
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Telecommunication Engineering

Lightweight Parameter-Efficient Neural Network for Action
Recognition on Edge Device

by

Tomáš Zámostný

A master thesis submitted to
the Faculty of Electrical Engineering, Czech Technical University in Prague

Prague, January 2024

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

466202 Personal ID number: Zámostný Tomáš Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Telecommunications Engineering

Electronics and Communications Study program:

Communications Networks and Internet Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

Lightweight Parameter-efficient Neural Network for Action Recognition on Edge Device

Master’s thesis title in Czech:

Rozpoznání akce pomocí neuronové sítě optimalizované pro běh na edge zařízení

Guidelines:

This work aims to design and implement a neural network for action recognition on edge devices. Follow the following
guidelines:
1) Perform research on state-of-the-art approaches to action recognition from video sequences
2) Design the network so that it can be trained on a limited dataset of kinetics and optimize it for real-time performance
3) Implement the solution on an edge device like NVIDIA Jetson Nano
4) Find the trade-off between performance and real-time latency

Bibliography / sources:

[1] CHEN, Shoufa, et al. Adaptformer: Adapting vision transformers for scalable visual recognition. Advances in Neural
Information Processing Systems, 2022, 35: 16664-16678.
[2] MAAZ, Muhammad, et al. Edgenext: efficiently amalgamated cnn-transformer architecture for mobile vision applications.
In: European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022. p. 3-20.

Name and workplace of master’s thesis supervisor:

doc. Ing. Stanislav Vítek, Ph.D. Department of Radioelectronics FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 09.01.2024 Date of master’s thesis assignment: 22.09.2023

Assignment valid until: 16.02.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature doc. Ing. Stanislav Vítek, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Supervisor:
Assoc. Prof. Stanislav Vı́tek, Ph.D.
Department of Radio Engineering
Faculty of Electrical Engineering
Czech Technical University in Prague
Technická 2
166 27 Prague 6
Czech Republic

Co-Supervisor:
Prof. Yie-Tarng Chen, Ph.D.
Department of Electronic and Computer Engineering
National Taiwan University of Science and Technology
No.43 Keelung Rd, Da’an District
Taipei City 106335
Taiwan (R.O.C)

Copyright © 2024 Tomáš Zámostný

iii

Abstract

AI becoming plays a crucial role in IoT, specifically in processing Human activity recogni-
tion (HAR). Development driven in this direction focuses on the automation of HAR. The
emerging trend in the development of automation HAR systems. However, the effective-
ness of these systems relies heavily on robust deep-learning algorithms and improved hard-
ware technologies. Vision transformers show absolute dominance performance in computer
vision. Moreover, enhancing performance by using methods such as parameter-efficient
transfer-learning with large-scale pre-trained models. Unfortunately, these transformer-
based models have the common drawback of having many parameters and a large memory
footprint, causing them to be difficult to deploy on edge devices as lightweight convolu-
tional neural networks. My challenge is to develop a model able HAR deployable on edge
device in real time with low budget training. In the thesis, I propose the best trade-off
between performance and number of parameters. The model emerged from the architec-
ture of MobileViT developed by Apple researchers. MobileViT is powerful in extracting
and learning spatial features. My set requirement is process video – I have to be able
to capture temporal components. I redevelop the architecture by inserting ST-Adapters.
Transforming the model to a downstream task, MobileViT is pretrained and frozen. Ad-
apters help introduce image-related bias into the model and extract temporal features from
the video stream. The proposed model is small enough to be deployed on edge devices.
The model achieved promising performance with an accuracy of 74.94% on Kinetics-400,
utilizing only 5.3M parameters. During training, 15% of the parameters were updated.
Furthermore, the model demonstrates an inference speed of 16.45 frames per second on a
Jetson Nano device, using 2.58GB RAM, with a prediction accuracy of 71.07%.

Keywords:
Vision Transformers, Edge Device, Surveillance, Action Recognition, Parameter-Efficient

Transfer Learning

v

Acknowledgements

I would like to express my sincere gratitude to all those who have contributed to the com-
pletion of this master’s thesis. This academic journey has been a challenging yet rewarding
experience, and I am thankful for the support and encouragement I have received.

First and foremost, I extend my deepest appreciation to my Taiwanese supervisor,
Prof. Yie-Tarng Chen, and Czech supervisor, Assoc. Prof. Stanislav Vı́tek for their invalu-
able guidance, insightful feedback, and unwavering support throughout the entire research
process. Their expertise and commitment played a pivotal role in shaping the direction of
this thesis.

I would like to express my gratitude to my family for their love, encouragement, and
patience. Their unwavering support provided me with the strength and motivation needed
to navigate the challenges of academic life.

Special thanks go to Patrik Patera for his fellowship and collaborative spirit. Our dis-
cussions and shared experiences greatly enhanced the intellectual environment in which
this thesis was developed.

Lastly, I want to thank all those friends who provided emotional support and under-
standing during the ups and downs of this academic journey. Your friendship has been
a source of inspiration. To everyone who has played a part in this endeavor, whether
mentioned explicitly or not, I am truly grateful. This thesis would not have been possible
without your support.

Thank you.

vii

Declaration

I declare that I have obtained and presented all information in this document according
to the academic Methodical guidelines on compliance with ethical principles. I have also
fully cited and referenced any material and results not original to this work.

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré
použité informačńı zdroje v souladu s Metodickým pokynem o dodržováńı etických prin-
cip̊u při př́ıpravě vysokoškolských závěrečných praćı. Rovněž jsem plně citoval a uvedl
odkazy na veškeré materiály a výsledky, které nejsou p̊uvodńı v této práci.

In Taipei, January 2024
..

Tomáš Zámostný

ix

Dedication

To my Dad

x

Contents

Abbreviations xvii

1 Introduction 1
1.1 Contributions . 2
1.2 Structure of the Thesis . 2

2 Background 3
2.1 Edge Computing . 3
2.2 Nvidia Jetson Nano . 7
2.3 Neural Networks . 8
2.4 Machine Learning . 9
2.5 Deep Learning . 9
2.6 A Single Neuron . 10

2.6.1 Perceptron . 11
2.6.2 Multi-layer Perceptron . 12

2.7 Deep Learning Frameworks . 13
2.7.1 TensorFlow . 13
2.7.2 Pytorch . 13

2.8 Convolutional Neural Network . 13
2.8.1 Padding and Stride . 15
2.8.2 Pooling . 15

2.9 Transformers . 16
2.9.1 Vision Transformers . 19

2.10 Computer Vision - Action Recognition . 20
2.11 Datasets . 21

2.11.1 ImageNet-1K . 21
2.11.2 Kinetics-400 . 21

3 Methodology 23

xi

Contents

3.1 Goal . 23
3.2 Search Methodology . 23
3.3 Enhancing CNN Capabilities . 24
3.4 Feature Extraction Approach . 24
3.5 Preprocessing . 25
3.6 Alternative Architecture . 25
3.7 MobileViT . 26

3.7.1 Architecture . 27
3.7.2 Lightweight . 28

3.8 Spatio-Temporal Adapter . 29
3.9 MobileNet-V2 . 30
3.10 Adapting MobileViT with ST-Adapters . 31
3.11 Target Edge Device . 33
3.12 Optimization Tool for Edge Device . 33
3.13 Training Approach . 34

3.13.1 Full Fine-Tuning . 34
3.13.2 Adapter Fine-Tuning . 34

4 Experimental Results 37
4.1 Experimental Settings . 37

4.1.1 Training Approach . 37
4.1.2 Data Augmentation . 37

4.2 Implementation . 38
4.3 Kinetics-400 Dataset . 39
4.4 Evaluation Metrics . 40
4.5 Visualisation of Training . 41
4.6 Results . 43

4.6.1 Comparison of Different Optimizers 44
4.6.2 Inference on Server . 45

4.7 Deployment on Edge . 46
4.7.1 Inference . 47

5 Conclusions 49

Bibliography 51

xii

List of Figures

2.1 Jetson Nano Board Developer Kit [1]. 7
2.2 Venn diagram. 9
2.3 Single Layer Perceptron . 11
2.4 Multi Layer Neural Network Architecture. 12
2.5 Visualization of feature maps in a Convolutional Neural Network (CNN) with

a concealed layer [2]. 14
2.6 Illustration of pooling mechanisms: max pooling and average pooling. 16
2.7 Visualization of a Transformer model architecture [3]. 16
2.8 Vision Transformer architecture [4]. 19
2.9 Schematic representation of the Vision Transformer pipeline: the input image

is partitioned into 16 x 16 patches during the processing sequence. 20
2.10 Kinetics-400 - class ”Car Driving”. 21
2.11 Kinetics-400 - class ”Surfing”. 21
2.12 Kinetics-400 - class ”Wrestling”. 21

3.1 It explored architectural alternatives that show limited potential for additional
training. Consider incorporating the ST-Adapter either before or after the
MobileViT block in a serial configuration. 25

3.2 Architectural representation of the MobileViT model [5]. 27
3.3 Patch Attention Mechanism: Each pixel undergoes a comparison with every

other pixel, exemplified by a selection of connection arrows depicted here for
simplicity. This attention mechanism draws inspiration from Transformers,
where interconnected relationships extend across the entire system. 28

3.4 Architecture of Spatio-Temporal Adapter . 29
3.5 MobileNetV2 architecture [6]. 30
3.6 Proposed Architecture. 31
3.7 Full Fine-Tuning training strategy. 34
3.8 Adapter Fine-Tuning training strategy with frozen section. 35

4.1 Training and Validation Accuracy. 41

xiii

List of Figures

4.2 Training and Validation Loss. 42
4.3 Server-based inference - Examples of correct predictions. 45
4.4 Server-based inference - Examples of incorrect predictions. 45
4.5 Jetson Nano-based inference - Examples of correct predictions. 47
4.6 Jetson Nano-based inference - Examples of incorrect predictions. 47

xiv

List of Tables

2.1 Comparison between other edge devices [7]. 8
2.2 Comparison of various types CNNs implementation [8] 14

3.1 Architecture. 32
3.2 Technical specification of Jetson Nano. 33

4.1 Technical specification of server. 38
4.2 Hyperparameters settings. 39
4.3 Performance comparisons for action recognition on the Kinetics-400. 44
4.4 Comparison of Top-1 accuracy of different optimizers. 44
4.5 Real-time performance on server. 46
4.6 Jetson Nano system dependencies. 46
4.7 Real-time performance on Jetson Nano. 48

xv

Abbreviations

Number Sets

N Natural numbers set
Z Integer numbers set
Sm Symmetric residue number set with a module of m
Q Rational numbers set
R Real numbers set

Common Mathematical Functions and Operators

102 Numbers’ radices are designated with a subscript
b Vector b
bi the i th element of vector b
||b|| Norm of vector b
dimb Dimension of vector b
A Matrix A
ai, j Element of matrix A at the i th row, and the j th column
A−1 Inverse matrix to matrix A
AT Transposed matrix to matrix A
||A|| Norm of matrix A

xvii

Abbreviations

Terminology

IoT Internet of Things
OS Operating System
GPU Graphics Processing Unit
TPU Tensor Processing Unit
MLP Multilayer Perceptron
CNN Convolutional Neural Network
NN Neural Network
NLP Natural Language Processing
AI Artificial Intelligence
DL Deep Learning
DNN Deep Neural Networks
PETL Parameter Efficient Transfer Learning
GRU Gated Recurrent Unit
HAR Human Activity Recognition
DM Depth Multiplier
FPS Frames per Second
CNN Convolutional Neural Networks
RNN Recurrent Neural Networks
DCNN Deep Convolutional Neural Networks
GPU Graphics Processing Unit
WRN Wide Residual Networks
FCN Fully Convolutional Network
CRF Conditional Random Field
FLOP Floating-Point Operations
NPU Neural Processing Unit
2D Two-Dimensional
3D Three-Dimensional
MV2 MobileNetV2
ViT Vision Transformer
SDK Software Development Kit

xviii

Chapter 1

Introduction

The rapid growth of deployments in surveillance systems and home security cameras has
resulted in an exponential increase in data generation, posing significant challenges for
traditional manual analysis methods. The need for automated recognition systems that
can efficiently process large volumes of data and provide accurate outputs has become in-
creasingly urgent.

However, existing intelligent systems face limitations due to their reliance on external
computation resources, leading to high computational costs and latency issues [9]. To
address these challenges, this thesis proposes integrating intelligent surveillance systems
into edge devices, specifically utilizing the Jetson Nano platform. By moving computation
towards the camera, I aim to reduce computational costs, enhance real-time performance,
and ensure data privacy. My primary objective is to find a balance between model per-
formance and computational efficiency in human activity recognition (HAR) tasks [10].

In recent years, machine learning has played a significant role in developing intelligent
surveillance systems. In the last few years, Convolutional Neural Networks (CNNs) have
been widely used for feature extraction and final classification. However, they have been
recently replaced by Vision Transformers (ViT) [4] in various computer vision tasks. Vis-
ion Transformers (ViT) show great potential and outperform convolutional-based models.
The key component of success lies in the multiple-head self-attention mechanism. Unfor-
tunately, their computation cost and the number of parameters grow exponentially, which
remains a major drawback.

To overcome these limitations, the thesis explores innovative methods that efficiently
adapt large pre-trained models to my edge device architecture. I employ parameter-efficient
transfer learning and ST-Adapter [11] modules to minimize computational costs while
preserving the temporal information essential for human activity recognition. My approach
allows us to train only a small fraction of the model’s parameters, reducing the training
budget while maintaining competitive performance.

1

1. Introduction

1.1 Contributions

The main contributions of the thesis are summarized as follows:

1. Rebuilding and adapting original architecture for action recognition on video down-
stream task.

2. Achieving very low parametric computation cost, with only 15% of parameters re-
quired for training.

3. Reaching promising performance in Adapter Fine-Tuning with an accuracy of 74.94%
and Full Fine-Tuning with an accuracy of 76.43%.

4. Proposing a model that recognizes unseen actions in real-time with excellent accuracy
and latency.

5. Deploying a small-size model on the edge device Jetson Nano.

6. Achieving an inference speed of 16 frames per second on Jetson Nano with 2.6GB
RAM usage.

1.2 Structure of the Thesis

The thesis is organized into five chapters as follows:

1. Introduction: This section describes the motivation and goals of our efforts. It also
includes a list of contributions made by this thesis.

