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Abstract

This work aims to create a tool for easy creation of 3D scenes, which are
rendered with a Ray Marching shader. The tool will be an addon for Unity 3D
game engine with a user-friendly GUI for creating parametric 3D objects. The
work describes the principles and features of Ray Marching technology, the
advantages of its use, explores the complexities and possibilities of rendering
miscellaneous objects.

Keywords Ray Marching, sphere tracing, signed distance function (SDF),
Unity engine, HLSL, compute shader, rendering

Abstrakt

Cílem této práce je vytvořit nástroj pro snadné vytváření 3D scén, které jsou
vykreslovány pomocí shaderu Ray Marching. Tento nástroj bude doplňkem
pro herní engine Unity 3D s uživatelsky přívětivým grafickým rozhraním pro
vytváření parametrických 3D objektů. Práce popisuje principy a vlastnosti
technologie Ray Marching, výhody její použití, zkoumá složitosti a možnosti
vykreslování různých objektů.

Klíčová slova Ray Marching, sledování koule, funkce vzdálenosti se znaménkem,
Unity engine, HLSL, compute shader, vykreslování
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Introduction

Rendering technologies play a pivotal role in the modern digital landscape,
shaping the way we interact with virtual environments, immersive experi-
ences, and digital content across various industries. From video games and
architectural visualization to film production and scientific simulations, ren-
dering technologies are at the forefront of delivering realistic and captivating
visuals.

In the field of computer graphics, the desire for photorealism and the cre-
ation of immersive virtual environments has driven the evolution of rendering
techniques. Probably everyone has heard about Ray Tracing rendering model
— a method that simulates the behavior of light rays in space to achieve pho-
torealistic images. I would like to dedicate this work to a similar but less
popular Ray Marching model. This technology is also based on guessing the
distance from the camera to the object in space, but unlike Ray Tracing it does
it on the principle of ”binary search” — at each iteration the length of the path
traveled by the ray is less by about two times from the previous iteration. This
feature allows to draw complex 3D shapes of objects without approximation
by polygons using mathematical formulas, combine them in various ways and
even change them in dynamics without using large computing power, which is
problematic to do in other rendering models. However, this also means that
conventional 3D models are not quite suitable and require a special approach
when rendering with Ray Marching.

All of the above will be demonstrated in this thesis using the Unity engine,
on which will be written a program to easily configure the Ray Marching shader
to render the desired 3D scenes without having to make manual changes to
the shader code.

1



Introduction 2

Objectives
This thesis is aimed primarily at creating the main application.

The first part of the thesis will describe the main Ray Marching technology
— its advantages, disadvantages and other differences from other rendering
techniques.

Then we will investigate the capabilities of this technology. The peculiar-
ities of their implementation in the selected Unity 3D game engine will be
described. The general principles of rendering realistic 3D graphics will also
be touched upon.

In the end a tool will be implemented, which will include two parts — a
graphical interface for creating parametric objects/scenes and a shader, which
will render the final image. The final version of the program will include as
many features described in the second part as possible.



Part I

Theoretical part

3



Chapter 1

Analyzing the Technology

This chapter covers the basics of rendering, the main rendering techniques of
the moment, and the features and differences of the Ray Marching technique.

1.1 Introducing to Ray Marching

1.1.1 What is 3D rendering?
3D rendering in computer graphics is the process of creating 2D images or
image sequences (animation) based on 3D models. [1] We can say 3D render-
ing is a way of displaying 3D graphics. Today 3D graphics is used in many
industries, such as computer games, animation, advertising and others. At
the same time, each industry has its own requirements for the final picture.
For example, in advertising, marketers often choose a photorealistic style to
demonstrate their products, and the time of rendering the image or animation
does not play a major role. Due to this, hired artists can spend hours to render
a single image to create a picture indistinguishable from reality. Whereas in
video games, one of the main criteria is a high frame rate, which with modern
technology is difficult to comply with rendering photorealistic images on each
frame. Thus at the moment we have many techniques of 3D rendering, known
and less known, to meet any criteria of the user.

1.1.2 Rendering techniques
Rasterization and scanline rendering This technique is based on the pro-

jection and rasterization of 3D objects onto a 2D image. 3D models con-
sisting of polygons (usually triangles) are projected onto a 2D plane (the
final image), taking into account the depth, in order to create the effect of
overlapping the rear objects with the front ones. [2] Rasterization — split-
ting triangles that make up objects into separate pixels - also takes place.
Then the final color of a pixel is calculated. This takes into account light

4



Introducing to Ray Marching 5

sources, object materials and other parameters to get the desired image.
[3]
This technique allows you to render a satisfactory picture in a short time,
because of which it is widely used in computer games and supported by
most modern graphics cards. The minus, however, is that with this ap-
proach is very difficult to create a picture that will thoroughly copy the
reality. In other words, the quality of the image is questionable.

Ray Based Techniques There are several rendering techniques based on
beaming rays from the camera in the direction of each pixel in the im-
age. Their key feature is to calculate the distance from a certain point
in space to the nearest object along a certain direction. These techniques
have a lot in common with each other, but at the same time each of them
has its own features. As it is easy to guess from the name, one of them is
Ray Marching, which is the subject of this thesis.

Ray Tracing This technique is based on tracing rays from the camera in
the direction of each pixel on the screen. The distance to objects is cal-
culated through complex formulas, which is one of the main differences
from other similar techniques. The disadvantage is that it is very diffi-
cult, if not impossible, to derive a formula for the distance to complex
objects.
This method works similarly to how rays of light propagate in the real
world, except that the rays are not traced from the light source to the
camera, but from the camera to the light source. When calculating the
color of a pixel, not only the color of the object that is encountered in
the path of the ray is taken into account. All objects reflected by the
ray on its way to the light source contribute to the final pixel color. [2]
This method, simulating physical processes, allows to achieve high qual-
ity photorealistic images with such optical effects as reflection, refrac-
tion, chromatic aberration, soft shadows, depth of field and others, which
are difficult to achieve with other techniques, such as rasterization and
scanline rendering. On the other hand, it is obvious that such detailed
computations for each pixel cannot be cheap in terms of computational
resources. Therefore, Ray Tracing is rarely used for real–time rendering.

Ray Casting Ray Casting is commonly referred to as a technique where
rays are not produced for each pixel of an image, but for each column
of pixels. Also, the ray is spread over a 2D scene rather than a 3D
scene. The distance to the object is calculated over many iterations —
at each iteration the ray takes a step whose length is equal to a constant
value — usually the diameter of the smallest unit of which the scene is
composed.
Then the depth is used to calculate the height of the column of pixels —
the greater the depth, the smaller the column. This method allows you
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to quickly render an unrealistic image, but with a visible depth effect.
Because of this Ray Casting was used in the past, when computers were
not very powerful, to create games. An example is the game Wolfenstein
3D.

Figure 1.1 Wolfenstein 3D [4]

Ray Marching The Ray Marching technique is similar to Ray Casting in
that the distance to the object is calculated iteratively. However, unlike
Ray Casting, ray propagation is performed for each pixel on the screen
in the traditional 3D space.
The step size at each iteration can be calculated in two ways. The first
is similar to Ray Casting, where the ray takes a step by a constant
amount. The second is that at each iteration the distance from current
ray endpoint to all objects in the scene (in all directions) is calculated
first. Then the ray takes a step in its direction by the value of the
minimum distance among all distances to objects. This method has a
special term — sphere tracing. Usually, when people talk about Ray
Marching on the Internet, they mean sphere tracing. In this thesis we
will also use sphere tracing — it is with the help of this method it
is possible to achieve interesting visual effects, which will be discussed
further.
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1.1.3 Ray Marching Features
It is time to tell you about the features of Ray Marching technology and in
what cases it can be used.

As it was described earlier, ray propagation occurs with calculation of dis-
tance to the nearest object to the point. This is done with the help of signed
distance function (SDF). This function returns the distance from a given point
to a certain object. Each object has its own signed distance function. However,
you should not confuse Ray Tracing distance calculation with Ray Marching
distance calculation. In the first case, a function is used to calculate the dis-
tance from a point in space to an object along the ray direction. In the second
case, the distance from the point to the object is calculated — without taking
into account the ray direction. This is the fundamental difference between
these two approaches.

Figure 1.2 Ray Marching 2D distance approximation with SDF in 5 iterations [5]

The following will demonstrate visual effects that are difficult or impos-
sible to reproduce in a short time using other techniques. Details of their
implementation will be described in the practical part of this thesis.
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Figure 1.3 Soft shadows are very easy to implement using Ray Marching. [6]

Figure 1.4 With the module function, it is possible to create a repetition of an
object without computational expense. [6]

Figure 1.5 The minimum and maximum functions applied to the SDFs of different
objects allow us to simulate the operations of union, subtraction and intersection. [6]
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Figure 1.6 The smooth minimum and smooth maximum functions, create smooth
transitions between objects. [6]

(a) (b)

(c)

Figure 1.7 A variety of functions can be applied to the SDF result or to the position
of the ray in space at each iteration to obtain the desired results, such as displacement,
twist or bend. [6]

With these simple functions it is possible to create a wide variety of images.
A good example would be the work of Inigo Quilez, who at one time greatly
popularized the Ray Marching technique.
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Figure 1.8 One of Inigo’s Ray Marching works [7]

1.2 Terminology and notions

1.2.1 Hardware and Software
Shaders Nowadays, all 3D graphics are rendered using shaders. Shaders are

programs that use the power of the graphics card (GPU) rather than the
computer’s central processing unit (CPU) for their calculations. What is
the difference between graphics cards and CPUs? CPUs are designed to
quickly execute a chain of simple machine instructions (which make up any
algorithm). Modern processors also have multiple cores, which allows them
to execute multiple chains of operations in parallel. This is usually sufficient
for most tasks. However, problems start when we encounter 3D graphics.
When rendering 3D graphics, in order to calculate the final image we need
to perform calculations for each pixel. And although individually the com-
plexity of these calculations is not so high, when totaled for all pixels the
amount of resources required becomes impressive. To render a single image
in FULL HD format, which has already become a standard among moni-
tors, requires 1080 x 1920 = 2,073,600 pixel calculations. This is too much
even for modern processors. Despite this large number, graphics comput-
ing has a special feature — the computation of each pixel is independent of
the computation of other pixels. This means that these computations can
be performed simultaneously. As described above, today’s processors have
several cores each, which could be used to realize parallel computations.
However, this is still not enough for rendering graphics. This is where
graphics processors come to the rescue.
GPUs, aka graphics cards, are designed to perform thousands of calcula-
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tions simultaneously. In simplified form GPU can be represented as thou-
sands of relatively weak CPUs combined in a place. The power of one core
of a graphics card is large enough to quickly perform calculations for a
single pixel, and at the same time these cores are many enough to quickly
perform calculations for millions of pixels. Due to the peculiarities of its
architecture, not every task can be efficiently solved on a graphics proces-
sor. Only those tasks that can be broken down into a large number of small
tasks whose computations will not depend on each other are suitable. Nev-
ertheless, graphics cards are used not only for rendering graphics, but also
in other areas. For example, in the modern field of artificial intelligence,
graphics processors are used to multiply large matrices with thousands of
rows and columns.
For such special devices as video cards it is necessary to write special pro-
grams. Whereas the usual code is a large algorithm of a long chain of
actions, the code for graphics processors is a relatively small algorithm
that takes some information from the CPU (e.g. data about the scene in
the form of models and their materials), and based on it, with specificity
for each pixel, performs calculations and outputs the result (e.g. the color
of the pixel). Such programs are called shaders. In this paper, one of the
main parts will be writing a Ray Marching shader.

