CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F 3 Faculty of Electrical Engineering
Department of Computer Science

Master's Thesis

Czech Foundational Large
Language Model Corpus

Bc. Tommaso Gargiani
Open Informatics

May 2024
https://github.com/tgargiani/Czech-LLM-Corpus
Supervisor: Ing. Jan Sedivy, CSc.

cTu MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

l. Personal and study details
4 N
Student's name: Gargiani Tommaso Personal ID number: 483466

Faculty / Institute: Faculty of Electrical Engineering

Department / Institute: Department of Computer Science

Study program: Open Informatics

Specialisation: Data Science
N\ J
Il. Master’s thesis details
4 N

Master’s thesis title in English:

Czech Foundational Large Language Model Corpus

Master’s thesis title in Czech:
Cesky korpus pro velky jazykovy model

Guidelines:

Investigate the latest research pertaining to the creation of a foundational large language model (LLM) corpus collection
with a specific focus on Czech language. The primary goal is to design robust procedures for collecting and preprocessing
a data corpus essential for training a foundational LLM. Explore diverse sources of internet data, including but not limited
to platforms such as Common Crawl and Wikipedia. Focus on finding the most effective methods for cleaning and
deduplicating raw text, trying to find a balance between efficiency and quality. Study the basic types of tokenizers and
select an appropriate one for the Czech language. Implement scraping, downloading, and execute cleaning and deduplication
procedures to construct a substantial corpus with a minimum of 100 billion Czech tokens. Evaluate the quality of the
generated corpus through appropriate metrics.

Bibliography / sources:

[1] Eldan, Ronen and Yuan-Fang Li. “TinyStories: How Small Can Language Models Be and Still Speak Coherent English?”
ArXiv abs/2305.07759 (2023): n. pag.

[2] Lee, Katherine, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-Burch and Nicholas
Carlini. “Deduplicating Training Data Makes Language Models Better.” Annual Meeting of the Association for Computational
Linguistics (2021).

[3] Penedo, Guilherme, Quentin Malartic, Daniel Hesslow, Ruxandra-Aimée Cojocaru, Alessandro Cappelli, Hamza
Alobeidli, Baptiste Pannier, Ebtesam Almazrouei and Julien Launay. “The RefinedWeb Dataset for Falcon LLM:
Outperforming Curated Corpora with Web Data, and Web Data Only.” ArXiv abs/2306.01116 (2023): n. pag.

CVUT-CZ-ZDP-2015.1 Page 1 from 2 © CVUT v Praze, Design: CVUT v Praze, VIC

Name and workplace of master’s thesis supervisor:

Ing. Jan Sedivy, CSc. Big Data and Cloud Computing CIIRC

Name and workplace of second master’s thesis supervisor or consultant:

Date of master’s thesis assignment: 23.01.2024 Deadline for master's thesis submission: 24.05.2024

Assignment valid until: 21.09.2025

Ing. Jan Sedivy, CSc. Head of department’s signature prof. Mgr. Petr Pata, Ph.D.
Supervisor’s signature Dean’s signature

. J
lll. Assignment receipt

4 The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,)
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

\ Date of assignment receipt Student’s signature

CVUT-CZ-ZDP-2015.1 Page 2 from 2 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgement / Declaration

First of all, I would like to thank my
supervisor Jan Sedivy for his support
and guidance while working on this the-
sis and other projects. I am also grateful
to my family for their constant support
and belief in me.

I declare that the presented work
was developed independently and that
I have listed all sources of information
used within it in accordance with the
methodical instructions for observing
the ethical principles in the preparation
of university theses.

Prague, May 24, 2024

Abstrakt

Tato prace predstavuje vyvoj nej-
vétsiho Ceského korpusu pro trénovani
velkych jazykovych modela, jenz obsa-
huje 167 miliard tokenti. Jeho rozmanité
zdroje dat zajistuji komplexni pokryti
¢eského jazyka. Ke zvyseni kvality na-
seho korpusu byly pouzity dukladné
procedury c¢isténi, filtrace a dedupli-
kace. Natrénovali jsme také nékolik
jazykovych modeld na podmnoziné
korpusu, abychom demonstrovali jeho
potencidl stat se pevnym zdkladem pro
trénovani ceského velkého jazykového
modelu.

Kli€ova slova: cesky korpus, velky ja-
zykovy model, dataset, zpracovani pri-
rozeného jazyka

Pieklad titulu: Cesky korpus pro
velky jazykovy model

/ Abstract

Vi

This thesis presents the development
of the largest Czech corpus for training
large language models, comprising 167
billion tokens. Its diverse data sources
ensure comprehensive coverage of the
Czech language. Rigorous cleaning,
filtering and deduplication procedures
were employed to enhance the quality
of our corpus. We also train several
language models on a subset of the
corpus to demonstrate its potential for
becoming a solid foundation for training
a Czech large language model.

Keywords: Czech corpus, large lan-
guage model, dataset, natural language
processing

Contents

1 Introduction

2 Language models

2.1 N-grams
2.2 Language Model Evaluation . . .

2.3 Tokenization

2.4 Neural Language Models

2.4.1 Recurrent Neural Net-
work (RNN)
2.4.2 Long Short-Term

Memory (LSTM)

2.4.3 Transformer

3 Data Sources
3.1 Data Format and Schema
3.1.1 JSON Lines

3.1.2 Zstandard Compression . .

3.1.3 Data Schema
3.2 Common Crawl
3.2.1 Format
3.2.2 Spark and the cc-
pyspark Library

3.2.3 Data Extract
3.3 HPLT
3.3.1 Data Extract
3.4 CulturaX
3.4.1 mC4

342 OSCAR
3.4.3 Cleaning Procedures
3.4.4 Deduplication Procedures .

3.4.5 Data Extract
3.5 MLP Books
3.5.1 Data Extract
3.6 iDnes
3.6.1 Data Extract

3.7 Wikipedia

3.7.1 Data Extract

3.8 Cgzech Sociological Review . . .

3.8.1 Data Extract
3.9 Patents
3.9.1 Data Extract

3.10 Theses

3.10.1 Data Extract
3.11 SYN v9
3.11.1 Data Extract
3.12 Plenary Speeches
3.12.1 Data Extract

12
13
13
15
15
16
16
17
18
18
18
19
19
19
20
21
21
21
22
22
22
23
23
24
24
24

/

Vii

B.1
B.2

4 Data Processing Pipeline
4.1 Data Cleaning and Filtering . .
4.1.1 Our Setup
4.2 Deduplication
4.2.1 Exact Deduplication
4.2.2 Near Deduplication
4.2.3 Our Setup

5 Corpus Statistics
5.1 Detailed Statistics
5.2 Data Processing Pipeline

Impact
5.3 Data Size

6 Model Training
6.1 Training Time Estimates
6.2 Data Quantity, Quality and

Model Performance
6.3 Czech Models
6.4 English-Czech Models

7 Conclusion

References
A Training Configuration

B Text Generation Examples
Czech Model 160M
English-Czech Model 160M

26
26
27
28
28

. 29

29

31
31

32
33

35
35

36
38
38

a1
42
51

52
52

. 92

3.1

3.2

3.3

4.1

5.1

5.2

5.3

5.4

5.6

6.1

6.2

6.3

A.1

B.2

Tables / Figures

HPLT text sizes across all
languages ..., 15
Distribution of document

counts from mC4 and OS-

CAR in CulturaX’s initial
dataset ... 16
Distribution of topics in SYN

VO 23
Squeakily cleaner and filter
thresholds....................... 28
Detailed statistics of various

data sources 31
Average number of words,
sentences and paragraphs per
record ... 32
Average number of words and
sentences per paragraph 32
Average number of words per
SeNtence.covevviiiien... 33
Impact of Data Processing
Pipeline on word count 33
Final data size of the

Czech Foundational Large
Language Model Corpus....... 34
Training time estimates........ 36
Test set perplexities of Czech
models ... 39
Test set perplexities of
English-Czech models.......... 40
Training configuration of

models ... o1
Text generation configura-

tion of models 52

viii

2.1 Hugging Face Open LLM
Leaderboard
2.2 Pseudocode implementation

2.3 Simple RNN architecture
2.4 LSTM unit architecture........
2.5 Transformer architecture
3.1 Schema of a JSON object......
3.2 List of HPLT deliverables......

Chapter 1
Introduction

In recent years, the field of artificial intelligence (AI) has experienced an unprecedented
surge, particularly in the domain of language models. These models, designed to un-
derstand and generate human language, have achieved remarkable advancements, revo-
lutionizing various areas ranging from natural language processing to virtual assistants
and machine translation.

However, despite the global diversity of languages and cultures, English language
models have dominated the recent developments due to the vast availability of English
corpora for pretraining. This neglect of other languages creates a significant gap in the
accessibility of Al for non-English speaking communities, hindering the development of
language-specific applications and solutions.

In response to this challenge, this thesis aims to address the gap by focusing on the
development of a corpus specifically tailored for pretraining foundational large language
models (LLMs) in the Czech language. Furthermore, we showcase the methodology
employed in the creation of the Czech corpus, describing at length the data sources that
compose it and the strategies adopted to ensure its quality and usability for pretraining
LLMs.

The creation of such a corpus not only fills a void in the existing landscape of LLMs,
allowing to fine-tune models pretrained on our corpus for other downstream tasks, but
also facilitates the advancement of Al in Czechia.

Chapter 2
Language models

Language models are statistical models that assign probabilities to upcoming words,
or sequences of words in general [1]. They are trained on textual data on the task of
predicting the next word in a sequence based on the previous words — this is called
causal language modeling. In this manner, language models learn the relationships and
patterns within language, enabling them to compute the probability of a sequence and,
consequently, to generate coherent text.

More formally, given a sequence of words w;,ws,,...,w,, a language model is a
function that is able to compute either one of these probabilities:

P(wlaw27'--awn)

P(w,,|wy,wy,...,w, 1)

In the last few years, especially after the release of ChatGPT! in 2022, the term large
language model (LLM) has become known to the general public. Although there is no
clear definition of the term, a language model is often considered an LLM if it has been
trained on large amounts of data with billions (or even trillions) of tokens and if it has
a large number of parameters.

The definition of “large number of parameters” has shifted over the years. For in-
stance, in OpenAD’s LLM family, the first model, GPT [2], had 117 million parameters.
This number has increased to 1.5 billion parameters in GPT-2 [3], their second model,
and to 175 billion in GPT-3 [4]. Even though there have been LLMs with even more
parameters, such as Google’s PaLM [5] with 540 billion parameters, most open source
LLMs released today have between 3 and 70 billion parameters.

I 2.1 N-grams

The joint probability of words w;,ws, ..., w, can be calculated using the chain rule of
probability [6]:

n
P(wy,wy,...,w,) = HP(wi\wl, ce W)
i=1

Using the chain rule, we can see how the probability of the whole sequence is linked
to the conditional probability of a word given its predecessors. However, calculating
such probabilities is unfeasible, as there are too many possible sequences and a specific
context might have never occurred before.

A solution to this problem is to approximate the context by using the Markov as-
sumption, which says that the conditional probability of a word depends only on its
predecessor:

P(wn‘wlﬁ ce ?wn71> ~ P<wn’wnfl)

! https://chatgpt.com

https://chatgpt.com

A model that looks one word into the past, is called a bigram model. Consequently,
we can generalize bigrams to models that look n — 1 words into the past — n-grams.

One way to estimate these probabilities is to use maximum likelihood estimation
(MLE). In order to compute the MLE estimates, we need to count the number of
occurrences of a word and its context, and normalize it by the number of occurrences

of its context:
C(wnfh wn)

C<wn71)

Despite their simplicity and computational efficiency, n-gram language models can
work surprisingly well and are frequently used for tasks such as spelling correction
or dataset filtering. However, they inherently struggle with capturing long-range de-
pendencies and grasping semantics, especially when compared to neural network-based
approaches.

P(wn|wn71) =

I 2.2 Language Model Evaluation

In machine learning, it is common practice to split data into the training set and into
the test set. After training the model with the training set, the test set is used to
evaluate the model’s performance. Intuitively, the best language model is the one that
assigns the highest probability to the test set.

Instead of evaluating language models using raw probabilities, it is more practical to
compute the model’s perplexity, which is regarded as the standard metric for measuring
language model performance. Perplexity is often described as a measure of “how much
the model is perplexed by the test set”. A lower perplexity value indicates better
performance.

Let wy,w,, ..., w, be a sequence of words (i.e. the test set). Perplexity is defined as
the inverse probability of the test set, normalized by the number of words:

1
PPL(wy,wy,...,w,) = T\L/P(w ”)
1> %295 Wn

Normalizing by the number of words allows perplexity to be utilized for fair com-
parison between different texts of varying lengths. Perplexity can also be interpreted
as the weighted average branching factor, indicating the average number of possible
next words at each step of the prediction process. This interpretation naturally limits
perplexity’s range to the interval (1, 00).

Nowadays, using only perplexity to assess the performance of LLMs with billions
of parameters does not suffice, as it may not capture all aspects of their capabilities.
In order to provide more comprehensive evaluations, LLM benchmarks are employed.
They consist of standardized performance tests that assess various aspects of LLMs
across different areas, such as commonsense [7] and mathematical [8] reasoning, lan-
guage understanding [9], coding capabilities [10], etc. LLM benchmark results can be
aggregated in leaderboards which aim to track the best models available at the moment.
For example, the Hugging Face Open LLM Leaderboard? shown in Figure 2.1 scores
open source LLMs on several benchmarks and ranks them by their average score.

As of May 2024, there are no publicly available LLM benchmarks for Czech models.
Fortunately, there is a master’s thesis currently being written by our colleague Adam
Jirkovsky, which is focused on this topic.

2 https://huggingface.co/spaces/HuggingFaceH4/open_l1lm_leaderboard

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

2. Language models

@ Open LLM Leaderboard

Y LLM Benchmark ~ 2 1 7

Search Model types

base merges and moerges fine-tuned on domain-specific datasets

@ chat models (RLHF, DPO, IFT, ..) i pretrai @ pretrai

Select Columns to Display:
Precision
Average &) ARC HellaSwag MMLU TruthfulQA
bfloat16 float16 abit 8bit GPTQ null
Winogrande GSM8K Type Architecture Precision

Select the number of parameters (B) 7 10
Merged Hub License #Params (B) Hub @ Model sha
Hide models

Private or deleted Contains a merge/moerge MoE Flagged

T Model Average @ ARC HellaSwag MMLU TruthfulQ/
davidkin205/Rhea-72h-v0.5 3 81.22 79.78 91.15 77.95 74.5
MTSAIR/MultiVerse 708 % 81 78.67 89.77 78.22 75.18
MTSAIR/Multiverse 708 X 80.98 78.58 89.74 78.27 75.09

abacusai/Smaug-72B-v0.1 3 80.48 76.02 89.27 77.15 76.67

ibivibiv/alpaca-dragon-72h-vl % 79.3 73.89 88.16 77.4 72.69

mistralai/Mixtral-8x22B-Instruct-ve.1 = 79.15 72.7 89.08 77.77 68.14

Figure 2.1. Hugging Face Open LLM Leaderboard.

