Master Thesis

Czech
Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Science

Deep Learning for Relational Databases

Bc. Jakub Peleska

Supervisor: Ing. Gustav Sir, Ph.D.
Field of study: Open Informatics
Subfield: Data Science

May 2024

ii

S MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details

\

Student's name: PeleSka Jakub Personal ID number: 483727
Faculty / Institute: Faculty of Electrical Engineering

Department / Institute: Department of Computer Science

Study program: Open Informatics

Specialisation: Data Science

Master’s thesis details

Master’s thesis title in English:

Deep Learning for Relational Databases

Master’s thesis title in Czech:

Hluboké uceni pro relacni databaze

Guidelines:

Most machine learning algorithms target data in the form of numeric feature vectors or tensors, however, most of the
real-world data are stored in relational databases. These could be addressed with specialized Relational Learning [5]
algorithms which, however, do not scale well and lack most of the advantages of modern deep learning methods. Recently,
transformer-based models, such as TabNet [1], have gained a lot of attention for learning from tabular data [2], i.e. in the
format of a single table, where they are progressively narrowing the performance gap with established statistical methods
like XGBoost [6]. The target of this project is a principled relational generalization of these models into setting with a set
of interconnected tables, i.e. a relational database.

1) Study existing deep learning methods for tabular data [2].

2) Review prior art in relational learning [5] and its links to deep learning, such as Graph Neural Networks [4].

3) Explore possibilities for generalizing their principles to the relational database setting [3].

4) Propose integration of the resulting architecture with the existing deep tabular models.

5) Collect a significant amount of appropriate benchmark datasets.

6) Design a solid experimental workflow to test your proposed models across a variety of settings.

Bibliography / sources:

[1] Arik, S. O., & Pfister, T. (2021, May). Tabnet: Attentive interpretable tabular learning. In Proceedings of the AAAI
Conference on Artificial Intelligence (Vol. 35, No. 8, pp. 6679-6687).

[2] Borisov, Vadim, et al. "Deep neural networks and tabular data: A survey." IEEE Transactions on Neural Networks and
Learning Systems (2022).

[3] Cvitkovic, Milan. "Supervised learning on relational databases with graph neural networks." arXiv preprint
arXiv:2002.02046 (2020).

[4] Sourek, G., Zelezny, F., & KuZelka, O. (2021). Beyond graph neural networks with lifted relational neural networks.
Machine Learning, 110(7), 1695-1738.

[5] Getoor, Lise, and Ben Taskar, eds. Introduction to statistical relational learning. MIT press, 2007.

[6] Chen, Tiangi, and Carlos Guestrin. "Xgboost: A scalable tree boosting system.” Proceedings of the 22nd acm sigkdd
international conference on knowledge discovery and data mining. 2016.

CVUT-CZ-ZDP-2015.1 Page 1 from 2 © CVUT v Praze, Design: CVUT v Praze, VIC

4)

Name and workplace of master’s thesis supervisor:

Ing. Gustav Sir, Ph.D. Intelligent Data Analysis FEE

Name and workplace of second master’s thesis supervisor or consultant:

Date of master’s thesis assignment: 01.02.2024 Deadline for master's thesis submission: 24.05.2024

Assignment valid until: 21.09.2025

Ing. Gustav Sir, Ph.D. Head of department's signature prof. Mgr. Petr Pata, Ph.D.
k Supervisor's signature Dean'’s signature

[ll. Assignment receipt

The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZDP-2015.1 Page 2 from 2 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgements

Firstly, I would like to thank my su-
pervisor, Ing. Gustav Sir, Ph.D., for the
guidance and insightful suggestions dur-
ing the work on the thesis.

Next, I would like to thank Ing. Jan
Motl, Ph.D., for creating the CTU Prague
Relational Learning Repository, whose
help is greatly appreciated.

Last but not least, I sincerely thank
everybody that supports me.

The access to the computational infras-
tructure of the OP VVV funded project
CZ.02.1.01/0.0/0.0/16_019/0000765 “Re-
search Center for Informatics” 1is also
gratefully acknowledged.

Declaration

I declare that I have prepared the sub-
mitted thesis independently and that I have
provided all information sources used in ac-
cordance with the Methodical instructions
about ethical principles for writing academic
thesis and the Framework Rules for the Use
of Artificial Intelligence at CTU for Study
and Pedagogical Purposes in BSc and MSc
Studies.

In Prague 24. 5. 2024

Jakub Peleska

Prohlasuji, ze jsem predlozenou praci
vypracoval samostatné a uvedl veskeré pouzité
informacni zdroje v souladu s Metodickym
pokynem o dodrzovani etickych principa pii
pripraveé vysokoskolskych zdvérecnych praci
a Ramcovymi pravidly pouzivani umélé in-
teligence na CVUT pro studijni a pedagogické
ucely v Bc a NM studiu.

V Praze dne 24. 5. 2024

Jakub Peleska

Abstract

Relational Databases store the majority of
the world’s data. However, their use in deep
learning is greatly underutilized. This thesis
explores the integration of deep learning with
relational databases, leveraging the intricate
interconnections of the stored values.

Recent advancements in Al, particularly
in deep learning models like transformers
and CNNs, have revolutionized fields of natu-
ral language processing and computer vision
through their ability to process homogeneous
data. Nevertheless, relational database data
are inherently heterogeneous and structured,
posing challenges for traditional deep-learning
approaches.

This research addresses the obstacle of
data representation by viewing relational
databases as heterogeneous tabular graphs,
aligning with recent successes in graph neu-
ral networks. The proposed blueprint lays
down a foundation for deep learning on re-
lational databases. The neural architecture
space of the blueprint allows for the employ-
ment of existing tabular models and, impor-
tantly, the sequence processing transformers.
The presented Database Transformer high-
lights the strength of this framework by dis-
playing promising results that outperform ex-
isting state-of-the-art methods.

Keywords: deep learning, relational
databases, transformers, relational models,
graph neural networks, heterogeneous graphs,
tabular data

Supervisor: Ing. Gustav Sir, Ph.D.

vi

Abstrakt

Relacni databaze uchovavaji vétsinu svétovych
dat. Nicméné jejich potencidl v hlubokém
uceni je znacné nevyuzity. Tato diplomova
prace zkoumad integraci hlubokého uceni s re-
lacnimi databazemi, vyuzivajic komplikovana
vzajemna propojeni ulozenych hodnot.

Nedavné pokroky v Al, zejména v mode-
lech hlubokého uceni jako jsou transformery
a CNN,; revolucionalizovaly oblasti zpraco-
vani prirozeného jazyka a pocitacového vidéni
diky své schopnosti zpracovavat homogenni
data. Avsak data v relacnich databazich jsou
svou povahou heterogenni a strukturovand,
coz predstavuje vyzvy pro tradi¢ni pristupy
hlubokého uceni.

Vyzkum se zabyva prekazkou v reprezen-
taci dat tim, Ze pohlizi na rela¢ni databaze
jako na heterogenni tabularni grafy, ¢imz na-
vazuje na neddvné uspéchy v oblasti grafo-
vych neuronovych siti. Navrhovany blueprint
poskytuje zaklady pro hluboké uceni nad re-
la¢nimi databazemi. Obecnost navrhovaného
blueprintu umoznuje vyuziti stavajicich tabu-
larnich modeld a, co je dulezité, také inte-
gaci transformert silnych na zpracovani re-
tézct dat. Database Transformer vykazuje
vyborné vysledky, které prekonavaji soucasné
spickové metody a tim podtrhuje silu tohoto
frameworku.

Klicova slova: hluboké uceni, relacni
databaze, transformer, rela¢ni modely,
grafové neuronové sité, heterogenni grafy,
tabularni data

Preklad nazvu:
relacni databéaze

Hluboké uceni pro

Contents

1 Introduction
1.1 Motivation
1.2 Goals of the thesis

2 Foundation
2.1 Relational Databases
2.1.1 Relational Database Management
Systems

2.2.1 Training methods
2.2.2 Variable Types
2.2.3 Attention Mechanism
2.2.4 Message-Passing

3 Related fields of study

3.1 Learning from Tabular Data
3.1.1 Data Encoding Methods
3.1.2 Transfomer-based Models

3.2 Relational Learning
3.2.1 Statistical Relational Learning . . .
3.2.2 Propositionalization
3.2.3 Neuro-Symbolic Integration
3.2.4 Graph Neural Networks
3.2.5 Beyond Graph Neural Networks .

4 Deep Learning for Relational
Databases
4.1 Data Representation
4.1.1 Heterogeneous Tabular Graph
4.1.2 Schema Detection
4.1.3 Data Loading.
4.1.4 Graph Construction
4.1.5 Data Sampling
4.2 The Blueprint
4.2.1 Modules
4.3 Blueprint Classes
4.3.1 Embedders
4.3.2 Inner Dimensionality
4.3.3 Tabular Models
4.4 Database Transformer
4.5 Experimental Blueprint Instances . . .
4.5.1 Database Transformer Versions
4.5.2 SAGE GNN
4.5.3 SAINT

vii

A Glossary

4.5.4 Trompt
4.5.5 TabNet
4.5.6 TabTransformer

5 Experiments
5.1 Benchmark Datasets
5.1.1 Existing Benchmark Datasets. . ..
5.1.2 The CTU Prague Relational
Learning Repository
5.2 Hyperparameter Optimization
5.2.1 Distributed Computing
5.2.2 Tuning
5.2.3 Aggregation
5.3 Experiment Runs
531 Tasks. ...
5.3.2 Environment
5.3.3 Parametrization
5.3.4 Overall Results
5.3.5 Database Transformer Versions

6 Conclusion
6.1 Future Work
6.1.1 Blueprint instances
6.1.2 Enriching the RelBench Package .
6.1.3 Pre-training
6.1.4 Temporal Data
6.1.5 Attention encoding of SQL
statements
6.1.6 Real-world application

Bibliography

B Supplementary material

Chapter 1

Introduction

B 1.1 Motivation

In recent years, artificial intelligence (AI) has achieved significant milestones
across various domains, demonstrating remarkable progress in both theoreti-
cal advancements and practical applications. Notable successes include the
development of deep learning models, such as convolutional neural networks
(CNNs) and transformers, which have revolutionized computer vision and
natural language processing, respectively. Al-driven diagnostic tools have en-
hanced medical imaging, enabling exceptional accuracy in the early detection
of diseases like cancer. Autonomous systems, such as self-driving cars, have
improved safety and reliability, although challenges remain.

Amidst this evolving Al landscape, deep learning has emerged as a
transformative and innovative force pushing the limits of Al capabilities. Its
notable successes have primarily been driven by its immense ability to handle
homogeneous data — data in the form of numeric feature vectors or tensors,
such as images or text. This homogeneity allows for the application of uniform
processing and analysis techniques, leading to significant advancements in
the aforementioned fields, such as computer vision and natural language
processing.

Although homogeneous data have proven to be an effective form of input
for deep learning models, importantly due to the use of proven robust methods
of linear algebra and utilization of specialized hardware, the real-world data

1. Introduction

usually does not follow such form. This discontinuity between the AI model
data representation and the original form of data is frequently handled by
pre-processing routines. These pipelines, among others, use transformations,
filtering, and mapping techniques to match the demanded shape of the model’s
input tensor. As a result, part of the information hidden within the data’s
original structure is lost.

Relational databases have been, for decades, a golden standard for data
storage. Even today, with the rising NoSQL databases, the relational model
stays strong as an established solution for handling valuable knowledge
collected by universities, governments, healthcare institutions, and even
leading tech companies. Most of the world’s data is stored within these
relational databases managed by numerous RDBMSs systems. As such, the
majority of the world’s data is not homogeneous nor in the form of tensors.
This suggests a huge unleveraged potential as the relational heterogeneous
graph-like structure is mostly unutilized.

Traditionally, feature engineering has been a critical step in transitioning
from a relational database to a simpler, yet heterogeneous, tabular data format.
It involves manually selecting and transforming data from these databases
into a more straightforward form of a single table suitable for tabular machine
learning models — a task that is often time-consuming, requires domain
expertise, is prone to human bias, and fundamentally removes some of the
structural information from the original database.

Yet, a disproportional amount of methods work with a simplified represen-
tation, not capturing the full potential of the relational model. However, this
disproportionality can be accounted for by one major factor: the complexity
of the heterogeneous tabular graph data format that represents values stored
within the relational databases. This type of data comprises various data
types and relations, making it more complex and less amenable to traditional
deep-learning approaches. Recent breakthroughs in this area have started
addressing these complexities, opening new avenues for effectively leveraging
the rich and varied information in heterogeneous tabular graph data.

This approach aligns with the recent successes in the field of Graph Neural
Networks (GNNs). GNNs have shown remarkable ability in handling data
represented in graph structures, where nodes and edges can represent various
interconnected entities and relationships. By viewing relational databases
through this lens, it becomes possible to directly apply advanced deep learning
techniques, bypassing the labor-intensive process of feature engineering. This

2

1.2. Goals of the thesis

paradigm shift enables leveraging the inherent relational structure within
relational databases, aligning with the strengths of GNNs in processing
relational data.

. 1.2 Goals of the thesis

The primary objectives of this thesis are to advance the understanding and
capabilities of deep learning technologies on relational databases viewed as
heterogeneous tabular graph. Initially, the thesis will conduct a comprehensive
review of these related fields, examining current methodologies, recent ad-
vancements, and their applications in various domains. A key component of
this research involves the provision of public dataset benchmarks, which will
facilitate direct comparisons and enhancements in model training processes.

Furthermore, the thesis aims to develop a general model structure de-
signed for efficient learning from these | RDBs. This blueprint will integrate the
principles of tabular models, graph neural networks, and transformer archi-
tecture, enhancing their applicability and performance in handling complex
structured relational data.

Finally, the effectiveness of the developed models will be evaluated by
comparing their performance on provided dataset benchmarks against other
state-of-the-art solutions in the field. This testing will not only validate
the models’ effectiveness but also highlight areas for potential improvement,
setting a foundation for future research and development in deep learning on
relational databases.

Chapter 2

Foundation

Before discussing new ideas and solutions, it is necessary to understand the
premise of the thesis. To get started, let’s review the two topics mentioned
directly in the title - Relational Databases and Deep Learning.

. 2.1 Relational Databases

“A relational database is a type of database that organizes data into rows and
columns, which collectively form a table where the data points are related to
each other.ﬂ At its core lays the relational model that was first proposed
by Edgar F. Codd in “A Relational Model of Data for Large Shared Data
Banks”[1] that provides a unified way of data management independent of
the software specifics of a given system. The key part of this feature is to
view the data in the form of n-ary relations in the accepted mathematical
sense. For the purposes of further topics in this work, let’s define a couple of
concepts as described by Edgar F. Codd[ll 2]. Terms in the parentheses may
be used interchangeably with the associated main term.

® Relation (Table) - Given sets S, Sy, ..., S,, of values of n attributes,
an n-ary relation R/, is a subset of the Cartesian product S; x Syx ...
xS, _1 x S,. Relation R is usually presented as table T, with column
headings followed by rows of column values in a fixed order.

Thttps://www.ibm.com/topics/relational-databases

5

2. Foundation

® Attribute (Column) - Attributes A, = {A;, 4,,..., A,,} define the
terms of a relation R, corresponding to the columns of the respective
table T,. Each attribute is a pair of names and types, constraining
each attribute’s domain type(D;) C dom(A;). An attribute value a; is a
specific valid value from the respective attribute type A,.

