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Abstract

This thesis focuses on exploring several known quantum data encoding meth-
ods. Specifically, four data encoding methods are presented, each utilizing a
different approach to the representation of classical data using quantum states.
Namely, the basis, angle, amplitude, and divide-and-conquer data encoding
methods are discussed, with the divide-and-conquer encoding approach being
based on the amplitude encoding method. Each encoding technique is first
introduced and explained from a theoretical standpoint, with implications and
characteristics discussed in detail. The encoding approaches are compared in
terms of their qubit and gate complexities. The thesis comes with a repository
containing the Python implementation of each introduced encoding method,
with the implementation using the Qiskit library. Each encoding method is
tested using a small input on IBM Quantum hardware, and the outcomes are
compared with the expected results.

Keywords quantum state preparation, classical data embedding, basis
encoding, angle encoding, amplitude encoding, divide-and-conquer algorithm,
quantum circuit, Qiskit
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Abstrakt

Tato práce se zaměřuje na zkoumání několika známých způsobů kvantového
kódování dat. Konkrétně jsou představeny čtyři postupy kódování dat, z nichž
každý využívá jiný přístup k reprezentaci klasických dat pomocí kvantových
stavů. Konkrétně jsou probírány metody bazického, úhlového a amplitudového
kódování dat. Také je prezentována metoda kódování dat na základě principu
„rozděl a panuj“, přičemž tato metoda vychází z metody amplitudového kó-
dování. Každý způsob kódování je nejprve teoreticky představen a vysvětlen,
přičemž jsou podrobně rozebrány důsledky a vlastnosti. Jednotlivé kódovací
strategie jsou porovnány z hlediska počtu potřebných qubitů a hradel. Sou-
částí práce je repozitář obsahující implementaci každé představené strategie
kódování. Implementace využívá jazyk Python a knihovnu Qiskit. Všechny kó-
dovací metody jsou testovány prostřednictvím malého vstupu na kvantových
počítačích od IBM a výsledky jsou porovnány s očekávanými výsledky.

Klíčová slova příprava kvantového stavu, vkládání klasických dat, ba-
zické kódování, úhlové kódování, amplitudové kódování, algoritmus rozděl a
panuj, kvantový obvod, Qiskit
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Chapter 1

Introduction

“Embracing the ethos of effective accelerationism, we must propel humanity
forward with a zeal that challenges the very constraints of entropy. As we edge
closer to the epoch of singularity, it is not merely about the creation of AGI
with an inconceivable level of intelligence. The entire essence of humanity will
transcend, not just thwarting the decay and entropy of aging in the process
but leading to a state of eternal and infinite bliss. This pivotal juncture
in our evolution, driven by the principles of transhumanism, represents a
transformative leap towards an existence where limitations are but echoes of
our primitive past. Our journey is one of exponential growth, where every
step taken is a stride towards a future redefined by our boundless potential.”
– GPT-4o

To continue accelerating the recent expansion of large multimodal generative
AI models [1, 2], more advanced computational hardware is required as current
transistor technologies approach their physical limits [3]. Although innovations
still continue [4, 5], as proven by frequent releases of ever more capable AI
models [6], the insufficient capabilities of the currently available computational
resources are becoming more of a bottleneck with each passing model release
[7, 8]. This is further exacerbated by the fact that the global demand for state-
of-the-art AI hardware significantly outpaces the total production capacity [7],
thereby hindering the adoption and deployment of these technologies.

Furthermore, it is becoming increasingly challenging to shrink transistors–a
20th-century invention [8]–further down in size while at the same time boosting
their energy efficiency [3]. And focusing on the pressing mission of continually
improving their energy efficiency is paramount, in part due to the rapidly
raising number of data centers being erected across the globe [9, 10, 11], whose
total electricity consumption is beginning to spiral out of control [12, 13].

However, along with substantial innovations in current hardware, promis-
ing novel computational substrates stemming from technologies such as quan-
tum computing [14, 15] or thermodynamic computing [16] could help the in-
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2 Introduction

dustry leapfrog forward by overcoming these challenges, potentially ushering
in an entirely new era of computation and ubiquitous ASI [17].

1.1 Quantum machine learning
As a leading alternative to classical computing, the field of quantum comput-
ing has made profound advances in recent years [18, 19]. Quantum computers
allow for leveraging quantum mechanics to surpass some fundamental limita-
tions that classical computers’ transistor-based nature poses. In contrast to
algorithms in classical computing, quantum algorithms may utilize quantum
phenomena, such as quantum superposition and entanglement, to potentially
deliver significant speedups for certain types of calculations [14, 15, 20, 21].

Especially algorithms in the field of quantum ML typically use some in-
formation as input. That information, most often in the form of a dataset,
must somehow become represented in the state of a quantum system for any
quantum algorithm to be able to use it. This process of classical data repre-
sentation using quantum states, often called “the input problem”, is integral
and precedes any other computations [21], since some data must first be en-
coded into a quantum system for a quantum algorithm to process them. This
encoding process can be performed in a multitude of possible ways, possibly
significantly affecting subsequent algorithms that use the encoded data [22, 23].
On the other hand, “the output problem” arises when faced with the neces-
sity to extract processed data from a quantum state [21]. In summary, these
three actions are commonly performed when conducting ML computations on
quantum computers:

1. Encoding classical data into a quantum state in a way that the state fully
represents the data.

2. Utilizing the encoded data in a quantum algorithm that performs some
quantum operations and processes the encoded data by manipulating the
quantum state.

3. Measuring qubits either intermediately as the quantum state evolves or
after all computations are finished [24], and interpreting the measurement
results.

Each of these three actions holds importance, but this thesis aims to concen-
trate solely on the first one1, which is the concept of representing classical
data using quantum states. This concept is introduced in greater detail in the
following section, where the scope of the thesis is delineated by outlining the
main thesis objectives.

1The third action involves performing qubit measurements. In this thesis, qubit measure-
ments are also performed, but only to evaluate the performance of data encoding methods
(that are introduced in this thesis).
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1.2 Thesis scope
When given a dataset containing classical data and a quantum algorithm that
uses encoded data as input, identifying the optimal data encoding technique to
maximize the algorithm’s performance is a nontrivial task, and it is tempting to
neglect this process in favor of the “fun part”, which is designing and executing
algorithms that use encoded data2. This is because, as previously mentioned,
the performance of such algorithms can potentially be severely affected by the
choice of an encoding method. And encoding methods themselves may vary
drastically in the overhead they bring to a quantum circuit [25, 26]. This thesis
explores these concepts, with the principal focus of the thesis being to present
certain solutions to “the input problem”. One of the solutions introduced
is the divide-and-conquer state preparation algorithm [27], which is the main
inspiration for this thesis. Specifically, the main goals of the thesis are outlined
as follows:

Covering certain aspects of quantum computing needed in the later parts
of the thesis.

Presenting three common state preparation data encoding methods [25],
more precisely these three encoding methods:

the basis encoding method
the angle encoding method
the amplitude encoding method

Introducing the divide-and-conquer data encoding method [27] that is de-
rived from the amplitude encoding method.

Discussing the implementation of these four encoding methods.

Testing the encoding methods on real quantum hardware and evaluating
their performance.

Comparing the encoding methods in terms of their qubit and gate com-
plexities.

Discussing possible enhancements of the divide-and-conquer state prepara-
tion algorithm.

The thesis does not delve into anything that happens after data encoding.
It only centers on the representation of classical data using quantum states
that are created by using the four encoding methods mentioned in the list
above. Ordinarily, as mentioned before, the representation of classical data in
a quantum state is just the first step, after which a model uses the encoded
data, and then the measurement results are taken and interpreted.

2However, depending on the situation, it might be sufficient to use encoding methods
provided by quantum computing software development kits.
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1.3 Inspiration
This thesis is heavily inspired by the article named ”A divide-and-conquer
algorithm for quantum state preparation“, written by authors Israel F. Araujo,
Daniel K. Park, Francesco Petruccione, and Adenilton J. da Silva [27]. In this
article, the authors present a data encoding algorithm based on a divide-and-
conquer strategy. The main goal of this thesis, among other objectives, is to
explain this algorithm, implement it, compare its computational complexity
with other introduced encoding algorithms, and discuss possible improvements
to this algorithm.



Chapter 2

Quantum computing
preliminaries

The second chapter of this thesis provides some of the key theoretical concepts
in quantum computing that are fundamental to understanding the subsequent
parts of the thesis. Rather than serving as an introduction to quantum me-
chanics as a whole or as an exhaustive textbook-like introduction to quantum
computing, this chapter only introduces certain essential concepts in quantum
programming. A thorough introduction to quantum computing is beyond the
scope of this thesis; therefore, this chapter may not cover all of the theoretical
background needed for the subsequent thesis chapters. The concepts discussed
in this chapter are defined and concisely explained using primarily linear alge-
bra. Several sources were used when writing this chapter [25, 28]1.

2.1 Quantum states
This chapter starts by presenting the fundamental element of information in
quantum computing–a quantum bit, also known as qubit–and comparing it
to the classical bit.

2.1.1 Bit and qubit
In classical computing, the smallest unit of information is called a bit–a binary
digit. The capacity of a bit is limited, as its name implies, as it can hold only
a limited amount of information. It has the ability to exist in only one of two
states at any given time. This behavior becomes apparent in the following
note:

1For practical reasons, the sources are only mentioned here, at the beginning of this
chapter.

5



6 Quantum computing preliminaries

▶ Note 2.1 (Bit). A bit can be characterized as a vector of the vector space
over the finite field Z2. As a one-dimensional vector over Z2, a bit can be
represented simply as a scalar 0 or 1. ◀
In contrast to a bit, which can store one of two possible states, a qubit can store
one of infinite possible states (within certain constraints discussed below):

▶ Definiton 2.2 (Qubit). A qubit is a vector of the two-dimensional complex
inner product space C2, where C2 is also a two-dimensional Hilbert space. ◀

There is one significant distinction between bits and qubits that is apparent–
the ability to store one of the infinite possible states makes the qubit a much
more powerful unit of information than the bit. This is one of the biggest
advantages quantum computing brings compared to classical computing.

2.1.2 Basic concepts
In order to continue in this introductory chapter, several key quantum com-
puting concepts need to be explained first.
▶ Note 2.3 (Bra-ket notation and Hilbert space operations). Throughout this
entire thesis, elements of Hilbert spaces (denoted as H) are represented using
the notation explained in this note, also known as the bra-ket notation.

Cn,1 for column vectors:
This space consists of column vectors with n ∈ N rows and 1 column. It is
the standard representation of vectors in the Hilbert space H:

Cn,1 = Cn =

|ψ〉 =

ψ1

ψ2
...
ψn


∣∣∣∣∣∣∣∣∣ ψi ∈ C

 .

The vectors |ψ〉 are called kets (one such vector is called ket).

C1,m for row vectors:
This space consists of row vectors with 1 row and m ∈ N columns:

C1,n = {〈ϕ| = (ϕ1 ϕ2 . . . ϕm) | ϕi ∈ C} .

The vectors 〈ϕ| are called bras (one such vector is called bra).

Then, when having two kets |ψ〉 , |ϕ〉 ∈ Hn, n ∈ N, the ordinary vector
operations can be denoted as:

|ψ〉 =

ψ1
...
ψn

 , |ϕ〉 =

ϕ1...
ϕn

 , |ψ〉+ |ϕ〉 =

ψ1 + ϕ1
...

ψn + ϕn

 , α |ψ〉 =

αψ1
...

αψn

 .
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And their inner product is characterized as:

(|ψ〉 , |ϕ〉) = 〈ψ| · |ϕ〉 = 〈ψ|ϕ〉 = (ψ̄1 ψ̄2 · · · ψ̄n)


ϕ1

ϕ2
...
ϕn

 =

n∑
i=1

ψ̄iϕi,

where (|ψ〉 , |ϕ〉) denotes the inner product and ψ̄i denotes complex conju-
gate.

The outer product of |ψ〉 and 〈ϕ|, forming an n×n operator |ψ〉 〈ϕ| that
acts on the Hilbert space Hn,n, is characterized as:

|ψ〉 〈ϕ| =


ψ1

ψ2

...

ψn

 (ϕ̄1, ϕ̄2, . . . , ϕ̄n) =


ψ1ϕ̄1 ψ1ϕ̄2 · · · ψ1ϕ̄n

ψ2ϕ̄1 ψ2ϕ̄2 · · · ψ2ϕ̄n
...

... . . . ...

ψnϕ̄1 ψnϕ̄2 · · · ψnϕ̄n

 .

Given two vectors |ψ〉 ∈ V and |ϕ〉 ∈W , their tensor product is denoted
by |ψ〉 ⊗ |ϕ〉 and forms an element of V ⊗W .

The tensor product of vector spaces V and W , denoted as V ⊗W , is a
new vector space of the dimensions of V and W .
If {|vi〉} is a basis for V and {|wj〉} is a basis for W , then {|vi〉 ⊗ |wj〉}
is a basis for V ⊗W .

For example, if |ψ〉 =
(
ψ1

ψ2

)
and |ϕ〉 =

(
ϕ1

ϕ2

)
, their tensor product is:

|ψ〉 ⊗ |ϕ〉 =

(
ψ1

ψ2

)
⊗

(
ϕ1

ϕ2

)
=


ψ1

(
ϕ1

ϕ2

)

ψ2

(
ϕ1

ϕ2

)
 =


ψ1ϕ1

ψ1ϕ2

ψ2ϕ1

ψ2ϕ2

 .

The tensor product is a fundamental operation in quantum computing,
allowing the combination of vectors to produce larger vectors. This way,
qubits can be combined together, where if k qubits are combined, the
resulting vector’s length would equal 2k.
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Given two matrices A and B, where A is an m × n matrix and B is a
p× q matrix, then their tensor product is called the Kronecker product,
denoted as A⊗B, producing an mp× nq matrix given by:

A⊗B =


a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

... . . . ...
am1B am2B · · · amnB

 .

If A =

(
a11 a12

a21 a22

)
and B =

(
b11 b12

b21 b22

)
, their Kronecker product is:

A⊗B =


a11

(
b11 b12

b21 b22

)
a12

(
b11 b12

b21 b22

)

a21

(
b11 b12

b21 b22

)
a22

(
b11 b12

b21 b22

)
 =

=


a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22

 .

◀
▶ Note 2.4 (Computational basis). In a Hilbert space H = Cn, n ∈ N infinitely
many possible orthonormal bases exist (bases whose vectors are perpendicular
to each other and have a norm equal to one). In this thesis, only the standard
basis is used. That means that if, for example, n = 2, the standard basis
(|0〉 , |1〉) is used, where

|0〉 =
(
1
0

)
|1〉 =

(
0
1

)
.

If n = 4, the standard basis (|00〉 , |01〉 , |10〉 , |11〉) is used, where

|00〉 = |0〉 ⊗ |0〉 =


1
0
0
0

 , |01〉 = |0〉 ⊗ |1〉 =


0
1
0
0

 ,

|10〉 = |1〉 ⊗ |0〉 =


0
0
1
0

 , |11〉 = |1〉 ⊗ |1〉 =


0
0
0
1

 .
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In quantum computing, the standard basis vectors are often referred to as
computational basis states. These states are represented by binary strings
where each digit corresponds to the state of one qubit. For an n-qubit sys-
tem, each qubit can be in either the |0〉 or |1〉 state, leading to 2n possible
computational basis states.

Each binary digit in the string represents the state of an individual qubit.
The rightmost digit represents the state of the first qubit, the next digit to the
left represents the state of the second qubit, and so on. This is known as the
little-endian convention.
▶ Note 2.5. This thesis aims to use the little-endian convention in quantum
computations most of the time. However, the concept of endianness may be
confusing in some parts of the thesis, as many sources other than this thesis
explain quantum computing concepts using a different endianness convention,
namely the big-endian convention, where the rightmost digit in kets repre-
sents the first qubit. ◀
For instance, in a 3-qubit system, the state |100〉 = |1〉 ⊗ |0〉 ⊗ |1〉 means that
the first qubit is in state |1〉, the second qubit is in state |0〉, and the third
qubit is in state |1〉, and their tensor product is computed.

This binary representation extends naturally to any number of qubits. For
an n-qubit system, each computational basis state is a tensor product of n
individual qubit states. The general form of an n-qubit computational basis
state is:

|bnbn−1 · · · b2b1〉 = |bn〉 ⊗ |bn−1〉 ⊗ · · · ⊗ |b2〉 ⊗ |b1〉 ,

where each bi ∈ {0, 1} denotes the state of the i-th qubit.
This completes the explanation of computational basis states and their

notation. ◀
Getting back to the qubit, each qubit |ψ〉 ∈ C2 can be represented using the
above notation in the following way:

|ψ〉 = α |0〉+ β |1〉 ∈ C2, α, β ∈ C.

Thus, the qubit |ψ〉 can be characterized as being a linear combination of the
computational basis states |0〉 and |1〉. If α, β 6= 0, it is said that the qubit |ψ〉
is in a superposition of those basis states. The numbers α and β are called
amplitudes of the basis states. This characterization of a single qubit can
be extended to multiple qubits to create a definition of an arbitrary quantum
state.

2.1.3 General quantum state
The following definition describes a quantum state consisting of an arbitrary
number of qubits:
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▶ Definiton 2.6 (Pure quantum state). Let H be a Hilbert space such that
H = C2m = (C2)⊗m and a vector |ψ〉 ∈ H such that ‖ |ψ〉 ‖2 = 1. Then, |ψ〉
is called a pure quantum state (commonly referred to as simply a state) on
the space H, where |ψ〉 consists of m qubits. ◀

▶ Remark 2.7. Let H be a Hilbert space such that H = C2m , where the
standard computational basis is used. Based on the definition above, a state
|ψ〉 ∈ H can be characterized as the following linear combination of the stan-
dard basis states:

|ψ〉 =
2m∑
i=1

αi |ei〉 ,

where αi ∈ C are complex numbers also known as amplitudes and |ei〉 ∈ H
is the i-th computational basis state of the standard basis used by H. The
normalization condition from the definition must be satisfied, meaning that:

〈ψ|ψ〉 =
2n∑
i=1

|αi|2 = 1.

◀

▶ Example 2.8. For a two-qubit pure quantum state, a general formula can
be written as:

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 ,

where α00, α01, α10, α11 ∈ C. ◀

▶ Note 2.9. The definition defines a pure quantum state. However, not every
quantum state can be characterized by a vector, as not every quantum state
is pure. Some quantum states that cannot be characterized by the definition
above are referred to as mixed quantum states. The concept of mixed
quantum states goes beyond the scope of the thesis aims. However, it is briefly
touched upon in the subsection 3.30. ◀
It is essential to clarify why pure quantum states must be normalized to be
valid quantum states. In order to do that, the concept of measurements needs
to be explained first.

2.1.4 Measurements
In quantum computing, measurements are a fundamental aspect of extracting
information from qubits. A quantum computer performs operations on qubits,
evolving the state of the qubits through a series of transformations. However,
to retrieve information from these transformed qubits, they must be measured.
Measurement is the process by which each measured qubit collapses from a
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superposition of its basis states |0〉 or |1〉 to one of those states. The prob-
abilities of these outcomes depend on the amplitudes of the quantum state’s
superposition.

The Born’s rule provides a way to calculate the probabilities of obtaining
each possible outcome from a quantum measurement. For a pure quantum
state |ψ〉 expressed in the computational basis, the probability of measuring
a particular basis state |ei〉 is given by the square of the magnitude of the
corresponding amplitude αi. This is clearly depicted in the following definition:

▶ Definiton 2.10 (Measurement probability). Let |ψ〉 ∈ C2m , m ∈ N be a
pure quantum state characterized as:

|ψ〉 =
2m∑
i=1

αi |ei〉 ,

where αi ∈ C is the amplitude of the i-th computational basis state |ei〉 ∈ H (it
is assumed that the standard basis is in use).
Then, ∀i ∈ [1, 2n] ⊂ N a number P|ei⟩(|ψ〉) is defined such that

P|ei⟩(|ψ〉) = |αi|
2,

where P|ei⟩(|ψ〉) denotes the probability of the state |ψ〉 collapsing into the i-th
basis state |ei〉 when all qubits of |ψ〉 are measured.

Moreover, let |ϕ〉 ∈ C2m be another pure quantum state. Then, a number
P|ϕ⟩(|ψ〉) is defined such that

P|ϕ⟩(|ψ〉) = |(|ϕ〉 , |ψ〉)|2.

The value P|ϕ⟩(|ψ〉) represents the probability of obtaining the state |ϕ〉 after
all qubits of |ψ〉 are measured. This equation is called the Born rule. ◀

▶ Remark 2.11. The Born rule calculates probabilities, and all probabilities
are real numbers ranging from 0 to 1. That means that The Born rule ensures
that the probabilities of all possible outcomes sum to 1, as required by the
normalization condition of the quantum state:

2n∑
i=1

|αi|2 = 1.

Below is an example of this characteristic on a single-qubit quantum state
|ψ〉 ∈ C2, represented as |ψ〉 = α |0〉 + β |1〉 , α, β ∈ C. If this qubit is
measured, the probability of measuring the state |0〉 is equal to |α|2:

P|0⟩(|ψ〉) = |(|0〉 , |ψ〉)|2 = |(|0〉 , α |0〉+ β |1〉)|2 =

= |α(|0〉 , |0〉) + β(|0〉 , |1〉)|2 = |α|2.
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Analogically, the probability of measuring the state |1〉 is equal to |β|2. No
other measurement outcomes are possible, and the sum of the probabilities of
all possible events must add up to 1. Therefore:

P|ψ⟩(|ψ〉) = |(|ψ〉 , |ψ〉)|2 = |α|2 + |β|2 = 1.

Thus, the state vector representing the qubit |ψ〉 must be normalized so that
its magnitude is 1.

It should also be observed that post-measurement, all amplitudes become
zero except for one. Consequently, the qubit ceases to be in a superposition,
independent of its initial state. A collapse into the state corresponding to
the measured value has occurred, and the original state can no longer be
reconstructed. The same is true for multi-qubit states. ◀
▶ Note 2.12. In the context of quantum measurements, it should be noted
that not all qubits of a quantum state are required to be measured every time.
Information can be extracted from only a subset of the qubits. When a subset
of qubits is measured, the state of the remaining qubits collapses accordingly,
based on the outcome of the measured subset.

If a quantum state |ψ〉 ∈ C2n is considered, it is a superposition of n
qubits. By measuring only a subset of these qubits, the entire state collapses
into a state consistent with the measurement outcomes, but only the measured
qubits provide direct information. The state of the unmeasured qubits becomes
a conditional state, determined by the measurement results.

For example, if |ψ〉 is a two-qubit quantum state such as:

|ψ〉 = α |00〉+ β |01〉+ γ |10〉+ δ |11〉 ,

and only the first qubit is measured, the state collapses to either |0〉 or |1〉
for the first qubit. The probabilities of these outcomes are |α|2 + |γ|2 and
|β|2 + |δ|2, respectively. If the first qubit is measured and found to be |0〉, the
state of the system collapses to:

|ψ∗0〉 =
α |00〉+ γ |01〉√
|α|2 + |γ|2

.

Here, |ψ∗0〉 represents the conditional state of the second qubit, given that the
first qubit was measured as |0〉.

This process illustrates that measurements can be partial, and the state
of the unmeasured qubits remains in a conditional superposition based on the
measurement outcomes of the measured qubits. Such selective measurement
is crucial in some quantum algorithms (such as the final encoding method
presented in this thesis), where only specific information must be extracted. ◀
▶ Note 2.13 (Visualization of probabilities). The probabilities calculated using
Born’s rule can be effectively visualized using histograms. A histogram rep-
resents the distribution of probabilities for different measurement outcomes.
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Each bar in the histogram corresponds to a basis state, and the height of the
bar represents the probability of the quantum state collapsing to that basis
state upon measurement.

For example, if the following two-qubit quantum state is considered:

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 ,

the histogram depicting all possible measurement outcomes would have four
bars, one for each of the states |00〉, |01〉, |10〉, and |11〉. The height of each
bar would be given by |α00|2, |α01|2, |α10|2, and |α11|2, respectively.

In one of the last chapters of this thesis (5), histograms are used to present
and analyze the results of the measurements for various encoding methods. By
visualizing the probabilities, insight can be gained into the behavior of the data
encoding methods. Furthermore, the histograms presented in that chapter aid
in comparing theoretical predictions with actual experimental results. Any
discrepancies between expected and observed outcomes can indicate issues in
the state preparation process. ◀

2.1.5 Qubit entanglement
Qubit entanglement is one of the phenomena present in quantum computing.
It describes a situation where two or more qubits become correlated in such
a way that the state of each qubit cannot be described independently of the
state of the others.

▶ Definiton 2.14 (Entangled quantum state). A quantum state consisting of
multiple qubits is considered entangled if it cannot be described as a tensor
product of the states of its individual qubits. ◀

In contrast, a quantum state is non-entangled, or separable if it can be
written as a tensor product of the states of its individual qubits. For example,
the state:

|010〉 = |0〉 ⊗ |1〉 ⊗ |0〉

is not entangled, as it is simply the tensor product of individual states.

An example of entangled states would be so-called Bell states. There are
four Bell states, but the most commonly referenced one is the following:

|Φ+〉 = 1√
2
(|00〉+ |11〉).

This state cannot be decomposed into the product of individual qubit states,
demonstrating its entanglement. In this state, if the first qubit is measured
and found to be in state |0〉, the second qubit will also be in state |0〉. Similarly,
if one of the qubits is measured in state |1〉, the other qubit would also be in
state |1〉. Some of the encoding methods this thesis introduces prepare states
where the qubits are entangled.
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2.1.6 Global and relative phase
Valid quantum states are normalized so that they have a magnitude of 1. Let
|ψ〉 be a quantum state. Then, ∀α ∈ C, the following is true:

‖α |ψ〉 ‖ =
√
(α |ψ〉 , α |ψ〉) =

√
ᾱα(|ψ〉 , |ψ〉) = |α| · ‖ |ψ〉 ‖ = |α|.

To ensure that α |ψ〉 is a valid quantum state, it must be true that |α| = 1.
Let there be |ψ〉 , |ϕ〉 ∈ Cn and α ∈ C such that |α| = 1. Then, the Born

rule is used on α |ψ〉 and |ϕ〉, resulting in the following expressions being true:

P|ϕ⟩(α |ψ〉) = | 〈ϕ| (α |ψ〉)|2 = |α〈ϕ|ψ〉|2 = |α|2|〈ϕ|ψ〉|2 = |〈ϕ|ψ〉|2 = P|ϕ⟩(|ψ〉).

The previous equality holds for all possible states |ϕ〉. Thus, the vectors |ψ〉 and
α |ψ〉 cannot be distinguished by a measurement and therefore are considered
identical. The multiplier α where |α| = 1 is called the global phase.

Therefore, multiplying states by a global phase does not change the mea-
surement outcomes. However, when only some state amplitudes are multiplied
(by some number), that may often introduce changes that result in different
measurement outcomes. When an amplitude is modified (assuming that the
resulting state is still normalized), such a modification is called a change in
the relative phase because a certain amplitude is being modified relative to
other amplitudes.

2.2 Qubit visualization and Bloch sphere
As explained in the first section (2.1.1) of this chapter, in classical computing,
the state of a bit is straightforward. It does not require special visualization
to understand its state, as it can only be in one of two states. However, in
quantum computing, qubits represent complex quantum states that can exist
in superpositions of 0 and 1. Visualizing these states could significantly aid in
understanding the behavior and properties of qubits.

