
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Remote Side-Channel Attack on AES

René Gál

Dr.-Ing. Martin Novotný

Informatics

Computer Engineering 2021

Department of Digital Design

until the end of summer semester 2024/2025

Instructions

Become familiar with the AES cipher, correlation power analysis, and remote attacks on

the AES cipher. Implement a sensor in the FPGA to measure power consumption and

repeat a selected remote attack. A suitable target platform may be, for example, the

Zynq platform.

Electronically approved by prof. Ing. Hana Kubátová, CSc. on 6 February 2024 in Prague.

Bachelor’s thesis

REMOTE SIDE-CHANNEL
ATTACK ON AES

René Gál

Faculty of Information Technology
Department of Digital Design
Supervisor: Dr.-Ing. Martin Novotný
May 16, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 René Gál. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Gál René. Remote Side-Channel Attack on AES. Bachelor’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2024.

Contents

Acknowledgments vi

Declaration vii

Abstract viii

List of abbreviations ix

1 Introduction 1

2 Preliminaries 2
2.1 FPGA Use Cases . 2
2.2 FPGA Architecture . 3
2.3 Advanced Encryption Standard . 4
2.4 Side-Channel Attacks . 5

2.4.1 Power Analysis . 6
2.4.2 Remote Power Analysis . 6

2.5 Correlation Power Analysis . 7
2.6 Guessing Entropy . 9

3 Analysis 10
3.1 Platforms . 10

3.1.1 Standalone FPGAs . 10
3.1.2 SoC FPGAs . 11
3.1.3 Soft-Core CPUs . 11

3.2 Threat Models . 11
3.2.1 Multi-Tenant FPGA . 11
3.2.2 FPGA-to-CPU Attack . 12

3.3 Power Consumption Sensors . 12
3.3.1 Tapped Delay Line-Based Sensors . 12
3.3.2 Ring Oscillator-Based Frequency Counters 16

3.4 Routing Delay Sensors . 17
3.4.1 VRDS and HRDS . 18
3.4.2 RDS . 18

3.5 Discussion . 19

4 Method, Implementation and Results 21
4.1 RDS Components . 21

4.1.1 RTL Hardware Descriptions . 21
4.1.2 C Software Drivers . 22
4.1.3 CUDA C++ CPA Code . 22
4.1.4 Python Helper Scripts . 22

4.2 CPA Script . 23
4.3 Board Setup . 23

ii

Contents iii

4.4 Host PC Setup . 23
4.5 Power Trace Measurement . 24
4.6 Helper Scripts . 26

4.6.1 Output Standardization Script . 26
4.6.2 Plotting script . 26

4.7 Replicating the Attack . 26
4.7.1 Expectations . 27
4.7.2 First Attack Attempt . 27
4.7.3 Merging and Higher Amount of Power Traces 27
4.7.4 Solving the CPA Issue . 29

4.8 Results . 30

5 Future Work 31

6 Conclusion 32

Bibliography 33

Attachment contents 38

List of Figures

2.1 Internal structure of an FPGA slice, with the fast carry logic (CARRY4) high-
lighted [13] . 4

2.2 Internal structure of an FPGA—a heterogeneous grid of logic blocks, with the
column structure differing from the row structure [14] 4

2.3 Openly available AES-128 hardware module performing encryption rounds in par-
allel [17] . 5

2.4 A typical setup for a power analysis—an oscilloscope measuring voltage over a
shunt resistor in the ground path of the cryptographic device [20] 6

2.6 CPA attacking the last round of AES—ciphertexts and power traces are at the
input, with the last round key at the output . 8

2.5 CPA attacking the first round of AES—plaintexts and power traces are at the
input and the output (if successful) is the encryption key straightaway 8

3.1 Multi-tenant FPGA where the victim deploys a legitimate design while the at-
tacker deploys a malicious one, both within their respective fabric, separated by
a ‘fence’ of unused configurable logic blocks [26] 12

3.2 Fine initial delay line slice [31] . 13
3.3 Coarse initial delay line slice [31] . 14
3.4 Tapped delay line, also called the observable delay line and its implementation

using CARRY4 elements, common for the TDC [31] 14
3.5 Schema of a TDC sensor using Hamming Weight of the registers as the final output

[35] . 15
3.6 The VITI sensor uses LUTs in its tapped delay line [22] 15
3.7 VITI power trace compared to the TDC of [21] and the RO of [45]—VITI exhibits

reduced resolution and sensitivity [22] . 16
3.8 A single instance of a ring oscillator-clocked counter [26] 17
3.9 RTL level diagram of both the VRDS and HRDS, with the CARRY4’s of the TDC

replaced by routing resources [1] . 18
3.10 FPGA interconnect used in the tapped delay line of the VRDS and HRDS [1] . . 18
3.11 The final routing delay sensor—RDS—disposes of the tapped delay line [1] . . . 19

4.1 RDS Basys 3 SW architecture (top), and HW architecture (bottom) [52] 22
4.2 Terminal output of the first successful encryption/measurement 24
4.3 Full power consumption waveform of 8 power traces from the measurement of

150,000 traces total, with noise visible before and after the encryption 25
4.4 Zoomed plot of 8 power traces from the measurement of 150,000 power traces

total—AES encryption rounds visible from trace 65 to 109 25
4.5 Key rank estimation of RDS, TDC [55], and VITI [22]—the shaded area represents

the observed extremes (min, max) across all runs, whereas the dashed and dotted
lines represent the upper and lower bounds of the key rank range averaged over
all experiments [1] . 27

4.6 First CPA attempt—an unsuccessful first round attack 28
4.7 Evolving guessing entropy using the first round attack 28

iv

4.8 First successful attack using CPA to attack the last round of AES—notice the
subkeys being different than the ones in the result, showcased as correct; this is
because the subkeys are of the last round key, not the initial encryption key, bytes
of which are highlighted at the bottom . 29

4.9 Plot of falling guessing entropy with incremented power traces—the full key is
broken with 15,000 power traces . 30

List of Tables

2.1 High-level differences between CPA attack variants; the encryption key refers to
the master key before any key scheduling occurs 7

3.1 Comparison of sensors used for remote power analysis 20

4.1 Attempts to reduce the noise of power consumption measurements by combining
multiple measurements ran using the same encryption key and initial plaintext
combination . 27

List of code listings

1 Hamming distance calculation of state registers 9 and 10 in the last round attack
of CPA . 8

v

I would like to thank my supervisor, Dr.-Ing. Martin Novotný for
his time, guidance and ever-present optimism. My sincere gratitude
goes towards MSc David Spielmann, for his willingness and helpful
advice regarding the RDS. I also extend my heartfelt gratitude to my
friends for their emotional support, and to Matej specifically, for
always being on call to listen to my complaints. I also want to thank
my family for their support throughout my studies and my grandma
for her pastry.

vi

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular that
the Czech Technical University in Prague has the right to conclude a license agreement on the
utilization of this thesis as a school work under the provisions of Article 60 (1) of the Act.

In Prague on May 16, 2024

vii

Abstract

This thesis explored the replicability of a remote side-channel attack. Initially, an analysis was
conducted on current FPGA on-chip power sensors and their approaches to executing remote
side-channel attacks. Subsequently, the routing delay sensor was identified as a suitable candidate
and deployed on the Digilent Basys 3 (Xilinx Artix-7) board. Using this sensor, measurements
were carried out, enabling a successful remote power analysis side-channel attack on the last
round of the AES-128 cipher, which was evaluated using correlation power analysis. Thus, the
replicability of a remote attack aimed at obtaining a secret key in the presence of the routing
delay sensor has been confirmed. Furthermore, all Python scripts used throughout were made
openly available in the attachments.

Keywords remote power analysis, remote side-channel attack, hardware trojan, FPGA, rout-
ing delay sensor, on-chip sensor, correlation power analysis, AES, Basys 3

Abstrakt

Táto práca skúmala replikovateľnosť vzdialeného útoku postrannými kanálmi. Na začiatku sa
vykonala analýza súčasných senzorov spotreby na čipoch FPGA a ich prístupov k uskutočňo-
vaniu vzdialených útokov postrannými kanálmi. Následne sa ako vhodný kandidát identifikoval
routing delay senzor, ktorý sa nasadil na vývojovej doske Digilent Basys 3 (Xilinx Artix-7). Po-
mocou tohto senzoru sa vykonali merania, ktoré umožnili úspešnú vzdialenú odberovú analýzu
postranným kanálom na posledné kolo šifry AES-128, ktorá sa špecificky vyhodnotila pomocou
korelačnej odberovej analýzy. Potvrdila sa tak replikovateľnosť vzdialeného útoku zameraného na
získanie tajného kľúča v prítomnosti routing delay senzoru. Všetky použité pomocné programy
v jazyku Python boli okrem toho voľne sprístupnené v prílohe.

Klíčová slova vzdialená odberová analýza, vzdialený útok postranným kanálom, hardvérový
trojský kôň, FPGA, routing delay senzor, senzor na čipe, korelačná odberová analýza, AES,
Basys 3

viii

List of abbreviations

AES Advanced Encryption Standard
ASIC Application Specific Integrated Circuit
AWS Amazon Web Services
CLB Configurable Logic Block
CPA Correlation Power Analysis
CPU Central Processing Unit

CUDA Compute Unified Device Architecture
DSP Digital Signal Processing/Digital Signal Processor

FF Flip-Flop
FPGA Field Programmable Gate Array

GCC GNU Compiler Collection
HRDS Horizontal Routing Delay Sensor

HW Hardware
LUT Look-Up Table
RDS Routing Delay Sensor

RO Ring Oscillator
RPA Remote Power Analysis
RTL Register-Transfer Level
SSD Solid-State Drive
SW Software

TDC Time-To-Digital Converter
TDL Tapped Delay Line

VHDL Very High Speed Integrated Circuit Program Description Language
VITI Voltage Induced Time Interval Sensor

VRDS Vertical Routing Delay Sensor

ix

Chapter 1

Introduction

In a world of distributed cloud computing, field-programmable gate arrays (FPGAs) are finding
widespread use throughout data centers. Their ability to adapt the hardware for a different
purpose by simply uploading a new bitstream allows them to accelerate varying workloads on
a single platform. This plays an essential role for many companies, as they save time, space,
and money by not having to use as many application-specific integrated circuits. The highly
parallel architecture and low power consumption of FPGAs also make them suitable for use in
neural network hardware, where they are already being used by Microsoft or Baidu. Companies
such as Amazon (AWS) and Microsoft (Azure) also provide rentable FPGA fabric to customers.
This creates an obvious attack vector for adversary tenants interested in stealing encrypted
information.

Power analysis side-channel attacks have been known since the late 1990s. Their main idea is
to uncover secret information through observed variations in the power consumption trace of a
chip. Traditionally, these power analysis attacks were performed only with physical access to the
device, as they were dependent on (often expensive) high sampling rate measuring instruments,
such as oscilloscopes.