® Tuple (Row) - An n—tuple ¢; in the relation R/, of attribute values

t; = (ay,as, ..., a,), where a; represents the value of the attribute A; in
R,
/n

® Integrity Constrains - The relational databases allow for connections
between the relations via primary and foreign key pairs. A primary
key PK of relation R, is a subset of its attributes A g, that uniquely
identifies each tuple in the relation R,; hence if t,[PK] = t;[PK] then
t; =t;. A foreign key FK r, Of relation R, referencing a relation R, is
a subset of attributes A R, Tepresenting a primary key of relation R,;
hence can be written as Vt; € R, 3t; € R, such t;,[FKy | = t,[PK].

Bl 2.1.1 Relational Database Management Systems

Relational databases are also often associated with other topics, such as
transactions (A.C.I.D. properties)[3], database normalization, and |SQL, but
these topics are rather connected to relational database management systems
(RDBMSs). RDBMS is specific software that provides users access control,
data retrieval, value validity, primary foreign key reference management, etc.
Nevertheless, it is essential to mention them. They are an important factor
that allowed the emergence and popularity of relational databases and all
modern RDBMSs.

B 212 soL

Structured Query Language| (SQL) is a standardized programming language
specifically designed for managing RDBMS| and manipulating the underlying
relational databases. Developed in the early 1970s by IBM researchers Donald
D. Chamberlin and Raymond F. Boyce, SQL played a crucial part in the
popularization of the RDBMSs. The functionalities provided by SQL can be
categorized into several types of operations - Data Query Language (DQL),
Data Definition Language (DDL), Data Manipulation Language (DML), and

6

2.2. Deep Learning

Data Control Language (DCL). For the purposes of this work, it is not
necessary to go into detail about the separate subparts of the SQL language.
However, it should be mentioned that SQL provides users with various data
types. A list of the most common ones is below.

® Boolean Types - BOOLEAN.
® Numeric Types - INTEGER, FLOAT, DECIMAL, etc.
® Character Types - CHAR, VARCHAR, TEXT, etc.

Date and Time Types - DATE, TIME, TIMESTAMP, etc.

. 2.2 Deep Learning

Deep learning (DL)[4] has experienced a steep rise over the last decade[5],
becoming one of the most dynamic areas within artificial intelligence. |DL/'s
origins trace back to the advent of artificial neural networks (NNs), and it
can be speculated that first NNs were essentially variants of linear regression
methods, putting the deep origins to the early 1800s[6]. Since the first
DNN5[7], a truly gargantuan amount of work was put into the field [6] but
only reasonably recent innovations in hardware[§] allowed for the advancement
of learning algorithms and an explosion in data availability that have propelled
deep learning from academic labs to the forefront of real-world applications,
radically transforming industries from healthcare to automotive[9][10][L1].

Deep neural networks, the fundamental building blocks of deep learn-
ing, are structured in layers, each composed of numerous interconnected
units. Non-linear mathematical functions known as activation functions (e.g.,
ReLU[12], GeLU[13]) are often used between the layers to determine the
output at each layer based on its input. Data flows through the network’s
layers in a forward pass, while errors are corrected during the backward pass
through a back-propagation. This involves calculating the gradient of the
loss function with respect to the network’s weights and, using techniques like
stochastic gradient descent [14] or, more recently, Adam [15], updating the
weights to minimize the error.

Deep learning encompasses a variety of model types, each suited to differ-
ent tasks. Convolutional Neural Networks (CNN&s) [16] are pivotal in image

7

2. Foundation

recognition and processing, whereas Recurrent Neural Networks (RNNs)[17]
excel in handling sequential data like speech. More recently, attention-based
models like Transformers[I§] have become prevalent in processing sequences,
particularly in natural language processing. This led to the development of
large language models (LLMs). These models, including GPT (Generative
Pre-trained Transformer)[19] and BERT (Bidirectional Encoder Representa-
tions from Transformers)[20], have revolutionized how machines understand
and generate human language. Capable of performing tasks ranging from
translation to content generation, |LLMs demonstrate capabilities that con-
tinue to expand the boundaries of artificial intelligence. Additionally, Graph
Neural Networks (GNNs)[21] have emerged to address data that is structured
specifically as graphs. These networks leverage the relationships and intercon-
nections between nodes in a graph, making them ideal for applications such
as social network analysis, molecule structure analysis, and recommendation
systems[22].

Among the deep learning topics discussed, only a select few are critically
relevant to the objectives of this work. Let us focus the discussion exclusively
on these essential aspects.

B 2.2.1 Training methods

There are many paradigms for leveraging data to train models, each with
distinct methodologies and applications. For this work, the two that stand out
are Supervised Learning and Self-Supervised Learning. Let’s briefly discuss
their values, differences, and situations where to use them.

Il Supervised learning

Supervised learning is a paradigm where the model is trained on a labeled
dataset. This dataset comprises input-output pairs, with each input data
point associated with a corresponding label or ground truth. The objective
is for the model to learn a mapping from inputs to outputs that generalizes
well to new, unseen data. Supervised learning tasks are typically divided into
classification and regression, where classification refers to assigning inputs to
discrete categories and regression to predicting continuous values.

Standard supervised learning is built upon the independently and iden-

8

2.2. Deep Learning

tically distributed (i.i.d.) samples assumption. Independently here means
that each sample is generated independently of the others. This implies that
one sample’s occurrence does not affect another’s occurrence. The identically
distributed suggest that all samples are drawn from the same probability
distribution. This allows the model to learn from a consistent pattern or
structure within the data and generalize well to new, unseen data from the
same distribution. For deep learning in supervised settings, the i.i.d. assump-
tion ensures that the model’s performance on the training set is a reliable
indicator of its performance on new data. Violations of this assumption can
lead to overfitting[23], where the model performs well on the training data
but poorly on unseen data because the training data is not representative of
the overall distribution.

B Self-Supervised learning

Self-supervised learning is an innovative paradigm where the model creates its
own labels from the data itself, thereby transforming an unsupervised problem
into a supervised one. The topic has gained prominence due to its ability to
leverage vast amounts of unlabeled data to pre-train models. The learned
representations can then be fine-tuned on smaller labeled datasets for specific
downstream tasks. This paradigm is particularly impactful in domains such
as natural language processing or even in deep tabular models|24][25].

B 2.2.2 Variable Types

As the scope of this work is towards relational databases, it is important to
understand different variable types that can reside within a database. Also,
to leverage the information value in the data, it is important to treat the
variables according to their type. One of the possible partitioning of the
variable types that will be used in this work is provided below. Importantly,
this partitioning should not be confused with the SQL types (Sec. 2.1.2).

® Categorical - refers to a feature that can not be quantifiable.

Nominal - variables that represent distinct labels without any
inherent order

Ordinal - represent categories with a meaningful order, such as

9

2. Foundation

education levels (high school, bachelor’s, master’s, PhD)
® Numeric - variables that are quantitative.

Discrete - variables that take upon specific values, often integers,
such as the number of children in a family.

Continuous - can take on any value within a range, like height or
temperature.

Cyeclical - can be discrete or continuous but with a cyclic range of
values. A typical example can be the days of the week.

#® Plain Text - consists of unstructured data in the form of strings, such
as comments or reviews, requiring specialized processing to uncover the
underlying information.

B 2.2.3 Attention Mechanism

Tables of the relational database can be viewed as sequences of attributes.
When the values of the attributes are transformed into the embedding space,
each row of the table can be seen as a sequence of embedding vectors of the
attributes. The attention mechanism, as introduced by Vaswani et al. [1§],
enables the model to focus on relevant parts of the input sequence, enhancing
the ability to capture dependencies and relationships between elements in a
flexible and dynamic manner.

Il Attention

The attention mechanism can be described as a following succession of opera-
tions. First, the input vectors are linearly projected into queries (Q), keys
(K), and values (V) using learnable weight matrices. This can be represented
as:

Q=XW? K=XWEV=XxWV (2.1)
where W&, WX and WV are query, key and value weights.

Attention scores are then calculated as scaled dot-product, where the
dot product of query and key is scaled by the dimension of the key matrix,

10

2.2. Deep Learning

followed by a softmax operation to obtain the attention weights:

T
Attention(Q, K, V) = softmaa:(c\?/df
k
where d;, is the dimension of the key vectors. The result is a weighted sum of
the values representing the attended information.

)1 (2.2)

Il Multi-Head Attention

Multi-head attention extends the basic attention mechanism by employing n
attention heads to jointly attend to information from different representation
spaces at different positions of the input sequence. The input X is projected
into n different query, key, and value spaces; this can be represented as:

Q= XWE K, = XWK V, = XW) (2.3)
where WiQ, WiK , Wiv are the weight matrices of the i-th head.

Each set of projections is used to compute scaled dot-product attention,
resulting in n different attention outputs

head; = Attention(Q,, K;, V) (2.4)

The outputs from all attention heads are concatenated and linearly trans-
formed to produce the final multi-head attention output

MultiHead(Q, K,V) = Concat(head,, ..., head,,)W © (2.5)

where W is the output projection matrix.

Il Self-Attention

Self-Attention refers to the situation when attention is applied to a single
sequence, enabling the model to consider the relationships between all elements
in the sequence. For an input sequence X with elements z,, ..., z,,, the self-
attention mechanism computes the attention weights for each pair of elements
within the sequence; the self-attention can be written as

Sel f Attention(X) = Attention(XWQ XWE XWV) (2.6)
or with the use of multi-head attention as

Sel f Attention(X) = MultiHead(X, X, X) (2.7)

11

2. Foundation

Il Cross-Attention

In contrast to self-attention, cross-attention involves two different sequences:
the source and target sequences. This mechanism is crucial for passing
information between two sequences and will be essential later in the work. In
cross-attention, the queries () are derived from the target sequence ¢, while
the keys K and values V come from the source sequence s:

CrossAttention(Q,, K, V,) = Attention(Q,We, K. WK V.WV) (2.8)
or with the use of multi-head attention as

CrossAttention(Q,, K,,V,) = MultiHead(Q,, K, V) (2.9)

B 2.2.4 Message-Passing

The relational databases contain not only the relations (tables) but also
references between the primary and foreign keys (Sec. [2.1)). These references
suggest a graph-like structure will be needed to leverage the deep learning
methods while keeping the connections established in the database.

GNNs can be used for deep learning on graphs with the use of the
message-passing scheme. This paradigm is an iterative process that involves
three primary phases: message creation, message aggregation, and node state
update. To employ the GNNs in the learning process, it is important to
understand this scheme.

Il Message Creation

In the message creation phase, each node sends messages to its neighboring
nodes. This phase can be represented as

m,, = MESSAGE®Y (h!™ n{™Y e,.) (2.10)

Y Y uv

where mgLU denotes the message sent from node u to node v at iteration t,

MESSAGE"Y is a function that creates the message based on the state of
the source node hgffl), the state of the target node th*”, and possibly the
edge features e,,,,.

12

2.2. Deep Learning
B Message Aggregation

The message aggregation processes each node’s messages received from its
neighbors to a single value. This can be mathematically represented as

m!) = AGGREGATEY ({m!,, : u € N(v)}) (2.11)

where mg,t) denotes the aggregated message for node v at iteration ¢ and
AGGREGATE"Y is a permutation-invariant function, such as sum, mean,
or max, which combines the messages received from the neighboring nodes
N (v).

Il Node State Update

Following the message aggregation, each node updates its state based on
the aggregated message and its previous state. The update phase can be
expressed as

W =UPDATEY (W™, mlt) (2.12)

where hi,“ is the updated state, th*” is the previous state and mgf) is

aggregated message of node v at iteration t.

These steps are repeated T times to allow for the propagation of the
messages through the network. The actual functions used for the message
creation, aggregation, and update differ between the types of and can
greatly influence the capabilities of the model.

13

14

Chapter 3

Related fields of study

As the name suggests, this chapter discusses topics related to deep learning for
relational databases. First and foremost, the chapter dives into the learning
methods for tabular data as the topic can be viewed as a simplified case of
the relational database with only a single relation (Sec. .

Further, the discussion will diverge towards the fields that can leverage
the information provided by the references between the data, creating a graph
or a network of some sort. These include fields such as Statistical Relational
Learning , Neuro-symbolic integration, and, importantly, Graph Neural
Networks) The gap between tabular data learning and relational
methods can be filled by a popular method called Propositionalization, which
will also be discussed.

. 3.1 Learning from Tabular Data

Tabular data refers to a structured format for organizing and presenting data
in tables, where information is arranged in rows and columns. In a table, each
row typically represents a different record or data point, while each column
represents a specific variable or feature of the data. Comparing this simple
definition with definitions for the relational databases from Section 2.1, it is
easy to see the connection between the two areas of study.

Methods that aim to use deep learning techniques on tabular data -

15

3. Related fields of study

Deep Learning for
Tabular Data

Data Encoding Methods

Single-Dimensional Encoding

Multi-Dimensional Encoding

Specialized Architectures

Hybrid Models

Fully differentiable

—— Partly differentiable

Transformer-based Models

Regularization Models

Figure 3.1: Unified taxonomy of deep neural network models for heterogeneous
tabular data. [26 Borisov et. al., 2022]

Tabular Neural Networks (TNN5s) - have shown some promising results in the
last years, but standard techniques like rule learning and gradient-boosted
decision trees[27] still dominate the analysis of tabular data [28][29]. Although
it is not entirely clear why deep learning was not yet as successful on tabular
data as it is on images[30], text[19] or even both at once, such as in multi-
modal models[31], some possible reasons might be data quality[32], the
difficulty of processing heterogeneous data[33] or disproportional importance
of features[34].

Nevertheless, the taxonomy provided by Borisov et al. [26], as depicted
in the Figure 3.1, offers a comprehensive view of the current approaches in
deep learning for tabular data and can help the reader to orient themself

16

3.1. Learning from Tabular Data

in the broad area of the tabular deep learning models. This is very useful
for the purposes of this work as it is essential to familiarize oneself with the
methods used on tabular data before extending the studied area to relational
databases.

Borisov et al. [26] divides the deep tabular models into three base cate-
gories that further branch into several subcategories. The next few sections
briefly discuss the most relevant areas from the taxonomy as described by
Borisov et al.

B 3.1.1 Data Encoding Methods

The methods in the Data Encoding group focus on transforming categorical
and numerical data to help deep neural network models extract information
more effectively; techniques of this group are helpful for pre-processing or
the initial layer of the DNNL These techniques can be divided into Single-
Dimensional encoding methods that transform each feature separately and
Multi-Dimensional encoding methods that map entire records to new repre-
sentations.

Single-dimensional encoding methods are relatively simple approaches. In
this group, there is, for example, Label Encoding, which maps each category
to a numeric value, which can introduce artificial order; One-Hot Encoding,
which adds a new binary column for each category, which can lead to high-
dimensional sparse matrices or Hash-Based Encoding that uses hash functions
to map categories to fixed-size values.

Multi-dimensional encoding methods are rather more sophisticated. To
mention a few, there is the VIME [35] method that uses a self-supervised (Sec.
4.5.5) approach to learn the encoding of the records via detection of the
corrupted cells. Other interesting encoding methods are SuperTML [36] and
IGTD [37] that encode the table rows into images that can be then processed
by |CNN.