2. Background : This section introduces the reader to the theoretical background and
surveys current state-of-the-art methods related to the thesis.

3. Methodology : Outline the research design in-depth and used techniques to investigate
our goals.

4. Experimental Results : Present the findings of the thesis, followed by figures and
tables.

5. Conclusions : This section summarises the findings of our research, proposes potential
areas for further investigation, and concludes the thesis.

2

Chapter 2

Background

In this chapter will provide the reader with sufficient technical and theoretical background.

2.1 Edge Computing

The primary goal of edge computing is to bring computational capabilities and data stor-
age closer to the periphery of a decentralized system. Edge computing focuses on achieving
low latency and higher bandwidth and can process vast amounts of data.

Increasing the trend of producing edge and IoT devices is timely fashion. According to
Cisco’s projection, by the year 2023, mobile connectivity is anticipated to be accessible to
in excess of 70 percent of the worldwide populace. Edge computing aims to leverage exist-
ing data processing capabilities and exploit the proximity of data in an embedded system
to solve the bottleneck computation problem commonly found in distributed systems.

Edge computing has arisen as a novel paradigm with the objective of enhancing compu-
tational efficiency and data storage by distributing processing capabilities in closer proxim-
ity to the origin of data. This approach deviates from the traditional practice of transmit-
ting data to a centralized server for analysis. The growing ubiquity of intelligent devices
and the surge in data generation at the periphery of the network have created opportunit-
ies for the efficient utilization of edge computing in data gathering and processing. While
edge computing offers lower latency, better privacy, and mobility benefits, heterogeneity,
and resource management challenges persist.

Reduced latency is a crucial advantage of edge computing because it eliminates the
need to transfer data over long distances, resulting in faster processing and response times.
By storing and processing data closer to its origin, edge computing minimizes delays as-
sociated with network congestion and improves the overall user experience. In addition,
privacy concerns are addressed by edge computing because it reduces reliance on upload-
ing data, thereby reducing data traffic and the associated risk of data hacking. However,

3

2. Background

privacy issues remain a persistent concern, especially in the context of Internet of Things
(IoT) devices and networks.

Integrating different devices and components with different protocols is a significant
challenge in edge computing. Incompatible protocols and different hardware configura-
tions can prevent seamless interactions and communication between devices, hinder data
processing efficiency, and introduce complexities during system integration. Addressing
heterogeneity requires standardized protocols, compatible hardware, and robust interop-
erability mechanisms to ensure seamless data exchange and efficient processing. Another
challenge in edge computing is to manage device mobility effectively. With the proliferation
of edge devices that can move frequently, managing multiple devices and their relocation
poses significant difficulties. The dynamic nature of device movement requires effective
resource management strategies for optimal allocation of computing resources and seam-
less transition of processing tasks between devices. Streamlining resource management
in mobile edge computing environments is essential to ensure continuous processing and
uninterrupted services.

Through the relocation of computational and storage resources in proximity to the
data origin, edge computing offers notable advantages, including reduced latency and en-
hanced data privacy. However, challenges arising from heterogeneity and mobility need
to be addressed to exploit the potential of edge computing fully. Simplified interactions
between devices, standardized protocols, and efficient resource management are essential
for seamless and efficient data processing in a mobile edge computing environment. As
edge computing evolves, addressing these challenges will be imperative to realize its full
potential in optimizing computational efficiency and revolutionizing data analytics [12].

Deep Learning on Cloud

◦ Higher computational power (GPU, TPU).

◦ Flexible and scalable in terms of computing resources.

◦ Millions – Billions of parameter models.

◦ Usually used for training.

◦ Require stable power supply.

◦ Larger datasets and more complex models.

◦ High-speed internet connection (xGB/s).

◦ TFLOPs.

◦ Stationary.

4

2.1. Edge Computing

◦ High initial and operating costs.

Deep Learning on Edge Device

◦ Limited computational power (NPU).

◦ No possibility of upgrading computing resources.

◦ Millions of parameter models.

◦ Usually used for inference.

◦ Battery-driven power supply.

◦ Small datasets and more complex models.

◦ Low-speed internet connection (xMB/s).

◦ Can operate offline without internet connectivity.

◦ Under GFLOPs.

◦ Data storage up to 128GB.

◦ Mobility.

◦ Cheaper initial and operating costs.

◦ Allows real-time processing and shorter response time.

◦ Better privacy, the device is located on the user site.

One key advantage of utilizing the cloud for deep learning is its significantly higher
computational power. By leveraging the capabilities of GPUs and TPUs in the cloud, we
can achieve faster results and more accurate models. On Server based solution we can
easily extend computtation power by replacing outdated GPU/CPU units with newer one.
Deep learning model often consists of millions to billions of parameters. That is the reason
why we using cloud solution for these kind of task. One of the major demands is a stable
power supply network with additional backup against power cuts and ensures uninterrup-
ted computing and prevents any data loss during training. Usually cloud is connected to
the internet network thought the optic fiber cable reaching speed over 10 GB per second.
Large-scale data transfer between the cloud and local machines needs to be seamless, en-
suring quick access to data for training and evaluation. Futermore we can enable training
in highly complex models which also put requriment on data storage and memory. For
example, If we use comprehensive dataset, we need Terabyte of memory for it.
For evaluating the performance of enumerous power of cloud based solution we commonly
use a metric called Floating Point Operations per Second (FLOPs). Clouds are capable

5

2. Background

to provide at least Trillions of these operation. This metric shows a superiority of clouds
capabilities. Cloud-based infrastructure often supports high TFLOP capabilities.

Whilst cloud-based solutions provide numerous of advantages, it is important take in
account a pricy initial cost following with operating cost. Also clouds require a special
environment of location. Deep learning on edge devices has gained notable attention in
recent years. In comparison to edge device has a limited computation resourses. Usually
we could talk around less than giga Floating Point Operations per Second (GLOPs). Edge
device usually consists Neural Procesing unit (NPU) which is specifically designed to solve
operations for deep learning tasks. Edge device also provide just a certain amound of data
storage around 64 GB. Which is necessary to store model locally on device. Local storage
capacity also determines a capability of how many parameters can model consist. Models
deployed on edge device often have a millions of parameters and used for interference run-
ning model.

Batteries, necessitating energy-efficient algorithms, typically power edge devices. One of
the key demand for edge device is low power consumption. Furthermore, edge devices may
operate in areas with low-speed internet connections, often limited to a few megabytes per
second (MB/s). Consequently, these devices prioritize offline operation and can function
without relying on an internet connection. When it comes to cost, edge devices have
several advantages. Firstly, initial cost are not exceed a 100 USD for device, and secondly,
operating cost is negligible in comparison with cloud based solution. The edge device
usually have only MB to a few GB allocated RAM memory. It is necessary to optimize
the model as much as possible.

6

2.2. Nvidia Jetson Nano

2.2 Nvidia Jetson Nano

The Jetson Nano Developer Kit 2.1 is a highly capable computer that incorporates artificial
intelligence. With the aim of providing convenience, this developer kit seamlessly connects
with standard peripherals, including those from Raspberry Pi and Adafruit. This ensures
effortless integration into your existing setup. The device is equipped with a custom Linux
operating system alongside the latest Nvidia Jetpack SDK for a comprehensive and user-
friendly development environment [13].

Figure 2.1: Jetson Nano Board Developer Kit [1].

The Jetson Nano Developer Kit supports popular artificial intelligence frameworks like
TensorFlow, PyTorch, Caffe, and MXNet to facilitate the swift development and deploy-
ment of AI applications. This empowers users to harness the capabilities of these frame-
works for rapid AI project creation, such as the Jet Bot – an open-source deep-learning
robot that capitalizes on the features of the Jetson Nano Developer Kit [14].

Regarding hardware, the developer kit encompasses a 40-pin expansion header compat-
ible with the newly incorporated Jetson GPIO Python library. This library simplifies the
interface with external devices. Additionally, the kit features a micro-USB connector that
enables power supply using a 5V and 2A power source, gigabit Ethernet, USB 3 Type-A
connectors, HDMI and DP display connectors, and a cylindrical connector that can provide
up to 4A of power. The camera connector supports IMX 219 camera modules. By default,
the device has a passive radiator that can handle a 10-watt module power output at an
ambient temperature of 25 degrees Celsius. A 40mm PWM fan can be attached if addi-
tional cooling is required [13, 15]. The following Table 2.1 presents a comparative analysis
among various edge devices.

7

2. Background

Table 2.1: Comparison between other edge devices [7].

Raspberry Pi 4 Jetson Nano Jetson TX2

Performance 13.5 GFLOPS 472 GFLOPS 1.3 TFLOPS

CPU Cortex-A72@1.5
GHz

Cortex-A57@1.42
GHz

Cortex-
A57@2GHz+NVIDIA
Denver2@2GHz

GPU Broadcom Core VI NVIDIA Maxwell
128

NVIDIA Pascal
256

Memory 8GB LPDDR4 4GB LPDDR4 8GB LPDDR4

Networking Gigabit Ethernet /
WiFi 802.11ac

Gigabit Ethernet /
M.2 Key E

Gigabit Ethernet,
802.11ac WLAN

Display 2x micro-HDMI
(up to 4Kp60)

HDMI 2.0 and DP
1.4

2x DSI,2x DP 1.2
/HDMI 2/DP 1.4

USB 2x USB 3.0, 2x
USB 2.0

4x USB 3.0, USB
2.0 Micro-B

USB 3.0 + USB
2.0

Other 40-pin GPIO 40-pin GPIO 40-pin GPIO

Encoder H264(1080p30) H.264/H.265(4Kp30) H.264/H.265(4Kp60)

Decoder H.265(4Kp60),
H.264(1080p60)

H.264/H.265
(4Kp60, 2x 4Kp30)

H.264/H.265
(4Kp60)

Storage Micro-SD 16 GB eMMC 32GB eMMC

Power 2.56W-7.30W 5W-10W 7.5W-15W

2.3 Neural Networks

Artificial neural networks (ANNs) are intricately designed to mimic the operational dynam-
ics of the human cerebral cortex, comprising a multifaceted web of interconnected neurons
mediated by synaptic connections. ANNs play a crucial role in the realm of artificial intel-
ligence, particularly in statistical tasks such as classification and regression. Remarkably,
by 2012, ANNs had demonstrated exceptional performance in these tasks, occasionally
exceeding human capabilities in visual pattern recognition [16].

In the context of supervised learning, and more specifically within the domain of deep
learning, the fundamental aim is to approximate the latent function that maps input data
to desired outputs. This is achieved through a hierarchical arrangement of layers, includ-
ing the input layer that transmits raw data to the concealed layers, where it undergoes a
multi-stage learning process, culminating in the output layer that generates predictive out-
puts. These outputs vary depending on the specific statistical challenge being tackled. To
optimize the precision of the model, a loss function is utilized to quantify the dissimilarity
between forecasted and actual values, triggering adjustments in layer weights according
to the prescribed loss function. This iterative weight modification serves to enhance the
model’s accuracy, ultimately facilitating its ability to generalize unseen data [16, 17].

8

2.4. Machine Learning

2.4 Machine Learning

One of the most significant inventions in 20s century was a Turin machine. The history of
machine learning is dated back to the early 1950s. Alan Turing, British scientist who break
enigma code during World War II. Later he created a Turing test which is test could prove
if the machine (computer) can think. Following years start a competition to achieve this
goal. The biggest breakthrough came in machine learning in 2006. Researchers discovered
a the backpropagation algorithm. It was one of the most significant achievements in ma-
chine learning. The term Machine learning is often interchanged with Artificial intelligence
of deep learning. The general public often use term Artificial intelligence to describe a solu-
tion which have some sort of intelligence and could learn something meaningful [18].

Following Venn diagram 2.2 describing relationship between specific terms. As we can
see machine learning is show as part of subset of artificial intelligence. If we want to
compare machine learning with traditional algorithm, we can define a few key differences.
In machine learning we trying to achieve higher dimensional complexity to solve a complex
task. Furthermore for this we usually using big datasets.

Deep Learning Machine Learning Artificial Intelligence

Figure 2.2: Venn diagram.

2.5 Deep Learning

The first scientists who laid the foundations of modern deep learning can be considered
Yann LeCun a Yoshia Bengio. In 1998, these researchers created an architecture called
LeNet [19], which was trained on the MNIST dataset. Deep learning belongs to a subset
of machine learning. This is the term for an architecture that contains more than three
layers. One of the goals of deep learning was to simulate the functioning of the human brain.
When deepening the site or adding more hidden layers, we usually increase the accuracy
of the results. In general, deep learning is used to solve complex tasks. One of the main
characteristics of deep learning is that it can automatically extract hierarchical features and
is, therefore suitable for tasks with unstructured data and complex patterns [20, 21, 22].

9

2. Background

2.6 A Single Neuron

In 1943, researchers McCulloch and Pitts introduced a mathematical paradigm for under-
standing the functioning of neurons, which laid the groundwork for the development of
artificial neural networks [23]. At the core of these networks lies the single neuron, al-
ternatively referred to as a unit rather than a node. The neuron’s operation is governed
by a straightforward set of principles. First, it necessitates inputs endowed with suitable
weights. Subsequently, a bias term is incorporated into the neuron, furnishing it with an
initial impulse that precludes the output from being zero at the outset. By definition, a
neuron is a nonlinear function. Mathematically speaking, the operation of a neuron can
be illustrated by the following equation:

y =
n∑

i=1

wixi + b0 . (2.1)

Mathematical notation is a linear combination of weights and input and final bias as-
signment. Where y denotes the output, x represents the vector of inputs, w symbolizes
the weight matrix, and b stands for the bias term. The first step of the transformation is
to multiply the inputs by a weighting parameter w that simulates the synaptic strength in
biological networks. All weighted inputs are then summed to obtain the total input.

While individual perceptrons possess limited capacity to address intricate problems
due to their restriction to linear decision boundaries, they constitute the foundation for
more sophisticated neural network architectures. Multilayer perceptrons (MLPs) and deep
neural networks, for instance, are capable of handling nonlinear challenges and find applic-
ation in various machine learning domains [23].

