by the Department of Information Security
at the Faculty of Information Technology, Czech Technical University in Prague.

Bibliography

1. PETROSYAN, Ani. Number of malware attacks per year 2022 – Statista — statista.com
[online]. 2023. Available also from: https://www.statista.com/statistics/873097/mal
ware-attacks-per-year-worldwide/. [Accessed 09-03-2024].

2. IBM, Corp. Cost of a data breach 2023 – IBM — ibm.com [online]. 2023. Available also
from: https://www.ibm.com/reports/data-breach. [Accessed 09-03-2024].

3. CISCO SYSTEMS, Inc. Cisco Internetworking Basics — cisco.com [online]. 2002. Available
also from: https://www.cisco.com/E-Learning/bulk/public/tac/cim/cib/using_cis
co_ios_software/linked/tcpip.htm. [Accessed 09-03-2024].

4. CISCO SYSTEMS, Inc. TCP/IP Overview — cisco.com [online]. 2005. Available also from:
https://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-
rip/13769-5.html. [Accessed 09-03-2024].

5. KESSLER, Gary C. Overview of TCP/IP and the Internet — garykessler.net [online]. 2019.
Available also from: https://www.garykessler.net/library/tcpip.html. [Accessed
09-03-2024].

6. ALI, Firkhan. A study of technology in firewall system. In: 2011, pp. 232–236. isbn 978-1-
4577-1548-8. Available from doi: 10.1109/ISBEIA.2011.6088813.

7. CISCO SYSTEMS, Inc. Security – Configuring Port Security [Support] — cisco.com
[online]. 2011. Available also from: https://www.cisco.com/en/US/docs/general/Test
/dwerblo/broken_guide/port_sec.html. [Accessed 09-03-2024].

8. LEISCHNER, Garrett; TEWS, Cody. Security through VLAN segmentation: Isolating and
securing critical assets without loss of usability. In: proceedings of the 9th Annual Western
Power Delivery and Automation Conference, Spokane, WA. 2007.

9. POSTEL, Jon. Internet Protocol [RFC 791]. RFC Editor, 1981. Request for Comments, no.
791. Available from doi: 10.17487/RFC0791.

10. HINDEN, Bob; DEERING, Dr. Steve E. Internet Protocol, Version 6 (IPv6) Specification
[RFC 2460]. RFC Editor, 1998. Request for Comments, no. 2460. Available from doi:
10.17487/RFC2460.

11. DOSTÁLEK, Libor. Computer Networks II [online]. 2023. Available also from: https://gi
tlab.fit.cvut.cz/BI-SPS/bi-sps/-/raw/eeb5ee03d6b120cc4caad086d986a5e38279af
74/files/TCP-IP_II_CZ_v08.pdf. [Accessed 09-03-2024].

77

https://www.statista.com/statistics/873097/malware-attacks-per-year-worldwide/
https://www.statista.com/statistics/873097/malware-attacks-per-year-worldwide/
https://www.ibm.com/reports/data-breach
https://www.cisco.com/E-Learning/bulk/public/tac/cim/cib/using_cisco_ios_software/linked/tcpip.htm
https://www.cisco.com/E-Learning/bulk/public/tac/cim/cib/using_cisco_ios_software/linked/tcpip.htm
https://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13769-5.html
https://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13769-5.html
https://www.garykessler.net/library/tcpip.html
https://doi.org/10.1109/ISBEIA.2011.6088813
https://www.cisco.com/en/US/docs/general/Test/dwerblo/broken_guide/port_sec.html
https://www.cisco.com/en/US/docs/general/Test/dwerblo/broken_guide/port_sec.html
https://doi.org/10.17487/RFC0791
https://doi.org/10.17487/RFC2460
https://gitlab.fit.cvut.cz/BI-SPS/bi-sps/-/raw/eeb5ee03d6b120cc4caad086d986a5e38279af74/files/TCP-IP_II_CZ_v08.pdf
https://gitlab.fit.cvut.cz/BI-SPS/bi-sps/-/raw/eeb5ee03d6b120cc4caad086d986a5e38279af74/files/TCP-IP_II_CZ_v08.pdf
https://gitlab.fit.cvut.cz/BI-SPS/bi-sps/-/raw/eeb5ee03d6b120cc4caad086d986a5e38279af74/files/TCP-IP_II_CZ_v08.pdf