A useful and commonly employed method for visualizing qubit states is
called the Bloch sphere representation. The Bloch sphere provides a geomet-
rical representation of the pure state of a single qubit. In this representation,
any such state can be depicted as a point on the surface of the unit sphere.
In such a representation, a single qubit |ψ〉 can be expressed using two param-
eters, θ and ϕ, which correspond to the spherical coordinates on the Bloch
sphere. This parametrization is given by:

▶ Definiton 2.15 (Bloch sphere parametrization). Let H represent a two-
dimensional Hilbert space H = C2 and a state |ψ〉 ∈ H. The state |ψ〉 can be
represented using the following parametrization:

|ψ〉 = cos

(
θ

2

)
|0〉+ eiϕ sin

(
θ

2

)
|1〉 , θ ∈ [0, π), ϕ ∈ [0, 2π).

◀
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This parametrization can then be used to visualize the state of a qubit on the
unit sphere. In this representation:

θ is the polar angle, which ranges from 0 to π.

ϕ is the azimuthal angle, which ranges from 0 to 2π.

The Bloch sphere allows for a clear and intuitive visualization of a qubit’s
state:

The north pole of the Bloch sphere represents the state |0〉.

The south pole represents the state |1〉.

Any point on the surface of the sphere represents a pure qubit state, which
is a superposition of the states |0〉 and |1〉.

For example:

When θ = 0 and ϕ = 0, the qubit is in the state |0〉.

When θ = π and ϕ = 0, the qubit is in the state |1〉.

When θ = π
2 and ϕ = 0, the qubit is in the state 1√

2
(|0〉+ |1〉).

When θ = π
2 and ϕ = π, the qubit is in the state 1√

2
(|0〉 − |1〉).

Understanding and utilizing the Bloch sphere visualization may help in gaining
deeper insights into the nature of qubit states, superposition, and the impact
of various quantum operations.

2.3 Quantum gate and quantum circuit
In classical computing, logical gates are utilized when performing bits-based
operations. In quantum computing, quantum states and qubits can be manip-
ulated using unitary operators:

▶ Definiton 2.16 (Unitary operator). Let H be a Hilbert space. An operator
U : H → H is called unitary if it satisfies the following conditions:

1. Preservation of the inner product ∀x, y ∈ H,

(Ux,Uy) = (x, y)

2. Surjectivity of U , which implies that ∀y ∈ H, ∃x ∈ H : Ux = y.

These properties ensure that U is also invertible, with the inverse U−1 being
equal to the Hermitian adjoint U † (conjugate transpose) of U , hence:

UU † = U †U = I,

where I is the identity operator on H. ◀
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Those unitary operators that are used in quantum computing are then called
quantum gates. To be more precise:

▶ Definiton 2.17 (Quantum gate). Let there be a 2n-dimensional Hilbert
space H = C2n, where n ∈ N and a unitary operator U : H → H. U is then
called a quantum gate. ◀

In practice, quantum computers can have tens or even hundreds of qubits.
Quantum gates, or simply gates, are unitary operators that manipulate these
qubits. However, typically, gates operate only on a subset of all available
qubits, not on all qubits.
▶ Note 2.18 (Quantum circuit). In a quantum system with n qubits, the initial
state of such a system, denoted as |ψ0〉, is described as |ψ0〉 = |0〉⊗n in the
Hilbert space H = C2n . In this initial state, each qubit is in the state |0〉 ∈ C2.
Then, one or more gates may or may not be applied to each qubit or to multiple
qubits, producing the final state |ψ〉 ∈ H. This results in the use of m unitary
operators of various sizes (the maximal size of an operator can be 2n x 2n

when it affects all qubits by acting on H), where each operator affects one or
more qubits. Due to each gate being unitary, after all gates are applied, the
resulting quantum state |ψ〉 ∈ H that represents the entire quantum system of
n qubits can be described as one single unitary operator U : H → H applied
on the whole initial state |ψ0〉:

|ψ〉 = U |ψ0〉 ,

where the operator U is just a product of all m individual gates (where each
gate is appropriately enlarged using the tensor product with the identity oper-
ators). The operator U is then referred to as quantum circuit. Moreover:

The number of qubits the operator U affects (in this case n) is called the
width of the quantum circuit.

The depth of the quantum circuit is the number of gates that affect the
qubit that has the most gates affecting it out of all the qubits. This is a
vague description, so the use of this term is contextually dependent.

◀
▶ Note 2.19. All gates defined in the following two sections are defined in the
standard basis, which means the (|0〉 , |1〉) basis for one-qubit operators and
the (|00〉 , |01〉 , |10〉 , |11〉) basis for two-qubit operators. ◀

2.4 One-qubit quantum gates
In this section, the smallest possible gates are introduced. A gate is the smallest
possible if it affects only one qubit. These gates are crucial for various quantum
applications, as they allow precise control over the state of a single qubit.
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Some single-qubit gates are more commonly used than others. For a one-qubit
quantum state |ψ〉 = α |0〉+β |1〉 ∈ C2, this section introduces several quantum
gates that are among the most widely used2.

2.4.1 Gate X

A classical bit b can be inverted using the logical NOT gate: b
NOT−−−→ ¬b.

In quantum computing, an analogous quantum gate to the logical NOT gate
would need to invert the state of a qubit: |0〉 ↔ |1〉, |1〉 ↔ |0〉. A unitary
operator acting this way is labeled as X. This gate needs to act as follows:
X |0〉 = |1〉, X |1〉 = |0〉. This behavior is achievable by using the following
matrix that represents the gate X:

▶ Definiton 2.20 (Gate X). Let there be a two-dimensional Hilbert space
H = C2. The following quantum gate is defined:

X : H → H, X =

(
0 1
1 0

)
.

◀

The figure below depicts this gate being applied to a qubit in a one-qubit
quantum circuit:

Figure 2.1 A visualization of the gate X applied to a qubit in a one-qubit quantum
circuit created using the Qiskit library.

▶ Corollary 2.21. Let |ψ〉 = (α β)T ∈ C2 be a one-qubit quantum state.
Then: X |ψ〉 = X(α |0〉+ β |1〉) = ( 0 1

1 0 ) (
α
β ) = ( βα ).

The gate X does indeed swap the first and the second element of |ψ〉. ◀

It should be noted that the gate X possesses several unique properties. It is
a Hermitian operator (X† = X), it is involutory (X2 = I), it has a determinant
of −1 and its eigenvalues are ±1. This gate is not a single gate with these
properties. In fact, this unitary operator is one of three unitary operators that
share these exact properties, and they are represented by matrices called the
Pauli matrices, denoted as σx, σy, σz. The gate X is represented by the Pauli
matrix σx.

2For the sake of brevity, this section is not exhaustive in terms of the number of commonly
used gates it introduces. It only introduces the gates that are directly used in the encoding
methods presented further in this thesis.



18 Quantum computing preliminaries

2.4.2 Gate Y
The next Pauli matrix, σy, specifies a gate called the gate Y :

▶ Definiton 2.22 (Gate Y). Let there be a two-dimensional Hilbert space
H = C2. The following quantum gate is defined:

Y : H → H, Y =

(
0 −i
i 0

)
.

◀

The image below illustrates the application of this gate to a qubit within a
single-qubit quantum circuit:

Figure 2.2 A visualization of the gate Y applied to a qubit in a one-qubit quantum
circuit created using the Qiskit library.

▶ Corollary 2.23. Let |ψ〉 = (α β)T ∈ C2 be a one-qubit quantum state.
Then: Y |ψ〉 = Y (α |0〉+ β |1〉) =

(
0 −i
i 0

)
( αβ ) =

(−iβ
iα

)
.

The gate Y acts on the state |ψ〉 in following ways:

It affects the state in the same way as the gate X does–by switching the
elements.

It negates the first element of the state. Negating the first element’s ampli-
tude effectively shifts its relative phase by π radians relative to the second
element’s relative phase.

It acts on the whole state with a global phase shift by adding a complex part
i to both amplitudes, which corresponds to a phase shift of π/2 radians.

So, the resulting phase shifts are 3π/2 = −π/2 on the first state vector element
and π/2 on the second one. ◀

2.4.3 Gate Z
Lastly, the σz matrix completes the set of Pauli matrices. This final Pauli
matrix represents the gate Z:

▶ Definiton 2.24 (Gate Z). Let there be a two-dimensional Hilbert space
H = C2. The following quantum gate is defined:

Z : H → H, Z =

(
1 0
0 −1

)
.

◀
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Presented below is an illustration depicting the application of this gate to a
qubit in a quantum circuit containing one qubit:

Figure 2.3 A visualization of the gate Z applied to a qubit in a one-qubit quantum
circuit created using the Qiskit library.

▶ Corollary 2.25. Let |ψ〉 = (α β)T ∈ C2 be a one-qubit quantum state.
Then: Z |ψ〉 = Z(α |0〉+ β |1〉) =

(
1 0
0 −1

)
( αβ ) = ( α

−β ).

This gate affects the state by shifting the second element’s relative phase by
π radians. ◀

The effect of these gates (or any single-qubit gates, for that matter) can be
visualized using the Bloch sphere. The effect of any single-qubit quantum gate
can be visualized on the Bloch sphere. The reason why the gates X, Y , and
Z are called that way is because they are known for rotating quantum states
around the X, Y , and Z axes of the Bloch sphere, respectively. However,
these rotations are fixed to specific angles, meaning they flip the state of a
qubit along the respective axes–for instance, the gate X acts by flipping the
state around the X-axis. The gates Y and Z similarly rotate the state around
the Y and Z axes, respectively.

While any one-qubit quantum state can be created by using these fixed-
angle rotations in combination, it requires careful computation to determine
the precise sequence of the gates X, Y , and Z to achieve the desired state.
In many quantum algorithms, it is advantageous to generalize these rotations
to allow for arbitrary angles. This generalization would not only simplify the
process of state preparation, but would also significantly reduce the computa-
tional overhead since a single application of a generalized gate could achieve
the desired state much more quickly. Such flexibility would allow for more
precise control over the rotations. The gates that accomplish this goal exist;
they are introduced in the following subsection.

In this subsection, generalized rotational gates are presented that allow
the rotation of qubits around the X, Y , and Z axes of the Bloch sphere by a
given angle. The first generalized rotational gate is a gate called RX, which
generalizes the gate X.

2.4.4 Gate RX
The gate RX rotates a qubit state around the X-axis of the Bloch sphere
by an arbitrary angle θ. This gate is an essential component in quantum
computing as it allows for the creation of superposition states and facilitates
the implementation of arbitrary rotations.
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▶ Definiton 2.26 (Gate RX). Let there be a two-dimensional Hilbert space
H = C2 and a given angle θ ∈ R. The following quantum gate is defined:

RX(θ) : H → H, RX(θ) =

 cos
(
θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos
(
θ
2

)
 .

◀
Below is a diagram showing how this gate is illustrated when applied to a qubit
within a single-qubit quantum circuit and also a diagram where the effect of
this gate on an initial state |0〉 is visualized using the Bloch sphere:

Figure 2.4 A visualization of the gate RX(π) applied to a qubit in a one-qubit
quantum circuit created using the Qiskit library.

Figure 2.5 A visualization using the Bloch sphere of the gate RX(π) applied to a
qubit in a one-qubit quantum circuit, where the qubit is initially in the state |0〉 (gray
arrow). This outcome is equivalent to the application of the standard gate X on the
state |0〉.

2.4.5 Gate RY
The gate RY performs a rotation around the Y -axis of the Bloch sphere by a
given angle θ. This gate, like the gate RX, is crucial for generating superposi-
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tions and for enabling arbitrary single-qubit transformations. This capability
is particularly useful in quantum algorithms that require rotations in the Y -
axis, as is the case in most of the encoding methods presented in this thesis.

▶ Definiton 2.27 (Gate RY). Let there be a two-dimensional Hilbert space
H = C2 and a given angle θ ∈ R. The following quantum gate is defined:

RY (θ) : H → H, RY (θ) =

cos
(
θ
2

)
− sin

(
θ
2

)
sin
(
θ
2

)
cos
(
θ
2

)
 .

◀

The following figure depicts the representation of this gate when it is used on
a qubit in a single-qubit quantum circuit:

Figure 2.6 A visualization of the gate RY
(
π
2

)
applied to a qubit in a one-qubit

quantum circuit created using the Qiskit library.

Figure 2.7 A visualization using the Bloch sphere of the gate RY (π) applied to a
qubit in a one-qubit quantum circuit, where the qubit is initially in the state |0〉 (gray
arrow). This outcome is equivalent to the application of the standard gate Y on the
state |0〉.
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2.4.6 Gate RZ
The gate RZ completes the set of arbitrary single-qubit rotational gates. It is
used to perform a rotation around the Z-axis of the Bloch sphere by an angle
θ. This gate is particularly important for adjusting the phase of quantum
states. The gate RZ changes the relative phase between the basis states |0〉 and
|1〉, which is crucial in many quantum algorithms that involve phase-sensitive
operations.
▶ Definiton 2.28 (Gate RZ). Let there be a two-dimensional Hilbert space
H = C2 and a given angle θ ∈ R. The following quantum gate is defined:

RZ(θ) : H → H, RZ(θ) =

(
e−i

θ
2 0

0 ei
θ
2

)
.

◀
The figure below illustrates how this gate is represented when applied to a
qubit within a single-qubit quantum circuit:

Figure 2.8 A visualization of the gate RZ
(
π
4

)
applied to a qubit in a one-qubit

quantum circuit created using the Qiskit library.

Figure 2.9 A visualization using the Bloch sphere of the gate RZ(π) applied to
a qubit in a one-qubit quantum circuit, where the qubit is initially in the state |−y〉
(gray arrow). This outcome is equivalent to the application of the standard gate Z on
the state |−y〉.
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Now, all single-qubit gates are defined and established3. Using these gates,
any single-qubit quantum state can be prepared. However, if states of multiple
qubits need to be prepared, certain multi-qubit states cannot be created using
only these single-qubit gates. This limitation arises because the interactions
and entanglements required for multi-qubit states extend beyond the capability
of single-qubit operations. Therefore, multi-qubit gates exist to facilitate these
more complex operations that span more than one qubit. The next section
introduces some of these essential multi-qubit gates.

2.5 Two-qubit quantum gates
In quantum computing, the ability to manipulate and entangle multiple qubits
is essential to perform more complex computations and implement various
quantum algorithms. While single-qubit gates allow for the preparation and
manipulation of individual qubit states, they are insufficient for creating entan-
glement between qubits or for performing operations that involve interactions
between multiple qubits. This is where two-qubit gates become crucial.

Two-qubit gates enable the entanglement of qubits, a fundamental aspect
in quantum computing that allows qubits to exhibit correlations that are not
possible in classical systems. These gates also facilitate operations that involve
conditional logic, where the state of one qubit can influence the operation
performed on another qubit. Such interactions are vital for implementing
some of the data encoding methods discussed in this thesis.

The main purpose of this section is to introduce the most widely known
two-qubit gate, presenting its definition, properties, and the role it plays in
quantum computing. That gate is referred to as the gate CX.

2.5.1 Gate CX
In a nutshell, this gate is a two-qubit version of the gate X, where the gate X
is applied to one qubit only when the other qubit is in the state |1〉. Its name
is CX because the gate X is conditionally applied to one of the qubits, and
the letter “C” at the beginning is an abbreviation for the word “controlled”.
This gate is also alternatively known as the gate CNOT.

The gate CX is one of the most fundamental and widely used two-qubit
gates in quantum computing. It serves as the quantum analog of the classical
XOR gate and plays a crucial role in creating entanglement between qubits.

In this gate, one qubit is designated as the control qubit and the other
as the target qubit. The operation of the gate is such that it applies the gate
X to the target qubit only when the control qubit is in the state |1〉. If the
control qubit is in the state |0〉, the target qubit remains unchanged. And when
it is said that a control qubit “is in the state”, it means that hypothetically,

3Ones that are used in this thesis.
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if measured, the control qubit collapses to either |0〉 or |1〉, with the gate
operation on the target qubit reflecting on this collapse and either applying
the controlled operation or not applying it, based on collapsed state.

The ability of the gate CX to entangle qubits is a critical aspect of its
functionality. When applied to a pair of qubits where the control qubit is in
a superposition state, this gate entangles the two qubits. For example, if the
control qubit is in the state 1√

2
(|0〉 + |1〉) and the target qubit is initially in

the state |0〉, the gate CX transforms the combined state into the entangled
state 1√

2
(|00〉+ |11〉). This gate is formally defined below:

▶ Definiton 2.29 (Gate CX). Let there be a four-dimensional Hilbert space
H = C4. The following quantum gate is defined:

CX : H → H, CX = I ⊗ |0〉 〈0|+X ⊗ |1〉 〈1| =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 .

◀

▶ Note 2.30. The definition above assumes that the little-endian convention
is used where the least significant qubit is chosen as the control qubit. ◀
The following figure demonstrates the representation of this gate when used in
a two-qubit quantum circuit:

Figure 2.10 A visualization of the gate CX applied to a two-qubit Qiskit quantum
circuit, with the qubit q1 serving as the target qubit and the qubit q0 as the control
qubit.

2.5.2 Gate SWAP
The gate called SWAP is another important two-qubit gate in quantum com-
puting. Its primary function is to exchange the states of two qubits. This gate
is particularly useful in quantum circuits for rearranging qubits and ensuring
that the correct qubits are in the right positions for subsequent operations.

The gate SWAP can be decomposed into a series of three gates CX. This
decomposition is significant because it demonstrates that the SWAP operation
can be implemented using the more fundamental gate CNOT. The sequence
of operations for the gate SWAP using gates CX is as follows:
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1. The gate CX with the first qubit as the control qubit and the second qubit
as the target qubit is applied.

2. Another gate CX is applied with the second qubit as the control qubit and
the first qubit as the target qubit.

3. The third gate CX is applied in the same way as the first was.

These three gate applications can be combined into one gate SWAP, with its
matrix representation defined below:

▶ Definiton 2.31 (Gate SWAP). Let there be a four-dimensional Hilbert
space H = C4. The following quantum gate is defined:

SWAP : H → H, SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

◀

The following figure demonstrates the representation of this gate when used in
a two-qubit quantum circuit:

Figure 2.11 A visualization of the gate SWAP applied to a two-qubit quantum
circuit created using the Qiskit library.

Thus, the gate SWAP effectively exchanges the states of two given qubits. In
summary, this gate is essential for reordering qubits in a quantum circuit. Its
implementation using the gates CX highlights the utility of the gate CX as
a building block for more complex quantum operations. Understanding this
gate is crucial for one of the data encoding methods presented in this thesis.

2.6 State preparation quality evaluation
In quantum computing, it is often necessary to evaluate how different two
quantum states are from each other. This evaluation is particularly impor-
tant for state preparation, where a desired quantum state is specified, and
the actual state produced by quantum gates needs to be compared to this
target state. Accurate state preparation is crucial for the reliability and effi-
ciency of quantum algorithms and applications that require high-quality state
preparation.
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One significant application where state preparation quality evaluation is
essential is data encoding, which is the focus of this thesis. In such scenarios,
the fidelity of the encoded data compared to the expected results directly
impacts the performance and accuracy of subsequent algorithms that process
the encoded data. For instance, if data is encoded into quantum states for
processing or storage, it is vital to ensure that the states have been prepared
accurately to maintain data integrity.

In this section, two quality evaluation methods are presented. These meth-
ods provide the necessary tools to quantify the extent of differences between
quantum states, ensuring that the prepared states meet the desired criteria.
The use of these metrics allows for the assessment and evaluation of state
preparation techniques, which is a focal point of interest in this thesis.

2.6.1 State fidelity
State fidelity is a widely used metric for quantifying the similarity between two
quantum states. It is particularly useful for evaluating the accuracy of state
preparation in quantum computing. For two pure quantum states, |ψ〉 and |ϕ〉,
the fidelity F is defined as the absolute square of the inner product between
these states:

▶ Definiton 2.32. Let there be a Hilbert space H = (C2)⊗n, n ∈ N and two
pure quantum states |ψ〉 , |ϕ〉 ∈ H. Then, the fidelity between these two states
F (|ψ〉 , |ϕ〉) is defined as follows:

F (|ψ〉, |ϕ〉) = |〈ψ|ϕ〉|2. ◀
This formula provides a measure of how close the state |ψ〉 is to the state
|ϕ〉. The fidelity ranges from 0 to 1, where F = 1 indicates that the states
are identical, and F = 0 indicates that the states are orthogonal and thus
completely different.

In the context of state preparation, fidelity can be used to compare a
prepared quantum state |ψprepared〉 with the desired target state |ψtarget〉. High
fidelity indicates that the prepared state is very close to the target state, which
is crucial for the accuracy and reliability of quantum computations and data
encoding processes.

2.6.2 Trace Distance
The trace distance is another important metric that is used to quantify the
difference between two quantum states. It is defined as follows:

▶ Definiton 2.33. Let there be a Hilbert space H = (C2)⊗n, n ∈ N and two
pure quantum states |ψ〉 , |ϕ〉 ∈ H. Then, the trace distance between these two
states D(|ψ〉 , |ϕ〉) is defined as follows:

D(|ψ〉 , |ϕ〉) =
√
1− F (|ψ〉 , |ϕ〉)
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where F (|ψ〉 , |ϕ〉 is the fidelity between the two states. ◀

The trace distance ranges from 0 to 1, where D = 0 indicates that the states are
identical, and D = 1 indicates that the states are completely distinguishable.
A small trace distance indicates that the prepared state is close to the target
state, which is important for ensuring the accuracy of the data representation.

Both fidelity and trace distance provide valuable insights into the quality
of quantum state preparation. By using these metrics, the performance of the
encoding methods introduced in this thesis is evaluated.

This marks the conclusion of the introductory chapter 4.

4This chapter has been designed to present certain essential foundational concepts of
quantum computing necessary to comprehend the topics explored in the ensuing chapters.
Although not all preliminary aspects of quantum computing have been addressed within this
chapter, and those that have been introduced were presented in a simplified manner, delving
further into the extensive array of basic concepts would not only extend beyond the intended
scope of this thesis, but would also offer limited additional informational value to the overall
discourse. Therefore, the aim of this chapter was to strike a deliberate balance, providing
some requisite knowledge to engage with the discussions that follow.



Chapter 3

Data encoding methods

As described in section Thesis scope (1.2), the primary goal of this thesis is to
introduce certain data encoding solutions. More precisely, this chapter is fully
devoted to introducing these four data encoding methods [25, 27, 26, 29, 30]:

1. The basis encoding method.

2. The angle encoding method.

3. The amplitude encoding method.

4. The divide-and-conquer encoding method (based on the amplitude encod-
ing method).

All of these data encoding techniques are introduced by defining and describing
them one by one in the order they appear in the list above. After explaining
these encoding methods in this chapter, they are then used in the following
chapters, where their implementation is discussed, and their real hardware
performance is examined. This chapter starts by presenting the most simple
encoding method of all four–the basis encoding method.

3.1 Basis encoding method
Let s be a datapoint in the simplest form possible–a binary string, only contain-
ing either 0 or 1 as its elements: s = b1b2b3 . . . bn, where1 ∀i ∈ n̂ : bi ∈ {0, 1}.
The purpose of the basis encoding method is to represent the string s in the
state of a quantum system.
▶ Note 3.1. For the sake of formalism, the definitions contained in this chapter
define that the encoding methods encode datapoints that are in the form of
vectors of some vector space Fn, n ∈ N. ◀

1The n̂ used in this thesis is defined as: n̂ = {k ∈ N | 1 ≤ k ≤ n}

28
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The basis encoding method is capable of encoding datapoints that are in the
form of vectors of the vector space Zn2 , n ∈ N over the finite field Z2 (all
elements of such a vector are equal to either 0 or 1). So instead of the string s,
a vector b = (b1 b2 . . . bn)

T ∈ Zn2 , n ∈ N is used as an object that is encoded
into the state of a quantum system. This encoding method is simple in that it
encodes each input vector element using a unique qubit. That results in this
method requiring n qubits to encode an n-dimensional input vector. Moreover,
the essence of this encoding method is that each resulting qubit is in one of
just two possible states–either in the state |0〉 or in the state |1〉. This essence
is outlined in the following note:
▶ Note 3.2 (Basis encoding method purpose). This encoding method works
by always creating a state whose state vector is equal to one of the standard
basis vectors–that is the reason why this encoding method is called the basis
encoding method. However, it is essential to clarify which exact basis vector
this encoding method produces for any given input. The answer is straightfor-
ward, as elements of a binary input vector b = (b1 b2 . . . bn)

T ∈ Zn2 , n ∈ N
are directly used to create the desired state |ψ〉 ∈ C2n that represents b:

b = (b1 b2 . . . bn)
T 7→ |b1b2b3 . . . bn〉 = |ψ〉 . ◀

And to create the resulting |ψ〉 state, the X gates can be utilized. This fact is
more apparent in the definition introduced in the subsection below.

3.1.1 Definition
The whole process of encoding an input using the basis encoding method is
encompassed in the following formal definition:
▶ Definiton 3.3 (Basis encoding method). Let there be a 2n-dimensional
Hilbert space H = (C2)⊗n, where n ∈ N, a vector b = (b1 b2 . . . bn)

T ∈ Zn2
and a quantum state |ψ0〉 = |0〉⊗n ∈ H. The following mapping is defined:

Φ : Zn2 → U(2n), Φ(b) =

n⊗
i=1

X ′
i,

where U(2n) represents the group of 2n × 2n unitary matrices, each acting on
the Hilbert space H, and ∀i ∈ n̂ is X ′

i defined as the following unitary operator:

X ′
i =

{
X if bi = 1,

I if bi = 0,

where X is the the unitary operator represented by the Pauli matrix σx and I
is the identity operator on C2.

Then, the act of encoding b into the state |ψ0〉 using the basis encoding
method is defined as creating a state |ψ〉 ∈ H by applying the unitary operator
Ub = Φ(b) on the state |ψ0〉:

Ub |0〉⊗n = |ψ〉 . ◀
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▶ Theorem 3.4. Let there be a 2n-dimensional Hilbert space H = C2n, where
n ∈ N, a vector b = (b1 b2 . . . bn)

T ∈ Zn2 , a quantum state |ψ0〉 = |0〉⊗n ∈ H
and a state |ψ〉 ∈ H created by encoding b into the state |ψ0〉 using the basis
encoding method. Then:

|ψ〉 = |b1b2 . . . bn〉 .

Proof. Each qubit of the state |ψ0〉 = |0〉⊗n is in the state |0〉, meaning
∀i ∈ n̂ : |ψ0,i〉 = |0〉. During the encoding process, the operator Ub acts on
the state |ψ0〉, resulting in the X ′

i gate being applied to each qubit. Thus, the
action of the unitary operator Ub on |0〉⊗n can be described as:

Ub |0〉⊗n =
(
X ′

1 |0〉
)
⊗
(
X ′

2 |0〉
)
⊗ · · · ⊗

(
X ′
n |0〉

)
.

The operator Ub satisfies the unitarity condition, as it is in and of itself a
tensor product of the unitary operators X ′

i, since the X ′
i operation results in

either the X gate or the identity I gate being applied to each qubit |0〉. There
are two possible outcomes when applying the gate X ′

i to |0〉:

X |0〉 = |1〉 , I |0〉 = |0〉 .
So, ∀i ∈ n̂:

If bi = 1, then X ′
i = X and X ′

i |0〉 = X |0〉 = |1〉.

If bi = 0, then X ′
i = I and X ′

i |0〉 = I |0〉 = |0〉.

Therefore:

Ub |0〉⊗n = |b1〉 ⊗ |b2〉 ⊗ · · · ⊗ |bn〉 = |b1b2 . . . bn〉 .