GPU A detail still worth mentioning about the GPU is its memory structure.
Its memory is categorized into registers, local, shared, global and constant.
Each of them has its own limitations. You can see their differences in the
following tables:

Figure 1.9 Variables declaration in each type of memory and their scope. [8]
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Figure 1.10 Access penalty of each type of memory. [8]

Here it is worth explaining what thread, block and grid are. A thread is
the smallest branch of calculations. It can be represented as one branch of
calculations performed for one particular pixel on the screen. A group of
threads is combined into a block, and a group of blocks is combined into a
grid.
As you can see from the tables, the memory that is available only to each
thread is only registers and local. All variables that we will declare when
writing the shader will be registers, because each thread (for each pixel)
will have its own values of these variables. However, pay attention to local
memory. Local memory is all local arrays. As you can see from the table,
this memory is terribly slow. However, when writing programs, we often
have to use arrays to store temporary data. Fortunately, there is a way
to avoid performance drops when using arrays in shaders, namely to use
arrays declared in shared memory [9]. We will talk more about this in the
implementation part.

1.2.2 Common visual effects
Since the development of 3D graphics, people have tried to reproduce the
picture of the real world on the monitor screen as accurately as possible. And
for better performance, it often had to be done in a roundabout way — “faking”
various visual effects caused in the real world by the complex behavior of light
through simple approximations. Many of these visual effects have gotten their
own names and their own methods of calculation in different 3D rendering
techniques. In the following, we will talk about some of them, which will later
be implemented in the final application.

Materials Materials play an important role in rendering an object. They set
the object’s color, gloss, reflectivity, opacity, luminosity, transparency, and
other parameters. In the real world, how a material looks depends on the
chemical compounds it is made of and their structures, inside and outside
the object. Light rays can be reflected at different angles, can penetrate the
material to different degrees, and can pass through it. All of this affects how
the material will ultimately look. Physically based rendering techniques,



Terminology and notions 13

such as Ray Tracing, attempt to simulate in detail the behavior of rays and
their interaction with materials, for the sake of a highly realistic picture.
However, this method is obviously very resource intensive. Therefore, other
ways have been devised to achieve similar results when rendering materials
without accurately simulating the behavior of light rays.
To date, the materials of objects allocate a certain number of properties. If
they are properly set up and rendered, you can accurately represent almost
any material from the real world. To the properties of the material include
— albedo, roughness, metalness, opacity, emission, IOR. In this thesis we
will pay attention to some of them.

Albedo Albedo is responsible for the percentage of light that is reflected
from an object. In the real world, light is partially absorbed and partially
reflected when it collides with an object. And light of different spectra is
most often absorbed/reflected differently. Thus we see different colors.
In various programs, the Albedo parameter is usually responsible for the
color of the object.

Roughness Roughness is a parameter that determines how strongly an
object reflects light at an angle equal to the angle of incidence of light. In
reality, the surfaces of objects have a large number of grooves and irregu-
larities that cause the incident light to be reflected not completely at the
right angle. An object with maximum roughness will reflect light in all
directions in the same amount. On the contrary, an object with minimal
roughness will have a near mirror-like surface because most rays will be
reflected at an angle equal to their angle of incidence. When implement-
ing material mapping, roughness is usually divided into two parameters
— diffuse and specular. Diffuse defines the amount of diffused light,
specular — the amount of light reflected at the angle of incidence.

Metalness Metalness, as the name implies, defines how strongly a mate-
rial reflects light, as metals do in the real world. People have long noticed
that metals reflect light differently than non-metals. This is partly why
metalness is now often defined as a separate parameter of materials. Like
roughness, metallicity is mostly responsible for the amount of light mir-
rored. A material with high metallicity and low roughness will literally
have the properties of a mirror.
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Figure 1.11 Combinations of roughness and metalness. From bottom to top the
metallic value is increasing, roughness is increasing left to right. [10]

Light casters Light sources are usually categorized into three types — “di-
rectional light”, “point light” and “spot light”. In many programs with
tools for creating 3D graphics is found still “area light”, but in this thesis
we will not touch it. They differ only in the area of the illuminated region
and the angle of incidence of light on the object.

Directional Directional light can be imagined as an infinitely distant light
source. The level of illumination of objects illuminated by directional
light does not depend on their location in space, and the angle of inci-
dence of light on them is always the same. It is usually used to simulate
illumination from the sun. And although the sun is not infinitely distant
from the Earth, it is far enough away that on a small area of land we
perceive the brightness and angle of incidence of its rays as the same
at any point in space. The main parameters of such a light source are
its directivity, brightness and color. These parameters are sufficient to
calculate the measure of illumination of an object. [11]

Point Point light is light that emanates from a point in space and prop-
agates in all directions. It usually has a limited range of coverage. A
typical analog of point light in the real world is a regular light bulb. The
parameters of a point light are its location in space, range, brightness,
and color. Also additional parameters can be three terms — constant,
linear and quadratic terms. These terms are used to calculate the atten-
uation of light as the object moves away from its source. The attenuation
is calculated using the following formula:

Fatt =
1.0

Kc +Kl · d+Kq · d2
,
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where d is the distance to the light source, and Kc, Kl and Kq are
constant, linear and quadratic terms, respectively. [11] Depending on
the values of these parameters, the illuminance level from distance will
vary approximately as follows:

Figure 1.12 Quadratic attenuation [11]

As can be seen, the light intensity decreases with distance from the
source at a quadratic rate. This calculation gives a more plausible result
than a sharp drop in brightness from 1 to 0 or a linear dependence of
brightness with distance.

Figure 1.13 Point light example [11]
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However, not all programs allow you to adjust these coefficients. For
example, in Unity 3D they are constant Kc = 1, Kl = 0 and Kq = 25.
[12]

Spot Spot light is essentially a spot light, but with a limited illumination
angle. The analog in the real world is a flashlight. It is not hard to
guess that in general the parameters of such a light source will be the
same as those of a spot light. The difference will be that the spot light
also requires the direction and angle of the cone of light. The angle of
the cone of light is also divided into outer and inner. This is to create a
smooth, realistic transition between lit and unlit areas.

(a) (b)

Figure 1.14 Hard (a) and smooth (b) transitions of spot light [11]

The coefficient of this transition is calculated using the following for-
mula:

I =
θ − γ

ϵ
.

Here θ is the cosine of the angle between the vector of the illuminated
point and the direction vector of the light cone, γ is the cosine of the
angle of the outer cone and ϵ — the difference of the cosines of the angles
of the inner and outer cones. [11]
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Figure 1.15 Spot light cones [11]

Soft shadows Soft shadows are an effect that is difficult to achieve in a ras-
terization shader. Soft shadows are characterized by a soft transition from
the shadow to the unshaded part, through the penumbra. In the real world,
soft shadows mainly occur when the light source is large enough, relative
to the distance to the object, and the plane on which the shadow falls is
far enough from the object. Given that most of the light in our world is
reflected light, almost all shadows are soft.

Figure 1.16 The principle of soft shadows [13]

Implementation of soft shadows using Ray Marching has its own peculiar-
ities, which will be described below.
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Ambient Occlusion Ambient Occlusion is essentially a technique for shad-
ing narrow spaces. Most objects in the world are illuminated not through
direct light rays, but through reflected ones. When rendering graphics,
indirect lighting is often simulated by adding a constant measure of ambi-
ent light to each object in the scene, whether they are directly lit or not.
This does not take into account that areas of the scene obstructed by other
objects should be darker. Ambient Occlusion partially solves this problem.
This technique shades those areas that are potentially difficult for light rays
to reach. For example, in one of the first versions of Ambient Occlusion
called SSAO (Screen space ambient occlusion), the coefficient is calculated
in a similar way: for a point on the screen, its position in space is taken,
and then several spatial points around the original point are taken. Those
points that are inside the geometry of the objects will contribute to the
shading coefficient.[14]

Figure 1.17 Ambient Occlusion example [14]

We will talk about the peculiarities of implementing Ambient Occlusion in
Ray Marching later.

1.3 Game Engines

1.3.1 Game engine specifications
A game engine is a framework designed to create games. They usually include
various libraries and a level editor. There are many game engines and each
one has its own features. When choosing an engine you should pay attention
to such criteria as:
Scale of the project Different engines are adapted to create projects of dif-

ferent scales. Some have complex and extensive tools and are more suitable
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for AAA game development. Others are easier to learn and use, and are
convenient for creating small 2D projects developed by small groups of
people. Choosing the wrong engine according to this criterion can lead to
difficulties and delays in development in the future.

Target platform The target platform, such as PC, consoles or mobile de-
vices, of the future game also affects the choice of engine. Different en-
gines support creation of projects for different platforms. Some are cross-
platform and support a large number of platforms, others do not, and
support only one. Therefore, prematurely selecting the target platform or
platforms is also important when choosing a game engine.

Project Budget Budget constraints also affect the choice of an engine. Some
are open source and free, while others may be paid or have various more
complex monetization systems. Unity 3D, for example, is free for users
whose annual game revenue does not exceed $100,000.

Skillset Each game engine has its own set of technologies used, in particular
the programming language. Skillset of the developer or developers, and
the prospect and complexity of the engine technologies for further learning
is also important when choosing an engine.

Graphics Different engines provide different capabilities when rendering graph-
ics. With some of them, it is easier to achieve the desired result than with
others. For example, Unreal Engine is famous for its photorealistic render-
ing.

Community A large and active community can be very helpful when learning
a new engine, especially for single developers. The official documentation
does not always cover all the many questions that a developer who has
not experienced the engine and its technologies before may have. In such
moments, answers and tutorials from the community are very important,
which can significantly speed up development.

Long-term support When developing large, long-running projects, it is im-
portant to also take into account the development of the game engine.
Regular updates and changes to the engine can affect the development of
the game in the long run.