The recent emergence of remote side-channel attacks poses a newfound threat, as physical
access to the fabric is no longer necessary. Since the sensor used for collecting power traces in
this type of attack is directly operating from within the FPGA fabric, there is also no additional
associated cost regarding the attacker. Additionally, with the novelty of these methods and their
indistinguishability from ordinary use of the chips, they are proving to be hard to detect. Thus,
there is a need to further explore the topic, since only with a good understanding of the attacks
can countermeasures be implemented. Hence, the following goals were formulated.

The first goal of this thesis is to become familiar with the AES cipher and traditional side-
channel attacks, to get acquainted with correlation power analysis, and to implement it. A further
goal is to research remote side-channel attacks and choose the most feasible one. Afterward, the
work deals with replicating a selected remote attack on a known platform. An attack using a
sensor first introduced by Spielmann et al. [1] was chosen.

The rest of this thesis is organized as follows: Chapter 2 is dedicated to explaining the
main concepts used throughout the thesis. Analyzing existing approaches to remote attacks and
choosing an appropriate one is dealt with in Chapter 3. Chapter 4 explains the steps taken to
replicate the chosen attack, elaborates on the attack method, and presents the partial and final
results. Chapter 5 reflects on the work done and proposes ideas for future work and the final
Chapter 6 summarizes the work and achieved results.

1

Chapter 2

Preliminaries

The following chapter explores key concepts essential for understanding the thesis’s core objec-
tives. It introduces most of the main elements necessary for the thesis’s main goal: a platform,
a cipher, an attack method, and an instrument. While the platform, cipher, and attack method
are discussed in detail within this chapter, the instrument—a power consumption sensor—is in-
troduced in Chapter 3. This groundwork is crucial for providing readers with the context needed
to comprehend the subsequent analysis and findings more easily.

2.1 FPGA Use Cases
At first glance, field-programmable gate arrays may seem as if they were merely the training
version of ASICs; their higher price especially, may induce the perception, that they are not very
applicable in the industry. However, FPGAs are not useful solely for educational purposes and
for training future ASIC designers. They are widely utilized in low-volume production opera-
tions, such as specialized testing hardware in automotive [2], the space industry (satellites) [3],
the defense industry (radars, weapons systems, electronic warfare) [4] etc., where investing in
the manufacture of ASICs would be financially unwise and sometimes outright nonsensical. Es-
pecially, given that these industries additionally capitalize on the remote programmability of
FPGAs—it would be ill-advised to send a multi-million dollar creation into orbit, without the
ability to remotely repair and upgrade its firmware. Semiconductor companies recognize this de-
mand as well, hence, there are the likes of XQR Kintex™ UltraScale FPGAs and RT PolarFire®
FPGAs, which are dedicated space-grade radiation hardened FPGA families [5, 6].

Better yet, high-volume production is not devoid of them either—they have been previously
deployed in consumer electronics: the Samsung Galaxy S5 and the iPhone 7 have both included
a low-power Lattice FPGA within their motherboards. Samsung’s SSD, marketed as SmartSSD,
incorporates the AMD Kintex™ UlltraScale+ FPGA line, of which the objective is to free up
the loads on host hardware, for it to rather handle other tasks [7]. In the near future, with the
trend of locally-ran neural networks, it would not be of much surprise, if FPGAs returned to the
smartphone sphere, to further accelerate these tasks.

Moreover, due to the end of Moore’s law and the breakdown of Dennard scaling, data centers
are transitioning from homogeneous and CPU-oriented systems towards heterogeneous architec-
tures incorporating GPUs1 and FPGAs [8, 9]. Microsoft extensively employs FPGAs within
its data centers, deploying them for a wide array of task, spanning from web searches to net-
work cryptography and machine learning [10]. Similarly, Baidu leverages FPGAs within its data
centers to accelerate deep neural networks [11].

1Graphical Processing Units

2

FPGA Architecture 3

Consequently, cloud service providers offer rentable multi-tenant FPGAs for customers. In
their interest, FPGAs also hold many amiable features, such as:

• highly parallel architecture

• energy efficiency

• versatility

• simple programmability

2.2 FPGA Architecture
An FPGA generally comprises of:

• Configurable Logic Blocks (CLBs)

• Programmable interconnect2

• On-chip memory

• Special purpose logic blocks

• I/O blocks

The CLBs are highly flexible logic cells, further composed of FPGA slices, which are in turn
composed of logic elements, such as Look-Up Tables (LUTs)3, Flip-Flops (FFs), and fast carry
logic (a variation of a carry look-ahead adder). They are arranged in a two-dimensional grid and
are interconnected by the programmable interconnect. The edges of this grid are occupied by
I/O blocks, intended for peripheral communication.

The Digilent Basys 3 (XC7A35T-1CPG236C) [12], used in this thesis, contains two slices per
CLB, with each slice containing 4 LUTs, 8 FFs, and fast carry logic (there is also the SLICEM,
which contains a superset of logic elements, namely DRAM4 and shift registers). However, there
are also more specialized slices. An example would be the Digital Signal Processing (DSP48E1)
slice, which contains a pre-adder, a 25x18 multiplier, an adder, and an accumulator. [13] An
important takeaway of this section, for our purposes, is the internal structure of the slices and
the observation that the internal FPGA grid is heterogeneous (observable in Figure 2.2).

2Also called programmable routing resources or routing interconnect.
3LUTs serve as logic function generators.
4Distributed Rapid Access Memory

Advanced Encryption Standard 4

Figure 2.1 Internal structure of an FPGA slice, with the fast carry logic (CARRY4) highlighted [13]

Figure 2.2 Internal structure of an FPGA—a heterogeneous grid of logic blocks, with the column
structure differing from the row structure [14]

2.3 Advanced Encryption Standard
Originally Rijndael, chosen as the Advanced Encryption Standard in November of 2001, is a
block cipher with a block size of 128 bits and key sizes of 128, 192, and 256 bits, consisting

Side-Channel Attacks 5

of 10, 12, and 14 rounds respectively. Each round is comprised of a substitution layer (Sub-
Bytes5), two linear mixing layers6 (ShiftRows and MixColumns), and an XOR with the round
key (AddRoundKey).

Throughout the operations of each round, the key scheduler generates round keys from the
initial encryption key. The initial encryption key is transformed to produce a set of unique round
keys, enhancing encryption strength. This process involves byte substitution, cyclic shifting, and
mixing operations, ensuring each round key contributes to encryption complexity. The number
of rounds determines the number of round keys generated. An important thing to note is, that
the key scheduling algorithm is invertible, thus, by getting hold of the last round key, the key
scheduling can be reversed and the initial encryption key can be trivially acquired. [15, 16]

Figure 2.3 Openly available AES-128 hardware module performing encryption rounds in parallel [17]

In this thesis, the focus was on the 128-bit version, implemented in hardware, where each
round is applied in a single processor cycle and on every byte of the plaintext simultaneously.
The open-source AES-128 module created by the Aoki Laboratory of the Tohoku University [17]
was subjected to an attack later in Chapter 4.
▶ Note 2.1. When talking about an encryption key in this thesis, the initial encryption key, before
any key scheduling occurs, is meant.

2.4 Side-Channel Attacks
The taxonomy of hardware attacks is quite broad, hence, for the necessary context of this thesis,
non-invasive ones will be briefly described. Paul Kocher’s work [18], published in 1996, played
a crucial role in the formalization and widespread recognition of side-channel attacks in modern
cryptography, emphasizing their significance. Side-channel attacks do not target the mathe-
matical properties of cryptographic algorithms but rather their implementations, bypassing the
theoretical strength of the underlying algorithms.

5Also referred to as an SBox.
6The last round contains only a single one.

Side-Channel Attacks 6

The implementation of a cipher can leak secret information in various ways. Timing attacks,
for instance, focus on the time taken to complete steps of an algorithm based on processed data.
Electromagnetic radiation (EMR) attacks involve reading the EMR radiated from a device,
exposing information about its internal operations. In addition to timing and EMR, other side-
channel attack methods include power analysis, which inspects the power consumption patterns
of a device during cryptographic operations, as well as temperature and acoustic attacks, which
exploit variations in temperature or sound emitted by the device during computation.

Fault-injection attacks work by introducing deliberate malicious faults into the target device,
to bring it into a set of states from which private internal information can be acquired. There are
multiple fault-injection techniques, for example (power) supply attacks, clock attacks, heating
attacks, and radiation attacks. [19] Each of these methods provides insights into vulnerabilities
in cryptographic implementations that adversaries can exploit.

2.4.1 Power Analysis
In power analysis attacks, the attacker attempts to reveal secret information stored inside the
device, based on its power consumption. This targeted information is typically a secret key used
for a cryptographic algorithm. Power analysis attacks work because the cryptographic devices’
power consumption depends on the executed cryptographic algorithms’ intermediate values.

The conventional measurement setup, depicted in Figure 2.4, assumes physical access to the
cryptographic device and consists of an oscilloscope measuring the voltage drop of the attacked
device over a shunt resistor connected to the ground. In experimental conditions, the attacked
device usually transmits a start encryption signal to the oscilloscope. The measured power trace
is then processed in a computer, using methods such as simple power analysis, differential power
analysis, the later mentioned correlation power analysis (see Section 2.5), or others.

Figure 2.4 A typical setup for a power analysis—an oscilloscope measuring voltage over a shunt
resistor in the ground path of the cryptographic device [20]

2.4.2 Remote Power Analysis
The remote power analysis attack (RPA) is a novel approach to the conventional power analysis
attack. Schellenberg et al. [21] extended the use of time-to-delay converters (see Subsection
3.3.1.1) to power variation measurements and presented the first RPA attack reported in the

Correlation Power Analysis 7

literature. Resembling the power analysis, RPA focuses on measuring small power variations
within a device in time.

However, instead of relying on physical access to the device and using dedicated high sampling
rate power measuring instruments (oscilloscopes), RPA specifically relies on a power consumption
sensor constructed using the already available logic resources within an FPGA. As is common-
place with regular power analysis attacks, RPA ordinarily employs correlation power analysis to
acquire the secret key from the measured power traces. It is also typical, to use some kind of a
side-channel evaluation metric, such as key rank, signal-to-noise ratio, or guessing entropy (as is
also the case in this thesis), to more precisely assess the success of the attack [1, 22].

Remote attacks also introduce some challenges. First, there is the challenge of capturing
ciphertexts, which is shared with traditional power analysis attacks. However, what is different,
is, that during a conventional power analysis attack, the attacker has physical access to the device
and therefore has no trouble accessing the measured power traces. In RPA, this can become more
challenging in some cases, though in the threat model assumed for this thesis (see Subsection
3.2.1), where the attacker has control of the FPGA fabric with the on-chip sensor, this should
not be a problem. Further, with the reduced sensitivity of the power monitors used for RPA,
compared to an oscilloscope, noise can become a significant limitation (as is later illustrated in
Chapter 3). There is also the issue of proximity, as constraining oneself to a part of an FPGA
distant from the attacked circuit can make the transient voltage fluctuations harder to capture.
This is predominantly the case for large FPGAs used in data centers [22, 1].