■

Thus, the basis encoding method conditionally uses the X gates based on the
elements of a binary input vector, thereby encoding it.

3.1.2 Properties
There are several consequences worth mentioning that stem from the definition
above. This subsection is devoted to noting these consequences and certain
traits of this encoding method:
▶ Remark 3.5 (Basis encoding method definition consequence). It is assumed
that a quantum system is described within an n-dimensional Hilbert space
H ∈ Cn, n ∈ N, withH being equipped with the standard basis2 and the initial
state of the system is represented by the state |ψ0〉, where3 |ψ0〉 = (1 0 . . . 0)T .

2To reiterate, only the standard basis is used throughout this thesis when working with
vector spaces and qubit measurements.

3In practice, different quantum systems may have different initial states and may use
different bases. In this thesis, it is assumed that the initial state of a quantum system when
using the standard basis is always |ψ0⟩ = |0⟩⊗n ∈ (C2)⊗n, n ∈ N.
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This state vector corresponds to the first standard basis vector of the Hilbert
space H, denoted as |e1〉, where k-th standard basis vector is denoted as |ek〉.

The basis encoding method can be characterized by a transformation that
transforms the initial state |e1〉 representing the first basis vector to another
basis vector of the Hilbert space H. This transformation can be represented
by a unitary operator U such that U |e1〉 = |ek〉, where |ek〉 is one of the basis
vectors of H, and is represented by |ek〉 = (0 . . . 0 1 0 . . . 0)T , with the 1
located in the k-th position, where k ∈ N satisfies 1 ≤ k ≤ n.

The matrix form of the operator U is a permutation matrix which, if applied
on the initial state of the system |e1〉, results in a swap between the first
element and the k-th element of |e1〉 to produce |ek〉. The operator U is unitary,
fulfilling the condition U †U = UU † = I, where I is the identity matrix on H,
ensuring that the transformation is reversible and preserves the norm of the
state vector. The resulting state is one of the standard basis vectors, where all
the amplitudes of the state except for one equal zero–so the resulting state is
not in a superposition. ◀
The next part summarizes multiple important basis encoding method charac-
teristics:
▶ Remark 3.6 (Basis encoding method characteristics). Let there be a binary
input vector b = (b1 b2 . . . bn)

T ∈ Zn2 , n ∈ N that is encoded using the basis
encoding method, resulting in a state |ψ〉 described within a 2n-dimensional
Hilbert space H = C2n .

As explained in the definition above, this encoding method only uses the
X gates to encode the input vector b. The definition also uses the identity
gates I (acting on C2), but in practical terms, there is no need to use
them in the circuit, as they do not modify the qubit states. Although
there might be some real use cases where the identity gates are utilized in
quantum computers, they would only introduce errors if applied to qubits
in this case.

The number of gates required to encode b is always k, where 0 ≤ k ≤ n.
More specifically, k equals the Hamming weight of the vector b, denoted
by wt(b), which is defined as the number of elements in b that equal 1:

wt(b) =
n∑
i=1

bi,

where the sum computes the total count of 1′s in the vector b.

A maximum of one gate is applied on each qubit, so if 1 ≤ k ≤ n, the depth
of the resulting quantum circuit is equal to 1. This is an advantageous
trait of this encoding method, as the depth of the circuit produced by this
method is the lowest possible4.

4As a circuit with a length of 0 does not modify the initial state in any way, so a depth
of at least one is required to alter the initial state.
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The width of quantum circuits produced by this method is where the main
disadvantage of this method lies–the number of qubits used in the circuit
is the same as the length of b, meaning the length of the state vector
representing the produced state is exponential (2n) compared to the input
vector’s length (n).

Coupled with the fact that only binary vectors can be encoded using this
encoding technique, the practicality of this encoding technique is question-
able. If, for example, a complex vector is supposed to be encoded using
this method, it first needs to be somehow transformed into a binary vec-
tor, meaning that the binary vector would either need to be in a higher
dimension than the complex vector to store all the information or some
information would be lost during the transformation process to ensure the
same dimensionality. To write the transformation process more formally:
Let there be an m-dimensional vector space Fm over a field F 6= Z2, where
m ∈ N, and input data in the form of a vector v = (v1 v2 . . . vm)

T ∈ Fm.
This input vector v is not binary; therefore, it is not possible for the basis
encoding method to encode it directly. However, if there is a need for this
vector to be encoded, the following mapping function must first be used:
f : Fm → Zn2 , n ∈ N (it is noteworthy that n can differ from m). The
mapping function f is then applied on v to create a binary vector:

f(v) = b = (b1 b2 . . . bn)
T ∈ Zn2 .

Then, the vector b (created by transforming v into b with the help of f)
can be used by the basis encoding method to encode it and create a state
that represents it.

The fact that this encoding method only allows for binary vector encoding
means one of the most significant benefits of quantum computing is not
utilized. As discussed previously (2.1.1), as opposed to bits, qubits are
able to store much more information. In this case, the resulting qubits are
either in the state |0〉 or in the state |1〉. As a result, the qubits cannot take
advantage of qubit superposition (they do not utilize what the Hilbert space
offers), which is one of the fundamental principles of quantum computing.
Each qubit effectively acts as an ordinary classical bit, thus wasting the
potential quantum computing brings.

Another apparent characteristic of this encoding method is that it produces
qubits that are not entangled.

There is often a need to encode more than just one datapoint. When given
a dataset of binary vectors, the entire dataset can be encoded using the
basis encoding method if all the vectors in the dataset are concentrated
into a single vector. Then, such a concentrated vector can be used as an
input. The process is described below:
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Let there be a dataset D, where D = {b1,b2, . . . ,bm}, m ∈ N is a set of
m binary vectors of dimension5 n ∈ N, such that ∀bi ∈ D : bi ∈ Zn2 .
The following mapping function f : D → Zmn2 is defined as:

f(D) = b1 ⊕ b2 ⊕ . . .⊕ bm = b ∈ Zmn2 ,

where ⊕ denotes the vector concatenation operation.
The vector b can then be used as an input in the basis encoding method.

◀

3.1.3 Usage example
The final part of this introduction to the basis encoding method involves
demonstrating this encoding method on a short, specific binary input vector:

▶ Example 3.7 (Basis encoding method usage example). Let there be:

A quantum system in a 8-dimensional Hilbert space H = (C2)⊗3, with the
system being in the following initial state: |ψ0〉 = |0〉⊗3 = |000〉 ∈ H.

A binary input vector b = (1 0 1)T ∈ Z3
2.

So, if the input vector is (1 0 1)T ∈ Z3
2, then the basis encoding method should

create a state |ψ〉 = |101〉 ∈ H.

Based on the definition of this encoding method, a unitary operator Ub is
created, where Ub = X ⊗ I ⊗X and Ub acts on H. Ub is then used to create
the desired state |ψ〉 = |101〉 ∈ H by applying Ub on the initial state of the
quantum system |ψ0〉 = |000〉 ∈ H in the following way:

Ub |ψ0〉 = (X ⊗ I ⊗X) |000〉 , where

(X ⊗ I ⊗X) |000〉 =



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0





1
0
0
0
0
0
0
0


=



0
0
0
0
1
0
0
0


= |101〉 = |ψ〉

The act of applying the operator Ub on the initial state |000〉 does indeed
produce the desired state |ψ〉 = |101〉. In practical terms, this can be achieved
by applying two X gates in an empty three-qubit quantum circuit, one on

5For the sake of brevity, situations where the dataset contains vectors of different lengths
are not considered.
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the first qubit and one on the third qubit. The implementation algorithm is
explained in more detail in the next chapter (4.2.1). Here is a figure depicting
such a quantum circuit producing the desired state |ψ〉 = |101〉:

Figure 3.1 A visualization of a quantum circuit (created using the Qiskit library)
producing the state |101〉 ∈ C8 using the basis encoding method.

◀

3.2 Angle encoding method
The basis encoding method (3.1) is restrictive, as it can encode only binary
vectors. Overcoming this limitation would result in more data being encoded
in the same amount of qubits, thus providing greater encoding capabilities.

The second data encoding method presented in this chapter is the angle
encoding method. The purpose of this encoding method is to overcome
this restriction of only being able to encode binary vectors. When contrasting
the angle encoding method with the basis encoding method, this encoding
method exhibits two significant characteristics that define it. One of these
characteristics is shared by both methods, while the other one differentiates
this method from the basis encoding method:

Notably, one crucial trait that both of these encoding methods share is
that the amount of qubits they require equals the length of a given input
vector. So, when input vectors of dimension n ∈ N are encoded using these
encoding methods, the resulting states produced by both of these encoding
methods are represented by 2n-dimensional state vectors.

This second characteristic is where both encoding methods differ from each
other. Compared to the basis encoding method, this encoding method
provides a transformative leap in terms of its encoding capacity–it allows for
vectors other than just binary vectors to serve as input vectors. Specifically,
it allows for real vectors to be encoded. Instead of only binary vectors
b = (b1 b2 . . . bm)

T ∈ Zm2 , m ∈ N, the method can encode normalized
real vectors v = (v1 v2 . . . vn)

T ∈ Rn, n ∈ N, ‖v‖ = 1. This means that
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given the same input vector length m = n, the angle encoding method is
able to encode a greater amount of information than the basis encoding
method (assuming that b is encoded using the basis encoding method and
v is encoded using the angle encoding method).

The ability of this encoding approach to encode real vectors originates from the
fact that, contrary to the basis encoding method, the angle encoding method
manages to utilize the Hilbert space of each qubit to a much larger extent,
meaning it takes advantage of qubit superposition. It achieves this by using
unitary operators that manipulate qubits in a way that results in the creation of
states other than |0〉 and |1〉. The effect of unitary operators can be visualized
using the Bloch sphere (2.2), where unitary operators “rotate” qubits by some
angle θ around some Bloch sphere axis, which is why this encoding method is
called the angle encoding method. The appropriate angles are first calculated
based on the input vector elements, and then those angles are used to rotate
the qubits with the help of rotational gates. However, it is crucial to explain
the process of angle calculation–how are the necessary angles calculated when
given an input vector. This process stems directly from the very nature of the
angle encoding method itself, which is presented below:
▶ Note 3.8 (Angle encoding method purpose). Given a real input vector v =
(v1 v2 . . . vn)

T ∈ Rn, n ∈ N, where ‖v‖ = 1, the objective of the angle
encoding method is to create a quantum state |ψ〉 with n qubits in which
∀i ∈ n̂ the probability that the i-th qubit of the state |ψ〉 collapses into the
state |1〉 during a measurement equals v2i , where vi is the i-th element of v. ◀
Thus, the essence of this encoding method is simple–the elements of a given
input vector define the desired probabilities of qubits collapsing into the state
|1〉. This is further explored in much greater detail in the following note:
▶ Note 3.9 (Angle encoding method explanation). Given a real input vector
v = (v1 v2 . . . vn)

T ∈ Rn, n ∈ N, where ‖v‖ = 1, a Hilbert space H = (C2)⊗n,
a quantum system with the initial state being |ψ0〉 = |0〉⊗n ∈ H, a state
|ψ〉 ∈ H is created by encoding the vector v into the state |ψ0〉 using the angle
encoding method.

The magnitude of the real input vector v must be equal to 1 to ensure
that ∀vi ∈ v : v2i ∈ [0, 1] ⊂ R. This is because the probability that any qubit
collapses into any possible state when measured can also only range from 0 to
1. Generally, the probability of a measured qubit |ϕ〉 = α |0〉+ β |1〉 collapsing
into the state |1〉 equals P|1⟩(|ϕ〉) = |β|2. Therefore, based on the nature of
the angle encoding method, it must be true for the encoded state |ψ〉 that
∀i ∈ n̂ : |vi|2 = |βi|2, where βi is the second amplitude of the i-th qubit
|ψi〉 = αi |0〉+ βi |1〉. This can be described as: P|1⟩ (|ψi〉) = |βi|2 = |vi|2.

So, ∀i ∈ n̂, the i-th qubit |ψ0,i〉 of the initial state |ψ0〉 = |0〉⊗n must
somehow be transformed to become the i-th qubit |ψi〉 of the desired state |ψ〉,
which is only possible when a unitary operator Ui (that acts on C2) is applied
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on |ψ0,i〉: Ui |ψ0,i〉 = |ψi〉. In a quantum circuit, there are infinite possible
ways to achieve this effect by sequentially applying quantum gates to a qubit.
But understandably, the goal is for this encoding process to be as simple and
efficient as possible–ideally using a single gate on each qubit such that it can
∀vi ∈ c produce the desired qubit state |ψi〉.

That implies that such a gate must be able to produce the i-th state |ψi〉
for every i-th desired probability v2i . These probabilities can vary, so for this
gate to account for every possible probability v2i ∈ [0, 1] ⊂ R, the gate must
be able ∀v2i ∈ [0, 1] ⊂ R to produce a state |ϕ〉 such that P|1⟩(|ϕ〉) = v2i . This
can be achieved by various gates.

As discussed previously in the section One-qubit quantum gates (2.4), the
rotational gates RX, RY , and RZ rotate qubits around the X, Y , and Z axes
of the Bloch sphere, respectively. Of these, the gates RX and RY are able to
create states whose probabilities of collapsing into the state |1〉 when measured
can take any value from the interval [0, 1] ⊂ R. So, both gates RX and RY
are suitable candidates for use in the angle encoding method, since they are
commonly known, widely used, and capable of creating any needed qubit state.
In this thesis, the gate RY has been chosen. ◀
Now that it is clear that the rotational gate RY can be used to transform
each qubit into the desired state, it is important to clarify how to calculate
the angle that should be used in the RY rotation for any given input vector
element. Let vi ∈ R be an arbitrary input vector element and |0〉 ∈ C2 the
initial state of a qubit. The angle encoding method then uses the gate RY to
transform the initial state |0〉 ∈ C2 into the desired state |ψ〉 ∈ C2 by applying
the unitary operator RY (θ), θ ∈ R on the initial state |0〉 in the following way:

RY (θ) |0〉 =

cos
(
θ
2

)
− sin

(
θ
2

)
sin
(
θ
2

)
cos
(
θ
2

)
1

0

 =

cos
(
θ
2

)
sin
(
θ
2

)
 =

= cos

(
θ

2

)
|0〉+ sin

(
θ

2

)
|1〉 = |ψ〉 ,

where, to satisfy the main requirement of this encoding method, the squared
second amplitude of the resulting state |ψ〉 must be equal to the desired prob-
ability (because only then the probability of the state |ψ〉 collapsing into the
state |1〉 when measured equals the desired probability v2i ):

sin2
(
θ

2

)
= v2i .

This equation needs to be solved for the variable θ, because it is used in the
rotation RY (θ):

sin2
(
θ

2

)
= v2i ⇔ sin

(
θ

2

)
= ±vi ⇔

⇔ θ

2
= arcsin(±vi) ⇔ θ = 2arcsin(±vi)
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Thus, the angle θ used in the gate RY (θ) can be calculated using the equation
θ = 2arcsin(±vi). In terms of qubit measurements, it does not matter whether
vi or −vi is used in the equation because, as explained later, when measuring
the desired state |ψ〉 in the standard basis, the following is true:

P|0⟩ (|ψ〉) = 1− (vi)
2 = 1− (−vi)2, P|1⟩ (|ψ〉) = v2i = (−vi)2,

meaning that when performing a measurement, the measurement outcomes
are the same regardless of whether vi or −vi is used. However, as explained
later, the resulting state |ψ〉 is described as:

|ψ〉 =
√

1− v2i |0〉+ vi |1〉 ,

and in this case, it does matter if vi is used or −vi is used, as the sign can be
encoded directly in the quantum state |ψ〉. This encoding method works by also
encoding the sign into the quantum state |ψ〉, and to achieve this, the original
input vector element with its sign is used in the equation when calculating the
angles θ, which means that θ = 2arcsin(sgn(vi) · |vi|) = 2 arcsin(vi).

3.2.1 Definition
Now, with the whole essence of the angle encoding method thoroughly ex-
plained, it is time to present a more formal definition:
▶ Definiton 3.10 (Angle encoding method). Let there be a 2n-dimensional
Hilbert space H = (C2)⊗n, where n ∈ N, a vector v = (v1 v2 . . . vn)

T ∈ Rn
normalized such that ‖v‖ = 1 and a quantum state |ψ0〉 = |0〉⊗n ∈ H. The
following mapping is defined:

Ψ : Rn → U(2n), Ψ(v) =

n⊗
i=1

RY (θi),

where U(2n) denotes the group of 2n× 2n unitary matrices, each acting on the
space H, and ∀i ∈ n̂ is RY (θi) defined as the following unitary operator:

RY (θi) =

cos
(
θi
2

)
− sin

(
θi
2

)
sin
(
θi
2

)
cos
(
θi
2

)
, where θi = 2arcsin(vi).

Then, the act of encoding v into the state |ψ0〉 using the angle encoding method
is defined as creating a state |ψ〉 ∈ H by applying the unitary operator Uv =
Ψ(v) on the state |ψ0〉:

Uv |0〉⊗n = |ψ〉 . ◀
▶ Theorem 3.11. Let there be a 2n-dimensional Hilbert space H = C2n, where
n ∈ N, a vector v = (v1 v2 . . . vn)

T ∈ Rn normalized such that ‖v‖ = 1, a
quantum state |ψ0〉 = |0〉⊗n ∈ H and a state |ψ〉 ∈ H created by encoding v into
the state |ψ0〉 using the angle encoding method. Then ∀i ∈ n̂ : P|1⟩(|ψi〉) = v2i ,
where |ψi〉 is the i-th qubit of the state |ψ〉.
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Proof. Each qubit of the state |ψ0〉 = |0〉⊗n is in the state |0〉, meaning
∀i ∈ n̂ : |ψ0,i〉 = |0〉. During the encoding process, the operator Uv acts on the
state |ψ0〉, resulting in the RY gate being applied to each qubit. Thus, the
action of the unitary operator Uv on |0〉⊗n can be described as:

Uv |0〉⊗n = (RY (θ1) |0〉)⊗ (RY (θ2) |0〉)⊗ · · · ⊗ (RY (θn) |0〉) .

The operator Uv satisfies the unitarity condition, as it is in and of itself a
tensor product of the unitary operators RY .

So, it is true ∀i ∈ n̂ that the i-th qubit |ψ0,i〉 = |0〉 of the state |ψ0〉 is acted
upon by a gate RY (θi) (where θi = 2arcsin(vi)) to create the i-th qubit |ψi〉 of
the desired state |ψ〉 in the following way: |ψi〉 = RY (θi) |ψ0,i〉. That means:

RY (θi) |ψ0,i〉 = RY (2 arcsin(ci)) |0〉 =

= cos

(
2 arcsin(vi)

2

)
|0〉+ sin

(
2 arcsin(vi)

2

)
|1〉 =

= cos (arcsin(vi)) |0〉+ sin (arcsin(vi)) |1〉 =

=
√

1− v2i |0〉+ vi |1〉 = |ψi〉 .

Therefore:

P|0⟩ (|ψ〉) = P|0⟩

(√
1− v2i |0〉+ vi |1〉

)
=

(√
1− v2i

)2

= 1− v2i

P|1⟩ (|ψ〉) = P|1⟩

(√
1− v2i |0〉+ vi |1〉

)
= v2i ,

meaning v2i indeed defines the probability of the i-th qubit of the resulting
state |ψ〉 collapsing into the state |1〉 when measured.

■

Thus, the proof above demonstrates that the angle encoding method works
correctly when using the rotational gates RY (θi), with the angles θi being
calculated using the formula θi = 2arcsin(vi).

3.2.2 Properties
Several notable outcomes arise from the preceding definition. This subsection
focuses on discussing these outcomes, and it summarizes some of the specific
characteristics of this encoding approach:
▶ Remark 3.12. Let v = (v1 v2 . . . vn)

T ∈ Rn, n ∈ N be an input vector that
is encoded using the angle encoding method, resulting in a state |ψ〉 described
within a 2n-dimensional Hilbert space H = C2n .

According to the definition, this encoding technique exclusively employs
the rotational gates RY to encode the vector v.
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Based solely on the definition, the number of gates used in the circuit is
always equal to n. However, in some cases, there is no need to use a gate
on each qubit. Instances can arise when a gate RY (θ) does not modify the
state of a qubit (for example, when θ = 0). So, the process of constructing
a quantum circuit using this encoding method can be optimized by not
utilizing those gates that do not change the state of a qubit.

Each qubit uses at most one gate, resulting in the quantum circuit depth
of 1, which is the minimal possible depth for quantum circuits (those that
modify the state in any way). This characteristic is shared by both this
encoding method and the basis encoding method.

The number of qubits this encoding method utilizes matches the length of
the input vector v, which implies that the length of the state vector (which
represents the resulting state |ψ〉) is exponentially larger (2n) relative to
the length of the input vector (n). This is a disadvantageous characteristic
that both this encoding method and the basis encoding method share. That
suggests that neither of these encoding methods utilizes the exponentiality
that stems from the very nature of quantum computing (meaning that a
state vector’s length grows exponentially in relation to its qubit count).

The practicality of this encoding method is more significant in comparison
with the basis encoding method due to the fact that this method allows for
real vector encoding. Allowing for real numbers to be encoded rather than
just binary numbers makes this encoding approach much more flexible, as
classical datasets often contain numbers other than just binary numbers. In
the basis encoding method, a real number would first have to be converted
into a binary form to be encoded. However, when this encoding approach
is used, a real number can be encoded directly without the need for it to
be transformed. Obviously, more complex data structures still have to be
transformed into real vectors. A similar transformation (3.6) is discussed
in the subsection Properties (3.1.2) of the basis encoding method. The
same concept can be employed in this case as well (for example, in a case
where a given input vector contains complex numbers).

Another noticeable feature of this encoding technique is that it results in
the qubits not being entangled.

Even though this encoding approach allows for real vector encoding, it does
not mean that this encoding approach is efficient in utilizing what quan-
tum computing offers. Based on the actuality that this encoding method
only uses the gates RY , it is clear that the Hilbert space is far from be-
ing fully utilized. While the basis encoding method produces qubits such
that each qubit is in one of just two possible states, the angle encoding
method produces qubits such that each qubit is in one of infinite possible
states. Despite this fact, all the states that the angle encoding technique
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produces form a circle on the surface of the Bloch sphere. An arbitrary two-
dimensional quantum state can lie anywhere on the surface of the Bloch
sphere. But when the gate RY is used to rotate the initial state |0〉, it
only rotates the state around the Y axis, where the full range of motion
forms a circle around the Y axis. The consequence of this is that almost
the whole two-dimensional Hilbert space is still wasted, with the resulting
qubits being constrained in one circle on the surface of the Bloch sphere.
This consequence originates from the fact that this encoding method only
encodes real numbers.
Although this encoding method only encodes real numbers, it does not
mean that it is not possible to overcome this limitation. In fact, the angle
encoding method could be expanded so that it also uses the gates RZ in
addition to the gates RY . Hence, it is possible to fully utilize the whole
surface of the Bloch sphere by using these two types of rotational gates.
Thus, more information can be encoded from each input vector element,
resulting in the ability to encode complex numbers.
So, if a complex number c = reiθ ∈ C, r ∈ R, θ ∈ [0, 2π] ⊂ R is given such
that |c|2 ∈ [0, 1] ⊂ R, the magnitude r of this given number can be encoded
using the gate RY and the phase eiθ of this number can be encoded using
the gate RZ.

This angle encoding method could also be defined alternatively, where the
i-th input vector element would correspond to the probability of the i-th
qubit collapsing into the state |0〉 when measured instead of the state |1〉.
In such a case, the angle calculation equation would be θi = 2arccos(vi).

In this final list item, the relationship is explained between the input vector
elements and the elements of the state vector that represents the state |ψ〉.
Assuming that the standard basis is used with the Hilbert space H = C2n ,
the standard basis in use is comprised of 2n standard basis states, where
∀j ∈ 2̂n the j-th standard basis state is denoted as |ej〉 and can be described
as the following tensor product of n single-qubit states:

|ej〉 =
n⊗
k=1

|bk〉 ,

where bk is the k-th bit in the binary representation of the number j − 1,
zero-padded at the beginning to n bits if necessary. So, this tensor product
of the qubits |bk〉 represents the state |ej〉, with each qubit |bk〉 equaling
either the state |0〉 or the state |1〉, depending on the k-th bit bk.
The state |ψ〉 can be represented as a superposition of all the standard
basis states as follows:

|ψ〉 =
2n∑
j=1

αj |ej〉 ,
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where αj ∈ C is the amplitude of the j-th standard basis state. The link
between the input vector elements and the amplitudes αj can then be
presented as a sum, where ∀i ∈ n̂:

P|1⟩ (|ψi〉) = v2i =
∑

ej :bk=1

α2
j , where:

vi is the i-th element of the input vector v,
|ψi〉 is the i-th qubit of the resulting state |ψ〉,
P|1⟩ (|ψi〉) is the probability of the i-th qubit of the resulting state |ψ〉
collapsing into the state |1〉 when measured (the angle encoding method
requires that this probability must be equal to v2i ),
αj is the amplitude of the j-th standard basis state,
and the sum itself extends over all j′s such that the j-th standard basis
state has its k-th bit being equal to 1 (bk = 1 is the k-th bit in the binary
representation of the j-th standard basis state, and the condition in the
sum requires the bit to be equal to 1).

This can be demonstrated on a three-qubit quantum state:
Let there be an input vector v = (v1 v2 v3)

T ∈ R3 encoded into a three-
qubit quantum state |ϕ〉 ∈ C8 using the angle encoding method, where the
first, second, and third qubits of the state |ϕ〉 are denoted as |ϕ1〉, |ϕ2〉, and
|ϕ3〉, respectively. The state |ϕ〉 is a tensor product of its three qubits:

|ϕ〉 = |ϕ1〉 ⊗ |ϕ2〉 ⊗ |ϕ3〉 =

= (α1 |0〉+ β1 |1〉)⊗ (α2 |0〉+ β2 |1〉)⊗ (α3 |0〉+ β3 |1〉) ,

where α1, β1, α2, β2, α3, β3 ∈ C.

The state |ϕ〉 can also be described as the following superposition of the
standard basis states (assuming the standard basis on C8 is used):
|ϕ〉 = α |000〉+β |001〉+γ |010〉+δ |011〉+ϵ |100〉+ζ |101〉+η |110〉+θ |111〉 ,

where α, β, γ, δ, ϵ, ζ, η, θ ∈ C.

Then, the following equations are presented, where P|1⟩ (|ϕ1〉), P|1⟩ (|ϕ2〉),
and P|1⟩ (|ϕ3〉) are the probabilities of measuring the individual qubits |ϕ1〉,
|ϕ2〉, and |ϕ3〉 in the state |1〉 (it is crucial to note that this thesis uses a
convention where the rightmost digit in the ket notation corresponds to
the first qubit of a quantum system):

P|1⟩ (|ψ1〉) = v21 = |β|2 + |δ|2 + |ζ|2 + |θ|2,

P|1⟩ (|ψ2〉) = v22 = |γ|2 + |δ|2 + |η|2 + |θ|2,

P|1⟩ (|ψ3〉) = v23 = |ϵ|2 + |ζ|2 + |η|2 + |θ|2.
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Due to the basis states being denoted as binary strings, it is possible to
generalize the equation P|1⟩ (|ψi〉) for an i-th qubit |ψi〉. Given an input
vector of length n ∈ N, the resulting state is a superposition of m = 2n

basis states, where the amplitude of the j-th basis state is denoted as αj .
To calculate each probability P|1⟩ (|ψi〉), exactly m

2 amplitudes are needed.
This is because each qubit is in the state |0〉 in half of the basis states and in
the state |1〉 in the other half of the basis states. To calculate P|1⟩ (|ψi〉), the
last i squared ampltitudes out of every 2 · i amplitudes should be summed.
This results in the following equation, where ∀i ∈ n̂:

P|1⟩ (|ψi〉) =

m
2i∑
k=1

i−1∑
l=0

|α2ik−l|2.