I 2.3 Tokenization

In the previous sections, we have always described text as a sequence of words. However,
it would be more adequate to define it as a sequence of tokens, where tokenization is
the task of segmenting text into tokens. Tokens then may represent words, characters,
or even subwords (parts of words).

Using subword tokens instead of words is useful when working with unknown words,
which is an important problem in language processing [1]. Subword tokens can be
arbitrary substrings of a word, but they are often a morpheme, i.e. the smallest unit
of language that has its own meaning. For instance, the word singers contains three
morphemes — the action sing-, the person doing the action -er- and the plural -s. This
flexibility makes subword tokenizers especially valuable for languages with complex
declension systems like Czech, where a single word can take many different forms, even
though its root does not change. For instance, the first three cases of the word bicycle
are: kolo, kola and kolem. Overall, subword tokenizers rely on the principle that
frequently used words should not be split into smaller subwords, but rare words should
be decomposed into meaningful subwords [11].

Byte-Pair Encoding (BPE) [12-13] is a popular tokenization algorithm used by many
LLMs. The algorithm starts with a set of initial tokens, for instance all the ASCII
characters, and a parameter k — the number of required merges. Then, the algorithm
traverses the training corpus and counts the number of occurrences of all the neighboring
tokens. After identifying the most frequent pair, the two tokens are merged across the
whole corpus and a new entry is appended to the list of merges. This is repeated until k&
merges have been done. In the end, the new vocabulary consists of the original tokens
and the k merged tokens.

See Figure 2.2 for the pseudocode implementation of BPE:

What we have described so far is character-level BPE, since the set of initial tokens
were characters. However, this implicates that there also must be a token for unknown

4

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V < all unique characters in C # initial set of tokens is characters
fori=1tok do # merge tokens £ times

tr,, tg < Most frequent pair of adjacent tokens in C

tvew <t + IR # make new token by concatenating

Ve V+tyew # update the vocabulary

Replace each occurrence of #1, tg in C with . # and update the corpus
return V

Figure 2.2. Pseudocode implementation of BPE [1].

characters, because if we were to include all existing Unicode characters, the initial
token set would be too large.

For this reason, byte-level BPE tokenizers are used. Instead of looking at words being
written with characters, they look directly at bytes. This has two advantages. First, the
base vocabulary is small, with only 256 tokens (the maximum number of values a byte
can hold). Second, every possible character will be included without being converted
to the unknown token.

I 2.4 Neural Language Models

Neural language models are trained in a self-supervised manner, where the model learns
from a text corpus without the need for additional labeled data. In fact, since the
language modeling task is to predict the next word in a sequence based on the previous
words, the next word in the corpus serves as the implicit label for the sequence of words
that precede it.

The language model is trained to minimize the error in predicting the next word,
utilizing cross-entropy as the loss function. Cross-entropy measures the difference be-
tween the correct and predicted distribution. For language modeling, it corresponds to
the negative log probability the model assigns to the correct word w,, given the context
of the previous n words:

LCE — —logP(wt|wt_1, e 7wt—n+1)

Finally, we optimize cross-entropy using gradient descent-based algorithms.

The Transformer [14] is a deep learning model architecture that has driven the most
recent advances in language modeling, with Transformer language models becoming
synonymous with language models. Before its introduction, other neural network ar-
chitectures such as recurrent neural networks (RNNs) [15] or long short-term memory
(LSTM) [16] were used. The popularity of RNNs and LSTMs, as compared to simpler
approaches such as n-grams or feedforward neural language models, is attributed to the
fact that they addressed two important characteristics of language.

First, language is inherently sequential. Both RNNs and LSTMs take advantage of
this, as they explicitly capture sequential dependencies between tokens, while feedfor-
ward language models process each token independently without considering its position
relative to other tokens in the sequence.

Second, sentences may include interactions between words that have a long distance
between them. For example, in the sentence “The dog I have just bought is an Akita.”,

the two words in bold are semantically connected despite being separated by intervening
information. Since n-gram language models only have a limited context size of n — 1,
it is impossible to use them for more sophisticated tasks that require longer context.
Similarly, the context size of feedforward language models is limited, as it is bound to
the size of their context window.

B 2.4.1 Recurrent Neural Network (RNN)

An RNN is a type of network characterized by containing at least one cyclic connection
among its neurons, enabling the value of a neuron to depend on its own earlier outputs,
either directly or indirectly, serving as an input. These recurrent connections allow
the model to capture information about the sequence seen so far, which is stored in
the model’s hidden state. See Figure 2.3 for a simple RNN architecture with input z,,
hidden state h, and output y, at time step t.

))

Xt /ﬂ———’yt

— —

Figure 2.3. Simple RNN architecture [1].

RNN language models [17] process language sequentially, one word at a time — pro-
cessing a sequence with ¢ words requires ¢ distinct time steps. They work by predicting
the upcoming word from the current word and their previous hidden state. This is par-
ticularly convenient for language modeling, as the hidden state can represent context
all the way back to the beginning of the sequence.

In practice, recurrent neural networks do not have an infinite context size, as they
are constrained by the length of the sequences they are trained on. Furthermore, they
suffer from the vanishing gradient problem during backpropagation, as the hidden layer
from time step t — 1 contributes to the computation of loss at time step t. For long
sequences, this leads to many multiplications and eventually drives the gradient to zero.

The information stored in their hidden state also tends to be more relevant for the
recently processed part of the word sequence, struggling to propagate critical knowledge
from its beginning. This is due to the fact that the hidden state needs to reflect current
and future information at the same time.

Bl 2.4.2 LongShort-Term Memory (LSTM)

LSTMs are a variant of recurrent neural networks (they still retain the recurrent hid-
den layer) that address their problems with capturing complex context and vanishing
gradient. They do so by selectively remembering information likely to be needed later
and forgetting information that is no longer needed.

In an LSTM unit, this is achieved by keeping a memory cell, which retains infor-
mation, and through the use of neural gates, i.e. specialized neurons that control the
flow of information. In its computations, the unit operates with the input, the previous
hidden state and the previous memory cell.

6

e R

Ct—l_® @ >
, Ganh Ce
ftT >, A
L?J ' o | [tanh]| [O |
e o
Lt

Figure 2.4. LSTM unit architecture [18].

See Figure 2.4 for the architecture of an LSTM unit with the input x, cell state c,
hidden state h, forget gate f, add gate ¢ and output gate o. As denoted by the vertical
line leaving the unit on top, the current hidden state h, at time step ¢ serves as output.

There are three types of gates that share a common design — a feedforward layer with
the sigmoid activation function, followed by a pointwise product with the layer being
gated. The combination of the sigmoid (which pushes its outputs to 1 or 0) with the
pointwise product acts similarly as a binary mask, controlling how much information
gets through.

The forget gate is used to remove information from the cell state, while the add gate
serves the opposite purpose. The third type, the output gate, decides what information
from the memory cell is relevant to the current hidden state.

B 24.3 Transformer

Despite the improvements that LSTM brought to the original RNN architecture, both
share a significant practical issue. They process sequences of data one step at a time,
where the hidden state at each time step depends on the computations from the previous
time step. This dependency creates a sequential bottleneck that makes parallel training
difficult.

The key innovation of Transformer lies in its self-attention mechanism, which allows
to weigh the importance of different words in a sentence when processing it. This
attention mechanism enables Transformer to efficiently capture long-range dependencies
between words in a sentence regardless of their positions in the sequence, allowing for
parallel computation while remaining effective for tasks involving sequential data, such
as language modeling.

As shown in Figure 2.5, Transformer consists of an encoder-decoder architecture,
with multiple layers of self-attention mechanisms and feedforward neural networks. In
the encoder, the input sequence is processed to create a contextualized representation
for each word in the sequence. In the decoder, these representations are used to generate
the output sequence, one word at a time, while attending to the relevant parts of the
input sequence.

The authors of Transformer demonstrated the architecture’s potential on a trans-
lation, a sequence-to-sequence task, where the model receives the input sequence of
words in the original language and outputs the translated sequence in a target lan-
guage. However, the two halves of the encoder-decoder architecture can be separated
to create models that use only one part, as they do not require the other half. Using

Output
Probabilities

Add & Norm

Feed
Forward

Add & Norm J<~

(—{acdaNomy) | | | e
Feed Attention
Forward Nx
Nix Add & Norm
Add & Norm . Masked
Multi-Head Multi-Head
Attention Attention
tr 1t
_ J & _JJ
Positional Positional
Encodi &) @ -
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 2.5. Transformer architecture with the encoder (left-hand side) and decoder (right-
hand side) [14].

only the encoder is specific to models that require a good understanding of the input,
e.g. the masked language model* BERT [19]. On the other hand, decoder-only models
are designed for generative tasks, such as text generation.

3 Masked language modeling (MLM) differs from causal language modeling in that it is trained to predict
a masked (hidden) word within a sentence, rather than the next word. However, MLM is not the primary
focus of this thesis.

Chapter 3
Data Sources

Our dataset is composed of several data sources. The sources range from generic web-
pages crawled from the internet to more specialized content such as patents and par-
liamentary speeches. However, all these sources have one common trait — they are in
Czech. Besides augmenting the overall dataset size, this approach ensures that the
resulting dataset includes a diverse vocabulary and various writing styles, promoting
the usability of the models trained with the dataset to multiple scenarios.

To focus on creating a robust foundational model, we have deliberately excluded
instruction-based datasets at this stage. The initial goal is to develop a comprehen-
sive understanding of natural language through a broad and diverse corpus. Including
instruction-based data prematurely could skew the model towards task-specific pat-
terns, limiting its versatility. This phased approach allows us to first establish strong
general language capabilities, which can be fine-tuned with specialized datasets in sub-
sequent training phases, ensuring balanced and adaptable model performance.

In this section, we will describe each individual data source in detail.

I 3.1 Data Format and Schema

All the data sources of the dataset are stored in the JSON Lines! format and compressed
using Zstandard?. This is a convenient choice, because both the JSON Lines format
and Zstandard compression are commonly adopted in widely used NLP libraries, such
as Hugging Face Datasets® or Langchain®. For instance, in Hugging Face Datasets, the
user can directly load training data from the compressed JSON Lines files by simply
specifying the file path and the dataset schema.

Il 3.1.1 JSON Lines

JSON Lines is a convenient format for storing structured data based on JSON, where
every line stores a single JSON object. This feature makes .jsonl files streamable,
allowing to process one record at a time.

JSON Lines has three requirements [20]:

1. UTF-8 encoding: using UTF-8 improves the readability of the stored data, as opposed
to encoding Unicode strings with ASCII escape sequences (as standard JSON allows).

2. Each lineis a valid JSON record: however, the . jsonl file as a whole is no longer valid
JSON.

3. Line separator is \n: since JSON implicitly ignores white space outside of string
literals, \r\n (used on Windows) is also supported.

https://jsonlines.org
https://facebook.github.io/zstd/
https://huggingface.co/docs/datasets/index
https://www.langchain.com

AW e

https://jsonlines.org
https://facebook.github.io/zstd/
https://huggingface.co/docs/datasets/index
https://www.langchain.com

object

whitespace

whitespace |—| string }—J

[whitespace || vaive |

J/

Figure 3.1. Schema of a JSON object [21].

JSON objects are unordered sets of name-value pairs [21]. As shown in Figure 3.1,
an object is delimited by a curly bracket pair ({...}). A wvalue is assigned to a name
using a colon (:) and name-value pairs are separated by commas ().

While names are required to be strings (a sequence of Unicode characters wrapped
in "..."), values can be either strings, numbers, arrays (i.e. an ordered collection
of values), true/false/null values or even different objects. Additionally, all these
different structures can be nested.

B 3.1.2 Zstandard Compression

Zstandard (Zstd) is a lossless data compression algorithm [22]. Its library was released
as open source by Meta (then Facebook) in 2016.

Zstd combines two types of lossless data compression methods — Finite State Entropy
and Huffman Coding.

In its most recent version 1.5.6, it boasts a compression ratio 2.887, compression
speed 510 MB/s and decompression speed 1580 MB/s [23]. These values have been
calculated on an Intel Core i7-9700K CPU @ 4.9GHz system running Ubuntu 20.04.

B 3.1.3 DataSchema

There are some differences between our data sources as for what fields (names) are
included in the individual JSON objects. For instance, the url field present in internet
data sources is not relevant in objects containing books. Vice versa, the author field
present in book data sources is not suitable for objects with internet content.
However, it is guaranteed that, across all documents, the text and source fields are
present. The former includes, as the name suggests, the text of each document, usually
split into paragraphs (delimited by the \n symbol). The latter denotes the code of the
data source the document originates from, e.g. commoncrawl, hplt-v1.2 or mlp-books.

I 3.2 Common Crawl

Common Crawl® is our dataset’s main data source. It is a non-profit project which
alms to maintain a open repository of web crawl data spanning from 2008 until today,
accessible to anyone. Its corpus contains petabytes of data and can be accessed for free
on the Amazon AWS S3 cloud platform.

A web crawler is a program that browses the internet automatically based on some
predefined policies. Depending on implementation, a crawler may start with a list of
URLs, store the content of each webpage and proceed in the same manner with all
URLs found on the parsed webpages.

5 https://commoncrawl.org

10

https://commoncrawl.org

Crawls are collected regularly, usually once a month, and contain the snapshot of a
subset of the whole internet — including content older than the crawl’s timestamp. This
means that, in case the same URL was selected for crawling and the webpage content
has not changed, there may be an overlap between multiple crawls. The Common Crawl
team calculated that approximately 65% of the unique URLSs fetched in two subsequent
crawls (e.g. June and July) are common to both.

B 3.2.1 Format

The crawls are published in 3 different formats — WARC, WET and WAT.

WARC (Web ARChive) has become Common Crawl’s primary data format in sum-
mer 2013, replacing its predecessor — the ARC format. Proposed by the International
Internet Preservation Consortium, it is used to store both primary (e.g. HTML) and
secondary (e.g. metadata) content. WARC is an extension of the ARC format, which
recorded only primary content. A WARC file concatenates multiple records (consisting
of various text headers and a data block) into a single long file.