2.5 Correlation Power Analysis
The concept of correlation power analysis (CPA) was originally introduced by Brier et al. [23],
it is based on a power consumption model of the running device at some point in time. This
analysis is based on certain secret bits and input bits (plaintext) that change for each power
trace. In the case of AES, the moment most utilized to perform the attack is after the first SBox
(see Figure 2.5), where the linearity between the plaintext and the key is broken and with the
finest granularity (the key bytes are not yet mixed). Similarly, the attack can be targeted before
the last SBox to obtain the last round key (see Figure 2.6).

The most commonly used consumption models are the Hamming distance between two rele-
vant values or the Hamming weight of a particular value. These models are then correlated with
actual power consumption measurements (which are therefore a requisite for using this approach)
using the Pearson correlation coefficient. [24] Notable differences between these attack variants
are highlighted in table 2.1.

Table 2.1 High-level differences between CPA attack variants; the encryption key refers to the master
key before any key scheduling occurs

CPA variant First round attack Last round attack
Input Plaintext + Traces Ciphertext + Traces

Output Encryption key Last round key
Model Hamming weight Hamming distance

Correlation Power Analysis 8

Figure 2.6 CPA attacking the last round of AES—ciphertexts and power traces are at the input, with
the last round key at the output

Figure 2.5 CPA attacking the first round of AES—plaintexts and power traces are at the input and
the output (if successful) is the encryption key straightaway

The attack on the first round is fairly straightforward—key hypotheses are made by combining
(XOR) each plaintext with key guesses, followed by the calculation of the Hamming weight of
these hypotheses. These hypotheses are then correlated with the power consumption traces. On
the other hand, the last round attack slightly complicates the process, since it is necessary to
calculate the Hamming distance of the last two state registers, that is, the state register after
the 9th round and 10th round (which is the ciphertext itself). To acquire values corresponding
to the same byte of the processed data in both state registers, first, it is necessary to reverse
the ShiftRows operation on the ciphertext for the processed byte. This yields the first value, of
which the Hamming distance will be calculated. Next, to acquire the second value (the state
register after the 9th round), it is required to, first, reverse the AddRoundKey operation (using
all of the key guesses respectively) for the given ciphertext byte, and second, inverse the SBox
for it. This is illustrated in the Python code 1. The last thing to note is, that the Hamming
distance of two values is equal to the Hamming weight of those two values XORed together.

def hamm_distance(ciphertext_row: np.array, byte_idx: int, keyguess: int):
byte_idx_shifted = ShiftRowInverse[byte_idx]
state10 = ciphertext_row[byte_idx_shifted]

AddRoundKeyByte = keyguess ^ ciphertext_row[byte_idx]
state9 = SBoxInverse[AddRoundKeyByte]

return hamm_weight(state9 ^ state10)

Code listing 1 Hamming distance calculation of state registers 9 and 10 in the last round attack of
CPA

Guessing Entropy 9

2.6 Guessing Entropy
In the context of a side-channel attack, guessing entropy characterizes the amount of the remain-
ing work of the attacker when the attack fails to reveal the correct key [20]. Originally defined
as:

▶ Definition 2.2. The lower bound to the average number of successive guesses, required with an
optimum strategy until one correctly guesses the value of a discrete random variable X [25].

In practice, it is calculated as the expected position of the correct key within an array of
guesses, sorted according to a value of a chosen distinguisher7, in a descending order, where the
first position represents the most probable key candidate, and the last position represents the
least probable candidate [20].

Due to the purely experimental nature of this thesis, the encryption key is known at the time
of the attack, therefore its expected position is also precisely established. The calculation is done
for each of the key bytes, and then the arithmetic average of the calculated values is declared as
guessing entropy. As for the distinguisher, the Pearson correlation coefficient was chosen for this
thesis, as its calculation is already performed for the purposes of the CPA.

7Distinguisher Dk(ox1 , . . . , oxq ;x1, . . . , xq) is defined as an absolute value of the statistic that is used to
distinguish the correct key during the attack [20].

Chapter 3

Analysis

Initially, the common FPGA configurations will be examined (see Section 3.1). It is crucial to
understand them to identify their specific vulnerabilities and to be able to carry out an attack
on them.

Next, the various threat models that exploit these vulnerabilities will be delved into (see
Section 3.2). Scenarios involving attacks between FPGAs themselves and attacks targeting the
CPU from a compromised FPGA will be explored.

Following up, the focus will be shifted to the available approaches towards remote attacks
themselves in Section 3.3, specifically to the sensors used to carry the attacks out. Various
design concepts will be examined, including, but not limited to, Tapped Delay Line (TDL) and
its variants, as well as frequency counters.

Finally, Section 3.4 will delve into routing delay sensors— a specific class of sensors that uses
FPGA’s routing multiplexers and the routing interconnect as its main element. Different types of
routing delay sensors will be explored, such as Vertical Routing Delay Sensor (VRDS), Horizontal
Routing Delay Sensor (HRDS), and the particular Routing Delay Sensor (RDS), which disposes
of the tapped delay line. The ultimate aim of this chapter, following an in-depth examination of
on-chip power consumption sensors, is to identify the most suitable one for the purposes of this
thesis.

3.1 Platforms
The following section explores the common FPGA configurations, including standalone FPGAs,
SoC FPGAs, and soft-core CPUs. The main focus is on their use cases and vulnerabilities, as
well as the differences between them.

3.1.1 Standalone FPGAs
The widely known and deployed variant of an FPGA board is a standalone FPGA, also referred
to as a discrete FPGA. Data centers—where FPGAs are finding widespread use, thanks to
their highly parallel architecture, programmability, and energy efficiency—already sit on a large
amount of processing power thanks to high-end server-grade CPUs, and therefore do not have
the need for SoC boards with both a dedicated CPU and an FPGA. The standalone FPGA
is used for tasks that require high parallelism, such as machine learning, data processing, and
encryption [10, 11].

10

Threat Models 11

3.1.2 SoC FPGAs
FPGA fabric may be integrated into a single SoC that includes other components such as general-
purpose cores and GPUs, as in Xilinx’s Zynq Series or Intel’s SoC-FPGAs. These SoC architec-
tures are likely to be deployed for mobile and embedded systems thanks to their smaller footprint
and lower power consumption.

The SoC FPGA is a more complex system than the standalone FPGA, as it includes a
processing core, which can be used for control algorithms, user interfaces, or even for encryption.
This introduces a new vulnerability, as the power delivery network of the FPGA fabric is shared
with the CPU core, which can be exploited by an attacker to breach the encryption key [26].

3.1.3 Soft-Core CPUs
While highly parallel tasks in the cloud are accelerated using FPGAs, developers still sometimes
rely on the general computing power of CPUs, for example in some user event-driven control
algorithm applications, where the development and maintenance is considerably easier in software
than in hardware. This creates a need for a different solution from dedicated server-grade CPUs
or even SoC chips within the same board, as the inter-chip communication of these architectures
introduces too much latency. As a solution to this, soft-core CPUs, such as AMD’s MicroBlaze
[27], Intel’s Nios [28] or the open-source PicoRV [29] and ZipCPU [30] prove themselves useful
for designers. [31]

In practice, these are IP cores instantiated directly within the FPGA fabric, that communicate
with the rest of the FPGA hardware normally using the AXI or the open-source (usually hobbyist)
Wishbone bus.

Even though there are available and used countermeasures in place, to prevent unauthorized
access between IP cores, the soft-core CPU shares the vulnerability of multi-tenant FPGAs (see
Subsection 3.2.1), since it is instantiated within the attacked FPGA fabric and so the power
delivery network is shared as well.

3.2 Threat Models
The following section will explore the various threat models that exploit the vulnerabilities of
the aforementioned FPGA configurations. The main goal is to become acquainted with possible
attack scenarios and the potential vulnerabilities of the FPGA configurations.

3.2.1 Multi-Tenant FPGA
Also known as an FPGA-to-FPGA attack or an intra-FPGA attack, this threat model describes
a situation in which an FPGA is deployed in the cloud and shared among multiple users (usually
thanks to virtualization techniques). Each user shares a portion of the FPGA fabric and has
access to external interfaces through dedicated FPGA logic, deployed by the service provider [32].

An important factor concerning side-channel attacks is, that in such cases the users share
a power delivery network of the chip through which leakage occurs (see Figure 3.1). The victim
encrypts data using a cipher’s hardware implementation and sends the ciphertexts over a public
channel, which is observable by the adversary. The adversary also needs access to a channel used
for offloading the measured power traces for further analysis (and subsequent breaching of the
secret key).

Power Consumption Sensors 12

Figure 3.1 Multi-tenant FPGA where the victim deploys a legitimate design while the attacker deploys
a malicious one, both within their respective fabric, separated by a ‘fence’ of unused configurable logic
blocks [26]

3.2.2 FPGA-to-CPU Attack
This case refers to a model where the attacker deploys a malicious design onto an FPGA fabric
that shares its power delivery network with a victim core where a software crypto algorithm
is running. Possible real-life examples of this model can be: an SoC FPGA (see Subsection
3.1.2), a soft-core CPU running within a compromised FPGA fabric (see Subsection 3.1.3), or
even a compromised standalone FPGA that shares the same board as other processing cores
performing encryption tasks. The attacker’s goal is to breach the encryption key of the victim
core by measuring the power variations within the board’s power delivery network.

3.3 Power Consumption Sensors
The fundamental concept that is used across on-chip power consumption sensors is constant:
they measure the signal propagation delay caused by voltage fluctuations within the circuit’s
power delivery network, which are in turn caused by a sudden increase in switching activity from
synthesized logic [33, 34]. Some achieve this using Ring Oscillators (ROs), while others opt for a
tapped delay line or routing resources. The quantified signal propagation delay is then used to
infer the secret key of the victim core in remote power analysis attacks.

Ring oscillators are used in the power monitor based on frequency counters by M. Zhao [26],
whereas tapped delay line is used in Time-to-Digital Converters (TDCs) [33], the Voltage Induced
Time Interval Sensor (VITI) [22], and both the HRDS and VRDS introduced by Spielmann et
al. [1]. Generally, TDCs have a higher sensitivity, while the others require fewer place and route
constraints and are therefore easier to deploy.

A special case of these sensors is the routing delay sensor (RDS)—a sensor that utilizes
routing resources of the FPGA, such as routing multiplexers and interconnect. It does not
require as many constraints as TDCs while achieving better results than ring oscillator-based
power monitors. As is shown in [1], even though the TDC is more sensitive to voltage fluctuations,
the RDS comes out on top in terms of efficiency. To be precise, the average number of power
traces required to obtain n bits of the key is lower, which is among the most interesting properties
in the context of an attack.

3.3.1 Tapped Delay Line-Based Sensors
This category of sensors utilizes a line of delay elements, where between each delay element
lies a register used for sampling the distance a signal has propagated through the delay line.

Power Consumption Sensors 13

A typical sensor based on this principle comprises of the following: an initial delay line, the
tapped delay line, and sampling registers. Some extra logic for self-calibration can also be present
(as is the case for VITI). Tapped delay line-based sensors represent state-of-the-art sensors for
high sensitivity and high-resolution power consumption measurements. The choice of a delay
element depends on the sensor’s requirements, such as sensitivity, area, and calibration, and
environmental constraints .