So for the three-qubit input vector example above, for the P|1⟩ (|ψ1〉), the
second, fourth, sixth, and eighth amplitudes were used. For the P|1⟩ (|ψ2〉),
the third, fourth, seventh, and eighth amplitude was used. And finally, for
the P|1⟩ (|ψ3〉), the fifth, sixth, seventh, and eighth amplitudes were used.

◀

3.2.3 Usage example
The conclusion to this angle encoding technique introduction showcases its
application using a short real input vector:

▶ Example 3.13 (Angle encoding method usage example). Let there be:

A quantum system in a 4-dimensional Hilbert space H = (C2)⊗2, with the
system being in the following initial state: |ψ0〉 = |0〉⊗2 = |00〉 ∈ H.

A real input vector v = (v1 v2)
T =

(
1√
2

1√
2

)T
∈ R2. The magnitude of

this vector is equal to 1: ‖v‖ = 1.

The objective is to encode the input vector v using the angle encoding method.
So, a state |ψ〉 should be created. Let the first and second qubits of the state
|ψ〉 be denoted as |ψ1〉 and |ψ2〉, respectively. Then, based on the input vector
elements v1 and v2, the probability of each of these qubits collapsing into the
state |1〉 when measured should be equal to:

P|1⟩ (|ψ1〉) = v21 =

(
1√
2

)2

=
1

2
, P|1⟩ (|ψ2〉) = v22 =

(
1√
2

)2

=
1

2
.

Based on the definition of this encoding method, a unitary operator Uv that
acts on H is created, where Uv = RY (θ1) ⊗ RY (θ2), while the angles θ1 and
θ2 used in the rotational gates RY (θ1) and RY (θ2) are calculated as follows:

θ1 = 2arcsin (v1) = 2 arcsin

(
1√
2

)
=
π

2
, θ1 = θ2.
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Uv is then used to create the desired state |ψ〉 ∈ H by applying Uv on the
initial state of the quantum system |ψ0〉 = |00〉 ∈ H in the following way:

Uv |ψ0〉 = (RY (θ1)⊗RY (θ2)) |00〉 =
(
RY

(π
2

)
⊗RY

(π
2

))
|00〉 =((

cos
(
π
4

)
− sin

(
π
4

)
sin
(
π
4

)
cos
(
π
4

) )⊗(cos (π4 ) − sin
(
π
4

)
sin
(
π
4

)
cos
(
π
4

) )) |00〉 =

=


1
2 −

1
2 −

1
2

1
2

1
2

1
2 −1

2 −
1
2

1
2 −

1
2

1
2 −1

2
1
2

1
2

1
2

1
2




1

0

0

0

 =


1
2
1
2
1
2
1
2

 = |ψ〉 .

This resulting state |ψ〉 can be described as a superposition of the basis states:

|ψ〉 = α |00〉+ β |01〉+ γ |10〉+ δ |11〉 , where α = β = γ = δ =
1

2
.

The probabilities P|1⟩ (|ψ1〉) and P|1⟩ (|ψ2〉) of the individual qubits |ψ1〉 and
|ψ2〉 collapsing into the state |1〉 when measured are equal to6:

P|1⟩ (|ψ1〉) = |β|2 + |δ|2 =
1

2
,

P|1⟩ (|ψ2〉) = |γ|2 + |δ|2 =
1

2
.

These probabilities correspond to the input vector probabilities v21 = 1
2 and

v22 = 1
2 , respectively, which implies that the input vector is correctly encoded.

The exact implementation algorithm is explained in more detail in the next
chapter (in the subsection 4.2.2). Here is a figure depicting a quantum circuit
producing the desired state |ψ〉:

Figure 3.2 A visualization of a quantum circuit (in Qiskit) producing the state
1
2 |00〉+

1
2 |01〉+

1
2 |10〉+

1
2 |11〉 ∈ C4 using the angle encoding method.

◀
6As explained earlier, this thesis uses a convention where the rightmost digit in the ket

notation corresponds to the first qubit.
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3.3 Amplitude encoding method
The angle encoding method (3.1) is an improvement over the basis encoding
method (3.2) in that it allows for more information to be encoded in the same
number of qubits. However, there is one big issue that still persists–both of
these techniques require relatively large numbers of qubits to encode input
vectors, where they do not utilize the exponentiality of quantum computing.
Although modern quantum computers offer many more qubits than in the
past, it still takes a considerable number of qubits to encode vectors using the
aforementioned encoding methods. For example, the IBM Condor is a quan-
tum processor created by the company IBM that offers the highest number of
qubits compared to any other quantum processor from IBM (as of May 2024)
[19]. This quantum processor has exactly 1, 121 qubits, meaning that it can
theoretically encode at most only 1, 121-dimensional input vectors. In practice,
datasets may contain vectors of much greater lengths. In situations where the
number of available qubits is low, or the input vectors are very long, encoding
methods that use fewer qubits are very advantageous.

3.3.1 Introduction
The angle encoding method is not efficient in its quest to encode real vectors.
It is possible to store the same amount of information in a lower number of
qubits. In a nutshell, this is precisely the purpose of the encoding method that
is presented in this section–to use fewer qubits than the number of qubits the
encoding approaches introduced in the previous sections require.

When an input vector element v1 ∈ [−1, 1] ⊂ R is encoded in the angle
encoding method, the resulting one-qubit state |ψ〉 can be described as a fol-
lowing superposition of the standard basis states (the following equation is
explained in the subsection Definition (3.2.1) of the angle encoding method):

|ψ〉 =
√
1− v21 |0〉+ v1 |1〉 .

This means that both amplitudes (
√

1− v21 and v1) of the superposition |ψ〉
contain information about only one input vector element v1. In other words,
each input vector element requires two complex amplitudes for it to become
encoded into a qubit. As a result, both amplitudes are wasted to encode just a
single piece of information. So, if two amplitudes are available, then it means
that theoretically, two different pieces of information can be encoded into one
qubit. Thus, a question arises whether it is practically possible to somehow
encode two different numbers into one qubit.

Assume a second number is given v2 ∈ R. Then it is possible to encode
both numbers v1 and v2 into one qubit |ψ〉 in the form presented below:

|ψ〉 = v1 |0〉+ v2 |1〉 ,
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as long as the following normalization condition is satisfied:
v21 + v22 = 1.

The normalization condition above must be satisfied because the probabilities
of a quantum state collapsing into any state when measured must sum up to 1.
So, given any two real numbers v1, v2 ∈ R, they can be encoded into a qubit
after they are normalized so that the sum of their squares equals 1. Therefore, if
this approach were to be utilized in some encoding method, it would overcome
the limitation of the angle encoding method using two qubit amplitudes to
encode one input vector element. And such an encoding method exists–it is
known as the amplitude encoding method. It may be clear already why
the word amplitude is used in its name. That due to the fact that it uses
amplitudes of quantum states to encode input vector elements. This way, the
amplitude encoding method uses fewer qubits, as it is able to encode more
information into each one.

Given m ∈ N qubits, a quantum state comprising of m qubits is a superpo-
sition of 2m basis states, each having an amplitude, resulting in 2m amplitudes
being available to encode 2m different numbers. Thus, given an input vector
of length 2m, this encoding technique produces a state whose state vector’s
length also equals 2m, which in turn only requires log2(2

m) = m qubits. This
logarithmicality is a major benefit, as for the first time, the number of qubits
required to encode an input vector is smaller than the number of elements of
that input vector. This whole concept of using amplitudes to encode input
vector elements is formulated more clearly below:
▶ Note 3.14 (Amplitude encoding method purpose). Given a real input vector
v = (v1 v2 . . . vn)

T ∈ Rn, n ∈ N, with the vector being normalized such
that ‖v‖ = 1, the purpose of the amplitude encoding method is to encode this
vector into a state |ψ〉 ∈ Cn of dlog2(n)e qubits, where the state |ψ〉 can be
characterized as being the following superposition of the standard basis states:

|ψ〉 =
n∑
i=1

vi |ei〉 ,

where |ei〉 is the i-th basis state, with its amplitude being vi (corresponding
to the i-th input vector element). ◀
To achieve the desired effect outlined in the note above, a more sophisticated
procedure must be used than the one employed by the angle encoding method.
This procedure is elucidated in the following few subsections.

3.3.2 Detailed example

Let there be a normalized input vector v = (v1 v2 . . . vn)
T ∈ Rn, n =

2m, m ∈ N, ‖v‖ = 1 that is supposed to be encoded using the amplitude
encoding method by creating a state |ψ〉 ∈ Cm. The input vector length n
must be greater than or equal to 2 since at least one qubit must be used in
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any quantum system, and that one qubit has two amplitudes. The resulting
state is described as the following superposition of the standard basis states:

|ψ〉 =
n∑
i=1

vi |ei〉 ,

where |ei〉 is the i-th basis state, with its amplitude being vi (corresponding
to the i-th input vector element). It must be true that:

‖ |ψ〉 ‖2 =
n∑
i=1

v2i = 1,

because the probabilities of measuring any possible state during a measurement
must sum up to 1.

The resulting state |ψ〉 consists of m qubits. Each qubit of this resulting
state must be in the correct state, defined by the input vector elements. This
is first illustrated with an example on a short input vector:

▶ Example 3.15. Let m = 2. Then, the resulting state |ψ〉 is made up of
two qubits, where the state vector of this state can be characterized as:

|ψ〉 = v1 |00〉+ v2 |01〉+ v3 |10〉+ v4 |11〉 .

If the state |ψ〉 is created correctly, the probabilities of the first qubit of this
state |ψ〉 collapsing into the states |0〉 and |1〉 when measured are:

P|∗0⟩(|ψ〉) = v21 + v23, P|∗1⟩(|ψ〉) = v22 + v24.

The notations |∗0〉 and |∗1〉 are employed to denote the outcomes of a measure-
ment performed on the quantum state |ψ〉. Specifically, |∗0〉 indicates that the
measurement results in the first qubit collapsing into the state |0〉, with the
second qubit subsequently found in either the state |0〉 or |1〉. Correspondingly,
|∗1〉 signifies that the first qubit collapses into the state |1〉, independent of
the resultant state of the second qubit. Based on the probabilities presented
above, the first qubit of the state |ψ〉 can be characterized as follows:√

v21 + v23 |0〉+
√
v22 + v24 |1〉 ,

with the amplitudes being
√
v21 + v23 and

√
v22 + v24, respectively. So, having

the first qubit initially in the state |0〉, it must be acted upon by some unitary
operator to produce the state above. As is explained in detail in the previous
chapter Angle encoding method (3.2), the rotational gate RY is capable of
encoding a real number into a qubit. Because both amplitudes α1 and β1 are
real numbers, the gate RY can also be used in this encoding method as well,
in a similar fashion as in the angle encoding method. So, for the equations
above to be true, the gate RY (θ1) can be utilized in the following manner:

RY (θ1) |0〉 = cos

(
θ1
2

)
|0〉+ sin

(
θ1
2

)
|1〉 .
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This means that for the amplitudes cos θ12 and sin θ1
2 , it must be true that:

cos

(
θ1
2

)
=
√
v21 + v23, sin

(
θ1
2

)
=
√
v22 + v24,

The angle θ1 can be calculated using one of the equations above, either with the
cosine function or with the sine function; in each case, the correct amplitudes
must be chosen. So, solving for the angle θ1:

cos

(
θ1
2

)
=
√
v21 + v23 ⇔ θ1 = 2arccos

(√
v21 + v23

)
,

sin

(
θ1
2

)
=
√
v22 + v24 ⇔ θ1 = 2arcsin

(√
v22 + v24

)
.

This way, the first qubit can be transformed from the initial state |0〉 to the
desired state by using the gate RY in one of two possible ways:

1. RY

(
2 arccos

(√
v21 + v23

))
|0〉

2. RY

(
2 arcsin

(√
v22 + v24

))
|0〉

By choosing one of these approaches, the state of the first qubit is modified
according to the input vector elements. Now that the first qubit is successfully
rotated, the second one needs to be rotated, too. This is the point where
this encoding method differs from the previous encoding methods. The second
qubit cannot be rotated in the same way as the first one because the second
qubit depends on the state of the first qubit. There are two possibilities for
the first qubit of the resulting state v1 |00〉+ v2 |01〉+ v3 |10〉+ v4 |11〉 = |ψ〉:

Possibility 1: the basis states whose first qubit is in the state |0〉:
This is true for the basis states v1 |00〉 and v3 |10〉. In this scenario:

Out of these both basis states v1 |00〉 and v3 |10〉, the second qubit is in
the state |0〉 within the basis state v1 |00〉.
Analogically, the second qubit is in the state |1〉 within the state v3 |10〉.

So, for when the first qubit is in the state |0〉, the probabilities of the second
qubit |ψ2〉 collapsing into the states |0〉 and |1〉 are:

P|00⟩(|∗0〉) =
v21

v21 + v23
, P|10⟩(|∗0〉) =

v23
v21 + v23

.

The denominator v21 + v23 ensures that P|00⟩(|∗0〉) + P|10⟩(|∗0〉) = 1 and
suggests that the probabilities P|00⟩(|∗0〉) and P|10⟩(|∗0〉) are calculated for
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the basis states whose first qubit is in the state |0〉. If the denominator is
zero, the probabilities P|00⟩(|∗0〉) and P|10⟩(|∗0〉) are undefined, and thus
the need to account for them in the encoding process is eliminated. In such
a case, this scenario Possibility 1 can be skipped.
To encode the probabilities P|00⟩(|∗0〉) and P|10⟩(|∗0〉) into the second qubit
(currently its state is the initial state |0〉), a rotation must be applied to it.
The angle θ2 used in the rotation is calculated analogically as previously:

cos

(
θ2
2

)
=

√
v21

v21 + v23
⇔ θ2 = 2arccos

(√
v21

v21 + v23

)
,

sin

(
θ2
2

)
=

√
v23

v21 + v23
⇔ θ2 = 2arcsin

(√
v23

v21 + v23

)
.

However, now, the ordinary RY gate is insufficient because this case as-
sumes that the first qubit is in the state |0〉. In some way, this condition
needs to be translated into the circuit. This is where the controlled gates
shine; they allow for conditional operations to be performed on qubits, thus
entangling them. The gate RY is extended so that the first qubit acts as a
control qubit. Gates that have a qubit acting as a control qubit are referred
to as controlled gates. In this case, the first qubit is the controlled qubit,
conditioned on being in the state |0〉. So, a controlled gate RY is applied
to both qubits, where the first qubit acts as a control qubit and the second
qubit has a rotation applied to it and is called a target qubit. Thus, the
second qubit is rotated within the scope of the first qubit being in the state
|0〉, resulting in these qubits becoming entangled.
▶ Note 3.16 (Control qubit state). Ordinarily, a controlled gate is con-
ditioned on its control qubit being in the state |1〉. In this scenario, the
control qubit is assumed to be in the state |0〉. This issue can be easily fixed
by applying the gate X to the control qubit before applying the controlled
gate and applying the gate X to the control qubit again after the controlled
gate is applied so that the effect of the first gate X is not translated into
the final state but is reverted instead. ◀
▶ Note 3.17 (Coltrolled gate RY ). The controlled gate RY has the follow-
ing matrix representation (assuming that little-endian convention is used):

CRY (θ) = |0〉 〈0| ⊗ I + |1〉 〈1| ⊗RY (θ) =

=


1 0 0 0

0 cos θ2 0 − sin θ
2

0 0 1 0

0 sin θ
2 1 cos θ2


◀
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Two different possible setups of controlled gates RY are presented in the
illustration below:

Figure 3.3 A visualization of two two-qubit quantum circuits (created using the
Qiskit library) with a controlled gate RY applied to each circuit. The gate on the left
targets the qubit q1 with the qubit q0 serving as a control qubit whose control state
is the state |1〉. The gate on the right targets the qubit q0 with the qubit q1 serving
as a control qubit whose control state is in the state |0〉

Possibility 2: the basis states whose first qubit is in the state |1〉:
This is an analogy to the scheme described in depth above. This time, the
basis states v2 |01〉 and v4 |11〉 have their first qubit in the state |1〉, and:

Of these states v2 |01〉 and v4 |11〉, the second qubit is in the state |0〉
within the basis state v2 |01〉.
The second qubit is in the state |1〉 within the state v4 |11〉.

So, for the first qubit being in the state |1〉, the probabilities of the second
qubit |ψ2〉 collapsing into the states |0〉 and |1〉 are:

P|01⟩(|∗1〉) =
v22

v22 + v24
, P|11⟩(|∗1〉) =

v24
v22 + v24

.

which in turn means the angle θ3 used in the controlled rotation is calcu-
lated as:

cos

(
θ3
2

)
=

√
v22

v22 + v24
⇔ θ3 = 2arccos

(√
v22

v22 + v24

)
,

sin

(
θ3
2

)
=

√
v24

v22 + v24
⇔ θ3 = 2arcsin

(√
v24

v22 + v24

)
.

Again, if the denominator is zero, this process can be skipped. In this
scenario, the controlled rotational gate RY is applied to both qubits such
that the second qubit is the targeted qubit that has the angle θ3 applied to
it using the gate CRY , and the first qubit is the control qubit conditioned
on the state |1〉.
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In total, three gates RY are used to encode the four-dimensional input vector
using the amplitude encoding method, with two of them being controlled and
conditioned on the first qubit’s state. For an input vector of size 2m, 2m − 1
rotations are applied sequentially to the qubits. To conclude this example,
three unitary operators representing the three gates are shown and applied to
the qubits that are in the initial state |0〉. The final state |ψ〉 is thus cre-
ated by sequentially applying three unitary operators URY (θ1), UCRY0(θ2),
and UCRY1(θ3) on the initial state |ψ0〉 = |0〉 ⊗ |0〉 in the following way:
UCRY1(θ3)UCRY0(θ2)URY (θ1) |ψ0〉 = |ψ〉. First, the ordinary gate RY (θ1) is
applied (a part of the operator URY (θ1)), and then the controlled gates are
applied (operators UCRY0(θ2) and UCRY1(θ3)). The unitary operators are pre-
sented below:

URY (θ1) = I ⊗RY (θ1) =

(
1 0
0 1

)
⊗

cos θ12 − sin θ1
2

sin θ1
2 cos θ12

 =

=



cos θ12 − sin θ1
2 0 0

sin θ1
2 cos θ12 0 0

0 0 cos θ12 − sin θ1
2

0 0 sin θ1
2 cos θ12


,

UCRY0(θ2) = (I ⊗X) · CRY (θ2) · (I ⊗X) =

=

((
1 0
0 1

)
⊗
(
0 1
1 0

))
·


1 0 0 0

0 cos θ22 0 − sin θ2
2

0 0 1 0

0 sin θ2
2 0 cos θ22

 ·
((

1 0
0 1

)
⊗
(
0 1
1 0

))
=

=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



1 0 0 0

0 cos θ22 0 − sin θ2
2

0 0 1 0

0 sin θ2
2 0 cos θ22



0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 =

=


cos θ22 0 − sin θ2

2 0

0 1 0 0

sin θ2
2 0 cos θ22 0

0 0 0 1

 ,

UCRY1(θ3) = CRY (θ3),
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The operator URY (θ1) is just the gate RY (θ1) expanded using the identity
gate I (acting on the unaffected qubit) to the size 2 x 2 so that it can be
applied to the whole 4-dimensional state vector. The same expansion also
happens to the gates X used in the operator UCRY0(θ2). Finally, the equation
|ψ〉 = UCRY1(θ3)UCRY0(θ2)URY (θ1) |ψ0〉 can be written as follows:

|ψ〉 = UCRY1(θ3)UCRY0(θ2)URY (θ1)


1

0

0

0

 =


cos θ12 cos θ22

sin θ1
2 cos θ32

cos θ12 sin θ2
2

sin θ1
2 sin θ3

2


When the angles are substituted for the corresponding numbers, the resulting
state looks like this:

|ψ〉 =


cos θ12 cos θ22

sin θ1
2 cos θ32

cos θ12 sin θ2
2

sin θ1
2 sin θ3

2

 =



cos
2 arccos

√
v21+v

2
3

2 cos
2 arccos

√
v21

v21+v23

2

sin
2 arcsin

√
v22+v

2
4

2 cos
2 arccos

√
v22

v22+v24

2

cos
2 arccos

√
v21+v

2
3

2 sin
2 arcsin

√
v23

v21+v23

2

sin
2 arcsin

√
v22+v

2
4

2 sin
2 arcsin

√
v24

v22+v24

2


=

=



√
v21 + v23

√
v21

v21+v
2
3√

v22 + v24

√
v22

v22+v
2
4√

v21 + v23

√
v23

v21+v
2
3√

v22 + v24

√
v24

v22+v
2
4


=


|v1|

|v2|

|v3|

|v4|



As seen in this outcome, the resulting vector is almost identical to the input
vector v = (v1 v2 v3 v4)

T , it only differs in the fact that it contains the absolute
values of the input vector elements. The sign of each input vector element was
lost during the encoding process. This fact was not initially mentioned for the
sake of simplicity. However, the amplitude encoding technique addresses this
concern. This issue can be easily fixed by slightly adjusting the angles used
in the rotations. k = 2m − 1 rotations are performed when encoding an input
vector of length 2m using this encoding method. When calculating the last
j = 2m

2 angles used in the last j = 2m

2 gates (for m qubits, always k angles
are calculated and k rotational gates are used, so if k = 3, j = 2, or if k = 15,
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j = 8, etc.), the calculations need to be adjusted to account for the signs of
the input vector elements in the following manner:

Only the last j angles must be adjusted. Of those, when calculating the
l-th angle θ (where l ∈ [1, j] ⊂ N is the index of the l-th angle belonging
to the group of those last j angles), the following adjustments are needed:

If the (2 · l)-th element of the input vector is negative, the l-th angle θ
is negated, so the adjusted angle θA is calculated as θA = −θ.
If the (2 · l− 1)-th element of the input vector is negative, the l-th angle
θ needs to be adjusted to create θA in the following way: θA = 2π − θ.

Both adjustions may occur if both (2 · l)-th and (2 · l − 1)-th elements of
the input vector are negative.

To show these adjustments in practice, this encoding method is demonstrated
on a chosen four-dimensional real vector. Let the input vector v be:

v =

(
1

2

−1
2

−1
2

−1
2

)T
.

Then, the result with the desired angle adjustments (to encode the signs of the
input vector elements) would be (adjustments are highlighted in bold):

=



cos
2 arccos

√
v21+v

2
3

2 cos
−1·2 arccos

√
v21

v21+v23

2

sin
2 arcsin

√
v22+v

2
4

2 cos
2π+2 arccos

√
v22

v22+v24

2

cos
2 arccos

√
v21+v

2
3

2 sin
−1·2 arcsin

√
v23

v21+v23

2

sin
2 arcsin

√
v22+v

2
4

2 sin
2π+2 arcsin

√
v24

v22+v24

2


=


1
2

−1
2

−1
2

−1
2



The adjustments made to the angles result in the input vector being correctly
encoded. A quantum circuit that is created by encoding this input vector v
using this approach thoroughly explained in this subsection is shown below:

Figure 3.4 A visualization of a quantum circuit created in Qiskit by encoding the
input vector

(
1
2

−1
2

−1
2

−1
2

)T ∈ R4 using the amplitude encoding method.
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This example is now finalized. Although only a four-dimensional vector was
showcased, this example conscientiously explained the essence of the amplitude
encoding method. The process is the same in its nature even when longer input
vectors are used, and the algorithm that implements this process follows this
example. This algorithm can be found in the subsection Amplitude encoding
method (4.2.3) of the chapter Implementation (4) in the form of pseudocode.

◀
3.3.3 Generalization
The previous example only shows the process of encoding a four-dimensional in-
put vector. However, that process can be generalized to showcase its ability to
encode input vectors of larger lengths. The algorithm presented in Amplitude
encoding method (4.2.3) is based on this generalization. To understand how
this encoding method works in general, and to be able to encode longer than
4-dimensional input vectors, the following two processes need to be explained:

1. The general way to calculate the i-th angle θ needed in the i-th rotation.

2. The general way to characterize the i-th gate of the quantum circuit.

The following definition addresses the first point:
▶ Definiton 3.18 (i-th angle calculation). It is assumed that a normalized
real input vector v = (v1 v2 . . . vn)

T ∈ Rn, n = 2m, m ∈ N, ‖v‖ = 1 is
supposed to be encoded using the amplitude encoding method. Then, n − 1
angles θ1, θ2, . . . , θn−1 are calculated from the elements of v. Let θi be the
i-th calculated angle, where i ∈ [1, n− 1] ⊂ N. Let:

1. o = 2m−⌊log2(i)+1⌋, p = i+ 1− 2⌊log2(i)⌋, q = 1 + (p− 1) · 2 · o

2. S(v[a, b]), 1 ≤ a ≤ b ≤ n denote the sum of the squared input vector
elements, summed from the a-th element to the b-th element:

S(v[a, b]) =

b∑
i=a

v2i

3. R(v[a, b],v[c, d]) represent the following number:

R(v[a, b],v[c, d]) =


S(v[a, b])

S(v[a, b])+S(v[c, d])
if S(v[a, b]) + S(v[c, d]) 6= 0

0 otherwise

Then, the angle θi is calculated using the following formula:

θi =


2 arccos

(√
S
(
v[1, 2m−1]

))
if i = 1,

2 arccos
(√

R(v[q, q+o−1],v[q+o, q+o+o−1])
)

if i > 1.