There are multiple types of records specified in the WARC specification. Common
Crawl uses the warc-type: response type to store HI'TP responses from the contacted
websites. They also store information about the sent HTTP requests (warc-type:
request type) and metadata about the crawl process (warc-type: metadata type)

Follows a shortened extract of the WARC data format, where the crawler fetched
https://en.wikipedia.org/wiki/Saturn and received an HTML response:

WARC/1.0

content-type: application/http; msgtype=response
content-length: 583626

warc-ip-address: 208.80.154.224

warc-identified-payload-type: text/html

warc-date: 2023-09-29T08:25:05Z

warc-type: response

warc-target-uri: https://en.wikipedia.org/wiki/Saturn
warc-record-id: <urn:uuid:8007el174-e1£3-4778-90b9-70a4b776c64c>

HTTP/1.1 200 OK

date: Thu, 28 Sep 2023 16:42:36 GMT
server: mw-web.eqiad.main-644fddf9bf-xvvsz
x-content-type-options: nosniff
content-language: en

accept-ch:

vary: Accept-Encoding,Cookie
last-modified: Thu, 28 Sep 2023 16:41:57 GMT
content-type: text/html; charset=UTF-8
X-Crawler-content-encoding: gzip
accept-ranges: bytes
X-Crawler-content-length: 107286
Content-Length: 582140

<!DOCTYPE html>
<html lang="en" dir="1tr">

11

https://en.wikipedia.org/wiki/Saturn

<head>
<meta charset="UTF-8">
<title>Saturn - Wikipedia</title>

As we can see, the WARC format contains extensive metadata, as well as a lot of
HTML-related elements in its data block. However, for our goal of creating a Czech
LLM corpus, these records are redundant and introduce unnecessary latency during
data retrieval and processing.

Fortunately, the Common Crawl team also provides WET (WARC Encapsulated
Text), a data format more suitable for our efforts. As shown in the following extract,
WET only contains plain text extracted from the raw WARC data, as well as some
selected metadata:

WARC/1.0

content-length: 80489

warc-record-id: <urn:uuid:df74c49c-£297-48e2-96de-533fab068b73>
content-type: text/plain

warc-date: 2023-09-29T08:25:05Z

warc-type: conversion

warc-target-uri: https://en.wikipedia.org/wiki/Saturn
warc-refers-to: <urn:uuid:8007el74-e1£3-4778-90b9-70a4b776c64c>
warc-identified-content-language: eng

warc-block-digest: shal:TPDGIBQ5NGM3333YFEHGT6K35P20ITTY

Saturn - Wikipedia
Jump to content
Main menu

Bl 3.2.2 Sparkand the cc-pyspark Library

We use a modified version of the cc-pyspark® library to download the data. As the
name suggests, this library allows us to run a Spark job to download and process each
record.

Apache Spark is a multi-language engine for executing data engineering, data science,
and machine learning on single-node machines or clusters written in Scala [24]. Thanks
to its distributed nature, it is ideal for processing large datasets such as Common Crawl.
At the core of Spark is the Resilient Distributed Dataset (RDD). An RDD is a read-
only collection of objects partitioned across a set of machines that can be rebuilt if a
partition is lost [25]. RDD is an immutable distributed collection of objects that can
be stored in memory across a cluster of machines. RDDs provide fault tolerance by
keeping track of transformation operations to rebuild lost data partitions. They also
support parallel operations like map, filter, reduce, and more, enabling distributed data
processing at scale.

The whole Spark job defined in cc-pyspark can be summarized as follows:

1. Downloading data from AWS S3: the boto3” library is used to fetch data from the
S3 paths specified in the input file. This task is then distributed across the Spark
cluster, ensuring efficient parallel retrieval.

6 https://github.com/commoncrawl/cc-pyspark
7 https://boto3.amazonaws.com/v1/documentation/api/latest/index.html

12

https://github.com/commoncrawl/cc-pyspark
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html

2. Parsing records with FastWARC: a high-performance C++ library used for parsing
compressed WARC data streams.

3. Processing data: each record is filtered for Czech and a JSON string containing the
record’s text content and metadata is returned. The output file is a JSON Lines
document created by merging all the stored JSON strings.

For downloading, we used an AWS EC2 ¢7g.4zlarge instance with 16 virtual CPUs.
Thanks to using Spark, we took advantage of all the vCPUs and on average downloaded
585 MB of data per minute.

We have modified cc-pyspark to filter for Czech language documents by taking ad-
vantage of the WA RC-Identified-Content-Language metadata tag. However, this tag is
available in WET files only from the May/June 2020 crawl onwards. For this reason,
we have only used crawls collected between May 2020 and June 2023, for a total of
23 different crawls. This tag has been provided by the Common Crawl team who ran
the Compact Language Detector 2 (CLD2)® on HTML pages to identify their language.
Since CLD2 is able to identify up to 3 documents per document, we discard any records
containing any other language than Czech.

The quality of crawled internet data varies significantly. Some webpages may contain
high-quality texts, e.g. newspaper articles, while other may just be a nonsensical se-
quence of random symbols. In order to remove low quality or duplicate documents from
our dataset, we process all Common Crawl data with our Data Processing Pipeline.

Bl 3.2.3 DataExtract
The JSON objects storing Common Crawl data have the following names (fields):

m text: the main content extracted from the webpage.

m timestamp: the timestamp indicating when the webpage was crawled.

m url: the URL of the webpage from which the data was extracted.

m source: the identifier for the data source, with the value set to commoncrawl.

Follows a shortened extract of the data:

{"text": "Zpravy - K mani je porevoluéni sen mnohjch Cechd, v originalnim
stavu uz se davno nevidi| AutoAdvert\nK mani je porevoluéni sen mnohjch
Cechli, v origindlnim stavu uz se davno nevidi\nPokud jste \"automobilové
vyriastali\" v 90. letech, tohle auto jste nemohli ignorovat. Naprosta
vétSina z nich je davno znicend Casem Ci tuningem, hezky origindlni
kousek se ale pofad najde...", "timestamp": "2021-04-15T02:37:59.000",
"url": "https:\/\/autoadvert.cz\/magazine\/2487115315-k-mani-je-
porevolucni-sen-mnohych-cechu-v-originalnim-stavu-uz-se-davno-nevidi",
"source": "commoncrawl"}

B 33 HpuT

High Performance Language Technologies (HPLT) [26] is a joint project between several
Furopean universities and companies that aims to release large quantities of data in
multiple languages to build powerful language models. The results of this project are
to be published with open licenses.

As shown in their list of deliverables (see Figure 3.2), they plan to release not only
training data for language models, but also cleaning software, trained models coupled

8 https://github.com/CLD20wners/cld2

13

https://github.com/CLD2Owners/cld2

Deliverables

Initial release of monolingual and parallel data sets

Final release of monolingual and parallel data sets

Software for cleaning data sets

Clean filtered data sets augmented with metadata

First language models trained

Report on language model evaluation

Translation models for select language pairs

Report on evaluation of trained models

Dashboard report

HPLT pipelines and tools

HPLT resource catalogue

0-12 Months 12-24 Months

~ Lead by: UH - DONE - 12 menths

" Lead by: UH - In progress - 35 months

+ Lead by: Prompsit - DONE - 18 months

:** Lead by: Prompsit - In progress - 36 months

+ Lead by: UTU - DONE - 18 months

+** Lead by: UTU - In progress - 35 months

~ Lead by: UEDIN - DONE - 18 months

+"* Lead by: CUNI - In progress - 35 months

=" Lead by: Prompsit - In progress - 36 menths

+** Lead by: VIO - In progress - 24 months

=" Lead by: UH - In progress - 30 months

24-36 Months

Figure 3.2. List of HPLT deliverables.

with some quality evaluations and other releases. These results are to be expected in
their 36-month release plan.

So far, they have released three versions of their datasets. We use its third and latest
version, where there are 75 monolingual and 18 bilingual datasets. Each dataset is
available for download separately, based on the main language of its documents.

All three version are in the JSON Lines format and compressed using Zstandard.
Besides the main text content, HPLT authors also provides other metadata, especially
the document’s main language (detected using CLD2), the URL of the document and
even the languages identified at paragraph (line) level (using FastSpell [27]). Follows
an extract from the original dataset’s English release:

{"id": 1, "document_lang": "en",

"scores": ["0.76","0.76","0.76"],

lllangsll: [llenll,llenll,"enll] ,

"text": "this is paragraphl\nthis is paragraph2\nthis is paragraph3",

"url": "urll", "collection": "collection-1"
+

{"id": 2, "document_lang": "en",

"scores": ["0.65",...],

"langs": ["en",...],

"text": "another paragraph\m...",

The first version contained only raw text data (as well as some metadata) with no
data deduplication, or boilerplate removal and cleaning. The second version introduced
near data deduplication done at document level using MinHash. We will talk about
more data deduplication in Section 4.2.

Finally, some dataset cleaning has been performed on HPLT Datasets v1.2, the third
release. A bug in their deduplication procedure has also been fixed. HPLT authors
performed cleaning following 5 criteria [28]:

1. URLis in the UT1 blacklist of adult sites”: a collection of websites blacklists with more
than 3.7 million records managed by Université Toulouse Capitole.

2. An average of less than 5 words per line

3. Less than 200 characters in the document

9 https://dsi.ut-capitole.fr/blacklists/index_en.php

14

https://dsi.ut-capitole.fr/blacklists/index_en.php

4. Less than 5 lines in the document
5. Less than 20% of the lines in the document share the language identified at document
level

Any document satisfying at least one of the criteria was removed. We also removed
any non-Czech paragraphs, as identified by FastSpell.

The data in HPLT Datasets was acquired from two main sources: Internet Archive
(crawls WIDE15, WIDE16 and WIDE17) and Common Crawl (crawl CC-MAIN-2022-
40), which both contain internet webpage data. As shown in Table 3.1, Internet Archive,
especially WIDE16, is the main source of HPLT’s data.

Crawl (collection) # text files
CC40 127,853
TA WIDE15 495,512
TA WIDE16 977,792
IA WIDE17 798,811
Total 2,399,968

Table 3.1. HPLT text sizes across all languages [28].

After downloading the third release of the dataset, removing non-Czech paragraphs
and converting the data to our schema, we proceed to process it with our Data Pro-
cessing Pipeline.

Bl 3.3.1 DataExtract
The JSON objects storing HPLT data have the following names (fields):

m text: the main content extracted from the webpage.
m url: the URL of the webpage from which the data was extracted.
m source: the identifier for the data source, with the value set to hplt-1.2.

Follows a shortened extract of the data:

{"text": "Nekvalitni elektrokolo easy-bike od firmy Auto Kelly - Diskuse
- Bike-forum.cz\nTento web pouZziva k poskytovani sluZeb, personalizaci
reklam a analjze navsStévnosti soubory cookie. Pouzivanim tohoto webu s
tim souhlasite. Vice informaci V pofadku\nNekvalitni elektrokolo easy-
bike od firmy Auto Kelly\nNekvalitni elektrokolo easy-bike od firmy Auto
Kelly\nP¥ed rokem a pil jsem koupil manZelce elektrokolo easy-bike od
prodejce Auto Kelly.\nKdokoliv toto &tete, prosim neudélejte nikdo
stejnou chybu!\nJiZ po roce baterie ztratila minimdlné& 1\/4 své
kapacity...", "url": "http:\/\/www.bike-forum.cz\/forum\/nekvalitni-
elektrokolo-easy-bike-od-firmy-auto-kelly", "source": "hplt-1.2"}

B 3.4 culturax

CulturaX [29] is a dataset tailored for large language model development, boasting
6.3 trillion tokens in 167 languages. Similarly to HPLT, the project aims to promote
building open source language models in as many languages as possible, without being
limited to English. This is due to the fact that despite there were several releases of

15

open source models, often only the model’s weights, not the training data, were made
publicly accessible. Additionally, many of these models were specifically designed for
English, limiting their potential global applicability in regions where English is not the
dominant language, whereas more than 50% of CulturaX is dedicated to non-English
languages.

It combines the mC4 [30] (version 3.1.0) and OSCAR [31-33] (distributions 20.19,
21.09, 22.01 and 23.01) datasets. Both mC4 and OSCAR are, yet again, internet content
datasets, extracted from Common Crawl (CC). As we can observe in Table 3.2, mC4
makes up most of CulturaX’s initial data before cleaning and deduplication.

Dataset % document counts
mC4 66
OSCAR 20.19 7
OSCAR 21.09 9
OSCAR 22.01 7
OSCAR 23.01 11

Table 3.2. Distribution of document counts from mC4 and OSCAR in CulturaX’s initial
dataset [29].

As opposed to HPLT, the dataset’s original authors already perform extensive data
cleaning and deduplication procedures similar to our Data Processing Pipeline. These
procedures are crucial for the author’s goal of releasing an open source dataset which can
be directly used to efficiently train language models of various languages. As discussed
in Chapter 4, removing bad and duplicate content from the corpus improves the quality
of language models, as well as reduces their training time, since we have fewer examples
to go through during backpropagation.

B 34.1 mca

mC4 is constructed from 71 CC crawls by removing pages with less than 3 lines, less
than 200 characters, or containing bad words. They also performed a more sophisticate
version of sentence deduplication — all but one of any three-sentence span occurring
more than once across all documents was removed. Subsequently, the corpus was exact-
deduplicated at document level. The remaining pages are then grouped by language,
as identified by CLD3 [34]. Documents with CLD3 confidence below 70% are removed.

B 34.2 OSCAR

OSCAR is another corpus featuring multiple languages which were identified using
fastText [35]. There are several key differences among OSCAR’s 4 distributions. For
instance, versions before 22.01 are line-oriented, whereas the newer distributions become
document-oriented. This means that the 21.09 version of an English Wikipedia article
about the Czech anthem (with its lyrics) would be divided into the dataset’s both
English and Czech subset, while the article is grouped with other English documents
in the 22.01 version. Also, another advantage of the document-oriented approach is
that the models trained on such data can have longer context, as the sentences are
contiguous.

The dataset cleaning approach also differs among the various versions. They include,
for instance, removal of documents with invalid UTF-8 characters, removal of short lines
at either the head or tail of the document (only for recent releases), UT1 blacklist-based

16

filters, etc. They also chose to perform deduplication only on the early (i.e. sentence
level) versions of the dataset. However, in contrast with CulturaX, dataset cleaning is
not the main scope of the OSCAR project. Therefore, we omit the specifics of OSCAR’s
filtering and proceed to the following section.

Il 3.4.3 Cleaning Procedures

As mentioned before, mC4 and OSCAR use different language identifiers. Since mC4’s
CLD3 is substantially worse than OSCAR’s fast Text [36], the authors chose to reclassify
all mC4 data using fastText and discard any documents that did not correspond to the
original language label.

They also discard any URLs present in the UT1 blacklist. This is due to the fact
that mC4 did not include filtering based on the blacklist. Also, filtering once again
OSCAR’s content allows the author’s to leverage the blacklist’s latest version.

Next, the dataset was cleaned based on a number of metrics, mostly inspired by the
BigScience ROOTS corpus’s pipeline [37]:

Number of words

Character repetition ratio

Word repetition ratio

Special character ratio

Stop word ratio

Flagged word ratio

Language identification confidence
Perplexity value

Document length (number of characters)
Number of lines

Short line length ratio

Short line ratio

The perplexities are calculated using a 5-gram Kneser-Ney language model from the
KenLM library [38] trained on Wikipedia, while the stop and flagged word lists from the
BigScience ROOTS corpus are combined with those compiled by CulturaX’s authors.
In order to classify a line as short, the threshold is set to 100 characters.