B 3.1.2 Transfomer-based Models

The transformers[1§] play an essential role in modern sequence processing
models where the attention mechanism (Sec. 2.2.3) allows to focus on the

17

3. Related fields of study

relevant parts of the input sequence. Generally, the transformer-based models
can be split into two subcategories by the data that form a single record in
the dataset - Table-level models, utilizing a pre-trained transformer model
such as BERT[20] for processing a batch consisting of multiple tables, and
Row-level models that provide a transformer-based architecture suitable for
processing batches of rows usually from one large table.

Il Table-level transformers

The survey by Badaro et al. [38] provides an extensive overview of Table-level
transformers. These models use language transformers to create embeddings
of the table data without the need for knowledge about the variable types
inside. As such, they are commonly used on large corpora of small tables such
as WikiTables[39] where the training task is to predict the value of missing
cells. The differences between them are primarily in the level of structure
utilization. For example, the TABERT[40] and the TaPas[41] models linearize
the tables to create a long sequence of embedding vectors where positional
encodings artificially add the tabular structure. TABBIE[42] creates separate
embedding sequences for the rows and for the columns, each with its own
positional encodings to provide information about the order in the row and
the column. Column and row embeddings are then combined to form a single
embedding vector for each cell that theoretically has information about the
coordinates of the original cell. TUTAJ43] introduces a concept of tree-based
positional embeddings. These embeddings capture the cell’s position using a
bi-dimensional coordinate tree.

Il Row-level transformers

Although Table-level transformer model architectures are a promising topic
in the deep learning field, the Row-level transformer models are more closely
related to deep learning for relational databases as they focus on utilizing
the information about the variable types (Sec. 2.2.2) of the columns and,
as such, they are suitable for more complicated and precise tasks on larger
tables where the training batch consists of rows. For learning from relational
databases, these models can be instantiated for each relation in the database
to process information within. Some notable examples of models in this
category are TabNet[25] that uses custom modified transformer based archi-

18

3.2. Relational Learning

tecture, TabTransfomer[44] focusing on the categorical values utilizing the
original transformer encoder structure, SAINT[24] that introduces the Inter-
sample Attention operation and Excelfomer[45] that focuses on the numerical
attributes and leveraging pre-processing via CatBoost[46].

B 3.2 Relational Learning

As this thesis aims to provide a system that learns from relational databases, it
is certain that relational learning is a related field of study. Relational learning
is an area of machine learning that focuses on relational data, often
represented in the form of graphs. This field has gained significant attention
due to its ability to model complex relationships and interdependencies in
data. Graph Neural Networks (GNNs) are at the forefront of this approach[22],
but the field encompasses more subtopics that utilize relational data.

Bl 3.2.1 Statistical Relational Learning

Statistical Relational Learning (SRL)[47] is an area in machine learning
that is closely related to First-Order Logic (FOL)[48] and Inductive Logic
Programming (ILP)[49]. FOL provides a formal framework for representing
and reasoning about relationships between entities. ILP uses FOL to learn
interpretable models from structured data, representing knowledge as logical
rules. SRL builds on these foundations by incorporating probabilistic elements
into the logical framework, therefore enabling the modeling of uncertainty.
One of the techniques that can be listed as an SRL method is RDN-Boost[50],
which learns a series of function approximations using gradient boosting. The
major drawbacks of SRL are hidden within its strengths, as it typically does
not scale well due to foundations in FOL.

B 3.2.2 Propositionalization

Propositionalizatioﬂﬂﬂ is a process or data transformation technique used
to simplify complex relational data into a flat, propositional (tabular) format.

!Propositionalization can be viewed as a hyponym of feature engineering.

19

3. Related fields of study

This process involves converting data that might be stored in multiple related
tables (or other relational data) into a single table, where the goal is to make
the data compatible with the tabular data learning techniques mentioned
above. With this definition in mind, it is obvious that information is often
lost during this process, which is undesirable and can lead us to sub-optimal
models. That said, the propositionalization methods have dominated the
industry in processing the data from relational databases|52]. Combined
with gradient-boosted decision tree models such as XGBoost[27], they proved
useful in gathering valuable information contained within the databases.

l 3.2.3 Neuro-Symbolic Integration

An intriguing area at the intersection of relational representations and deep
learning principles is known as Neural-Symbolic Integration. A few neuro-
symbolic frameworks operate with subsets of First-Order Logic (FOL) repre-
sentations, such as Lifted Relational Networks[53], while integrating neural
network principles. These methods theoretically enable deep learning from
relational databases. However, similarly to SRL (Sec. |3.2.1), none of these
methods scale effectively to real-world database sizes due to the inherent
complexity of the FOL foundations, except for those that employ some form
of propositionalization (Sec. 3.2.2) scheme[54].

Il 3.2.4 Graph Neural Networks

Probably the closest field of study to deep learning for relational databases
is Graph Neural Networks[55]. GNNs extend traditional neural networks to
handle the complexities of graph data. Unlike datasets used in conventional
neural networks, which assume i.i.d. samples (Sec. [2.2.1), graph data
encapsulates relationships and interactions among data points. GNNs can be
used for deep learning on graphs with the use of the message-passing (Sec.
2.2.4)) scheme. This makes GNNs particularly effective for tasks where the
connections between entities are crucial for understanding the underlying
patterns.

Traditional GNNs assume a single type of node and a single type of
relationship between the nodes. This simple scenario is not enough to model
a relational database, but some extensions of GNNs come closer.

20

3.2. Relational Learning

Il Multi-relational GNN

Multi-relational GNNs[56] extend the concept of GNNs by incorporating
multiple types of edges. This allows the network to learn different kinds
of relationships in a graph and how they uniquely contribute to the overall
structure and function of the graph.

Il Heterogeneous GNN

Heterogeneous GNNs extend even further as they are designed to handle
heterogeneous graphs, which contain different types of nodes and edges. This
heterogeneity necessitates specialized handling due to the diversity in node
and edge attributes; hence a specialized message-passing (Sec. [2.2.4)) scheme
is needed with a unique M ESSAGE function for each edge type and possible
unique AGGREGATE and UPDATE functions for each node type.

Heterogeneous graphs allow one to model the high-level structure of
relational databases where each pair of primary and foreign keys can be
viewed as a unique edge type and tuples of different relations as having
different node types. Yet, the heterogeneous graphs do not express the
connections created between the attributes by the relation itself.

Il Hypergraph neural networks

On the other hand, hypergraphs generalize the concept of edges by allow-
ing edges to connect any number of nodes; these general edges are called
hyperedges. This capability enables hypergraphs to model more complex
relationships and higher-order interactions among data points. Hypergraph
Neural Networks[57] utilizes this generalization with extended message-passing
(Sec. [2.2.4)) scheme where M ESSAGE function is changed to operate on a
set of nodes rather than a simple pair.

The relations (tables) of the relational databases (Sec. [2.1) can each
be viewed as a single hyperedge connecting all attributes from the relation;
hence, the tuples can one relation be thought of as nodes of the same type
in this setting. Utilizing hyperedges will be important while modeling the
structure of the relational databases.

21

3. Related fields of study

l 3.2.5 Beyond Graph Neural Networks

There have been only very few works[58] in the past that focus on deep learning
directly on relational databases. Notable work of ATJ-Net[59] mentions the
idea of viewing relational databases as heterogeneous graphs, hence as an
extension to |[GNNE, and also pinpoints the information loss issue during the
propositionalization.

Fey et al. in Relational Deep Learning[60] present similar concepts
of message passing, schema detection, and data retrieval. Fey et al. also
propose an extension for the multi-relation hypergraph in the form of time
information for nodes and the hyperedges, hence creating a temporal multi-
relation hypergraph with an adequate message-passing scheme.

22

Chapter 4

Deep Learning for Relational Databases

In this chapter, I will venture into the field of tabular heterogeneous graphs.
Starting with the representation of relational databases as heterogeneous
hypergraphs (Sec. and how to transform them into a form viable for
deep learning methods. Further, I will discuss how to leverage the knowledge
gathered from and tabular models, merging the ideas from both fields
to enable deep learning from relational databases.

The result of these efforts is a proposal for a general blueprint model that
follows the Graph Neural Networks’s message-passing (Sec. paradigm.
Instances of the blueprint can encompass a wide range of possible models to
allow for the utilization of different architectures proposed for tabular data,
as well as the option to use various graph convolution layers. The blueprint,
together with additional utilities for the transformation of data from
(Sec. into graph datasets, forms a framework for learning from relational
databases. Utilities include schema autodetection, transformation into a
heterogeneous graph with provided schema, and storage and loading of the
generated graph as a dataset for reusability without needing a database
connection.

. 4.1 Data Representation

This work aims to provide a comprehensive end-to-end system for learning
from relational databases. To accommodate such goals, the system seeks to

23

4. Deep Learning for Relational Databases

work directly RDBMS| without the need to make any preprocessing steps
outside the system. With this in mind, it would be best to learn directly
from the raw data from the database. Although the relational databases
based on the relational model have a predefined structure, the structure does
not preserve the semantics of the columns necessary for the deep learning
methods.

B 4.1.1 Heterogeneous Tabular Graph

To keep the structure defined by the relational model and consider work
done in fields of (Graph Neural Networks (Sec. |3.2.4) and Tabular learning
models (Sec. [3.1), database data are represented as a two-level bi-directional
heterogeneous hypergraph.

As a first level, there are tables, defined as the relation R between the
values of attributes, forming n-ary tuples (Sec. 2.1). Each relation R, can be
viewed as hyperedge (Sec. 3.2.4) between all attributes from a single relation
R, due to the fact that the attributes are connected by being in the same
relation R;. Hence, a tuple ¢; from relation R; is an edge of hyperedge e;.
The graph will contain only k different hyperedges each for corresponding
relation R; where all tuples of relation R, have the same structure in the form
of attributes. The truth that each hyperedge is formed by attributes from a
single relation allows for simplification that a hyperedge can be represented
as a node type. This simplification is very important as it greatly reduces the
complexity of the graph data.

On the second level, there are the primary and foreign keys (Sec. 2.1)).
Each pair of referenced relation R, and referencing relation R,, where R,
with primary key PK and R, with foreign key FK(R;), form a set of edges
between the referenced and referencing n-ary tuples of appropriate relations.
Each such pair can be represented as an edge type with a predefined source
and target node type. It should be mentioned that each such edge type formed
by primary and foreign key pair is also considered in a reversed direction,
therefore making a bidirectional graph.

24

4.1. Data Representation

Table A
PK
Table B Table D
PK |Target FK(A) PK FK(A), |FK(A),
1 1! 1
Table C
PK FK(B) | FK(D)

Figure 4.1: Representation of a hypothetical tabular graph with four tables.
Table A can be viewed as the central table. Table B contains a target column and
has a foreign key referencing table A. Table C has two foreign keys referencing
tables B and D. Lastly, table D has two foreign keys, both referencing table A.

Bl 4.1.2 Schema Detection

The raw database values use SQL| data types, such as ‘text,” ‘varchar,” or
‘int’ (Sec. [2.1.2). To use these values inside the deep learning methods, it is
necessary to encode them in a suitable fashion that encapsulates the semantics
of the variable type (Sec. [2.2.2). For example, the ‘int’ SQL data type can be
a discrete numeric variable, an ordinal variable, or even a nominal variable.
Similarly, the ‘text’ or ‘varchar’ SQL data type can represent plain text, a
nominal variable, or also an ordinal variable in some cases.

Automatic schema detection is required to allow for a streamlined process
that does not depend on user input. The automatic detection procedure is
based on a series of straightforward rules and heuristics. To avoid overcom-
plicating this task, the procedure does not distinguish between ordinal and
nominal variables (Sec. [2.2.2)) but merely sees both as categorical variables.
Other variable types that the procedure detects are numerical type, text type,
and cyclic types, such as a date type and time type. On top of these types,

25

4. Deep Learning for Relational Databases

the procedure also copies the information about the primary and foreign keys
with an auxiliary heuristic, which decides whether the given key is used only
as a reference or if it is also a variable carrying additional information.

The output of the schema autodetection procedure is a JSON| file. JSON
is a format of choice for human readability[61] for structured data. This is
important as the user can edit the output schema if required. The reason
for such action might be a mistake in the original database model, missing
foreign key definitions, or some expert knowledge about the variable types
that the procedure could not catch.

Bl 4.1.3 DatalLoading

With the relational database structure described as a graph (Sec. 4.1.1) and
the data schema detected (Sec. |4.1.2)), one can start the processing pipeline.
At the beginning, there is the data loading. There are three options for how
to load the database data to a graph that will be used for learning weights
inside a [IDNNI that this work considers.

® Online - Using directly the database located on a cloud server and
transforming the data from the database to batches on the fly during the
training process (possibly caching the generated batches in memory).

® Local-online - Coping the database to a local machine and transforming
the data from the database to batches on the fly during the training
process (possibly caching the generated batches in memory).

® In memory - Fetching the data from the database, proceeding with all
necessary transformations, and storing the prepared graph on a local
machine. During training, the whole graph is stored in memory.

The ‘Online’ and ‘Local-online’ options are mostly suitable for immense
datasets that would not fit into the machine’s memory. Still, on modern
systems, the limitation for the size of the loaded dataset usually comes
from the |GPU memory. Moreover, the ‘Online’ and even the ‘Local-online’
alternatives are vastly slower than the third option as the transformations
have to be done beforehand, and communication time with the database
is also not negligible. For these reasons, most cases favor the ‘In memory’
option; nevertheless, the other options are present if necessary. Further focus
will be put mostly on the ‘In memory’ case.

26

4.1. Data Representation
B 4.1.4 Graph Construction

To allow deep learning on graph data, it is necessary to construct the graph in
a form that is compatible with such methods. The implementation leverages
PyTorch Geometric (PyG)[62] and PyTorch Frame (PyFrame)[63] libraries
to allow for future compatibility and ease of use as both libraries are built
upon PyTorch[64], a greatly popular deep learning library. The [PyG|library
provides a graph model with an implementation of the message-passing scheme
(Sec. 2.2.4)) necessary for the deep learning on graphs. The |PyFrame library
delivers a representation of tabular data.

Before creating a graph, it is important to encode non-numeric values
into a numeric representation according to the variable type given by the
schema (Sec. 4.1.2)). DateTime values to integer timestamp, categorical labels
to integer labels counted from zero, and notably text values can be encoded
with a pre-trained language model such as Sentence-BERT[65] into a single
embedding vector.

Having the data in numerical form, one can proceed with the graph
construction. Here, the columns of each table (skipping the primary and
foreign keys used only for referencing) are concatenated into separate Tensor-
Frame[63] forming an aforementioned hyperedge (Sec. 4.1.1). By joining the
inter-referencing table pairs, edge indexes are created. Edge indexes form two
arrays where on the same position in one array is an index of the referenced
row, and in the second is an index of the referencing row. These parts are
combined into HeteroData[62] to form the Heterogeneous Tabular Graph.

B 4.1.5 Data Sampling

The graph described in Section |4.1.1f and constructed in Section [4.1.4] can be
connected. Connectivity plays an important role in graph-related optimization
problems such as the Traveling Salesman Problem|[66]. In the case of applying
deep learning methods, it strikes as a limiting factor.