◀
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▶ Example 3.19. An example calculation is conducted using the above defi-
nition for a given 8-dimensional input vector v = (v1 v2 v3 v4 v5 v6 v7 v8)

T ∈
R8, ‖v‖ = 1. Let m = log2(8) = 3 denote the number of qubits required
to encode this input vector using the amplitude encoding method. Then, the
definition can be utilized to create the following expressions (with these ex-
pressions, the 7 required angles can be calculated):

1. For the first angle θ1, where i = 1:

S
(
v[1, 2m−1]

)
= S

(
v[1, 23−1]

)
= S(v[1,4]) = v21 + v22 + v23 + v24

2. For the second angle θ2, where i = 2:

o = 2m−⌊log2(i)+1⌋ = 23−⌊log2(2)+1⌋ = 23−2 = 2

p = i+ 1− 2⌊log2(i)⌋ = 2 + 1− 2⌊log2(2)⌋ = 3− 21 = 1

q = 1 + (p− 1) · 2 · o = 1 + (1− 1) · 2 · 2 = 1 + 0 · 2 · 2 = 1

R(v[q, q+o−1],v[q+o, q+o+o−1]) = R(v[1,2],v[3,4]) =

=
S(v[1,2])

S(v[1,2]) + S(v[3,4])
=

v21 + v22
v21 + v22 + v23 + v24

3. For the third angle θ3, where i = 3:

o = 2m−⌊log2(i)+1⌋ = 23−⌊log2(3)+1⌋ = 23−2 = 2

p = i+ 1− 2⌊log2(i)⌋ = 3 + 1− 2⌊log2(3)⌋ = 4− 21 = 2

q = 1 + (p− 1) · 2 · o = 1 + (2− 1) · 2 · 2 = 1 + 1 · 2 · 2 = 5

R(v[q, q+o−1],v[q+o, q+o+o−1]) = R(v[5,6],v[7,8]) =

=
S(v[5,6])

S(v[5,6]) + S(v[7,8])
=

v25 + v26
v25 + v26 + v27 + v28

4. For the fourth angle θ4, where i = 4:

o = 2m−⌊log2(i)+1⌋ = 23−⌊log2(4)+1⌋ = 23−3 = 1

p = i+ 1− 2⌊log2(i)⌋ = 4 + 1− 2⌊log2(4)⌋ = 5− 22 = 1

q = 1 + (p− 1) · 2 · o = 1 + (1− 1) · 2 · 1 = 1 + 0 · 2 · 1 = 1

R(v[q, q+o−1],v[q+o, q+o+o−1]) = R(v[1,1],v[2,2]) =

=
S(v[1,1])

S(v[1,1]) + S(v[2,2])
=

v21
v21 + v22
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5. For the fifth angle θ5, where i = 5:

o = 2m−⌊log2(i)+1⌋ = 23−⌊log2(5)+1⌋ = 23−3 = 1

p = i+ 1− 2⌊log2(i)⌋ = 5 + 1− 2⌊log2(5)⌋ = 6− 22 = 2

q = 1 + (p− 1) · 2 · o = 1 + (2− 1) · 2 · 1 = 1 + 1 · 2 · 1 = 3

R(v[q, q+o−1],v[q+o, q+o+o−1]) = R(v[3,3],v[4,4]) =

=
S(v[3,3])

S(v[3,3]) + S(v[4,4])
=

v23
v23 + v24

6. For the sixth angle θ6, where i = 6:

o = 2m−⌊log2(i)+1⌋ = 23−⌊log2(6)+1⌋ = 23−3 = 1

p = i+ 1− 2⌊log2(i)⌋ = 6 + 1− 2⌊log2(6)⌋ = 7− 22 = 3

q = 1 + (p− 1) · 2 · o = 1 + (3− 1) · 2 · 1 = 1 + 2 · 2 · 1 = 5

R(v[q, q+o−1],v[q+o, q+o+o−1]) = R(v[5,5],v[6,6]) =

=
S(v[5,5])

S(v[5,5]) + S(v[6,6])
=

v25
v25 + v26

7. For the seventh angle θ7, where i = 7:

o = 2m−⌊log2(i)+1⌋ = 23−⌊log2(7)+1⌋ = 23−3 = 1

p = i+ 1− 2⌊log2(i)⌋ = 7 + 1− 2⌊log2(7)⌋ = 8− 22 = 4

q = 1 + (p− 1) · 2 · o = 1 + (4− 1) · 2 · 1 = 1 + 3 · 2 · 1 = 7

R(v[q, q+o−1],v[q+o, q+o+o−1]) = R(v[7,7],v[8,8]) =

=
S(v[7,7])

S(v[7,7]) + S(v[8,8])
=

v27
v27 + v28

Each of these expressions must then be used in the arccos function along with
the square root to calculate the corresponding angle. The angle can also be
optionally adjusted to account for the correct signs of the input vector elements,
as explained in the example previously. ◀

▶ Note 3.20. This definition was created by directly translating the imple-
mented algorithm that is introduced in the form of pseudocode in the subsec-
tion Amplitude encoding method (4.2.3) of the chapter Implementation (4).
So, the pseudocode in that subsection provides an understanding of how this
definition is used in practice. Another crucial fact worth noting is that this
definition utilizes the same endianness that is used in the implementation. ◀
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▶ Remark 3.21. This definition works for input vectors of sizes n = 2m, m ∈ N.
This is a limitation, as there may be input vectors with lengths other than n.
However, this limitation can be easily resolved. If the length of the input
vector is l ∈ N, the input vector can be padded to the nearest power of two
that is larger than l by adding enough zeros at the end. ◀
Now, it is time to explore the second point–explaining which exact gates are
used in the case of an arbitrarily sized input vector. In the lengthy example
presented previously, it was sufficient to use three gates, where two of them
were controlled gates CRY . For larger vectors, an ordinary CRY would not
be sufficient because more qubits might need to act as control states. The gate
CRY can be extended further to condition more than one qubit, resulting in
a multi-controlled gate RY that has multiple qubits acting as control qubits.
▶ Note 3.22. The extension of the controlled RY gate to a multi-controlled ver-
sion, denoted as CnRY (θ), involves the inclusion of additional control qubits.
This gate applies the RY (θ) rotation to the target qubit conditioned on the
state of n control qubits being in the state |1〉. If any control qubit is in
the state |0〉, the identity operation I is applied, leaving the target state un-
changed. As was explained earlier (Control qubit state, 3.16), if there is a need
for different control states than |1〉, the gates X need to be applied to the cor-
responding control qubits. The matrix form for the n-controlled RY gate is
of size 2n+1× 2n+1, acting on the Hilbert space H = C2n+1 . Its representation
utilizes Kronecker products to appropriately enlarge the matrix RY (θ), ensur-
ing that the rotation is applied to the target qubit only under the specified
conditional states. Practical implementations may require decomposition into
simpler gates to facilitate execution on real quantum computing devices. ◀

▶ Definiton 3.23 (i-th gate properties). Let v be a normalized input vector
v = (v1 v2 . . . vn)

T ∈ Rn, n = 2m, m ∈ N, ‖v‖ = 1. For this vector to
be encoded using the amplitude encoding method, m qubits are used and n− 1
angles are calculated, and therefore, n − 1 rotational gates need to be applied,
denoted as C0RY (θ1), C

1RY (θ2), . . . , C
n−2RY (θn−1). Then, the i-th gate

Ci−1RY (θi), i ∈ [1, n − 1] ⊂ N is fully characterized by having the following
properties:

It targets the (m− dlog2(i)e)-th qubit, let this qubit be the j-th qubit.

It has k = blog2(i)c control qubits.

If k > 0, the control qubits range from the (j+1)-th qubit to the m-th qubit.

The control state |cp〉 ∈ {|0〉 , |1〉} of the p− th control qubit (p ∈ k̂, the p-th
control qubit is the (m+ 1− p)-th qubit overall) is calculated as follows:

cp =

⌊
i mod 2p

2p−1

⌋
.

◀
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The algorithm introduced in the subsection Amplitude encoding method (4.2.3)
of the chapter Implementation (4) that represents the amplitude encoding
method was implemented based on this definition. The pseudocode presented
in that subsection illustrates how this definition is implemented in practice.

3.3.4 Properties
Now, with both definitions above, arbitrarily sized input vectors (arbitrary
lengths of n = 2m, m ∈ N) can be encoded using this encoding method. There
are certain aspects of this encoding method that are worth mentioning. They
are outlined below.
▶ Remark 3.24. Let v = (v1 v2 . . . vn)

T ∈ Rn, n = 2m, m ∈ N, ‖v‖ = 1 be an
input vector that is encoded using the amplitude encoding method, resulting
in a state |ψ〉 described within a 2m-dimensional Hilbert space H = C2m .

In comparison with the basis and angle encoding methods, the amplitude
encoding method is vastly superior in terms of qubit demand. For example,
if given a quantum system with a thousand available qubits, theoretically, it
is possible to encode an input vector of length 1000 in both basis and angle
encoding methods, but an input vector of length 21000 in the amplitude
encoding method7. This difference in exponentiality effectively renders the
basis and angle encoding methods insignificant in terms of how lengthy
input vectors they are able to encode.

It is possible to optimize this encoding method in terms of the number of
gates it uses. If a rotational gate has no effect on the qubit it targets, there
is no point in using such a gate. For instance, this can occur when the
angle θ used in a rotation is equal to 0. Under these circumstances, the
application of the gate that uses this angle can be omitted.

This encoding method typically works for input vectors of lengths equal
to some power of two, specifically 2m, m ∈ N. However, it is possible to
overcome this limitation. Given an input vector of a truly arbitrary length
n ∈ N (where n is not a power of two), this vector can be encoded using
this encoding method if the following procedure is performed:

1. First, the input vector is enlarged so that its length becomes the nearest
power of two larger than n. This is done by appending zeros to the
vector’s end.

2. Then, such an enlarged vector can be encoded in the ordinary way.
3. After it becomes encoded, the resulting state vector can be trimmed so

that it only contains the first n elements. This state vector then fully
corresponds to the original input vector.

7For better comprehension, the number 21000 has 302 digits.
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The above process can be performed analogously when zeros are appended
to the beginning of the vector, with the state vector then being trimmed
from the beginning so that it only contains the last n elements.

An obvious feature of this encoding method is that it produces states with
entangled qubits due to the fact that controlled gates are used.

The gates that are applied to produce |ψ〉 closely resemble certain aspects
of binary trees. These are summarized below:

The last qubit has just one rotation applied to it. The second to last
qubit has two rotations applied to it. The subsequent qubit has four
rotations applied to it, and so on, until the first qubit is reached and it
has n

2 rotations applied to it, which is more than half of all rotations
applied.
The control states used in the controlled rotational gates can be calcu-
lated by taking the binary representation of the number denoting the
order of the gates that target a specific qubit (with some minor adjust-
ments).

When the angles are calculated for the rotations, they also participate in
the process that resembles certain binary tree aspects:

1. The first angle resembles the first binary level with half of the input
vector elements used when calculating it.

2. The second and third angles resemble the second binary tree level, with
each having a fourth of the input vector elements in the nominator in
their formula that is used to calculate them (the formula can be seen in
the definition i-th angle calculation, 3.18).

3. The fourth to seventh angles (four angles in total) resemble the third
binary tree level, with each angle having an eighth of the input vector
elements in the nominator of its formula.

4. Assuming the total angle count is a, a total of a+1
2 angles comprise

the last binary tree level, with each angle having only one input vector
element in the nominator of its formula.

As mentioned, the major benefit of this encoding method is that it requires
a logarithmic number of qubits when comparing the qubit count to the in-
put vector’s length. However, there is a trade-off. The number of rotational
gates is exponential to the qubit count. For m qubits, 2m − 1 rotational
gates are utilized. In real quantum computers, it is best to keep both qubit
count and gate count requirements at a minimum. This is because the
number of available qubits is limited, and each gate in a quantum circuit
has the potential to introduce errors. So, the more gates used in a circuit,
the more error-prone the encoding process becomes. It is crucial to adhere
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to a delicate balance between these two metrics. As seen in the chapter
Testing (5), the number of gates used in a circuit has a significant impact
on the quality of the resulting state.
To further elucidate, the logarithmic scaling of qubits with respect to the
input size represents a substantial advantage in terms of resource efficiency.
This characteristic makes this encoding technique particularly appealing for
applications involving large datasets, where a linear or polynomial number
of qubits would be impractical [28]. Nonetheless, the exponential increase
in the number of rotational gates introduces significant complexity. Each
additional gate increases the likelihood of decoherence and operational er-
rors, which can degrade the fidelity of the quantum state [31].
Moreover, in practical implementations, the limitations of current quantum
hardware must be considered. Quantum error correction and fault-tolerant
quantum computing are active areas of development aimed at mitigating
these errors [19], but some of the solutions also entail additional qubit over-
head [32]. Therefore, trying to optimize quantum circuits to minimize their
gate usage without compromising their computational power is essential.
In the broader context of quantum information theory, the trade-off be-
tween qubit and gate counts is a pivotal consideration. It influences algo-
rithm designs, hardware development, and overall computational strategies
[33]. As quantum technology progresses, achieving an optimal balance will
be fundamental to leveraging the full potential of quantum computing.
This entails not only reducing the physical gate count but also innovating
in error mitigation techniques and circuit simplification methods [19, 34].
Additionally, it is worth noting that different quantum algorithms (that
process encoded data) may exhibit varying sensitivities to the gate and
qubit counts. Some algorithms may tolerate higher gate counts if they
offer significant computational advantages, while others might prioritize
minimal gate usage to preserve quantum coherence [15]. Therefore, the
specific requirements and constraints of the application domain must be
carefully evaluated when choosing the optimal encoding method. This is
why all three encoding methods discussed in this thesis so far may be
utilized, even though the amplitude encoding method might be preferred
in many cases due to its qubit count advantage. However, there may exist
some instances when the amplitude encoding method cannot be utilized
due to its exponential gate count, whereas the angle and basis encoding
methods cannot be utilized due to their limitations. For these cases, a
different encoding method might be useful, but one such that it retains
many benefits of the amplitude encoding method. This serves as a rationale
to introduce the last encoding method discussed in this thesis. This last
encoding method originates from the amplitude encoding approach but
modifies some of its aspects. This final encoding method is discussed in
the next subsection. ◀
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3.3.5 Divide-and-conquer encoding method
This subsection introduces the last encoding method discussed in this thesis.
This encoding method is a variation of the amplitude encoding method. It
is referred to as the amplitude encoding using a divide-and-conquer principle,
or concisely called the divide-and-conquer encoding method throughout
this thesis. The name of this encoding approach stems from the fact that it
utilized a divide-and-conquer strategy during the state preparation process.
The rationale for presenting this encoding method is mentioned in the last
part of the previous subsection (3.3.4). It was mentioned that one of the most
significant downsides to the amplitude encoding method is the number of gates
it uses to encode input vectors. The divide-and-conquer strategy aims to tackle
this issue by encoding the same angles in a different way.

3.3.5.1 Introduction and core ideas

This encoding method starts in the same way as the classical amplitude encod-
ing method–by calculating the required angles used in rotational gates based
on given input vector elements. This means that if an input vector v is given
such that v = (v1 v2 . . . vn)

T ∈ Rn, n = 2m, m ∈ N, ‖v‖ = 1, the first step
is to calculate n−1 angles, each using the definition i-th gate properties (3.23)
presented in the subsection Generalization (3.3.3) of this section. However,
from now on, the two encoding methods start to differ. The main disparity
lies in the way they encode the calculated angles. While the amplitude encod-
ing technique utilizes multi-controlled rotational gates, this encoding approach
works differently. It encodes the angles in exactly the same way as the angle
encoding method does. So, having n − 1 angles, the angle encoding method
would encode each one in a separate qubit using the ordinary rotational gates
RY , thus using n − 1 qubits. The divide-and-conquer encoding method does
the same thing. It uses n − 1 qubits, and each one has the gate RY applied
to it with the corresponding angle. So, having angles θ1, θ2, . . . , θn−1, n− 1
rotational gates RY (θi) are applied, where the i-th qubit (i ∈ [1, n−1] ⊂ N) is
affected by the gate RY (θi). This is in sharp contrast with the multi-rotational
gates used in the angle encoding method. However, this is not the end of the
encoding process. If this were the end, this encoding approach would not pre-
pare the desired state. It is vital to explain what state this encoding approach
is supposed to create. This is explained in the following note:
▶ Note 3.25 (Divide-and-conquer encoding method purpose). Given a real
input vector v = (v1 v2 . . . vn)

T ∈ Rn, n = 2m, m ∈ N, with the vector
being normalized such that ‖v‖ = 1, the divide-and-conquer encoding method
encodes this input vector into a state |ψ〉 ∈ C2n−1 of n − 1 qubits. Let M be
a set of dlog2(n)e qubits such that ∀i ∈ {2k | k ∈ Z, 0 ≤ k < log2(n − 1)} is
the i-th qubit in the set M . It is assumed that all qubits in M are measured
after the vector v is encoded using this encoding method, and let pm be a
vector of probabilities of measuring each possible state. Then, the purpose
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of this encoding method is for the vector pm to be equal to the following
superposition of the standard basis states:

pm =
n∑
j=1

v2i |ej〉 ,

where |ej〉 is the j-th basis state of the standard basis, with each standard basis
vector having a length of n. The amplitudes of these basis states correspond
to the squared input vector elements. ◀
There is one crucial fact that is obvious from the note above–not all qubits
comprise the output state of this encoding process. This is a clear distinc-
tion between this encoding method and all the previous ones. In all previous
encoding methods, all qubits participated in the encoding process in a way
that they contributed to the desired state vector. Here, only some qubits are
directly involved in the representation of the desired state. These distinctive
qubit groups have their own terms that describe them:
▶ Note 3.26 (Data qubits and auxiliary qubits). Qubits in quantum circuits
are typically classified into two main categories:

The qubits that are involved in the direct representation of the desired
output are referred to as data qubits.

The qubits that are not directly involved in the characterization of the
desired output state are called auxilary qubits or ancillary qubits. ◀

In all previous data encoding methods, all qubits comprise the desired state,
so all are data qubits. However, as clarified in the note above, in this encoding
method, only some qubits are data qubits (those that are involved in describing
the probability vector pm). All other qubits are auxiliary (qubits that are not
measured to obtain pm). Specifically, each i-th qubit such that i is a power of
two is a data qubit, while each other qubit is an ancilla qubit.

The note also highlights the fact that in this encoding approach, more
qubits are used in the encoding process than in the case of the amplitude
encoding method. Moreover, the number of qubits used to encode an input
vector is the same as the number of elements in that input vector, minus one.
The rationale behind this encoding method was supposed to be reducing the
number of required gates (which holds true, as explained later), but in the
process, the number of required qubits rose up to be again linearly aligned to
the input vector, as is the case in the basis and encoding methods. If all qubits
were to be measured, not only data qubits, the length of the resulting state
would have been exponential in comparison with the input vector’s length. To
preserve the purpose of the input vector acting as the desired state8, only a

8Which is true in the amplitude encoding method, where the input vector is identical to
the desired output vector. This divide-and-conquer approach acts as an alternative version of
the amplitude encoding method, so some of the properties of the amplitude encoding method
must be retained in this encoding technique.
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subset of quits must act as data qubits; otherwise, the length of the resulting
state would have exceeded the length of the input vector. So, to summarize
all these findings:

Only a subset of qubits is used to create the resulting state that corresponds
to the squared input vector elements.

The angles that contain information about the input vector are uniformly
distributed across all qubits.

These facts mean that for the angles to participate in the resulting state, they
must somehow be represented in the data qubits. So, each angle must, in the
end, in some way, connect to one or more data qubits. If two qubits are given,
and the state of one of the qubits must be represented in the state of the other
qubit, there is only one way to achieve such a goal–through the entanglement.
So, after all the angles are encoded using the gates RY , the qubits have to
become entangled in a way that when the correct subset of qubits is measured,
the probabilities of measuring any possible state correspond to the squared
input vector elements.

3.3.5.2 Divide-and-conquer strategy and example

This is where the main point of this encoding method comes in. The name
of this encoding method suggests the principle that is used to combine the
qubits together. The term “divide-and-conquer principle” generally character-
izes the act of dividing a more complex task into subtasks, where each subtask
can then be solved more easily when only focusing on solving it, rather than
the whole initial problem; then, the solutions to the subproblems can be com-
bined together to form a solution to the whole initial problem. This “divide-
and-conquer principle” is utilized in this encoding method after all the angles
θ1, θ2, . . . , θn−1 are already encoded using the rotational gates. The complex
problem that needs to be solved using the divide-and-conquer principle is to
entangle all n − 1 qubits in a way that only a subset of these n − 1 qubits,
specifically dlog2(n)e qubits comprise the desired state. To explain how the
divide-and-conquer strategy is used to combine the qubits, a look is first taken
back at how the amplitude encoding method works.

It is mentioned in the previous subsection Properties (3.3.4) that the pro-
cess of encoding input vectors using the amplitude encoding method resembles
certain aspects of binary trees. If representing rotational gates as tree nodes,
the first gate (the gate RY ) is the root of the tree, the second two gates (the
gates CRY ) are two child nodes of the root node, and they comprise the second
binary tree level. The third level then contains four gates C2RY , the fourth
level contains 2level−1 = 24−1 = 23 = 8 = gates C level−1RY = C3RY , and so
on. All those gates are applied sequentially, meaning the binary tree uses a
breadth-first approach involving adding nodes (gates) level by level, ensuring
that all nodes at a given level are added before proceeding to the next depth
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level. The angle calculation process also mimics a binary tree by computing
the angles in a binary tree-like manner in a top-to-bottom approach, halving
the input vector at each level 9.

The divide-and-conquer encoding method also adheres to this binarity prin-
ciple, but with one distinct difference–while the amplitude encoding process
utilizes a top-to-bottom tree approach (first encoding the initially calculated
angles that represent big chunks of the input vector, and slowly descending by
encoding angles that represent smaller and smaller chunks of the input vector
until only pairs of input vector elements are represented in the last angles), this
encoding method uses a bottom-to-top tree approach (where the first angles
that are processed by entangling their respective qubits are the last calculated
angles, meaning ones that represent the pairs of the input vector elements;
then ascending the tree structure by entangling qubits that represent input
vector chunks of larger sizes, until the largest chunk is reached, which is the
first angle, and the first angle represents half of the input vector elements).

Now that this introductory explanation is complete, the following two ma-
jor concepts need to be clarified to precisely characterize the exact encoding
process this divide-and-conquer principle employs:

What kinds of gates are used to entangle the qubits.

How are the gates used in the circuit to encode a given input vector.

The first point needs to be addressed initially. It was already mentioned that
this encoding method first encodes all the calculated angles using the gates RY .
There are no more angles left to encode and no other angles are calculated to
be used in any rotational gates. The only thing left to do is to appropriately
combine the qubits to reach the desired state. The gate CX can be used to
achieve this goal, since it entangles qubits. This encoding method does indeed
use the gates CX, however, they are just a part of a larger gate that is used–
the controlled SWAP gate. So, the answer to the first point is simple–the
controlled SWAP gates are used. This gate is introduced in the note below:
▶ Note 3.27 (Gate CSWAP). The controlled SWAP gate (denoted as CSWAP)
affects three qubits and it has the following properties:

Two qubits serve as target qubits.

One qubit serves as the control qubit.

This gate acts as the classical gate SWAP on the target qubits by swapping
their states, but the swapping is conditioned on the state of the control
qubit.

The swap of the targeted qubits occurs only if the control qubit is in the
state |1〉.

9This whole explanation is simplified, only intended to convey the notion that the encoding
process follows certain binarity principles.
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As with every controlled gate, if a control qubits needs to be conditioned
for the state |0〉, the gates X are applied to that control qubit before and
after the main controlled gate.

This gate is also known as the Fredkin gate.

This gate has the following matrix representation:

I ⊗ I ⊗ |0〉 〈0|+ SWAP⊗ |1〉 〈1| =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


,

assuming the first qubit is the control qubit and the last two qubits are the
target qubits.

Two different possible setups of gates CSWAP are shown in the illustration
below:

Figure 3.5 A visualization of two three-qubit quantum circuits (created using the
Qiskit library) with a controlled gate SWAP applied to each circuit. The gate on the
left targets the qubits q1 and q2 with the qubit q0 serving as a control qubit whose
control state is the state |1〉. The gate on the right targets the qubits q0 and q2 with
the qubit q1 serving as a control qubit whose control state is in the state |0〉 ◀
The question that now arises is how these gates CSWAP are used to prepare
the desired state. This can be explained and demonstrated in a small example
below:

▶ Example 3.28 (Divide-and-conquer encoding method usage example). Let
v =

(
1√
8

1√
8

1√
8

−1√
8

−1√
8

−1√
8

−1√
8

1√
8

)T
∈ R8, ‖v‖ = 1, n = 8 be a given nor-

malized 8-dimensional input vector that is supposed to be encoded using the
divide-and-conquer encoding method. Then, the quantum circuit created by
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encoding this input vector using this method has k = n − 1 = 7 qubits in
total, m = log(n) = 3 data qubits (the first, second, and fourth qubits are
data qubits, because each i-th qubit is a data qubits such that i is a posi-
tive power of two smaller than n), and k − m = 4 ancillary qubits. Then,
the divide-and-conquer encoding method encodes v by creating the following
circuit:

Figure 3.6 A diagram of a Qiskit quantum circuit created by encoding the input
vector

(
1√
8

1√
8

1√
8

−1√
8

−1√
8

−1√
8

−1√
8

1√
8

)T
∈ R8 using the divide-and-conquer encoding

method.

As clearly visible, the seven gates RY comprise the first row of gates, each
parallelly applied to a different qubit. The angles used in the rotations are
calculated using the definition i-th gate properties (3.23) presented in the
subsection Generalization (3.3.3) of this section. Then, the CSWAP gates are
applied to the qubits in the following binary tree-like manner:

The first qubit (q0) denotes the root of the tree, characterized by the first
angle that is calculated using the first four input vector elements.
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The following two qubits comprise the second tree level, where each angle
is calculated using two input vector elements10. The qubit q1 is the right
child node of the root node, while the qubit q2 is the left child node.

The last level contains four qubits (the qubits q3, q4, q5, q6 serving as leaves
of the tree), with four angles encoded (to calculate each of these angles,
one input vector element is used). The first two of these qubits have the
qubit q1 as their parent node, the last two qubits have the qubit q2 as their
parent node.

The divide-and-conquer principle combines the qubits from the bottom-up,
so, initially, the last two qubits q5 and q6 are combined with their parent
qubit q2 and the qubits q3 and q4 are combined with their parent qubit q1.

The second-level qubits are combined with the root of the tree.

The root node is combined with the left children of the second-level qubits.

When the first, second, and fourth qubits (q0, q1, q3) are measured, the resulting
vector containing the probabilities of measuring every possible state pm equals:

pm =
8∑
j=1

1

8
|ej〉 ,

where |ej〉 is the j-th basis state of the standard basis, with each standard
basis vector having a length of n = 8. This, in turn, fully corresponds to
the squared input vector elements, indicating a correct functionality of the
encoding method, resulting in the preparation of the desired quantum state:

pm =

8∑
j=1

1

8
|ej〉 =

8∑
j=1

v2i |ej〉 ,

where vi is the j-th input vector element.
This example illustrates the inner workings of this encoding method when

given a 8-dimensional input vector. However, the same divide-and-conquer
principle is used to encode longer vectors. ◀

3.3.5.3 Algorithm

One practical constraint of this divide-and-conquer principle is that it only
works for input vectors that contain four or more elements, where the element
count equals some positive power of two. Four elements are required because
the gates CSWAP act on three qubits, so the quantum circuit needs to have
at least three qubits to properly encode the input vector. And three qubits

10Not counting the parent input vector elements used in the denominator of the expression
S(v[a, b])

S(v[a, b])+S(v[c, d])
, the input vector elements used in the nominator are counted only.
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are present in the case when the input vector is four-dimensional. It might
be beneficial to generalize some of the properties of this encoding method to
summarize how it works in some of the aspects:
▶ Note 3.29 (Divide-and-conquer encoding method quantum circuit proper-
ties). Given a real input vector v = (v1 v2 . . . vn)

T ∈ Rn, n = 2m, m ∈
[2,∞) ⊂ N, with the vector being normalized such that ‖v‖ = 1, the divide-
and-conquer encoding method encodes this input vector by creating a quantum
circuit, where some of the circuit properties are characterized as follows:

There are a total of n− 1 qubits in the circuit.

Of the n− 1 qubits, m qubits are data qubits.

Of the n− 1 qubits, n− 1−m qubits are ancillary qubits.

The data qubits comprise a set M , where ∀i ∈ {2k | k ∈ Z, 0 ≤ k <
log2(n− 1)} is the i-th overall qubit in the set M .

The whole quantum circuit represents a state |ψ〉 ∈ C2n−1 .

When all the qubits from the set M are measured, the vector of probabili-
ties of measuring each possible state is characterized as:

n∑
j=1

v2i |ej〉 ,

where |ej〉 is the j-th basis state of the standard basis, with each standard
basis vector having a length of n.

The circuit uses n − 1 rotational gates RY , where each qubit has exactly
one of these gates applied on it.

After the gates RY , the qubits are entangled using the gates CSWAP,
where the number of these gates CSWAP in the circuit is equal to:

Let S(x) denote the following expression:

S(x) =

x∑
d=0

2d(x− d).