[15]

1.3.2 Engine selection
So, having familiarized ourselves with the criteria for selecting game engines,
we can choose which criteria are important to us, and based on them make a
choice of a suitable game engine.
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In the case of our project, it is important for the target engine to have good
support for 3D rendering and writing custom shaders.

The scale of our program is not very large, so it should be convenient to
develop small projects on the engine we choose.

At the same time, since our project is not quite a standard project, it is
very important to have a large community, with the help of which we can
quickly find solutions and answers to various questions.

Our project is not commercial, so it is desirable that the target engine was
free or conditionally free.

And also important is the presence of personal experience in working with
the future selected game engine.

Taking into account all the above criteria one of the best choices will be
Unity 3D engine. In the case of our project it is free, it is considered one of
the easiest to learn, has good support for 3D rendering and writing your own
shaders, it is relatively easy to implement small projects, has one of the largest
community and the author of this thesis has experience working with it. All
this makes Unity a good candidate for developing a Ray Marching editor.

1.3.3 Unity Fundamentals
In this section we will talk about the structure and basic concepts of the Unity
3D engine.

1.3.3.1 Interface
Below you can see a screenshot of the Unity workspace. Based on it we will
describe all the basic concepts of the engine.
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Figure 1.18 Unity 3D 2022.3.11f1 interface.

In the center is the scene window. On it, the developer creates game levels
by placing models, lighting, interface icons and other objects in the space.

On the left side is the hierarchy window, which currently contains several
objects. The objects in the hierarchy window are the objects that are repre-
sented on the scene. These objects can be placed one under another, creating
a hierarchical structure. Each child element in the hierarchy inherits the rota-
tion, scale and position in space from its parent, adding them to its own. This
is very convenient because it allows you to group objects and in many cases
treat them as a single object.

On the right side is the inspector window, which can be used to view and
modify object properties. In this example, the cube has such components as
Transform, for defining position, rotation and scale in space, Mesh Renderer,
for displaying the cube on the scene, Box Collider, for physical interaction
and cube material. Unity has a large number of ready-made components. By
writing your own scripts you can create your own components for objects,
giving them the necessary properties and specifying their behavior.

At the bottom is the project window, which displays all the files involved
in the project. Here you can add images, models, scripts, scenes and any other
files needed for the project. Also to the right of the project window label
you can see the console window label. The console is used for debugging the
program — displaying errors and messages for the developer.

Finally, at the top center, you can see the “Play” and “Pause” buttons, for
playing and testing the game.
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1.3.3.2 Programming part
Unity uses the C# programming language. After creating and opening a script
through Unity, you will see the following template.

Figure 1.19 Unity’s template of C# script, screenshot of Visual Studio 2022.

As you can see, by default, Unity adds in its library and creates a class
that is named as a script and inherits from the MonoBehaviour class. MonoBe-
haviour is the base class of the Unity GameObject, which has a large number
of useful methods. Two of these methods are Start and Update.

The Start method is called when a scene is started with the object that owns
the script. If there is only one scene, this happens when the game starts. The
Start method is called once each time a scene is opened. This is usually where
the developer sets the initial configuration of the object, allocates containers,
and other things to prepare the object.

The Update method is called at each frame of the game. This is where the
main behavior of the object is defined — what the object “does”.

Of course, in addition to these and other pre-defined methods, an object
can have other custom methods and attributes, both private and public.

Other things Here’s what else you should know about Unity objects:

For a script to work (call the Update method), it must be assigned as a
component to at least one object in the scene.
Scripts can access public attributes and methods of other scripts.
Public attributes can be configured manually in the Inspector window
(which will be described later in this thesis).



Chapter 2

Existing solutions

Ray Marching is not as popular as other rendering techniques, but there are
relatively many tools available for its use. In this chapter we will look at
some of them, and at the end we will summarize and decide which features
may be unique for our project.

2.1 Ray Marching Tools

2.1.1 Raymarcher — Game toolkit for Unity
Raymarcher is a powerful tool from Matej Vanco that allows you to create and
customize scenes with Ray Marching in a very flexible way. Here’s a list of key
features the creators write about:

“One-click setup”

“Simple and user-friendly interface”

“Collection of SDF primitives, fractals, and volumes.”

“Collection of well-known SDF modifiers and boolean operations”.

“Built-in standard material library”

“Built-in rendering filters”

“Complete toolkit for simple voxel manipulation”

“Mesh-to-3D volume converter tools”

“Cross-platform support, including VR, mobile & WebGL”

“Compatibility with all Unity render pipelines (Built-in, URP, HDRP)”

“Complete video documentation series”

23
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“Real-time support and access to unlimited updates”

“Original example content”

[16]
This tool implements most of the features of Ray Marching technique. Of

all existing similar projects, this one is one of the most advanced to date. Also,
as the developer writes, the project is compatible with the three newest versions
of Unity 2023.2.12f1, 2022.3.20f1, 2021.3.35f1 and with all Unity pipelines.
However, the project is not open source, and one of the drawbacks, if it can
be considered a drawback, is its high price. You can familiarize yourself with
this tool here: [16].

Figure 2.1 Screenshot from Fractal Sailor game, which was created with Ray-
marcher tool. [17]

2.1.2 FERM
Fast Easy RayMarching is another paid large Ray Marching tool for Unity,
created by Ward Dehairs. This project also provides a large number of features,
about which the developer writes:

“Real time rendering for all features, down to the biggest, baddest, in-
finitely repeating, shape shifting monster you could ever dream up.”

“Skybox mode: fill the sky with mesmerizing fractals. Ideal for creating a
dreamy or alien atmosphere.”

“Animation. make complex shapes fold, rotate, move and otherwise ani-
mate, without breaking your head over complex math!”
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“Shape mixing, smooth unions that blend shapes like liquids, distorted
mixes to create an otherwordly impression and more.”

“Infinite rendering distance. Repeating fractals that run on to the horizon
or fill the entire sky. Infinite planes, tunnels, cones and spirals!”

“Unity lighting support, because who wants to reinvent the wheel? We
support both the standard shader option and unlit behavior!”

“Loads of primitive shapes in both 2D & 3D, such as spheres, boxes, planes,
pyramids, arches, infinite tunnels, circles, spirals, polygons... you name it,
we got it!”

“Fractals again, both in 2D & 3D: Mandelbulb, Mandelbrot, Sierpinski,
Julia and Koch snowflake, just to name a few. Not to mention, the option
to create your own fractals with the powerful recursion component.”

“Texture support. No more tedious UV unwrapping! Get it packaged
automatically in a variety of shapes.”

“Highly customizable with tons of options to optimize settings and perfor-
mance.”

[18]
A distinctive feature of the project is the strong emphasis on fractal gen-

eration.

Figure 2.2 Fractal rendered with FERM tool. [17]
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2.1.3 Raymarching Toolkit for Unity
Raymarching Toolkit is another good Ray Marching tool for Unity. This addon
was created by Kevin Watters and Fernando Ramallo in 2018, but for unknown
reasons the link to download it was removed from itch.io, the only site it was
distributed on, and it is currently unavailable. However, you can still read
about the features of the tool on the developers’ website. [19]

Judging by the description and photo and video materials from the devel-
opers’ site, the addon had all the main features of Ray Marching technology.
In the project were implemented such features as smooth Boolean operations
(smooth union and smooth subtraction), various modifiers, including displace-
ment, bend, twist and others, domain repetition, mirroring, rendering fractals,
soft shadows and ambient occlussion and others. It probably used to be one
of the most powerful Ray Marching tools as well, but it is unfortunately not
available now. As of today, what remains of the project is a sample applica-
tion made with the Raymarching Toolkit called Character Creator, which is
available on the developers’ website. [20]

Figure 2.3 Screenshot of created in Character Creator character [20]

2.1.4 Other projects
There are several other projects on the Internet that perform the function of
Ray Marching scene editor. Although they are not as big as the previous two,
we will pay some attention to them.

Raymarching-Engine-Unity This project, judging by the v002 version listed
on the project’s github, is at an early stage of development. However, it
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already supports over 28 primitives (including fractals, n-dimensional ob-
jects, volumetric clouds) and set operations (Union, Subtract, Intersect).
A distinctive feature of this project is the detailed customization of lighting
and shadows, as well as the creation of custom shapes. [21]

Unity Ray Marching This tool supports simple creation of several types
of shapes and Boolean operations between them. However, this project
has one interesting feature — the use of AABB trees in rendering. [22]
In short, AABB trees are a way of organizing 3D objects in space, which
allows you to calculate distances at each iteration only for objects that
are most likely to collide with the ray. This technique allows to optimize
calculations significantly. Probably this or other similar techniques were
also used in previous major projects, but in any case it was not mentioned.

2.2 Shadertoy
I would like to mention separately the Shadertoy site. Although this site is not
a tool for Unity and Ray Marching technology is not its central priority, it has
historically been very important to the evolution of Ray Marching technology.
This resource was created by Pol Jeremias and Inigo Quilez. Inigo Quilez has
been mentioned before as one of the main popularizers of Ray Marching. On
his YouTube channel you can find many tutorials on creating scenes with Ray
Marching, and on his blog — many code examples and explanations of many
Ray Marching and not only Ray Marching techniques. [6]

The Shadertoy site allows its users to write and render any shaders they
want, as well as share them and freely view other people’s shaders and shader
code. Many shaders that can be found there apply Ray Marching technology.
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Figure 2.4 Example of one of Shadertoy user’s shader. The code on right side is
available to edit. [23]

2.3 Conclusion
In this chapter, we looked at several tools for creating scenes using Ray March-
ing. In general, we can say that these tools are able to satisfy most of the users’
wishes. However, the main tools are not freely available. Also, there is one
very obvious feature that was not found in any of the projects described above.
It is about the hierarchy of applying Boolean operations to objects. It is quite
obvious that a user may want to apply several subtraction/union/intersection
operations one after another in a certain order. However, for some reason this
has not been implemented in any of the projects. For this reason it was decided
to add this feature to the project and make it the main feature of this work.
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Practical part

29



Chapter 3

Project development

3.1 Project Features
The goal of the project is to provide the user with as many tools as possible
to create a graphical scene. Among them we can highlight:

1. Compatibility with Unity’s built-in rasterization shader: one of the main
conditions is that objects rendered with Ray Marching are compatible with
Unity’s regular polygonal objects. Objects rendered using both methods
must overlap correctly, based on the depth buffer.

2. Primitive templates: creating complex scenes/objects with Ray Marching
consists of combining various simple shapes such as sphere, cube, torus,
etc. It is therefore important to provide the user with a wide choice of
primitives.

3. Simple transformations: transformations such as object rotation and scal-
ing when working with 3D objects have already become common for any
game engine or 3D editor. Therefore, it is also important that they work
for objects rendered with Ray Marching.