In deep learning, training of the model is typically done from batches
constituting of n tuples (z;,y,;) that represent just a fraction of data points
of the whole dataset and are sampled with the [i.i.d.| assumption on the
underlying random variables (Sec. [2.2.1). In the context of the relational
model, the simplest valuable form of y; to be considered for supervised

27

4. Deep Learning for Relational Databases

learning is the value of a single attribute A,,,. ., of a target relation R, ;c;-
For training purposes, the target attribute is removed from the graph. As for
the z,; values, two main cases can be assessed.

® Each row r; of the target table Tpp ~ forms, through references to
other tables, a graph that is d1s3unct1ve to all other graphs formed by
rows r; where ¢ # j (that is apart from hyperedges of the relations).

® Any row r; of the target table TR, . can be related to row r; of target
arge

table through k edges; hence graph induced from BF'S| [67] starting at r,
can possibly span through whole dataset graph.

Typically, the first case proves to be uncommon; therefore, it will not
be considered. The second case is also more general, making it ideal for the
set goal of the universal pipeline. Nevertheless, the x, examples can not be
considered as i.i.d. tuples as opposed to the standard supervised learning.

A simple resolution to the connected graph issue is to have only a single
learning sample - the whole dataset graph. Unfortunately, this solution is
only feasible for smaller datasets. For larger datasets, one has to resort to
sampling batches of sub-graphs.

A naive option is to use the aforementioned |BF'S. This method is used
for the ‘Online’ methods mentioned in Section 4.1.3| as using any advanced
approach proves to be challenging, to say the least. The BFS runs natively
on the database via a series of recursive [SQL| joins to a limited depth from
the sampled rows of the target table. This procedure results in a sub-graph
that can be processed as described in Section [4.1.4] and used for learning
objectives.

As for the ‘In Memory’ case, two approaches have been tested for sampling
the mini-batches. First is a ‘Neighborhood Sampler’ introduced in “Inductive
Representation Learning on Large Graphs” [68]. Neighborhood Sampler
works very similarly to BFS with an extension for limiting the depth and
the number of edges used for each node (optionally, different limits on the
number of edges can be applied at each depth and for each edge type). The
second considered alternative is HGSampling described in ”Heterogeneous
Graph Transformer” [69]. HGSampling is a considerably more sophisticated
method with roots in BFS. The key difference to Neighborhood Sampler is
that it limits the number of nodes of a given type rather than the number of
edges. HGSampling also introduces a concept called ‘node budget,” which

28

4.2. The Blueprint

determines the probability of selecting a node of a particular type during
sampling. Through thorough testing, it was assessed that the HGSampling
would be the main sampling method as it proved to be more resilient to the
exponential growth of the sampled sub-graph.

. 4.2 The Blueprint

To combine the knowledge of previous sections and the main goal of this
thesis, the blueprint proposes a general model for Deep Learning on Relational
Databases. An important difference to traditional |(GNN| models is that the
blueprint is built upon the tabular nature of the relational database data,
hence keeping the dimensionality of the rows and columns. That being said,
the blueprint allows for the instantiation of models that do not strictly follow
this pattern, and because of that, the blueprint can be viewed as an extension
of classical (GNN| models.

The Blueprint consists of several components representing general differ-
entiable functions with predefined input and output structures. These general
functions can be split into three categories. |!

® Transformation - a function with a single input and single output, de-
1:1

scribed as T : X — Y, where rank(X) < rank(Y). Transformations can

occure as tuple transformations T, : t — t or as attribute transformation

11,
T,:a—a.

Combination - a function that takes a fixed number of inputs and
combines them into a single output; C : (X, X,,..., Xy) iy Y, where
rank(X;) = rank(Y). Combinations can be further divided into two
sub-categories, attribute combinations C,, : (aq, ..., a,) iy (a”) and tuple
combinations C, : (tq,...,t,) i ().

r'n

® Aggregation - a function with permutation invariant set of inputs
M:1
A: X, Xy, ..., Xy}t — Y, where rank(X,) = rank(Y'). Aggregations

!The definitions contain a rank function that symbolizes the tensor rank, sometimes
also called degree or order, not to be mistaken with the rank of a matrix. It is not trivial
to provide a definition for such a function, yet here is at least a partially formal attempt
rank(X) = m|X € RPv>DPm,

29

4. Deep Learning for Relational Databases

considered by this work should always be on the tuple level; hence, the

M:1
aggregation function can be denoted as A, : {ty,...,t,} — t’.

B 4.2.1 Modules

The Blueprint consists of several modules that are defined by the function
categories described above (transformation, combination, aggregation). Here,
I will discuss each section of the blueprint in close detail. For additional
context, see the Figure 4.2, It should be noted that each of the following
modules is instantiated for each table.

Il Embedder

Every instantiation of the blueprint starts with the Embedder module that
takes attribute values encoded as described in Section 4.1.4/ and transforms
them into embeddings of the dimension D. Dimension D can theoretically
have different values for each table or perhaps even sets of columns inside
a single table. Still, for the sake of simplicity, only a single global value
of D is considered. By the defined terminology, the Embedder module
is a block of attribute ¢ransformations T,,. Each value of attribute a; of

relation R, is converted by the function T(fji fa; — a’ ;» resulting to m tuples
(a'y,...,a’,) € (RP,...,RP).

Il Post-Embedder

‘Post-Embedder’ is an optional module that allows for the application of a
specific function after generating the embeddings. There are two cases for
the structure of this module, either a tuple transformation T, e.g., posi-
tional encoding [18, [42], or attribute combination C,, e.g. simple attribute
concatenation or whole tabular model such as ‘Trompt’[70].

Each of the following ‘Pre-Combination,” ‘Combination,’ and ‘Post-Combination’
modules is repeated in N layers as depicted in the Figure 4.2.

30

4.2. The Blueprint

Il Pre-Combination

The first of the repeating modules is the Pre-Combination. This module can
be defined as a tuple transformation T, and provides the major processing
opportunity for gathering information about the given relation R;, e.g., ‘Self-
Attention’(Sec. 2.2.3)) or even whole ‘Transformer Encoder’[18]. If necessary
or requisite, Pre-Combination can also be skipped.

Il cCombination

Next follows the Combination module, which consists of several sub-sections
and evaluates the graph structure of provided data through the extended

message-passing scheme (Sec. [2.2.4| and 3.2.4). Component starts with tuple
2:1
combination Cy : (t;,t;) — t; with each t; € R, where t,[FKp | =t;,[PKg |,
resulting into a set of {t; } representations for each such pair of ¢; € R,
2

and the related R,. Every such set {t;R } of m tuples goes through tuple
2

1
aggregation A, : {t;RQ} f t;’Rz, resulting into a set of {t;’Rk} tuples for

each referenced relation R;. Lastly, the set {t;’R } of [tuples goes through
k

second tuple aggregation A,» : {t;’Rk} l—1> t;’;l. With that, the dimensionality
of the output should correspond to the dimensionality of the input of the
Combination module. For instance, the cross-attention (Sec. [2.2.3) or
SAGEConv[68] can be used as the C, and mean or sum for both aggregation
functions.

Il Post-Combination

Lastly, the blueprint model can be optionally instantiated with the Post-
Combination module that allows for residual connection between the input
and output of the Combination block. More exactly the block can be defined
as a tuple combination Cy : (t;,,tout) 23 ¢, This module allows for iterative
aggregation of results of each of the IV layers within the blueprint.

31

x N Layers

4. Deep Learning for Relational Databases

[rows, cols, embed]

[rows, cols, embed]

[rows, cols,

embed]

P I R i I I T
PR, — P P ——] 1
! i LinearBlock + i Linear Block + i LinearBlock + 1
: '_ Residual + Norm _! '_ Residual + Norm _! '_ Residual + Norm _! :
1
! 1
! 1
1 [rows, cols, embed] Sum [rows, cols, embed] 1
! 1
! 1
! 1
! . Attention Sum|- - - i . 1
[Cross Attention ‘ HEM IR Sl Gl o S Cross Attention
Y 1
1 block block 1
1 {[cols, embed] x rows} {[cols, embed] x rows} I
1 1 1 1 1 1 1
. Cross I L | Cross N !
I Attention Attention 7 :
! 1
1 Queries Queries Queries 1
1 I
—— e e - R PR ——— e - !
! 1 1 Keys, Values | 1 Keys, Values | 1 1
1 ITransformer Encoder Keys —ITransformer Encoder ——— ITramsformer Encoder, |
I e e e e e e e el e e e e e e . e e e e e e e - —-— -
. * Values * Values * 1
I [rows, coIT, embed] [rows, colls, embed)] [rows, cols, embed] 1
——— o
: Identity ! Identity : Identity
[rows, colls, embed] [rows, cols, embed] [rows, co!s, embed]
1
1
Table Emebedder
Foososoom Concat posoosoos
Table ' ' Table
Emebedder PR PR Emebedder
i Time [Numerical][Categorical] ! Text
! y -\ Y - Y ‘ca-
| date:time float int varchar
[1 [: [[T 1
N Table A Table B Table C B
PK PK Target FK(C) | FK(A) PK FK(A); |FK(A),
e X oo U [0 g . .
Embedder | Post-embedder ;,; Pre-combination ;| Combination | ;Post-combination; | Aggregation
N e o owm oEm owm ow Z N e e o o o o 4

R T4

Figure 4.2: A schema of Database Transformer; instance of the blueprint model
for Deep Learning on Relational Databases.

32

4.3. Blueprint Classes

. 4.3 Blueprint Classes

With the blueprint summarized, one can proceed to discover the possibilities of
the models inside this neural architecture space. Based on the dimensionality
and type of the chosen components of the blueprint, the instances can be
split into several categories.

Il 4.3.1 Embedders

The initial processing of the data can greatly influence the effectiveness of the
model. Coming from the work done in the field of tabular |DL| models, there
is a variety of possible approaches. Nevertheless, the categorical variables
are almost always encoded with simple embedding, with the exception of the
models that do not use the categorical variables, e.g., Excelformer [45]. Here
is a list of some of the options focusing on the other variable types.

® Stack Embedder - simplest option to increase the dimensionality of
the numeric attributes is to copy the value D types in the embeddings
vector, where D is the target dimension of the embeddings.

® Linear Embedder - linear layer with no activation function and one
input channel and D output channels is also a common way to create
the embedding vectors out of numeric variables.

® Text Embeddings Transcoder - as discussed in Section [4.1.4] plain
text data from the database can be processed by the pre-trained lan-
guage model. Because it is unlikely that the language model embedding
dimension will match the dimension D set in the blueprint instance, a
linear layer with no activation layer can be leveraged to address the
dimensionality difference.

B Timestamp Embedder - the most sophisticated embedder listed here.
Time-related attributes pose a challenge as they often encode periodical
information, such as that on Friday, there will be, on average, fewer
people at the university. If the day in the week is encoded as a categorical
attribute, then this example is solved. Still, if the more complex periodi-
cal behavior is present, encoding it with just categorical or numerical
attributes is extensively more complicated. To account for this kind

33

4. Deep Learning for Relational Databases

of possible periodical information that might be encapsulated by the
year, month, day, etc., of the timestamp, the embedder first uses cyclic
encoding [63] with a combination of positional encoding to dimension d,
where d < D and only then puts the output through the linear layer to
get embeddings of dimension D.

The classical tabular models usually take the opportunity only of com-
bining simple embedding for the categorical variables and Stack Embedder or
Linear Embedder for the numerical variables, but the usage of the text and
timestamp attributes can lead to additional performance gain.

Bl 4.3.2 Inner Dimensionality

The chosen function type inside the Post-Embedder determines the dimen-
sionality of data processed by subsequent parts of the blueprint instance.
Based on whether the tuple transformation or attribute combination is chosen
for the Post-Embedder, models can be split into two classes.

Reduced - Upon selecting the attribute combination function, data
dimensionality is reduced, effectively creating a single embedding vector
for each tuple. In such case, the tuple before the Post-Embedder has
a dimensionality of RA*P where A is a number of attributes and D
is the embedding dimension. Output x of the Post Embedder has
dimensionality RX where X € N. A typical simple function that falls
in this category is a flatten operation where the output z would have
a dimensionality R4*P with A being a number of attributes and D the
embedding dimension of the original tuple. These models can be seen as
standard Heterogeneous |GNN5s[71].

® Tabular - Skipping the Post Embedder or choosing the tuple transforma-
tion results in keeping the tabular structure of the data. Post Embedder
transformation can be described as function T, : ¢, — t;, where t, € RA*P
and t; € RA*P’ with A being a number of attributes, D the embedding
dimension and D’ the transformed embeddings dimension.

34

4.4. Database Transformer

B 4.3.3 Tabular Models

One of the goals of this work is to integrate the Tabular Models with the
general blueprint for relational databases. To instantiate the blueprint with
tabular models such as mentioned in the Section 3.1.1}, there are two ways
that can be characterized by the role that the model takes.

B Tabular Encoder - tabular model can be placed in the Post-Embedder
module. In that case, the data will go through it once at the beginning
of the model, and the rest of the instance modules can be chosen ap-
propriately to the ‘Tabular Encoder’ output dimensionality, e.g., the
‘Database Transformer’ described in Section |4.4.

B Tabular Graph Model - the tabular model is placed in the Pre-
Combination module; hence, it has to follow the condition of being a
tuple transformation. These instances repeat the tabular model in each

of the N layers of the blueprint together with the chosen Combination
block.

. 4.4 Database Transformer

The blueprint model can be theoretically instantiated with any functions
that fit the rules defined in Section 4.2. To highlight the interesting parallels
between relational database data structures and those used in the transformer
architecture, the Database Transformer is a proposed model that extends
the transformer’s encoder and cross-attention mechanisms to the context of
relational databases.

A single row of tabular data passed through the Embedder can be viewed
as a sequence of different features encoded in the embeddings spaces of
the respective attributes. This lurks the idea of using the transformer for
processing the information embedded within the data as the transformers are
meant for the evaluation of sequences of embedding vectors.

Database Transformer depicted in Figure 4.2 (or an alternative version
of the schema in Figure |B.1) takes advantage of the self-attention as well
as the cross-attention functions. Each of the encoded tables from the rela-
tional database is first passed through the Embedder module to create the

35

4. Deep Learning for Relational Databases

embeddings. Then follows N repeating layers of the Pre-Combination, Com-
bination, and Post-Combination modules as the Post-Embedder is skipped in
the baseline (Sec. 4.5.1) version. Nevertheless, the Post-Embedder can also
be utilized to add the positional encoding to the embeddings as tested in the
further Section [5.3.5l

Each of the Pre-Combination modules inside the N repeating layers hosts
the Transformer Encoder as originally described by Vaswani et al.[18]; hence
a self-attention (Sec. [2.2.3)) followed by a residual connection with a ‘Layer
Normalization’[72], continued by a feedforward Neural Network (FNN). Two
linear layers with a ReLLU activation function between them are used for the
FNN followed again by a residual connection with a Layer Normalization. An
important difference between the original Encoder by Vaswani et al. and the
one used in the Database Transformer is that each Pre-Combination module
contains only one Self-attention block and one FNN block. In contrast, these
blocks are repeated M times in the original Transformer model.