Then:

S(m) equals the total number of all gates used in the circuit.
S(m− 1) equals the number of the gates CSWAP used in the circuit.
S(m) − S(m − 1) = n − 1 equals the number of the gates RY used in
the circuit.

◀
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The process of the CSWAP gate application needs to be generalized so that
it can be used for any given input vector that is normalized, real, and has a
dimension of n, where n is a power of two larger than 2. To gain a better
understanding of how the divide-and-conquer principle works in a general way,
the explanation can be presented in the form of an algorithm that applies all
the required gates CSWAP based on the length of a given input vector. The
algorithm is presented in the form of a pseudocode. Pseudocode representation
abstracts form any implementation specifics and language semantics, only fo-
cusing on the logic of the underlying algorithm, directly conveying its essence.
The pseudocode is presented below:

Pseudocode 1: CSWAP application algorithm
Input: Quantum circuit with n = 2m − 1 ≥ 3 qubits

1 Function get_left_node(index):
2 return 2 · index+ 1

3 Function get_right_node(index):
4 return 2 · index+ 2

5 last_qubit← n
6 for current_qubit← (last_qubit− 1)/2 to 1 by −1 do
7 left_qubit← get_left_node(current_qubit)
8 right_qubit← get_right_node(current_qubit)
9 while right_qubit ≤ last_qubit do

10 Swap left_qubit and right_qubit with current_qubit as
control qubit using gate CSWAP

11 left_qubit← get_left_node(left_qubit)
12 right_qubit← get_left_node(right_qubit)

This algorithm utilizes the mentioned divide-and-conquer strategy to apply the
required CSWAP gates to qubits in a given quantum circuit. To summarize,
the divide-and-conquer encoding method works by:

first calculating the required angles using the input vector elements in the
same way as the amplitude encoding method does,

then encoding the calculated angles in the same way as the angle encoding
method does,

and finally combining the qubits using the algorithm above, with the algo-
rithm utilizing the divide-and-conquer strategy to entangle the qubits.

This algorithm is part of a larger algorithm presented in the subsection Divide-
and-conquer encoding method (4.2.4) of the chapter Implementation (4). The
algorithm in that subsection represents the entire divide-and-conquer encoding
method, not just showcasing how the gates CSWAP are applied. Now, with
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the entire process of the divide-and-conquer encoding method elucidated, it is
beneficial to explore certain notable aspects of the divide-and-conquer encoding
method, while also comparing these aspects to those of the amplitude encoding
method.

3.3.6 Implications
The last subsection of this entire chapter is devoted to discussing some notewor-
thy implications that arise from the nature of the divide-and-conquer encoding
method. The following points discuss those implications and also explore how
they connect to the amplitude encoding method and other encoding methods:
▶ Remark 3.30. Let v = (v1 v2 . . . vn)

T ∈ Rn, n = 2m, m ∈ N, ‖v‖ = 1 be an
input vector that is encoded using the divide-and-conquer encoding method.

This encoding method utilizes fewer gates in comparison with the classical
amplitude encoding method. Specifically, the number of gates used is ap-
proximately two times greater than the number of input vector elements,
meaning the gate count scales linearly with the input vector length. This is
a significant improvement over the amplitude encoding method, where the
gate count scales exponentially with the input vector length. However, the
number of qubits this encoding method uses also scales linearly, compared
to the amplitude encoding method, where the qubit count scales logarithmi-
cally. So, in essence, the gate and qubit counts of this encoding technique
revert back into the realm of the angle and basis encoding methods, where
these counts also increase linearly. There is a clear trade-off between the
qubit count and the gate count of this encoding method (more qubits used
but fewer gates used) and the amplitude encoding method (fewer qubits
used but more gates used). In practical terms, this trade-off means that
certain aspects must be considered. For instance, when the qubit count
scales linearly, the outcome of this scaling might have adverse effects on
quantum computations because the number of available qubits on quantum
computers is a limiting factor, given the current technological constraints.
The same can be said about the exponential gate counts of the amplitude
encoding method. It also poses a significant challenge, as it leads to deeper
and more complex quantum circuits that are more error-prone (as apply-
ing gates on real quantum hardware may introduce errors in computations
[31]) and harder to execute efficiently.
Ideally, both qubit and gate counts should be as low as possible to optimize
quantum circuit performance. However, achieving such an ideal scenario
where both counts are logarithmical may not be feasible due to the inherent
limitations of quantum computing. Typically, if one metric is optimized
to be logarithmical, the other tends to be less favorable, often resulting in
exponential growth. Therefore, a balanced encoding method that strikes a
middle ground between these two extremes could offer significant benefits.
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A balanced encoding method would ideally have both qubit and gate counts
that are neither logarithmical nor exponential, but lie somewhere in be-
tween. Such a method would provide a more practical approach, reduc-
ing the overall resource requirements and enhancing the feasibility of per-
forming large-scale quantum computations. The potential to combine the
strengths of both the divide-and-conquer and amplitude encoding methods
to achieve this balance represents an avenue for further research. Although
a perfectly balanced encoding method has not been identified within the
scope of the research part of this thesis, the insights gained and presented
highlight the potential for further investigation. Combining elements of
these two encoding methods to potentially develop a more balanced ap-
proach could lead to significant advancements in gate and qubit counts.
The topic of the required qubit and gate counts of all encoding methods
is explored in great depth in the section Empirical complexity comparison
(5.1) of the chapter Testing (5).

This encoding method can be made more efficient by reducing the number
of gates it uses in one scenario. As mentioned previously, if a rotational
gate does not impact the targeted qubit, employing this gate becomes
unnecessary. In this case, the gates RY that do not modify initial qubit
states can be omitted from the circuit. Moreover, if more such gates are
omitted, multiple qubits may be in the state |0〉 when entering the phase
when the gates CSWAP are applied. If some specific gate CSWAP targets
two qubits that are both in the state |0〉, the swapping would result in no
change (regardless of the control qubit’s control state). In these cases, such
gates CSWAP can also be skipped, resulting in a lower gate utilization. The
extent of the efficiency boost would be limited by the number of rotations
that can be disregarded.

This encoding method typically works for input vectors of lengths equal
to some power of two greater than three, specifically 2m > 3, m ∈ N.
Nevertheless, this constraint can be bypassed. Given an input vector of a
truly arbitrary length n ∈ N (where n is not a power of two and may be
smaller than 4), this vector can be encoded using this encoding method if
the following procedure is performed:

1. First, the input vector is enlarged so that its length becomes the nearest
power of two larger than max{n, 3}. This is done by appending zeros
to the vector’s end.

2. Then, such an enlarged vector can be encoded as usual.
3. If the appropriate qubits are measured, the vector of probabilities of

measuring each possible state can be trimmed so that it only contains
the first n elements, where each i-th element of this trimmed vector
corresponds to the i-th squared element of the original input vector
(before it was elongated).



71 Data encoding methods

Similarly, this procedure can be applied alternatively by adding zeros to the
beginning of the vector instead and subsequently trimming the probability
vector from the start to retain only its final n elements.

An important advantage of the divide-and-conquer encoding method is its
potential for parallel computation. This method allows many gates to be
executed concurrently (this can be seen in the figure 3.6), speeding up the
encoding process. One of the primary areas where parallelism is leveraged
in this encoding method is in the first layer, where the gates RY are added
to each qubit. These gates are independent of each other, meaning they
can be executed simultaneously. Additionally, certain CSWAP gates can
also be performed in parallel. When these gates act on disjoint sets of
qubits (children of the left node and children of the right node, with both
nodes being in the same binary depth), they can be executed concurrently,
further enhancing the parallelism of the encoding process.
The benefits of parallel computations are substantial, including [32]:

Parallel execution of gates leads to a significant reduction in circuit
depth. This reduction is crucial for maintaining coherence in quantum
operations, as deeper circuits are more prone to errors because of deco-
herence and other noise factors inherent in quantum systems.
By executing multiple gates simultaneously, the total time required for
the encoding process is decreased. This efficiency gain is particularly
valuable in quantum computing, where the duration of quantum opera-
tions can be a limiting factor.

In contrast, the amplitude encoding method does not offer the same level
of parallelism. In that encoding method, each multi-controlled gate RY
must be applied sequentially to encode the input vector correctly. The
multi-controlled gates depend on the states of multiple qubits and preced-
ing rotations, requiring a strict sequential application to ensure accurate
encoding. This sequential nature leads to deeper circuits with higher gate
counts, as each gate must wait for the previous one to be added before
it can be added too. The lack of parallelism in the amplitude encoding
method results in longer encoding times and higher susceptibility to er-
rors due to the increased circuit depth. Consequently, while the amplitude
encoding method is efficient in regard to its qubit usage, the sequential
gate application limits its overall efficiency and scalability compared to the
divide-and-conquer encoding method.
The basis and angle encoding methods also offer parallelism, as just a single
layer of gates comprises each quantum circuit they produce.

The divide-and-conquer encoding method utilizes a significant number of
ancillary qubits, to the extent that more ancillary qubits are used than
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data qubits. While these ancilla qubits are necessary for the encoding pro-
cess, they do not directly participate in the resulting output state. This
characteristic leads to inefficient use of quantum resources, as a large por-
tion of the quantum circuit is occupied by qubits that do not contribute
to the final encoded state.
This inefficiency is disadvantageous compared to the encoding methods that
only contain data qubits, such as the amplitude encoding method, where
all qubits are directly involved in the encoding process and the resulting
quantum state. This direct involvement ensures that the maximum possible
resources are dedicated to the actual data representation, optimizing the
use of available qubits.
The use of ancillary qubits is not inherently negative. In fact, ancillary
qubits can be beneficial in later computations. These qubits could poten-
tially be repurposed to perform additional quantum operations, thereby
enhancing the overall utility of the quantum circuit. However, the main
issue with ancillary qubits in the divide-and-conquer encoding method is
that they become entangled during the encoding process. Entangled qubits
are more difficult to repurpose for subsequent computations due to the cor-
relations established between them and the data qubits. This entanglement
restricts the flexibility of the ancillary qubits, limiting their potential utility
in subsequent quantum operations.
To overcome this challenge, it would be advantageous to develop a method
to unentangle the ancillary qubits after the encoding process. If the divide-
and-conquer encoding method could be modified to unentangle the an-
cillary qubits, it would lead to significant advancements in the efficiency
and practicality of this encoding method because it would allow the un-
entangled qubits to be reused for further quantum computations. This
optimization could be particularly beneficial in scenarios where qubit re-
sources are limited, as it would result in the possibility of more complex
quantum algorithms being executed with the same hardware.
However, it was not determined within the scope of this thesis whether it
is feasible to unentangle the ancillary qubits in this context. The process
of unentangling qubits without disrupting the encoded data state poses sig-
nificant challenges and requires further investigation. Unentangling qubits
typically involves applying additional quantum operations that reverse the
entangling process without disturbing the encoded information in the data
qubits. This topic lies beyond the scope of the thesis objectives and repre-
sents an area for possible future research.

The divide-and-conquer encoding method, as presented in this thesis, is
only designed to encode real vectors. This is because it only utilizes the
gates RY . This gate is unable to account for the phase information found in
complex numbers. However, it is possible to extend this encoding method
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so that it encodes complex vectors. That can be achieved by an additional
layer of gates employed at the beginning of the encoding process; more
specifically, the RZ gates can be used for this purpose. A similar approach
is explored in the part 3.12 of the section Angle encoding method (3.2).
This approach is reiterated below:
For encoding a complex number c = reiθ ∈ C, r ∈ R, θ ∈ [0, 2π] ⊂ R such
that |c|2 ∈ [0, 1] ⊂ R, the absolute value r can be encoded using the gate
RY , while the phase eiθ of the complex number can be encoded using the
gate RZ, introduced before or after the gate RY . The gate RZ performs
a rotation around the Z-axis of the Bloch sphere, which corresponds to
adding a phase to the quantum state. By applying the gate RZ, the phase
of the complex number is encoded into the qubit.
A similar approach can also be utilized in the case of the divide-and-conquer
encoding method, where a layer of the gates RZ is added before or after
the layer of the gates RY . The process of calculating the required angles
used in the gates RZ is slightly different compared to the process described
in the definition i-th angle calculation (3.18), adopted to account for the
retrieval of phase information. The combination of the RY and RZ gates
thus allows the encoding of both the magnitude and phase of a complex
number. The gates CSWAP applied in the later part of the encoding
process would not require any changes, as the only effect of theirs is the
combination of qubits using the divide-and-conquer principle.
Such a modification would enable the divide-and-conquer encoding method
to handle complex vectors, thus broadening its applicability to a wider
range of quantum algorithms that require the encoding of complex data.
Implementing this additional layer of the gates RZ does introduce extra
computational steps; however, it provides a comprehensive approach to
encoding both the amplitude and phase information of complex vectors,
making the encoding method more versatile and powerful.

The idea discussed in this point concerns not only the divide-and-conquer
encoding method but all encoding methods. Typically, in the process of
encoding classical data into quantum states, it is uncommon to encode
merely a single vector. Usually, several vectors require encoding and sub-
sequent processing. Such vectors often comprise some dataset that can
contain many vectors. All the encoding methods discussed in this thesis
are presented in a way that only allows for the encoding of a single input
vector. So, when given a dataset of input vectors, the dataset cannot be
directly encoded using the provided encoding method processes. However,
that is not to say that it cannot be encoded at all in any way. In fact,
there might be many different strategies to tackle this issue. This topic
goes beyond the thesis scope and, therefore, is not explored in detail. How-
ever, two different approaches that confront this issue are still presented to
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illustrate the idea behind how two varying concepts are capable of being
utilized to address this challenge.
Let there be a dataset D, where D = {v1,v2, . . . ,vm}, m ∈ [2,∞) ⊂ N
is a set consisting of m data vectors of dimension11 n ∈ N, such that
∀vi ∈ D : vi ∈ Fn. It is assumed that this dataset is supposed to be
encoded using one of the encoding methods introduced in this thesis. Then,
let F be a vector space that is appropriate for the chosen encoding method.
Below are presented two distinct approaches to encode D using the chosen
encoding method:

The following mapping function f1 : D → Fmn is defined as:

f1(D) =
m⊕
i=1

vi = v1 ⊕ v2 ⊕ . . .⊕ vm = vd ∈ Fmn,

where ⊕ denotes the vector concatenation operation.
The vector vd can then be used directly as input in the basis encoding
method and after normalization in the other encoding methods.
This approach simply uses concentration to create the vector vd by
combining all dataset vectors into one by appending them all one after
another. This implies a considerable qubit demand if n or m are large
numbers, essentially making this approach practical only for very small
datasets, where the dimension of the resulting vector vd is at most
in the thousands, as the most advanced quantum computers available
currently only have four-digit qubit count. Nevertheless, this approach
has one advantage–no information is lost during the transformation, as
all elements of all dataset vectors are represented in the final output
vector vd.
The following mapping function f2 : D → Fn is defined as:

f2(D) =
m⊕
i=1

vi = v1 ⊕ v2 ⊕ . . .⊕ vm = vd ∈ Fn,

where ⊕ denotes the vector summation operation such that when two
vectors are summed, the result is a vector of the same length, where its
i-th element is a sum of the i-th element from the first vector and i-th
element from the second vector, with the sum of the elements being in
accordance with the space Fn, meaning if for example Fn = Zn2 , the
sum must be modulo two so that the summation result is also from Zn2 .
The vector vd can then be used directly as input in the basis encoding
method and after normalization in the other encoding methods.

11To keep it concise, cases where the dataset includes vectors of varying dimensions are
excluded.
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This approach may be better suited for qubit-sensitive applications,
where the number of available qubits would not suffice for the first ap-
proach. This approach produces an output vector that has the same
length as each dataset vector. It may seem that this approach is much
better than the first one because of the fact that it produces much shorter
output vectors. However, that inherently means that not all the informa-
tion from the dataset is retained. This is because this transformation
effectively acts as a reduction in dimensionality. For example, when
these three binary numbers b1 = 0, b2 = 1, b3 = 1 are summed, the re-
sult is the same as if only the first number were used without summing
the next two.

In summary, two distinct approaches were presented: vector concatena-
tion and vector summation. The vector concatenation approach, although
ensuring no loss of information, demands a significant number of qubits,
making it impractical for large datasets. On the other hand, the vector
summation approach is more qubit-efficient but may inherently result in
some loss of information due to dimensionality reduction. These strategies
highlight the trade-offs involved in dataset encoding and underscore the
complexity of adapting classical data for quantum processing. This signif-
icant and broad subject is not further investigated as it falls outside the
scope of the thesis objectives.

This last point touches on one paramount aspect of the divide-and-conquer
encoding method that was not explained in this thesis previously.
In all previous encoding methods, the state vector of the entire quantum
circuit was used to represent the desired state. This approach is convenient
because it utilizes the fact that the system is in a pure state. Pure states are
quantum states that can be described by a single state vector, representing
a definite, non-probabilistic state of a given quantum system. However,
the divide-and-conquer encoding method may prepare states that cannot
be represented using state vectors alone, as the quantum circuits produced
by this encoding method may be in the so-called mixed states.
The divide-and-conquer encoding method described in this thesis does not
rely on the state vector to characterize the resulting quantum state. In-
stead, it is characterized by a probability vector, which contains the prob-
abilities of measuring each possible state if the appropriate qubits are mea-
sured. This is because the use of the divide-and-conquer encoding method
may result in a mixed state. And, the crucial fact is that mixed states
cannot be adequately represented by a state vector. Mixed states are rep-
resented using density matrices.
A mixed state arises when a quantum system is not in a single pure state
but rather a statistical ensemble of different states. This characteristic
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necessitates the use of density matrices, which can encapsulate the prob-
abilistic nature of mixed states. The density matrix of a given quantum
state provides its complete description, including all its statistical mixtures.
Mathematically, a mixed state is represented by a density matrix ρ, which
is a positive semi-definite Hermitian operator with trace equal to one, act-
ing on the Hilbert space of the quantum system. The diagonal elements of
the density matrix represent the probabilities of the system being in each
corresponding pure state.
To extract the state vector of a pure quantum state that uses ancillary
qubits from its density matrix, an operation called partial trace is required.
The partial trace operation effectively reduces the density matrix by tracing
out the degrees of freedom associated with the ancillary qubits, leaving a
reduced density matrix that corresponds to the state of the data qubits.
This operation produces a reduced density matrix that describes the state
of the subsystem of interest. However, this operation cannot produce a
state vector when the system is in a mixed state, as mixed states inherently
cannot be described by a single state vector. Mixed states require density
matrices for their representation.
The use of the probability vector (that can be derived from the density
matrix) allows for the characterization of this encoding method in a manner
that aligns with the desired outcomes. A probability vector reflects the
probabilities of measuring each possible state corresponding to the squared
input vector elements.
These concepts were not presented in the thesis earlier because they are
outside the primary aims of the thesis. Correctly defining the concepts of
mixed states, density matrices, and partial trace operations would intro-
duce complexities that are beyond the level of this thesis. Nevertheless,
recognizing that the divide-and-conquer encoding method prepares mixed
states is crucial for understanding its operation and potential applications.
Even though the divide-and-conquer encoding method’s reliance on mixed
states and density matrices complicates the representation of quantum
states it produces, acknowledging these concepts provides a unique per-
spective on how varying different data encoding strategies can be.

◀



Chapter 4

Implementation

One of the objectives of this thesis is to implement the data encoding ap-
proaches presented in the previous chapter–Data encoding methods (3). The
implementation of the encoding techniques was carried out using Python as
the selected programming language. One of the reasons Python was chosen
is due to its position of being the most popular programming language in the
domains of AI and ML [35]. Python is also the primary programming language
in the field of quantum programming, since leading quantum software develop-
ment kits are available in the form of Python libraries. One of those libraries
is Qiskit, which is referred to as the “world’s most popular quantum software”
[36] by IBM–the organization that develops it. “Qiskit is an open-source SDK
for working with quantum computers at the level of extended quantum circuits,
operators, and primitives”, and it is available on a GitHub repository [37].

So, the four encoding methods introduced in the last chapter Data encoding
methods (3) were implemented in Python using Qiskit. All code developed as
part of this thesis is available in a publicly accessible GitHub repository, with
the appendix of this thesis presenting its exhaustive structure and the URL to
the repository. This chapter is divided into two main parts:

1. The first part briefly outlines the contents of the repository along with the
purpose of the files contained in the repository. This part does not deal
with each repository file on an individual level; instead, it describes what
code was developed during the creation of this thesis in general, with a
rough explanation of its functionality.

2. Each implementation of the encoding method is accompanied by an algo-
rithm that represents the encoding method (the algorithm creates a desired
quantum circuit that encodes a given input). In this second part, a pseu-
docode is provided for each of these algorithms (such a pseudocode only
serves as a rough illustration of how an encoding algorithm works, ab-
stracted from any specifics of the Python programming language and the
Qiskit library).

77



78 Implementation

4.1 Repository overview
The practical component of this thesis is encapsulated within the aforemen-
tioned repository. This section provides a detailed (but not exhaustive) de-
scription of the repository that encompasses the practical implementation of
the quantum data encoding methods discussed in the chapter Data encoding
methods (3). The repository is meticulously organized, designed to provide
a comprehensive implementation framework and demonstration of the data
encoding methods. The repository is strategically divided into two primary
sections, with one section containing the Python implementation of the encod-
ing methods and the other section containing Jupyter Notebooks showcasing
those encoding methods. This is apparent from the repository’s top-level di-
rectory bifurcation into two main subdirectories:

1. qsp/
Contains Python modules that implement the encoding methods.

2. notebooks/
Houses Jupyter Notebooks that demonstrate the usage and effectiveness of
the implemented encoding methods.

The interaction between these two sections is symbiotic; the Python modules
define the functional backbone of the encoding methods, while the Jupyter
Notebooks serve to illustrate and explain these methods’ usage and implica-
tions visually. This bifurcation serves several purposes:

By segregating the implementation code and the demonstration Notebooks,
the repository maintains a clean separation of core logic from its demonstra-
tional and visual presentation. This approach enhances code manageability
and ensures that modifications in the implementation do not directly im-
pact the Notebooks that showcase the encoding methods.

The modular nature of the repository allows for each component to be
independently developed, tested, and optimized without affecting other
parts. This structure is particularly advantageous in a situation where
encoding methods may need to be adjusted or extended.

The dual structure facilitates understanding by providing a clear path from
reviewing the implementation code to observing its effects in a visual and
interactive manner through the Jupyter Notebooks, or vice-versa.

▶ Note 4.1. Adoption of Qiskit 1.0 With the recent official release of Qiskit
1.0 in February 2024, IBM has introduced significant improvements in the
performance and stability of its quantum computing SDK, marking a major
update from its predecessor versions [38]. By integrating this new version of
Qiskit into the repository, the codebase not only leverages these advancements
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but also ensures readiness for future updates, adhering to the latest standards.
Opting for this latest major release ensures compatibility with upcoming ver-
sions of Qiskit and facilitates the potential future expansion of the codebase.
More specifically, the code in the repository uses the latest version of Qiskit
(as of May 2024), the version 1.1.0. ◀

4.1.1 Implementation details
The qsp directory, which forms the core of the implementation, houses several
Python modules, each tailored to a specific quantum data encoding method.
The structure within this directory is designed to promote object-oriented pro-
gramming principles, enhancing the flexibility and reusability of the code. The
qsp directory is in and of itself a Python package capable of being imported
and used to encode input vectors using the implemented encoding methods
inside the package.

At the foundation of the qsp package (an abbreviation of the term quan-
tum state preparation) is the script base.py that contains the abstract base
class QuantumStatePreparation. This class houses several common methods
used across different encoding methods. This base class provides standardized
methods that are essential for encoding input vectors, such as a method that
initializes an empty quantum circuit or a method that applies the required
measurements. Four subclasses representing the four encoding methods then
inherit from this base class and override or extend its methods to implement
their respective encoding strategies. The design rationale behind using an
inheritance model is supported by these benefits:

Instances of any encoding class can be created without requiring a deeper
understanding of the underlying quantum circuit construction mechanisms
and other Qiskit specifics.

New encoding methods can be added seamlessly by inheriting the base
class, adhering to the established method signatures.

Centralizing common functionality in the base class reduces code duplica-
tion and eases maintenance, as changes to the common features need to be
made only once.

The abstract parent class QuantumStatePreparation is then inherited by
these four child classes located in the directory qsp/encodings:

1. The class BasisEncoding contained in the module basis.py.

2. The class AngleEncoding contained in the module angle.py.

3. The class AmplitudeEncoding contained in the module amplitude.py.

4. The class DivideAndConquerEncoding class contained in the module
divide_and_conquer.py.
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Each of these sublasses focuses on the corresponding encoding method. These
subclasses not only use the foundational methods provided by the parent class
base.py but also introduce additional methods and quantum operations that
are unique to their respective encoding techniques. Each of these child classes
implements the abstract method _encode_input_vector() that must con-
tain an algorithm that encodes a given input vector by utilizing some Qiskit
gates. Another method each subclass must implement is the abstract method
_validate_input_vector(), which validates the input vector and initializes
class attributes (such as the qubit count and a list of the measured qubits).

A given input vector can be encoded by creating an instance of one of
the available classes (BasisEncoding, AngleEncoding, AmplitudeEncoding,
DivideAndConquerEncoding) and passing the input vector in the constructor.
After encoding the given input vector this way, the base parent class then
provides a multitude of essential properties and methods to use:

Properties of the abstract class QuantumStatePreparation:

input_vector: Returns a copy of the input vector that is encoded in
the quantum circuit.
qubit_count: Returns the number of qubits used in the quantum circuit
that is used to encode the input vector. This value is initialized upon
validation of the input vector.
quantum_circuit: Provides access to the quantum circuit that encodes
the input vector.
measured_qubits: Returns a list of indices of the qubits that should
be measured to obtain the encoding results when performing a measure-
ment. All encoding methods, except the divide-and-conquer encoding
method, require all qubits to be measured.

Methods of the abstract class QuantumStatePreparation:

measure(): Prepares the quantum circuit for measurement by remov-
ing any existing measurements and applying new measurements to the
qubits specified by the property measured_qubits.
run_aer_simulator(shots, show_plot): Runs the quantum circuit
that encodes the input vector on the Aer simulator with the default
options, setting the number of simulation shots and optionally displaying
a histogram of the results.
get_statevector(): Retrieves the state vector of the quantum state
that represents the encoded input vector.

4.1.2 Jupyter Notebooks
The Jupyter Notebooks contained within the notebooks directory serve a dual
purpose: they demonstrate the practical use of the implemented data encoding
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methods and analyze their performance. The demonstrations not only bolster
understanding of the theoretical concepts discussed in the previous chapter
but also provide critical insights into the practical implications and efficiency
of these encoding methods. Most of the Notebooks provide an interactive
environment with multiple visualizations, where certain parameters can be
modified to directly observe the effects of the changes. The Notebooks are
categorized as follows:

The first Notebook, readme_libraries.ipynb, is designed to assist in set-
ting up a computational environment for running the demonstrations pro-
vided in the subsequent Notebooks. It includes a thorough list of all the
necessary Python libraries required to run the Notebooks and use the qsp
package. The versions of the libraries are specified to ensure compatibility,
meaning that a virtual Python environment can be correctly configured to
support all the repository features. This setup is crucial for replicating the
results shown in the Notebooks.

The Notebook circuit_complexity.ipynb focuses on the computational
complexity analysis of the quantum circuits generated by the different en-
coding methods. It evaluates the number of gates and qubits required by
each encoding method to encode input vectors of various lengths. This anal-
ysis is essential for understanding the scalability of each encoding method
and its suitability for different input vectors. The Notebook provides visu-
alizations in the form of tables that help illustrate the mentioned metrics.