78 Bibliography

12. LANGLEY, Adam; RIDDOCH, Alistair; WILK, Alyssa; VICENTE, Antonio; KRASIC,
Charles, et al. The QUIC Transport Protocol: Design and Internet-Scale Deployment. In:
Proceedings of the Conference of the ACM Special Interest Group on Data Communication.
Los Angeles, CA, USA: Association for Computing Machinery, 2017, pp. 183–196. SIGCOMM
’17. isbn 9781450346535. Available from doi: 10.1145/3098822.3098842.

13. IYENGAR, Jana; THOMSON, Martin. QUIC: A UDP-Based Multiplexed and Secure
Transport [RFC 9000]. RFC Editor, 2021. Request for Comments, no. 9000. Available from
doi: 10.17487/RFC9000.

14. CISCO SYSTEMS, Inc. Cisco Content Hub – Addresses, Protocols, and Ports Reference —
content.cisco.com [online]. 2019. Available also from: https://content.cisco.com/chapte
r.sjs?uri=/searchable/chapter/www.cisco.com/content/en/us/td/docs/interface
s_modules/services_modules/ace/vA4_1_0/configuration/rtg_brdg/guide/rtbrgdg
d/subnets.html.xml. [Accessed 09-03-2024].

15. ANONYM. HTTP Methods GET vs POST — w3schools.com [online]. 2024. Available also
from: https://www.w3schools.com/tags/ref_httpmethods.asp. [Accessed 09-03-2024].

16. BAŘINKA, Lukáš. HTTP – Apache httpd Web Server Administration — lukasbarinka.
gitlab.io [online]. 2021. Available also from: https://lukasbarinka.gitlab.io/apache/h
ttp.html. [Accessed 09-03-2024].

17. KOKEŠ, Josef. Sockets security – 12th lecture of BI-BEK.21 (Secure Code) course [online].
2023. Available also from: https://courses.fit.cvut.cz/BI-BEK/media/lectures/bek
12en.pdf. [Accessed 09-03-2024].

18. RESCORLA, Eric; DIERKS, Tim. The Transport Layer Security (TLS) Protocol Version
1.2 [RFC 5246]. RFC Editor, 2008. Request for Comments, no. 5246. Available from doi:
10.17487/RFC5246.

19. RESCORLA, Eric. The Transport Layer Security (TLS) Protocol Version 1.3 [RFC 8446].
RFC Editor, 2018. Request for Comments, no. 8446. Available from doi: 10.17487/RFC8446.

20. CORPORATION, Lockheed Martin. Cyber Kill Chain® — lockheedmartin.com [online].
2024. Available also from: https://www.lockheedmartin.com/en-us/capabilities/cyb
er/cyber-kill-chain.html. [Accessed 12-03-2024].

21. KARKI, Supragya. Cyber Kill Chain — Offensive and Defensive Approach — medium.com
[online]. 2021. Available also from: https://medium.com/cryptogennepal/cyber-kill-c
hain-offensive-and-defensive-approach-22033e37a340. [Accessed 12-03-2024].

22. CHOPRA, Aakanksha. Security Issues of Firewall. International Journal of P2P Network
Trends and Technology. 2016, vol. 22, pp. 4–9. Available from doi: 10.14445/22492615
/IJPTT-V22P402.

23. GREBENNIKOV, Nikolay. Using leak tests to evaluate firewall effectiveness — securelist.com
[online]. 2007. Available also from: https://securelist.com/using-leak-tests-to-eva
luate-firewall-effectiveness/36182/. [Accessed 16-03-2024].

24. MATOUSEK, David. Firewall leak testing. Hackin9 – IT Security Magazine. 2007, pp. 62–67.
25. KARL-BRIDGE-MICROSOFT; DJM00N, [Ryazantcev Dimitriy]; V-KENTS, [Kent Sharkey];

DCTHEGEEK, [David Coulter]; DREWBATGIT, [drew batchelor]; MIJACOBS, [Mike Ja-
cobs]; MSATRANJR, [Michael Satran]. Hooks – Win32 apps — learn.microsoft.com [online].
2021. Available also from: https://learn.microsoft.com/en-us/windows/win32/winms
g/hooks. [Accessed 16-03-2024].