The Combination and Post-Combination together form the Transformer
Decoder part of the model. Tuple outputs of each table’s Tz Pre-Combination
module described in the previous paragraph are now processed by the cross-
attention. The function of cross-attention operation done between the tables
T, and Ty, that share a connection can be written as follows

Cgross=attn(t, t,) = Attention(query = t;, key = t;, value = t) (4.1)

The resulting set of tuples {tiR } for table T is processed by attention sum
2

operation and further by a simple sum function resolving to a processed tuple
t; of relation R;.

The Post-Combination module starts with a residual connection that
sums the outputs of the Pre-Combination and Combination modules, followed
by a Layer Normalization. Finally, the Post-Combination module ends by
passing data through another FNN block, the same as in the Pre-Combination
module.

Finally, the Pre-Combination, Combination, and Post-Combination mod-
ules are repeated N times to allow information propagation through the model
network.

36

4.5. Experimental Blueprint Instances
. 4.5 Experimental Blueprint Instances

The blueprint allows for immense possible instantiations. To list a few, the
following section describes instances further used for experiments (Sec. [5.3).
Instances include a variety of Database Transformer versions as well as a set
of instances based on tabular models (Sec. . This section provides a
walkthrough of their structure and components.

Il 4.5.1 Database Transformer Versions

The Database Transformer, as described in previous Section consists of
N layers, where each layer can be written in terminology of Section as

CtFFN+Norm o Afum o Afttn o CtCross—Attn o TtTransformer—Encoder (4.2)

The Database Transformer stands as the leading model of the thesis, and
it was tested with an additional list of options, including different types of

Embedder and Post-Embedder modules (Sec. and 4.3.1).

® Baseline - Embedder uses only categorical and numerical variables with
simple embeddings and Linear Embedder for respective variable types.
This model will serve as the central comparative point to other blueprint
models.

® With Text - Extends the baseline embedder with text embeddings
created in the graph construction phase (Sec. by Sentence-
BERT [65]. To match the dimension of embedding vectors of other
attributes, the initial text embeddings are transformed by the Text
Embeddings Transcoder.

® With Time - Extends the baseline embedder with datetime attributes
transformed by the Timestamp Embedder. Time-related attributes pose
a challenge as they often encode periodical information, which is hard to
grasp. Timestamp Embedder greatly helps with such tasks.

B Positional Encoding - Extends the baseline by adding a positional
encoding function into the Post-Embedder module. If the database table
consists of many attributes with similar information values, it might be
beneficial to provide the transformer model with data about the order

37

4. Deep Learning for Relational Databases

of the attributes. This is based on the original concept of positional
encoding inside the Transformer [18].

M 452 SAGEGNN

This model can be classified as ‘Reduced’ (Sec. 4.3.2)) by its inner dimensional-
ity because of the use of the Post-Embedder function that flattens the columns’
dimension; C, : (ay,...,a,) — (a; ...a,), where (ay,...,a,) € (RP,...,RP)
and (a ...a,) € R"P. Reduced dimensionality allows for the use of standard
graph convolution functions; in this case, the SAGE[68] is utilized. The N

repeating layers can be described as

AtSum ° AtSum o CEAGEConU ° TvtBatchNorm—i-ReLU (43)

where the Post-Combination module is skipped. Embedder uses only categor-
ical and numerical variables with simple embeddings and Linear Embedder
as in the baseline DB Transformer.

B 453 SAINT

SAINT refers to the tabular model introduced in “SAINT: Improved Neu-
ral Networks for Tabular Data via Row Attention and Contrastive Pre-
Training”[24]. SAINT takes a ‘Transformer Encoder’[18] layer and extends it
by a second block that uses ‘Intersample Attention,” details of which can be
found in the article.

The blueprint instance utilizes the ‘SAINT Encoder’ layer as the Pre-
Combination module in a mixture with the cross-attention for the Combi-
nation module. The model also uses a comparable Embedder as the DB
Transformer baseline with an extension that a ReLU activation function
follows the linear transformation. The NV repeated layers can be defined as

Cf‘FN+NOTm ° A?um o A?ttn ° CtCrosszttn ° TtSAINTfEncoder (44)

Notably, the architecture of the SAINT blueprint instance resembles that of
the Database Transformer.

38

4.5. Experimental Blueprint Instances

B 454 Trompt

The instance closely follows the Trompt[70] architecture as described in the
article. The Trompt Encoder is used once at the beginning as the Post-
Embedder module to transform the data. The N repeating layers have a
simple definition as

A%S'um o A%S’um ° C£4ddMean (45)

where the Pre-Combination and Post-Combination modules are skipped and

1
AddMean (y ¢\ — ¢ E 4.
Ct (79]) i + dzm(t]) ay, (6)

aR€t;

Notably, the model utilizes the Trompt Decoder as a prediction head
and has a custom Embedder that extends the DB Transformer baseline by
following the categorical embeddings by Layer Normalization’[72] and the
linear transformation of numerical values by a ReLLU activation, and also a
Layer Normalization.

B 45.5 TabNet

Another instance based on a tabular model is a TabNet[25]. TabNet is
an attention based architecture that defines two main modules - encoder
and decoder. The article describes the Feature Transformer and Attention
Transformer blocks that are used to build the encoder and decoder modules.
The encoder is formed by a series of repeated Feature Transformers, each
followed by the Attention Transformer. The decoder, used mainly for pre-
training, consists only of Feature Transformers.

Similar to the SAGE GNN, TabNet can be classified as ‘Reduced’ by
its inner dimensionality. Embedder only processes the categorical variables
through simple embeddings, and the numerical variables are duplicated to
the target dimension by the Stack Embedder. The N repeating layers can be
written as

A%S‘um o Afum ° CiAddMean ° TtTabNet—EncodET (47)

where the C/AddMean ig defined in equation (4.6)).

39

4. Deep Learning for Relational Databases
Bl 4.5.6 TabTransformer

The last experimental blueprint instance is based on the TabTransformer[44].
The TabTransformer architecture primarily processes the categorical attributes
as numerical attributes are passed just through a Layer Normalization. The
categorical columns are passed through a Transformer Encoder block.

In the TabTransformer blueprint instance, a naive Embedder is used.
Similarly to the TabNet instance, the Embedder uses simple embeddings and
a Stack Embedder for numerical attributes to avoid transformations of the
values. The rest of the IV repeating layers are described as follows,

Sum Sum AddMean Transformer—Encoder/Layer Norm
APU™ o AU o0 Cf ol (4.8)

where the C/A4d4Mean ig defined in equation (4.6).

40

Chapter b

Experiments

This chapter presents the results of the conducted experiments. First of all,
the discussion will turn to the datasets utilized for the evaluation of the models
and, importantly, the employment of the CTU Prague Relational Learning
Repository. Next, the experimental pipeline will be described together with
the technologies involved. Notably, it goes through experiment runs as
well as the hyperparameters used and other specifics of the experimental
environment. Emphasis will be put on the description of the learning process
used for experiment tests.

. 5.1 Benchmark Datasets

To effectively evaluate progress in a given field across the publications, it is
appropriate to use reproducible experimental settings with publicly available
resources that test the accuracy of a given model. Reasons like these lead to
the existence of numerous benchmarking datasets often hosted on websites
with scoreboards.

One of the first such projects was the “UCI Machine Learning Repos-
itory”[73] created by David Aha in 1987, focusing mostly on tabular data.
Also, sites like ‘Papers with Codeﬂ and Kaggleﬂ aggregate the datasets and
provide a public score of submitted models.

Ihttps://paperswithcode.com/dataset

https://www.kaggle.com

41

https://paperswithcode.com/dataset
https://www.kaggle.com

5. Experiments

B 5.1.1 Existing Benchmark Datasets

There are many publicly available datasets for tabular data on the aforemen-
tioned sites. Datasets such as WikiTables[39] or MIMIC[74] are well-known
and commonly used to assess the performance of a tabular model. Graph or
even Heterogeneous Graph datasets can also be easily accessed. SNAP[75]
provides an extensive collection of network graph datasets, the ‘Open Graph
Benchmark’[76] project directly aims at comparing the performance of
models on large graphs.

Recently, in the work of RelBench[60] project, an effort was made to
create a benchmark that targets data of relational databases. The RelBench
project contains two large datasets; ‘Stack Exchange’ and ‘Amazon.’” Sadly,
RelBench shares a similar problem to the graph datasets for purposes of this
work. The datasets are not stored inside a relational database but rather in
the simplified form of files annotated with additional data about the
primary and foreign keys. Not storing the data inside the relational database
represents an issue, as the goal of this thesis is to provide an end-to-end
workflow directly from the relational databases.

Il 5.1.2 The CTU Prague Relational Learning Repository

Luckily, another project at CTU solves the issue of a collection of relational
databases. ‘The CTU Prague Relational Learning Repository’[77] (CTU
Relational), originally created by Jan Motl in 2015, contains more than 50
relational databases stored on the MariaDBﬁ server. The repository was used
for machine learning tasks in the past and stores the scores of selected models.

As of the end of 2023, the server was discontinued on the original address
relational.fit.cvut.cz. To preserve valuable historic progress data and
the SQL databases aggregated on the server, it was decided to make adminis-
tration of the repository part of this project. The new database server of the
CTU Relational is available at https://relational.fel.cvut.cz.

3Ih‘l:'t',ps ://mariadb.com

42

relational.fit.cvut.cz
https://relational.fel.cvut.cz
https://mariadb.com

5.1. Benchmark Datasets
Il Repository Migration

As the CTU Prague Relational Learning Repository was included in the
scope of this thesis, it is only logical to discuss the migration process from
the discontinued server to the new one. The original admin of the CTU
Relational provided per-database dumps from the old MariaDB server. A
dump is a file used for backup or transfer to another database server (not
necessarily MariaDB or MySQL).*| To ensure better environment stability and
clarity, the new MariaDB server is run inside a Docker container®. Part of
this repository was also a web server that communicates with the SQL server
to present parameters and schema visualization of stored databases and also
to showcase the performance of different models on the datasets. Both servers
are wrapped in a single Docker compose file with a simple network that allows
the web server to communicate with the SQL server locally. A migration
script needs to be executed to provide the SQL servers with the actual data.
This script downloads old database dumps, creates the databases, and copies
the data directly to the MariaDB server.

Database #Tables | #Instances | Size in MB | Task
Accidents 4 495760 210.0 Class
AdventureWorks 71 30669 234.6 Regr.
AustralianFootball 4 3036 38.0 Class
BasketballMen 9 1536 18.2 Regr.
Biodegradability 5 328 3.2 Regr.
Carcinogenesis 6 329 26.3 Class
CCS 6 1000 658.4 Regr.
ClassicModels 8 273 0.5 Regr.
Countries 4 247 8.6 Regr.
Credit 9 10084 443.6 Class
CS 8 100 0.3 Class
Dunur 20 276 0.8 Class
Elti 14 1081 0.7 Class
Employee 7 2838426 344.6 Regr.
Financial 8 682 94.1 Class
FTP 2 29555 7.5 Class
Genes 3 862 1.9 Class
Hepatitis 7 500 2.2 Class

4https://mariadb.com/kb/en/mariadb-dump/

Shttps://www.docker.com/resources/what-container/

43

https://mariadb.com/kb/en/mariadb-dump/
https://www.docker.com/resources/what-container/

5. Experiments

Database #Tables | #Instances | Size in MB | Task
Hockey 23 7759 15.5 Class
IMDb 7 794625 614.6 Class
MovieLens 7 6039 151.9 Class
Lahman 25 23111 84.0 Regr.
Legal Acts 5 564268 238.2 Class
Mesh 32 223 1.1 Regr.
Mondial 33 454 3.3 Class
MooneyFamily 72 92 3.3 Class
Mutagenesis 3 188 0.9 Class
Nations 3 14 2.1 Class
NBA 4 30 0.3 Class
NCAA 10 268 40.6 Class
Northwind 29 830 1.1 Regr.
Pima 14 768 0.8 Class
PremierLeague 4 363 11.3 Class
PTC 4 343 7.8 Class
PTE 41 299 7.3 Class
Pubs 11 18 0.4 Regr.
Sakila 16 15991 6.6 Regr.
SalesDB 4 6148886 539.3 Regr.
SameGen 7 1081 0.3 Class
Stats 8 38357 621.4 Regr.
StudentLoan 13 1000 0.9 Class
Thrombosis 3 806 1.9 Class
TPCC 9 28433 174.1 Class
TPCDS 24 99550 4587.5 Class
TPCH 8 148255 1925.1 Regr.
Trains 2 20 0.1 Class
University 5 38 0.3 Class
UW-CSE 4 278 0.2 Class
vVOC 8 8215 2.7 Class
World 3 239 0.8 Class

Table 5.1: List of databases from The CTU Prague Relational Learning Reposi-
tory with introductory description.

44

5.2. Hyperparameter Optimization

. 5.2 Hyperparameter Optimization

In the realm of machine learning and deep learning, the performance of a model
is often determined by a multitude of factors, including the architecture of the
model, the choice of optimization algorithm, and the quality of the training
data. However, one crucial aspect that can significantly impact a model’s
effectiveness is often overlooked: hyperparameters. Hyperparameters are the
configuration settings that govern the training process, such as learning rates,
batch sizes, and the number of hidden layers in a neural network. Selecting
the right hyperparameters can be a challenging and time-consuming task, as
their optimal values can vary depending on the specific dataset.

Hyperparameter optimization is the systematic process of finding the
best set of hyperparameters for a machine learning model, with the goal of
maximizing its performance and generalization ability. A more robust and
mathematically driven problem statement can be found in the article [78].
Nevertheless, the significance of hyperparameter optimization cannot be
overstated, as it can mean the difference between a mediocre model and a
state-of-the-art one.

As previously stated, hyperparameter optimization is a difficult task that
comes with a lot of challenges. Here is a list of just a few: high dimensionality,
computational and time extensive, complex interactions, automated tuning,
and parallelization. In addressing the intricate challenges of hyperparameter
optimization, particularly those linked to automated tuning and paralleliza-
tion, it is prudent to utilize specialized tools such as Optuna[79], Ray|[80] or
MLFlow®.

B 5.2.1 Distributed Computing

Parallelization on server clusters addresses the computationally intensive
nature of hyperparameter optimization. Enabling the hyperparameter opti-
mization process to be executed concurrently across multiple processing units
is a complicated task that requires an effective and robust management system
to ensure smooth operation. With such a system, parallelization significantly
curtails the time and computational resources required, thereby streamlining

Shttps://mlflow.org

45

https://mlflow.org

5. Experiments

the optimization process. One of the such systems for the management of
distributed computing tasks is Ray|[80].

B 5.2.2 Tuning

Automated tuning is a pivotal aspect of this hyperparameter optimization.
The intelligent automated hyperparameter selection process is necessary for
the exploration of a broad search space. It is not feasible to merely traverse
search spaces consisting even of a few parameters; hence, there is a necessity
for both intelligent and resource-conscious approaches to solve the search
task. An example of such a system can be the Optuna[79].

B 5.2.3 Aggregation

The Hyperparameter optimization tasks are usually composed of many exper-
iments running over long periods while generating plenty of valuable metrics;
hence, it is important to log, persist, and aggregate the produced pieces of
information. As such assignment is not trivial, using the dedicated system to
manage the experiments’ storage is often valuable. This integration ensures
not only a systematic approach to recording results but also facilitates com-
parative analysis and effective management of the machine learning workflow.
MLFlow can be listed as an example of such a system.