10

2.6. A Single Neuron

2.6.1 Perceptron

Perceptron is a basic implementation of artificial neural networks inspired by the human
brain [24]. In this paper, we will look at an example of classification to understand how
perceptron works. The underlying equation governing the functioning of a perceptron can
be expressed as follows:

The non-linear function f(x) is defined as:

f(X) =

{
1, if W ·X + b > 0

0, otherwise
,

X = {x1, x2 . . . xn} X is feature input vector, (2.2)

W = {w1, w2 . . . wn} W are the weights, (2.3)

n∑
i=1

(wixi) + b . (2.4)

X1

X2

Xn

X3
Σ

w1

w2

w3

wn

Bias (b)

output (y)

Figure 2.3: Single Layer Perceptron

In our case, we will consider the sigmoid function as the non-linear activation function
for light and simplicity. The sigmoid activation function [25] produces an output between
0 and 1 and is ideal for binary classification [26].

Sigmoid activation function f(x) is given by:

f(x) =
1

1 + e−x
. (2.5)

11

2. Background

2.6.2 Multi-layer Perceptron

The defining characteristic of MLPs is the presence of one or more intermediate layers
between the input and output layers, comprising perceptrons arranged in a hierarchical
structure. The depicted Figure 2.4 illustrates an MLP with a single hidden layer, showcas-
ing the network’s ability to learn and solve nonlinear tasks. However, the higher complexity
of the model also means that the weight update procedure becomes more complicated and
time-consuming. An efficient weight-updating technique is called the back-propagation
algorithm [27].

Each perceptron within a layer is connected to every perceptron in the subsequent layer
via weights wi, establishing a complex of interactions that enable the network to capture
intricate patterns in the data. The computation performed by each perceptron involves
the summation of weighted inputs, followed by passing the result through an activation
function, typically a sigmoid function. This process allows the network to introduce non-
linearity and approximate complex decision boundaries. For example, the output layer
contains the same number of perceptrons as classes, and the perceptron with the highest
activation is designated as the classification of the input sample. This arrangement enables
the MLP to perform recognition tasks accurately.

The MLP can be categorized as either a fully connected or a partially connected net-
work. A fully connected network depicted in Figure 2.4 is distinguished by having all nodes
interconnected between its layers, in contrast to a partially connected network where there
are no interconnections between nodes from the preceding layer to the subsequent layer.
While partially connected networks conserve weight memory, research studies have consist-
ently demonstrated that fully connected models achieve superior performance. Moreover,
partial connectivity often leads to increased difficulty in training the network [28].

Input x1

Input x2

Input x3

y1

y2

Hidden
layer

Input
layer

Output
layer

Figure 2.4: Multi Layer Neural Network Architecture.

12

2.7. Deep Learning Frameworks

2.7 Deep Learning Frameworks

2.7.1 TensorFlow

TensorFlow is an open-source deep learning framework. It was developed by Google in 2015.
It is primarily used for numerical calculations. It is considered one of the cornerstones of
modern AI. It is considered by many to be a game-changer in machine learning. It provides
very diverse possibilities for developers with a user-friendly interface. It is optimized for
both CPU and GPU computations, and it is possible to distribute computations to multiple
devices at the same time [29].

2.7.2 Pytorch

Facebook developed the Pytorch [30] framework to replace the Numpy [31] math library.
It has a large number of characterization properties similar to TensorFlow. It can also effi-
ciently distribute calculations to the GPU. One of the very efficient functions is the gradient
calculation Autograd. Autograd can calculate the models backpropagation without manual
implementation. Currently, Pytorch is one of the most used frameworks for deep learning
research and development. Based on data from papers with code, the majority of scientific
implementations are based on this framework [32].

2.8 Convolutional Neural Network

In CNN’s [33] early beginnings in the computer vision industry, it was revolutionary and
achieved excellent results. Convolutional neural networks (CNNs) are one of the significant
building blocks of modern deep learning.

Shallow neural networks have only one input layer, one hidden layer, and one output
layer, while deep learning neural networks have multiple layers. Each layer in a deep
learning neural network acts as a training layer for the following layers. In summary, the
more hidden layers a model has, the better it can extract and cluster information from
previous layers. Convolutional networks, which are composed of convolutional layers and
use sliding windows, are commonly used in computer vision for their ability to extract
spatial information from images. While CNNs were specifically designed for image recog-
nition, they remain a state-of-the-art method for computer vision tasks. Convolutional
neural networks (CNNs) have been in existence since the 1960s. However, the first sig-
nificant breakthrough was the LeNet [19] architecture, followed by AlexNet [34] in 2012.
The AlexNet architecture won a competition on the ImageNet dataset and was considered
state-of-the-art. The subsequent Table 2.2 shows a comparison between various types of
most influential CNN architectures.

13

2. Background

Table 2.2: Comparison of various types CNNs implementation [8]

Architecture Size (M) Top-5 error (%) No. Layers Parameters Year

LeNet [19] - - 8 60 k 1998

AlexNet [34] 238 18.00 8 6 M 2012

VGGNet [35] 540 9.33 16 138 M 2014

GoogleNet [36] 40 10.04 22 4 M 2013

ResNet-50 [37] 100 6.71 50 26 M 2015

ResNet-152 [37] 235 3.57 152 60 M 2017

The main difference between CNNs and classical neural networks is that a kernel is
trained instead of connecting an input neuron to a hidden layer neuron. This kernel is
moved in small steps, as shown in the Figure 2.5. The principle behind this technique is
based on the mathematical operation of convolution [38].

It involves learning the grid pixel by pixel, mainly from the surrounding points. This
principle, known as spatial, is described in detail in the following subsection.

The depth of the location can be indicated based on the number of kernels used. By
using these convolutional layers, the model or the number of parameters can be reduced.
Each layer in the CNN produces a feature map. Similar to regular neural networks, CNN
feature maps also go through activation functions that add nonlinear components to the
network [39, 40].The Figure 2.5 illustrates an example of a convolutional neural network
and its corresponding feature maps.

Conv 2d Conv 2d Conv 2d Conv 2d

Figure 2.5: Visualization of feature maps in a Convolutional Neural Network (CNN) with
a concealed layer [2].

14

2.8. Convolutional Neural Network

2.8.1 Padding and Stride

Convolutional neural networks (CNNs) rely on two critical parameters that determine the
size and behaviour of element maps during convolution. Accurate setting of these para-
meters is essential for an efficient CNN architecture.

Padding is a specialised CNN technique that adds extra pixels, typically zeroes, around
the input image or element map before convolution is applied. Padding is mainly used to
regulate the spatial dimensions of object maps. Padding is used to ensure that convolu-
tion operations are performed on the edges of the input, preventing information loss if the
convolution were limited to the central pixels.

The stride value determines how much the convolution kernel (filter) moves across the
input or feature map during each step of the convolution operation. A larger value results
in a smaller output size, while a smaller value results in a larger output size. Decreasing
the step size in a convolutional network increases the amount of information and spatial
dimensions. This, in turn, raises the computational cost in these layers.

2.8.2 Pooling

The pooling method is typically used to down-sample or sub-sample an image in order
to reduce its spatial dimension. In convolutional networks, these layers are often placed
after the convolutional layer to preserve only the relevant information in the image, such
as sharp features of a face. There are two types 2.6 of pooling that are frequently used
in deep learning: max pooling and average pooling. Max pooling is the most frequently
used method. Pooling is usually applied in CNNs after several layers. Like the previous
method, pooling is used to reduce computational complexity. This is particularly import-
ant in computer vision and when training on video data.

2.8.2.1 Max Pooling

Max Pooling selects the highest value in each related image area. This technique helps to
preserve the most salient features within each local region while discarding less relevant
information.

2.8.2.2 Average Pooling

Similar to Max Pooling, Average Pooling defines a local region and calculates the average
value of that region.

15

2. Background

Max pooling

32 10

4 14

11 17

9 19

16 27

7 14

20 4

8 12

15 14

11 16

32 19

20 27

Pooling Average pooling

Figure 2.6: Illustration of pooling mechanisms: max pooling and average pooling.

2.9 Transformers

The architecture overcomes the basic limitation of sequential computation, which con-
strained the use of recurrent neural networks (RNN) in previous models that utilized GPUs.
The paper presents a novel deep learning architecture called Transformer, which does not
rely on sequential processing and exhibits significant potential for parallel computation.
Figure 2.7 displays the encoder-decoder framework adopted in the models.

Input
Embedding

Softmax

Feed
Forward

Linear

Add & Norm

Multi-Head
Attention

Add & Norm

Output
Embedding

Add & Norm

Masked
Multi-Head
Attention

Add & Norm

Multi-Head
Attention

Feed
Forward

Add & Norm

Output
Probabilities

Positional
Encoding

Positional
Encoding

Inputs Outputs
(Shifted right)

Nx

Nx

Figure 2.7: Visualization of a Transformer model architecture [3].

16

2.9. Transformers

The Transformer architecture, shown in Figure 2.7, consists of self-attention and point-
wise fully connected layers in both the encoder and decoder. The left side depicts the initial
stage, converting inputs into input embeddings. Originally designed for translation, the
model converts input words into numerical representations through the embedding layer,
producing 512-dimensional vectors for each word in the sentence. These vectors are then
passed to the next stage of the model.

Advancing natural language processing involves incorporating positional encoding, which
informs the encoder of the location of words in a sentence. Recently, researchers proposed
a novel approach to positional encoding that involves generating a d-dimensional vector
that shares specific position information for each element of the sentence. This technique
provides more details about the position of words, potentially leading to improved model
performance. Since word embeddings have 512 dimensions, the coding dimension of the
current model will also be 512, and the positional coding vector will also have 512 dimen-
sions. The researchers proposed a sinusoidal function to solve this problem. The position
coding vector contains sine and cosine pairs for each frequency wk.

The next component of the encoder is a multi-headed self-attention mechanism that
helps computers to understand finer sentence details. The paper encodes a word at a par-
ticular location, and the score determines the amount of attention required in other parts
of the input sentence.

As the dimension in the paper was 64, each score value was divided by 8 before under-
going the softmax operation. The scores are normalized using Softmax, ensuring that all
scores are positive and add up to 1. The resulting Softmax score determines the degree
to which each word is expressed in its position, with the word at this specific position
holding the highest Softmax score. The next step involves using value vectors, which are
then applied by multiplying each value vector with its corresponding Softmax score. The
aim is to maintain the importance of relevant words and reduce the significance of others
by multiplying them with small values. In the final step of self-attention, the value vectors
are added together to produce the output of the self-attention layer for the initial word.
This resulting vector can then be passed on to the feed-forward neural network.

The next step is multi-head attention. Instead of using a single attention function
with d-dimensional keys, values, and queries, the authors found it beneficial to project the
queries, keys, and values h times using separate learned linear projections. In this study, 8
attention layers or heads were employed. Each head maintains distinct weight matrices for
query, key, and value, leading to separate Q, K, and V matrices. To obtain these matrices,
multiply the input embedding X by WQ, WK , and WV . The attention function is then
performed simultaneously on each of these projected versions, producing the final output
values [3].

17

2. Background

The attention block is followed by an add and norm layer. In this layer, the output vec-
tor of the attention block, which was just calculated, is summed with the input embedding
vector retrieved in the first step. The resulting aggregate is then subjected to layer normal-
ization. This normalization technique reduces training time, prevents bias towards higher
value features, and restricts weights to a specific range. Overall, it is not recommended
to train a model using gradient descent with non-normalized features. Additionally, both
the encoder and decoder utilize fully connected feed-forward networks in each layer, which
are identical and applied individually to each position. Along with attention sub-layers,
this architecture guarantees optimal performance. This component consists of two linear
transformations with a ReLU activation in between. The main aim is to enhance the out-
put of a single attention layer to smoothly integrate it as input for the next attention layer.

The decoder generates text sequences using sub-layers similar to the encoder, includ-
ing multi-headed attention, feed-forward, and normalization layers. Each attention layer
performs a specific function. The decoder is autoregressive, taking the previous output
and encoder outputs as inputs. It stops when an end token is produced.The decoding pro-
cess involves several stages. First, the input is embedded and positionally encoded. The
resulting embeddings are fed into the first multi-headed attention layer, which computes
the attention scores for the decoder input. Unlike other attention layers, this one operates
differently due to the decoder’s autoregressive nature, necessitating the exclusion of future
tokens in the attention computation.

In the decoding process, a unique masking technique is used to prevent the computation
of attention scores on upcoming words. A look-ahead mask is applied before computing
the softmax and scaling the scores, which fills the top right triangle of the attention scores
with negative infinity. This masking process is the only difference in calculating attention
scores in the initial multi-headed attention layer. Multiple heads are used to apply masks,
and the masked outputs are then concatenated and processed by a linear layer. The result
is a masked output vector that guides the model in addressing the decoder’s inputs.

The secondary multi-headed attention layer utilizes the encoder’s output as queries for
its keys, while the encoder’s output serves as values. This allows the decoder to selectively
focus on relevant input. The output is then processed by a point-wise feed-forward layer
and a final linear layer with a classifier, followed by a softmax layer that generates prob-
ability scores for each class. The predicted word is the index with the highest probability
score. The decoder can be stacked with multiple layers, each taking inputs from the en-
coder and preceding layers, allowing the model to extract and combine various attention
patterns, potentially improving its predictive ability [3].

Transformers utilize the attention mechanism’s strength to make more accurate pre-
dictions. Although recurrent networks aim to accomplish similar tasks, transformers are
typically more effective because they do not suffer from short-term memory, making them
particularly useful for encoding or generating extended sequences [3].

18

2.9. Transformers

2.9.1 Vision Transformers

The Vision Transformers operates similarly to the previously mentioned transformers. The
distinction lies in data preprocessing before feeding it into the Vision Transformer. It pro-
cesses image patches, and then the Reminder Transformer operates similarly. Figure 2.8
depicts the original architecture of ViT [4].

MLP
Head

Class

Transformer Encoder

Linera Projection of Flattened Patches

Embedded
Patches

Norm

Multi-Head
Attention

MLP

Norm

Patch + Position
Embedding

*Extra learnable embedding

Vision Transformer Transformer Encoder

Figure 2.8: Vision Transformer architecture [4].

The first task for Vision Transformers is to divide an image into image patches illus-
trated on Figure 2.9. The architecture divides a 224× 224 pixel image into image patches,
where each patch is 14× 14 pixels, resulting in a total of 256 of these patches. The benefit
of a single attention layer requires a much more manageable 9.8 million comparisons. A
linear projection layer is used to map the image patch arrays into image patch vectors by
mapping these patches to the patch embeddings.