The initial delay line (see init in Figure 3.5) serves two purposes: saving the area of the
sensor and calibration. Firstly, the signal delay does not change enough to affect the complete
delay line. Having the logic to tap the entire delay line would therefore not serve any purpose.
Secondly, the real delay of the logic elements the sensor consists of is not known at design time.
To account for this, some calibration has to take place, either through manual addition (or
subtraction) of delay elements [21], or by—the more flexible—software calibration [35, 1] of the
number of delay elements. The whole point of this ordeal is to a) ensure the clock signal reaches
the observable delay line within the clock cycle and b) the tapped delay line does not become
saturated. In other words, the clock signal can not overshoot the tapped delay line and neither
undershoot it [21].

In practice, the initial delay is implemented using a combination of coarse delay elements (see
Figure 3.3), and fine delay elements (see Figure 3.2) [21, 33]. As the names would suggest, the
fine delay elements provide finer control of the calibration process and are typically implemented
using a series of fast carry logic elements—the CARRY4 primitives (see Figure 2.1) [36]. On
the other hand, the coarse delay is usually made up of ‘slower’ elements1, such as look-up tables
(LUTs) [37] and latches. The key objective, when deciding on the type of delay element to be
used, is to try to equally balance the final precision of the calibration process and to minimize
the area used up by the sensor.

Figure 3.2 Fine initial delay line slice [31]

1Ones that introduce a longer delay into the signal.

Power Consumption Sensors 14

Figure 3.3 Coarse initial delay line slice [31]

The tapped delay line (see Delay line in Figure 3.5), is where the actual variations in signal
delay are reflected and sampled. Between each delay element within the tapped delay line lies
a register used for measuring the distance the 1 has traveled. Some implementations approach
this as a thermometer code, with extra logic in the form of a priority encoder, to account for
‘bubbles’ of 0s within the line [38]. Others process the register values as a Hamming weight—the
number of logic 1s in the full width of the output registers [35].

The delay elements within the tapped line are either implemented using a series of fast
carry logic elements—the CARRY4 primitives (see Figure 3.4), as is the case for the TDC (see
Subsection 3.3.1.1), by a series of LUTs, as in the case of VITI (see Subsection 3.3.1.2), or by
routing resources in routing delay sensors (see Subsection 3.4). This difference arises mainly from
two different properties of these sensors: the TDC targets high sensitivity, which asks for more,
fast elements, while VITI, which came after the TDC, sacrifices the higher sensitivity and favors
ease of deployment. The particular case of routing delay sensors aims for a certain balance.

Figure 3.4 Tapped delay line, also called the observable delay line and its implementation using
CARRY4 elements, common for the TDC [31]

3.3.1.1 Time-to-Digital Converters
Simply put, TDCs are commonly used to measure the time interval between a start pulse and a
stop pulse. They transform analog time intervals into a digital output and subsequently find an
application in many fields, such as high energy and particle physics, for time of flight measurement
and others [39]. They can also be used as low-cost on-chip temperature sensors, supply voltage
sensors [40], or even for glitch attack detection [41]. In the context of a remote attack, the start
and stop pulse are of the same origin—the clock signal. The pulse that triggers the registers

Power Consumption Sensors 15

arrives phase shifted. The other pulse that is sampled for propagation delay travels through the
delay line.

Figure 3.5 Schema of a TDC sensor using Hamming Weight of the registers as the final output [35]

A significant disadvantage of the TDC is its placement constraints. For consistency in the
spacing between the delay elements, it is necessary to place them using the RLOC constraints
[42] in combination with VHDL’s generate statements [43]. This constraint ensures consistent
spacing between delay elements along the lengthy delay line, which spans multiple FPGA slices.
Due to the structure of the Configurable Logic Blocks (CLBs) within an FPGA2, it is also
necessary to constrain the placement of the TDC vertically across an FPGA column.

3.3.1.2 VITI
The design concept of the VITI sensor aims to achieve the following objectives:

• maximize portability

• minimize footprint

• avoid:

◦ combinational loops
◦ long carry chains
◦ latches

Figure 3.6 The VITI sensor uses LUTs in its tapped delay line [22]

2More specifically the structure of the carry chain within a slice.

Power Consumption Sensors 16

VITI uses adjustable delay elements, flip-flops, and LUTs in the tapped delay line (Figure 3.6).
Reasons for having these constraints are the following: VITI tries to be deployable in environ-
ments where detectable ring oscillator structures (see Subsection 3.3.2) are forbidden (such as
one that would comply with the proposed design rule checks of Sugawara et al. [44]), and bulky
carry chain structures of the TDC do not fit into the area-constrained FPGA fabric.

A noteworthy characteristic of VITI is its self-calibration capability, which allows it to adapt
to varying situations, such as increased power consumption, temperature changes, or inconvenient
placement in relation to the attacked circuit. In addition, it assures that the sensor can be easily
moved from one device to another, making it highly portable. Udugama et al. [22] also claim,
that VITI consumes 1/16th of the area compared to RO sensors and 1/4th compared to the TDC
of Schellenberg et al. [21]. In order to achieve all of these features, VITI sacrifices resolution and
sensitivity (Figure 3.7), primarily because of the usage of LUTs in its tapped delay line. Their
research shows, the use of VITI by an attacker can result in the partial or complete compromise
of the secret key of an AES-128 hardware module.

Figure 3.7 VITI power trace compared to the TDC of [21] and the RO of [45]—VITI exhibits reduced
resolution and sensitivity [22]

3.3.2 Ring Oscillator-Based Frequency Counters
Generally, a ring oscillator consists of an odd number of inverters in series, with an AND gate
such that the output of the last inverter is fed back into the input of the AND gate, while
the other input of the AND gate is an enable signal. Though research has shown, that such
composition is dependent on temperature variations and also provides lower resolution [46, 47].
Zhao et al. have therefore opted for a design (Figure 3.8), which consists of a single inverter and
an AND gate, with the intention of improving the previously mentioned characteristics [26].

The RO circuit clocks a counter that increments every oscillation period. As the ring oscillator
oscillates much faster than the system clock, the counter is constructed as a chain of T-Flip-Flops
(TFF) to eliminate slow carry chains. Alongside it runs a reference clock, triggered by the FPGA
system clock. When the reference clock counter reaches a predetermined cycle count (CRefCLK),
the RO counter is disabled and its cycle count is read (CRO). The RO frequency (fRO) is then

Routing Delay Sensors 17

Figure 3.8 A single instance of a ring oscillator-clocked counter [26]

calculated so:

fRO = CRO × fRefCLK

CRefCLK
+ ε (3.1)

Where ε is the quantization error introduced by the phase difference between the two clock
pulses. Consequently, due to the structure of the RO, we know that the oscillation frequency of
the RO is inversely proportional to the time that a signal takes to propagate twice around the
circuit—a measure of signal propagation delay. [26]

Their attack targeted both a standalone FPGA (see Subsection 3.2.1) and an SoC FPGA
(see Subsection 3.2.2) hosting the RSA cipher. They have used 20 RO circuits (Figure 3.8) in
multiple configurations. First, evenly distributed throughout the FPGA using place and route
constraints, then physically separated from the encryption hardware, and then with no place and
route constraints.

Regarding the intra-FPGA attack, when using power viruses to simulate interference and
other switching activity on the chip, they required five times their original amount of power traces.
However when the power consumption of the power viruses exceeded the power consumption of
the RSA core, their filtering algorithm for the power traces stopped working and no longer
recognized the RSA operations from the noise, paralyzing the attack efforts.

In conclusion, the RO-based approach is easier to implement across many FPGAs as it does
not require the careful customization and placement constraints the delay line-based TDC sen-
sor requires, however, it provides low sensitivity of transient voltage fluctuations. Research has
also shown, ring oscillator structures are relatively easy to detect using bitstream checking tech-
niques [48]. Furthermore, the detectable combinational loops (the heart of a ring oscillator) are
already prohibited on commercial cloud services, as they can also be used as power viruses that
damage the FPGA. [49]

3.4 Routing Delay Sensors
Attempting to merge the best characteristics of both approaches to the on-chip sensors—the
ease of deployment of frequency counters and VITI, together with the sensitivity of TDCs—
Spielmann et al. [1] build on the findings of Ahmed et al. [50]. Their research finds, that
although the LUT-dominated paths of the FPGA were affected by the impact of power supply
voltage on the signal propagation delay the most, routing multiplexers in the FPGA interconnect
were affected as well. Motivated by these findings, Spielmann et al. [1] designed three variants
of Routing Delay Sensors.

While the first two of them (HRDS, and VRDS) are primarily used for testing and showcasing
the potential of routing multiplexers, the third one is the final and the most improved design
of their work. A feature worth highlighting is the openly available nature of all routing delay
sensor designs and experiments.

Routing Delay Sensors 18

Figure 3.9 RTL level diagram of both the VRDS and HRDS, with the CARRY4’s of the TDC replaced
by routing resources [1]

3.4.1 VRDS and HRDS
Both the HRDS and VRDS stick to the tapped delay line (see Figure 3.9), therefore their general
design is very similar to the TDC. The main difference being, that they do not use CARRY4’s,
but the FPGA interconnect (best illustrated in Figure 3.10). An important observation for the
HRDS is, that due to the structure of FPGA rows, which (contrary to the columns) also host
BRAMs3, DSPs4, etc. [51], the wires between CLBs that do neighbor with BRAMs and DSPs are
longer than wires between directly neighboring CLBs (see Section 2.2). This causes some routing
resource blocks to have higher delay than others, which consequently reduces the sensitivity of
this sensor variant compared to the VRDS.

Figure 3.10 FPGA interconnect used in the tapped delay line of the VRDS and HRDS [1]

3.4.2 RDS
The final routing delay sensor variant, simply called the RDS, features a new design modification,
as it gets rid of the tapped delay line5. Instead, it connects each routing resource individually
and lets the default router build the connections and the default placer decide on the loca-
tions of flip-flops in the output register, for it to help find suitable paths for the router (see
Figure 3.11). This ultimately leads to a very simple implementation, where only the delay ele-
ments (LUTs, latches, CARRY4s) of the initial delay line need to be constrained. Finally, the

3Block Random Access Memories
4Digital Signal Processors
5The initial delay line, with its necessary placement constraints, remains.

Discussion 19

Figure 3.11 The final routing delay sensor—RDS—disposes of the tapped delay line [1]

RDS uses the Hamming weight of the output register as the power consumption representation.
Contrary to the ring oscillator-based power monitor and TDC of Schellenberg et al. [21], only

a single instance of the RDS is necessary to be deployed for a successful attack, which further
simplifies the design. All of the routing delay sensor variants have been deployed and tested
on the Alveo U200 datacenter card, demonstrating a successful attack in a simulated real-world
scenario.