4. Boolean functions for combining objects: In the community of people who
create shaders with Ray Marching techniques, Boolean functions for com-
bining objects such as minimum, maximum, smooth minimum and smooth
maximum are an integral part of creating a scene. Accordingly, these func-
tions should also be added. It should be added that it is also important to
implement combining not only single objects, but also groups of objects.
For example, in theory a user may want to create an intersection of two
primitives and then subtract this intersection from the third primitive. As
mentioned in the conclusion of the previous chapter, the transformation
hierarchy will be the main distinguishing feature of this project.

30
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5. Materials: Materials are an important part of 3D graphics in general.
Therefore, it is important to create an interface for creating custom mate-
rials and the best possible model of their processing and rendering, so that
the final picture would look as good as possible.

6. Light and shadow: as well as material, light strongly affects the quality of
the final image. Therefore, quality rendering of light and shadows is very
important. Here we can emphasize the processing of directional, point and
spot light sources, as well as rendering soft shadows and ambient occlusion.

7. Object repetition and mirroring: in the Ray marching technique object
repetition as well as mirroring is one of the cheapest effects in terms of
computational resources. Due to the cost of using a large number of dif-
ferent objects in a scene, object repetition is one of the most important
tools.

8. Other object deformations: Ray Marching has a large scope for deforming
the geometry of objects. Deformations such as displacement, twist and
blend, which were demonstrated in Figure 3.7, should also be added.

9. User Interface: Finally, the user GUI is also an important part of the
project. The GUI is intended to facilitate the user’s interaction with the
tool, and therefore should be intuitive and not cause difficulties or misun-
derstandings when interacting with it.

3.2 Methods
In general, the program can be divided into three parts: the interface, the
primary input processing and the shader.

3.2.1 Interface
The interface part, as the name implies, is responsible for the graphical inter-
face. The interface is what the user sees, and it is the only thing with which
the user can use the program. A good interface should be intuitive and require
minimal additional instructions.

The most logical and convenient way to display the interface is to use
Unity’s internal Inspector. The Unity Inspector is designed so that any global
variables declared in the code will be displayed on the Unity Editor stage.
These variables will also be available for manual editing. Therefore, if we want
to create an object with custom parameters, we will only need to declare these
parameters as global variables in the code, after which the user will be able to
interact with them from the editor scene and see the result in real time.
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Figure 3.1 Example of custom interface created with Unity’s Inspector.

In addition, if we have a need for a more advanced interface that will
contain elements not supported by Unity by default, we can resort to free
addons developed by other people who have implemented the tools we need
for us. Since the central theme of this work is not the interface, I think we can
go for it.

3.2.2 Primary input processing
The primary input processing part is responsible for processing the data re-
ceived from the user and then sending the data to the shader. The data re-
ceived by the shader should be provided in the most “convenient” form for the
shader. Anything that can be computed on the CPU and is not specific to in-
dividual pixels on the screen should be computed on the CPU. As mentioned
here 1.2.1, each GPU core is much weaker than the CPU cores. Therefore,
it is very resource intensive and pointless to perform identical computations
for each pixel. Consequently, any such situations must be determined and
accounted for in advance.

This part will be written entirely in the C# programming language —
Unity’s main programming language. The details will be described in the
following sections.

3.2.3 Shader
Finally, the shader part performs the main graphic calculations and produces
the final image. This part is the largest and most important part of all. The
shader will receive the scene data sent by the processor, such as data about the
shapes in the scene, their various modifiers, the hierarchy of Boolean operators,
materials, textures, lighting and shadows. The output of the shader will be
just one parameter — the color of a pixel. Our main task in this part will be
to write optimized code that correctly and efficiently renders the final image
according to the given parameters.

In Unity you can create shaders of several types. All of them are mostly
templates for creating your own shaders, which are more or less adapted to
certain tasks. In this project we will use the �ompute shader. A �ompute shader
is a type of shader that is not really targeted at any particular task. This makes
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it very flexible, and in our not-so-standard project, it fits perfectly. Also, one of
the features of comput� shaders in Unity are comput� buffers. Compute buffers
allow you to send entire arrays of data structures to the shader. For example, if
we were using a standard shader, we would have to send data through uniforms,
and we could only send data as arrays of numbers. Moreover, the number of
bytes of data that can be sent via uniforms is very limited and is not suitable
for our purposes.

As for the software aspects of Ray Marching technology, many of its fea-
tures have already been described by other people. For example, Inigo Quilez
in his blog has disassembled and even posted the code of many features that
we can use when implementing the project. [6]

3.3 Design
The following diagram shows the structure of the project:

Figure 3.2 Project structure. Created with [24].
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Most of the objects are in the “Objects located on the Scene” section. As
mentioned here 1.3.3.2, in order for scripts to function (namely, for their Up-
date method to be called), the script must be assigned to an object on the scene
as a component. Therefore, even objects that have no physical representation,
such as the Light Manager from the diagram, must be on the scene. In such
cases it is common to use Unity’s Empty GameObject. Ray Marching shader
is the only object that is not on the scene. This is because the shader is not a
C# class inherited by MonoBehaviour, but a separate program written in the
HLSL shader language.

Let’s analyze the individual elements in the diagram from bottom to top.

At the very bottom are “Object” and “Unity Light”. “Unity Light” is
highlighted and described as Unity’s object because it is the only object that
will not be written by us. We will use Unity’s built-in lighting to light the
objects. This is appropriate, as we would like our procedurally rendered objects
to be lit in the same way as regular polygonal models that may be on the
scene. An “Object” is essentially a 3D shape rendered by a shader. It has an
attribute “Object properties” which is responsible for setting the properties of
the shape. This includes customizing the shape of the object, its position in
space, material and other possible properties. For the most part, “Object” is
just an interface holder that stores data about the shape that is processed by
other scripts.

Next comes the “Group” object. This object is used to apply a particular
Boolean operation to a group of shapes. As you can see on the diagram, a
group can be linked to several “Objects” and several other “Groups”. These
relationships are indicated by the “Children” attribute. These imply a hier-
archical structure that can be used for various Boolean transformations. You
can think of it as a tree whose leaves represent shapes (“Object”) and its other
nodes represent groups (“Group”). There is always a group at the root of
the tree. Theoretically, a leaf of the tree could also be a group, but that
doesn’t make sense. In Unity, this hierarchy will be represented as a hierar-
chy of objects in the “Hierarchy” window. The “Group properties” attribute
denotes various possible customizable group parameters, among which there
are at least Boolean operations as at Figure 1.5, which can be applied to child
objects.

Above the “Unity Light” entity is the “Light Manager”. This object will
store references to the light sources that will take part in lighting the scene, as
well as having several configurable parameters, such as soft shadows and ambi-
ent occlusion settings. Also here will be “wrapping” the lights in a convenient
form for shading in the shader.

To the right is a similar entity — “Object Manager”. Except for shadow
settings, the Object Manager will do the same thing as the Light Manager,
but for groups and shapes. The input parameter will be a single reference to
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the main group, which as descendants will have all other groups and objects
present in the scene.

“Main Ray Marching C# script” stores references to “Object Manager”,
“Light Manager” and also the main shader. This script does the final sending
of all the necessary data to the shader, accepts the result from the shader
and displays it on the screen. It will also have parameters to customize the
Ray Marching algorithm (maximum number of approximation steps, maximum
distance, etc.).

Finally, the “Ray Marching Shader” will render and return the final image
based on the received data.

3.4 Implementation

Object
Implementations can be started with a script of shapes. This is the hardest
part, from an interface point of view. The object interface should include
position, rotation and scale settings, a drop-down list of all available shapes to
choose from, settings for each shape, and material settings. Also, the object
repetition setting can be added here.
Unity’s Transform component will help us with the first one. The Transform
component has attributes Position, Rotation and Scale. This component is
present in every Unity object by default. It also allows you to move, rotate or
scale the object using the graphical interface on the Scene window.

A drop-down list of available shapes could be implemented using a global
Enum variable. However, experimentally it was found out that when the scene
is restarted, i.e. every restart of Unity including, the value of the Enum variable
is reset. This makes it very difficult to use the tool. Therefore, an alternative
way was found. We could write our own custom inspector, but instead we will
use other people’s work. We will use the “EditorCools” toolkit [25]. It allows
us to create a drop-down list using strings.
Different geometric shapes have different parameters. For example, a sphere
would only have a radius, a cone would have a radius and height. We could
replace some of these with parameters from the Transform component. So for
example instead of having a separate variable that would store 3 radii for an
ellipsoid, we could use the 3 parts of the Scale attribute. However, complex
shapes may require additional parameters. We would also like these parameters
to be displayed in the interface only if the user has selected the corresponding
shape from the drop-down list. For this purpose, we will have to use an
additional set of tools called “MyBox” [26]. One of the Inspector attributes
that this package adds is the ConditionalField attribute, which allows variables
to be displayed in the Inspector only under certain conditions. In this way we
can create different parameters that will be displayed only when a certain
shape is selected.
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[Dropdown(nameof(GetShape))]
public string Shape;
...
[ConditionalField(nameof(Shape), false, "CUBE")]
[Range(0.0f, 1.0f)]
public float CubeRounding;

Code listing 3.1 Example of ”Dropdown” and ”ConditionalField” attributes. The
CubeRounding field appears in Inspector only if Shape variable’s value is equal to
”CUBE”.

Otherwise, creating the interface for the other shape parameters is not
particularly noteworthy, so it will be omitted in this section. The description
of their work will be described later in the part about shader implementation.

Figure 3.3 First version of shape’s interface. Slider was created with ”Range”
attribute.
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Group
The Group code is one of the smallest in the project. All it does is to store
and customize pain operations for objects. As in the case of the Object, we
will talk about the details of the implementation of Boolean operations in the
part about the shader.

Figure 3.4 Properties of Group.

Object Manager
Despite only one input parameter, the code of this element is quite extensive.
Its main idea is to traverse a hierarchical tree consisting of Groups and Objects
and somehow pack this tree into an array convenient for shader processing. But
how to do it? The problem is that the HLSL language is very limited. Many
tools, such as pointers, are not available in HLSL. This is due to the specifics
of how shaders function. For this reason, passing a tree and traversing it is
not an easy task.