. 5.3 Experiment Runs

At last, this section will talk about the process of using the blueprint instances
(as defined in Section 4.5) to accomplish various machine learning tasks. Briefly
mentioned are also the environment and parametrization of the models
and training. Further, the overall results and the effects of alternative
modifications of the Database Transformer model will also be examined.

46

B 5.3.1 Tasks

5.3. Experiment Runs

The models are evaluated on two supervised training tasks, that is, clas-
sification and regression (Sec. 2.2.1). Out of all 49 datasets in the CTU
Relational repository, as listed in the table 5.1, only 19 classification and
16 regression datasets were selected. Most of the discarded datasets were
removed because the prediction task was considered too trivial to achieve.
Some of the databases were also too small and, hence, impractical to be used
for assessing the quality of the model.

Dataset Num. | Num. | Num | Avg. | Total | Total | Text | Time

Rels. | Edge | Targ. | Targ. | Num. | Num. | Col. Col.

Types| Cols. | Edges| Rows | Edges
Number of rows in target table: 1 - 1000
Carcinoge. | 6 13 1 83.21 | 28027 | 64122 | False | False
CraftBeer 2 1 2 4.32 2968 2410 True False
Dallas 3 2 13 2.71 812 593 True | True
financial 8 8 4 1 1.1IM | 1.1M | True | True
Mondial 34 63 1 1 21497 | 43030 | True | True
MuskSmall | 2 1 1 5.17 568 476 False | False
mutagen. 3 3 4 26.03 | 10324 | 15379 | False | False
Pima 9 8 1 8 6912 6144 | False | False
Prem.Leag. | 4) 3 29.29 | 11308 | 31867 | True | True
Toxicology | 4 5 1 53.26 | 49813 | 92541 | False | False
UW__std 4 4 4 1.49 712 604 False | False
WebKP 3 3 1 94.16 | 81850 | 82581 | False | False
Number of rows in target table: 1001 - 10 000
DCG 2 1 1 6.31 8258 | 7128 | False | False
Same_gen 4 6 1 2 1536 2978 False | False
voc 8 7 21 2.58 29125 | 20994 | True True
Number of rows in target table: 10 001 - 100 000

PubMed 3 | 2 1 | 52.36 | 1.IM | 1.0M | False | False

Number of rows in target table: 100 001 - 1 000 000
Accidents 3 3 19 2.87 1.5M | 24M | True | True
imdb__ijs 7 6 2 4.2 5.6M | 82M | True False
tped 8 10 5 11 8.7TM | 27.2M | True | True

Table 5.2: List of classification datasets used in experiments with statistics.

The selected datasets for the classification and regression tasks can be
viewed in the tables 5.2 and |5.3, respectively. Tables contain statistics about

the relational databases that they represent.

‘Num. Rels/

- number of

relations inside the database, ‘Num. Edge. Types’ - number of primary,

47

5. Experiments

foreign key pairs, ‘Num. Targ. Cols. - number of non-key columns in the
target table, ‘Avg. Targ. Edges’ - the average number of references from a
single target table row to other tables, ‘Total Num. Rows’ - overall number
of rows in all tables of the database, ‘Total Num. Edges’ - overall number
of primary, foreign key pairs between all tables of the database, ‘Text Col. -
whether the database contains non-key text attribute, ‘Time Col. - whether
the database contains datetime attribute.

To use the blueprint models for prediction tasks, the output of the last
layer produced for the target table is flattened (if necessary) and finally
processed by MLP)| prediction head with M layers where each of the hidden
layers is optionally followed by ‘Batch Normalization’|[81] and by ReLU
activation function. To enable gradient descent, in the classification jobs, the
MLP output is put through the cross-entropy[82] loss function or through
MSEH] loss function in case of the regression jobs.

As for the metrics used for the results, an accuracy metric can be leveraged
for the classification as it is a general, easy-to-understand value without the
need for a deeper understanding of the data and the actual prediction task.
Accuracy cannot be employed on regression. To have a somewhat comparable
metric across the datasets, even for the regression tasks, a ‘Normalized Root
Mean Squared Error’ (NRMSE) was used. The NRM SFE function is defined
as

NRMSE(y,) = TMSEW.9) (5.1)

Y

where the y is the mean value of all training target values and the RMSFE
function is defined as

Zﬁ_l (y; — 9)?

RMSE(y, §) = | == (5.2)

48

5.3. Experiment Runs

Dataset Num. | Num. | Num | Avg. | Total | Total | Text | Time

Rels. | Edge | Targ. | Targ. | Num. | Num. | Col. Col.

Types| Cols. | Edges| Rows | Edges
Number of rows in target table: 1 - 1000
Biodegrad. | 5 5 2 20.02 | 21895 | 33094 | False | False
classicmod. | 8 7 2 1 3864 6846 | True | True
GOSales 5 4 1 39.5 151105| 188759 | True | True
northwind 11 10 9 5.6 3308 7113 True | True
Triazine 2 1 1 6 1302 1116 False | False
Number of rows in target table: 1001 - 10 000
Basketball 9 9 59 23.18 | 44822 | 62744 | True | True
restbase 3 3 2 1.99 19297 | 28443 | True False
Number of rows in target table: 10 001 - 100 000

Adve.Works | 70 90 14 11.26 | 760k | 1.2M | True | True
FNHK 3 2 10 49.9 2.1M | 2.1M | True | True
sakila 16 22 2 3 47273 | 122k | True | True
stats 8 12 11 1744 | 1.0M | 1.6M | True | True

Number of rows in target table: 100 001 - 1 000 000
Grants \ 12 \ 11 \ 9 \ 6.47 \ 3.0M \ 5.1M \ True \ False

Number of rows in target table: 1 000 001 - 10 000 000

Consu.Ex. 3 2 5 1 2.2M | 2.2M | False | False
employee 6 6 2 1 3.9M | 4.0M | True | True
SalesDB 4 3 1 3 6.7M | 20.1M | True | False
Seznam 4 3 2 1 2.7TM | 2.6M | False | True

Table 5.3: List of regression datasets used in experiments with statistics.

Il 5.3.2 Environment

All experiments executed on the blueprint instances discussed in Section 4.5
used a hyperparameter optimization pipeline with the parts introduced in
Section 5.2, The pipeline consists of Ray|[80], used for the distribution of
the resources, parallelization, and general management of the model training,
Optunal79] provides an efficient algorithm for search in the hyperparameter
space, and finally MLFlow aggregates the parameters and metrics of the
training and validation actions.

49

5. Experiments

B 5.3.3 Parametrization

There were 16 runs per blueprint instance per dataset executed inside the
model’s hyperparameter space provided by Optuna. Each of the runs was
learning for at least 4000+ training steps on a standard 70:30 training
validation split. All DL models used Adam[I5] optimizer with a learning rate
set as a hyperparameter in a logarithmic space on interval (0.00005,0.002).
HGSampling as described in Section |[4.1.3| provided the data sampling where
the batch size was parametrized by the dataset size, hyperparameter scale
factor from exponential space on the interval (1,2%), and limited to a value
of B, where B € 2" and n € 4,5, ..., 14; hence the batch size will always be
in interval (16, 16384).

Embeddings dimension D for the Embedder was also a parameter in the
Optuna search space and can be defined as a choice from a set of {16,32,64}.
The number of layers N inside the blueprint instances was set as a random
integer from the set {1,2,3,4,5}.

The decision-making decoder [MLP| head was parametrized by the number
of linear layers M that was 1, 2, or 3, where each hidden layer had 64 channels
and by a flag whether to use a Batch Normalization after each of the hidden
layers.

Il 5.3.4 Overall Results

The overall results of the blueprint instances, as presented in the Section 4.5,
compared against a selection of state-of-the-art methods are outlined in the
tables |5.4 and |5.5. The blueprint in these tables stands for the best results
recorded among all blueprint instances; hence, even the alternative versions
from Section |5.3.5k

The naive baseline for the comparison is the MLP| implemented as a
blueprint instance with only a simple Embedder that uses categorical and
numerical variables with simple embeddings for the categorical attributes and
Linear Embedder for the numerical attributes, and importantly decoder MLP
as a prediction head; hence, the MLP is parametrized in the same way as the
blueprint decoder (Sec. [5.3.3). A big portion of the dataset is not available

50

5.3. Experiment Runs

to the tabular models; nevertheless, in cases where they are applicable, the
MLP model performs reasonably well.

The RDN-boost (RDNb) belongs to the Statistical Relational Learning
(SRL) (Sec. [3.2)) category. The method utilizes relational dependencies.
However, it needs to set up ‘modes’[50], which were implemented rather
simply, probably explaining the shaky performance. Importantly, the method
does not scale very well, resulting in some missing values in the results. The
issue with scalability is a common factor to the other methods used and also
the reason for the missing values.

The ‘getML system’[52] as a representative of propositionalization (Sec.
3.2.2)) showed a strong performance with the FastProp[83] for the feature
learning and XGBoost[27] as a predictor. Lastly, the neuro-symbolic method
CILP++[84] also had good results, slightly outperforming the default getML
method on the classification tasks but losing on the regression tasks. Notably,
the CILP++ was emulated using the getML for propositionalization, and
then MLP was applied to the transformed data.

Model accuracy in %

Dataset MLP | RDN-b | GetML | CILP++ || Blueprint
Carcinogenesis | N/A 59.18 47.96 69.39 75.51
CraftBeer 11.38 0.60 5.39 11.38 58.08
Dallas 49.23 49.23 86.15 83.08 66.15
financial 75.49 N/A 97.06 79.90 88.73
Mondial N/A 39.34 N/A N/A 100.00
MuskSmall N/A 40.74 74.07 81.48 100.00
mutagenesis 96.43 83.93 80.36 92.86 98.21
Pima N/A 68.70 N/A N/A 83.48
PremierLeague | 59.87 34.21 61.40 73.68 99.53
Toxicology N/A 56.86 63.73 67.65 73.53
UW__std 92.79 91.57 69.88 66.27 98.06
WebKP N/A N/A 59.70 57.41 60.12
DCG N/A 50.15 85.84 73.45 100.00
Same_ gen N/A 14.51 100.00 100.00 100.00
voc 78.88 50.02 N/A N/A 85.16
PubMed N/A N/A 85.51 84.87 64.07
Accidents 77.40 N/A N/A N/A 93.20
imdb__ijs 64.23 37.19 94.39 94.36 93.29
tped 20.90 N/A N/A N/A 73.35

Table 5.4: Total results of all different model types on the classification datasets.

o1

5. Experiments

In general, the blueprint instances outperformed the selection of the
methods with a small number of exceptions where the propositionalization
shined. The performance of each type of the blueprint instances is outlined
in the table [5.6.

The best results were displayed by the proposed Database Transformer
model, demonstrating the strength of the Transformer architecture. SAGE
GNN, TabNet and SAINT presented a good performance as well. TabTrans-
fomer and Trompt had weaker results but, with slightly adjusted blueprint
components, could present a reasonable choice as well.

To further improve the understanding of the importance of various possi-
ble alternative adjustments in the blueprint instances, the Database Trans-
former was trained in various settings. The next section will test the effect
of some of the possible variations and prove the impact of the changes by
displaying a great boost in performance.

Model NRMSE

Dataset MLP | GetML | CILP++ || Blueprint
classicmodels 0.58 0.65 1.19 0.16
GOSales N/A N/A N/A 0.17
northwind 1.10 1.16 1.36 0.10
Triazine N/A 0.20 0.18 0.12
Basketball men 0.20 0.23 0.25 0.17
restbase 0.19 0.19 0.20 0.07
AdventureWorks 0.03 0.05 3.29 0.01
FNHK 0.83 0.65 0.69 0.06
sakila 0.54 N/A N/A 0.36
stats 0.95 2.59 6.47 0.14
Grants 2432 | N/A N/A 2.429
ConsumerExpend. | 6.38 6.26 7.37 6.33
employee 0.27 N/A N/A 0.25
SalesDB N/A N/A N/A 0.13
Seznam 5.34 N/A 6.13 3.41

Table 5.5: Total results of all different model types on the regression datasets.
A lower number is better.

92

5.3. Experiment Runs

Classification
Model accuracy in %
Dataset DB SAGE | SAINT | Tab Tab Trompt
Trans. GNN Net Trans.

Carcinoge. 71.43 69.39 72.45 73.47 70.41 69.39
CraftBeer 12.57 14.97 13.17 14.97 13.77 13.17

Dallas 55.38 55.38 56.92 66.15 56.92 58.46
financial 74.02 78.39 74.06 79.41 75.98 78.92
Mondial 98.94 93.44 96.72 96.72 94.07 98.95
MuskSmall 96.30 96.30 88.89 96.30 88.89 100
mutagen. 96.43 98.21 94.64 98.21 96.43 96.43
Pima 80.87 80.43 81.30 83.48 80.00 80.87

Prem.Leag. | 74.79 82.49 59.18 71.69 66.25 59.76
Toxicology 73.53 70.59 71.57 73.53 71.57 71.57

UW_ std 93.51 98.06 93.39 86.73 86.90 85.98
WebKP 56.40 56.16 60.12 53.55 52.13 54.30
DCG 89.09 62.24 64.60 94.10 69.91 100

Same_ gen 92.97 89.74 93.38 89.57 90.57 88.46
voc 79.46 79.13 74.58 67.90 76.34 68.59
PubMed 54.93 55.22 61.56 52.48 64.07 61.62

Accidents 77.56 78.70 77.75 77.43 78.16 78.22
imdb_ ijs 64.12 63.73 63.51 64.04 64.16 63.27

tped 21.26 22.60 21.08 21.19 21.00 21.40
Regression
Model NRMSE
Biodegrad. 0.15 0.18 0.17 0.17 0.18 0.16
classicmod. 0.50 0.49 0.46 0.40 0.46 1.09
GOSales 0.42 0.53 0.40 0.52 0.79 0.75
northwind 0.48 0.74 0.80 0.88 0.86 0.97
Triazine 0.14 0.16 0.12 0.17 0.18 0.14
Basketball 0.23 0.23 0.28 0.21 0.25 0.26
restbase 0.18 0.19 0.17 0.18 0.18 0.18
Adve.Works | 0.01 0.06 2.17 2.99 0.34 2.38
FNHK 0.80 0.80 0.73 0.80 1.00 0.75
sakila 0.52 0.49 0.47 0.55 0.56 0.52
stats 0.14 1.65 0.29 2.95 3.00 2.98
Grants 3.73 3.75 2.43 3.07 2.69 3.29
Consu.Ex. 6.36 6.36 6.34 6.64 6.75 6.76
employee 0.26 0.26 0.50 0.27 0.26 0.71
SalesDB 0.42 0.51 0.55 0.51 0.44 0.55
Seznam 3.66 3.94 4.68 4.32 3.41 4.04
Avg. Rank | 2.63 3.37 [3.26 3.37 3.97 [3.86

Table 5.6: Total results of various blueprint instances that were considered in
section 4.5. DB Transformer here is the baseline version.