The next stage involves a learnable embedding, also known as a class token. This idea
comes from BERT and has two unique features that make CLS special. First, it does not
represent a real word. Therefore, the improved version is: Second, it is input into the
classification head, which is used as a part of the pre-training process. This text already
adheres to the principles or lacks context. Essentially, embedding is a general representa-
tion of the full sentence into a single token embedding because it helps the model make a
good prediction.

19

2. Background

16

16

Input Image Image Patches

14

224

224

Figure 2.9: Schematic representation of the Vision Transformer pipeline: the input image
is partitioned into 16 x 16 patches during the processing sequence.

The final step requires positional embeddings. Positional embedding is a crucial com-
ponent of Vision Transformers (ViT). It helps the model understand the relative position
of different regions in the image by providing positional information. Fixed-size vectors en-
code spatial information for each patch in positional embedding. These embedding vectors
are typically acquired during the training process and are represented by sine and cosine
functions. Spatial information assists the Vision Transformers (ViT) model in capturing
the global context and dependencies between different image regions [4].

2.10 Computer Vision - Action Recognition

Computer vision is a wide-ranging discipline, with action recognition being one of its
subfields. This field deals with the identification of human actions in video sequences.
Additionally, there is the more computationally demanding area of action recognition,
where we try to determine both the action and its location in the image. Action recognition
is a crucial component of advanced observation systems and sports analysis. It is swiftly
becoming a crucial component and performs a significant function in the sphere of computer
vision. As advancements in technology within this field progress, it ushers in thrilling
prospects and practical implications.

20

2.11. Datasets

2.11 Datasets

2.11.1 ImageNet-1K

ImageNet-1k is a distinctive dataset comprising videos and images used for image recog-
nition. It incorporates a total of 1.2 million images divided into 1000 classes [41].

2.11.2 Kinetics-400

Kinetics-400 is a dataset that is commonly employed for action recognition tasks. The
dataset contains of 400 distinct actions and a total of 306, 245 videos that are hosted on
YouTube. Researchers frequently use this dataset to evaluate their state-of-the-art work
against benchmark standards. The total disk space occupied by the dataset amounts to
approximately 443 GB [42]. A detailed list of all classes can be found in the Appendix
section A.

Figure 2.10: Kinetics-400 - class ”Car Driving”.

Figure 2.11: Kinetics-400 - class ”Surfing”.

Figure 2.12: Kinetics-400 - class ”Wrestling”.

21

Chapter 3

Methodology

3.1 Goal

The main research objective of the thesis is to design a lightweight model for human action
recognition running in a real-time setting on an edge device. It emerged a challenge to find
the optimal trade-off between performance, efficiency, and computational cost.

3.2 Search Methodology

In order to conduct a comprehensive literature review, we selected a search platform that
offered a wide range of academic publications. The majority of the searched articles were
retrieved from Google Scholar [43] and IEEE Xplore Web [44]. To acquire the necessary
knowledge, We thoroughly examined between 40 to 50 academic papers, with a focus on
articles that presented cutting-edge approaches in the field of computer vision. The largest
amount of valuable information was found in academic papers and conference publications,
which provided us with the required insights into the latest developments in the domain.

To ensure a thorough search, We employed a strategic combination of keywords, includ-
ing “PETL”, “Lightweight”, “ViT”, “MobileViT”, “Edge Device”, “Action Recognition”,
“Real-time Edge Device” and “Computer Vision on Edge”. This approach allowed us to
uncover all relevant articles and filter out irrelevant content. The selected papers provided
a rich source of knowledge during the thesis writing process.

During the review process, it was imperative to assess the eligibility of each article
based on specific criteria. The examination process placed particular emphasis on the
abstract, methodology, architecture, and conclusions, as well as the contributions made by
each study. This rigorous evaluation ensured that only the most pertinent and high-quality
articles were included in the literature review.

23

3. Methodology

3.3 Enhancing CNN Capabilities

Creating a lightweight model has always been a significant challenge in computer vision.
Until recently, depthwise separable convolutional methods have been the predominant ap-
proach. These methods successfully reduce the number of parameters and computation
costs (FLOPS) required for training and inference by performing depthwise convolution in
a regular 2D or 3D convolutional network. 3D depthwise convolutional networks are par-
ticularly effective at extracting spatial-temporal features while using minimal parameters
and FLOPS.

In computer vision tasks, Vision Transformers (VIT) have demonstrated superiority
over conventional CNN architectures in terms of accuracy. VIT uses a self-attention mech-
anism to effectively capture distant semantic relevance in images. Recent studies [45, 46]
have explored the synergistic integration of computational CNN and VIT. The findings
indicate that convolutional networks assist VIT in capturing local spatial information,
complementing its limitations. The MobileViT [47] architecture was chosen as it combines
the strengths of CNN and VIT, resulting in an improved action recognition structure.

The hybrid architecture of MobileViT, prior to employing self-attention, aggregates
features from equally spaced pixel positions into the same group. Notably, patches within
attention heads are not equally divided in the H and W dimensions. In addition, the T
dimension enables the model to capture temporal information and sequences.

3.4 Feature Extraction Approach

Human activities are a sequence of movements where both spatial and temporal aspects are
equally important. Temporal features are responsible for describing the relations between
multiple frames and capturing motion patterns. However, incorporating these features can
be challenging, especially when dealing with body movements that alter the spatial layout.

One approach to address this issue is to create a custom model for feature extraction
from scratch. Unfortunately, this technique necessitates a substantial number of paramet-
ers and extensive computational resources, rendering it impractical for applications with
strict constraints, such as running on edge devices with minimal interference rates and
latency. To overcome this limitation, we drew inspiration from recent advances in liter-
ature and leveraged parameter-efficient transfer learning techniques in conjunction with
large pre-trained models. By adapting existing architectures, we can effectively perform
human action recognition tasks while maintaining computational efficiency.

In the context of parameter-efficient transfer learning, we employed MobileViT [47] as
the foundation of our architecture for feature extraction. MobileViT was originally designed
for mobile devices, such as the iPhone 12, and offers a variant with a limited number of

24

3.5. Preprocessing

parameters. Our newly proposed architecture builds upon this foundation and incorporates
enhancements to capture additional temporal information in videos, thereby improving
the representation of actions on a future map. The relationships between frames play a
vital role in understanding and representing actions, making temporal features crucial for
accurate action recognition. The detailed description of our proposed architecture can be
found in Section 3.10.

3.5 Preprocessing

Before beginning training, it is necessary to prepare the datasets in the appropriate format.
In this case, we used Kinetic-400, a commonly used dataset for human action recognition.
As a first step, we converted the videos into a sequence of images to aid the model’s learn-
ing process. We used a frame rate of 8 frames per second to balance reducing redundancy
and preserving the temporal information necessary for accurate recognition.

It is important to note that the frame rate per second (FPS) chosen has a significant
impact on the learning curve and model size. Altering the FPS can affect the model’s
performance and efficiency. This observation emphasizes the significance of considering
the temporal aspect in human action recognition, as discussed in the previous chapter.
There is a correlational relationship between FPS and the learning curve, which must be
managed carefully for optimal results. In our model design, we added a final classification
layer that can handle 400 classes. This layer has dense connections and uses the softmax
function for activation, following established practices in the field [48, 49].

3.6 Alternative Architecture

During our research, we examined various architectural alternatives, as shown in Figure 3.1.
However, after closer examination and testing, it became clear that this specific design
iteration did not fulfill our performance expectations. We did not reach an accuracy over
32%. Therefore, we had to consider alternative approaches.

Temporal
Conv 3D
3 × 3 × 3

Global Pool
→ Linear

MV2
→ 1

Conv 2D
3 × 3
↓ 2

MV2
↓ 2

MV2
→ 1

MV2
→ 1

Nx

MV2
↓ 2

Transformer
Multi-Head
Attention

Depthwise 3D
Convolution

Up
Projection

↑2

Down
Projection

↓2

Feature
fusion

MobileViTST-Adapter

Figure 3.1: It explored architectural alternatives that show limited potential for additional
training. Consider incorporating the ST-Adapter either before or after the MobileViT
block in a serial configuration.

25

3. Methodology

3.7 MobileViT

Lightweight convolutional neural networks prove to be a practical tool for mobile vision
tasks. Their spatial induction bias enables them to acquire representations with fewer
parameters in diverse visual cues. However, these networks exhibit spatial localization.
To acquire global representations, self-attention-based vision transformers Q (ViTs) come
into play. ViT, in contrast to CNN, is a heavyweight. MobileViT presents an alternative
approach by using transformers as convolutions to process information. The data displays
that MobileViT outperforms CNN and ViT based networks considerably on diverse tasks
and datasets.

Despite its effectiveness, the practical application of ViT is impeded by the substantial
number of network parameters and delays it necessitates. As a substitute for convolutional
neural networks (CNNs), vision transformers - which are self-attention-based models -
have arisen for visual learning. Succinctly stated, ViT fragments an image into patches
and employs multi-head self-attention in transformers to comprehend the interconnections
between these patches. To optimize performance, it is now customary to augment the
parameters of ViT networks. Nonetheless, this advancement results in a larger model size
and slower processing speed. Many real-world situations require rapid visual recognition
tasks on mobile devices with constrained resources. The size of the ViT model has been
reduced to accommodate the resource limitations of mobile devices, its performance re-
mains markedly inferior to that of lightweight CNNs.

Many vision tasks on mobile devices use lightweight CNNs, but ViT-based networks
are currently unsuitable for these devices due to their heavier weight, difficulty in optim-
ization, and the need for significant data augmentation and L2 Regularization to prevent
overfitting. For example, a ViT-based segmentation network with 345 million parameters
performs similarly to a CNN-based network with only 59 million parameters. ViT-based
models require a greater number of parameters as they lack the image-specific inductive
bias present in CNNs.

The combination of CNN and Transformer to produce a ViT model for mobile vision
tasks remains uncertain. In order to meet the requirements of mobile vision tasks, models
need to be light, have low latency, and be resource-efficient, accurate, and adaptable. Float-
ing point operations (FLOPs) alone are inadequate for achieving low latency on mobile
devices because they fail to consider crucial inference-related factors such as memory ac-
cess, parallelism, and platform characteristics. This paper utilizes MobileViT to merge the
advantages of CNN and ViT. MobileViT presents the MobileViT block, which efficiently
encodes both local and global information. Unlike ViT and its variations, MobileViT ad-
opts a transformer to substitute local processing in convolution with global processing.
This enables the MobileViT block to possess traits similar to both CNN and ViT, facil-
itating more efficient representation learning with fewer parameters and simpler training
methods [5].

26

3.7. MobileViT

3.7.1 Architecture

The MobileViT module, as shown in Figure 3.2, intends to convey both local and global
information from the input tensor while reducing the number of parameters. To accomplish
this, MobileViT merges a typical convolutional layer with a pointwise (1x1) convolutional
layer for generating the input tensor. Convolutional layers capture adjacent spatial details,
whereas pointwise convolutions project tensors XL ∈ RH×W×d into a high-dimensional
space by acquiring linear combinations of input channels C.

Figure 3.2: Architectural representation of the MobileViT model [5].

MobileViT aims to create models with long-range non-local dependencies and is capable
of an effective receptive field of H×W . Accomplishing this involves using the dilated con-
volution method with carefully chosen dilation rates. It’s also important to apply weights
to valid spatial regions, rather than just padded zeros. ViTs that utilize multi-head self-
attention have proven effective in visual recognition tasks. Nonetheless, ViTs are quite
heavy and exhibit subpar optimizability, largely due to their lack of spatial inductive bias.
To achieve spatial induction bias and enable MobileViT to learn a global representation, it
is necessary to expand it into N non-overlapping flattened patches, as shown in Figure 3.3.

Unlike ViT, which loses the spatial order of pixels, MobileViT preserves both the patch
order and the spatial order of pixels within each patch. This means that XF ∈ RP×N×d

can be folded from XG ∈ RP×N×d. Finally, Tensor XF is reduced to dimension C through
point-wise convolution. Another convolutional layer with n × n filters is subsequently
employed to merge the regional and global characteristics in the concatenated tensors.
The overall efficient receptive field of MobileViT is H ×W .

27

3. Methodology

Figure 3.3: Patch Attention Mechanism: Each pixel undergoes a comparison with every
other pixel, exemplified by a selection of connection arrows depicted here for simplicity.
This attention mechanism draws inspiration from Transformers, where interconnected re-
lationships extend across the entire system.

A standard convolution follows a three-step process of unrolling, matrix multiplication
and folding. The MobileViT block operates similarly to convolutions, utilizing compar-
able elements. However, unlike convolutions which process locally, the MobileViT block
processes globally, resulting in a more extensive and meticulous outcome. Due to this ap-
proach, the MobileViT block shares some commonalities with convolutions such as spatial
bias. In fact, the MobileViT block is a combination of a transformer and a convolution.
Our intentionally simple design allows for efficient implementation of these two techniques
on various devices, eliminating the need for extra work.

3.7.2 Lightweight

The MobileViT block integrates conventional convolutions and transformers for capturing
local and global representations. This combination bestows the MobileViT blocks with
convolution-like properties as well as the competence of global processing. Such exceptional
modeling capacity facilitated the development of a lightweight MobileViT model that is
intentionally shallow and lighter in design [5].

28

3.8. Spatio-Temporal Adapter

3.8 Spatio-Temporal Adapter

ST-Adapters [50] operate by adding additional layer layouts to the target architecture. The
original paper proposed ST-Adapters for a method called image-to-video transfer learning,
which aimed to reduce competition costs. Adapters can take the tokens for all frames and
significantly aid in capturing temporality in the video stream [50].

Depthwise 3D
Convolution

Up
Projection

↑2

Down
Projection

↓2

ST-Adapter

X

Figure 3.4: Architecture of Spatio-Temporal Adapter

Figure 3.4 of architecture uses 3D depthwise CNN and it composed by three important
components. The first component is a down projector then a nonlinear layer followed by
up projector. The features adaptation process is formally written as:

ST-ADAPTER = X + f (DW 3D CNN (X WDOWN)) WUP . (3.1)

Where formally given input is a feature matrix X ∈ RN×d at the i-th layer and f(·)
activation function. WDOWN ∈ Rd×r refers to the down projection layer, and WUP ∈ Rd×r

refers to the up-projection layer. Mentioned projectors are used to decrease and increase
dimensions. These two components create together a lower-dimensional space-bottleneck.
DW 3D CNN denotes depth-wise 3D convolutional network placed in the bottleneck. The
adapter operates in a low-dimensional feature space. Layers are highly efficient in para-
meter computation and capturing temporal features. 3D depth-wise CNN is implemented
with the residual connection [50].