When setting the threshold of the metrics, the authors used a variant of the In-
terquartile Range (IQR) method [39]. After computing a distribution of all the metrics
(for every language separately), they calculated the 10" and 90" percentiles of each
distribution. The values at these percentiles become the thresholds for the aforemen-
tioned metrics — the lower percentile for metrics where high values are preferred (e.g.
language identification confidence), and the higher percentile for metrics which favor
low values (e.g. perplexity). All documents that fail to meet the set criteria are removed
from the corpus.

After removing low-quality documents, the authors focus on improving the quality
of the remaining data. As the dataset contains internet content, the previous steps
may not be sufficient to completely remove all the noise from the data, such as leftover
JavaScript (JS) code or website navigation menus. This noise is typically caused by
crawling and extraction errors. Therefore, all short lines at the end of each document
are removed, as they typically contain the website’s footer and other irrelevant content.
All lines which contain at least two JS keywords (e.g. <script) are eliminated as well.
However, if a document contains more than one such line, it is preserved, as it likely is a
coding tutorial. The minimum number of JS keywords per line, so that it is considered

17

JavaScript, was set to two because of the resemblance some keywords bear to natural
language (e.g. var). In this manner, the authors avoid unintentionally omitting helpful
content.

Bl 3.4.4 Deduplication Procedures

Deduplication is performed independently for each language in the dataset.

CulturaX is first deduplicated using the MinHashLLSH near deduplication method,
using a Spark implementation from the text-dedup!® GitHub repository. 5-grams and
the Jaccard similarity threshold of 0.8 are used when configuring deduplication param-
eters. Near deduplication seeks to eliminate documents that have content similar to
(though not necessarily identical with) other documents already existing in the corpus.

After near deduplication, the dataset is deduplicated according to website URLs.
While crawling, multiple slightly altered versions of identical content may be retrieved
using the same URL. These versions may differ sufficiently to evade near deduplication,
yet not differ significantly enough to enhance the dataset’s value.

Deduplication was the most resource intensive process when creating the dataset. It
operated across 600 AWS EC2 instances, with each instance featuring 96 CPU cores,
192 GB of memory, and 1 TB of disk space. This disk space served as a substitute for
memory when needed, such as during deduplication processes.

We will explore deduplication in greater detail in Section 4.2.

[l 3.4.5 DataExtract
The JSON objects storing CulturaX data have the following names (fields):

m text: the main content extracted from the webpage.

m url: the URL of the webpage from which the data was extracted.

m timestamp: the timestamp indicating when the webpage was crawled.

m source: the identifier for the data source, with the value set to culturax.

Follows a shortened extract of the datas:

{"text": "Staroeské vdolky z plotny | Grafoman\n23.9.2013 Clanky, Pro
volny &as, Tematické rubrikyLucie Svihovcova\nToto je perla staré eské
kuchyné. Recept moji prababicky je provéren nékolika generacemi nadSenjch
stravnikd.\nTento dezert poté8i i damy, které si hlidaji Stihlou linii.
Tésto je totiZ zcela bez tuku ¢i cukru...", "url":
"http:\/\/www.m-grafoman.cz\/clanky\/staroceske-vdolky-z-plotny\/",

"timestamp": "2017\/12\/17 13:55:58", "source": "culturax"}

B 35 MLPBooks

This data source comprises books with expired copyright available from the Municipal
Library in Prague. The books are usually available in 3 formats — EPUB, PDF and
PRC. We have chosen to work with EPUB, a widely used file format for digital books,
since it is easily machine readable by specialized libraries with little to no extraction
errors. Hence, each book’s content was extracted using EbookLib*! and Trafilatura [40)].

We have written a simple Python crawler that recursively explores all the subdirec-
tories of https://web2.mlp.cz/koweb/00. Whenever the script encounters an .epub

10 https://github.com/ChenghaoMou/text-dedup
11 https://github.com/aerkalov/ebooklib

18

https://web2.mlp.cz/koweb/00
https://github.com/ChenghaoMou/text-dedup
https://github.com/aerkalov/ebooklib

file, it is downloaded as a temporary file and parsed using EbookLib. This enables
us to extract metadata and individual chapters from the books. However, EbookLib
presents book chapters in HTML format. To address this, we employ Trafilatura to
extract plain text from HTML.

B 3.5.1 DataExtract
The JSON objects storing MLP Books data have the following names (fields):

m title: the title of the book.

m text: the whole book, with the book’s chapters separated by \n\n.

m author: an array of the book’s authors.

m identifier: the book’s identifier.

m source: the identifier for the data source, with the value set to mlp-books.

Follows a shortened extract of the data:

{"title": "RUR", "text": "Karel Capek\nRUR\nROSSUM’S UNIVERSAL ROBOTS\n
KOLEKTIVNI DRAMA 0O VSTUPNI KOMEDII A TRECH DEJSTVICH\nZn&ni tohoto textu
vychazi z dila RUR tak, jak bylo vydano v Ceskoslovenském spisovateli v
roce 1994 (CAPEK, Karel. Dramata : LoupeZnik : R.U.R. : V&c Makropulos :
Bild nemoc : Matka. 1. soubor. vyd. Praha : Ceskoslovensky spisovatel,
1994. 472 s. Spisy, sv. 7.). Dalsi dila Karla Capka naleznete online na
www strankach Méstské knihovny v Praze: www.mlp.cz/karelcapek.
Elektronické publikovani dila Karla Capka je spole&nym projektem M&stské
knihovny v Praze, Spoleénosti brat¥i Capkfi, Pamatniku Karla Capka a
Ceského narodniho korpusu.\nOSOBY\nHARRY DOMIN, centralni feditel
Rossumovych Univerzalnich Roboti\nINZ. FABRY, generalni technicky Feditel
RUR\nDR. GALL, pfednosta fyziologického a vjzkumného oddéleni RUR\nDR.
HALLEMEIER, pfednosta Ustavu pro psychologii a vjchovu Robotd...",
"author": ["Karel Capek"], "identifier": "urn:uuid:96185b52-4c47-43bb-
b96e-8c9dfcb94£f43", "source": "mlp-books"}

I 3.6 iDnes

We have collected articles of the online newspaper iDnes from 1999 to 2023. They
represent a reliable source of trustworthy high-quality data about current events from
various categories, such as politics, sports, lifestyle etc.

To create the data, we created a Python scraper that fetches articles from their article
archive. Using the library Beautiful Soup 4'2, we traverse the archive by date and find
all the articles from that day. When found an article, we use Trafilatura to convert it
from HTML to plain text.

B 3.6.1 DataExtract
The JSON objects storing iDnes data have the following names (fields):

m title: the title of the article.

m text: the content of the article.

m date: the article’s publication date.

m url: the article’s URL.

m source: the identifier for the data source, with the value set to idnes.

12 https://www.crummy.com/software/BeautifulSoup

19

https://www.crummy.com/software/BeautifulSoup

Follows a shortened extract of the data:

{"title": "NejstraSidelnéj8i knihovny svéta, kde se budete bat nejen o
Halloweenu - iDNES.cz", "text": "Willard Library (USA) Willard Library
byla zaloZena v roce 1885 a je nejstarSi vefejnou knihovnou v Indiané.
Tato historickd knihovna sidli ve viktoridnské gotické budové, kterou
objva duch Sedé damy...", "date": "2023-11-01", "url": "https://www.
idnes.cz/bydleni/na-navsteve/nejstrasidelnejsi-knihovny-sveta.A231031 _
142044 dum_osobnosti_rez", "source": "idnes"}

B 3.7 wikipedia

Wikipedia is a vast online encyclopedia that contains information on a wide range of
topics, covering everything from history and science to popular culture and current
events. It is collaboratively created and edited by volunteers from around the world,
making it one of the largest and most comprehensive sources of information available
on the internet.

Furthermore, Wikipedia stands out as an immensely popular data source incor-
porated into the training data of nearly every large language model available today.
Wikipedia is known for its neutral tone and dedication to offering accurate, verifiable
information, often supported by citations from reputable sources. These attributes
make Wikipedia an exceptionally valuable resource for language models, offering a
broad spectrum of topics to enhance their comprehension of various subjects.

All Wikipedia articles, grouped by language, are regularly collected as backup dumps
in the XML format and compressed using bzip2. They are available for download at
https://dumps.wikimedia.org/backup-index.html. We have used the November
2023 (20231101) dump.

All Wikipedia articles are written in Wikitext!'3, a wiki markup language for cre-
ating documents. Besides providing support for simple notation for text formatting
(e.g. bold, italics, etc.), Wikitext also features more sophisticate editing constructs,
such as links, tables, images, and various macros. Unfortunately, these constructs are
also sometimes misused (e.g. unclosed brackets, missing attributes, etc.). Follows an
example of the Wikitext markup language:

'"''Florence''' {{efn|Obsolete [[Tuscan dialect|Tuscan]] form: {{lang|it|
Fiorenza}} {{IPA-it|fjo r ntsal}}, from {{lang-la|Florentia}}.}} is the
capital city of the [[Italy|Italian]] region of [[Tuscanyl]]. It is also
the most populated city in Tuscany, with 360,930 inhabitants in 2023, and
984,991 in its [[Metropolitan City of Florence|metropolitan area]].<ref>
{{Cite web |title=Bilancio demografico mensile |url=https://demo.istat.it
/app/7a=2023&i=D7B |access-date=2023-04-25 |website=demo.istat.it}}</ref>

The data from the Czech version of Wikipedia was extracted and cleaned using
WikiExtractor [41]. Not only WikiExtractor converts articles from Wikitext to plain
text by using a set of regular expressions, it also uses a series of heuristics to circumvent
the aforementioned bad formatting issues.

13 https://www.mediawiki.org/wiki/Wikitext

20

https://dumps.wikimedia.org/backup-index.html
https://www.mediawiki.org/wiki/Wikitext

Bl 3.7.1 DataExtract
The JSON objects storing Wikipedia data have the following names (fields):

m title: the title of the article.

m text: the content of the article.

m url: the article’s URL.

m source: the identifier for the data source, with the value set to cswiki-20231101.

Follows a shortened extract of the data:

{"title": "Astronomie", "text": "Astronomie, Cesky téZ hvézdarstvi, je
véda, kterd se zabjva jevy za hranicemi zemské atmosféry. Zvlasté tedy
vyzkumem vesmirnjch téles, jejich soustav, riznjch déji ve vesmiru i
vesmirem jako celkem.\nHistorie astronomie.\nAntika.\nAstronomie se
podobné jako dalSi védy zacala rozvijet ve staroveéku...", "url":
"https://cs.wikipedia.org/wiki?curid=10", "source": "cswiki-20231101"}

I 3.8 Czech Sociological Review

Czech Sociological Review 1993-2016 [42] contains selected research articles and essays
published in the Czech Sociological Review journal from 1993 to 2016.

It is a peer-reviewed sociological journal that has been publishing original contri-
butions from Czech and international authors since 1965, covering a wide range of
sociological topics. It features theoretical articles, analyses of social processes in post-
communist and other societies with a focus on comparative analysis, overviews of de-
velopments in sociology and related fields, methodological studies, reviews, and other
information about the sociological community. The journal is indexed in the Web of
Science and other prestigious scientific databases. As an open-access journal, all con-
tent in the Czech Sociological Review is freely available to users and institutions. The
journal is published six times a year, four times in Czech and twice in English, in both
print and online formats. [43]

Il 3.8.1 DataExtract

The JSON objects storing Czech Sociological Review data have the following names
(fields):

m title: the title of the article.

m text: the content of the article.

m author: an array of the article’s authors.

m year: the article’s year of publication.

m source: the identifier for the data source, with the value set to czech-socio-review.

Follows a shortened extract of the data:

{"title": "Utvateni nové socidlni regulace v Ceské republice", "text":
"Panuje obecna shoda v tom, Ze prechod k trzni ekonomice musi byt silné
socidlné zasStitén. Je tfeba zabranit prilisS hlubokému propadu té casti
populace, kterd neni schopna se adaptovat na nové ekonomické podminky.
V zajmu prosazeni reformnich krokd je t¥eba uchovat socidlni smir.
Sociadlné& demokratické tradice predvaleiného Ceskoslovenska a blizkost
\" socidlni Evropy\" brani navratu k\" divokému kapitalismu\" 19.
stoleti...", "author": ["Ji¥i Vedernik"], "year": 1993, "source":
"czech-socio-review"}

21

I 3.9 Patents

This is a collection of Czech patents downloaded from Czechia’s Industrial Property
Office!®. They provide anonymized data in the XML format that follows the schema of
the WIPO standard ST.96. We use the September 2023 database full export version of
their data and disregard the subsequent incremental data.

Overall, patents are composed in highly technical language and are extremely
domain-specific. This characteristic enables models trained on this data to acquire
factual knowledge in areas often overlooked by other commonly used language modeling
datasets. However, to construct a versatile language model, it’s important to carefully
balance the proportion of tokens originating from this source. This precaution is
necessary to prevent the model from overly relying on excessively technical expressions
during content generation.

The data was converted from XML to plain text by writing a conversion script that
relies on the xmltodict!® library. As the patents are split into thousands of XML files,
the script operates by initially preprocessing the content of each XML file, removing
certain formatting-related ST.96 tags. Subsequently, the XML document is converted
to a Python dictionary using xmltodict. Working with a dictionary simplifies the ex-
traction of patent descriptions and other pertinent sections in accordance with their

schemalS.

B 3.9.1 DataExtract
The JSON objects storing Patents data have the following names (fields):

m title: the title of the patent.

m abstract: the abstract of the patent.

m text: the content of the patent’s description.

m source: the identifier for the data source, with the value set to patents.

Follows a shortened extract of the data:

{"title": "PouZiti expandovanjch ¢inidel pro minimalizaci koroze a tvorby
usazenin ve spalinovych systémech", "abstract": "Zplsob minimalizace
koroze a vytvareni usazenin na povrchu spalinového systému...", "text":
"Vynalez se tykad zplisobu minimalizujiciho korozi, zejména zanaSeni bloku
spalinovych systémi a pridruZenyjch zasobnich potrubi, kde je pritomno
v§znamné procento vlhkosti a /nebo kyselina sirova...",

"source": "patents"}

I 3.10 Theses

This data source includes all Czech language bachelor and diploma theses from the Fac-
ulty of Arts (Charles University) that are available at the university’s digital repository.

We once again wrote a simple Python crawler that employs Beautiful Soup 4 to
programmatically download the theses. Since they are in the PDF format, we have
used the pypdf'” library to extract plain text from the documents. Although the
extraction process worked fairly well, it is not perfect, as there are some imperfections

https://isdv.upv.gov.cz/webapp/webapp.pubsrv.seznam?pid=11

15 https://github.com/martinblech/xmltodict

16 https://isdv.upv.gov.cz/doc/xsd/ST96/PatentPublication_V7_0.xsd
https://pypdf.readthedocs.io/en/latest

22

https://isdv.upv.gov.cz/webapp/webapp.pubsrv.seznam?pid=11
https://github.com/martinblech/xmltodict
https://isdv.upv.gov.cz/doc/xsd/ST96/PatentPublication_V7_0.xsd
https://pypdf.readthedocs.io/en/latest

in the results, e.g. superfluous spaces within words, wrong characters etc. Due to the
use of a PDF extractor, there are many paragraphs (separated by \n). We have opted
not to remove them because there is no simple method to eliminate the superfluous \n
without risking the unintentional removal of genuine paragraph content.