26. ESET, spol. s r.o. Configuring and using rules – ESET Internet Security – ESET Online
Help — help.eset.com [online]. 2023. Available also from: https://help.eset.com/eis
/15/en-US/idh_config_epfw_view_rule.html?idh_config_epfw_basic_group.html.
[Accessed 19-03-2024].

https://doi.org/10.1145/3098822.3098842
https://doi.org/10.17487/RFC9000
https://content.cisco.com/chapter.sjs?uri=/searchable/chapter/www.cisco.com/content/en/us/td/docs/interfaces_modules/services_modules/ace/vA4_1_0/configuration/rtg_brdg/guide/rtbrgdgd/subnets.html.xml
https://content.cisco.com/chapter.sjs?uri=/searchable/chapter/www.cisco.com/content/en/us/td/docs/interfaces_modules/services_modules/ace/vA4_1_0/configuration/rtg_brdg/guide/rtbrgdgd/subnets.html.xml
https://content.cisco.com/chapter.sjs?uri=/searchable/chapter/www.cisco.com/content/en/us/td/docs/interfaces_modules/services_modules/ace/vA4_1_0/configuration/rtg_brdg/guide/rtbrgdgd/subnets.html.xml
https://content.cisco.com/chapter.sjs?uri=/searchable/chapter/www.cisco.com/content/en/us/td/docs/interfaces_modules/services_modules/ace/vA4_1_0/configuration/rtg_brdg/guide/rtbrgdgd/subnets.html.xml
https://www.w3schools.com/tags/ref_httpmethods.asp
https://lukasbarinka.gitlab.io/apache/http.html
https://lukasbarinka.gitlab.io/apache/http.html
https://courses.fit.cvut.cz/BI-BEK/media/lectures/bek12en.pdf
https://courses.fit.cvut.cz/BI-BEK/media/lectures/bek12en.pdf
https://doi.org/10.17487/RFC5246
https://doi.org/10.17487/RFC8446
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://medium.com/cryptogennepal/cyber-kill-chain-offensive-and-defensive-approach-22033e37a340
https://medium.com/cryptogennepal/cyber-kill-chain-offensive-and-defensive-approach-22033e37a340
https://doi.org/10.14445/22492615/IJPTT-V22P402
https://doi.org/10.14445/22492615/IJPTT-V22P402
https://securelist.com/using-leak-tests-to-evaluate-firewall-effectiveness/36182/
https://securelist.com/using-leak-tests-to-evaluate-firewall-effectiveness/36182/
https://learn.microsoft.com/en-us/windows/win32/winmsg/hooks
https://learn.microsoft.com/en-us/windows/win32/winmsg/hooks
https://help.eset.com/eis/15/en-US/idh_config_epfw_view_rule.html?idh_config_epfw_basic_group.html
https://help.eset.com/eis/15/en-US/idh_config_epfw_view_rule.html?idh_config_epfw_basic_group.html

Bibliography 79

27. GEN DIGITAL, Inc. AI & machine learning – Technology – Avast — avast.com [online].
2024. Available also from: https://www.avast.com/en-us/technology/ai-and-machine-
learning. [Accessed 20-03-2024].

28. GEN DIGITAL, Inc. Advanced Firewall Settings — businesshelp.avast.com [online]. 2024.
Available also from: https://businesshelp.avast.com/Content/Products/AfB_Antivi
rus/ConfiguringSettings/FWSettings.htm. [Accessed 20-03-2024].

29. GEN DIGITAL, Inc. Behavior Shield — businesshelp.avast.com [online]. 2024. Available
also from: https://businesshelp.avast.com/Content/Products/AfB_Management_Con
soles/ConfiguringSettingsandPolicies/BehaviorShield.htm. [Accessed 20-03-2024].

30. [PAOLO MATARAZZO], paolomatarazzo. Windows Firewall overview – Windows Security
— learn.microsoft.com [online]. 2024. Available also from: https://learn.microsoft.com/e
n-us/windows/security/operating-system-security/network-security/windows-f
irewall/. [Accessed 21-03-2024].