Let’s clarify the situation: we want to realize hierarchical application of
Boolean operations to objects. To do this, we need to do it in a certain order,
“from bottom to top”. To do this, we need to pass the whole tree to the
shader, preserving its structure. To begin with, we can separately pass an
array with objects and an array with a tree. In the tree, instead of storing
objects directly, we will store their indexes in the objects array. Thus, in each
node of the tree we will store only one number instead of all object properties.
The next question is how to pack the tree into an array? In fact, there are
several ways to do it. Let’s run the DFS algorithm along the tree starting
from the root. Let’s have a counter, which will be incremented by one at each
first entry to a vertex. When leaving a vertex to its parent, we will write the
number of the last visited vertex (the counter value) into it. Thus we will
have an array of numbers, where the index will mean the number of the node,
and the value — the number of the last node of the subtree of this node. All
vertices with numbers from “index” to “value” will also lie in the subtree of
the node with the number “index”. This rule will work for any node in the
tree. Thus, the root will be represented by the number “n” at index 1 in the
array, where “n” is the number of nodes in the tree.
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Figure 3.5 Unity object’s hierarchy and its representation in the form of a tree
and its array. Created with [24].

As a result, we have a basis for further work. When we write a shader, we
will come back to this tree and probably modify it.
We will compose this array every frame. We will also store a copy of the
array from the previous frame and compare it with the new one, to detect the
moment when objects in the scene were changed. We will do this so that we
don’t send the array to the shader every frame, but only when the data in it
has been changed.

As mentioned above, we divided the object hierarchy into an array with
the index tree, and an array with the shape data. The array with shape data
will be a list whose unit is a custom structure containing all data about the
shape.
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public struct RayMarchingObject
{

public int type;
public int group;
public float3 position;
public float3 rotation;
public float3 scale;
public otherParameters otherParams; // 12
public struct otherParameters{...};

};

Code listing 3.2 Custom structure to store shapes data. otherParameters is an-
other structure which simulates behaviour of float array of 12 elements. We can’t use
an array directly because of Unity. This ”array” is for storing a specific to each shape
data.

We will send this array using the compute buffer mentioned above. Its
peculiarity is that if we create identical structures in the shader and in the C#
script, we can directly send arrays of structure data from the C# script to the
shader. This is pretty convenient.

Light Manager
The functionality of the Light Manager script will be similar to the Object
Manager, but much smaller. All it does is build an array of light source
parameters referenced by the user, and also holds an interface for shadow
settings. It is only worth pointing out that in order for the user to specify
light sources, it is enough just to create a global variable-list of lights (List
<Light> Lights). After that, in the Unity Inspector will automatically appear
a window in which user can move any number of lights with drag-n-drop.

Main Ray Marching C# script
This is the final C# script that will send data to the shader. In addition,
it will also receive the finished image from the shader and set it. Therefore,
we will perform all actions not in the Update method as in other cases, but
in the OnRenderImage method. This method is called after each completion
of image rendering and takes 2 parameters — two RenderTexture — “source”
and “destination”. Source texture is the image that was rendered using Unity’s
built-in rasterization shader. Destination texture is the image we want to see
on the screen. Our goal is to take the source texture, augment it with rendered
Ray Marching objects, and copy the result into the destination texture.
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Let’s list the basic data we need to send to the shader. First of all, we should
send some data about the camera. Namely its coordinates, foward vector,
rezolution of image and frustum corners. Frustum corners are 4 normalized
vectors that are directed towards the corners of the camera’s field of view
pyramid. We need them to calculate the ray direction vector using them and
the pixel coordinates on the screen. Fortunately, the unity camera has a special
method for calculating frustum corners.

Vector3[] frustumCorners = new Vector3[4];
CurrentCamera.CalculateFrustumCorners(new Rect(0, 0, 1,

1),↪→

CurrentCamera.farClipPlane,
Camera.MonoOrStereoscopicEye.Mono, frustumCorners);↪→

Matrix4x4 frustumCornersMat = new Matrix4x4();
frustumCornersMat.SetRow(0,

Vector3.Normalize(CurrentCamera.↪→

transform.TransformVector(frustumCorners[0])));
frustumCornersMat.SetRow(1,

Vector3.Normalize(CurrentCamera.↪→

transform.TransformVector(frustumCorners[1])));
frustumCornersMat.SetRow(2,

Vector3.Normalize(CurrentCamera.↪→

transform.TransformVector(frustumCorners[2])));
frustumCornersMat.SetRow(3,

Vector3.Normalize(CurrentCamera.↪→

transform.TransformVector(frustumCorners[3])));

rayMarchingShader.SetMatrix("_FrustumCornersES",
frustumCornersMat);

Code listing 3.3 First frustum corners corners are calculated. Then they are con-
verted to global coordinates with CurrentCamera.transform.TransformVector(), nor-
malized, and set to 4×4 matrix as rows. At the end matrix with frustum corners is
sent to the shader.

Finally, we send data about objects, materials and lights to the shader.
We store lights, objects and materials in arrays of custom structures. Loading
this data into a compute buffer and sending it to the shader, we can do in just
a few lines of code:



Implementation 41

computeBuffer = new
ComputeBuffer(ObjectManager.objBuff.Count,↪→

RayMarchingObjectByteSize);
computeBuffer.SetData(ObjectManager.objBuff.ToArray());
rayMarchingShader.SetBuffer(rayMarchingShader.
FindKernel("CSMain"), "Objects", computeBuffer);

Code listing 3.4 Compute buffer creating and setting.

Shader
And here we come to writing the shader. In general, the shader algorithm can
be divided into two parts. In the first part we look for the point of contact
of the beam with the object, in the second part we illuminate it based on the
distance to the object.

To find the point of intersection of the beam with the object, we must
follow the following simple algorithm:

1. Start from the camera position.

2. Find the distance to the object (in all directions) from the current position
using the SDF function of the object.

3. Move along the ray to this distance.

4. Repeat steps 2 and 3 n-number of times.

5. Done!

The search for the point of contact with the object is carried out in several
(hundreds) iterations. From the number of iterations depends on the accuracy
of determining the boundaries of objects and therefore the quality of the final
picture, but also the amount of load on the system. Therefore, we will allow
the user to configure this parameter independently through the interface.
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Figure 3.6 Two renders of an ellipsoid and a plane with 300 and 100 iterations.
Equation of exact distance to an ellipsoid is too demanding, so we use its approxima-
tion. It causes artifacts when the number of iterations is small. [27]

Having found the distance, we can already visualize the object by substi-
tuting the depth as the final color. To apply lighting to the object, we must
first find the normal of the object at the intersection point. Normal is a vector
perpendicular to the object plane. To find it, we can use this function:
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float3 getNormal(float3 p)
{

float d = getDist(p).dist;
float2 e = float2(0.001, 0);
float3 n = d - float3(getDist(p - e.xyy).dist,
getDist(p - e.yxy).dist, getDist(p - e.yyx).dist);
return normalize(n);

}

Code listing 3.5 getNormal function. getDist function returns distance from the
point to an object.

As you can see, when calculating the normal, we indent a very small value
in all 3 directions and look for distances. In this way we perform a direct
differentiation:

df(p)

dx
≈ f(p)− f(p− {h, 0, 0})

h
,

where h is as small as possible. You can read more about it here [28].

With the normal in place, we have everything we need to calculate the
shading of an object. All we need to do is multiply the color of the object by
the scalar product of the normal and light direction vectors (in fact, the cosine
of the angle between them) [29]. In the case of directional light, we can take
the light direction vector directly. Or, in the case of other types of light, we
can calculate it using the coordinates of the illuminated point in space and the
coordinates of the light source.

In the same part, we can realize attenuation of point light and spot light.
We use the formulas that were given here 1.2.2. Fortunately, the Unity doc-
umentation contains code samples with the exact formula for calculating the
attenuation. [12]

And finally we can realize glare from specular surfaces. Two of the object
parameters we pass are specular and roughness. We will use the Blinn-Fong
model to calculate the glare. The Blinn-Fong model is an improved version of
the Fong model, which allows us to achieve better illumination results at sharp
camera angles on the surface [30]. Its essence is that we will first calculate the
mean vector between the gaze vector and the light incidence vector, and then
find the scalar product of this mean vector with the surface normal. The
result is a power of 1

specular , where specular is a parameter we have given
to the surface, whose value ranges from 0 to 1. We can use the roughness
parameter to soften glare. The higher the roughness is, the dimmer the glare.

Let’s get back to rendering shapes. How to render several shapes on the
scene? The most obvious and most used way is to calculate distances for
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each object at each iteration, using their SDFs, and take the minimum of
all distances. This way we will never miss any of the objects and render an
object that should be overlapped by another object. We can say that by using
the minimum function we implement the union operation. [31] In addition to
union, there are two more operations that would be useful to implement —
intersection and subtraction. These functions are realized in a similar way.

For intersection of objects we need to take the maximum of their distances
instead of the minimum. In this case, the ray will approach the farther object
of the two, and when the ray enters the first (nearest) object, the distance to
it becomes negative, the ray will simply take the distance to the second object.
To give an example, if the objects do not intersect, the ray will go to infinity.
[31]

To subtraction, we need to apply the maximum function in the same way,
only one of the objects (the one we are subtracting), we need to invert —
multiply its distance by -1. Inverting an object can be visualized as if the
entire space around the object becomes “solid” and the object itself becomes
empty. If you do this trick with one object in the scene and place the camera
inside it, you can see its walls from the inside, as if the object were hollow.
In this way, the operation of subtraction can be perceived as an operation of
intersection with an inverted object. [31]

The following figures demonstrate the principle of all three operations:
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Figure 3.7 Illustrations of three SDF operations. These are screenshots from [31]
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That’s not all we can do with our objects. Basically, we could use any
function with two parameters to get interesting results.
In the Ray Marching community, smooth minimum and smooth maximum
have become commonplace. The result of work of these functions has been
illustrated here 1.6. These functions give an output value close to the mini-
mum/maximum depending on the magnitude of their difference. [32]

Figure 3.8 Example of smooth minimum function. Red and blue are initial func-
tions, purple is the minimum of them, orange is the smooth minimum. Created in
Desmos [33].

The smooth minimum function also takes a third parameter — coefficient
k, which affects the distance at which the result of the smooth minimum will
begin to appear. This oefficient k we will allow the user to change through the
interface.

float smin( float a, float b, float k )
{

k *= 1.0/(1.0-sqrt(0.5));
float h = max( k-abs(a-b), 0.0 )/k;
return min(a,b) - k*0.5*(1.0+h-sqrt(1.0-h*(h-2.0)));

}

Code listing 3.6 Circular smooth minimum function code [32].

There are quite a large number of functions of smooth minima. Never-
theless, they are all quite similar, and the differences in their operation are
not always visible to the naked eye. For our project I chose one of them —
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circular smooth minimum 3.6. I chose this particular function, as it is clear
from the demonstrations on this [32] resource that this function is the weakest
in causing “volume thickening”.

Figure 3.9 Different smooth minimum functions comparison in 2D space. Green
is the circular smooth minimum [32].