ST-Adapter has the following advantages:

◦ Achieves comparable performance compared to full fine-tuning.

◦ Requires a small training cost.

◦ Reduce the number of trainable parameters.

29

3. Methodology

3.9 MobileNet-V2

MobileNetV2 (MV2) has become a crucial convolutional neural network architecture in
the academic field, transforming research in computer vision and deep learning. The ar-
chitecture was introduced by Google researchers in 2018. MobileNetV2 is designed to be
deployable on mobile devices due to its inverted residual blocks, linear bottlenecks, and
incorporation of squeeze-and-excitation mechanisms. Architecture is a popular model in
academic circles due to its adaptability and success in transfer learning scenarios.

The block contains a 1 × 1 convolutional layer and a 3 × 3 depth-wise convolutional
layer with batch normalization. This structure functions as a down-sampler. Figure 3.5
show architecture of MV2 block [51].

Conv 1x1, ReLU 6

Input

DepthWise 3x3
stride 2, ReLU 6

Conv 1x1, Linear

Add

Figure 3.5: MobileNetV2 architecture [6].

30

3.10. Adapting MobileViT with ST-Adapters

3.10 Adapting MobileViT with ST-Adapters

The original input image can be described as H ×W , where H represents the height and
W the width of the image. The input is extended by the parameter C representing the
number of channels. The formula for input data is described as x ∈ RH×W×C . In our case,
the input has the following values: W = 256, H = 256, C = 3. C is equal to 3 because we
have a color image with 3 color spaces.

In the first layer, data is processed by a standard 1× 1 convolutional layer to capture
local spatial information, followed by a 3 × 3 pointwise convolutional layer. The main
purpose of the pointwise convolutional layer is to project the feature tensor into a high-
dimensional space, creating xL ∈ RH×W×d, where d stands for a dimension greater than
C. The original publication of MobileViT [47] describes this mentioned block as MV2,
denoting the MobileNet-V2 block 3.9.

The following layer plays a crucial role in the architecture to enable the model to
learn global representation with spatial inductive bias. Firstly, the modulo-unfold tensor
xL ∈ RH×W×d into N non-overlapping patches. These patches represent small areas in the
image, resulting in the unfolded tensor with a new shape: xUNFOLD ∈ RP×N×d, where P is
the size of patches, N is the number of patches, and d is the number of channels. Formally,
P = h1 ×w1, and N = HW

P
, where h1 and w1 denote the height (h) and width (w) of each

token. The product of this operation yields non-overlapping patches.

MV2
→ 1

Conv 2D
3 × 3
↓ 2

MV2
↓ 2

MV2
→ 1

MV2
→ 1

MV2
↓ 2

Transformer
Multi-Head
Attention

Depthwise 3D
Convolution

Up
Projection

↑2

Down
Projection

↓2

Feature
fusion

Temporal
Conv 3D
3 × 3 × 3

Global Pool
→ Linear

Nx

MobileViT

ST-Adapter

Figure 3.6: Proposed Architecture.

31

3. Methodology

Following the unfolding, the vector xUNFOLD ∈ RP×N×d is then passed through a stand-
ard Vision Transformer (VIT) block. Vision Transformers use a multi-head attention
mechanism to capture global relationships between patches. Mathematically, xG(p) =
ViT(xU(p)), where 1 ≤ p, p ≤ P . VIT calculates correlations between every patch (token)
p ∈ {1, 2, .., P}. The output vector xG(p) is then unfolded back into a vector with the
following shape: RH×W×d. The new vector xFOLD ∈ RH×W×d is projected into an MV2
block. The main purpose of the MV2 block is downsampling (decreasing dimension space).

Figure 3.6 illustrates a crucial element of the architecture, specifically a parallel ST-
Adapter 3.8. The input vector is partitioned before entering the MV2 ↓ 2, Transformer
Multi-Head Attention, and Feature Fusion modules. The secondary vector flows into the
down-projection (WDOWN ∈ Rd×r), resulting in a lower-dimensional feature space (bottle-
neck). Subsequently, a depth-wise 3D convolutional network is applied within the bottle-
neck to capture temporal features. Following this, the dimensionality is increased through
an up-projection operation (WUP ∈ Rd×r). This is performed by the function fc2, which
is crucial for aligning the dimensionality with the output of the Transformer Multi-Head
Attention block. It is worth noting that the network’s dimensionality is reduced, as shown
in Table 3.1, contributing to improved performance.

Finally, there is a 3 × 3 × 3 temporal convolutional network with a linear activation
function to capture spatial-temporal features.

Table 3.1: Architecture.

No. Layer Output Size Output Stride In Channels Out Channels Dim. Attention Head Activation

0 Image 256 × 256

1

Conv 2D, 3 × 3, ↓ 2

128 × 128 2 16 32 SwishMV2

2

MV2, ↓ 2

64 × 64 4 32 64 SwishMV2

MV2

3

MV2, ↓ 2

32 × 32 8 64 96 144 2 SwishMobileViT block

Adapter 3D, 3×1×1

4

MV2, ↓ 2

16 × 16 16 96 128 192 4 SwishMobileViT block

Adapter 3D, 3×1×1

5

MV2, ↓ 2

8 × 8 32 128 160 240 3 SwishMobileViT block

Adapter 3D, 3×1×1

6

Conv 3D, 3 × 3 × 3

8 × 8 32 160 640 SwishTemporal

7

Global pool

1 × 1 256 640 400Linear

32

3.11. Target Edge Device

3.11 Target Edge Device

The NVIDIA Jetson Nano [52] is employed as the edge device for deployment, offering
computational resources at the edge. Tailored for machine learning applications, especially
those necessitating inference acceleration, the Jetson Nano is a notable member of the
NVIDIA family. Its primary component is the graphics processing unit (GPU), dedicated
to accelerating AI tasks. Being one of the smallest devices in the NVIDIA family, the
Jetson Nano proves to be an excellent selection for edge computing applications. Table 3.2
outlines the technical specifications of the Jetson Nano.

Table 3.2: Technical specification of Jetson Nano.

Item Specification

Release Date 2020

GPU 128 CUDA cores NVIDIA Maxwell

CPU Quad-core ARM Cortex-A57 MPCore processor

Memory 4 GB 64-bit LPDDR4, 1600MHz 25.6 GB/s

Storage 16 GB eMMC 5.1

Connectivity Gigabit Ethernet

Camera

Type of the camera USB 2.0 Camera: HD USB Camera (USB-0000:00:14.0-9) [53].

3.12 Optimization Tool for Edge Device

We use Torch-TensorRT [54] as an application tool, which is a software development kit
(SDK) provided by Nvidia. The primary purpose of the SDK is to create a lightweight
and optimized module that can be easily deployed on edge devices, such as the Jetson
Nano. The builder calibrates the model to operate with lower precision (FP16 or INT18),
reducing computation time. Subsequently, the authors combine multiple layers into a single
operation and use Dynamic Tensor Memory to reduce memory usage. These steps allow
Torch-TensorRT to improve performance on edge devices.

33

3. Methodology

3.13 Training Approach

In the field of training methodologies, we used two distinct strategies. The first strategy
is based on the principles of Parameter Efficient Transfer Learning (PETL) [55] and ST-
Adapters [50], while the second approach involves fully fine-tuning the model.

3.13.1 Full Fine-Tuning

The second strategy involves fully fine-tuning the model and optimizing all of its weights
for the target task. This approach provides greater flexibility in addressing diverse tasks,
especially those that differ significantly from the pre-trained models’ original objectives.
Figure 3.7 shows all parts of the model are set to trainable. Full fine-tuning requires
significant computational resources and time for training.

MV2
→ 1

Conv 2D
3 × 3
↓ 2

MV2
↓ 2

MV2
→ 1

MV2
→ 1

MV2
↓ 2

Transformer
Multi-Head
Attention

Depthwise 3D
Convolution

Up
Projection

↑2

Down
Projection

↓2

Feature
fusion

Temporal
Conv 3D
3 × 3 × 3

Global Pool
→ Linear

Nx

MobileViT

ST-Adapter

Figure 3.7: Full Fine-Tuning training strategy.

3.13.2 Adapter Fine-Tuning

The first strategy leverages the knowledge gained from Parameter Efficient Transfer Learn-
ing [55] and ST-Adapters [50]. This approach involves selectively freezing certain compon-
ents of the DNN architecture, specifically the majority of the layers while allowing the
remaining parts to be trained and adapted for the target task. The frozen layers are de-
picted in Figure 3.8 with a gray color and a padlock icon in the corner.

This methodology significantly reduces the computational expenses of training the
model by constraining the updateable parameters to 15% of the total 5.3 million para-
meters. The incorporation of ST-Adapters further enhances the efficacy of the model by
modifying the input embeddings to better conform to the temporal and spatial dimen-
sions of the new task. The combination of PETL and ST-Adapters creates a robust and
adaptable model that can achieve high performance with minimal training requirements.

34

3.13. Training Approach

MV2
→1

Conv 2D
3 × 3
↓ 2

MV2
↓2

MV2
→1

MV2
→1

MV2
↓ 2

Transformer
Multi-Head
Attention

Depthwise 3D
Convolution

Up
Projection

↑2

Down
Projection

↓2

Feature
fusion

Temporal
Conv 3D
3 × 3 × 3

Global Pool
→ Linear

Nx

MobileViT

ST-Adapter
Frozen during training

Figure 3.8: Adapter Fine-Tuning training strategy with frozen section.

35

Chapter 4

Experimental Results

4.1 Experimental Settings

Firstly, we utilize a vanilla MobileViT [56] model as the backbone architecture and integrate
it with specially designed adapters to constitute a novel framework. The MobileViT com-
ponent is pre-trained on the upstream task, and the weights are kept frozen during training.
The MobileViT backbone is trained on the ImageNet-1K dataset [41]. We employ image-
to-video transfer learning techniques [50] and initialize the newly added adapters modules
with weights initialized using the Kaiming normal distribution function [57]. Through
extensive experimentation, across diverse scenarios, we observe that if the initialization
deviates excessively from the identity function, the model exhibits instability. From the
beginning, our model is designed to perform HAR video recognition.

4.1.1 Training Approach

In order to evaluate the performance of our newly proposed architecture, we conduct
a comparative analysis against two widely used strategies 3.13 - Adapter Fine-Tuning
(involving the training of only the newly added layer) and Full Fine-Tuning (where all
parameters are learnable and are subject to update during the training epochs).

4.1.2 Data Augmentation

Using data augmentation techniques is essential for improving the robustness of machine
learning models. By randomly resizing and horizontally flipping video streams, we can
diversify the training dataset and reduce overfitting. The choice of bilinear interpolation
when resizing to 288×288 provides the preservation of spatial features. This strategic use
of data augmentation optimises model performance and generalisability in video analysis
tasks.

37

4. Experimental Results

4.2 Implementation

PyTorch [30] serves as the principal toolkit in our experiments. The training process takes
place on a server equipped with an Intel i9 7900X @ 3.3 GHz CPU, 64 GB RAM, and
Ubuntu 20.04 operating system along with 4×Nvidia GeForce GTX 1080 Ti 12 GB RAM
graphics cards, as displayed in Table 4.1.

Table 4.1: Technical specification of server.

Item Specification

CPU Intel i9 7900X @ 3.3 GHz CPU

GPU 4x Nvidia GeForce GTX 1080 Ti 12 GB RAM

RAM 64 GB

OS Ubuntu 20.04

Connectivity Gigabit Ethernet

Our initial step involves converting the video inputs into a sequence of frames, with
each image resized to a resolution of 256x256 pixels. We utilize 64 GRU nodes from a total
of 1024 nodes, as a larger number of nodes tends to increase both the accuracy and the
number of parameters. The model consists of 7 layers in total, as shown in Table 4.2.

We employ the AdamW [58] optimizer and set our batch size to 64. The initial learning
rate is set to 0.001, while the step decay is 0.01. To prevent overfitting, we introduce a
dropout parameter with a value of 0.1. Before training, we warm up [59] the model for
1000 iterations, equivalent to five epochs. The model undergoes training for a total of 50
epochs, culminating in satisfactory accuracy. Notably, the final model size does not exceed
20 MB, fulfilling the requirement of deploying the model on an edge device. The SoftMax
function is used as the final layer for classification.

A notable aspect of our model is the sensitivity of its performance to hyper-
parameter tuning. Specifically, even slight alterations to the hyperparameters
can yield considerable variations in the ultimate experimental outcome. This
highlights the importance of meticulous optimization and careful consideration
of hyperparameter settings in order to achieve optimal model performance.

38

4.3. Kinetics-400 Dataset

Table 4.2: Hyperparameters settings.

Description Value

Input Video Size 256×256

Batch size 124

Frames per clip 8

Clips per video 2

Weight decay 0.01

Optimizer AdamW

Scheduler Cosine

Warmup iterations 1000

Warmup Initial Learning Rate 0.0001

Maximal Learning Rate 0.001

Minimal Learning Rate 0.0001

Number of Epoch 50

Activation Function Swish

Momentum 0.1

Number of classes 400

4.3 Kinetics-400 Dataset

The training process utilized the Kinetics-400 (Kin-400) dataset [42, 41], which consists of
240, 000 training samples and 20, 000 validation samples. The dataset is categorized into
400 distinct classes, as presented in Table A.1, which describe various human activities.
Each sample is 10 seconds long and contains approximately 300 frames, corresponding to a
frame rate of around 30 FPS. The dataset records three main types of interactions: human
activity, human-object interaction, and human-human interaction. For more information
about the dataset, please refer to Section 2.11.2.

39

4. Experimental Results

4.4 Evaluation Metrics

For the evaluation performance of our proposed model, we used the following metrics.
These four situations describe how many positive results occur among all positive samples.