Bl 3.10.1 DataExtract
The JSON objects storing Theses data have the following names (fields):

m title: the (encoded) title of the thesis.
m text: the content of the thesis.
m source: the identifier for the data source, with the value set to theses.

Follows a shortened extract of the data:

{"title": "BPTX_2013_2 11210 _0_382977_0_150571", "text": " \n Univerzita
Karlova v Praze \nFilozoficka fakulta \nKatedra Psychologie \n \n \n
\nBakala¥ska prace \nHedvika Vertelmanovd \nHumor jako protektivni
faktor profesni zaté&Ze ulitele...", "source": "theses"}

B 311 synwo

SYN v9 [44] is a corpus of written contemporary Czech, covering mostly the years
1990-2019. With 3,750,152 records, it contains a variety topics, including newspa-
pers, fiction, non-fiction, etc. As we can observe in Table 3.3 (sorted by percentage in
descending order), newspapers prevail noticeably:

Topic %
Traditional newspapers 594.68
Leisure magazines 22.29
Prose 14.32
Shorter prose 2.44
Popular literature 2.34
Professional literature 1.17
Drama 0.91
Memoirs, (auto)biographies 0.86
Scientific literature 0.52
Poetry 0.36
Unclassified 0.09
Administrative texts 0.02

Table 3.3. Distribution of topics in SYN v9.

It is provided in a CoNLL-U-like vertical format:

<doc title="Velky Gatsby" author="Fitzgerald, Francis Scott" ...>
<block>

<s id="1">

v " " Zi————mmm - z - -

<g/>

Jsou Jsou byt byt VB-P---3P-AAI-- V - VDA3PP

23

to to ten ten PDNS1--————————- P il ——eee===

staré staré stary stary AAFP1----1A-—— A 1 -———-—-
hodiny hodiny hodiny hodiny NNFP1--—-——- A——— N 1 -—-
<g/>

5 5 5 p Gymm————mmmmme= z - -

When attempting to parse the data, we could not use any available CoNLL-U li-
braries, because of the minor differences between the two formats. Furthermore, we
were not able to retrieve the documentation of this format the authors used. We were
thus forced to write our own parser that, despite being equipped with only basic rules,
proved effective in handling the data.

Using SYN v9 for model training has a significant disadvantage. The whole corpus
is shuffled and divided into blocks of maximum 100 words, with ordering randomized
within the given document. This is a significant limitation for training Transformer
models. By segmenting the text into smaller blocks, the model is constrained to a
context size of 100 words, which affects how it learns positional information and impacts
the model’s ability to capture long-range dependencies within the text.

B 3.11.1 Data Extract
The JSON objects storing SYN v9 data have the following names (fields):

m text: the content of the record.

m title: the title of the original work the record was extracted from.

m author: the original work’s author.

m txtype: the topic of the record.

m source: the identifier for the data source, with the value set to syn_v9.

Follows an extract of the data:

{"text": "Tak jestli pry bych tam vy¥idila, Ze ona dnes nemiZe p¥ijit?\n
Kdyz Daisy mluvila, dival se na ni distojnik tak, jak si kazda divka
preje, aby se na ni muZz nékdy dival, a j& se dodnes pamatuju na tu
pfihodu proto, ponévadZz se mné to zdalo romantické.\n", "title": "Velky
Gatsby", "author": "Fitzgerald, Francis Scott", "txtype": "NOV: préza",
"source": "syn_v9"}

I 3.12 Plenary Speeches

This data source contains the speeches made at the Parliament of the Czech Republic
from 1993 until 2023, as transcribed by their stenographers.

The original data was initially stored in CSV format and divided into two separate
files. One file spanned the time frame from 1993 to 2016, while the other covered the
years 2016 to 2023. Despite their overall high quality, the original datasets exhibited
some flaws. The first file lacked punctuation, while the second file lacked capitaliza-
tion. Therefore, we wrote a script that processed the speeches and addressed these
grammatical inconsistencies using regular expressions.

B 3.12.1 DataExtract
The JSON objects storing Plenary Speeches data have the following names (fields):

m text: the content of the speech.
m source: the identifier for the data source, with the value set to plenary-speeches.

24

Follows a shortened extract of the data:

{"text": "Pfedseda PSP Milan Uhde VaZené pani poslankyné&, vaZeni pani
poslanci, vaZené damy a panové, zahajuji slavnostni schiizi Poslanecké
snémovny Parlamentu Ceské republiky a vSechny vas vitam. Zv1ast srdecnd
vitam &leny vlady Ceské republiky, diplomaticky sbor, predstavitele
politického Zivota, mezi nimi poslance bjvalého Federdlniho shromazdéni,
a vSechny Cestné hosty. Schizime se poprvé jako Poslaneckd snémovna
Parlamentu Ceské republiky, a to v prvy den jeji samostatnosti...",
"source": "plenary-speeches"}

25

Chapter 4
Data Processing Pipeline

As we have mentioned before, internet crawled content contains a lot of low quality
data. Some examples of low quality data include navigation menus, webpages that
contain only lists of useless records, or lines that only contain long strings of random
characters. Low-quality data hinders the language model’s learning process and its
ability to generalize. Additionally, it is convenient to remove such content, as the extra
tokens unnecessarily slow down the training procedure without bringing any tangible
benefit. Removing potentially offensive or inappropriate content from the training data
is also one of the most straightforward methods to control the model’s negative behavior.

Internet crawled content also contains a significant amount of duplicate data. Such
data may be present due to various reasons — the URL could have been crawled multiple
times, a website may repost content verbatim from another, changes in page formatting
might have occurred without altering the content itself, etc. It is shown [45-46] that
duplicate data negatively affects the language model’s performance, leading to memo-
rization and requiring more training steps for the same or worse accuracy. Also, the
duplicates may exist even between the train and test sets, potentially undermining the
accuracy of the model’s evaluation.

Our pipeline operates through a two-step process. First, the data undergoes cleaning
and filtering. Then, we perform text and URL deduplication.

I 4.1 Data Cleaning and Filtering

Although the terms data cleaning and filtering may seem interchangeable, we define
cleaning as modifying the data (e.g. by removing some lines), whereas filtering as
removing certain documents from the dataset.

We employ a modified version of Squeakily!, an open source library for cleaning and
filtering language datasets. It is a library inspired by the techniques used when creating
The Pile [47], a vast English-only language modeling dataset, and BigScience’s ROOTS
project, whose cleaning and filtering procedures also served as inspiration for those
utilized in the CulturaX dataset.

To work with Squeakily, it is necessary to create a Pipeline object and define at
least one datasource object, where we need to configure:

m Dataset: the dataset we are working with. Must be a Dataset? object from the
Hugging Face Datasets [48] library.

m Name: the dataset’s name.

m Columns: since we are working with a Dataset object, a columnar data structure,
we need to specify the columns to process.

m Cleaners: the functions to perform cleaning with.

m Filters: the functions to perform filtering with.

1
2

https://carperai.github.io/squeakily
https://huggingface.co/docs/datasets/v2.19.0/en/package_reference/main_classesdatasets.
Dataset

26

https://carperai.github.io/squeakily
https://huggingface.co/docs/datasets/v2.19.0/en/package_reference/main_classes##datasets.Dataset
https://huggingface.co/docs/datasets/v2.19.0/en/package_reference/main_classes##datasets.Dataset

While cleaners return the document’s cleaned version, filtering functions return a
true or false value depending whether the document should be kept in the dataset

After configuring the datasource(s), we need to create a Pipeline object that includes
it. Then, we can run the pipeline. Since Squeakily works with Dataset objects, it
leverages its multiprocessing capabilities, speeding up the data cleaning and filtering
by parallelizing processes on the CPU.

By default, Squeakily executes the filtering functions first. However, we have devi-
ated from this default behavior by specifying cleaning first=True when running the
pipeline. We made this decision to prevent documents from unexpectedly failing to
meet the filtering criteria after undergoing the cleaning process. All the functions are
processed in the sequential order they were defined in the datasource object.

We used the following cleaners:

. Remove empty lines

. Normalize whitespace: replaces various whitespace characters with the standard one.

. Fix UTF8 encoding: replaces broken Unicode using the ftfy library [49].

. Remove short lines: removes lines with less than 5 words from documents. It pri-
marily aims to remove website navigation menus.

5. Remove special character lines: removes lines with a special character (i.e. punctu-

ation and digits) ratio larger than 0.3. We have noticed that some pages contain

undesirable random string sequences, likely due to formatting or extraction errors.

W N =

We implemented the functions from steps 4 and 5 after observing occasional occur-
rences of low quality lines in documents that are otherwise deemed acceptable.
After finishing the cleaning process, the following filters were run:

1. Check number of words: removes documents with less than 10 words. Too short
documents are not likely to contain meaningful content.

2. Check compression ratio: removes documents that, when compressed with Zstan-
dard, are smaller than a percentage of their original size (a set threshold). A low
compression ratio value indicates that the document contains a lot of repeated con-
tent.

3. Check flagged words ratio: removes documents with an offensive word ratio larger
than the set threshold. Aims to remove adult content.

4. Check character repetition ratio: removes documents that have a character repetition
ratio larger than the set threshold. It is shown that repeated content has a negative
effect on the performance of language models [50].

In order to set the thresholds present in steps 2, 3 and 4, we used the same variant
of the IQR method that was used in CulturaX. We identify the 10**, 90" or 95"
percentiles (depending on the metric) of the metrics’ data distribution, allowing to
remove outlier documents that deviate from the norm.

B 4.1.1 OurSetup

Since CulturaX was already cleaned by its authors using a pipeline similar to ours,
we have cleaned only the other two internet content data sources we have collected —
Common Crawl and HPLT.

The thresholds computed using the IQR method varied between the two data sources.
See Table 4.1 for a comprehensive list of the utilized thresholds.

We deployed Squeakily on several AWS EC2 c7g.4xlarge instances (without clus-
tering them), each one equipped with 16 vCPUs and 32 GB of memory, alongside AWS

27

Metric Common Crawl HPLT
Short lines 5 5
Special character lines ratio 0.3 0.3
Number of words 10 10
Compression ratio (0.05-q) 0.31 0.3
Flagged words ratio (0.9-q) 3e-4 2e-2
Character repetition ratio (0.95-q) 0.17 0.21

Table 4.1. Squeakily cleaner and filter thresholds.

EBS storage. During the cleaning process, only 10-20% of the available memory was
utilized, while the computational load heavily leaned on the processor side, using all
available vCPUs through parallel execution. On average, Squeakily managed to clean
593 MB of data per minute.

I 4.2 Deduplication

As previously mentioned, data deduplication plays a critical role in preparing language
modeling datasets, as it enables the language model to focus on learning more general-
ized patterns and semantic structures from the data. We distinguish between two types
of deduplication — exact and near.

Exact deduplication involves identifying and removing documents that are identical
to others in the dataset, while near deduplication targets documents that are simi-
lar but not necessarily identical. Both approaches contribute to mitigating the over-
representation of certain text segments in the training data, leading to more balanced
and robust models

B 4.2.1 ExactDeduplication

Deduplicating large volumes of data (e.g. we have collected over 3 TB of Common Crawl
data) demands substantial computational resources. Although open source deduplica-
tion libraries [45,51] exist, they usually rely on distributing the process on a large
cluster of instances, which we did not have at disposal.

To overcome this challenge, we have implemented a fast sequential C program that is
able to run deduplication on a single machine, provided it possesses sufficient memory. It
operates by calculating the hash of each document and maintaining records to determine
whether the document has already been encountered. In theory, assuming no hash
collisions occur, the program can distinguish between 8 billion unique documents per
gigabyte of memory.

The program deduplicates all JSON Lines files within the specified directory and
its subdirectories, passed as a command-line argument. Each file is read sequentially,
with JSON objects extracted from each line utilizing the cJSON? library. As output,
it creates a new file that contains all the unique JSON objects.

The program first creates an array, where each bit is reserved to a unique document
and represents if it has already been encountered. All bits are initially set to false.

Then, a hash (i.e. array index) is computed for each document. We compute the
hash of a string using the following function:

3 https://github.com/DaveGamble/cJSON

28

https://github.com/DaveGamble/cJSON

unsigned long long compute_hash(const char *text,
unsigned long long max_unique_docs) {
unsigned long long hash = 0;

for (int i = 0; i < strlen(text); ++i) {
hash = (hash * 127 + text[i]) % max_unique_docs;
+

return hash;

3

In the hash function above, we compute the document’s hash using Horner’s method,
an algorithm for polynomial evaluation. Using the prime number 127 contributes to a
uniform pseudorandom dispersion of hashes.

In case the document’s flag is set to false, the document is appended to a file
containing only unique documents and its flag is set to true. Otherwise, the document
is skipped.

Bl 4.2.2 NearDeduplication

While various near deduplication methods exist, one of the currently most popular is
MinHashLSH [52]. As the name suggests, it is technique based on MinHash [53] and
Locality Sensitive Hashing (LSH).

Jaccard similarity is a frequently used indicator of similarity between two sets. In
our scenario, we can imagine that a set contains our documents as elements.

Let U be a set, and A and B two subsets of U. Jaccard similarity is defined as:

_ |An B
- |AuB|

J(A, B)

Computing Jaccard similarity between two sets involves comparing all elements in
the sets to determine the intersection and union of the sets. For large sets, this can be
computationally expensive.

MinHash provides a way to approximate Jaccard similarity using a fixed-length sig-
nature, which is much faster to compute. This signature is computed by hashing the
elements of the set using different hash functions and keeping track of the minimum
hash value for each function. LSH then breaks each signature into bands, each band
containing the same number of rows. If two documents share the same hashes in a band
at a particular location (band index), they will be clustered into the same bucket and
will be considered as duplicates. [54]

B 4.2.3 OurSetup

Due to its high computational demands and the extensive volume of collected data, we
did not perform near deduplication.

We ran exact deduplication only on the Common Crawl data source, using an AWS
EC2 instance with 128 GB of memory, r7g.4xlarge. Our deduplication program ran
on a single vCPU and used 110 GB of memory, having a theoretical upper limit of 880
billion possible unique documents. It processed 120 MB of data per minute. Overall,
deduplicating ~1.7 TB of data took 10 days.

The other two internet content data sources, HPLT and CulturaX, were already
deduplicated by their authors. Otherwise, we did not deem necessary the deduplication
of the other manually collected data sources.

29

Even though Common Crawl, HPLT and CulturaX were all deduplicated, it was
still possible that there were duplicates, because the data sources were deduplicated
independently of each other. For this reason, we opted to run deduplication once
more. Nevertheless, we have decided to run deduplication only on the URL fields of
the documents, rather than their entire text content, following the approach used in
CulturaX. URL deduplication helps to remove content that is likely only marginally
altered, circumventing exact deduplication without contributing additional value to
the dataset.