93

5. Experiments

B 5.3.5 Database Transformer Versions

Classification
Model accuracy in %
Dataset Baseline | With Text | Improvement
CraftBeer 12.57 58.08 45.51
Dallas 55.38 56.92 1.54
financial 74.02 78.43 4.41
Mondial 98.94 98.02 -0.92
PremierLeague 74.79 90.91 16.12
voc 79.46 80.20 0.74
Accidents 77.56 78.30 0.74
imdb_ ijs 64.12 93.29 29.17
tped 21.26 73.35 52.09
Regression
Model NRMSE
Dataset Baseline | With Text Decrease
classicmodels 0.50 0.50 0.00
GOSales 0.42 0.26 -0.16
northwind 0.48 0.67 0.19
Basketball 0.23 0.20 -0.03
restbase 0.18 0.07 -0.11
AdventureWorks 0.01 1.61 1.60
FNHK 0.80 0.81 0.02
sakila 0.52 0.48 -0.03
stats 0.14 0.69 0.55
Grants 3.73 4.12 0.39
employee 0.26 0.26 0.00
SalesDB 0.42 0.13 -0.28

Table 5.7: Overview of the baseline DB Transformer to the DB Transformer
utilizing the text embeddings. Models are compared on the datasets containing
textual non-key attributes.

With [LLM5s being ever more powerful, the plain text data can be utilized
with great precision if the information value is present within. This is not an
exception in the settings of relational databases. Table 5.7 summarizes the
performance of the Database Transformer in the baseline settings to the one
with leveraging the text embeddings. The text embeddings help the Database

54

5.3. Experiment Runs

Transformer in a significant manner and outperform the baseline model over
the board with a couple of small exceptions.

The work done in the RelBench[60] project heavily focuses on the time
attributes in the relational databases. To evaluate the importance of the
time features in the data, the table [5.8 shows a comparison of the DB
Transformer model with a Timestamp Embedder utilizing the time attributes
to the baseline version. The Timestamp Embedder strongly improves the
performance on almost all relevant datasets, hence validating the importance

of time attributes.

Classification
Model accuracy in %

Dataset Baseline | With Time | Improvement
Dallas 55.38 61.54 6.16
financial 74.02 88.73 14.71
Mondial 98.94 100.00 1.06
PremierLeague 74.79 99.53 24.74
voc 79.46 85.16 5.70
Accidents 77.56 79.08 1.52
tped 21.26 21.49 0.23
Regression
Model NRMSE

Dataset Baseline | With Time Decrease
classicmodels 0.50 0.16 -0.34
GOSales 0.42 0.17 -0.24
northwind 0.48 0.10 -0.38
Basketball 0.23 0.17 -0.06
AdventureWorks 0.01 0.05 0.04
FNHK 0.80 0.06 -0.74
sakila 0.52 0.36 -0.16
stats 0.14 0.16 0.02
employee 0.26 0.25 -0.01
Seznam 3.66 4.15 0.49

Table 5.8: Summary of the baseline DB Transformer to the DB Transformer
utilizing the Timestamp Embedder. Models are compared using datasets con-

taining time attributes.

Employing both text and time attributes showed significant improve-
ments in performance. To possibly advance the accuracy of the blueprint

95

5. Experiments

instance even further, there are two other options that were considered. First,
enlarging the number of neighboring nodes in the sampled graph provided by
HGSampling as it is possible that the graph was undersampled with too few
connections that do not fully describe the nature of the references engaged.
Secondly, by adding positional encoding. It can be argued that positional
encodings are only important when a sequence of features of the same type is
involved[24]. As that is not the case for the tabular nature of the relational
database data, it should not be used.

Table 5.9 shows the results of using the DB Transformer baseline trained
with a larger graph neighborhood and the DB Transformer utilizing positional
encoding to the baseline model trained with a standard neighborhood. Results
prove that some of the datasets were undersampled, but the majority of the
datasets saw no improvement or even a decrease in precision, hence prompting
the possibility of another hyperparameter to optimize. Usage of positional
encodings showed minor improvements on smaller datasets, although, overall,
it seemed rather insignificant for the model’s performance, thus at least
partially proving the hypothesis that positional encoding is not valuable in
this context.

o6

5.3. Experiment Runs

Classification
Model accuracy in %
Dataset Baseline | More Neigh. | Impr. Neigh. | Positional | Impr. Pos.
Carcinoge. 71.43 71.43 0.00 75.51 4.08
CraftBeer 12.57 12.57 0.00 14.97 2.40
Dallas 55.38 55.38 0.00 58.46 3.08
financial 74.02 75.49 1.47 77.14 3.12
Mondial 98.94 78.69 -20.25 98.97 0.03
MuskSmall 96.30 96.30 0.00 96.30 0.00
mutagen. 96.43 96.43 0.00 96.43 0.00
Pima 80.87 83.04 2.17 80.00 -0.87
Prem.Leag. 74.79 61.32 -13.47 67.68 -7.11
Toxicology 73.53 68.63 -4.90 71.57 -1.96
UW_std 93.51 97.37 3.86 94.02 0.51
WebKP 56.40 54.58 -1.82 55.59 -0.81
DCG 89.09 98.82 9.73 92.92 3.83
Same_ gen 92.97 100.00 7.03 90.33 -2.64
voc 79.46 80.03 0.57 79.09 -0.37
PubMed 54.93 56.42 1.49 53.61 -1.32
Accidents 77.56 93.20 15.64 77.55 -0.01
imdb_ ijs 64.12 63.60 -0.52 63.03 -1.09
tped 21.26 21.56 0.30 21.57 0.31
Regression
Model NRMSE
Dataset Baseline | More Neigh. | Decr. Neigh. | Positional | Decr. Pos.
Biodegrad. 0.15 0.17 0.01 0.15 0.00
classicmod. 0.50 0.54 0.04 0.53 0.03
GOSales 0.42 0.73 0.31 0.38 -0.04
northwind 0.48 1.10 0.61 0.57 0.09
Triazine 0.14 0.17 0.03 0.15 0.01
Basketball 0.23 0.34 0.11 0.26 0.03
restbase 0.18 0.16 -0.02 0.18 0.00
Adve.Works 0.01 0.14 0.13 0.49 0.48
FNHK 0.80 0.77 -0.02 0.77 -0.03
sakila 0.52 0.46 -0.06 0.52 0.01
stats 0.14 1.96 1.82 0.35 0.21
Grants 3.73 6.11 2.38 5.09 1.36
Consu.Ex. 6.36 6.65 0.29 6.33 -0.02
employee 0.26 0.27 0.00 0.26 0.00
SalesDB 0.42 1.00 0.59 0.44 0.03
Seznam 3.66 5.31 1.65 4.17 0.51

Table 5.9: Summary of the baseline DB Transformer to the DB Transformer
trained with a greater amount of neighboring nodes and to the DB Transformer
model with a positional encoding module in the Post-Embedder.

o7

o8

Chapter 6

Conclusion

The overarching objective of this thesis was to advance the understanding
and application of deep learning technologies on relational databases by
leveraging their inherent heterogeneous tabular graph structure. Through a
detailed exploration and integration of principles from tabular models, graph
neural networks, and transformer architecture, this work has endeavored to
bridge the gap between traditional deep learning approaches and the rich
interconnected data encapsulated within relational databases.

The successful contextualization of relational databases as heterogeneous
tabular graphs was an important achievement. Doing so laid a solid foundation
for applying deep learning techniques directly to the relational data. This
paradigm shift is crucial for preserving the structural and relational integrity
of the data, which is often compromised in traditional pre-processing methods.

Having described the relational databases in terms of graph structures,
the blueprint model has shown the utilization of this definition to provide
a general structure of the deep learning model for relational databases. Its
modular yet structurally predefined design creates a vast neural architecture
space. Notably, this allows the integration of various tabular models with
ranging inner representation structures.

To highlight the blueprint structure, a Database Transformer model

was proposed, combining features of transformers with heterogeneous |GNNE.
Database Transformer employs both self-attention and cross-attention to lever-

99

6. Conclusion

age the sequence-like structure of encoded tuples and their interconnections.
Further research of the architecture space was established by extensions of
existing tabular models, often transformer-based, to the settings of relational
databases.

The conducted experiments tested the proposed blueprint models as well
as the deep learning pipeline. The pipeline allows for end-to-end integration,
consisting of a database connection layer, the schema auto-detection, data
loading, graph creation, data sampling, and the blueprint itself. This allows
for a streamlined deep-learning process, allowing one to focus on the model
design rather than the nuances of data processing. Notably, the pipeline is
also directly integrated with the CTU Prague Relational Learning Repository.
This allows for the broad variance of datasets as well as a direct comparison
of future models with the results of this thesis.

The experiments also showcased the performance of the blueprint in-
stances in comparison to state-of-the-art methods from related fields such as
propositionalization, statistical relational learning, and neuro-symbolic inte-
gration. The experimental outcomes depict promising results as the blueprint
instances generally outperform the existing models. Especially the proposed
Database Transformer displayed a superior performance. The alternative
versions of Database Transformer highlighted the possibilities of utilizing
cyclic encoding for time attributes and language models for text attributes,
where both cases led to a dramatic boost in accuracy.

The integration of deep learning with relational databases opens new
horizons for machine learning. With continued research and development,
the potential of this approach can be fully realized, leading to significant
advancements in the field of artificial intelligence.

. 6.1 Future Work

Although the concluded successes of the thesis are numerous, there are still
plenty of directions to evaluate in the future. Ranging from further research
in the blueprint architecture space to the real-world application of the laid
foundations.

60

6.1. Future Work

B 6.1.1 Blueprint instances

The vast architectural space of the blueprint allows for the creation of countless
viable models. The research done in this thesis experimented only with a small
subset of the options that can be utilized. To fully realize the potential of the
proposed methodology, further experiments need to be conducted. Namely,
the employment of the tabular models leaves many possibilities on the table.
For instance the integration of the tabular model as an initial encoder in the
Post-Embedder module with the Database Transformer architecture.

Also, the Database Transformer, as well as the other blueprint instances,
were tested with a hyperparameter optimization routine. This allowed for
finding the best hyperparameters for a given model. The analysis of the found
hyperparameters could uncover the possibility to fix some of the parameters
hence creating standardized models that perform generally well on any dataset.

B 6.1.2 Enriching the RelBench Package

As mentioned in Section 5.1.1, the contributions of RelBench [60] towards es-
tablishing Relational Deep Learning as a distinct subfield within deep learning
are significant. However, the current version of RelBench is limited in terms
of dataset variety. A viable solution to enhance its utility is by integrating the
CTU Relational Repository datasets into the package. Additionally, RelBench
presently lacks functionalities for direct interaction with relational database
data and for conducting comprehensive analyses of data schemas. Expanding
RelBench to include these capabilities would significantly benefit ongoing
research.

B 6.1.3 Pre-training

Pre-training is a technique in deep learning (and other machine learning
fields), where a model is initially trained on a broader task to learn general
patterns before being fine-tuned on a more specific goal. This approach
leverages the extensive knowledge gained during the initial training phase to
improve performance on specific tasks.

61

6. Conclusion

This method is often used on the tabular models via the self-supervised
training approach, where some table values are corrupted or masked, and the
goal of the model is to detect such changes or predict the missing values. A
similar scheme could be applied to the setting of relational database data to
the extent that the masking or cell corruption would be applied to all tables
in the database.

Furthermore, pre-training on multiple databases with the use of a large
model could be possible. This would allow for the creation of a base pre-
trained relational database model in some sense similar to the large language
models. Such a model could be utilized even on new databases with a limited
number of records without the need for fine-tuning.

B 6.1.4 Temporal Data

Records stored in relational databases are usually gradually added over time.
This suggests an option to train models on dataset split containing only
records that were created before a predefined timestamp and validate on
the rest. The experiments with the Database Transformer also proved the
importance of the time attributes; hence, the temporal training splits might
be an interesting direction for further research.

Il 6.1.5 Attention encoding of SQL statements

SQL SELECT statement is used to query and retrieve specific data from a
database. While the attention mechanism and SQL SELECT statements oper-
ate in different domains, they share a conceptual similarity in their approach
to focusing on and retrieving relevant information from a larger set of data.
However, their methodologies differ significantly. The attention mechanism
excels in processing sequential and interconnected data. In contrast, SQL
SELECT statements offer a structured, predefined approach to data retrieval
in the context of relational databases.

This prompts a question of what will happen inside the attention weights
when a model like the Database Transformer is trained on a task where the

target values are generated through a SQL SELECT statement. Importantly,

62

6.1. Future Work

the reversed goal can be considered as to map the weights to a SELECT
statement describing the target values. Analysis of attention weights on
such tasks might prove to be valuable for encoding pre-defined logic into the
model[85]. The ability to achieve such encoding might also be practical for
the creation of a general pre-trained database model.

B 6.1.6 Real-world application

Relational databases store the majority of the world’s data, yet very few
of them are publicly available. This strikes as a limitation for testing the
accuracy of the models on the actual production grade data; thus, the real
trial for the viability of proposed approaches is the application in the wild.

63

64

1]

2]

Bibliography

E. F. Codd, “A relational model of data for large shared data banks,”
Commun. ACM, vol. 13, p. 377-387, 6 1970.

E. F. Codd, The relational model for database management: version 2.
USA: Addison-Wesley Longman Publishing Co., Inc., 1990.

T. Haerder and A. Reuter, “Principles of transaction-oriented database
recovery,” ACM Comput. Surv., vol. 15, p. 287-317, 12 1983.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436-444, 05 2015.

C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting unreasonable
effectiveness of data in deep learning era,” in Proceedings of the IEEFE
International Conference on Computer Vision (ICCV), 10 2017.

J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85-117, 2015.

A. Ivakhnenko, “Heuristic self-organization in problems of engineering
cybernetics,” Automatica, vol. 6, no. 2, pp. 207-219, 1970.

Y. LeCun, “1.1 deep learning hardware: Past, present, and future,” in
2019 IEEE International Solid-State Clircuits Conference - (ISSCC),

65

6. Conclusion

[11]

[12]

[19]

[20]

pp. 12-19, 2019.

H. Chen, O. Engkvist, Y. Wang, M. Olivecrona, and T. Blaschke, “The
rise of deep learning in drug discovery,” Drug Discovery Today, vol. 23,
no. 6, pp. 1241-1250, 2018.

O. B. Sezer, M. U. Gudelek, and A. M. Ozbayoglu, “Financial time
series forecasting with deep learning : A systematic literature review:
2005-2019,” Applied Soft Computing, vol. 90, p. 106181, 2020.

A. Gupta, A. Anpalagan, L. Guan, and A. S. Khwaja, “Deep learning
for object detection and scene perception in self-driving cars: Survey,
challenges, and open issues,” Array, vol. 10, p. 100057, 2021.

V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th international conference
on machine learning (ICML-10), pp. 807-814, 2010.

D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” 2016.

S.-i. Amari, “Backpropagation and stochastic gradient descent method,”
Neurocomputing, vol. 5, no. 4-5, pp. 185-196, 1993.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXi preprint arXiv:1412.6980, 2014.

K. O’Shea and R. Nash, “An introduction to convolutional neural net-
works,” 2015.

H. Salehinejad, S. Sankar, J. Barfett, E. Colak, and S. Valaee, “Recent
advances in recurrent neural networks,” 2018.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” CoRR,
vol. abs/1706.03762, 2017.