◦ TP: True Positive

◦ TN: True Negative

◦ FP: False Positive

◦ FN: False Negative

Based on the terms above, we calculate Accuracy, Precision, Recall, and F1 score as
follows:

Accuracy =
TP + TN

TP + TN+ FP + FN
, (4.1)

Precision =
TP

TP + FP
, (4.2)

Recall =
TP

TP + FN
, (4.3)

F1 score =
Precision× Recall

Precision + Recall
. (4.4)

FLOPs

In addition to accuracy and F1 score, another key metric for evaluating a model’s per-
formance is the number of floating-point operations per second (FLOPs). This measure
provides insight into the computational complexity of the model and the amount of re-
sources required to execute a single instance. Generally, a lower number of FLOPs indic-
ates fewer computational resources are needed, which can be advantageous for deployment
on resource-constrained devices. The typical range for this value is around 106 operations.

40

4.5. Visualisation of Training

4.5 Visualisation of Training

A training curve is a graphical representation that illustrates the performance of a deep
learning model on a given task. It visualizes how well the model is learning from the data
as training progresses. The training curve can help us identify issues such as overfitting,
underfitting, and convergence.

The validation curve, on the other hand, is a graphical representation that evaluates
the performance. However, unlike the training curve, the validation curve provides a more
realistic estimate of how well the model will perform on new, unseen data.

Figure 4.1 depicts the training and validation curves for a deep learning model on a
particular task, with the x-axis representing the number of epochs and the y-axis display-
ing the accuracy in percentages, where 100% represents the best performance. The blue
line represents the training curve, while the orange line represents the validation curve. As
evident from the Figure, the validation curve furnishes a more realistic estimation. The
model achieved the highest accuracy of 74.94%.

Epoch

Accuracy %

10

30

50

70

90

20

40

60

80

10 20 30 40 50 60

100 Training

Validation

Figure 4.1: Training and Validation Accuracy.

Figure 4.2 interprets the loss curves, offering insights into the model’s learning dy-
namics. From the graphical representation, it is comprehensible that the learning process
exhibits a “good fit”. Both the training and validation curves demonstrate a consistent
decrease, telling of the model’s reach point of stability. The difference between the training
and validation curves is quantified as the “generalization gap”, signifying the difference in
performance between the model’s training and its ability to generalize to unseen data.

41

4. Experimental Results

Epoch

Loss

1.0

2.0

3.0

4.0

5.0

1.5

2.5

3.5

4.5

10 20 30 40 50 60

Training

Validation

Figure 4.2: Training and Validation Loss.

To avoid the risk of overfitting during training, the application of “early stop” tech-
niques are employed, as denoted in the provided in Table 4.2. The optimal number of
epochs is determined as 50. The graphical illustration further explains the potential out-
comes of continued training. The noticeable upward trend at the end in both the training
and validation curves indicates a tendency towards overfitting. This emphasizes the im-
portance of terminating the training process at the optimal epoch to prevent the model
from overfitting.

42

4.6. Results

4.6 Results

We employed two distinct training strategies 3.13 to evaluate the performance of our pro-
posed architecture. Firstly, we present the results of our new architecture and compare it
with various benchmark models on Kinetics-400. Table 4.3 presents a comprehensive over-
view of different computer vision models and architectures, providing insights into their
specifications and performance metrics on distinct tasks. Each entry in the table includes
details such as the model name, backbone architecture, pre-training dataset, input size,
number of parameters, and performance scores. Performance is evaluated on tasks such as
action recognition, with metrics such as Top-1 accuracy and Top-5 accuracy being repor-
ted. Additionally, the table showcases a variety of datasets used for pre-training, including
ImageNet-1k [41], ImageNet-21k [41], CLIP [60], and custom datasets.

Notable models such as ViT and Swin are featured, each demonstrating competitive
results in terms of accuracy and model complexity. The inclusion of models with different
backbone architectures, input sizes, and pre-training datasets provides a comprehensive
comparison, offering valuable insights for researchers in the computer vision field. Well-
established models like CoCa [61], UniFormerV2-L [62], and VideoSwin-L [63] show su-
periority in terms of performance Top-1 accuracy. However, its biggest drawback is the
number of parameters. For instance, CoCa [61] has over 1000 million, and UniFormerV2-
L [62] 354 million parameters.

The second part of Table 4.3 shows architectures considered to be lightweight. Our pro-
posed Adapter Fine-Tuning method outperforms the majority of other methods in terms of
Top-1 accuracy, achieving a score of 74.94%. This indicates that the proposed approach is
effective in adapting the pre-trained ImageNet-1k model to the Kinetics-400 dataset. The
Full Fine-tuning method achieves higher accuracy than the Adapter Fine-Tuning method,
with a Top-1 score of 76.43%. This suggests that fine-tuning the entire MobileViT model
can lead to better performance gains compared to adapting only the pre-trained weights.
The model demonstrates the best trade-off between the number of parameters, Top-1 ac-
curacy, and computation costs (GFLOPs).

As shown in the Table 4.3, the combination of a 3D CNN and ViT model demonstrates
superiority over previous architectures. The CNN extracts temporal features effectively,
while the ViT model accurately calculates spatial information between all patches with
its self-attention mechanism. However, our model does not achieve the highest accuracy
due to several reasons. Our initial goal was to find a balance between various parameters,
prioritizing the ability to deploy the model on an edge device with real-time performance.
Additionally, we faced limitations in computational resources, aiming to optimize the model
with a few-shot training. The proposed model has approximately 5.3 million parameters.
During the training phase of Full Fine-tuning, all parameters are trainable and updated.
This is reflected in the achieved performance. The proposed architecture for Adapter
Fine-Tuning updates only 15% of the total parameters. Consequently, our final trained

43

4. Experimental Results

models are compact enough to operate on low-processing stations, such as the Jetson Nano.

Table 4.3: Performance comparisons for action recognition on the Kinetics-400.

Method Backbone Pretrain Input Size GFLOPs Param Top-1 % Top-5 % Year

CoCa [61] ViT-g JFT-3B+ALIGN-1.8B 16×576×576 N/A×3×4 1000 M 88.9 - 2022

UniFormerV2-L [62] ViT-L CLIP-400M+K710 64×336×336 12550×3×2 354 M 90.0 98.4 2022

MViTv2-L [64] - ImageNet-21k N/A 42420 218 M 86.1 - 2022

VideoSwin-L [63] Swin-L ImageNet-21k 32×224×224 7248 197 M 83.1 95.9 2022

TimeSformer-L [65] ViT-B ImageNet-21k 96×224×224 7140 121 M 80.7 95.7 2021

DUALPATH w/ ViT-B/16 [66] ViT-B/16 CLIP N/A 710 96 M 85.4 - 2023

ST-Adapter w/ ViT-B/16 [50] ViT-B/16 CLIP N/A 1821 93 M 82.7 - 2022

UMT-B800e [67] ViT-B K710 8×224×224 180×3×4 87 M 85.7 97.0 2023

R(2+1)D RGB [68] ResNet-34 - 32×3×112×112 1524 63.8 M 72.0 - 2018

SlowFast101 [69] R101+NL - 80×224×224 255×1×5 60 M 79.8 93.9 2019

UniFormer-B [70] UniFormer-B ImageNet-1k 32×224×224 3108 50 M 83.0 95.4 2021

ECO [71] BN-Inception+3D ResNet-18 - 16×3×224×224 64 47.5 M 69.0 - 2018

MViTv2-B [72] MViTv2-B - 32×224×224 259×3×4 37 M 81.2 95.1 2021

Two-Stream I3D [73] 3D BN-Inception ImageNet-1k 3×256×256 544.44 25 M 71.1 89.3 2017

TSM [74] ResNet-50 - 8×3×224×224 33 24.3 M 70.6 - 2019

MF-Net [75] - ImageNet-1k 16×3×224×224 11.1 8 M 72.8 90.4 2018

VTN-EFF [76] Effnet-B0 ImageNet-1k 32×224×224 - 6.8 M 68.2 88.1 2021

T-STFT [77] BNInception - 64×224×224 41.2 6.27 M 75.0 91.1 2022

MoViNet-A2 [78] - - 32×224×224 - 4.8 M 75.0 92.3 2021

Ours Adapter Fine-Tuning MobileViT ImageNet-1k 8×3×256×256 16.53 5.3 M 74.94 93.2 2023

Ours Full Fine-tuning MobileViT ImageNet-1k 8×3×256×256 16.59 5.27 M 76.43 94.06 2023

4.6.1 Comparison of Different Optimizers

We present a comparative analysis of the performance of distinct optimizers, specifically
AdamW [58], AdamGrad [79], and Stochastic Gradient Descent (SGD) [80]. To ensure
consistency in our evaluation, we employed identical hyperparameter settings as depicted
in Table 4.2.

Table 4.4 showcases a comparison of the model’s accuracy. Notably, the AdamW op-
timizer attains an accuracy of 76.43%, followed by the AdamGrad optimizer with 75.28%.
Finally, the SGD optimizer achieves an accuracy of 72.64%. These findings suggest that
the AdamW optimizer performs supremely among the three optimizers considered in our
study.

Table 4.4: Comparison of Top-1 accuracy of different optimizers.

Optimizer Full Fine-tuning Adapter Fine-Tuning

AdamW [58] 76.43% 74.94%
Adagrad [79] 75.28% 72.51%
SGD [80] 72.64% 69.36%

44

4.6. Results

4.6.2 Inference on Server

Before deploying the model on an edge device, it was crucial to validate its performance
on the server using a test dataset. We executed the inference model on the server and ana-
lyzed the results for a video sequence. The following Figures 4.3,4.4 illustrate the model’s
predictions, with Figures 4.4 highlighting instances of misclassification. Notably, there
were cases where the model confused similar actions, such as mistaking ’motorcycling’ for
’riding a scooter’. This confusion may arise due to the similarity of these actions in terms
of their features, increasing the probability of confusion. The mean inference speed reach
on the server is approximately 144 FPS.

Class: Rock Climbing
Prediction: Rock Climbing

Class: Yoga
Prediction: Yoga

Class: Ice Climbing
Prediction: Ice Climbing

Class: Arm Wrestling
Prediction: Arm Wrestling

Class: Drawing
Prediction: Drawing

Class: Making Sushi
Prediction: Making Sushi

Figure 4.3: Server-based inference - Examples of correct predictions.

Class: Motorcycling
Prediction: Riding Scooter

Class: Breakdancing
Prediction: Jumpstyle Dancing

Class: Riding a Bike
Prediction: Riding Mountain Bike

Figure 4.4: Server-based inference - Examples of incorrect predictions.

45

4. Experimental Results

Table 4.5 provides a comprehensive examination of key performance metrics for a spe-
cified model within a server context. The results contain critical parameters, namely
Preprocess Time, Postprocess Time, Inference Speed, Latency, and RAM Usage, with
evaluations conducted across diverse test datasets and camera configurations. Noteworthy
findings include variations in preprocessing time, measured at 2.88 ms and 5.63 ms for
different datasets, and postprocessing time, exhibiting distinctions at 1.71 ms and 1.89 ms.
The model demonstrates commendable real-time processing capabilities, as evidenced by
an Inference Speed of 141 FPS and 126 FPS, respectively. Latency values of 33.12 ms and
91.83 ms depict the temporal delay between input and output. The observed RAM usage
remains consistent at 2.41 GB and 2.42 GB for the test datasets, indicating stable memory
utilization. Furthermore, the model’s accuracy is reported as 74.94% for the test dataset,
while the accuracy for the camera is 73%. This dataset contributes crucial empirical in-
sights into the real-time computational efficiency of the model within a server environment.

Table 4.5: Real-time performance on server.

Item Test - Dataset Camera

Preprocess Time 2.88 ms 5.63 ms

Postprocess Time 1.71 ms 1.89 ms

Inference Speed 141 FPS 126 FPS

Latency 33.12 ms 91.83 ms

RAM Usage 2.42 GB 2.41 GB

Accuracy 74.94% 73.00%

4.7 Deployment on Edge

Executing the model in real-time on an edge device presents a significant challenge. To
achieve optimal performance of our HAR system, we must utilize the full potential of the
Jetson Nano. As explained in Methodology 3.12, we used the Torch-TensorRT [54] tool
to optimize the model for execution on the edge device. The version parameters of the
system dependencies used are shown in Table 4.6. The comprehensive configuration of the
Edge device is illustrated in the Appendix A.2.

Table 4.6: Jetson Nano system dependencies.

Python version Torch-TensorRT Nvidia Pytorch

3.8 v1.0.0 Jetpack - 5.0 Pytorch v1.11.0

46

4.7. Deployment on Edge

4.7.1 Inference

The final stage of the thesis involves validating the conceptual framework and implement-
ing the model on an Edge Device, specifically the Jetson Nano. The following section
provides a comprehensive analysis of the model’s performance on the Jetson Nano plat-
form. Figure 4.5,4.6 shows illustrative examples taken from the Kinetics-400 test dataset.

Class: Petting Animal
Prediction: Petting Animal

Class: Playing Volleyball
Prediction: Playing Volleyball

Class: Water Skiing
Prediction: Water Skiing

Class: Making Pizza
Prediction: Making Pizza

Class: Playing Bass Guitar
Prediction: Playing Bass Guitar

Class: Extinguishing Fire
Prediction: Extinguishing Fire

Figure 4.5: Jetson Nano-based inference - Examples of correct predictions.

Class: Water Skiing
Prediction: Surfing Water

Class: Dancing Macarena
Prediction: Swing Dancing

Class: Crying
Prediction: Baby Waking Up

Figure 4.6: Jetson Nano-based inference - Examples of incorrect predictions.

47

4. Experimental Results

The Table 4.7 presents real-time performance metrics for the Jetson Nano platform,
providing insights into the computational efficiency of a specified model under various
conditions. It outlines key parameters, including Preprocess Time, Postprocess Time, In-
ference Speed, Latency, and RAM Usage, evaluated across diverse test datasets (Kin-400
test) and camera configurations. The evaluation of model performance on Jetson Nano in-
volves utilizing a test dataset associated with Kinetics-400. The Kinetics dataset is divided
into three primary parts: training, validation, and testing. Specifically, our assessment in-
volves the execution of a testing video sourced from the Kinetics-400 dataset on the Jetson
Nano. The outcomes obtained with Camera input are depicted in the third column. Jet-
son Nano has been configured within a real-world setting, utilizing real-time camera data.
Figure A.2 illustrates the calibration process.