It is not hard to guess that there is an analogous maximum function for
the maximum function. So we have four functions — minimum, maximum,
smooth minimum and smooth maximum, the last two of which are paramet-
ric. That’s quite a lot. With one smooth minimum function, you can create
many combinations using different coefficients. For this reason, support for
hierarchical processing of combination functions is desirable. Here we return
to our tree.

The tree information we pass by array would already suffice for a tree
traversal. However, there is one nuance.
HLSL does not support recursion, which is not surprising for a shader. There-
fore, we will have to iteratively traverse the tree. For such a traversal, we
would need to additionally remember various information, for example, about
the children passed. And we would have to store this information in arrays
with a constant size. As mentioned here 1.2.1, using arrays is not an easy task
for a shader, so we will use shared memory to create them. Shared memory
is fast but is available to all threads, so we will divide it into several parts
[9]. Let’s create one large two-dimensional array with sizes t × n, where t is
the number of threads in the block and n is the size of the one-dimensional
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array we need. Thus, each thread will be able to access its memory area by
its thread number. Further experiments showed that using shared memory
instead of local memory significantly speeds up performance.

However, we still have a memory problem. The amount of shared memory
is very limited. Unity generates an error when using more than 32 kilobytes
of shared memory of the video card[34]. That’s why we have to use it wisely.
What exactly are we going to store in our arrays? While taking into account
the transfer of all necessary information about the object tree, we must at least
store intermediate results when applying combining functions during traversal.
We cannot immediately combine objects that are in different groups; we must
first count the values of their groups. For this reason, we must memorize the
intermediate results. Look at the tree in the following illustration.

Figure 3.10 ”Bad” tree for naiv tree traversal. Created with [24].

Let’s imagine that we go around this tree and connect its elements. We can
only connect objects that are in the same group (i.e. have a common parent).
If an object is a group, we must first process its children. If we traverse our
tree in a “naive” way, an unpleasant situation may occur. For example, if when
going around the tree above we keep going down to the leftmost child, we will
have to memorize the distances to each child until we get to the last bottom
right child and can start “connecting them”. So this will take up 5 memory
cells. Now imagine that instead of going down to the leftmost child, we go
down to the rightmost child. In such a situation, if we connect all available
intermediate results at the first opportunity, we would only need 1 memory
cell! Thus it becomes clear that the correct order of traversing the tree can
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save us a lot of memory.
Now we face the question: which traversal algorithm will be the most

optimal? First of all, let’s say that we will perform this traversal not in the
shader, but in the C# script when building the tree. Thus, we will arrange
the subtrees in the order that will be optimal for a naive pass. To understand
which algorithm will be optimal, let’s think about which tree will require the
most memory. We will quickly come to the conclusion that the most “heavy”
tree will be a perfect binary tree. A perfect binary tree is a binary tree of
height h that has 2h+1 − 1 nodes. Such a tree will require exactly h memory
cells, where h is the height of the tree, during its elimination (I will call the
sequential connection of nodes elimination). So, my claim is that if we, when
eliminating a tree, first go down to the subtree that has the largest perfect
binary tree in itself as a subtree, then the total amount of memory we will
require is h, where h is the height of the largest perfect binary subtree among
all perfect binary subtrees in the given tree. There is no complete proof of this
statement, but it has been tested on many cases. Thus, if we assume that this
statement is true, then even allocating 10 memory locations will be enough to
use at least 512 objects (the number of leaves of a perfect binary tree of height
10).
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float getDist(float3 p)
{

int queuePivot = 0;
int lastProcessedI = 1;
int currGroupSize = 0;
int treeDeep = 0;
int prevChildNode = 0;
// Find leafe
for (; lastProcessedI < groupsTreeSize;

lastProcessedI++, treeDeep++)↪→

{
if (lastProcessedI == groupsTree[lastProcessedI].x)

break;
}
for (int i = lastProcessedI; i != 0;) //start in leafe
{

if (i != groupsTree[i].x)
{

if (prevChildNode > i + 1)
{

objProcQueue[threadId][queuePivot - 2] =
applyFunc(objProcQueue[threadId
[queuePivot - 2],
objProcQueue[threadId][queuePivot - 1],
abs(groupsTree[i].w));

↪→

↪→

↪→

↪→

queuePivot--;
}
if (groupsTree[i].x > lastProcessedI)
{

i = 1 + lastProcessedI + treeDeep;
treeDeep++;

}
else
{

if (groupsTree[i].w < 0)
{

objProcQueue[threadId][queuePivot - 1]
*= -1;↪→

}
prevChildNode = i;
i = groupsTree[i].z;

}
}
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else
{

objProcQueue[threadId][queuePivot] =
calcObjectDist(p, groupsTree[i].w);↪→

if (groupsTree[i].w < 0)
{

objProcQueue[threadId][queuePivot] *= -1.0;
}
queuePivot++;
lastProcessedI = i;
treeDeep = 0;
prevChildNode = i;
i = groupsTree[i].z;

}
}
return objProcQueue[threadId][0];

}

Code listing 3.7 Shader’s function, which performs common tree traversal. Tree
is constructed in an optimal way already. objProcQueue is array allocated in GPU’s
shared memory. calcObjectDist calculates distance from point to object, using its
special SDF (depends on object). applyFunc applies combining function (min, max,
smooth_min, smooth_max) to distances.

So, we decided that with our method we have enough 10 memory cells
to traverse the tree. However, this applies only to distances, which we can
store with a single float number. Nevertheless, we also have the materials of
the objects. We have to mix the materials in a similar way. We can use a
function from here to mix them, but that’s not the point right now. If we
have 10 cells to store intermediate values for calculating distances to objects,
we must also have 10 cells for materials. However, unlike distances, we need
more memory to store materials than we do to store numbers. Namely 11
times more, in our case (3 numbers for albedo color, 3 numbers for color from
texture, 3 numbers for specular color, 2 numbers for specularity settings). We
could optimize this number by reducing the number of settings or combining
albedo color and texture color, but the final value will still be large. And
this number will be large because we allocate arrays for all threads at the
same time. And if we calculate, 10 cells × 11 material numbers × 4 bytes ×
64 threads = 28, 160 bytes of memory! And even though this amount does
not exceed the limit, experiments have shown that allocating such large arrays
in shared memory greatly reduces performance. Therefore, it was decided to
move away from memorizing intermediate values when calculating the final
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material and store only coefficients of how much the material of each object
affects the final result. Thus, we will need to store only 1 number, but for
each material, which will not allow us to create a scene with a large number
of materials (for example, several dozens).

MaterialMix getMaterial(float3 p, float3 n)
{

int queuePivot = 0;
int coefsPivot = 0;
int lastProcessedI = 1;
int treeDeep = 0;
int prevChildNode = 0;
float k = 0;
int refI = 0;
int j;
// Find leafe
for (; lastProcessedI < groupsTreeSize;

lastProcessedI++, treeDeep++)↪→

{
if (lastProcessedI == groupsTree[lastProcessedI].x)

break;
}
for (int i = lastProcessedI; i != 0;) //start in leafe
{

if (i != groupsTree[i].x)
{

if (prevChildNode > i + 1)
{

k = getMixFactor(queuePivot - 2, queuePivot
- 1, abs(groupsTree[i].w));↪→

refI =
int(objMaterialCoefs[threadId][coefsPivot
- 1] / 10.0);

↪→

↪→

for (j = coefsPivot - 1; ((j >= 0) &&
(int(objMaterialCoefs[threadId][j] /
10.0) == refI)); j--)

↪→

↪→

{
objMaterialCoefs[threadId][j] = 10 * i +

(objMaterialCoefs[threadId][j] % 10)
* k;

↪→

↪→

}
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for (; ((j >= 0) &&
(int(objMaterialCoefs[threadId][j] / 10)
>= i)); j--)

↪→

↪→

{
objMaterialCoefs[threadId][j] = 10 * i +

(objMaterialCoefs[threadId][j] % 10)
* (1 - k);

↪→

↪→

}
objProcQueue[threadId][queuePivot - 2] =

applyFunc(objProcQueue[threadId][queuePivot
- 2], objProcQueue[threadId][queuePivot
- 1], abs(groupsTree[i].w));

↪→

↪→

↪→

queuePivot--;
}
if (groupsTree[i].x > lastProcessedI)
{

i = 1 + lastProcessedI + treeDeep;
treeDeep++;

}
else
{

if (groupsTree[i].w < 0)
{

objProcQueue[threadId][queuePivot - 1]
*= -1;↪→

}
prevChildNode = i;
i = groupsTree[i].z;

}
}
else
{

objProcQueue[threadId][queuePivot] =
calcObjectDist(p, groupsTree[i].w);↪→

objMaterialCoefs[threadId][coefsPivot] = 1.0;
if (i == groupsTree[i].z + 1)

objMaterialCoefs[threadId][coefsPivot] +=
(groupsTree[i].z * 10.0);↪→
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if (groupsTree[i].w < 0)
{

objProcQueue[threadId][queuePivot] *= -1.0;
}
queuePivot++;
coefsPivot++;
lastProcessedI = i;
treeDeep = 0;
prevChildNode = i;
i = groupsTree[i].z;

}
}
MaterialMix new_m;
for (j = 0; j < coefsPivot; j++)
{

new_m.color += Materials[j].color *
(objMaterialCoefs[threadId][j] % 10.0);↪→

new_m.roughness += Materials[j].roughness *
(objMaterialCoefs[threadId][j] % 10.0);↪→

new_m.specular += Materials[j].specular *
(objMaterialCoefs[threadId][j] % 10.0);↪→

new_m.specularColor += Materials[j].specularColor *
(objMaterialCoefs[threadId][j] % 10.0);↪→

new_m.texColor += getTexColor(j, n, p) *
(objMaterialCoefs[threadId][j] % 10.0);↪→

}
return new_m;

}

Code listing 3.8 Modified tree traversal for materials’ coefficients calculation.
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Figure 3.11 A pawn, created with hierarchical shapes combinations.

Back to the material. There’s another interesting thing I’d like to talk
about, and that’s texturing. In normal 3D graphics, when we texture an
object, we use special UV coordinates that are defined for each vertex of a
polygonal object. But how do you apply a texture to a procedurally generated
object? This is where triplanar mapping can help us. Triplanar mapping is a
method of texture mapping, when the texture “envelops” the object from all
three spatial axes [35].
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Figure 3.12 Example of using triplanar mapping [35].

To do this, we first need to calculate the texture pixel coordinates for the
three planes — XY, XZ, YZ. We can do this by taking the coordinates of the
textured point modulo 1 and normalizing the result. After that we need the
normal, which we already know. With the normal, we can understand how
each texture contributes to each side. In this way, texture blending will occur
on sloped surfaces like a sphere. We can reduce the effect of blending by taking
the normal to a higher degree and normalizing. In this way we will increase
the influence of a particular side, and reduce the seam between the joints of
the textures.
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Figure 3.13 Different powers of norm comparison. 1, 4, 10 and infinite powers are
demonstrated.