A specific intricacy of the RDS is its calibration process, which is unlike any other previously
mentioned sensor. Since the RDS does not feature a tapped delay line, it is no longer possible
to tell where the clock edge precisely lands. Instead, the RDS calibration targets high variance
in the power trace, specifically aiming for a high amount of toggling bits in the output register
at the time of a voltage drop. [1]

Even though software calibration is an improvement over the manual adjustment of the
number of elements in the initial delay line of early TDCs, the calibration process presents a
drawback in comparison to the VITI sensor. The VITI sensor is self-calibrated, with the cali-
bration occurring entirely in hardware. Whereas in the case of the RDS, the host PC software
drivers are responsible for the calibration—monitoring the output register variance and calibrat-
ing the amount of coarse and fine delay elements in the initial delay line. This would introduce
a complication in a real-world attack.

3.5 Discussion
The main goal of this chapter was to explore the available sensors for remote power analysis
attacks on FPGAs. The TDC, VITI, RO-based frequency counters, and routing delay sensors
were examined. The RDS combines the ease of deployment of frequency counters (only chal-
lenged by VITI) with the sensitivity of TDCs, while also providing a simple implementation and
calibration process. The RDS was successfully deployed and tested on the Alveo U200 datacenter
card by its authors, demonstrating a possible attack in a real-world scenario. Along with VITI,
the RDS designs and software were made openly available.

The sensor characteristics carrying the greatest weight were sensitivity, calibration, place
and route constraints, victim hardware, and availability. The introduced power monitors were
compared in Table 3.1, with the most favorable candidates being the RDS and VITI. The RDS
was chosen for its high sensitivity, ease of deployment, and open-sourcedness. The next chapter
will delve into the implementation of the RDS on the Basys 3 FPGA, with the aim of replicating
the successful attack scenario.

Discussion 20

Table 3.1 Comparison of sensors used for remote power analysis

Sensor RDS [1] VITI [22] HRDS [1] VRDS [1] TDC [21] ROPM1

[26]
Main component RR2 TDL RR2 RR2 TDL RO
Sensitivity High Low Low Low High Medium
Calibration SW HW SW SW Manual3 Manual
P&R Constraints Few None Horizontal Vertical Vertical None
Victim HW FPGA FPGA FPGA FPGA SoC/FPGA SoC/FPGA
Availability Open Open Open Open Limited Limited
1 Ring Oscillator-Based Power Monitor
2 Routing Resources
3 Manual, although software-calibrated variants are available

Chapter 4

Method, Implementation and
Results

This chapter is dedicated to detailing the implementation of the RDS attack, including the
methodology employed and the resulting outcomes. The chapter follows a structured approach:
it begins with an overview of the RDS components, followed by the implementation of the CPA
script. Subsequently, the setup of both the board and host PC are explained. This is followed
by a description of the power trace measurement process and the accompanying helper scripts.
The replication of the attack is then outlined, concluding with the anticipated outcomes and the
actual results achieved.

4.1 RDS Components
The original RDS project is generally well-documented. It implements the sensor and conducts
experiments on three different boards, the Basys 3, Sakura X, and Alveo U200 datacenter card.
I worked with the Basys 3 board, but the general project structure for each board is shared. The
following text explains each component, specifically for Basys 3. The project is structured as
follows:

• RTL hardware descriptions

• C software drivers

• CUDA C++ CPA code

• Python helper scripts

4.1.1 RTL Hardware Descriptions
system_top_artix7_fifo_aes.vhd serves as the top-level module of the project, coordinating in-
teractions between its components. AES_Comp.v is a module dedicated to performing AES
with a 128-bit key length, taking plaintext and key inputs, and producing ciphertext output.
io_wrapper.vhd acts as the primary controller of the system, managing communication between
the host and the system components, including AES encryption and sensor data handling. re-
set_wrapper.vhd generates reset signals for various components, including AES and sensors,
based on external commands from the host PC. xadc.vhd implements an on-chip temperature
sensor for temperature measurements unrelated to this thesis. Lastly, sensor_top.vhd is the

21

RDS Components 22

top-level file for sensor.vhd, which specifically implements the RDS. The architecture is best
showcased in Figure 4.1.

4.1.2 C Software Drivers
The driver part comprises of: aes_soft.c, data_utils.c and main.c. aes_soft.c is simply a software
AES implementation. data_utils.c implements the software calibration of the sensor, low-level
serial interface, utility functions for parsing user input, and communication with the hardware
AES module. It also implements testing of the hardware AES encryptions using the software
AES. Some default values, such as the key and plaintexts, are specified in main.c. As expected,
it primarily contains the general driver code that calls data_utils.c functions.

Figure 4.1 RDS Basys 3 SW architecture (top), and HW architecture (bottom) [52]

4.1.3 CUDA C++ CPA Code
The provided code implements the last round attack on an NVIDIA GPU for high parallelization,
as running the attack on the Alveo U200 card required multiple millions of power traces, which
proved to be too slow to process on a CPU. For this thesis, there is no need for such a large
amount of power traces, therefore my Python implementation of the CPA will suffice. An added
bonus of using Python is the portability of the code since it does not require an NVIDIA GPU
and very specific operating system requirements needed to run the CUDA toolkit.

4.1.4 Python Helper Scripts
The outputs from the CUDA program are later processed in the calculate_keyrank.py script.
Before the CUDA code can be run though, it is needed to convert the sensor outputs to a different
file format. These conversion are done using the convert_ciphertexts.py and convert_traces.py

CPA Script 23

scripts, though these conversion scripts miss a component for converting power traces to a binary
file (which the convert_traces.py script requires).

4.2 CPA Script
Before any work with the sensors began, I had been tasked with implementing a CPA script
using a platform (or a language) of my choice. One has multiple choices for such a task, for
instance, MATLAB, Wolfram Mathematica, and Python. Since I am the most familiar with
Python out of these three, I chose it for this thesis. Python’s numerical library NumPy [53]—
which equips Python with MATLAB-like functionality—has naturally been used generously. The
script has been tested using data provided by my supervisor. I have implemented both the first
round attack and later the last round attack. The measurement.py class has been created for
representing power consumption traces to be later used with this CPA script.

4.3 Board Setup
After Vivado (the authors reference the 2018.3 version, having tried both, all has worked for me
on the 2023.1 version as well), USB cable drivers and board files are installed [54], the sensor
is set up using the provided Tcl script. All one needs to do is run the following in the Vivado
command line:

cd basys3; the full directory path is necessary
set project_name <project_name>
source create_project_AES50MHz_SENSOR200MHz.tcl

The Tcl script creates the project, which is then prepared for running the implementation. After
running the implementation, clicking Generate bitstream generates the bitstream, which is then
uploaded to the FPGA in the hardware manager. In my case, Digilent Basys 3 featuring the
Xilinx Artix-7™ FPGA (XC7A35T-1CPG236C) was used. A thing worth mentioning is, that all
works even if Vivado reports errors with the clock generator in the synthesized design window.
That concludes the preparation of the hardware.

4.4 Host PC Setup
For setting up the host PC, where the sensor outputs are going to be exported, one only
needs to compile the code in the basys3/sw directory, by running make. Afterward, the bi-
naries are ready in the basys3/sw/bin directory, with the help message available after running
./interface -help. The experiments for this thesis were conducted using the following com-
mand:
./interface -k 0 -pt 1 -t [encryption_count] -s -d /path/to/output_dir
This command starts an encryption with a constant key (-k 0), chained plaintexts1 (-pt 1),
specified number of encryptions/measurements (-t [encryption_count]), and the sensor traces
saved (-s) to the given output directory (-d /path/to/output/dir). The initial key and plain-
text are hardcoded in the main.c source code file. A notable point to highlight is, that the output
directory must already exist when running the command, else the following error message will
be displayed: “Error openning the output plaintexts binary!” Another thing worth mentioning
is, that the command may need to be run as a superuser, in case the current user is not part
of the dialout group. All my experiments were done on x86_64 systems, running Ubuntu 23.10
6.5.0-28-generic, GCC version 13.2.0.

1A mode where the ciphertext of the previous encryption is used as the plaintext in the following encryption,
with a previously specified initial plaintext.

Power Trace Measurement 24

4.5 Power Trace Measurement
After having chosen the sensor, what I thought would be a straightforward process of replicating
the objectively well-documented attack of Spielmann et al. [1], turned out to be a much lengthier
and more tedious process than anticipated. Namely, the—in hindsight—trivial issue of starting
the measurement. Despite an otherwise comprehensive description of steps taken to carry out
the attack, at the time of my work, there was no mention of the purpose of switch 15 (SW15).
Additionally, this switch’s function was in a way obfuscated in its naming, as it was named the
reset switch in Vivado’s I/O planning window. After a significant amount of time debugging the
host-side C code, responsible for initiating the attack through the UART bus, testing multiple
Basys 3 boards, and verifying their UART (which I thought was problematic) using a dedicated
UART test module, I have discovered the actual purpose of the reset switch (SW15)—initiating
the AES encryption and the consequent power trace measurement.

Thus, an important warning is in place: the leftmost switch on the Basys 3 board, labeled as
SW15, must be in the ON position either before, or after executing the driver binary on the host
PC. Then and only then will the calibration phase start, after which the AES encryptions and
power trace measurements follow (see Figure 4.2).

In the meantime, this elementary, yet for me unexpected step, has been cleared up in the
documentation by the authors for future users. Another positive outcome of this has been the
start of my communication with MSc David Spielmann, who has helped with other blocking
issues later on.

Figure 4.2 Terminal output of the first successful encryption/measurement

Power Trace Measurement 25

Figure 4.3 Full power consumption waveform of 8 power traces from the measurement of 150,000
traces total, with noise visible before and after the encryption

Figure 4.4 Zoomed plot of 8 power traces from the measurement of 150,000 power traces total—AES
encryption rounds visible from trace 65 to 109

Figure 4.4 depicts the 10 AES rounds, with the first voltage drop visible at trace number
65. This would correspond to the first AddRoundKey and its write to the status register, which
happens ahead of the 10 following AES rounds. Since the AES module runs at 50 MHz, while the
RDS sensor runs at 200 MHz, each round is depicted as four trace samples. Therefore we would
expect the encryption power trace to last around 44 samples. This is precisely what happens, as
we can see around trace sample number 108. For completeness, Figure 4.3 depicts the full power
trace of 256 samples the sensor outputs in its current configuration. Multiple measurements were
conducted (some available in the attachments), for example, one of the measurements consisted

Helper Scripts 26

of 150,000 power traces and took 20 hours to complete. All of the measurements were recorded
in a home environment at room temperature.

4.6 Helper Scripts
Even though the RDS project contained some file format conversion scripts, I decided to go for
different formats and write my own. The provided scripts also do not seem to be complete. For
example, the power trace conversion script already requires a binary file at its output, but only
a comma-separated file is outputted by the sensor. The RDS sensor outputs the following:

• ciphertexts.bin

• plaintexts.bin

• keys.bin

• sensor_traces.csv

• ttest_fail.csv

• ttest_valid.csv

4.6.1 Output Standardization Script
For better readability, debugging and in order to use the data with my CPA script, I wrote
the standardize_rds_output.py script, to convert the binary ciphertexts and plaintexts to a text
file format with newline separated encryptions, where each encryption consists of sixteen uint8
hexadecimal values.