Latency refers to the time delay between the input provided to the system and the out-
put generated. Preprocessing time is the time spent getting the input data into a format
suitable for the model, and any variations can impact the system’s overall efficiency. Post-
processing is the time spent after the model has produced its inference and involves any
necessary actions or analysis of the output. Similar to preprocessing time, variations in
postprocessing time can influence the overall system performance.

The preprocessing time shows negligible variations at 0.03 ms and 0.17 ms for different
datasets, while postprocessing time has differences at 0.20 ms and 0.21 ms. The system
achieves a real-time processing capability of 16.45 FPS and 14.92 FPS for inference speed,
respectively. Latency is reported at 6.50 ms and 8.24 ms, demonstrating the time lapse
between input and output. RAM usage remains consistent at 2.58 GB and 2.56 GB for
the specified datasets. Additionally, the table shows the model’s accuracy as 71.07% for
the test dataset, and 70% for the camera. These quantitative findings facilitate a nuanced
understanding of the computational efficiency and real-time performance of the model on
the Jetson Nano platform, contributing valuable insights to the academic discourse in the
domain of embedded systems and edge computing.

Table 4.7: Real-time performance on Jetson Nano.

Item Test - Dataset Camera

Preprocess Time 0.03 ms 0.17 ms

Postprocess Time 0.20 ms 0.21 ms

Inference Speed 16.45 FPS 14.92 FPS

Latency 6.50 ms 8.24 ms

RAM Usage 2.58 GB 2.56 GB

Accuracy 71.07% 70.00%

48

Chapter 5

Conclusions

In my master’s thesis, I propose a trade-off between latency, performance and computation
cost. My work is heavily influenced by the MobileViT architecture, which serves as the
backbone network. The MobileViT architecture, recently proposed, is a connecting bridge
between vanilla Vision Transformers and convolutional neural network designs for mobile
devices. Therefore, MobileViT was an ideal choice as the base model for further enhance-
ments. My experiences indicate that Vision Transformers efficiently extract low-frequency
global signal features, while CNNs excel at extracting local information in high frequency.

To reduce computational costs, I implemented several innovative solutions. I incorpor-
ated image-related inductive bias into the core architecture, utilizing pre-trained weights
on ImageNet-1k. Subsequent to this, I devised a plan to integrate ST-Adapters, marginally
increasing the number of parameters by 6%, leading to a total number of parameters of
5.3 million.

The suggested architecture shows remarkable performance with minimal training. Dur-
ing Adapter Fine-Tuning only 15% parameters are trainable. It nearly accomplishes state-
of-the-art results on the action recognition task using the challenging Kinetic-400 dataset.
Overall, I achieve encouraging performance with economical computational cost training.
The final model is well-suited for deployment on Jetson Nano. Real-time models running
on Jetson Nano display admirable performance and appropriate system responsiveness.

A potential limitation of my architecture is that it was primarily developed for action
recognition, and its suitability for other tasks has not been explored. The model and as-
sociated methods were designed to address the unique challenges of recognizing actions in
videos. It is uncertain whether they can be successfully adapted to tackle alternative tasks.
Investigating the generalizability of my approach to other computer vision tasks, such as
object detection, could be a promising avenue for future research.

49

Bibliography

[1] Jetson Nano Developer Kit. Available from: https://developer.nvidia.com/
embedded/jetson-nano-developer-kit

[2] vaishnav, R. Visualizing Feature Maps using PyTorch. June 2021. Available
from: https://ravivaishnav20.medium.com/visualizing-feature-maps-using-
pytorch-12a48cd1e573

[3] Vaswani, A.; Shazeer, N.; Parmar, N.; et al. Attention is all you need. Advances in
neural information processing systems, volume 30, 2017.

[4] Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; et al. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[5] Mehta, S.; Rastegari, M. Mobilevit: light-weight, general-purpose, and mobile-friendly
vision transformer. arXiv preprint arXiv:2110.02178, 2021.

[6] Tsang, S.-H. Review: MobileNetV2 — Light Weight Model (Image Classific-
ation). Aug. 2019. Available from: https://towardsdatascience.com/review-
mobilenetv2-light-weight-model-image-classification-8febb490e61c

[7] Süzen, A. A.; Duman, B.; Şen, B. Benchmark analysis of jetson tx2, jetson nano and
raspberry pi using deep-cnn. In 2020 International Congress on Human-Computer
Interaction, Optimization and Robotic Applications (HORA), IEEE, 2020, pp. 1–5.

[8] Fu, J.; Rui, Y. Advances in deep learning approaches for image tagging. APSIPA
Transactions on Signal and Information Processing, volume 6, 2017: p. e11.

[9] Zhang, S.; Callaghan, V. Real-time human posture recognition using an adaptive hy-
brid classifier. International Journal of Machine Learning and Cybernetics, volume 12,
2021: pp. 489–499.

[10] Kong, Y.; Fu, Y. Human action recognition and prediction: A survey. International
Journal of Computer Vision, volume 130, no. 5, 2022: pp. 1366–1401.

51

https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://ravivaishnav20.medium.com/visualizing-feature-maps-using-pytorch-12a48cd1e573
https://ravivaishnav20.medium.com/visualizing-feature-maps-using-pytorch-12a48cd1e573
https://towardsdatascience.com/review-mobilenetv2-light-weight-model-image-classification-8febb490e61c
https://towardsdatascience.com/review-mobilenetv2-light-weight-model-image-classification-8febb490e61c

Bibliography

[11] Houlsby, N.; Giurgiu, A.; Jastrzebski, S.; et al. Parameter-efficient transfer learning for
NLP. In International Conference on Machine Learning, PMLR, 2019, pp. 2790–2799.

[12] Krishnasamy, E.; Varrette, S.; Mucciardi, M. Edge Computing: An overview of frame-
work and applications. 2020.

[13] Ullah, S.; Kim, D.-H. Benchmarking Jetson platform for 3D point-cloud and hyper-
spectral image classification. In 2020 IEEE International conference on big data and
smart computing (BigComp), IEEE, 2020, pp. 477–482.

[14] Mittal, S. A Survey on optimized implementation of deep learning models on the
NVIDIA Jetson platform. Journal of Systems Architecture, volume 97, 2019: pp. 428–
442.

[15] Pietschmann, C. ‘Raspberry Pi 4 vs NVIDIA Jetson Nano Developer Kit. ht
tps://build5nines. com/raspberry-pi-4-vs-nvidia-jetson-nano-dev e loper-kit, 2019.

[16] Aggarwal, C. C.; et al. Neural networks and deep learning. Springer, volume 10, no.
978, 2018: p. 3.

[17] Breiman, L. Statistical modeling: The two cultures (with comments and a rejoinder
by the author). Statistical science, volume 16, no. 3, 2001: pp. 199–231.

[18] Jordan, M. I.; Mitchell, T. M. Machine learning: Trends, perspectives, and prospects.
Science, volume 349, no. 6245, 2015: pp. 255–260.

[19] LeCun, Y.; Bottou, L.; Bengio, Y.; et al. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, volume 86, no. 11, 1998: pp. 2278–2324.

[20] Bottou, L.; Bengio, Y.; Le Cun, Y. Global training of document processing systems
using graph transformer networks. In proceedings of IEEE computer society conference
on computer vision and pattern recognition, IEEE, 1997, pp. 489–494.

[21] LeCun, Y.; Bengio, Y.; et al. Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks, volume 3361, no. 10, 1995:
p. 1995.

[22] LeCun, Y.; Bottou, L.; Bengio, Y.; et al. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, volume 86, no. 11, 1998: pp. 2278–2324.

[23] McCulloch, W. S.; Pitts, W. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, volume 5, 1943: pp. 115–133.

[24] Gallant, S. I.; et al. Perceptron-based learning algorithms. IEEE Transactions on
neural networks, volume 1, no. 2, 1990: pp. 179–191.

52

Bibliography

[25] Dubey, S. R.; Singh, S. K.; Chaudhuri, B. B. A comprehensive survey and performance
analysis of activation functions in deep learning. arXiv preprint arXiv:2109.14545,
2021.

[26] Kashyap, A. Math behind Perceptrons. Nov. 2019. Available from: https://

medium.com/@iamask09/math-behind-perceptrons-7241d5dadbfc

[27] Almeida, L. B. Multilayer perceptrons. In Handbook of Neural Computation, CRC
Press, 2020, pp. C1–2.

[28] Sayad, S. “Artificial Neural Network- Perceptron.

[29] Abadi, M.; Agarwal, A.; Barham, P.; et al. Tensorflow: Large-scale machine learning
on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

[30] Paszke, A.; Gross, S.; Massa, F.; et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information processing systems, volume 32,
2019.

[31] Harris, C. R.; Millman, K. J.; Van Der Walt, S. J.; et al. Array programming with
NumPy. Nature, volume 585, no. 7825, 2020: pp. 357–362.

[32] Paszke, A.; Gross, S.; Chintala, S.; et al. Automatic differentiation in PyTorch.(2017).
2017.

[33] O’Shea, K.; Nash, R. An introduction to convolutional neural networks. arXiv preprint
arXiv:1511.08458, 2015.

[34] Krizhevsky, A.; Sutskever, I.; Hinton, G. E. Imagenet classification with deep convolu-
tional neural networks. Advances in neural information processing systems, volume 25,
2012.

[35] Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[36] Szegedy, C.; Liu, W.; Jia, Y.; et al. Going deeper with convolutions. In Proceedings of
the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.

[37] He, K.; Zhang, X.; Ren, S.; et al. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,
pp. 770–778.

[38] Goodfellow, I.; Bengio, Y.; Courville, A. Deep learning. MIT press, 2016.

[39] LeCun, Y.; Boser, B.; Denker, J. S.; et al. Backpropagation applied to handwritten
zip code recognition. Neural computation, volume 1, no. 4, 1989: pp. 541–551.

53

https://medium.com/@iamask09/math-behind-perceptrons-7241d5dadbfc
https://medium.com/@iamask09/math-behind-perceptrons-7241d5dadbfc

Bibliography

[40] Lee, H.; Grosse, R.; Ranganath, R.; et al. Unsupervised learning of hierarchical rep-
resentations with convolutional deep belief networks. Communications of the ACM,
volume 54, no. 10, 2011: pp. 95–103.

[41] Deng, J.; Dong, W.; Socher, R.; et al. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and pattern recognition, Ieee,
2009, pp. 248–255.

[42] Kay, W.; Carreira, J.; Simonyan, K.; et al. The kinetics human action video dataset.
arXiv preprint arXiv:1705.06950, 2017.

[43] Google Scholar. Available from: https://scholar.google.com/schhp?hl=
en&as sdt=0,5

[44] IEEE Xplore. Available from: https://ieeexplore.ieee.org/Xplore/home.jsp

[45] Barhoumi, Y.; Ghulam, R. Scopeformer: n-CNN-ViT hybrid model for intracranial
hemorrhage classification. arXiv preprint arXiv:2107.04575, 2021.

[46] Wang, M.; Xing, J.; Liu, Y. Actionclip: A new paradigm for video action recognition.
arXiv preprint arXiv:2109.08472, 2021.

[47] Mehta, S.; Rastegari, M. Mobilevit: light-weight, general-purpose, and mobile-friendly
vision transformer. arXiv preprint arXiv:2110.02178, 2021.

[48] Choe, J.; Shim, H. Attention-based dropout layer for weakly supervised object localiz-
ation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 2219–2228.

[49] Yun, S.; Oh, S. J.; Heo, B.; et al. Videomix: Rethinking data augmentation for video
classification. arXiv preprint arXiv:2012.03457, 2020.

[50] Pan, J.; Lin, Z.; Zhu, X.; et al. St-adapter: Parameter-efficient image-to-video transfer
learning. Advances in Neural Information Processing Systems, volume 35, 2022: pp.
26462–26477.

[51] Sandler, M.; Howard, A.; Zhu, M.; et al. MobileNetV2: Inverted Residuals and Linear
Bottlenecks. 2019, 1801.04381.

[52] Basulto-Lantsova, A.; Padilla-Medina, J. A.; Perez-Pinal, F. J.; et al. Performance
comparative of OpenCV Template Matching method on Jetson TX2 and Jetson Nano
developer kits. In 2020 10th Annual Computing and Communication Workshop and
Conference (CCWC), IEEE, 2020, pp. 0812–0816.

[53] Contreras Paucca, J. R. Diseño de un sistema de localización de un robot móvil basado
en mapeo simultáneo.

54

https://scholar.google.com/schhp?hl=en&as_sdt=0,5
https://scholar.google.com/schhp?hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/Xplore/home.jsp
1801.04381

Bibliography

[54] Zhou, Y.; Yang, K. Exploring TensorRT to Improve Real-Time Inference for Deep
Learning. In 2022 IEEE 24th Int Conf on High Performance Computing & Commu-
nications; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart City;
8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application
(HPCC/DSS/SmartCity/DependSys), IEEE, 2022, pp. 2011–2018.

[55] Houlsby, N.; Giurgiu, A.; Jastrzebski, S.; et al. Parameter-efficient transfer learning for
NLP. In International Conference on Machine Learning, PMLR, 2019, pp. 2790–2799.

[56] Mehta, S.; Rastegari, M. Mobilevit: light-weight, general-purpose, and mobile-friendly
vision transformer. arXiv preprint arXiv:2110.02178, 2021.

[57] He, K.; Zhang, X.; Ren, S.; et al. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1026–1034.

[58] Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[59] Goyal, P.; Dollár, P.; Girshick, R.; et al. Accurate, large minibatch sgd: Training
imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[60] Schuhmann, C.; Vencu, R.; Beaumont, R.; et al. LAION-400M: Open Dataset of
CLIP-Filtered 400 Million Image-Text Pairs. CoRR, volume abs/2111.02114, 2021,
2111.02114. Available from: https://arxiv.org/abs/2111.02114

[61] Yu, J.; Wang, Z.; Vasudevan, V.; et al. Coca: Contrastive captioners are image-text
foundation models. arXiv preprint arXiv:2205.01917, 2022.

[62] Li, K.; Wang, Y.; He, Y.; et al. Uniformerv2: Spatiotemporal learning by arming
image vits with video uniformer. arXiv preprint arXiv:2211.09552, 2022.

[63] Liu, Z.; Ning, J.; Cao, Y.; et al. Video swin transformer. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2022, pp. 3202–
3211.