31. PAOLOMATARAZZO, [Paolo Matarazzo]. Windows Firewall rules – Windows Security —
learn.microsoft.com [online]. 2024. Available also from: https://learn.microsoft.com/en
-us/windows/security/operating-system-security/network-security/windows-fir
ewall/rules. [Accessed 21-03-2024].

32. JSUTHER1974; PAOLOMATARAZZO, [Paolo Matarazzo]; VINAYPAMNANI-MSFT, [Vinay
Pamnani]. WDAC and AppLocker Overview – Windows Security — learn.microsoft.com
[online]. 2024. Available also from: https://learn.microsoft.com/en-us/windows/secu
rity/application-security/application-control/windows-defender-application-
control/wdac-and-applocker-overview. [Accessed 21-03-2024].

33. PADOS, Károly. TinyWall – A free, lightweight and non-intrusive firewall — tinywall.pados.hu
[online]. 2023. Available also from: https://tinywall.pados.hu/. [Accessed 23-03-2024].

34. QUINNRADICH, [Quinn Radich]; ALEXBUCKGIT, [Alex Buck]; STEVEWHIMS, [Steven
White]; HICKEYS, [Shawn Hickey]; SPHINXKNIGHT; CMCCLISTER, [Christopher Mc-
Clister]; DMATTWOJO, [Matt Wojciakowski]. What’s a Universal Windows Platform
(UWP) app? – UWP applications — learn.microsoft.com [online]. 2023. Available also from:
https://learn.microsoft.com/en-us/windows/uwp/get-started/universal-applica
tion-platform-guide. [Accessed 23-03-2024].

35. CHECK POINT SOFTWARE TECHNOLOGIES, Inc. Free Firewall — zonealarm.com
[online]. 2024. Available also from: https://www.zonealarm.com/software/free-firewa
ll. [Accessed 23-03-2024].

36. CHECK POINT SOFTWARE TECHNOLOGIES, Inc. ZoneAlarm Firewall — zonealarm.com
[online]. 2024. Available also from: https://www.zonealarm.com/learning-center/fire
wall. [Accessed 23-03-2024].

37. TEDHUDEK, [Ted Hudek]. Digital Certificates - Windows drivers — learn.microsoft.com
[online]. 2021. Available also from: https://learn.microsoft.com/en-us/windows-hard
ware/drivers/install/digital-certificates. [Accessed 28-04-2024].

38. TEDHUDEK, [Ted Hudek]; MHOPKINS-MSFT, [Mark Hopkins]. Local Machine and Current
User Certificate Stores - Windows drivers — learn.microsoft.com [online]. 2023. Available
also from: https://learn.microsoft.com/en-us/windows-hardware/drivers/install
/local-machine-and-current-user-certificate-stores. [Accessed 28-04-2024].

39. TEDHUDEK, [Ted Hudek]; ELIOTSEATTLE, [Eliot Graff]. Trusted Publishers Certificate
Store - Windows drivers — learn.microsoft.com [online]. 2022. Available also from: https:
//learn.microsoft.com/en-us/windows-hardware/drivers/install/trusted-publis
hers-certificate-store. [Accessed 28-04-2024].