The sensor_traces.csv file consists of 256 samples per encryption, each sample represented as
a hexadecimal 256-bit value—corresponding to the RDS output register width. The script also
converts this to a binary traces.bin file, which calculates the Hamming weight of each sample
and writes it as an uint8 value. For completeness, the script also converts the keys to a text file
of hexadecimal values. The t-tests were not in the scope of this thesis, hence they have been left
intact.

The script takes two arguments, a path to the RDS output directory (/path/to/output_dir
mentioned in Section 4.4) and the number of encryptions. It can also be used to cut off an
unfinished trace at its tail, by specifying a lower amount of encryptions than initially commanded
(if the encryptions/measurements got interrupted for any reason).

4.6.2 Plotting script
To visualize the power traces there’s the plot.py plotting script, which for debugging purposes
also creates a ham_weights.csv file, that is simply the sensor_traces.csv file with the hexadeci-
mal sensor register outputs represented in decimal Hamming weights. It takes the path to the
sensor_traces.csv file and the number of power traces to plot as input. This script was also used
for generating Figures 4.3 and 4.4.

4.7 Replicating the Attack
This section is dedicated to the final goal of this thesis. First, some expectations of attack metrics
are laid out, and then my results are compared with the expectations.

Replicating the Attack 27

Figure 4.5 Key rank estimation of RDS, TDC [55], and VITI [22]—the shaded area represents the
observed extremes (min, max) across all runs, whereas the dashed and dotted lines represent the upper
and lower bounds of the key rank range averaged over all experiments [1]

4.7.1 Expectations
Spielmann et al. have recorded 100,000 power traces in five different runs, each time with a
different key. They have used the key rank estimation as their side-channel evaluation metric.
The key rank is calculated as a range and works in the following way: if an attacker has no
side-channel information, then the key rank equals the entire key space, i.e., 2128 in the case of
AES-128. Alternatively, the key rank drops to zero, when the entire key is broken. [1] Their
results are illustrated in Figure 4.5—it would be expected that on average the full key would be
broken with around 20,000 power traces.

4.7.2 First Attack Attempt
After the CPA script had been tested, the AES and sensor deployed on the board, and the host
PC drivers ready, I recorded the first 40,000 power traces. Then I started the CPA attack using
my script right away. The outcome is depicted as a terminal output, in Figure 4.6.

Immediately it is visible that something is not working correctly. With what should have
been a very sufficient amount of traces, the attack did not work, with a guessing entropy of 74.5,
even though a single byte of the key was found correctly (0xB4).

Table 4.1 Attempts to reduce the noise of power consumption measurements by combining multiple
measurements ran using the same encryption key and initial plaintext combination

Trace count 110,000 160,000 310,000 578,760
Guessing entropy 41 41.44 20.31 51.62

4.7.3 Merging and Higher Amount of Power Traces
Some ideas for a solution to the dysfunctional CPA were a) to record more measurements and
observe how guessing entropy evolves and b) to merge power traces in order to separate the noise
from the side-channel leakage. One of the running theories was, that the attack could be board
dependent and my Basys 3 a manufacturing outlier.

Replicating the Attack 28

Figure 4.6 First CPA attempt—an unsuccessful first round attack

Figure 4.7 Evolving guessing entropy using the first round attack

The results of the merging attempts are showcased in Table 4.1. As is visible, the results
do not look promising as they do not represent a decreasing function. A more granular insight
(although on a smaller sample size) into the evolving guessing entropy of a single continuous
measurement of 150,000 power traces is shown in Figure 4.7. The results indicate that the first
round approach would take hundreds of thousands if not millions of power traces, in order to
break the full key, that is if the side-channel leakage at the first round would even be sufficient to

Replicating the Attack 29

break the full key at all. Based on previous measurements, running the experiment for 1,000,000
traces would take about 130 hours. This result is highly unsatisfactory, as it has been expected
that the upper bound of power traces required to break the full key would be approximately
24,000 (see Section 4.7.1).

Everything was tested from this point onwards. First, the experiments were recorded on a
different Basys 3 as well—with little to no success. Second, more traces were recorded, though
it now started getting quite time-consuming—150,000 traces took around 20 hours, and 310,000
traces took over 40 hours. Third, my CPA script was also double-checked, and I have compared
its results to other CPA scripts used at the faculty, as well as one provided by my supervisor.
All ended up similarly, with variations between them in only a few bits, though all found the
wrong keys.

However, around this time, I found an issue with my CPA—the maximum correlation values
were not looked at as absolute values, therefore high negative correlations, which could still yield
a correct key guess, were not accounted for correctly. More testing has shown that the issue did
not lie in this bug. After fixing it, the guessing entropy has been affected negatively.

4.7.4 Solving the CPA Issue
Having confirmed with my supervisor and MSc Spielmann that the traces looked nominal, the
issue had to be on my side, in one of the scripts. On a single morning, after having looked
through the original CUDA CPA code again, I realized, that instead of attacking the first round
of AES, they are attacking the last round. My supervisor and MSc Spielmann suggested this
on the same morning, so the issue seemed clear, and I have started implementing the last round
attack.

Figure 4.8 First successful attack using CPA to attack the last round of AES—notice the subkeys
being different than the ones in the result, showcased as correct; this is because the subkeys are of the
last round key, not the initial encryption key, bytes of which are highlighted at the bottom

Results 30

Figure 4.9 Plot of falling guessing entropy with incremented power traces—the full key is broken with
15,000 power traces

As per Figure 4.8, the last round CPA attack breaks the key successfully. Figure 4.9 illustrates
the falling guessing entropy with the incremented power traces. The plot has been made from a
single measurement, with the power traces progressively incremented by 5000 in each iteration.
Breaking the key successfully while maintaining expected results, confirms the replicability of
the RDS experiments.

4.8 Results
My experiments have confirmed the results of Spielmann et al. [1]. As is observable in Figure 4.9,
the guessing entropy falls with the increased number of power traces, as expected. The guessing
entropy of 0 (full key broken) is reached at around 15,000 power traces, which is in line with the
expectations of Spielmann et al. [1] (see Figure 4.5). Thus the attack is well replicable. A thing
worth mentioning is that from 11,500 power traces onwards, guessing entropy is less than 1.

The attack has been attempted at the first round of AES as well, with little success, having
tried the CPA with up to 310,000 power traces. Further experiments would need to be carried
out in order to find out whether breaking the full key would possible at all.

I have created the CPA script, which breaks the AES-128 key using the last round attack and
it does so requiring around 15,000 power traces. As a side product, the helper scripts are able to
convert the sensor outputs to a more readable format and plot the power traces while primarily
being able to convert the sensor outputs to a format that can be used with the CPA script.

Chapter 5

Future Work

The RDS seems to have potential and therefore if it were used in the future, it would certainly
benefit from a refactoring of the host PC driver side of the code, as it is a bit lacking in terms of
readability, which consequently impacts its modularity. Additionally, it would be interesting to
see how the RDS would perform in an attack on a soft-core processor, or even an SoC running a
software crypto algorithm. Another interesting future research topic could be performing remote
power analysis using the RDS on a different cipher, such as Serpent [56]. From a high abstraction
level, Serpent features a block size of 128 bits, a 128-bit key, and a substitution box. The only
notable difference seems to be that it has 32 rounds, instead of 10 as is the case for AES. All
of this points to a possible remote power analysis with not so many necessary changes to the
existing project.

With remote side-channel attacks came efforts for remote reverse-engineering efforts. As re-
search shows, deep learning classifiers in combination with remote power consumption sensors
have great potential to determine the executed instructions on a soft-core processor, with accu-
racy higher than 80% [31]. Side-channel attacks utilizing deep learning have been previously used
for profiled attacks, however, they have been demonstrated to be able to assist in performing
non-profiled side-channel attacks as well. [57] More research on these topics could further our
understanding of the impact deep learning methods can have on the novel remote side-channel
analysis methods.

Countermeasures for remote power analysis attacks are in development, such as reversing
bitstreams into netlists that are analyzed for malicious design patterns [48], though these meth-
ods rely on an available bitstream reverse engineering toolchain, which few FPGA families have
publicly accessible. While it certainly is not the only countermeasure available,
Glamočanin et al. have thoroughly categorized available countermeasures and concluded: “Find-
ing the right countermeasure—or a combination of them—remains an open problem.” [58]

31

Chapter 6

Conclusion

The goals of becoming familiar with the AES cipher and correlation power analysis were met, as
the correlation power analysis has been successfully implemented in Python and an attack on the
first and last round of the AES cipher has been carried out. Furthermore, remote attacks have
been researched, specifically remote power analysis side-channel attacks, which were thoroughly
dissected and analyzed in Chapter 3.

Based on this analysis, an on-chip power consumption sensor was selected and deployed. The
selected remote power analysis attack has been successfully conducted and evaluated using the
previously tested CPA script. A comprehensive step-by-step procedure of steps taken has been
documented, thus, proving its replicability, as the results do not differ from the original authors
in any significant way. Additionally, several promising avenues for future research are suggested,
which are discussed in more detail in Chapter 5.

In retrospect, it becomes evident that more efficient communication with the original authors
of RDS could have sped up the replication of the attack. Nevertheless, the comprehensive
documentation of the implemented attack procedures and the successful replication of results in
alignment with the original authors satisfies the goals outlined at the beginning of this thesis.

32

Bibliography

1. SPIELMANN, David; GLAMOČANIN, Ognjen; STOJILOVIĆ, Mirjana. RDS: FPGA
Routing Delay Sensors for Effective Remote Power Analysis Attacks. IACR Transactions
on Cryptographic Hardware and Embedded Systems. 2023, vol. 2023, pp. 543–567. Available
from doi: 10.46586/tches.v2023.i2.543-567.

2. BARTÍK, Matěj. FPGA Applications for Automotive [online]. 2022-07. Available also from:
https://pesw.fit.cvut.cz/2022/Digiteq.pdf. (Accessed on 05/08/2024).

3. EUROPEAN SPACE AGENCY, ESA. The use of reprogrammable FPGAs in space [online].
Available also from: https://www.esa.int/enabling_support/space_engineering_
technology/microelectronics/the_use_of_reprogrammable_fpgas_in_space. (Ac-
cessed on 05/08/2024).

4. INTEL. FPGA for Military Applications - Intel® FPGA [online]. Available also from:
https://www.intel.com/content/www/us/en/government/products/programmable/
applications.html. (Accessed on 05/08/2024).

5. ADVANCED MICRO DEVICES, Inc. Space-Grade Kintex UltraScale FPGA Family [on-
line]. 2024. Available also from: https://www.xilinx.com/products/silicon-devices/
fpga/rt-kintex-ultrascale.html. (Accessed on 05/08/2024).

6. MICROCHIP TECHNOLOGY, Inc. RT PolarFire® FPGAs | Microchip Technology [on-
line]. 2024. Available also from: https : / / www . microchip . com / en - us / products /
fpgas- and- plds/radiation- tolerant- fpgas/rt- polarfire- fpgas#. (Accessed on
05/08/2024).