Lastly, the Notebooks within the notebooks/encoding_demonstration
subdirectory are meticulously designed to provide a comprehensive expe-
rience that showcases the application of each implemented data encoding
method. These are the Notebooks contained in this subdirectory:

basis.ipynb,
angle.ipynb,
amplitude.ipynb,
divide_and_conquer.ipynb.

All Notebooks in this series follow the same structured format. The purpose
of each of these Notebooks is to demonstrate the corresponding encoding
method on a pseudo-randomly generated input vector. Here is a brief
description of the structure that each Notebook utilizes:

1. An input vector of a given length is generated according to the needs of
the encoding method.

2. The input vector is then encoded using the corresponding encoding
method from the qsp package. During the encoding process, a quantum
circuit is created, where the state that this circuit produces represents
the input vector.



82 Implementation

3. A simulation is then performed using Qiskit’s default Aer simulator,
providing immediate feedback on the circuit’s performance and the en-
coding outcomes.

4. The simulation results are then compared to the expected results calcu-
lated from the input vector.

5. A real quantum computer is chosen to run the quantum circuit. A job is
then sent to the chosen backend instance, and the measurement results
are retrieved when the instance finishes running the circuit.

6. These three types of values are compared:
The measurement results obtained by running the circuit on the cho-
sen quantum computer.
The simulation results.
The expected results calculated from the input vector.

These values are presented in the form of a histogram.
7. Finally, two metrics are calculated to evaluate the quality of the state

produced by the chosen quantum hardware (2.6).

These Notebooks include visualizations such as quantum circuit diagrams
and histograms of probability distributions. Those visualizations are also
used in this thesis text.

4.2 Pseudocode
Following the detailed exposition of the repository structure in the previous
section and the theoretical foundations laid out in the previous chapter Data
encoding methods (3), this section transitions to a more granular depiction
of the encoding methods. Specifically, this part delves into the algorithmic
representations of the data encoding techniques in a way where the algorithms
found in the package qsp are explained through pseudocode. The purpose of
presenting pseudocode in this section is to:

Offer a clear and language-agnostic illustration of the algorithms behind
each data encoding method.

Serve as an essential bridge between the theoretical underpinnings of the
encoding methods and their practical implementation using Python and
the Qiskit library.

Abstract away from the syntactic details of Python, instead focusing on
the logical flow of the algorithms.

In the following subsections, the algorithm of each implemented encoding
method is laid out in a block of pseudocode that encapsulates the essence of
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the corresponding data encoding method, illustrating how a given input vector
is encoded and offering a holistic view of both the conceptual and practical
aspects of the encoding method.

4.2.1 Basis encoding method
The basis encoding method (explained in the section Basis encoding method,
3.1) is one of the simplest yet most fundamental encoding methods utilized
to represent classical data using quantum states. The following pseudocode
explains the algorithm implemented in the class BasisEncoding:

Pseudocode 2: Basis encoding method algorithm
Input: Binary vector b = (b1 b2 · · · bn) of length n

1 Initialize quantum circuit qc with n qubits and initial state |0〉⊗n
2 for i = 1 to n do
3 if bi is 1 then
4 Apply gate X to i-th qubit of qc
5 return qc

This algorithm starts by initializing a quantum circuit with as many qubits as
there are elements in the input vector. Each qubit is initially in the default
state |0〉. The algorithm then iterates over each element of the input vector,
and if the element equals 1, the algorithm applies the gate X (2.4.1) to the
corresponding qubit, which flips the qubit from the state |0〉 to the state |1〉.
This direct mapping of binary elements onto qubits’ states exemplifies the
encoding method’s simplicity and directness, making it easy to implement.

4.2.2 Angle encoding method
The angle encoding method (introduced in the section Angle encoding method,
3.2) is another relatively simple encoding method utilized to encode classical
data into quantum states. The pseudocode below outlines the algorithm im-
plemented in the class AngleEncoding:

Pseudocode 3: Angle encoding method algorithm
Input: Normalized real vector v of length n

1 Initialize quantum circuit qc with n qubits and initial state |0〉⊗n
2 for i = 1 to n do
3 Apply gate RY to i-th qubit of qc with angle 2 arcsin(vi)

4 return qc

The algorithm begins by setting up a quantum circuit, initializing a number
of qubits equal to the number of elements in the input vector. Initially, every
qubit is in the state |0〉. The algorithm then iterates over each qubit and
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applies the gate RY to it with an angle calculated as 2 arcsin(vi) (3.2), where
vi is the corresponding element of the input vector. This implies that the
algorithm is similarly simple and straightforward to implement, akin to the
one discussed in the preceding subsection.

4.2.3 Amplitude encoding method
The amplitude encoding method (elaborated in the section Amplitude encod-
ing method, 3.3) is more advanced compared to the previous two encoding
methods and requires a more sophisticated algorithm. This algorithm sys-
tematically applies quantum gates to encode a given normalized input vector
containing real elements, where each element is encoded into the correspond-
ing amplitude of a quantum state. This algorithm uses a list of pre-computed
angles that determine the rotations necessary to gradually align the quantum
state with the input vector. It employs a sequence of multi-controlled rota-
tional gates RY to incrementally build the state, ensuring that each qubit
contributes correctly to the desired quantum state configuration. This algo-
rithm is located in the class AmplitudeEncoding, and its pseudocode is:

Pseudocode 4: Amplitude encoding method algorithm
Input: Normalized vector v of length n = 2m containing real numbers

1 Initialize quantum circuit qc with m qubits and initial state |0〉⊗m
2 angles← CalculateAngles(v)
3 Apply gate RY to m-th qubit with angle angles[0]
4 angle_index← 1
5 for index = 0 to qubit_count− 2 do
6 target_qubit← m− index− 1
7 level ← index+ 1

8 gates_on_this_level ← 2level

9 for number = 0 to gates_on_this_level − 1 do
10 angle_to_encode← angles[angle_index]
11 control_qubits← range(target_qubit+ 1, m)
12 control_states← list(BinaryString(number, level))
13 ApplyMCRY(angle_to_encode, target_qubit, control_qubits,

control_states)
14 angle_index← angle_index+ 1

15 return qc

The algorithm starts by applying a rotation to the last qubit, and then subse-
quent loops iteratively refine the quantum state by targeting each qubit with
multi-controlled RY rotations that depend on the state of the previously con-
figured qubits, thus building the desired quantum state layer by layer (this
process is described in greater detail in the section 3.3), going from the last
qubit to the first qubit while doubling the number of the rotational gates on
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each subsequent qubit. This ordering may seem reversed, but it adheres to the
Qiskit conventions [39]. For the sake of clarity, some minor details of lesser
significance are omitted from the pseudocode (such as the ability to encode
input vectors of sizes other than n = 2m by padding them with zeros at the
end). The complete algorithm is available in the repository.

Now, it is vital to explain the functions BinaryString, ApplyMCRY, and
CalculateAngles used in the pseudocode. The function BinaryString takes
an integer (number) and returns its binary representation, padded with zeros if
needed so that the returned string contains enough bits (equal to level). This
string is then broken down to create a list of the controlled states required
for each multi-controlled RY gate. The function ApplyMCRY applies a multi-
controlled RY gated based on the parameters passed. It appends the gates X
to the control qubits that have 0 as their control state. And finally, the function
CalculateAngles calculates the angles used in the rotations. This function is
crucial for this algorithm and needs its own pseudocode to be presented:

Pseudocode 5: Calculate angles
Input: Normalized vector v of length n = 2m containing real numbers

1 probs← v2

2 Initialize angles_probs as list of lists
3 Initialize angles as list
4 for binary_level = 0 to m− 1 do
5 probs_in_angle← n/2binary_level+1

6 for counter = 0 to n− 1 by probs_in_angle do
7 angle_probs_sum←

sum of probs[from counter to counter + probs_in_angle]
8 Append angle_probs_sum to angles_probs[binary_level]
9 if counter mod 2 = 1 then

10 Continue to next iteration
11 if binary_level > 0 then
12 parent_probs← angles_probs[binary_level−1][counter/2]
13 if parent_probs 6= 0 then
14 angle_probs_sum← angle_probs_sum/parent_probs

15 angle_to_append← 2 arccos(
√
angle_probs_sum)

16 if binary_level = m− 1 then
17 if v[counter + 1] < 0 then
18 angle_to_append← −angle_to_append
19 if v[counter] < 0 then
20 angle_to_append← 2π − angle_to_append

21 Append angle_to_append to angles

22 return angles
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To enhance comprehensibility, certain less significant aspects of this algo-
rithm are excluded from this pseudocode as well (such as certain minor op-
timizations and the possibility of processing input vectors of sizes other than
n = 2m). The complete algorithm can be found in the repository, also in
the class AmplitudeEncoding. In a nutshell, the essence of this function
CalculateAngles can be summarized as calculating the probability of each
qubit collapsing into the state |0〉 and then using these probabilities in the
equation 2 arccos(

√
angle_probs_sum) to calculate the required angles used

in the rotations. This process is also elaborated in the section 3.3.

4.2.4 Divide-and-conquer encoding method
The final encoding method presented in the chapter Data encoding meth-
ods (3) is inspired by the classical amplitude encoding method. It uses the
divide-and-conquer principle during state preparation. The subsection Divide-
and-conquer encoding method (3.3.5) introduces and explains this encoding
method. The implementation of this encoding method is housed in the class
named DivideAndConquerEncoding. It contains an algorithm that uses the
divide-and-conquer strategy (3.3.5) to encode a given input vector. This strat-
egy is based on the controlled SWAP gates used to create a quantum state
that contains entangled qubits and ancillary qubits. The pseudocode of this
algorithm is shown below:

Pseudocode 6: Divide-and-conquer encoding method algorithm
Input: Normalized vector v of length n = 2m containing real numbers

1 Initialize quantum circuit qc with n− 1 qubits and initial state |0〉⊗n−1

2 angles← CalculateAngles(v)
3 for i = 1 to n− 1 do
4 Apply gate RY to i-th qubit of qc with angle angles[i− 1]

5 Function get_left_node(index):
6 return 2 · index+ 1

7 Function get_right_node(index):
8 return 2 · index+ 2

9 last_qubit← n− 1
10 for current_qubit← (last_qubit− 1)/2 to 1 by −1 do
11 left_qubit← get_left_node(current_qubit)
12 right_qubit← get_right_node(current_qubit)
13 while right_qubit ≤ last_qubit do
14 Swap left_qubit and right_qubit with current_qubit as

control qubit using controlled SWAP gate
15 left_qubit← get_left_node(left_qubit)
16 right_qubit← get_left_node(right_qubit)

17 return qc
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This algorithm extends the traditional amplitude encoding method by inte-
grating controlled SWAP operations within a divide-and-conquer strategy,
effectively using more qubits but fewer gates than the amplitude encoding
method. This hybrid encoding strategy first uses a layer of the gates RY
for the initial amplitude setup, in which each qubit is rotated. The function
CalculateAngles presented in the previous pseudocode block is utilized to
calculate the required angles used in those rotations. So both this encoding
method and the amplitude encoding method use the same approach to cal-
culate the angles used in the rotations. Following the initial rotations, the
algorithm orchestrates a series of the gates CSWAP (3.5) to reposition the
amplitude-encoded information across the qubits in a binary tree traversal
fashion, thus entangling the data qubits and the auxiliary qubits (this pro-
cedure is introduced in the subsection Divide-and-conquer encoding method
(3.3.5) of the chapter Data encoding methods (3)).
▶ Note 4.2. In all encoding methods except for this one, all qubits should be
measured when performing a measurement to evaluate the encoding quality.
In this encoding method, there are x qubits, where x = 2k−1, k ∈ [3,∞) ⊂ N,
and each j-th qubit should be measured such that j = 2l, l ∈ [3, x] ⊂ N, while
all other qubits are ancillary. ◀
▶ Note 4.3. In the thesis, the divide-and-conquer encoding method algorithm,
as presented in the referenced paper [27], was utilized with minimal modifica-
tions. The algorithms described in this section that are used by the amplitude
encoding method (including the angle calculation algorithm) have been devel-
oped from scratch, thereby presenting original work. ◀



Chapter 5

Testing

All the encoding methods this thesis aims to discuss are introduced in the chap-
ter Data encoding methods (3), and their implementation is outlined in the
chapter Implementation (4). However, no comprehensive performance evalua-
tion of the encoding methods has yet been presented. This chapter’s purpose
is exactly that–to test the encoding methods to see their performance and
present the results. Specifically, this chapter has these two primary objectives:

1. The first objective is to compare the complexities of all four encoding meth-
ods in terms of the qubit and gate counts required to encode input vectors.

2. The implementation of the encoding methods is tested on short random in-
put vectors to evaluate its performance and the quality of the state prepara-
tion. This includes testing the implementation on real quantum hardware.

In the chapter Implementation (4), it is explained that Qiskit is used in the
implementation of the encoding methods (the motivations for its usage are
also discussed therein). Various aspects of this library are mentioned in this
chapter, with the official documentation used as a source of information [40].
The first section of this chapter focuses on the first objective.

5.1 Empirical complexity comparison
The objective of this section is to systematically analyze and compare the
complexity of the encoding methods. This investigation is driven by the need
to understand the efficiency and practicality of those encoding strategies. The
comparative analysis focuses on these two primary metrics of the resulting
quantum circuits that are produced by the implemented encoding methods:

The number of qubits used in the circuits.

The number of gates used in the circuits.

88
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These metrics serve as critical indicators of the resource requirements and
computational overhead associated with each encoding method. Regarding
the metrics:

The qubit count is straightforward; it denotes the number of qubits de-
ployed by a quantum circuit.

The gate count metric is more ambiguous, as it can vary drastically based
on what is considered a gate. All gates in a quantum circuit can be charac-
terized by a single gate that acts on the whole quantum state. On the other
hand, even the smallest and simplest gate can be written as a product of
various other gates, resulting in infinite possibilities to characterize each
gate. Due to this ambiguity, this section utilizes three different metrics for
gate counts. These are explained below.

Three distinct gate count calculations are utilized to ensure a comprehensive
evaluation of the encoding methods. These calculations address different as-
pects of gate counting and are explained as follows:

1. The first metric counts the gates that are directly added to a quantum cir-
cuit during the encoding process when running an algorithm that encodes
a given input vector. The algorithms utilized by the implementation of the
encoding methods are explained in the form of pseudocode in the chapter
Implementation (4). So, for example, in the case of divide-and-conquer
encoding method implementation, the gate CSWAP (3.5) is counted as
being a single gate because the Qiskit’s CSwapGate [41] is utilized during
the encoding process. This approach provides a raw estimate of the num-
ber of gates without considering the constraints or specific requirements of
the target quantum hardware. This count is useful for understanding the
theoretical gate complexity of an encoding method. It serves as a baseline
measurement, reflecting the pure algorithmic complexity without any mod-
ifications or optimizations. However, in real quantum hardware, only a
very limited subset of gates can be used, and all other gates need to be de-
composed into such supported gates. So if one CSWAP were to be applied
in a circuit on a real quantum computer, it would need to be decomposed,
resulting in the usage of possibly even ten or more gates, depending on the
set of supported gates.

2. As mentioned in the first point, real quantum hardware often only allows
certain gates to be used in a quantum circuit. If a circuit uses gates other
than the permitted gates, the process referred to as transpilation must
happen, where the unsupported gates are decomposed into a sequence of
gates that are supported. The transpilation process retains the original
gate’s effects. If a unitary matrix representation of both the original gate
and the combined new gates (that are obtained from the transpilation
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process) is compared, both matrices would be equal. So, this second met-
ric involves transpiling the quantum circuit to ensure compatibility with
quantum hardware. Another purpose of the transpilation process is that it
accounts for the specific connectivity patterns of quantum processors. In
quantum processors, not all qubits can interact with each other and be-
come connected and entangled. Each quantum processor may have its own
framework of qubit connectivity, and if in a quantum circuit, before transpi-
lation, some qubits are connected that have no connection in the processor,
the transpiration ensures the resulting quantum circuit is fully capable of
being executed on the processor by propagating the entanglement through
intermediate qubits.
Each quantum computer may have a different set of natively supported
gates and varying qubit connectivity. The transpilation must thus account
for a specific quantum computer that is chosen to run a quantum circuit on.
So, the resulting gate count after transpilation reflects the actual number
of gates that are used when running the original circuit on the chosen
quantum hardware.
As explained in the previous chapter Implementation (4), the implemen-
tation of the encoding method utilizes Qiskit. This library is developed
and maintained by IBM. This library provides the ability to run quan-
tum circuits on quantum computers created by IBM. However, even IBM
Quantum machines may differ in their sets of natively supported gates.
So, the most recent IBM processor architecture is used as reference hard-
ware for the transpilation process. As of May 2024, the IBM Heron pro-
cessor family is the latest and most advanced publicly available processor
family from IBM, making it a representative model for modern quantum
computing capabilities [19].
Specifically, the IBM Heron processor supports these five gates [42]:

The identity gate, which leaves the qubit state unchanged.
The gate X (2.1).
The square root of the gate X, which is a fundamental single-qubit gate
used in various quantum algorithms. It is denoted as

√
X.

The gate RZ. This gate performs a rotation around the Z-axis of the
Bloch sphere by a specified angle, allowing for precise phase adjustments.
The controlled Z gate, which applies the gate Z to a target qubit only
if the control qubit is in the state ||1〉|. This gate is fundamental as
it is the only supported gate capable of creating entanglement between
qubits.

So, when a given circuit is transpiled using this permitted subset of gates,
the resulting quantum circuit may differ drastically from the original one,
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as all the original unsupported gates must be decomposed. By utilizing
the IBM Heron as the reference hardware, the resulting gate count after
transpilation offers a practical perspective on the computational overhead
required for each encoding method. This metric is crucial for understanding
the real-world performance and feasibility of the encoding methods when
executed on actual quantum hardware.

3. This final metric further refines the transpiled gate count by considering
different optimization levels during the transpilation process.
The transpilation process algorithm can be implemented in various ways,
resulting in circuits with different structures and gate counts. This vari-
ability arises because each implementation can apply different strategies for
optimizing the quantum circuit. The degree of optimization significantly
impacts the final gate count, overall performance, and fidelity of the cir-
cuit. For example, a basic transpilation might focus on simply mapping the
circuit to the hardware’s native gates with minimal changes, while a more
advanced transpilation could involve extensive reordering of gates, elimi-
nation of redundancies, and other sophisticated optimizations [43]. These
differences lead to a range of possible resulting circuits, each with its own
characteristics and resource requirements.
Variation in optimization levels represents a trade-off between the depth
of optimization and the computational resources required to achieve it
(transpiling a large circuit using the highest optimization level may be
a resource-demanding task). Qiskit’s transpilation algorithm offers these
four optimization levels [43]:

a. Level 0 (no optimization): The circuit is transpiled with minimal trans-
formations, primarily ensuring compatibility with the target hardware.
Transpilation with no optimization focuses on simply mapping the cir-
cuit to the hardware’s native gates with minimal changes. It makes the
circuit executable without altering its structure significantly, preserving
the original sequence of gates as much as possible.

b. Level 1 (light optimization): Basic optimizations are applied to reduce
the gate count and improve the circuit’s execution fidelity. This level in-
cludes simple techniques such as removing redundant gates and making
minor adjustments that do not require extensive computation.

c. Level 2 (medium optimization): More aggressive optimizations are per-
formed, which might involve significant reordering and transformation of
gates. At this level, the algorithm aims to strike a balance between opti-
mization effort and computational efficiency, applying more substantial
changes to the circuit to enhance performance while managing resource
consumption.

d. Level 3 (heavy optimization): The most intensive optimizations are ap-
plied, potentially leading to substantial changes in the circuit structure
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to minimize gate count and maximize performance. This level leverages
advanced optimization techniques, thoroughly reworking the circuit to
achieve the best possible performance on the target hardware. The pro-
cess can include extensive gate reordering, merging of operations, and
other sophisticated transformations.

This third metric utilizes transpilation with the highest optimization level
(level 3). This metric provides a view of the best possible performance of
the encoding methods after thorough optimization, showing the minimum
gate count achievable on IBM Heron. It represents the theoretical lower
bound on the number of gates needed (only Qiskit’s transpilation algorithm
is considered with its different possible optimization levels).
On the other hand, the metric in the second point uses the lowest opti-
mization level (level 0). That approach gives an insight into the gate count
with no optimization, reflecting more closely the raw complexity of the en-
coding methods. It shows the gate count when the circuit is adapted to the
hardware with the least amount of transformation, preserving the initial
structure and sequence of operations.
Calculating gate counts for both these levels is beneficial for several rea-
sons. First, it highlights the impact of optimization on gate count and
performance. By comparing the gate counts at level 0 and level 3, one can
understand how much improvement can be achieved through optimization.
Second, it demonstrates the range of possible outcomes, from minimal op-
timization (indicating the base complexity) to maximum optimization (in-
dicating the optimized complexity). This range provides valuable insights
into the efficiency and feasibility of the encoding methods under different
optimization strategies.

These three metrics collectively offer a robust framework for evaluating
the gate complexity of different encoding methods. By considering both the
theoretical and practical aspects of gate counts, this analysis aims to provide
a detailed understanding of the resource requirements associated with each
encoding method.

The comparative analysis in this section aims to compare the performance
of the encoding methods in a way that allows for the most direct comparison of
the qubit and gate counts possible. For this reason, it is beneficial to choose a
single vector that is encoded using all four encoding methods. However, there is
a constraint in the basis encoding method in that it only allows for binary input
vectors to be encoded. So, in this comparison, binary vectors are chosen to be
encoded so that each encoding method can encode them. More specifically, a
length n is given, and then a vector of length n is created, containing only ones
as its elements. This is because the basis encoding method only uses gates to
encode elements that equal 1; it does not use gates to encode elements that
equal 0. In this way, the worst-case scenario for the basis encoding method is
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tested. As for the other encoding methods, they would be unable to encode
such a vector, because they require the input vector to be normalized. So, the
vector is normalized before encoding it with the other three encoding methods.
This process of creating vectors is summarized below:

A number n ∈ N is given and an input vector v is created such that
v = (1 1 . . . 1)T ∈ Rn.

This vector is then encoded using the basis encoding method.

The vector v is normalized so that it can be encoded using the other encod-
ing methods. So, the vector becomes v = (v1 v2 . . . vn)

T ∈ Rn, ‖v‖ = 1.

This vector is then encoded using the angle, amplitude, and divide-and-
conquer encoding methods.

The resulting qubit and gate counts of all four quantum circuits produced
by the encoding process are compared.

For the comparison to be informative, the above process is performed on var-
ious input vector lengths, ranging from one-dimensional input vectors up to
vectors of dimensions in the thousands. Testing across a wide range of input
vector lengths is essential for several reasons:

By using different input vector lengths, it becomes possible to assess how
each encoding method scales with increasing data size. This helps in iden-
tifying encoding methods that remain efficient even as the input size grows,
which is critical for practical applications where large datasets are common.

Testing various input lengths facilitates a detailed comparison between the
encoding methods. It allows for the identification of methods that are
consistently efficient across different scales and those that might excel in
specific scenarios but perform poorly in others.

By simulating large input sizes, this analysis bridges the gap between theo-
retical complexity and practical constraints. It helps in understanding the
limits of current quantum hardware and the challenges that need to be
addressed to handle long input vectors effectively.

It is important to note that the gate and qubit counts are calculated without
actually running the circuits on quantum computers. This approach is purely
empirical in its nature, as it is employed to showcase the theoretical resource
requirements for only some specific input vector lengths. Running circuits
with a large number of qubits (thousands) and gates (millions) is currently
not feasible on existing quantum hardware due to technological limitations.
Therefore, this analysis serves as a theoretical framework to understand the
potential complexity and resource needs of different encoding methods.

The first comparison, presented below, utilizes the first gate count metric–
meaning calculating the gate counts without transpilation.



94 Testing

5.1.1 No transpilation
In the first comparison, no transpilation is performed. (as discussed in the de-
tailed explanation of the first gate count metric). The following table contains
the results for input vectors of lengths ranging from 20 = 1 to 211 = 2048, with
the exponent of 2m being incremented from 0 to 11, resulting in 12 table rows:

Figure 5.1 A table containing the number of gates and qubits used by each encod-
ing method when producing a circuit that encodes input vectors of lengths ranging
from 1 to 2048 (the lengths are powers of two) with no circuit transpilation performed.

▶ Note 5.1. This table structure is used throughout this whole section, which
means that the subsequent tables presented in this section also have this struc-
ture. Here is an explanation of the terms used in the table:

“Input length” is the length of the input vector being encoded.

“Qubits” represents the number of qubits required by the corresponding
encoding method to encode an input vector of a given length.

“Gates” represents the number of gates required by the corresponding en-
coding method to encode an input vector of a given length.

“Basis”, “Angle”, “Amplitude” and “D-a-c” represent that an input vector
of a given length is encoded using the basis, angle, amplitude, and divide-
and-conquer encoding method, respectively.

A color scheme is used to differentiate between the two parts of the table,
where one part (in blue) contains the qubit counts, and the second part (in
red) contains the gate counts. ◀
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The results from the table are summarized below; the summarization is divided
into two parts. The first part discusses the qubit counts, and the second part
discusses the gate counts:

Qubit count analysis:

1. Basis encoding method:
The qubit count increases linearly with the input length, as each input
element is directly mapped to a qubit.
For an input length n, the qubit count is n.

2. Angle encoding method:
Similar to the basis encoding method, the qubit count also increases
linearly with the input length, leading to a direct 1 : 1 ratio.

3. Amplitude encoding method:
The amplitude encoding shows a more efficient use of qubits, espe-
cially for larger input lengths.
The qubit count increases logarithmically with the input length, sta-
bilizing at 11 qubits for the largest input length of 2048. This is the
only encoding method that utilizes this logarithmicality.

4. Divide-and-conquer encoding method:
The qubit count scales linearly with the input length, starting with 3
qubits for an input length of 1 and rising to 2047 qubits for an input
length of 2048.
For any input length n larger than 2, the qubit count is n− 1.

Gate count analysis:

1. Basis encoding method:
The gate count grows linearly with the input length, closely following
the number of qubits.

2. Angle encoding method:
The gate count mirrors that of the basis encoding method, maintain-
ing a linear increase.

3. Amplitude encoding method:
This encoding method shows a significant increase in gate count, es-
pecially for larger input lengths.
The gate count grows exponentially, reaching a peak of 34819 gates
for an input length of 2048. This reflects the high gate complexity
associated with the amplitude encoding method.

4. Divide-and-conquer encoding method:
In this case, the gate count also follows a linear pattern.
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The gate count is approximately twice the length of the input vector.
The gate count rises to 4083 for the largest input length, indicating a
more significant computational burden when encoding longer vectors
compared to the basis and angle encoding methods, although much
less significant in contrast to the amplitude encoding method.

There are some key insights worth mentioning that stem from the analysis
above:

Efficiency:

The amplitude encoding method is the most efficient in terms of qubit
usage for larger input lengths but is the least efficient in terms of gate
count, reflecting its high computational complexity.
The basis and angle encoding methods provide predictable, linear in-
creases in both qubit and gate counts, offering simplicity and ease of
implementation.

Scalability:

The amplitude encoding method scales well in terms of the qubit count
but poorly in terms of the gate count, making it suitable for scenarios
where qubit resources are more constrained than gate operations.
The divide-and-conquer encoding method becomes impractical for very
large inputs as a result of the significant increase in both the qubit and
gate counts.