https://www.avast.com/en-us/technology/ai-and-machine-learning
https://www.avast.com/en-us/technology/ai-and-machine-learning
https://businesshelp.avast.com/Content/Products/AfB_Antivirus/ConfiguringSettings/FWSettings.htm
https://businesshelp.avast.com/Content/Products/AfB_Antivirus/ConfiguringSettings/FWSettings.htm
https://businesshelp.avast.com/Content/Products/AfB_Management_Consoles/ConfiguringSettingsandPolicies/BehaviorShield.htm
https://businesshelp.avast.com/Content/Products/AfB_Management_Consoles/ConfiguringSettingsandPolicies/BehaviorShield.htm
https://learn.microsoft.com/en-us/windows/security/operating-system-security/network-security/windows-firewall/
https://learn.microsoft.com/en-us/windows/security/operating-system-security/network-security/windows-firewall/
https://learn.microsoft.com/en-us/windows/security/operating-system-security/network-security/windows-firewall/
https://learn.microsoft.com/en-us/windows/security/operating-system-security/network-security/windows-firewall/rules
https://learn.microsoft.com/en-us/windows/security/operating-system-security/network-security/windows-firewall/rules
https://learn.microsoft.com/en-us/windows/security/operating-system-security/network-security/windows-firewall/rules
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/wdac-and-applocker-overview
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/wdac-and-applocker-overview
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/wdac-and-applocker-overview
https://tinywall.pados.hu/
https://learn.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide
https://learn.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide
https://www.zonealarm.com/software/free-firewall
https://www.zonealarm.com/software/free-firewall
https://www.zonealarm.com/learning-center/firewall
https://www.zonealarm.com/learning-center/firewall
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/digital-certificates
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/digital-certificates
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/local-machine-and-current-user-certificate-stores
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/local-machine-and-current-user-certificate-stores
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/trusted-publishers-certificate-store
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/trusted-publishers-certificate-store
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/trusted-publishers-certificate-store

80 Bibliography

40. GEN DIGITAL, Inc. Avast Threat Labs – File whitelisting – Official Avast Support —
support.avast.com [online]. 2022. Available also from: https://support.avast.com/en-ww
/article/229/. [Accessed 09-04-2024].

41. MSEDGETEAM; MIKEHOFFMS, [Michael Hoffman]. WebView2 end-user FAQ – Microsoft
Edge Developer documentation — learn.microsoft.com [online]. 2023. Available also from:
https://learn.microsoft.com/en-us/microsoft-edge/webview2/concepts/end-user
-faq. [Accessed 24-03-2024].

42. KARL-BRIDGE-MICROSOFT. OpenProcess function (processthreadsapi.h) - Win32 apps —
learn.microsoft.com [online]. 2022. Available also from: https://learn.microsoft.com/e
n-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess.
[Accessed 27-04-2024].

43. KARL-BRIDGE-MICROSOFT. GetLastError function (errhandlingapi.h) - Win32 apps —
learn.microsoft.com [online]. 2024. Available also from: https://learn.microsoft.com/en-
us/windows/win32/api/errhandlingapi/nf-errhandlingapi-getlasterror. [Accessed
27-04-2024].

44. KARL-BRIDGE-MICROSOFT. CreateRemoteThread function (processthreadsapi.h) – Win32
apps — learn.microsoft.com [online]. 2022. Available also from: https://learn.microsoft
.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-creater
emotethread. [Accessed 24-03-2024].

45. COWAN, Crispin. Protecting Microsoft Edge against binary injection — blogs.windows.com
[online]. 2015. Available also from: https://blogs.windows.com/msedgedev/2015/11/17
/microsoft-edge-module-code-integrity/. [Accessed 27-04-2024].

46. MHOPKINS-MSFT, [Mark Hopkins]; CMCCLISTER, [Christopher McClister]; SAJEANP.
WHQL Test Signature Program - Windows drivers — learn.microsoft.com [online]. 2022.
Available also from: https://learn.microsoft.com/en- us/windows- hardware/dri
vers/install/whql- test- signature- program?source=recommendations. [Accessed
27-04-2024].

47. KARL-BRIDGE-MICROSOFT; HENKE37; S1CKB0Y1337, [Nikos Katsiopis]; DREWBAT-
GIT; V-KENTS, [Kent Sharkey], et al. Process Security and Access Rights - Win32 apps

— learn.microsoft.com [online]. 2022. Available also from: https://learn.microsoft.com
/en-us/windows/win32/procthread/process-security-and-access-rights. [Accessed
27-04-2024].

48. KARL-BRIDGE-MICROSOFT. VirtualAllocEx function (memoryapi.h) - Win32 apps —
learn.microsoft.com [online]. 2022. Available also from: https://learn.microsoft.co
m/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex. [Accessed
27-04-2024].