30

Chapter 5
Corpus Statistics

We have collected a substantial amount of data from a variety of sources, each distinct
in several aspects. As discussed in Chapter 3 these sources differ in terms of language
used, quality and the topics covered. Additionally, basic statistics such as the number of
words and paragraphs vary among them. In this chapter, we will present the statistics of
our corpus, including the impact of the Data Processing Pipeline on our internet-based
data sources.

B 5.1 Detailed statistics

We computed detailed statistics regarding the number of words, sentences, paragraphs
and records regarding various data sources but the internet content based (Common
Crawl, HPLT and CulturaX). We have excluded them because of their size and the
computational cost associated with it. Furthermore, we do not report the paragraph
count for the Theses data source, since PDF extraction leads to the occurrence of the
paragraph delimiter \n even where it should not belong.

In order to compute the statistics, we used a library that provides various functions
useful for working with text, NLTK!. The function nltk.word_tokenize was employed
to split text into a list of words, treating punctuation as individual words. This is
accomplished through the use of regular expressions. For splitting text into sentences,
we utilized nltk.sent_tokenize, which relies on the Punkt model [55]. To split text
into paragraphs, the Python built-in function string.split('\n') was used.

In some cases, the number of paragraphs may exceed the number of sentences. This
occurs because some sentences are not properly concluded with punctuation and instead
end with the newline character \n. As a result, nltk.sent_tokenize fails to accurately
detect the end of these sentences.

See Table 5.1 for the statistics.

Data source # words # sentences # paragraphs # records
MLP Books 147,330,265 7,707,452 4,316,116 2,665
iDnes 658,537,279 39,143,231 2,162,711 1,399,195
Wikipedia 178,487,122 10,132,490 4,243,174 528,716
Czech Sociological Review 3,105,462 120,842 522 522
Patents 549,699,573 19,962,867 10,339,532 233,552
Theses 590,910,380 29,299,118 / 14,126
SYN v9 5,670,228,847 341,843,113 362,603,997 74,788,660
Plenary Speeches 85,119,192 4,970,355 471,469 471,469

Table 5.1. Detailed statistics of various data sources.

! https://www.nltk.org

31

https://www.nltk.org

Then, for all data sources (including large — several GBs — extracts of Common Crawl,
HPLT and CulturaX), we have also computed the:

m Average number of words, sentences and paragraphs per record: see Table 5.2.

m Average number of words and sentences per paragraph: see Table 5.3. Again, we
omit the Theses data source for the aforementioned reasons.

m Average number of words per sentence: see Table 5.4.

Data source ¢ words ¢ sentences ¢ paragraphs
Common Crawl 470.8 19.6 30.9
HPLT 1,714.6 74.9 66.5
CulturaX 584.9 29.9 16.6
MLP Books 55,283.4 2,892.1 1,619.6
iDnes 470.7 28 1.5
Wikipedia 337.6 19.2 8
Czech Sociological Review 5,949.2 231.5 1
Patents 2,353.6 85.5 44.3
Theses 41,831.4 2,074.1 /
SYN v9 75.8 4.6 4.8
Plenary Speeches 180.5 10.5 1

Table 5.2. Average number of words, sentences and paragraphs per record. All numbers
reported are rounded to one decimal place.

Data source ¢ words ¢ sentences

Common Crawl 15.2 0.6
HPLT 25.8 1.1
CulturaX 35.2 1.8
MLP Books 34.1 1.8
iDnes 304.5 18.1
Wikipedia 42.1 2.4

Czech Sociological Review 5,949.2 231.5
Patents 53.2 1.9
SYN v9 15.6 0.9
Plenary Speeches 180.5 10.5

Table 5.3. Average number of words and sentences per paragraph. All numbers reported

are rounded to one decimal place.

I 5.2 Data Processing Pipeline Impact

In this section, we discuss the impact on size that the Data Processing Pipeline has on
our data sources.

As mentioned before, we have run our Data Processing Pipeline only on internet
content sources — Common Crawl, HPLT and CulturaX. Because of their size, it is
impractical to calculate their size precisely. Instead, we used the we (word count) Unix
command to estimate that 1 GB & 135 million words.

32

Data source ¢ words
Common Crawl 24
HPLT 22.9
CulturaX 19.6
MLP Books 19.1
iDnes 16.8
Wikipedia 17.6
Czech Sociological Review 25.7
Patents 27.5
Theses 20.2
SYN v9 16.6
Plenary Speeches 17.1

Table 5.4. Average number of words per sentence. All numbers reported are rounded to
one decimal place.

The results are summarized in Table 5.5. Its rows follow the steps of our pipeline, i.e.
the reported size corresponds to the size after the data has undergone the respective
step.

The rows in the last step, URL deduplication, are merged. This is due to the fact that
it was performed on all data sources simultaneously, meaning that the result would be
biased based on which data source the deduplication algorithm processed first. There-
fore, we report the joint results for all three data sources.

Pipeline step

Common Crawl

HPLT

CulturaX

Original

Cleaning and filtering

Deduplication

544.05 (100%)
234.23 (43%)
180.53 (33%)

19.11 (100%)
12.52 (66%)

/

28.89 (100%)

/
/

URL deduplication 91.95 (16%)

Table 5.5. Impact of Data Processing Pipeline on word count. All numbers reported are
in billions of words and rounded to two decimal places.

I 5.3 Data Size

We report the final size of our corpus in Table 5.6 in both number of words and tokens.

When reporting the word count of the three internet content data sources, we use
the estimate described in the previous section. Regarding the other data sources, we
use the exact word count, as detailed in Section 5.1.

The number of tokens is an estimate based on the number of words. For this purpose,
we trained a BPE tokenizer with vocabulary size 50,304 on our Wikipedia data source,
tailoring the tokenizer for Czech. After training, we tokenized approximately a billion
words from a variety of data sources, finding that the tokenizer split, on average, one
word into 1.67 tokens. Hence, we compute the number of tokens by multiplying the
reported word count by the constant 1.67.

33

5. Corpus Statistics

Data source # words # tokens
Common Crawl
[E0=ICIL 91.95 153.56
CulturaX
MLP Books 0.15 0.25
iDnes 0.66 1.1
Wikipedia 0.18 0.3
Czech Sociological Review 0.003 0.005
Patents 0.55 0.92
Theses 0.59 0.99
SYN v9 5.67 9.47
Plenary Speeches 0.09 0.14
Total 99.84 166.73

Table 5.6. Final data size of the Czech Foundational Large Language Model Corpus. All
numbers reported are in billions of words/tokens and rounded to two or three decimal

places.

34

Chapter 6
Model Training

In this chapter, we will explore the potential of using our collected Czech corpus to train
a large language model using the Hugging Face Transformers [56] library. This includes
estimating the GPU hours necessary for training, as well as discussing the impact of
both the quantity and quality of data on the performance of a language model.

Finally, we will present the training of several models and demonstrate their capa-
bilities.

I 6.1 Training Time Estimates

Training LLMs on billions of tokens is a very computationally expensive and time
demanding process. Thankfully, due to the parallel nature of the Transformer archi-
tecture, the training time can be reduced by distributing the process across multiple
GPUs. In practice, the models recently released by companies, such as OpenAl or
Meta, are trained on custom-built clusters with thousands of GPUs.

In this section, we estimate the computational resources, in terms of GPU hours,
needed to train Transformer language models of various sizes with our dataset. To do so,
we use the estimate equation for end-to-end training time provided in [57]. End-to-end
training includes all operations including data loading, optimizer steps, communication
and logging. The authors compute the time estimates as an approximation based on
the model’s number of parameters, the number of floating-point operations and the
empirical throughput of an NVIDIA A100 GPU, which is a popular choice for model
training.

For a Transformer model with [layers, hidden size h, vocabulary size V and sequence
length s, the number of parameters can be computed as:

13 V+s
_ 2 _
P =12lh (1 + oh + o0k)

The authors also set a lower bound for the number of floating-point operations
(FLOPs) per iteration, which they calculate based on the number of matrix multi-
plications in the transformer and logit layers:

1%
F=96B 2(1 i —)
06Bsth? (1+ o + 1o

where B is the batch size.
The number of iterations during training with 7' tokens can be computed as:

T

I =—
Bs

Then, they observe that s < 6h, (V +s) < 16lh and V « 12lh. However, these ob-
servations are generally valid only for LLMs with billions of parameters. By combining

35

the previous equations with these observations, the authors approximate the end-to-end
training time of a Transformer model:
end-to-end training ~ 8TP
nX
where n is the number of GPUs and X is the empirical throughput of one GPU.

In their mixed-precision training experiments with models ranging from 2 to 70 bil-
lion parameters, the authors consistently achieved approximately 45% of the peak the-
oretical throughput of the A100 GPU, i.e. X = 140 TFLOP/s out of the peak 312
TFLOP/s.

We have computed training time estimates, reported in days, for a model with 1
billion parameters trained on our whole corpus, varying the number of available GPUs.
The results are summarized in Table 6.1.

tokens # parameters # A100 # days

4 28
167 1 8 14
16 7

Table 6.1. Training time estimates. Number of tokens and parameters reported is in bil-
lions.

However, it is important to bear in mind that these are merely rough estimates of
the actual training time.

I 6.2 Data Quantity, Quality and Model Performance

When training language models on large amounts of textual data, it is important to
consider how the performance of these models scales with the increased model size
and training data. Simultaneously, the two variables are also connected to the cost of
compute necessary for training.

The term “scaling laws” refers to the relationships that allow researchers to identify
the compute-optimal regime for training models that are both performant and sample
efficient. This means that training can be stopped before reaching convergence, with-
out significantly affecting the model’s performance. However, scaling laws are only
empirical observations which are not supported by standard machine learning theory.

Kaplan scaling laws [58] were an important milestone when assessing the impact of
model size, training dataset size and computational cost on Transformer models. They
found that performance, in terms of loss, increases when both model and dataset size
are increased, with diminishing returns on model performance when one of them is
increased while the other is fixed.

Altogether, they determined that for a given amount of compute C, the number of
parameters P and dataset size D should be scaled as:

P 00.73
D o 0027

Therefore, for a compute-optimal model, a 10x increase in computational budget
should correspond to a 5.37x increase in model parameters and a 1.86x increase in

36

training tokens. This knowledge was used when training GPT-3 [4], a 175 billion
parameters model trained on 300 billion tokens — approximately 1.7 tokens per model
parameter.

Chinchilla scaling laws [59], released 2 years later, argued that the LLMs released at
the time, including GPT-3, were severely undertrained.

Their experiments differed from Kaplan et als in two key aspects. First, they did not
use a fixed number of training tokens and learning rate schedule for all models — they set
the training schedule to approximately match the number of training tokens. Second,
the majority of their experiments used models with more than 500 million parameters,
with certain models having up to 16 billion parameters, while their predecessors mostly
used models with less than 100 million parameters.

When answering the question of what is the compute-optimal trade-off between num-
ber of parameters and number of training tokens, they used three different approaches.
All approaches relied on training models with a varying parameter count and dataset
size, using their training curves to fit an estimator of how the models should scale. They
conclude that despite their differences, all approaches suggest that for an increased com-
putational budget C, both model parameters P and training dataset size D should be
scaled equally:

P x 00.5
D x C9%5

In other words, a tenfold increase in computational budget should correspond to
a 3.16x increase in model parameters and a 3.16x increase in training tokens. The
authors supported their scaling laws by training Chinchilla, a 70 billion parameter
model trained on 1.4 trillion tokens — 20 tokens per parameter — which outperformed
significantly larger models, including GPT-3, on several evaluation tasks.

To this day, the general validity of the previously presented scaling laws is uncertain.
For example, in the recently released Llama 3 [60] family of models, the 8 billion
parameter model has been trained on 15 trillion tokens, which is approximately 75x
more than suggested by Chinchilla scaling laws. Despite that, the model did not seem
to converge. This fact hints that the currently available are severely undertrained and
that the compute-optimal training regime which scaling laws propose can be overcome
by smaller language models that are both performant and efficient during inference.

In TinyStories [61], the authors train small language models with sizes from 1 to
33 million parameters on a high-quality synthetic dataset of short stories for children.
Despite their small size, the models achieve to generate diverse and consistent stories
in coherent English, demonstrating emerging reasoning capabilities.

The work on TinyStories inspired another approach which focuses on quality, instead
of quantity, of data. The Phi family of models [62-65] shows that even smaller models
can match the performance of larger models, as long as they are trained on “textbook
quality” data. The authors obtain such data by leveraging existing LLMs to filter
internet content and create synthetic data. In this manner, they trained their latest 3.8
billion parameter model, phi-3-mini [65], on 3.3 trillion high-quality tokens, achieving
comparable model performance to substantially larger models, such as Mixtral 8x7B [66]
or GPT-3.5 Turbo (which is rumoured to have ~20 billion parameters).

37

B 6.3 czech Models

In order to evaluate our corpus, we utilized it to train two Czech models of different
sizes. As shown in Section 6.1, training a Transformer model with more than a billion
parameters on our whole corpus requires multiple powerful (and expensive) GPUs, such
as the NVIDIA A100, and multiple days of compute. For this reason, we have decided
to train two significantly smaller models with only 70 and 160 million parameters.

The Pythia Scaling Suite [67] is a collection of English models designed for inter-
pretability, available in different sizes and all trained on The Pile [47] dataset. At-
tempting to transfer some of the knowledge present in the pretrained Pythia models,
we decided against training from scratch. Instead, we fine-tuned pythia-70m-deduped!
and pythia-160m-deduped?, two models trained on the deduplicated version of The
Pile.

Furthermore, partially replicating the training data quality approach used in Phi [62],
we trained our models only on a selection of data sources, which were deemed of high
quality while being small in size, as compared to the rest:

m MLP Books

m iDnes

m Wikipedia

m Czech Sociological Review
m Patents

m Plenary Speeches

After shuffling the examples from the selected data sources, we employ the BPE
tokenizer trained on Czech Wikipedia and first utilized in Section 5.3 to tokenize the
selected data sources into more than 2 billion training tokens and 204,800 test tokens.

We trained the two models on the CIIRC cluster?® using 3 and 6 NVIDIA V100 GPUs
for the 70 million and 160 million models, respectively. Training configuration details
are available in Appendix A.

After training, we evaluate the perplexity of the two models on the test set. We
also evaluate their checkpoints, saved once every 25% of training steps. The results
are summarized in Table 6.2. As we can see, the test set perplexity of both models
gradually decreases during training, achieving a reasonable perplexity. Furthermore,
the larger model achieves a better result, as expected.

We have also generated some text examples using the 160 million parameter model,
which can be found in Appendix B.

B 6.4 English-Czech Models

We also trained two bilingual models capable of generating both English and Czech
text. To achieve this, we followed the steps outlined in [68], where the authors present a
method to extend the capabilities of a pretrained model to a new language. Specifically,
we used the 70 and 160 million parameter variants of the Pythia models and adapted
them to Czech.