L. Floridi and M. Chiriatti, “Gpt-3: Its nature, scope, limits, and
consequences,” Minds and Machines, vol. 30, pp. 681-694, 12 2020.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training

66

[21]

[22]

[31]

6.1. Future Work

of deep bidirectional transformers for language understanding,” 2019.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfar-
dini, “The graph neural network model,” IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61-80, 2009.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A compre-
hensive survey on graph neural networks,” IEEFE Transactions on Neural
Networks and Learning Systems, vol. 32, no. 1, pp. 4-24, 2021.

G. Karystinos and D. Pados, “On overfitting, generalization, and ran-
domly expanded training sets,” IEEE Transactions on Neural Networks,
vol. 11, no. 5, pp. 1050-1057, 2000.

G. Somepalli, M. Goldblum, A. Schwarzschild, C. B. Bruss, and T. Gold-
stein, “Saint: Improved neural networks for tabular data via row atten-
tion and contrastive pre-training,” 2021.

S. O. Arik and T. Pfister, “Tabnet: Attentive interpretable tabular
learning,” 2020.

V. Borisov, T. Leemann, K. Sefler, J. Haug, M. Pawelczyk, and G. Kas-
neci, “Deep neural networks and tabular data: A survey,” CoRR,
vol. abs/2110.01889, 2021.

T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 16, ACM, Aug. 2016.

N. Lavraé, V. Podpe¢an, and M. Robnik-Sikonja, Machine Learning
Background, pp. 17-53. Cham: Springer International Publishing, 2021.

R. Shwartz-Ziv and A. Armon, “Tabular data: Deep learning is not all
you need,” Information Fusion, vol. 81, pp. 84-90, 2022.

W. Rawat and Z. Wang, “Deep convolutional neural networks for image
classification: A comprehensive review,” Neural computation, vol. 29,

no. 9, pp. 2352-2449, 2017.

D. Zhu, J. Chen, X. Shen, X. Li, and M. Elhoseiny, “Minigpt-4: En-

67

6. Conclusion

[37]

[41]

hancing vision-language understanding with advanced large language
models,” 2023.

A.F. Karr, A. P. Sanil, and D. L. Banks, “Data quality: A statistical
perspective,” Statistical Methodology, vol. 3, no. 2, pp. 137-173, 2006.

Y. Gorishniy, I. Rubachev, and A. Babenko, “On embeddings for numer-
ical features in tabular deep learning,” 2023.

I. Shavitt and E. Segal, “Regularization learning networks: deep learn-
ing for tabular datasets,” Advances in Neural Information Processing
Systems, vol. 31, 2018.

J. Yoon, Y. Zhang, J. Jordon, and M. Van der Schaar, “Vime: Ex-
tending the success of self-and semi-supervised learning to tabular do-
main,” Advances in Neural Information Processing Systems, vol. 33,
pp. 11033-11043, 2020.

B. Sun, L. Yang, W. Zhang, M. Lin, P. Dong, C. Young, and J. Dong,
“Supertml: Two-dimensional word embedding for the precognition on
structured tabular data,” in Proceedings of the IEEE/CVFE' conference
on computer vision and pattern recognition workshops, pp. 0-0, 2019.

Y. Zhu, T. Brettin, F. Xia, A. Partin, M. Shukla, H. Yoo, Y. A. Evrard,
J. H. Doroshow, and R. L. Stevens, “Converting tabular data into images
for deep learning with convolutional neural networks,” Scientific reports,
vol. 11, no. 1, p. 11325, 2021.

G. Badaro, M. Saeed, and P. Papotti, “Transformers for tabular data
representation: A survey of models and applications,” Transactions of
the Association for Computational Linguistics, vol. 11, pp. 227249, 2023.

J. Berant, D. Deutch, A. Globerson, T. Milo, and T. Wolfson, “Explaining
queries over web tables to non-experts,” 2018.

P. Yin, G. Neubig, W. Yih, and S. Riedel, “Tabert: Pretraining for joint
understanding of textual and tabular data,” CoRR, vol. abs/2005.08314,
2020.

J. Herzig, P. K. Nowak, T. Miiller, F. Piccinno, and J. M. Eisensch-

68

[47]

[48]

[52]

6.1. Future Work

los, “TAPAS: weakly supervised table parsing via pre-training,” CoRR,
vol. abs/2004.02349, 2020.

H. Tida, D. Thai, V. Manjunatha, and M. Iyyer, “TABBIE: pretrained
representations of tabular data,” CoRR, vol. abs/2105.02584, 2021.

7. Wang, H. Dong, R. Jia, J. Li, Z. Fu, S. Han, and D. Zhang, “Structure-
aware pre-training for table understanding with tree-based transformers,”
CoRR, vol. abs/2010.12537, 2020.

X. Huang, A. Khetan, M. Cvitkovic, and Z. S. Karnin, “Tabtrans-
former: Tabular data modeling using contextual embeddings,” CoRR,
vol. abs/2012.06678, 2020.

J. Chen, J. Yan, D. Z. Chen, and J. Wu, “Excelformer: A neural network
surpassing ghdts on tabular data,” 2023.

L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin,
“Catboost: unbiased boosting with categorical features,” 2019.

L. Getoor and B. Taskar, Introduction to Statistical Relational Learning.
The MIT Press, 08 2007.

J. H. Gallier, Logic for computer science: foundations of automatic
theorem proving. Courier Dover Publications, 2015.

S. Muggleton and L. De Raedt, “Inductive logic programming: Theory
and methods,” The Journal of Logic Programming, vol. 19, pp. 629-679,
1994.

S. Natarajan, T. Khot, K. Kersting, B. Gutmann, and J. Shavlik,
“Gradient-based boosting for statistical relational learning: The rela-

tional dependency network case,” Machine Learning, vol. 86, pp. 25-56,
2012.

S. Kramer, N. Lavrac, and P. Flach, Propositionalization Approaches
to Relational Data Mining, pp. 262-291. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2001.

The SQLNet Company GmbH, “getml.”

69

6. Conclusion

[53]

[54]

[55]

[56]

[61]

[62]

[63]

G. Sourek, F. Zelezny, and O. Kuzelka, “Beyond graph neural networks
with lifted relational neural networks,” Machine Learning, vol. 110,
p. 1695-1738, June 2021.

M. V. Franca, G. Zaverucha, and A. S. D’avila Garcez, “Fast relational
learning using bottom clause propositionalization with artificial neural
networks,” Mach. Learn., vol. 94, p. 81-104, jan 2014.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfar-
dini, “The graph neural network model,” IEFE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61-80, 2009.

M. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, 1. Titov,
and M. Welling, “Modeling relational data with graph convolutional
networks,” 2017.

Y. Feng, H. You, Z. Zhang, R. Ji, and Y. Gao, “Hypergraph neural
networks,” 2019.

M. Cvitkovic, “Supervised learning on relational databases with graph
neural networks,” 2020.

J. Bai, J. Wang, Z. Li, D. Ding, J. Zhang, and J. Gao, “Atj-net: Auto-
table-join network for automatic learning on relational databases,” in
Proceedings of the Web Conference 2021, WWW 21, (New York, NY,
USA), p. 1540-1551, Association for Computing Machinery, 2021.

M. Fey, W. Hu, K. Huang, J. E. Lenssen, R. Ranjan, J. Robinson,
R. Ying, J. You, and J. Leskovec, “Relational deep learning: Graph
representation learning on relational databases,” 2023.

F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and D. Vrgo¢, “Founda-
tions of json schema,” in Proceedings of the 25th International Conference
on World Wide Web, pp. 263-273, International World Wide Web Con-
ferences Steering Committee, 2016.

M. Fey and J. E. Lenssen, “Fast graph representation learning with
pytorch geometric,” 2019.

W. Hu, Y. Yuan, Z. Zhang, A. Nitta, K. Cao, V. Kocijan, J. Leskovec,

70

[64]

[75]

6.1. Future Work

and M. Fey, “Pytorch frame: A modular framework for multi-modal
tabular learning,” arXiv preprint arXiv:2404.00776, 2024.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” in NIPS-W, 2017.

N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using
siamese bert-networks,” 2019.

S. Lin, “Computer solutions of the traveling salesman problem,” Bell
System Technical Journal, vol. 44, no. 10, pp. 22452269, 1965.

A. Bundy and L. Wallen, Breadth-First Search, pp. 13-13. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1984.

W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” 2018.

Z. Hu, Y. Dong, K. Wang, and Y. Sun, “Heterogeneous graph trans-
former,” 2020.

K.-Y. Chen, P.-H. Chiang, H.-R. Chou, T.-W. Chen, and T.-H. Chang,
“Trompt: Towards a better deep neural network for tabular data,” 2023.

C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla, “Heteroge-
neous graph neural network,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery € Data Mining, KDD
'19, (New York, NY, USA), p. 793-803, Association for Computing
Machinery, 2019.

J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” 2016.

D. Aha, “UCI Machine Learning Repository.” UCI Machine Learning
Repository, 1987.

A. Johnson, L. Bulgarelli, T. Pollard, S. Horng, L. Celi, and R. Mark,
“Mimic-iv (version 1.0),” 2020.

J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network

71

6. Conclusion

78]

[79]

dataset collection.” http://snap.stanford.edu/datal June 2014.

W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open graph benchmark: Datasets for machine learning on
graphs,” 2021.

J. Motl and O. Schulte, “The CTU prague relational learning repository,”
CoRR, vol. abs/1511.03086, 2015.

M. Feurer and F. Hutter, Hyperparameter Optimization, pp. 3-33. Cham:
Springer International Publishing, 2019.

T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A
next-generation hyperparameter optimization framework,” 2019.

P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. 1. Jordan, and I. Stoica, “Ray: A
distributed framework for emerging ai applications,” 2018.

S. Toffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” 2015.

P.-T. de Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, “A
tutorial on the cross-entropy method,” Annals of Operations Research,
vol. 134, pp. 19-67, Feb 2005.

N. Séren, “Introducing FastProp: the fastest approach to propositional-
ization,” 6 2021.

M. V. Franca, G. Zaverucha, and A. Garcez, “Fast relational learning
using bottom clause propositionalization with artificial neural networks,”
Machine learning, vol. 94, no. 1, pp. 81-104, 2014.

D. Lindner, J. Kraméar, M. Rahtz, T. McGrath, and V. Mikulik, “Tracr:

Compiled transformers as a laboratory for interpretability,” arXiv
preprint arXiw:2301.05062, 2023.

72

http://snap.stanford.edu/data

Appendix A

Glossary

BFS Breadth-First Search.

CNN Convolutional Neural Network.

CSV Comma-separated values.

DL Deep Learning.

DNN Deep Neural Network.

GNN Graph Neural Network. 15, 42,

GPU Graphics processing unit.
i.i.d. independent and identically distributed.
JSON JavaScript Object Notation.

LLM Large Language Model.

73

A. Glossary

ML Machine Learning. |19
MLP Multilayer perceptron. 48| 50

MSE Mean squared error. {48

NN Neural Network. |7

PyFrame PyTorch Frame. [27

PyG PyTorch Geometric. 27

RDB Relational Database. |3

RDBMS Relational Database Management System. |2}, (6], [23] 24

SQL Structured Query Language. |6, 25|, [28

SRL Statistical Relational Learning. |15

TNN Tabular Neural Network. |16

74

Appendix B

Supplementary material

® All code used for this thesis can be found on GitHub repository
//github.com/jakubpeleska/deep—db-learning.

m All datasets used for the experiments with some additional information
can be found at https://relational.fel.cvut.cz

75

https://github.com/jakubpeleska/deep-db-learning
https://github.com/jakubpeleska/deep-db-learning
https://relational.fel.cvut.cz

x N Layers

B. Supplementary material

T R e e e Tl T B
1
: P"Table AT rTable B~ """ ; iTTable G
: —E—»:FFN + Residual + Normi ' FFN + Residual + Norm:w—i— l {FFN + Residual + Norm:w-i—
1 CoTTTTT £ Y 3 £ :
1 | [rows, cols, embed] ! [rows, cols, embed] ' | [rows, cols, embed] '
1 : ! ' : ‘
: Sum ' Sum . i Sum .
: E [rows, colls, embed] E [rows, colls, embed] [rows, colls, embed] E E [rows, colls, embed] :
' h i t ' h .
1 | ! ' 1 \
1 i Attention Sum ' [Attention Sum] e [Attention Sum] ' i Attention Sum i
: { e :
. : (“I') { ..I.) (.i.} B colsl, embled] xlrows) {l colsl, embled] xlrows) ! ' {4.I. H ..I.) (.r} |
1 Cross-Attention J -{I Cross-Attention|f Cross-Attentionl\: |_ Cross-Attention
1 ; PK(B) ; FK(A) FKC) T : PK(B) '
1 ' \/ H Iz AN ' H v !
1 | Queries ! Queries . ' Queries |
1 P S L [' . S j
1 '] Keys, Values | \.Keys, Values | | '
. ' \——— Transformer Encoder ——— Transformer Encoder '
1
1

' Keys | i] | Keys |
: I """"" Vales | .T """"" : Va'u_e§:::::::::j_:::::::::__=
b Identity : ‘ Identity : b Identity :
_________ g R RERRERERS
[rows, cols, embed] [rows, cols, embed] [rows, cols, embed]
e
Table 5 ; Table
Emebedder o=t motes Emebedder
\Time [Numerical] [Categorical]) Text
e 'AI' - K 4 k4 e 'y !
A : 1
date:time float int varchar
[1 11 : | | | [[T 1
Table A Table B Table C
PK PK Target FK(C) | FK(A) PK FK(A); [FK(A),
...... > 3
= =
-t .
Embedding Transforr.natllon Transformation Combination Aggregation
L or Combination

Figure B.1: An alternative depiction of Database Transformer (Sec. focusing
on the categories of functions used inside the blueprint modules (Sec. |4.2).

76

	Introduction
	Motivation
	Goals of the thesis

	Foundation
	Relational Databases
	Relational Database Management Systems
	SQL

	Deep Learning
	Training methods
	Variable Types
	Attention Mechanism
	Message-Passing

	Related fields of study
	Learning from Tabular Data
	Data Encoding Methods
	Transfomer-based Models

	Relational Learning
	Statistical Relational Learning
	Propositionalization
	Neuro-Symbolic Integration
	Graph Neural Networks
	Beyond Graph Neural Networks

	Deep Learning for Relational Databases
	Data Representation
	Heterogeneous Tabular Graph
	Schema Detection
	Data Loading
	Graph Construction
	Data Sampling

	The Blueprint
	Modules

	Blueprint Classes
	Embedders
	Inner Dimensionality
	Tabular Models

	Database Transformer
	Experimental Blueprint Instances
	Database Transformer Versions
	SAGE GNN
	SAINT
	Trompt
	TabNet
	TabTransformer

	Experiments
	Benchmark Datasets
	Existing Benchmark Datasets
	The CTU Prague Relational Learning Repository

	Hyperparameter Optimization
	Distributed Computing
	Tuning
	Aggregation

	Experiment Runs
	Tasks
	Environment
	Parametrization
	Overall Results
	Database Transformer Versions

	Conclusion
	Future Work
	Blueprint instances
	Enriching the RelBench Package
	Pre-training
	Temporal Data
	Attention encoding of SQL statements
	Real-world application

	Bibliography
	Glossary
	Supplementary material