49. ALVINASHCRAFT, [Alvin Ashcraft]; REEMSABAW1, [Reem Sabawi]; DREWBATGIT;
V-KENTS, [Kent Sharkey]; DCTHEGEEK, [David Coulter], et al. Memory Protection
Constants (WinNT.h) - Win32 apps — learn.microsoft.com [online]. 2022. Available also
from: https://learn.microsoft.com/en-us/windows/win32/Memory/memory-protecti
on-constants. [Accessed 27-04-2024].

50. STEVEWHIMS, [Steven White]; V-KENTS, [Kent Sharkey]; MSATRANJR, [Michael Satran].
Complete Winsock Client Code – Win32 apps — learn.microsoft.com [online]. 2021. Available
also from: https://learn.microsoft.com/en-us/windows/win32/winsock/complete-c
lient-code. [Accessed 24-03-2024].

https://support.avast.com/en-ww/article/229/
https://support.avast.com/en-ww/article/229/
https://learn.microsoft.com/en-us/microsoft-edge/webview2/concepts/end-user-faq
https://learn.microsoft.com/en-us/microsoft-edge/webview2/concepts/end-user-faq
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess
https://learn.microsoft.com/en-us/windows/win32/api/errhandlingapi/nf-errhandlingapi-getlasterror
https://learn.microsoft.com/en-us/windows/win32/api/errhandlingapi/nf-errhandlingapi-getlasterror
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread
https://blogs.windows.com/msedgedev/2015/11/17/microsoft-edge-module-code-integrity/
https://blogs.windows.com/msedgedev/2015/11/17/microsoft-edge-module-code-integrity/
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/whql-test-signature-program?source=recommendations
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/whql-test-signature-program?source=recommendations
https://learn.microsoft.com/en-us/windows/win32/procthread/process-security-and-access-rights
https://learn.microsoft.com/en-us/windows/win32/procthread/process-security-and-access-rights
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex
https://learn.microsoft.com/en-us/windows/win32/Memory/memory-protection-constants
https://learn.microsoft.com/en-us/windows/win32/Memory/memory-protection-constants
https://learn.microsoft.com/en-us/windows/win32/winsock/complete-client-code
https://learn.microsoft.com/en-us/windows/win32/winsock/complete-client-code

Bibliography 81

51. MARKRUSS; FOXMSFT, [Alex Mihaiuc]; MARIOHEWARDT, [Mario Hewardt]; JOHN-
STEP, [John Stephens]; ALEXBUCKGIT, [Alex Buck]; STEPHENBRENTPETERS, [Stephen
Peters], et al. Process Explorer – Sysinternals — learn.microsoft.com [online]. 2023. Available
also from: https://learn.microsoft.com/en-us/sysinternals/downloads/process-e
xplorer. [Accessed 26-03-2024].

52. VLČEK, Ondřej. Behavior Shield: our newest behavioral analysis technology — blog.avast.com
[online]. 2017. Available also from: https://blog.avast.com/behavior-shield-our-new
est-behavioral-analysis-technology. [Accessed 27-03-2024].

53. GEN DIGITAL, Inc. Excluding certain files or websites from scanning in Avast Antivirus
and Avast One — Official Avast Support — support.avast.com [online]. 2022. Available
also from: https://support.avast.com/en-us/article/antivirus-scan-exclusions/.
[Accessed 29-04-2024].

54. GEN DIGITAL, Inc. Adjusting settings for Avast Antivirus Core Shields — Official Avast
Support — support.avast.com [online]. 2022. Available also from: https://support.avast
.com/en-ww/article/antivirus-shield-settings/. [Accessed 29-04-2024].

55. GEN DIGITAL, Inc. Quarantine – Getting Started – Official Avast Support — sup-
port.avast.com [online]. 2024. Available also from: https://support.avast.com/en-
us/article/use-antivirus-quarantine/. [Accessed 27-03-2024].

56. SIOSULLI, [Sinead O’Sullivan]; DANSIMP, [Daniel Simpson]; V-EMILYPR, [Emily Prindev-
ille]; JUSTPIES, [Justin Piesco], et al. Customize exploit protection — learn.microsoft.com
[online]. 2022. Available also from: https://learn.microsoft.com/en-us/microsoft-36
5/security/defender-endpoint/customize-exploit-protection?view=o365-worldw
ide. [Accessed 27-03-2024].