The first step is to adapt the tokenizer to efficiently encode both languages. As
previously mentioned, the BPE tokenizer used in Pythia has a vocabulary of 50,304

! https://huggingface.co/EleutherAl/pythia-70m-deduped
2 https://huggingface.co/EleutherAl/pythia-160m-deduped
3 https://cluster.ciirc.cvut.cz

38

https://huggingface.co/EleutherAI/pythia-70m-deduped
https://huggingface.co/EleutherAI/pythia-160m-deduped
https://cluster.ciirc.cvut.cz

Model Checkpoint Perplexity
25% 53.61
50% 38.51
Czech Model 70M 75% 34.1
100% 31.85
25% 59.42
50% 35.46
Czech Model 160M 75% 28.85
100% 26.09

Table 6.2. Test set perplexities of the Czech models. All numbers reported are rounded to
two decimal places.

tokens. However, as it is trained for English, using it to tokenize Czech text creates sig-
nificantly more tokens compared to an English corpus. This fact has direct implications
for training and inference, making them take longer and requiring more computational
resources. Additionally, using a suboptimal tokenizer negatively impacts model perfor-
mance [69].

Therefore, we train a new BPE tokenizer with a vocabulary size of 5,000 — approx-
imately 10% of the original, which the authors find to be an ideal compromise among
various tested proportions. As before, we train the new tokenizer on Czech text from
the Wikipedia data source. Then, we merge the original English-only tokenizer with
the newly created Czech-only tokenizer by replacing the least common English tokens
with the Czech ones. There are 1,938 overlapping tokens between the two tokenizers,
which are left unchanged. We found that when tokenizing text in both English and
Czech, the tokenizer split, on average, one word into 2.39 tokens.

We also reinitialize the weights of the model’s input embeddings at the positions of
the replaced tokens using torch.nn.init.trunc_normal_, with standard deviation
set to 0.02.

Neural networks trained sequentially on a new domain tend to lose their knowledge of
their old domain [70]. This phenomenon naturally also applies to pretrained language
models which, when trained on a new language, lose their ability to generate coherent
text in the original language. To prevent this, we mix our Czech dataset from the
previous section with English data from the deduplicated version of The Pile, which is
the same dataset as Pythia was originally trained on.

Experiments with mixtures containing 25% and 50% of the original language
data show that as long as some original language data is included, the adaptation
process remains effective and is not highly sensitive to the exact proportion of the
mixture [68]. Therefore, we chose to include over 300,000 words from the English
dataset, which correspond to 25% of the Czech dataset with more than 1.3 billion words.

Similarly as for the Czech models, we shuffle the examples of our bilingual dataset
and use our English-Czech tokenizer to create a training split with almost 4 billion
tokens and a test split with 204,800 tokens.

As in the previous section, we trained the two models on the CIIRC cluster using
NVIDIA V100 GPUs. Training configuration details are available in Appendix A.

We evaluate the perplexity of the two models on the test set as in the previous
section. The results are summarized in Table 6.3. Similar to the Czech models from

39

the previous section, the test set perplexity of both models gradually decreases during
training, with the larger model achieving better results. Overall, the perplexities reach
very low values. It is important to note that the results are skewed towards the model’s
performance in Czech, since English content forms only 25% of our dataset.

Model Checkpoint Perplexity

25% 15.18
50% 13.57

English-Czech Model 70M 75% 12.68
100% 12.28
25% 11.68
50% 9.8

English-Czech Model 160M 5% 9.17
100% 8.8

Table 6.3. Test set perplexities of the English-Czech models. All numbers reported are
rounded to two decimal places.

As in the previous section, the text generation examples of the 160 million parameter

model can be found in Appendix B.

40

Chapter 7
Conclusion

In this thesis, we have developed the largest Czech corpus for training large language
models to date, consisting of 167 billion tokens. This corpus is composed of a variety
of data sources, representing diverse writing styles ranging from webpages and news
articles to academic papers and literary works. Such diversity ensures that the corpus
captures all the linguistic nuances of the Czech language.

To ensure the quality of our corpus, the data was cleaned to remove any noise and
irrelevant content, filtered to retain only the most relevant and high-quality text and
deduplicated to eliminate redundancy. These steps were crucial in creating a robust
dataset suitable for training state-of-the-art language models.

To demonstrate the capabilities of our corpus and to evaluate its effectiveness, we
trained several language models on a subset of the data. The performance and text
generation ability of these models highlight the potential of our corpus to serve as a
robust base for training a Czech foundational large language model.

Future steps may involve extending our corpus with new data sources, including
updating internet-based sources with fresh content. Additionally, more sophisticated
cleaning and filtering procedures, such as those based on language models themselves,
could be utilized to refine the corpus further. Moreover, the corpus could be enriched
by incorporating synthetically generated data created by an existing LLM.

41

References

[1] Daniel Jurafsky, and James H. Martin. Speech and Language Processing (3rd Edi-
tion Draft).

[2] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, and others.
Improving language understanding by generative pre-training. 2018,

[3] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language Models are Unsupervised Multitask Learners. 2019,

[4] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language Models are Few-Shot Learners. 2020.

[5] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez,
Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran,
Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin,
Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, San-
jay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra,
Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeon-
taek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shiv-
ani Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana
Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr
Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz,
Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck,
Jeff Dean, Slav Petrov, and Noah Fiedel. PaLM: Scaling Language Modeling with
Pathways. 2022.

[6] Gustav Sir. SMU: Lecture 7 — Natural Language Processing 1. 2023.
https: / / drive . google . com / file / d / 1EXwaraCccUibzDv3YHmiYTL6aNBF-
JsQ/view.

[7] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hel-
laSwag: Can a Machine Really Finish Your Sentence? 2019.

[8] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric
Tang, Dawn Song, and Jacob Steinhardt. Measuring Mathematical Problem Solving
With the MATH Dataset. 2021.

[9] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn
Song, and Jacob Steinhardt. Measuring Massive Multitask Language Understand-
ing. 2021.

42

https://drive.google.com/file/d/1EXwaraCccUibzDv3YHmiYTL6aNBF-JsQ/view
https://drive.google.com/file/d/1EXwaraCccUibzDv3YHmiYTL6aNBF-JsQ/view

[10] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
OliveiraPinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy
Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin,
Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Fvaluating Large Language Models Trained on Code. 2021.

[11] Hugging Face. Summary of the tokenizers. ..
https://huggingface.co/docs/transformers/tokenizer_summary.

[12] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural Machine Translation
of Rare Words with Subword Units. In: Katrin Erk, and Noah A. Smith, eds. Pro-
ceedings of the 54th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers). Berlin, Germany: Association for Computational
Linguistics, 2016. 1715-1725.
https://aclanthology.org/P16-1162.

[13] Philip Gage. A new algorithm for data compression. The C Users Journal archive.
1994, 12 23-38.

[14] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, ukasz Kaiser, and Illia Polosukhin. Attention is All you
Need. In: 1. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S.
Vishwanathan, and R. Garnett, eds. Advances in Neural Information Processing
Systems. Curran Associates, Inc., 2017.
https: / / proceedings . neurips . cc / paper_files / paper / 2017 / file /
3f5ee243547dee91fbd053c1c4aB845aa—Paper.pdf.

[15] Jeffrey L. Elman. Finding structure in time. Cognitive Science. 1990, 14 (2), 179-
211. DOI https://doi.org/10.1016/0364-0213(90)90002-E.

[16] Sepp Hochreiter, and Jirgen Schmidhuber. Long Short-Term Memory. Neural
Computation. 1997, 9 (8), 1735-1780. DOI 10.1162/neco0.1997.9.8.1735.

[17] Tomas Mikolov, Martin Karafidt, Lukas Burget, Jan Cernocky, and Sanjeev Khu-
danpur. Recurrent neural network based language model. In: Proceedings of the
11th Annual Conference of the International Speech Communication Association
(INTERSPEECH 2010). International Speech Communication Association, 2010.
1045-1048. ISBN 978-1-61782-123-3.
https://www.fit.vut.cz/research/publication/9362.

[18] Christopher Olah. Understanding LSTM Networks. 2015.
https://colah.github.io/posts/20156-08-Understanding-LSTMs/.

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-
training of Deep Bidirectional Transformers for Language Understanding. 2019.

[20] . JSON Lines Documentation. ..
https://jsonlines.org.

43

https://huggingface.co/docs/transformers/tokenizer_summary
https://aclanthology.org/P16-1162
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://dx.doi.org/https://doi.org/10.1016/0364-0213(90)90002-E
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://www.fit.vut.cz/research/publication/9362
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://jsonlines.org

[21] . JSON Documentation. ..
https://www.json.org/json-en.html.

[22] Yann Collet, and Murray Kucherawy. Zstandard Compression and the ’applica-
tion/zstd’ Media Type. RFC 8878. Request for Comments. 2021.
https://www.rfc-editor.org/info/rfc8878.

[23] . Zstandard Documentation. ..
https://facebook.github.io/zstd/.

[24] . Apache Spark Webpage. ..
https://spark.apache.org.

[25] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and
Ton Stoica. Spark: cluster computing with working sets. In: Proceedings of the
2nd USENIX Conference on Hot Topics in Cloud Computing. USA: USENIX
Association, 2010. 10.

[26] Mikko Aulamo, Nikolay Bogoychev, Shaoxiong Ji, Graeme Nail, Gema Ramirez-
Sanchez, Jorg Tiedemann, Jelmer van der Linde, and Jaume Zaragoza. HPLT: High
Performance Language Technologies. In: Proceedings of the 24th Annual Conference
of the European Association for Machine Translation. Tampere, Finland: European
Association for Machine Translation, 2023. 517-518.
https://aclanthology.org/2023.eamt-1.61.

[27] Marta Bafién, Jaume Zaragoza-Bernabeu, Gema Ramirez-Sanchez, and Sergio
Ortiz-Rojas. FastSpell: the Langld Magic Spell. 2024.

[28] Ona de Gibert, Graeme Nail, Nikolay Arefyev, Marta Banén, Jelmer vander Linde,
Shaoxiong Ji, Jaume Zaragoza-Bernabeu, Mikko Aulamo, Gema Ramirez-Sanchez,
Andrey Kutuzov, Sampo Pyysalo, Stephan Oepen, and Jorg Tiedemann. A New
Massive Multilingual Dataset for High-Performance Language Technologies. 2024.

[29] Thuat Nguyen, Chien Van Nguyen, Viet Dac Lai, Hieu Man, Nghia Trung Ngo,
Franck Dernoncourt, Ryan A. Rossi, and Thien Huu Nguyen. CulturaX: A Cleaned,

Enormous, and Multilingual Dataset for Large Language Models in 167 Languages.
2023.

[30] Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya
Siddhant, Aditya Barua, and Colin Raffel. mT5: A massively multilingual pre-
trained text-to-text transformer. 2021.

[31] Pedro Javier Ortiz Suarez, Benoit Sagot, and Laurent Romary. Asynchronous
pipelines for processing huge corpora on medium to low resource infrastructures.
In: Piotr Banski, Adrien Barbaresi, Hanno Biber, Evelyn Breiteneder, Simon
Clematide, Marc Kupietz, Harald Lungen, and Caroline Iliadi, eds. Mannheim:
Leibniz-Institut fur Deutsche Sprache, 2019. 9 — 16.
http://nbn-resolving.de/urn:nbn:de:bsz:mh39-90215.

[32] Pedro Javier Ortiz Suarez, Laurent Romary, and Benoit Sagot. A Monolingual Ap-
proach to Contertualized Word Embeddings for Mid-Resource Languages. In: Pro-
ceedings of the 58th Annual Meeting of the Association for Computational Linguis-
tics. Online: Association for Computational Linguistics, 2020. 1703-1714.
https://www.aclweb.org/anthology/2020.acl-main. 156.

[33] Julien Abadji, Pedro Ortiz Suarez, Laurent Romary, and Benoit Sagot. Towards
a Cleaner Document-Oriented Multilingual Crawled Corpus. arXiv e-prints. 2022,
arXiv:2201.06642.

44

https://www.json.org/json-en.html
https://www.rfc-editor.org/info/rfc8878
https://facebook.github.io/zstd/
https://spark.apache.org
https://aclanthology.org/2023.eamt-1.61
http://nbn-resolving.de/urn:nbn:de:bsz:mh39-90215
https://www.aclweb.org/anthology/2020.acl-main.156

[34] Jan A. Botha, Emily Pitler, Ji Ma, Anton Bakalov, Alex Salcianu, David Weiss,
Ryan McDonald, and Slav Petrov. Natural Language Processing with Small Feed-
Forward Networks. In: Martha Palmer, Rebecca Hwa, and Sebastian Riedel, eds.
Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing. Copenhagen, Denmark: Association for Computational Linguistics,
2017. 2879-2885.
https://aclanthology.org/D17-1309.

[35] Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Armand Joulin, and Tomas
Mikolov. Learning Word Vectors for 157 Languages. In: Nicoletta Calzolari, Khalid
Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Koiti Hasida, Hitoshi
Isahara, Bente Maegaard, Joseph Mariani, H

lene Mazo, Asuncion Moreno, Jan Odijk, Stelios Piperidis, and Takenobu Toku-
naga, eds. Proceedings of the Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018). Miyazaki, Japan: European Language Re-
sources Association (ELRA), 2018.

https://aclanthology.org/L18-1550.

[36] Julia Kreutzer, Isaac Caswell, Lisa Wang, Ahsan Wahab, Daan van Esch,
Nasanbayar Ulzii-Orshikh, Allahsera Tapo, Nishant Subramani, Artem Sokolov,
Claytone Sikasote, Monang Setyawan, Supheakmungkol Sarin, Sokhar Samb,
Benoit Sagot, Clara Rivera, Annette Rios, Isabel Papadimitriou, Salomey Osei,
Pedro Ortiz Suarez, Iroro Orife, Kelechi Ogueji, Andre Niyongabo Rubungo, Toan
Q. Nguyen, Mathias Miiller, André Miiller, Shamsuddeen Hassan Muhammad,
Nanda Muhammad, Ayanda Mnyakeni, Jamshidbek Mirzakhalov, Tapiwanashe
Matangira, Colin Leong, Nze Lawson, Sneha Kudugunta, Yacine Jernite, Mathias
Jenny, Orhan Firat, Bonaventure F. P. Dossou, Sakhile Dlamini, Nisansa de
Silva, Sakine Cabuk Balli, Stella Biderman, Alessia Battisti, Ahmed Baruwa,
Ankur Bapna, Pallavi Baljekar, Israel Abebe Azime, Ayodele Awokoya, Duygu
Ataman, Orevaoghene Ahia, Oghenefego Ahia, Sweta Agrawal, and Mofetoluwa
Adeyemi. Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets.
Transactions of the Association for Computational Linguistics. 2022, 10 50-72.
DOI 10.1162/tacl_a_00447.