7. ADVANCED MICRO DEVICES, Inc. Samsung SmartSSD [online]. 2024. Available also
from: https://www.xilinx.com/applications/data-center/computational-storage/
smartssd.html. (Accessed on 05/07/2024).

8. AMAZON WEB SERVICES, Inc. Amazon EC2 F1 Instances [online]. 2024. Available also
from: https://aws.amazon.com/ec2/instance-types/f1/. (Accessed on 05/07/2024).

9. MICROSOFT. Azure virtual machine sizes for field-programmable gate arrays (FPGA) -
Azure Virtual Machines | Microsoft Learn [online]. 2023-03. Available also from: https://
learn.microsoft.com/en-us/azure/virtual-machines/sizes-field-programmable-
gate-arrays. (Accessed on 05/07/2024).

10. CAULFIELD, Adrian M. et al. Configurable Clouds. IEEE Micro. 2017, vol. 37, no. 3,
pp. 52–61. Available from doi: 10.1109/MM.2017.51.

11. OUYANG, Jian; LIN, Shiding; QI, Wei; WANG, Yong; YU, Bo; JIANG, Song. SDA:
Software-defined accelerator for large-scale DNN systems. In: 2014 IEEE Hot Chips 26
Symposium (HCS). 2014, pp. 1–23. Available from doi: 10.1109/HOTCHIPS.2014.7478821.

33

https://doi.org/10.46586/tches.v2023.i2.543-567
https://pesw.fit.cvut.cz/2022/Digiteq.pdf
https://www.esa.int/enabling_support/space_engineering_technology/microelectronics/the_use_of_reprogrammable_fpgas_in_space
https://www.esa.int/enabling_support/space_engineering_technology/microelectronics/the_use_of_reprogrammable_fpgas_in_space
https://www.intel.com/content/www/us/en/government/products/programmable/applications.html
https://www.intel.com/content/www/us/en/government/products/programmable/applications.html
https://www.xilinx.com/products/silicon-devices/fpga/rt-kintex-ultrascale.html
https://www.xilinx.com/products/silicon-devices/fpga/rt-kintex-ultrascale.html
https://www.microchip.com/en-us/products/fpgas-and-plds/radiation-tolerant-fpgas/rt-polarfire-fpgas#
https://www.microchip.com/en-us/products/fpgas-and-plds/radiation-tolerant-fpgas/rt-polarfire-fpgas#
https://www.xilinx.com/applications/data-center/computational-storage/smartssd.html
https://www.xilinx.com/applications/data-center/computational-storage/smartssd.html
https://aws.amazon.com/ec2/instance-types/f1/
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes-field-programmable-gate-arrays
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes-field-programmable-gate-arrays
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes-field-programmable-gate-arrays
https://doi.org/10.1109/MM.2017.51
https://doi.org/10.1109/HOTCHIPS.2014.7478821

Bibliography 34

12. DIGILENT. Basys 3 - Digilent Reference [online]. Available also from: https://digilent.
com/reference/programmable-logic/basys-3/start. (Accessed on 05/08/2024).

13. ADVANCED MICRO DEVICES, Inc. AMD Technical Information Portal [online]. 2016-09.
Available also from: https://docs.amd.com/v/u/en-US/ug474_7Series_CLB. (Accessed
on 05/08/2024).

14. BO, Song; KAWAKAMI, Kensuke; NAKANO, Koji; ITO, Yasuaki. An RSA encryption
hardware algorithm using a single DSP block and a single block RAM on the FPGA. IJNC.
2011, vol. 1, pp. 277–289. Available from doi: 10.1109/IC-NC.2010.56.

15. NIST. Specification for the Advanced Encryption Standard (AES) [Federal Information Pro-
cessing Standards Publication 197]. 2001. Available also from: http://csrc.nist.gov/
publications/fips/fips197/fips-197.pdf.

16. DAEMEN, Joan; RIJMEN, Vincent. The design of Rijndael: AES — the Advanced Encryp-
tion Standard. Springer-Verlag, 2002. isbn 3-540-42580-2.

17. AOKI LABORATORY GSIS, Tohoku University. CAST-128 Hardware Macro Specification
(Draft) [online]. 2007. Available also from: http: / /www .aoki . ecei. tohoku .ac . jp/
crypto/items/AESSpec2007Sep25.pdf. (Accessed on 05/08/2024).

18. KOCHER, Paul C. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In: Advances in Cryptology—CRYPTO’96: 16th Annual International Cryp-
tology Conference Santa Barbara, California, USA August 18–22, 1996 Proceedings 16.
Springer, 1996, pp. 104–113.

19. PRINETTO, Paolo; ROASCIO, Gianluca, et al. Hardware Security, Vulnerabilities, and
Attacks: A Comprehensive Taxonomy. In: ITASEC. 2020, pp. 177–189.

20. SOCHA, Petr; MIŠKOVSKÝ, Vojtěch; NOVOTNÝ, Martin. A Comprehensive Survey on
the Non-Invasive Passive Side-Channel Analysis. Sensors. 2022, vol. 22, no. 21. issn 1424-
8220. Available from doi: 10.3390/s22218096.

21. SCHELLENBERG, Falk; GNAD, Dennis R.E.; MORADI, Amir; TAHOORI, Mehdi B. An
inside job: Remote power analysis attacks on FPGAs. In: 2018 Design, Automation & Test
in Europe Conference & Exhibition (DATE). 2018, pp. 1111–1116. Available from doi:
10.23919/DATE.2018.8342177.

22. UDUGAMA, Brian; JAYASINGHE, Darshana; SAADAT, Hassaan; IGNJATOVIC, Alek-
sandar; PARAMESWARAN, Sri. VITI: A Tiny Self-Calibrating Sensor for Power-Variation
Measurement in FPGAs. IACR Transactions on Cryptographic Hardware and Embedded
Systems. 2021, vol. 2022, no. 1, pp. 657–678. Available from doi: 10.46586/tches.v2022.
i1.657-678.

23. BRIER, Eric; CLAVIER, Christophe; OLIVIER, Francis. Correlation power analysis with
a leakage model. In: Cryptographic Hardware and Embedded Systems-CHES 2004: 6th In-
ternational Workshop Cambridge, MA, USA, August 11-13, 2004. Proceedings 6. Springer,
2004, pp. 16–29.

24. MEUNIER, Quentin L. FastCPA: Efficient correlation power analysis computation with a
large number of traces. In: Proceedings of the Sixth Workshop on Cryptography and Security
in Computing Systems. 2019, pp. 7–12.

25. MASSEY, J.L. Guessing and entropy. In: Proceedings of 1994 IEEE International Sympo-
sium on Information Theory. 1994, pp. 204–. Available from doi: 10.1109/ISIT.1994.
394764.

26. ZHAO, Mark; SUH, G. Edward. FPGA-Based Remote Power Side-Channel Attacks. In:
2018 IEEE Symposium on Security and Privacy (SP). 2018, pp. 229–244. Available from
doi: 10.1109/SP.2018.00049.

https://digilent.com/reference/programmable-logic/basys-3/start
https://digilent.com/reference/programmable-logic/basys-3/start
https://docs.amd.com/v/u/en-US/ug474_7Series_CLB
https://doi.org/10.1109/IC-NC.2010.56
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.aoki.ecei.tohoku.ac.jp/crypto/items/AESSpec2007Sep25.pdf
http://www.aoki.ecei.tohoku.ac.jp/crypto/items/AESSpec2007Sep25.pdf
https://doi.org/10.3390/s22218096
https://doi.org/10.23919/DATE.2018.8342177
https://doi.org/10.46586/tches.v2022.i1.657-678
https://doi.org/10.46586/tches.v2022.i1.657-678
https://doi.org/10.1109/ISIT.1994.394764
https://doi.org/10.1109/ISIT.1994.394764
https://doi.org/10.1109/SP.2018.00049

Bibliography 35

27. ADVANCED MICRO DEVICES, Inc. The MicroBlaze Soft Processor: Flexibility and Per-
formance for Cost-Sensitive Embedded Designs (WP501) • Viewer • AMD Technical In-
formation Portal [online]. 2018-04. Available also from: https://docs.amd.com/v/u/en-
US/wp501-microblaze. (Accessed on 02/05/2024).

28. INTEL. Nios® V Processor for Intel® FPGA [online]. Available also from: https://www.
intel.com/content/www/us/en/products/details/fpga/nios-processor/v.html.
(Accessed on 02/05/2024).

29. CONTRIBUTORS, PicoRV. GitHub - YosysHQ/picorv32: PicoRV32 - A Size-Optimized
RISC-V CPU [online]. 2024-03. Available also from: https : / / github . com / YosysHQ /
picorv32. (Accessed on 02/05/2024).

30. CONTRIBUTORS, ZipCPU. GitHub - ZipCPU/zipcpu: A small, light weight, RISC CPU
soft core [online]. 2024-01. Available also from: https://github.com/ZipCPU/zipcpu.
(Accessed on 02/05/2024).

31. GLAMOČANIN, Ognjen; SHRIVASTAVA, Shashwat; YAO, Jinwei; ARDO, Nour; PAYER,
Mathias; STOJILOVIĆ, Mirjana. Instruction-Level Power Side-Channel Leakage Evalua-
tion of Soft-Core CPUs on Shared FPGAs. Journal of Hardware and Systems Security.
2023, vol. 7, pp. 1–28. Available from doi: 10.1007/s41635-023-00135-1.

32. TRIMBERGER, Steve; MCNEIL, Steve. Security of FPGAs in data centers. In: 2017 IEEE
2nd International Verification and Security Workshop (IVSW). 2017, pp. 117–122. Available
from doi: 10.1109/IVSW.2017.8031556.

33. GNAD, Dennis R.E.; OBORIL, Fabian; KIAMEHR, Saman; TAHOORI, Mehdi B. Analysis
of transient voltage fluctuations in FPGAs. In: 2016 International Conference on Field-
Programmable Technology (FPT). 2016, pp. 12–19. Available from doi: 10.1109/FPT.
2016.7929182.

34. ÖRS, Sıddıka Berna; OSWALD, Elisabeth; PRENEEL, Bart. Power-Analysis Attacks on
an FPGA – First Experimental Results. In: WALTER, Colin D.; KOÇ, Çetin K.; PAAR,
Christof (eds.). Cryptographic Hardware and Embedded Systems - CHES 2003. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2003, pp. 35–50. isbn 978-3-540-45238-6.

35. GRAVELLIER, Joseph; DUTERTRE, Jean-Max; TEGLIA, Yannick; MOUNDI, Philippe
Loubet; OLIVIER, Francis. Remote Side-Channel Attacks on Heterogeneous SoC. In: BE-
LAÏD, Sonia; GÜNEYSU, Tim (eds.). Smart Card Research and Advanced Applications.
Cham: Springer International Publishing, 2020, pp. 109–125. isbn 978-3-030-42068-0.

36. ADVANCED MICRO DEVICES, Inc. CARRY4 • Vivado Design Suite 7 Series FPGA
and Zynq 7000 SoC Libraries Guide (UG953) • Reader • AMD Technical Information
Portal [online]. 2023-10. Available also from: https://docs.amd.com/r/en-US/ug953-
vivado-7series-libraries/CARRY4. (Accessed on 23/04/2024).