In addition, in order to display the texture correctly, we need to apply to
the point where we are looking for the texture value and to the normal all the
same spatial operations (translation, rotation, scale) that we applied to the
object before.
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float3 getTexColor(int obj, float3 n, float3 p)
{

n = rotate(n, Objects[obj].rotation);
n = abs(oneNormNormalize(pow(n, 10)));
float3 texUV = rotate(p - Objects[obj].position,

Objects[obj].rotation);↪→

if (!Materials[obj].texFixed)
texUV = ((texUV % (Objects[obj].scale *

Materials[obj].texStretch)) / (2.0 *
Objects[obj].scale * Materials[obj].texStretch)
+ 0.5);

↪→

↪→

↪→

else
texUV = ((texUV % Materials[obj].texStretch) / (2.0

* Materials[obj].texStretch) + 0.5);↪→

texUV *= TEXTURE_SIZE;
float3 texXY = textures[float3(texUV.xy, obj)].xyz;
float3 texXZ = textures[float3(texUV.xz, obj)].xyz;
float3 texYZ = textures[float3(texUV.yz, obj)].xyz;

return float3(n.z * texXY + n.y * texXZ + n.x * texYZ);
}

Code listing 3.9 Function, which returns texture color at specific point.

Another feature I would like to tell you about is domain repetition (object
repetition). This function allows you to repeat an object along any axis (or
all of them at once) an unlimited number of times with almost no loss of
performance. This is achieved by applying the module function to a ray, which
makes the ray pass through a limited space, encountering the same object time
after time [36].

However, not everything is so simple. The whole point is that an object
that passes through the bounded space time after time sees only one instance
of the object. But in theory, it could happen that the closest object is the
instance of the object that is kind of farther away in the next iterations. Take
a look at the following figure:
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Figure 3.14 Example of non-symmetric object repetition in 2D space. Lines shows
space with the same distance to the closest object (“distance lines”). [36]

As you can see, the “distance lines” suffer discontinuities when moving
from the area of one instance to another. These discontinuities seem insignif-
icant, but in three-dimensional space they will cause serious artifacts. These
inaccuracies appear in those situations when the object ceases to be symmet-
rical with respect to three spatial axes. To correct this situation we need to
additionally check distances to the nearest neighboring instances along all spa-
tial axes. That is, in 3D we need to additionally check 7 neighbors. So, the
performance reduction is 8 times. This is not much, considering that in this
way we can generate an unlimited number of objects [36].

Since this problem may arise only for asymmetric ones, we can leave it up
to the user to enable neighbor checking.
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Figure 3.15 Example of implemented domain repetition feature. Checkerboard
and pawns are created with domain repetition.

Now let’s talk about shadows. Soft shadows are quite easy to realize with
RayMarching. The basic idea is as follows: we will move from the point where
we are looking for a shadow towards the light source in an iterative way, just
like when we are looking for an intersection point with an object. At the same
time we will memorize the minimum distance to the nearest object. Thus, if
our ray does not reach the light source, we draw a hard shadow. If it did, but
the minimum distance is small enough — we draw a soft shadow. And finally,
if the minimum distance is relatively large, the point is fully illuminated, there
is no shadow [37].

However, this approach is not completely optimal. In some situations it
may generate artifacts. This happens with angular objects, when the beam
goes over the corner of the object and does not capture the minimum distance
correctly.
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Figure 3.16 Artifacts on shadow [37].

There are two improved methods. One is that we will limit the minimum
and maximum step of the beam, and thereby allow it to go inside the geometry
of the object. We will interrupt the loop only if the beam goes really deep inside
the object and the shadow is really hard. This method has shown better results
than the second one, so we will use it.
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float softShadow(float3 p, float3 dir)
{

float res = 1.0;
float mint = _ShadowsMinDistance;
float maxt = _ShadowsMaxDistance;
float k = _ShadowsSoftness;
float mins = _ShadowsMinStep;
float maxs = _ShadowsMaxStep;
float iter = _ShadowsIterations;

for (int i = 0; i < iter && mint < maxt; i++)
{

float h = getDist(p + mint * dir);
res = min(res, h / (k * mint));
mint += clamp(h, mins, maxs);
if (res < -1.0 || mint > maxt)

break;

}
res = max(res, -1.0);
return 0.25 * (1.0 + res) * (1.0 + res) * (2.0 - res);

}

Code listing 3.10 Soft shadows function. Taken and modified from [37]
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Figure 3.17 Implemented soft shadows.

The implementation of the ambient occlusion effect is quite simple. All we
will do is to walk a constant amount along the normal, from the point where
we are looking for shading, and measure the distance to the nearest object. If
this distance is less than the length of the traveled path, then we add their
quotient to the total shading coefficient.

This method allows to achieve good results with small iterations.
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float ambientOcclusion(float3 p, float3 n)
{

float step = _AmbientOcclusionStep;
float k = _AmbientOcclusionIntensity;
float iter = _AmbientOcclusionIterations;
float ao = 0.0;
float dist;
for (int i = 1; i < iter; i++)
{

dist = step * i;
ao += max(0.0, (dist - getDist(p + n * dist)) /

dist);↪→

}
return (1 - ao * k);

}

Code listing 3.11 Ambient occlusion function. Taken and modified from [38]

Figure 3.18 Implemented ambient occlusion.
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3.5 Testing
Testing was done for the most part manually. Each of the implemented features
was tested both separately and in combination with the others. Each feature
works properly. The overall picture quality is satisfactory. No critical bugs
were found during the whole time of work. We have noticed frame per second
drops in frames with a large number of objects, as well as particularly strong
drops when increasing iterations for soft shadows.

As for the interface, it is worth noting some imperfections.
The coordinates of an object of the group type do not depend on the

location of child objects, so it may be problematic to manipulate groups in
space.

The slider for adjusting the smooth minimum and maximum factor has
limits from 0 to 10. Since the smooth minimum function is directly dependent
on the scale of the objects, it can be problematic to adjust the smoothing
factor using the slider when the scale of the objects is small.

Using a hierarchy makes it difficult to fine-tune the location of objects. In
Unity, the coordinates of objects in the Transform component are displayed in
local space. Because of this, it can be difficult to evenly position objects that
are in different groups relative to each other.

The functions of smooth minimum and smooth maximum do not always
produce the desired result, for example, thickening the objects at their junc-
tion. This may require more sophisticated tuning of the hierarchy of shape
combinations to achieve the desired result.

At the moment all textures sent to the shader are compressed to 512×512.
This was done to simplify sending textures to the shader using a texture array.
Because of this, the textures may look blurry when stretched.

Texture mapping using smooth minimum and maximum functions may
produce not quite the expected result at shape junctions. It is especially
noticeable in dynamics.

In general, the final program performs its tasks with performance accept-
able for modern computers and can be useful for creating certain unusual
scenes.
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Conclusion

The goal of this thesis was to create a convenient tool for the Unity engine to
create objects and scenes using Ray Marching technology.

At the beginning of this thesis we analyzed existing rendering technologies,
described the main differences of Ray Marching technology and identified its
main advantages and key features.

Then we described the necessary technologies for our project. We found
out what shaders are and how graphics processors are organized on a basic
level. We also analyzed what graphical visual effects developers emphasize
today.

After that, we identified the differences of modern game engines; we decided
what factors are important for us in our project. Based on this, we found out
why the Unity engine is the most suitable for us. Also at the end we talked
about the basics of Unity, its design and interface.

Then we analyzed what solutions to our problem exist at the moment. We
noted their strengths, noted interesting solutions of some of them and talked
about what they lack. On the basis of this we defined the main key feature
and difference of our program — the hierarchy of object association.

In the practical part we once again repeated the main features that we
should implement, as well as made a general design of the program and defined
its structure.

Next, we proceeded to the implementation, during which we discussed in
detail the work of each of the features we implemented and demonstrated their
work in figures.

Finally, in the testing part we noted all possible difficulties and non-
idealities concerning the program performance, interface usability and the
quality of the final picture.

In general, we can say that the tool fully copes with the tasks set in the
beginning. At the same time, it is also worth noting the great potential for the
development of the project. There is still a huge space for adding new features
regarding Ray Marching, as well as for improving the already implemented
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ones and eliminating the problems described in the testing part.



Bibliography

1. KAERTNER, Stefan. What is 3D rendering. What is 3D Rendering? | Un-
derstanding the 3D Visualization Process [online]. 2023 [visited on 2024-
04-24]. Available from: https://www.realspace3d.com/resources/
what-is-3d-rendering/.

2. ANGELIA, Tifany. Rendering techniques in Computer Graphics. Medium
[online]. 2020 [visited on 2024-04-24]. Available from: https://medium.
com/@tifangel/rendering- techniques- in- computer- graphics-
504e6134fea4.

3. CAULFIELD, Brian. What’s the difference between Ray Tracing, ras-
terization? NVIDIA Blog [online]. 2020 [visited on 2024-04-24]. Available
from: https://blogs.nvidia.com/blog/whats-difference-between-
ray-tracing-rasterization/.

4. IMDb [online]. 1992 [visited on 2024-04-24]. Available from: https://
www.imdb.com/title/tt0304947/.

5. WONG, Jamie. Ray Marching and signed distance functions. Jamie Wong
[online]. 2016 [visited on 2024-04-24]. Available from: https://jamie-
wong.com/2016/07/15/ray-marching-signed-distance-functions/.

6. QUILEZ, Inigo. Distance functions. Inigo Quilez [online]. 2024 [visited
on 2024-04-24]. Available from: https://iquilezles.org/articles/
distfunctions/.

7. QUILEZ, Inigo. Raymarching distance fields. Inigo Quilez [online]. 2008
[visited on 2024-04-24]. Available from: https : / / iquilezles . org /
articles/raymarchingdf/.

8. DALRYMPLE, Robert. GPU memory [online]. 2014. [visited on 2024-05-
15]. Available from: https://www.ce.jhu.edu/dalrymple/classes/
602/Class13.pdf.