57. SIOSULLI, [Sinead O’Sullivan]; DENISEBMSFT; CHRISDA, [Chris Davis]; AMERICAN-
DIPPER, [Jeff Borsecnik]; DANSIMP, [Daniel Simpson], et al. Exploit protection reference —
learn.microsoft.com [online]. 2023. Available also from: https://learn.microsoft.com/en
-us/microsoft-365/security/defender-endpoint/exploit-protection-reference?v
iew=o365-worldwide. [Accessed 27-03-2024].

https://learn.microsoft.com/en-us/sysinternals/downloads/process-explorer
https://learn.microsoft.com/en-us/sysinternals/downloads/process-explorer
https://blog.avast.com/behavior-shield-our-newest-behavioral-analysis-technology
https://blog.avast.com/behavior-shield-our-newest-behavioral-analysis-technology
https://support.avast.com/en-us/article/antivirus-scan-exclusions/
https://support.avast.com/en-ww/article/antivirus-shield-settings/
https://support.avast.com/en-ww/article/antivirus-shield-settings/
https://support.avast.com/en-us/article/use-antivirus-quarantine/
https://support.avast.com/en-us/article/use-antivirus-quarantine/
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/customize-exploit-protection?view=o365-worldwide
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/customize-exploit-protection?view=o365-worldwide
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/customize-exploit-protection?view=o365-worldwide
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/exploit-protection-reference?view=o365-worldwide
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/exploit-protection-reference?view=o365-worldwide
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/exploit-protection-reference?view=o365-worldwide

82 Bibliography

Contents of the Attachment

readme.txt.......................................file with a brief overview of attachment
thesis.pdf..the thesis in the PDF format
implementation..source codes used in the thesis

injection the directory with source codes used in the injection attack
capture Wireshark capture of network traffic
exe..executable files used for testing

attacker............................executable file of the attacker (server) part
victim................................executable files of the victim (client) part

src..source codes written in C++
attacker...............................source code of the attacker (server) part
victim source codes of the victim (client) part

substitution...........the directory with source codes used in the substitution attack
certificates..............................example certificates in the PFX format
src.......................source code of demonstration application written in C++
substitution1..unsigned executable file
substitution2............................executable file signed by Lukas Hrdonka
substitution3.......executable file signed by Lukas Hrdonka with TSA verification
substitution4 executable file signed by Microsoft Corporation
substitution5..........executable file signed by Microsoft Code Signing PCA 2010

thesis directory of LATEX source codes of the thesis
text actual text of the thesis in the LATEX format

images...images included in the thesis
vendors..communication with the vendors

Avast...communication with Avast
ESET..communication with ESET
Microsoft...communication with Microsoft
TinyWall..communication with TinyWall
ZoneAlarm...communication with ZoneAlarm

83

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Traffic Filtering Overview
	Network Access Layer
	MAC Address
	VLANs
	Frame Check Sequence

	Internet Layer
	IP Address
	IP Address Filtering
	Header Checksum

	Transport Layer
	Transport Layer Protocols
	Port Number
	Port Number Filtering

	Application Layer
	Protocol HTTP
	Filtering Options

	Application Firewall
	Phases of Attack
	Cyber Kill Chain

	Principle of an Application Firewall
	Trusted Application Definition
	Trusted Application Verification

	Common Evasion Techniques
	Popular products
	ESET Internet Security
	Avast Free Antivirus
	Windows Firewall
	TinyWall
	ZoneAlarm Firewall

	Testing Environment Description
	Operating System and Installed Programms
	Victim
	Attacker

	Application Firewalls

	Substitution
	Attack Description
	Executable's Name and Path
	Digital Certificates
	Attack Options

	ESET Internet Security
	Avast Free Antivirus
	Windows Firewall
	TinyWall
	ZoneAlarm Firewall

	Injection
	Attack Description
	Code Explanation
	Practical Demonstration

	ESET Internet Security
	Avast Free Antivirus
	Windows Firewall
	TinyWall
	ZoneAlarm Firewall

	Discussion of Results
	Substitution
	Injection
	Discussion
	Vendors Reaction

	Conclusion
	Contents of the Attachment