37. ADVANCED MICRO DEVICES, Inc. LUT Primitives • Versal ACAP Configurable Logic
Block Architecture Manual (AM005) • Reader • AMD Technical Information Portal [on-
line]. 2023-02. Available also from: https://docs.amd.com/r/en-US/am005-versal-
clb/LUT-Primitives. (Accessed on 23/04/2024).

38. WU, Jinyuan. Several Key Issues on Implementing Delay Line Based TDCs Using FPGAs.
IEEE Transactions on Nuclear Science. 2010, vol. 57, no. 3, pp. 1543–1548. Available from
doi: 10.1109/TNS.2010.2045901.

39. HENZLER, Stephan. Applications for Time-to-Digital Converters. In: Time-to-Digital Con-
verters. Dordrecht: Springer Netherlands, 2010, pp. 103–113. isbn 978-90-481-8628-0. Avail-
able from doi: 10.1007/978-90-481-8628-0_6.

https://docs.amd.com/v/u/en-US/wp501-microblaze
https://docs.amd.com/v/u/en-US/wp501-microblaze
https://www.intel.com/content/www/us/en/products/details/fpga/nios-processor/v.html
https://www.intel.com/content/www/us/en/products/details/fpga/nios-processor/v.html
https://github.com/YosysHQ/picorv32
https://github.com/YosysHQ/picorv32
https://github.com/ZipCPU/zipcpu
https://doi.org/10.1007/s41635-023-00135-1
https://doi.org/10.1109/IVSW.2017.8031556
https://doi.org/10.1109/FPT.2016.7929182
https://doi.org/10.1109/FPT.2016.7929182
https://docs.amd.com/r/en-US/ug953-vivado-7series-libraries/CARRY4
https://docs.amd.com/r/en-US/ug953-vivado-7series-libraries/CARRY4
https://docs.amd.com/r/en-US/am005-versal-clb/LUT-Primitives
https://docs.amd.com/r/en-US/am005-versal-clb/LUT-Primitives
https://doi.org/10.1109/TNS.2010.2045901
https://doi.org/10.1007/978-90-481-8628-0_6

Bibliography 36

40. UENO, Miho; HASHIMOTO, Masanori; ONOYE, Takao. Real-time on-chip supply voltage
sensor and its application to trace-based timing error localization. In: 2015 IEEE 21st
International On-Line Testing Symposium (IOLTS). 2015, pp. 188–193. Available from
doi: 10.1109/IOLTS.2015.7229857.

41. ZICK, Kenneth M.; SRIVASTAV, Meeta; ZHANG, Wei; FRENCH, Matthew. Sensing
nanosecond-scale voltage attacks and natural transients in FPGAs. In: Proceedings of the
ACM/SIGDA International Symposium on Field Programmable Gate Arrays. Monterey,
California, USA: Association for Computing Machinery, 2013, pp. 101–104. FPGA ’13.
isbn 9781450318877. Available from doi: 10.1145/2435264.2435283.

42. ADVANCED MICRO DEVICES, Inc. RLOC • Vivado Design Suite Properties Reference
Guide (UG912) • Reader • AMD Technical Information Portal [online]. 2023-11. Available
also from: https://docs.amd.com/r/en-US/ug912-vivado-properties/RLOC. (Accessed
on 24/04/2024).

43. ADVANCED MICRO DEVICES, Inc. Using for-generate Statements • Vivado Design
Suite User Guide: Synthesis (UG901) • Reader • AMD Technical Information Portal
[online]. 2023-11. Available also from: https://docs.amd.com/r/en-US/ug901-vivado-
synthesis/Using-for-generate-Statements. (Accessed on 24/04/2024).

44. SUGAWARA, Takeshi; SAKIYAMA, Kazuo; NASHIMOTO, Shoei; SUZUKI, Daisuke; NA-
GATSUKA, Tomoyuki. Oscillator without a combinatorial loop and its threat to FPGA in
data centre. Electronics Letters. 2019, vol. 55, no. 11, pp. 640–642.

45. GRAVELLIER, Joseph; DUTERTRE, Jean-Max; TEGLIA, Yannick; LOUBET-MOUNDI,
Philippe. High-Speed Ring Oscillator based Sensors for Remote Side-Channel Attacks on
FPGAs. In: 2019 International Conference on ReConFigurable Computing and FPGAs
(ReConFig). 2019, pp. 1–8. Available from doi: 10.1109/ReConFig48160.2019.8994789.

46. ZICK, Kenneth M.; HAYES, John P. Low-cost sensing with ring oscillator arrays for health-
ier reconfigurable systems. ACM Trans. Reconfigurable Technol. Syst. 2012, vol. 5, no. 1.
issn 1936-7406. Available from doi: 10.1145/2133352.2133353.

47. FRANCO, John J. León; BOEMO, Eduardo; CASTILLO, Encarnación; PARRILLA, Luis.
Ring oscillators as thermal sensors in FPGAs: Experiments in low voltage. In: 2010 VI
Southern Programmable Logic Conference (SPL). 2010, pp. 133–137. Available from doi:
10.1109/SPL.2010.5483027.

48. KRAUTTER, Jonas; GNAD, Dennis R. E.; TAHOORI, Mehdi B. Mitigating Electrical-level
Attacks towards Secure Multi-Tenant FPGAs in the Cloud. ACM Trans. Reconfigurable
Technol. Syst. 2019, vol. 12, no. 3. issn 1936-7406. Available from doi: 10.1145/3328222.

49. AMAZON WEB SERVICES, Inc. aws-fpga/ERRATA.md at master · aws/aws-fpga ·
GitHub [online]. 2021-10. Available also from: https://github.com/aws/aws-fpga/blob/
master/ERRATA.md. (Accessed on 05/06/2024).

50. AHMED, Ibrahim; SHEN, Linda L.; BETZ, Vaughn. Optimizing FPGA Logic Circuitry
for Variable Voltage Supplies. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems. 2020, vol. 28, no. 4, pp. 890–903. Available from doi: 10.1109/TVLSI.2019.
2962501.

51. FAROOQ, Umer; MARRAKCHI, Zied; MEHREZ, Habib. FPGA Architectures: An Over-
view. In: Tree-based Heterogeneous FPGA Architectures: Application Specific Exploration
and Optimization. New York, NY: Springer New York, 2012, pp. 7–48. isbn 978-1-4614-
3594-5. Available from doi: 10.1007/978-1-4614-3594-5_2.

52. SPIELMANN, David; GLAMOČANIN, Ognjen; STOJILOVIĆ, Mirjana. GitHub - mir-
janastojilovic/RDS: FPGA routing delay sensors for effective remote power analysis attacks
[online]. 2024-03. Available also from: https://github.com/mirjanastojilovic/RDS.
(Accessed on 05/13/2024).

https://doi.org/10.1109/IOLTS.2015.7229857
https://doi.org/10.1145/2435264.2435283
https://docs.amd.com/r/en-US/ug912-vivado-properties/RLOC
https://docs.amd.com/r/en-US/ug901-vivado-synthesis/Using-for-generate-Statements
https://docs.amd.com/r/en-US/ug901-vivado-synthesis/Using-for-generate-Statements
https://doi.org/10.1109/ReConFig48160.2019.8994789
https://doi.org/10.1145/2133352.2133353
https://doi.org/10.1109/SPL.2010.5483027
https://doi.org/10.1145/3328222
https://github.com/aws/aws-fpga/blob/master/ERRATA.md
https://github.com/aws/aws-fpga/blob/master/ERRATA.md
https://doi.org/10.1109/TVLSI.2019.2962501
https://doi.org/10.1109/TVLSI.2019.2962501
https://doi.org/10.1007/978-1-4614-3594-5_2
https://github.com/mirjanastojilovic/RDS

Bibliography 37

53. CONTRIBUTORS, NumPy. NumPy documentation — NumPy v1.26 Manual [online]. 2022.
Available also from: https://numpy.org/doc/stable/. (Accessed on 05/11/2024).

54. DIGILENT. Installing Vivado, Xilinx SDK, and Digilent Board Files - Digilent Reference
[online]. [N.d.]. Available also from: https://digilent.com/reference/programmable-
logic/guides/installing-vivado-and-sdk. (Accessed on 05/13/2024).

55. GNAD, Dennis RE; NGUYEN, Cong Dang Khoa; GILLANI, Syed Hashim; TAHOORI,
Mehdi B. Voltage-based covert channels using FPGAs. ACM Transactions on Design Au-
tomation of Electronic Systems (TODAES). 2021, vol. 26, no. 6, pp. 1–25.

56. BIHAM, Eli; ANDERSON, Ross; KNUDSEN, Lars. Serpent: A new block cipher proposal.
In: International workshop on fast software encryption. Springer, 1998, pp. 222–238.

57. TIMON, Benjamin. Non-profiled deep learning-based side-channel attacks with sensitivity
analysis. IACR Transactions on Cryptographic Hardware and Embedded Systems. 2019,
pp. 107–131.

58. GLAMOČANIN, Ognjen; MAHMOUD, Dina G.; REGAZZONI, Francesco; STOJILOVIĆ,
Mirjana. Shared FPGAs and the Holy Grail: Protections against Side-Channel and Fault
Attacks. In: 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE).
2021, pp. 1645–1650. Available from doi: 10.23919/DATE51398.2021.9473947.

https://numpy.org/doc/stable/
https://digilent.com/reference/programmable-logic/guides/installing-vivado-and-sdk
https://digilent.com/reference/programmable-logic/guides/installing-vivado-and-sdk
https://doi.org/10.23919/DATE51398.2021.9473947

Attachment contents

rds..RDS project contents used
measurements .. measured power traces
src

impl..implementation source code
thesis...thesis LATEX source code

text
thesis.pdf...thesis in the PDF format

38

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Preliminaries
	FPGA Use Cases
	FPGA Architecture
	Advanced Encryption Standard
	Side-Channel Attacks
	Power Analysis
	Remote Power Analysis

	Correlation Power Analysis
	Guessing Entropy

	Analysis
	Platforms
	Standalone FPGAs
	SoC FPGAs
	Soft-Core CPUs

	Threat Models
	Multi-Tenant FPGA
	FPGA-to-CPU Attack

	Power Consumption Sensors
	Tapped Delay Line-Based Sensors
	Ring Oscillator-Based Frequency Counters

	Routing Delay Sensors
	VRDS and HRDS
	RDS

	Discussion

	Method, Implementation and Results
	RDS Components
	RTL Hardware Descriptions
	C Software Drivers
	CUDA C++ CPA Code
	Python Helper Scripts

	CPA Script
	Board Setup
	Host PC Setup
	Power Trace Measurement
	Helper Scripts
	Output Standardization Script
	Plotting script

	Replicating the Attack
	Expectations
	First Attack Attempt
	Merging and Higher Amount of Power Traces
	Solving the CPA Issue

	Results

	Future Work
	Conclusion
	Bibliography
	Attachment contents