68

https://www.realspace3d.com/resources/what-is-3d-rendering/
https://www.realspace3d.com/resources/what-is-3d-rendering/
https://medium.com/@tifangel/rendering-techniques-in-computer-graphics-504e6134fea4
https://medium.com/@tifangel/rendering-techniques-in-computer-graphics-504e6134fea4
https://medium.com/@tifangel/rendering-techniques-in-computer-graphics-504e6134fea4
https://blogs.nvidia.com/blog/whats-difference-between-ray-tracing-rasterization/
https://blogs.nvidia.com/blog/whats-difference-between-ray-tracing-rasterization/
https://www.imdb.com/title/tt0304947/
https://www.imdb.com/title/tt0304947/
https://jamie-wong.com/2016/07/15/ray-marching-signed-distance-functions/
https://jamie-wong.com/2016/07/15/ray-marching-signed-distance-functions/
https://iquilezles.org/articles/distfunctions/
https://iquilezles.org/articles/distfunctions/
https://iquilezles.org/articles/raymarchingdf/
https://iquilezles.org/articles/raymarchingdf/
https://www.ce.jhu.edu/dalrymple/classes/602/Class13.pdf
https://www.ce.jhu.edu/dalrymple/classes/602/Class13.pdf


Bibliography 69

9. MILAKOV, Maxim. Fast dynamic indexing of private arrays in CUDA
[online]. 2022. [visited on 2024-05-15]. Available from: https://developer.
nvidia.com/blog/fast-dynamic-indexing-private-arrays-cuda/
#entry-content-comments.

10. DE VRIES, Joey. Lighting. LearnOpenGL [online]. 2018 [visited on 2024-
05-06]. Available from: https://learnopengl.com/PBR/Lighting.

11. DE VRIES, Joey. Light casters. LearnOpenGL [online]. 2015 [visited on
2024-05-06]. Available from: https://learnopengl.com/Lighting/
Light-casters.

12. TECHNOLOGIES, Unity. LightProbes.coefficients [online]. 2018. [visited
on 2024-05-13]. Available from: https : / / docs . unity3d . com / 400 /
Documentation/ScriptReference/LightProbes-coefficients.html.

13. WESTER, Alexander. Ray-tracing soft shadows in real-time. Medium
[online]. 2020 [visited on 2024-05-06]. Available from: https://medium.
com/@alexander.wester/ray- tracing- soft- shadows- in- real-
time-a53b836d123b.

14. DE VRIES, Joey. SSAO. LearnOpenGL [online]. 2015 [visited on 2024-05-
06]. Available from: https://learnopengl.com/Advanced-Lighting/
SSAO.

15. GAME-ACE. Game engine comparison [online]. 2023. [visited on 2024-
05-10]. Available from: https://game-ace.com/blog/game-engine-
comparison/.

16. VANCO, Matej. Raymarcher: Game toolkits [online]. 2024. [visited on
2024-05-08]. Available from: https://assetstore.unity.com/packages/
tools/game-toolkits/raymarcher-168069#description.

17. VANCO, Matej. Fractal sailor - gameplay trailer [online]. YouTube, 2024
[visited on 2024-05-08]. Available from: https://www.youtube.com/
watch?v=LklRyY_L96c.

18. DEHAIRS, Ward. FERM [online]. 2021. [visited on 2024-05-08]. Avail-
able from: https://assetstore.unity.com/packages/vfx/shaders/
fullscreen-camera-effects/ferm-140678.

19. WATTERS, Kevin; RAMALLO, Fernando. Raymarching Toolkit for Unity
[online]. 2018. [visited on 2024-05-08]. Available from: https://kev.
town/raymarching-toolkit/.

20. WATTERS, Kevin; RAMALLO, Fernando. Character creator [online].
2018. [visited on 2024-05-08]. Available from: https://kev.town/raymarching-
toolkit/examples/character-creator/.

21. ANIKETRAJNISH. A raymarching engine for Unity [online]. 2021. [vis-
ited on 2024-05-08]. Available from: https://github.com/aniketrajnish/
Raymarching-Engine-Unity.

https://developer.nvidia.com/blog/fast-dynamic-indexing-private-arrays-cuda/#entry-content-comments
https://developer.nvidia.com/blog/fast-dynamic-indexing-private-arrays-cuda/#entry-content-comments
https://developer.nvidia.com/blog/fast-dynamic-indexing-private-arrays-cuda/#entry-content-comments
https://learnopengl.com/PBR/Lighting
https://learnopengl.com/Lighting/Light-casters
https://learnopengl.com/Lighting/Light-casters
https://docs.unity3d.com/400/Documentation/ScriptReference/LightProbes-coefficients.html
https://docs.unity3d.com/400/Documentation/ScriptReference/LightProbes-coefficients.html
https://medium.com/@alexander.wester/ray-tracing-soft-shadows-in-real-time-a53b836d123b
https://medium.com/@alexander.wester/ray-tracing-soft-shadows-in-real-time-a53b836d123b
https://medium.com/@alexander.wester/ray-tracing-soft-shadows-in-real-time-a53b836d123b
https://learnopengl.com/Advanced-Lighting/SSAO
https://learnopengl.com/Advanced-Lighting/SSAO
https://game-ace.com/blog/game-engine-comparison/
https://game-ace.com/blog/game-engine-comparison/
https://assetstore.unity.com/packages/tools/game-toolkits/raymarcher-168069#description
https://assetstore.unity.com/packages/tools/game-toolkits/raymarcher-168069#description
https://www.youtube.com/watch?v=LklRyY_L96c
https://www.youtube.com/watch?v=LklRyY_L96c
https://assetstore.unity.com/packages/vfx/shaders/fullscreen-camera-effects/ferm-140678
https://assetstore.unity.com/packages/vfx/shaders/fullscreen-camera-effects/ferm-140678
https://kev.town/raymarching-toolkit/
https://kev.town/raymarching-toolkit/
https://kev.town/raymarching-toolkit/examples/character-creator/
https://kev.town/raymarching-toolkit/examples/character-creator/
https://github.com/aniketrajnish/Raymarching-Engine-Unity
https://github.com/aniketrajnish/Raymarching-Engine-Unity


Bibliography 70

22. THEALLENCHOU. Unity-ray-marching: Ray marching sandbox [online].
2020. [visited on 2024-05-08]. Available from: https://github.com/
TheAllenChou/unity-ray-marching.

23. NOBY. Shadertoy [online]. 2017. [visited on 2024-05-08]. Available from:
https://www.shadertoy.com/view/lllBDM.

24. INC., Lucid Software [online]. 2010. [visited on 2024-05-15]. Available
from: https://www.lucidchart.com/.

25. DATSFAIN. Unity editor tools [online]. 2022. [visited on 2024-05-11].
Available from: https://github.com/datsfain/EditorCools.

26. DEADCOWS. MyBox is a set of attributes, tools and extensions for Unity
[online]. 2018. [visited on 2024-05-11]. Available from: https://github.
com/Deadcows/MyBox.

27. QUILEZ, Inigo. Ellipsoid SDF [online]. 2008. [visited on 2024-05-13].
Available from: https://iquilezles.org/articles/ellipsoids/.

28. QUILEZ, Inigo. Normals for an SDF [online]. 2015. [visited on 2024-05-
12]. Available from: https://iquilezles.org/articles/normalsSDF/.

29. DE VRIES, Joey. Basic Lighting. LearnOpenGL [online]. 2015 [visited
on 2024-05-13]. Available from: https://learnopengl.com/Lighting/
Basic-Lighting.

30. DE VRIES, Joey. Advanced Lighting. LearnOpenGL [online]. 2015 [vis-
ited on 2024-05-13]. Available from: https://learnopengl.com/Advanced-
Lighting/Advanced-Lighting.

31. CODE, The Art of. Raymarching: Basic Operators [online]. 2019. [visited
on 2024-05-13]. Available from: https://www.youtube.com/watch?v=
AfKGMUDWfuE.

32. QUILEZ, Inigo. Smooth minimum [online]. 2013. [visited on 2024-05-13].
Available from: https://iquilezles.org/articles/smin/.

33. STUDIO, Desmos. Let’s learn together. [online]. 2020. [visited on 2024-
05-13]. Available from: https://www.desmos.com/.

34. TECHNOLOGIES, Unity. Scripting API [online]. 2022. [visited on 2024-
05-15]. Available from: https://docs.unity3d.com/ScriptReference/
index.html.

35. FLICK, Jasper. Triplanar mapping [online]. Catlike Coding, 2018 [visited
on 2024-05-16]. Available from: https://catlikecoding.com/unity/
tutorials/advanced-rendering/triplanar-mapping/.

36. QUILEZ, Inigo. Domain repetition [online]. 2008. [visited on 2024-05-16].
Available from: https://iquilezles.org/articles/sdfrepetition/.

37. QUILEZ, Inigo. Soft shadows in raymarched SDFs [online]. 2010. [visited
on 2024-05-16]. Available from: https://iquilezles.org/articles/
rmshadows/.

https://github.com/TheAllenChou/unity-ray-marching
https://github.com/TheAllenChou/unity-ray-marching
https://www.shadertoy.com/view/lllBDM
https://www.lucidchart.com/
https://github.com/datsfain/EditorCools
https://github.com/Deadcows/MyBox
https://github.com/Deadcows/MyBox
https://iquilezles.org/articles/ellipsoids/
https://iquilezles.org/articles/normalsSDF/
https://learnopengl.com/Lighting/Basic-Lighting
https://learnopengl.com/Lighting/Basic-Lighting
https://learnopengl.com/Advanced-Lighting/Advanced-Lighting
https://learnopengl.com/Advanced-Lighting/Advanced-Lighting
https://www.youtube.com/watch?v=AfKGMUDWfuE
https://www.youtube.com/watch?v=AfKGMUDWfuE
https://iquilezles.org/articles/smin/
https://www.desmos.com/
https://docs.unity3d.com/ScriptReference/index.html
https://docs.unity3d.com/ScriptReference/index.html
https://catlikecoding.com/unity/tutorials/advanced-rendering/triplanar-mapping/
https://catlikecoding.com/unity/tutorials/advanced-rendering/triplanar-mapping/
https://iquilezles.org/articles/sdfrepetition/
https://iquilezles.org/articles/rmshadows/
https://iquilezles.org/articles/rmshadows/


Bibliography 71

38. PEERPLAY. Raymarching Shader - Unity CG/C# tutorial _chapter[8]
= “ambient occlusion”; //peerplay [online]. YouTube, 2019 [visited on
2024-05-16]. Available from: https://www.youtube.com/watch?v=
22PZF7fWLqI.

https://www.youtube.com/watch?v=22PZF7fWLqI
https://www.youtube.com/watch?v=22PZF7fWLqI

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	I Theoretical part
	Analyzing the Technology
	Introducing to Ray Marching
	What is 3D rendering?
	Rendering techniques
	Ray Marching Features

	Terminology and notions
	Hardware and Software
	Common visual effects

	Game Engines
	Game engine specifications
	Engine selection
	Unity Fundamentals
	Interface
	Programming part



	Existing solutions
	Ray Marching Tools
	Raymarcher — Game toolkit for Unity
	FERM
	Raymarching Toolkit for Unity
	Other projects

	Shadertoy
	Conclusion


	II Practical part
	Project development
	Project Features
	Methods
	Interface
	Primary input processing
	Shader

	Design
	Implementation
	Testing

	Conclusion