[37] Hugo Laurengon, Lucile Saulnier, Thomas Wang, Christopher Akiki, Albert
Villanova del Moral, Teven Le Scao, Leandro Von Werra, Chenghao Mou,
Eduardo Gonzilez Ponferrada, Huu Nguyen, Jorg Frohberg, Mario Sasko,
Quentin Lhoest, Angelina McMillan-Major, Gerard Dupont, Stella Biderman,
Anna Rogers, Loubna Ben allal, Francesco De Toni, Giada Pistilli, Olivier
Nguyen, Somaieh Nikpoor, Maraim Masoud, Pierre Colombo, Javier dela Rosa,
Paulo Villegas, Tristan Thrush, Shayne Longpre, Sebastian Nagel, Leon Weber,
Manuel Munoz, Jian Zhu, Daniel Van Strien, Zaid Alyafeai, Khalid Almubarak,
Minh Chien Vu, Itziar Gonzalez-Dios, Aitor Soroa, Kyle Lo, Manan Dey, Pedro
Ortiz Suarez, Aaron Gokaslan, Shamik Bose, David Adelani, Long Phan, Hieu
Tran, Ian Yu, Suhas Pai, Jenny Chim, Violette Lepercq, Suzana Ilic, Margaret
Mitchell, Sasha Alexandra Luccioni, and Yacine Jernite. The BigScience ROOTS
Corpus: A 1.6TB Composite Multilingual Dataset. 2023.

[38] Kenneth Heafield. KenLM: Faster and Smaller Language Model Queries. In: Pro-
ceedings of the Sizth Workshop on Statistical Machine Translation. Edinburgh,
Scotland: Association for Computational Linguistics, 2011. 187-197.
https://www.aclweb.org/anthology/W11-2123.

45

https://aclanthology.org/D17-1309
https://aclanthology.org/L18-1550
http://dx.doi.org/10.1162/tacl_a_00447
https://www.aclweb.org/anthology/W11-2123

[39] Frederik Michel Dekking, Cornelis Kraaikamp, Hendrik Paul Lopuhaé, and Ludolf
Erwin Meester. A Modern Introduction to Probability and Statistics. ISBN 978-1-
85233-896-1.

[40] Adrien Barbaresi. Trafilatura: A Web Scraping Library and Command-Line Tool
for Text Discovery and Extraction. In: Proceedings of the Joint Conference of
the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing: System
Demonstrations. Association for Computational Linguistics, 2021. 122-131.
https://aclanthology.org/2021.acl-demo.15.

[41] Giusepppe Attardi. WikiExtractor.
https://github.com/attardi/wikiextractor. 2015.

[42] Radim Hladik. Czech Sociological Review 1993-2016. 2018.
http://hdl.handle.net/11372/LRT-2703. LINDAT/CLARIAH-CZ digital li-
brary at the Institute of Formal and Applied Linguistics (

FAL), Faculty of Mathematics and Physics, Charles University.

[43] . Czech Sociological Review Website. ..
https://sreview.soc.cas.cz.

[44] Michal Kren, Vaclav Cvrcek, Jan Henys, Milena Hnatkova, Tomas Jelinek, Jan
Kocek, Dominika Kovarikova, Jan Krivan, Jiri Milicka, Vladimir Petkevic, Pavel
Prochazka, Hana Skoumalova, Jana Sindlerova, and Michal Skrabal. SYN v9: large
corpus of written Czech. 2021.
http://hdl.handle.net/11234/1-4635. LINDAT/CLARIAH-CZ digital library
at the Institute of Formal and Applied Linguistics (UFAL), Faculty of Mathematics
and Physics, Charles University.

[45] Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck,
Chris Callison-Burch, and Nicholas Carlini. Deduplicating Training Data Makes
Language Models Better. In: Smaranda Muresan, Preslav Nakov, and Aline Villav-
icencio, eds. Proceedings of the 60th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers). Dublin, Ireland: Association for
Computational Linguistics, 2022. 8424-8445.
https://aclanthology.org/2022.acl-long.577.

[46] Danny Hernandez, Tom B. Brown, Tom Conerly, Nova Dassarma, Dawn Drain,
Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Tom Henighan, Tristan
Hume, Scott Johnston, Benjamin Mann, Christopher Olah, Catherine Olsson,
Dario Amodei, Nicholas Joseph, Jared Kaplan, and Sam McCandlish. Scaling
Laws and Interpretability of Learning from Repeated Data. ArXiv. 2022,
abs/2205.10487

[47] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles
Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser,
and Connor Leahy. The Pile: An 800GB Dataset of Diverse Text for Language
Modeling. arXiv preprint arXiv:2101.00027. 2020,

[48] Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur,
Patrick von Platen, Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Sasko, Gunjan Chhablani, Bhavitvya Malik,
Simon Brandeis, Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas Patry, An-
gelina McMillan-Major, Philipp Schmid, Sylvain Gugger, Clement Delangue, Theo
Matussiere, Lysandre Debut, Stas Bekman, Pierric Cistac, Thibault Goehringer,
Victor Mustar, Francois Lagunas, Alexander Rush, and Thomas Wolf. Datasets:

46

https://aclanthology.org/2021.acl-demo.15
https://github.com/attardi/wikiextractor
http://hdl.handle.net/11372/LRT-2703
https://sreview.soc.cas.cz
http://hdl.handle.net/11234/1-4635
https://aclanthology.org/2022.acl-long.577

A Community Library for Natural Language Processing. In: Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations. Online and Punta Cana, Dominican Republic: Association for
Computational Linguistics, 2021. 175-184.
https://aclanthology.org/2021.emnlp-demo.21.

[49] Robyn Speer. ftfy. Zenodo. 2019.
https://doi.org/10.5281/zenodo.2591652. Version 5.5.

[50] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The Curious
Case of Neural Text Degeneration. 2020.

[51] Chenghao Mou, Chris Ha, Kenneth Enevoldsen, and Peiyuan Liu. Chenghao-
Mou/text-dedup: Reference Snapshot. 2023.
https://doi.org/10.5281/zenodo.8364980.

[52] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of Massive
Datasets. 3 ed.. Cambridge University Press, 2020.

[53] A.Z. Broder. On the resemblance and containment of documents. In: Proceedings.
Compression and Complexity of SEQUENCES 1997 (Cat. No.97TB100171). 1997.
21-29.

[54] Chenghao Mou. Large-scale Near-deduplication Behind BigCode. 2023.
https://huggingface.co/blog/dedup.

[55] Tibor Kiss, and Jan Strunk. Unsupervised Multilingual Sentence Boundary Detec-
tion. Computational Linguistics. 2006, 32 485-525. DOI 10.1162/coli.2006.32.4.485.

[56] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite,
Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. HuggingFace’s Transformers: State-of-the-art
Natural Language Processing. 2020.

[57] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,
Mostofa Patwary, Vijay Anand Korthikanti, Dmitri Vainbrand, Prethvi
Kashinkunti, Julie Bernauer, Bryan Catanzaro, Amar Phanishayee, and Matei
Zaharia. Efficient Large-Scale Language Model Training on GPU Clusters Using
Megatron-LM. 2021.

[58] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling
Laws for Neural Language Models. 2020.

[59] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya,
Trevor Cai, Eliza Rutherford, Diego de LasCasas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland, Katie Millican,
George vanden Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen
Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre. Training
Compute-Optimal Large Language Models. 2022.

[60] Al@Meta. Llama 3 Model Card. 2024,

[61] Ronen Eldan, and Yuanzhi Li. TinyStories: How Small Can Language Models Be
and Still Speak Coherent English? 2023.

[62] Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del
Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa,

47

https://aclanthology.org/2021.emnlp-demo.21
https://doi.org/10.5281/zenodo.2591652
https://doi.org/10.5281/zenodo.8364980
https://huggingface.co/blog/dedup
http://dx.doi.org/10.1162/coli.2006.32.4.485

Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien
Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee, and Yuanzhi Li. Text-
books Are All You Need. 2023.

[63] Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar,
and Yin Tat Lee. Textbooks Are All You Need II: phi-1.5 technical report. 2023.

[64] Microsoft Research Blog. Phi-2: The surprising power of small language models.
2023.
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-
power—-of-small-language-models.

[65] Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed
Awadallah, Hany Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harki-
rat Behl, Alon Benhaim, Misha Bilenko, Johan Bjorck, Sébastien Bubeck, Mar-
tin Cai, Caio César Teodoro Mendes, Weizhu Chen, Vishrav Chaudhary, Parul
Chopra, Allie Del Giorno, Gustavo de Rosa, Matthew Dixon, Ronen Eldan, Dan
Iter, Amit Garg, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng
Hao, Russell J. Hewett, Jamie Huynh, Mojan Javaheripi, Xin Jin, Piero Kauff-
mann, Nikos Karampatziakis, Dongwoo Kim, Mahoud Khademi, Lev Kurilenko,
James R. Lee, Yin Tat Lee, Yuanzhi Li, Chen Liang, Weishung Liu, Eric Lin, Zeqi
Lin, Piyush Madan, Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick,
Barun Patra, Daniel Perez-Becker, Thomas Portet, Reid Pryzant, Heyang Qin,
Marko Radmilac, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli Saarikivi,
Amin Saied, Adil Salim, Michael Santacroce, Shital Shah, Ning Shang, Hiteshi
Sharma, Xia Song, Masahiro Tanaka, Xin Wang, Rachel Ward, Guanhua Wang,
Philipp Witte, Michael Wyatt, Can Xu, Jiahang Xu, Sonali Yadav, Fan Yang, Ziyi
Yang, Donghan Yu, Chengruidong Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna
Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, and Xiren Zhou. Phi-8 Technical
Report: A Highly Capable Language Model Locally on Your Phone. 2024.

[66] Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche
Savary, Chris Bamford, Devendra Singh Chaplot, Diego delas Casas, Emma Bou
Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample,
Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Sandeep
Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Théophile Gervet,
Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mixtral
of Experts. 2024.

[67] Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle
O’Brien, Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai
Prashanth, Edward Raff, Aviya Skowron, Lintang Sutawika, and Oskar vander
Wal. Pythia: A Suite for Analyzing Large Language Models Across Training and
Scaling. 2023.

[68] Zoltan Csaki, Pian Pawakapan, Urmish Thakker, and Qiantong Xu. Efficiently
Adapting Pretrained Language Models To New Languages. 2023.

[69] Phillip Rust, Jonas Pfeiffer, Ivan Vulic, Sebastian Ruder, and Iryna Gurevych. How
Good is Your Tokenizer? On the Monolingual Performance of Multilingual Lan-
guage Models. In: Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli, eds.
Proceedings of the 59th Annual Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference on Natural Language Process-
ing (Volume 1: Long Papers). Online: Association for Computational Linguistics,

48

https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models

2021. 3118-3135.
https://aclanthology.org/2021.acl-long.243.

[70] Michael McCloskey, and Neal J. Cohen. Catastrophic Interference in Connectionist
Networks: The Sequential Learning Problem. Psychology of Learning and Motiva-
tion. 1989.
https://www.sciencedirect.com/science/article/pii/S0079742108605368.

49

https://aclanthology.org/2021.acl-long.243
https://www.sciencedirect.com/science/article/pii/S0079742108605368

Appendix A
Training Configuration

The training configuration we employed differs for the two model sizes, 70 and 160
million parameters, that we used. However, it is independent of whether the model
is the Czech-only or English-Czech variant. We attempted to make the configuration
details as closely aligned as possible with the ones used in the original Pythia models.
The training configuration is summarized in Table A.1.

Model size
Configuration
70M 160M
context length 2,048 2,048
num__train__epochs 1 1
per_device train_batch_ size 4 2
gradient_ accumulation_ steps 16 32
save_strategy steps steps
save_steps 0.25 0.25
learning_ rate le-3 6e-4
Ir_scheduler_type constant constant
weight__decay 0.01 0.01
adam_betal 0.9 0.9
adam_ beta2 0.95 0.95

Table A.1. Training configuration of models.

51

Appendix B
Text Generation Examples

We have used the 160 million Czech and English-Czech models to generate some text
examples. The text was generated with the configuration described in Table B.2. The
prompts used for generation are highlighted in italics.

Configuration Value
max_ length 150
temperature 0.5

repetition_ penalty 1.6
do__sample True

Table B.2. Text generation configuration of models.

B B.1 czech Model 160M

m Jsem studentem a rdd bych, aby se mi dostalo dobrého vzdélani. A protoze jsem si
védom toho i svych znalosti v oboru pedagogiky nebo psychologie (smich), tak mohu
fici — ze mam na starosti vSechny oblasti vzdélavani pedagogickych pracovniki ve
skolstvi...

m Ve volném case rdd sportuji a mam radost, ze jsem se dostal do reprezentace. Ale to
je prece jen trochu jina kapitola nez mistrovstvi svéta v roce 2004,” ¥ika Stancl na
adresu svého svétfence: ,Vzdycky mé stve tenhle sport.”

B B2 English-czech Model 160M

m Once upon a time, there was a dog who liked eating snacks and was the first to eat.
The dog had been born in 1852, and he learned that his mother was an orphan when
he left for England. The dogs were bred by Charles Darwin as well as John Locke’s
son Thomas (1815-1910). They also breed the dogs that grew up with their parents’
dogs. The dogs are very rare in Europe because they have large breeds of dogs which
grow into them at least twice every year. They can be found in several countries
around the world including Japan, Australia, India, Russia, China, and Korea.

m Praha, hlavni mésto Ceska, je historické mésto. V roce 1792 byla v Praze postavena
zelezniéni stanice a na jejim misté vznikla také posta pro zamyslené cestujici (tzv.
,Predmeésti“). V letech 1868-1869 zde byly vybudovdny dvé samostatné budovy:
dnesniho Masarykova nadrazi s prilehlou naddrazni budovu se dvéma vypravnimi
kolejemi (,,Karlovarska“, KCT), kde jsou umistény i nové nastupistné do depozituru
byvalého vojenského velitelstvi.

52

	TITLE
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Language models
	N-grams
	Language Model Evaluation
	Tokenization
	Neural Language Models
	Recurrent Neural Network (RNN)
	Long Short-Term Memory (LSTM)
	Transformer

	Data Sources
	Data Format and Schema
	JSON Lines
	Zstandard Compression
	Data Schema

	Common Crawl
	Format
	Spark and the cc-pyspark Library
	Data Extract

	HPLT
	Data Extract

	CulturaX
	mC4
	OSCAR
	Cleaning Procedures
	Deduplication Procedures
	Data Extract

	MLP Books
	Data Extract

	iDnes
	Data Extract

	Wikipedia
	Data Extract

	Czech Sociological Review
	Data Extract

	Patents
	Data Extract

	Theses
	Data Extract

	SYN v9
	Data Extract

	Plenary Speeches
	Data Extract

	Data Processing Pipeline
	Data Cleaning and Filtering
	Our Setup

	Deduplication
	Exact Deduplication
	Near Deduplication
	Our Setup

	Corpus Statistics
	Detailed Statistics
	Data Processing Pipeline Impact
	Data Size

	Model Training
	Training Time Estimates
	Data Quantity, Quality and Model Performance
	Czech Models
	English-Czech Models

	Conclusion
	References
	Training Configuration
	Text Generation Examples
	Czech Model 160M
	English-Czech Model 160M