[64] Li, Y.; Wu, C.-Y.; Fan, H.; et al. Mvitv2: Improved multiscale vision transformers for
classification and detection. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 4804–4814.

[65] Bertasius, G.; Wang, H.; Torresani, L. Is space-time attention all you need for video
understanding? In ICML, volume 2, 2021, p. 4.

[66] Park, J.; Lee, J.; Sohn, K. Dual-path Adaptation from Image to Video Transformers.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 2023, pp. 2203–2213.

55

2111.02114
https://arxiv.org/abs/2111.02114

Bibliography

[67] Li, K.; Wang, Y.; Li, Y.; et al. Unmasked teacher: Towards training-efficient video
foundation models. arXiv preprint arXiv:2303.16058, 2023.

[68] Tran, D.; Wang, H.; Torresani, L.; et al. A closer look at spatiotemporal convolutions
for action recognition. In Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, 2018, pp. 6450–6459.

[69] Feichtenhofer, C.; Fan, H.; Malik, J.; et al. Slowfast networks for video recognition.
In Proceedings of the IEEE/CVF international conference on computer vision, 2019,
pp. 6202–6211.

[70] Wang, J.; Hu, X.; Gan, Z.; et al. Ufo: A unified transformer for vision-language
representation learning. arXiv preprint arXiv:2111.10023, 2021.

[71] Zolfaghari, M.; Singh, K.; Brox, T. Eco: Efficient convolutional network for online
video understanding. In Proceedings of the European conference on computer vision
(ECCV), 2018, pp. 695–712.

[72] Li, Y.; Wu, C.-Y.; Fan, H.; et al. Mvitv2: Improved multiscale vision transformers for
classification and detection. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 4804–4814.

[73] Carreira, J.; Zisserman, A. Quo vadis, action recognition? a new model and the
kinetics dataset. In proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 6299–6308.

[74] Lin, J.; Gan, C.; Han, S. Tsm: Temporal shift module for efficient video understand-
ing. In Proceedings of the IEEE/CVF international conference on computer vision,
2019, pp. 7083–7093.

[75] Chen, Y.; Kalantidis, Y.; Li, J.; et al. Multi-fiber networks for video recognition. In
Proceedings of the european conference on computer vision (ECCV), 2018, pp. 352–
367.

[76] Neimark, D.; Bar, O.; Zohar, M.; et al. Video transformer network. In Proceedings of
the IEEE/CVF international conference on computer vision, 2021, pp. 3163–3172.

[77] Kumawat, S.; Verma, M.; Nakashima, Y.; et al. Depthwise spatio-temporal STFT
convolutional neural networks for human action recognition. IEEE Transactions on
Pattern Analysis and Machine Intelligence, volume 44, no. 9, 2021: pp. 4839–4851.

[78] Kondratyuk, D.; Yuan, L.; Li, Y.; et al. Movinets: Mobile video networks for efficient
video recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2021, pp. 16020–16030.

[79] Zhang, N.; Lei, D.; Zhao, J. An improved Adagrad gradient descent optimization
algorithm. In 2018 Chinese Automation Congress (CAC), IEEE, 2018, pp. 2359–2362.

56

Bibliography

[80] Ruder, S. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

[81] 262588213843476. Kinetics Dataset Labels (name to ID). Available from: https:

//gist.github.com/willprice/f19da185c9c5f32847134b87c1960769

57

https://gist.github.com/willprice/f19da185c9c5f32847134b87c1960769
https://gist.github.com/willprice/f19da185c9c5f32847134b87c1960769

Appendix A

Some appendix

59

A. Some appendix

Table A.1: Kinetics-400 all classes [81].

Id Name Id Name Id Name

0 abseiling 68 climbing tree 136 garbage collecting
1 air drumming 69 contact juggling 137 gargling
2 answering questions 70 cooking chicken 138 getting a haircut
3 applauding 71 cooking egg 139 getting a tattoo
4 applying cream 72 cooking on campfire 140 giving or receiving award
5 archery 73 cooking sausages 141 golf chipping
6 arm wrestling 74 counting money 142 golf driving
7 arranging flowers 75 country line dancing 143 golf putting
8 assembling computer 76 cracking neck 144 grinding meat
9 auctioning 77 crawling baby 145 grooming dog
10 baby waking up 78 crossing river 146 grooming horse
11 baking cookies 79 crying 147 gymnastics tumbling
12 balloon blowing 80 curling hair 148 hammer throw
13 bandaging 81 cutting nails 149 headbanging
14 barbequing 82 cutting pineapple 150 headbutting
15 bartending 83 cutting watermelon 151 high jump
16 beatboxing 84 dancing ballet 152 high kick
17 bee keeping 85 dancing charleston 153 hitting baseball
18 belly dancing 86 dancing gangnam style 154 hockey stop
19 bench pressing 87 dancing macarena 155 holding snake
20 bending back 88 deadlifting 156 hopscotch
21 bending metal 89 decorating the christmas tree 157 hoverboarding
22 biking through snow 90 digging 158 hugging
23 blasting sand 91 dining 159 hula hooping
24 blowing glass 92 disc golfing 160 hurdling
25 blowing leaves 93 diving cliff 161 hurling (sport)
26 blowing nose 94 dodgeball 162 ice climbing
27 blowing out candles 95 doing aerobics 163 ice fishing
28 bobsledding 96 doing laundry 164 ice skating
29 bookbinding 97 doing nails 165 ironing
30 bouncing on trampoline 98 drawing 166 javelin throw
31 bowling 99 dribbling basketball 167 jetskiing
32 braiding hair 100 drinking 168 jogging
33 breading or breadcrumbing 101 drinking beer 169 juggling balls
34 breakdancing 102 drinking shots 170 juggling fire
35 brush painting 103 driving car 171 juggling soccer ball
36 brushing hair 104 driving tractor 172 jumping into pool
37 brushing teeth 105 drop kicking 173 jumpstyle dancing
38 building cabinet 106 drumming fingers 174 kicking field goal
39 building shed 107 dunking basketball 175 kicking soccer ball
40 bungee jumping 108 dying hair 176 kissing
41 busking 109 eating burger 177 kitesurfing
42 canoeing or kayaking 110 eating cake 178 knitting
43 capoeira 111 eating carrots 179 krumping
44 carrying baby 112 eating chips 180 laughing
45 cartwheeling 113 eating doughnuts 181 laying bricks
46 carving pumpkin 114 eating hotdog 182 long jump
47 catching fish 115 eating ice cream 183 lunge
48 catching or throwing baseball 116 eating spaghetti 184 making a cake
49 catching or throwing frisbee 117 eating watermelon 185 making a sandwich
50 catching or throwing softball 118 egg hunting 186 making bed
51 celebrating 119 exercising arm 187 making jewelry
52 changing oil 120 exercising with ball 188 making pizza
53 changing wheel 121 extinguishing fire 189 making snowman
54 checking tires 122 faceplanting 190 making sushi
55 cheerleading 123 feeding birds 191 making tea
56 chopping wood 124 feeding fish 192 marching
57 clapping 125 feeding goats 193 massaging back
58 clay pottery making 126 filling eyebrows 194 massaging feet
59 clean and jerk 127 finger snapping 195 massaging legs
60 cleaning floor 128 fixing hair 196 massaging person’s head
61 cleaning gutters 129 flipping pancake 197 milking cow
62 cleaning pool 130 flying kite 198 mopping floor
63 cleaning shoes 131 folding clothes 199 motorcycling
64 cleaning toilet 132 folding napkins 200 moving furniture
65 cleaning windows 133 folding paper 201 mowing lawn
66 climbing a rope 134 front raises 202 news anchoring
67 climbing ladder 135 frying vegetables 203 opening bottle

60

Table A.2: Kinetics-400 all classes (Continued) [81].

Id Name Id Name Id Name

204 opening present 270 riding mechanical bull 336 surfing crowd
205 paragliding 271 riding mountain bike 337 surfing water
206 parasailing 272 riding mule 338 sweeping floor
207 parkour 273 riding or walking with horse 339 swimming backstroke
208 passing American football 274 riding scooter 340 swimming breast stroke
209 passing American football 275 riding unicycle 341 swimming butterfly stroke
210 peeling apples 276 ripping paper 342 swing dancing
211 peeling potatoes 277 robot dancing 343 swinging legs
212 petting animal (not cat) 278 rock climbing 344 swinging on something
213 petting cat 279 rock scissors paper 345 sword fighting
214 picking fruit 280 roller skating 346 tai chi
215 planting trees 281 running on treadmill 347 taking a shower
216 plastering 282 sailing 348 tango dancing
217 playing accordion 283 salsa dancing 349 tap dancing
218 playing badminton 284 sanding floor 350 tapping guitar
219 playing bagpipes 285 scrambling eggs 351 tapping pen
220 playing basketball 286 scuba diving 352 tasting beer
221 playing bass guitar 287 setting table 353 tasting food
222 playing cards 288 shaking hands 354 testifying
223 playing cello 289 shaking head 355 texting
224 playing chess 290 sharpening knives 356 throwing axe
225 playing clarinet 291 sharpening pencil 357 throwing ball
226 playing controller 292 shaving head 358 throwing discus
227 playing cricket 293 shaving legs 359 tickling
228 playing cymbals 294 shearing sheep 360 tobogganing
229 playing didgeridoo 295 shining shoes 361 tossing coin
230 playing drums 296 shooting basketball 362 tossing salad
231 playing flute 297 shooting goal (soccer) 363 training dog
232 playing guitar 298 shot put 364 trapezing
233 playing harmonica 299 shoveling snow 365 trimming or shaving beard
234 playing harp 300 shredding paper 366 trimming trees
235 playing ice hockey 301 shuffling cards 367 triple jump
236 playing keyboard 302 side kick 368 tying bow tie
237 playing kickball 303 sign language interpreting 369 tying knot (not on a tie)
238 playing monopoly 304 singing 370 tying tie
239 playing organ 305 situp 371 unboxing
240 playing paintball 306 skateboarding 372 unloading truck
241 playing piano 307 ski jumping 373 using computer
242 playing poker 308 skiing 374 using remote controller
243 playing recorder 309 skiing crosscountry 375 using segway
244 playing saxophone 310 skiing slalom 376 vault
245 playing squash or racquetball 311 skipping rope 377 waiting in line
246 playing tennis 312 skydiving 378 walking the dog
247 playing trombone 313 slacklining 379 washing dishes
248 playing trumpet 314 slapping 380 washing feet
249 playing ukulele 315 sled dog racing 381 washing hair
250 playing violin 316 smoking 382 washing hands
251 playing volleyball 317 smoking hookah 383 water skiing
252 playing xylophone 318 snatch weight lifting 384 water sliding
253 pole vault 319 sneezing 385 watering plants
254 presenting weather forecast 320 sniffing 386 waxing back
255 pull ups 321 snorkeling 387 waxing chest
256 pumping fist 322 snowboarding 388 waxing eyebrows
257 pumping gas 323 snowkiting 389 waxing legs
258 punching bag 324 snowmobiling 390 weaving basket
259 punching person (boxing) 325 somersaulting 391 welding
260 push up 326 spinning poi 392 whistling
261 pushing car 327 spray painting 393 windsurfing
262 pushing cart 328 spraying 394 wrapping present
263 pushing wheelchair 329 springboard diving 395 wrestling
264 reading book 330 squat 396 writing
265 reading newspaper 331 sticking tongue out 397 yawning
266 recording music 332 stomping grapes 398 yoga
267 riding a bike 333 stretching arm 399 zumba
268 riding camel 334 stretching leg
269 riding elephant 335 strumming guitar

61

A. Some appendix

A.1 Code

1

2 def forward(self , x, T):

3

4 #B= batch size ,

5 #L=Length of the input sequence ,

6 #C= Number of Chanels ,

7 #T= Time

8

9 BT , L, C = x.size()

10 B = BT // T

11

12 x = self.fc1(x) # Downsampling to lower dim. space

13 x = x.view(B, T, H, W).permute(0, 3, 1, 2).contiguous ()

14

15 #cudnn_enabled = torch.backends.cudnn.enabled

16 #torch.backends.cudnn.enabled = cudnn_enabled

17 #torch.backends.cudnn.enabled = DWCONV3D_DISABLE_CUDNN

18

19 x = self.conv_3d(x)

20 #torch.backends.cudnn.enabled = cudnn_enabled

21

22 x = x.permute(0, 2, 3, 4, 1).contiguous ().view(BT, L - 1)

23 x = self.fc2(x) # Upsampling to original dim space

24 return x

Listing A.1: The PyTorch-like pseudo-code of our Spatio-Temporal Adapter

62

A.2. Attachments

A.2 Attachments

Figure A.1: Capture of live data output from Jetson Nano during the ongoing inference
process with camera input. The left side displays the accurate prediction ”Yoga,” accom-
panied by details on preprocessing time, postprocessing time, latency, frames per second
(FPS), and RAM usage.

63

A. Some appendix

Figure A.2: Actual configuration setup of the Edge Device along with essential accessories,
with particular emphasis on the camera utilized for real-time inference.

64

	Abbreviations
	Introduction
	Contributions
	Structure of the Thesis

	Background
	Edge Computing
	Nvidia Jetson Nano
	Neural Networks
	Machine Learning
	Deep Learning
	A Single Neuron
	Perceptron
	Multi-layer Perceptron

	Deep Learning Frameworks
	TensorFlow
	Pytorch

	Convolutional Neural Network
	Padding and Stride
	Pooling

	Transformers
	Vision Transformers

	Computer Vision - Action Recognition
	Datasets
	ImageNet-1K
	Kinetics-400

	Methodology
	Goal
	Search Methodology
	Enhancing CNN Capabilities
	Feature Extraction Approach
	Preprocessing
	Alternative Architecture
	MobileViT
	Architecture
	Lightweight

	Spatio-Temporal Adapter
	MobileNet-V2
	Adapting MobileViT with ST-Adapters
	Target Edge Device
	Optimization Tool for Edge Device
	Training Approach
	Full Fine-Tuning
	Adapter Fine-Tuning

	Experimental Results
	Experimental Settings
	Training Approach
	Data Augmentation

	Implementation
	Kinetics-400 Dataset
	Evaluation Metrics
	Visualisation of Training
	Results
	Comparison of Different Optimizers
	Inference on Server

	Deployment on Edge
	Inference

	Conclusions
	Bibliography
	Some appendix
	Code
	Attachments