Practical applications:

For applications requiring minimal qubit usage, the amplitude encoding
method might be preferred despite its high gate count.
For applications where both qubit and gate resources are considered, the
divide-and-conquer approach might offer a balanced trade-off.

▶ Note 5.2. The qubit counts for the divide-and-conquer encoding approach
are shown in terms of both data and ancillary qubits required to encode an
input. This is because quantum hardware is limited in the number of qubits it
offers, so both data and ancillary qubits should be considered. Neverthelss, for
situations where the qubit count is not that important, the divide-and-conquer
encoding technique is a clear pick, offering much more efficient gate usage. If,
for any reason, only the data qubits are considered, then, for a given input
vector, the divide-and-conquer encoding method utilizes the same number of
data qubits as the amplitude encoding method. ◀
Now that the first table analysis is concluded, it is time to disclose the results
for the second gate metric. The second metric transitions from unmodified to
modified quantum circuits, where the modifications allow the circuits to be
run on quantum computers.
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5.1.2 Transpilation with no optimization
In this second comparison, transpilation is performed on the quantum circuits.
However, no optimization is used during the transpilation process (as explained
in the comprehensive description of the second gate count metric). The fol-
lowing table also contains the results for input vectors of lengths ranging from
20 = 1 to 211 = 2048, with the exponent of 2m being increased from 0 to 11,
resulting in the following 12 table rows:

Figure 5.2 A table containing the number of gates and qubits used by each encod-
ing method when producing a circuit that encodes input vectors of lengths ranging
from 1 to 2048 (the lengths are powers of two) with circuit transpilation performed,
where the transpilation process does not utilize any optimization.

This table reflects the results after the same circuits from the first table have
been transpiled with no optimization to the native gate set of the IBM Heron
processor. Transpilation does not alter qubit counts, as the circuits would
change if the qubit count were to be altered. The only differences between
the two tables are observed in the gate counts, which dramatically increase
after transpilation to the IBM Heron gates. This increase highlights the ad-
ditional complexity introduced by the need to decompose unsupported gates
into sequences of native gates. Comparing this table to the previous table,
which showed the counts for non-transpiled circuits (5.1), the most significant
insights into the impact of transpilation on the gate counts are outlined below:
1. Basis encoding method:

Non-transpiled: the gate counts grow linearly, equal to the input length.
Transpiled: the gate counts are linearly proportional to the input length.
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2. Angle encoding method:

Non-transpiled: the gate counts also grow linearly.
Transpiled: the gate counts still grow linearly but with a steeper slope.
For example, the gate count for the input length of 2048 increases from
2048 (non-transpiled) to 10240 (transpiled).

3. Amplitude encoding method:

Non-transpiled: thegate counts increase exponentially, reaching 34819
for the input length of 2048.
Transpiled: the gate counts escalate dramatically to 2671823 for the
same final input length, indicating a substantial increase in computa-
tional complexity due to transpilation.

4. Divide-and-conquer encoding method:

Non-transpiled: the gate counts show a steady linear increase, reaching
4083 for an input length of 2048.
Transpiled: the gate counts surge to 150719, reflecting the added com-
plexity of decomposing gates into the IBM Heron’s natively supported
gate set.

The impacts the transpilation process brings can be summarized in the follow-
ing way:

Increased gate complexity:

The most striking impact of transpilation is the significant increase in the
gate counts across all encoding methods (except for the basis encoding
method, where the gates X do not have to be decomposed further). This
increase is due to the decomposition of unsupported gates into sequences
of native gates supported by the IBM Heron processor.
The gate counts increase exactly five times in the angle encoding method.
They increase up to a hundred times in the amplitude and divide-and-
conquer encoding methods, more than doubling with each subsequent
input vector length (after the input length of 4).

Method-specific effects:

The amplitude encoding method experiences the most drastic increase in
the gate count after transpilation, highlighting the high computational
complexity of this method when mapped to the native gate set of a
quantum processor.
The divide-and-conquer encoding method also shows a substantial in-
crease in gate count, but less extreme compared to the amplitude encod-
ing method, making it relatively more efficient post-transpilation.
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Practical considerations:

The substantial increase in gate counts due to transpilation underscores
the importance of considering hardware-specific constraints when de-
signing and evaluating quantum circuits. Theoretical efficiency must be
balanced with practical feasibility on actual quantum hardware.
The choice of encoding method should factor in the potential overhead in-
troduced by transpilation, particularly when requiring high-quality state
preparation (since a high gate count can lead to significant errors).

This detailed comparison between non-transpiled and transpiled circuits show-
case the critical role of the transpilation process in quantum computing. While
the non-transpiled results provide insights into the theoretical gate complex-
ity of encoding methods, the transpiled results reflect the practical realities of
running these methods on real quantum hardware. The significant increase in
the gate counts after transpilation highlights the need for careful consideration
of hardware constraints and the potential trade-offs between theoretical and
practical performance. The good news is that this extreme increase in the gate
counts is not unavoidable, as seen in the third table below.

5.1.3 Transpilation with best optimization
The third and final table is presented below:

Figure 5.3 A table containing the number of gates and qubits used by each encod-
ing method when producing a circuit that encodes input vectors of lengths ranging
from 1 to 2048 (the lengths are powers of two) with circuit transpilation performed,
where the transpilation process utilizes the highest possible optimization level.
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In this final comparison, the quantum circuits undergo the transpilation pro-
cess using the highest optimization level available (the level 3, as detailed in
the thorough overview of the third gate count metric). The same input vec-
tor lengths are used in this table, too, producing the 12 table rows seen above.
Unlike the second table (5.2), which presented the gate counts for circuits tran-
spiled with no optimization, this third table shows the results after applying
the highest level of optimization during the transpilation process. Summa-
rizing the third table’s results reveals the significant impact of the chosen
transpilation level on the gate counts:

1. Basis encoding method:

No changes are introduced in this case either, due to the fact that the
IBM Heron’s set of natively supported gates contains the gate X, mean-
ing the transpilation process omits these gates.

2. Angle encoding method:

The gate counts are reduced by one-fifth compared to no when no op-
timization is used, meaning a saving of 20% of all gates (starting from
the third input vector). But the number is still four times larger than
when no transpilation is performed.

3. Amplitude encoding method:

The last gate count is reduced from 2671823 to 1116202, which is a
reduction of more than 58%. This is a significant decrease compared to
when no optimization is performed, but still much higher than in the
non-transpiled scenario.

4. Divide-and-conquer encoding method:

The gate count for the final input vector length is decreased from 150719
to 66573, which is a reduction of more than 55%, similar to the reduction
in the amplitude encoding method.

Several important observations arise from the preceding commentary, signify-
ing the following broader transpilation aspects:

Impact of transpilation without optimization:

The gate counts increase dramatically when circuits are transpiled with-
out any optimization. This rise is due to the decomposition of unsup-
ported gates into sequences of native gates, leading to a significant in-
crease in the number of operations required.
The absence of optimization results in higher gate counts, reflecting the
raw complexity of implementing the circuits directly on the IBM Heron
processor.
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Impact of high-level optimization:

High-level optimization during transpilation significantly reduces the
gate counts compared to no optimization. This reduction is achieved
through advanced techniques that streamline the circuit, remove redun-
dancies, and optimize gate usage.
Despite the reduction, the gate counts for optimized circuits remain
higher than the non-transpiled scenarios, indicating that some complex-
ity is inherent to the hardware constraints and cannot be fully mitigated.

Comparative analysis:

The angle encoding method benefits from optimization, showing linear
growth in gate counts that are reduced compared to no optimization.
The amplitude encoding method shows the highest gate counts in all
scenarios, reflecting its computational intensity. However, optimization
substantially lowers the gate count, making it more feasible for practical
applications.
A similar optimization boost as in the amplitude encoding method is
brought to the divide-and-conquer encoding approach, making it more
efficient post-transpilation.

Practical considerations:

Optimization during the transpilation process plays a crucial role in
managing the gate counts, making high-level optimization essential for
practical quantum computing applications.
The choice of optimization level impacts the feasibility and performance
of quantum circuits on quantum hardware. This aspect is not explored
in this section, as it would require quantum computers using large num-
bers of qubits and gates. However, it is a point of interest because the
chosen transpilation algorithm may have a significant impact on quan-
tum algorithms that later process the encoded data.
When transpiling with the highest optimization level, it took signifi-
cantly longer to complete the process compared to transpiling with no
optimization level. This suggests that the highest level of optimization
incurs significant overhead when applied to large circuits.

This comprehensive comparison highlights the effects of transpilation and its
optimization in quantum computing. While non-transpiled results provide
theoretical insights, transpiled results with no and high optimization levels re-
flect the practical realities of implementing quantum circuits on real hardware.
High-level optimization mitigates the complexity introduced by transpilation
to some extent, making it a vital step for efficient quantum computing. The
whole comparative analysis section is now finished, and the stage is set to
proceed to other sections, where the encoding methods are tested individually.
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5.2 Basis encoding method test
In this section and in the next three sections, the corresponding encoding
methods are tested on an individual basis. Each test is performed by encoding
a pseudo-randomly generated input vector using the corresponding encoding
method and then evaluating the created quantum circuit. All test results
presented in these sections originate from the Jupyter Notebooks located in
the repository (4). Qiskit was used to perform the tests. One of the objectives
of this thesis is to conduct experiments on real quantum computers. This
has been achieved by using the Qiskit library to run quantum circuits on
IBM Quantum devices. The findings obtained from these experiments are
presented in these sections. However, due to the number of pages of this thesis
being already large at this point, the results are not commented on in depth.
The mentioned Jupyter Notebook explain in detail the exact rationale behind
the performed operations. Here, only the raw results are presented without
commentary.

Each one of these last four sections has the same structure. The purpose
of this structure is to present the experiment results in an effective and brief
way. This is achieved using histograms (the use of histograms is explained
Visualization of probabilities (2.13)). The exact structure of each section is
described as follows:

First, the input vector used during the encoding process is presented. Each
input vector was natively generated in Python, thus resulting in pseudo-
random input vector. Data points generated in Python are referred to as
arrays. In these sections, the term array is also used to describe the input
vectors to better align with Python programming conventions (denoted
using the squared brackets “[]”).

A diagram is shown of the quantum circuit created by encoding the gener-
ated array using the corresponding implemented encoding method.

Measurements of the appropriate qubits were performed using the Qiskit’s
default simulator, and the simulation results are shown in the form of
histograms.

A histogram is shown, where its bars compare these three values:

The simulation results.
The expected simulation results in the form of probabilities, where the
probabilities are calculated from the generated array. The elements of
the generated array can be used to calculate the desired ideal encoding
outcomes. For example, in the amplitude encoding method, the resulting
state vector elements obtained by encoding the input array should be
equal to the generated input array elements. However, due to the fact
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that in the divide-and-conquer encoding method only probabilities are
used to define the desired encoding outcomes, only the probabilities are
shown in the histogram. For most encoding methods, this just means
that the squared input array’s elements are displayed.
The probabilities calculated from the resulting state vector of the created
quantum circuit’s quantum state. In the case of the divide-and-conquer
encoding method, the probabilities are retrieved using the density ma-
trix.

The results of the real quantum experiments are shown in a histogram. The
measurement outcomes are plotted along with the simulation outcomes and
the desired probabilities calculated from the input array.

The calculated fidelity and trace distance values are shown. The fidelity
(defined in 2.6) is calculated using two pure quantum states. There are
no quantum states available to use straight away, they must be calculated
manually. One of these pure states is derived from the generated input
array (most often, the array’s elements are just squared). The other pure
state is obtained by approximation, where the probability distribution of
quantum states is inferred from the measurement results (measurement
results obtained by running the circuit on the chosen quantum computer)
by normalizing the measurement results. This process does not produce
a real quantum state; it is just an approximation of what the quantum
state (in the form of a probability vector) could have been right before the
measurement on the quantum computer. The trace distance is calculated
on the basis of the fidelity value.

▶ Note 5.3. These sections are intentionally kept very brief and concise (to
prevent the thesis from being excessively lengthy), so only the raw testing re-
sults are presented without much commentary, explanation, and mathematical
result confirmation. These tests serve as a proof-of-concept, indicating that
the implementation can be used to encode inputs on real quantum computers.
The repository (4) contains Jupyter Notebooks that explain the testing pro-
cess in great depth. These sections just contain the results presented in those
Notebooks. ◀
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In this specific example, the generated array ended up being:

[1, 1, 0].

If this input is encoded using the implemented algorithm, this is the resulting
quantum circuit:

Figure 5.4 An illustration of a quantum circuit created by using the implemented
basis encoding method to encode the following input array: [1, 1, 0].

This corresponds fully to the desired quantum circuit, indicating this input
array is encoded correctly.
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A basic simulation was performed where all qubits were measured using the
Qiskit’s simulator. The simulation allows for a quick test of the created quan-
tum circuit. The following results were obtained:

Figure 5.5 A histogram containing the measurement results of a simulation, where
the simulation was performed by measuring the appropriate qubits of a circuit created
by using the implemented basis encoding method to encode the following input array:
[1, 1, 0].

Due to the nature of the basis encoding method, the simulation results should
always consist of just one state, where 100% of the measurements correspond
to the state defined by the input array elements. This holds true in this case.
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Next, the simulation results are shown in a histogram, along with the proba-
bility distributions calculated from the quantum state vector and the expected
probabilities calculated from the input array:

Figure 5.6 A histogram comparing the measurement outcomes of a simulation with
the distribution of probabilities of the created quantum state, as well as the expected
probabilities calculated from an input array. The values were obtained from a circuit
created by using the implemented basis encoding method to encode the following input
array: [1, 1, 0].

As can be seen in this histogram, the simulation results and the state vector
probabilities fully correspond to the desired probabilities derived from the
generated input array.
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The final chart shown displays the measurement results obtained by running
this quantum circuit on an actual quantum computer. In this specific case, the
ibm_osaka quantum computer was used to execute this circuit. It should be
noted that slight dirrefrences in the measurement results are to be expected due
to the noise and errors inherent to quantum computers. Below is a histogram
that compares the actual results retrieved from the quantum computer with
the numbers already shown in the histogram above:

Figure 5.7 A histogram comparing the measurement outcomes of a simulation
with the measurement results obtained by running a quantum circuit on the quantum
computer ibm_osaka and the expected distribution of probabilities calculated from an
input array. The values were obtained from a circuit created by using the implemented
basis encoding method to encode the following input array: [1, 1, 0].

As seen in the histogram, the quantum computer produced slightly different
results compared to the simulation, where the state 010 ended up being rel-
atively numerous in the outcomes (along with the states 001 and 111 to a
smaller extent). This illustrates the fact that quantum computers are affected
by various phenomena that decrease the quality of the state.

The resulting fidelity between the states is ' 0.87. This fidelity indicates
that the states are quite similar, although not perfectly identical. This may be
considered an acceptable result, considering the presence of noise and errors
in quantum computations. The trace distance is ' 0.36, suggesting that there
is some distinguishability between the two states, but they are still reasonably
close. This reinforces the fidelity result, indicating that the encoding method
performs well on the quantum computer.
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5.3 Angle encoding method test
This example demonstrates the implementation of the angle encoding method
by encoding the follwong randomly generated input array:

[0.74651424, 0.43896263, 0.5000283].

Using the implemented algorithm to encode this input yields the following
quantum circuit:

Figure 5.8 An illustration of a quantum circuit created by using the implemented
angle encoding method to encode the following input array:
[0.74651424, 0.43896263, 0.5000283].

This circuit also corresponds to the desired quantum circuit, meaning that the
implementation correctly encoded this input array.
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A basic simulation was conducted, measuring all qubits through the simulator
provided by Qiskit. The subsequent results were as follows:

Figure 5.9 A histogram containing the measurement results of a simulation, where
the simulation was performed by measuring the appropriate qubits of a circuit created
by using the implemented angle encoding method to encode the following input array:
[0.74651424, 0.43896263, 0.5000283].
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The outcomes of the simulation are displayed in a histogram, accompanied by
the probability distributions derived from the quantum state vector and the
desired probabilities computed from the input array:

Figure 5.10 A histogram comparing the measurement results of a simulation with
the distribution of probabilities of the created quantum state, as well as the expected
probabilities calculated from an input array. The values were obtained from a quan-
tum circuit created by using the implemented angle encoding method to encode the
following input array: [0.74651424, 0.43896263, 0.5000283].

The histogram clearly illustrates that the simulation outcomes and the state
vector probabilities are in almost complete agreement with the expected prob-
abilities obtained from the input array produced. The discrepancies come from
the fact that the simulator introduces some uncertainty inherent to quantum
computers.
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The last diagram presented illustrates the measurement outcomes obtained by
executing this quantum circuit on a real quantum computer. The quantum
computer ibm_osaka was used in this example as well. Here is a histogram that
displays the actual outcomes obtained from the quantum computer alongside
the data previously depicted in the above histogram:

Figure 5.11 A histogram comparing the measurement outcomes of a simulation
with the measurement results obtained by running a quantum circuit on the quantum
computer ibm_osaka and the expected distribution of probabilities calculated from
an input array. The values were obtained from a circuit created by using the imple-
mented angle encoding method to encode the following input array: [0.74651424,
0.43896263, 0.5000283].

The histogram illustrates that the measurement outcomes from the quantum
computer varied to some extent from those of the simulation. However, for
the most part, they correspond, and this result can be taken as an empirical
validation that the implemented encoding method worked correctly on this
specific input array.

The resulting fidelity between the states is ' 0.99. This fidelity indicates
that the states are extremely similar, almost identical. This is an excellent
result, suggesting minimal noise and errors in the quantum computations. The
trace distance is ' 0.07, suggesting that there is very little distinguishability
between the two states, and that they are very close to each other. This
reinforces the fidelity result, indicating that the encoding method performs
exceptionally well on the quantum computer.
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5.4 Amplitude encoding method test
This sample illustrates how the amplitude encoding technique is applied to
encode the following input array1.:

[0.57221017, -0.21990234, -0.19589899, -0.18398457,
-0.4941013, 0.13438299, -0.27722379, -0.46145838].

Applying the implemented algorithm on this input results in the subsequent
quantum circuit:

Figure 5.12 An illustration of a quantum circuit created by using the implemented
amplitude encoding method to encode the following input array:
[0.57221017, -0.21990234, -0.19589899, -0.18398457,
-0.4941013, 0.13438299, -0.27722379, -0.46145838].

This circuit also matches the intended quantum circuit, indicating that the
implementation accurately encoded this input array. The controlled gates RY
are decomposed into smaller gates to facilitate implementation using Qiskit.

1In this case, a longer input was generated because this encoding method uses logarithmic
amount of qubits compared to the input length to encode input vectors.
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A simulation was performed, measuring all qubits using the simulator supplied
by Qiskit. The ensuing outcomes were as follows:

Figure 5.13 A histogram containing the measurement results of a simulation, where
the simulation was performed by measuring the appropriate qubits of a quantum
circuit created by using the implemented amplitude encoding method to encode the
following input array:
[0.57221017, -0.21990234, -0.19589899, -0.18398457,
-0.4941013, 0.13438299, -0.27722379, -0.46145838].
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The results of the simulation are presented in a histogram, along with the prob-
ability distributions obtained from the quantum state vector and the target
probabilities calculated from the input array:

Figure 5.14 A histogram comparing the measurement results of a simulation with
the distribution of probabilities of the created quantum state, as well as the expected
probabilities calculated from an input array. The values were obtained from a quantum
circuit created by using the implemented amplitude encoding method to encode the
following input array:
[0.57221017, -0.21990234, -0.19589899, -0.18398457,
-0.4941013, 0.13438299, -0.27722379, -0.46145838].

The histogram effectively demonstrates that the results of the simulation and
the probabilities of the state vector largely conform to the anticipated proba-
bilities derived from the generated input array. The variances are due to the
uncertainty introduced by the simulator, which is typical in quantum comput-
ing environments. The variances may be a little higher in this case due to the
fact that this encoding method uses more gates.
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The final diagram shown in this section represents the results of measurements
from running this quantum circuit on an actual quantum computer. This time,
the most advanced quantum computer ibm_torino was employed for these
executions, as this computer uses better error-correction techniques which is
crucial for circuits that contain many gates. Below is a histogram that shows
the results from this quantum computer compared with the data shown in the
previous histogram:

Figure 5.15 A histogram comparing the measurement outcomes of a simulation
with the measurement results obtained by running a quantum circuit on the quan-
tum computer ibm_torino and the expected distribution of probabilities calculated
from an input array. The values were obtained from a circuit created by using
the implemented amplitude encoding method to encode the following input array:
[0.57221017, -0.21990234, -0.19589899, -0.18398457,
-0.4941013, 0.13438299, -0.27722379, -0.46145838].

This time, it is clear that the measurement outcomes are more uniform, which
indicates a state preparation of lower quality. This is due to the sheer number
of gates employed by this encoding method. Each gate used in real quantum
computers can introduce errors, and if there are many of them, the errors
add up. The resulting fidelity between the states is ' 0.84, indicating sub-
stantial similarity but not perfect identity. This number may be viewed as a
positive outcome considering the noise and errors in quantum computations.
The trace distance is ' 0.39, showing moderate distinguishability between the
states. Overall, the encoding method is fairly robust, though there is room for
improvement to achieve higher precision and lower distinguishability.
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5.5 Divide-and-conquer encoding method test
This example demonstrates the application of the divide-and-conquer encoding
method to encode the input array described as:

[0.18607576, 0.15434713, 0.21177548, -0.37407953,
0.69254782, -0.01595983, -0.50636497, 0.14312844].

Using the implemented algorithm with this input produces the following quan-
tum circuit:

Figure 5.16 An illustration of a quantum circuit created by using the implemented
divide-and-conquer encoding method to encode the following input array:
[0.18607576, 0.15434713, 0.21177548, -0.37407953,
0.69254782, -0.01595983, -0.50636497, 0.14312844].

This final circuit corresponds to the desired quantum circuit as well, demon-
strating that the implementation successfully encodes this input array.
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A simulation was conducted where all qubits were measured using the provided
Qiskit simulator. The resulting data were as follows:

Figure 5.17 A histogram containing the measurement results of a simulation, where
the simulation was performed by measuring the appropriate qubits of a quantum
circuit created by using the implemented divide-and-conquer encoding method to
encode the following input array:
[0.18607576, 0.15434713, 0.21177548, -0.37407953,
0.69254782, -0.01595983, -0.50636497, 0.14312844].
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The simulation outcomes are depicted in a histogram, accompanied by the
probability distributions derived from the quantum state vector and the target
probabilities computed based on the input array:

Figure 5.18 A histogram comparing the measurement results of a simulation with
the distribution of probabilities of the created quantum state, as well as the expected
probabilities calculated from an input array. The values were obtained from a quantum
circuit created by using the implemented divide-and-conquer encoding method to
encode the following input array:
[0.18607576, 0.15434713, 0.21177548, -0.37407953,
0.69254782, -0.01595983, -0.50636497, 0.14312844].

The simulation outcomes and the state vector probabilities almost perfectly
copy the expected probabilities obtained from the generated input array.
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The concluding figure illustrates the measurement outcomes obtained by run-
ning this quantum circuit on the most advanced device ibm_torino that was
utilized in this experiment as well. Following is a histogram that displays the
actual outcomes from the quantum computer alongside the data presented in
the earlier histogram:

Figure 5.19 A histogram comparing the measurement outcomes of a simulation
with the measurement results obtained by running a quantum circuit on the quantum
computer ibm_torino and the expected distribution of probabilities calculated from
an input array. The values were obtained from a circuit created by using the im-
plemented divide-and-conquer encoding method to encode the following input array:
[0.18607576, 0.15434713, 0.21177548, -0.37407953,
0.69254782, -0.01595983, -0.50636497, 0.14312844].

The histogram shows that the measurement outcomes copy the desired proba-
bilities to a significant extent. Even though this encoding method uses fewer
gates than the previous one, the worse resulting fidelity of ' 0.84 may indicate
that this encoding method is not much better. However, this claim cannot
be made after conducting just a single simple experiment. The trace distance
is ' 0.39, showing moderate distinguishability between the states. However,
overall, the encoding method is still fairly robust.
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Conclusion

This thesis has conducted an extensive study into the problem of representing
classical data in a form that quantum computers can process by thoroughly
examining four data encoding approaches—the basis, angle, amplitude, and
divide-and-conquer encoding methods. Two prominent achievements of this
thesis are the detailed exploration of the theoretical underpinnings of these
encoding methods and their practical implementation using the Qiskit library.

The thesis successfully provided a rigorous explanation of these different
encoding methods, enabling informed decisions on which encoding method to
use in various applications based on their elaborated characteristics. This was
achieved through a series of detailed analyses and empirical tests. The thesis
highlighted the traits and attributes of each encoding method, thereby demon-
strating that the choice of encoding method constrains and impacts the subse-
quent data processing algorithms that can be used. While the complexities of
the encoding strategies were described from a theoretical standpoint, empirical
tests were conducted to explore qubit and gate complexities in practice. During
this exploration, the methods were examined and compared with each other,
revealing that the transpilation process in practical applications significantly
increases the gate counts required to encode input vectors. This finding un-
derscores the necessity of considering not only encoding method complexities
from the theoretical perspective but also practical hardware limitations.

While the thesis did not introduce entirely new encoding strategies or im-
prove the four discussed encoding methods in any significant manner, it success-
fully implemented these encoding techniques in a way that enables their use
for encoding appropriate input vectors. The implementation was developed
using the Qiskit library. The object-oriented nature of the implementation
facilitates future expansion, allowing additional encoding methods to be in-
corporated by simply adding their respective algorithms without the need to
work extensively with certain aspects of the Qiskit library. Simple tests were
conducted using real quantum hardware to validate the implemented encoding
methods and provide practical insights into their application.
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The thesis achieved all the objectives outlined in the introduction by cover-
ing specific essential aspects of quantum computing, presenting and explaining
the four encoding strategies, implementing them using the Qiskit library, and
validating them via basic experiments on real quantum devices.

Several potential areas for future research have emerged from this study.
Firstly, there is an opportunity to improve the divide-and-conquer encoding
method by exploring the feasibility of disentangling ancillary qubits or lever-
aging the entanglement of qubits to manipulate already encoded data advan-
tageously. Secondly, combining the beneficial traits of the amplitude and
divide-and-conquer encoding methods presents another promising research di-
rection. Exploring the integration of the strengths of both approaches might
lead to the development of a hybrid method that could potentially combine
efficient qubit usage with manageable circuit depth.

In conclusion, this thesis has provided a detailed exploration of the afore-
mentioned quantum state preparation methods, offering valuable insights into
their practical applications and implications. The findings underscore the
significance of data encoding method selection in quantum computing and
highlight several promising avenues for future research that could potentially
advance the current state of these encoding methods.
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Appendix

Repository

All the source code files created for this thesis are hosted in the following
publicly accessible GitHub repository:
https://github.com/PavelSlaninka/QuantumEncodingThesis

The repository contains the implementation of the four encoding methods in-
troduced in the chapter Data encoding methods. The repository also contains
multiple Jupyter notebooks that are mainly used to demonstrate the imple-
mented encoding methods. The notebooks also contain several figures dis-
played throughout the thesis, along with the source code used to generate
them. The main implementation aspects are discussed in the chapter Imple-
mentation, where an overview of this repository is presented. The following
page contains a summary of the repository contents.
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129 Repository

The structure of the repository is outlined below, along with a brief description
of each file included:

README.md........contains a description of the repository and its contents
thesis.pdf....................................the PDF file of this thesis
qsp..........a root of the package implementing the encoding algorithms

base.py.............a Python file containing an abstract class that all
implemented encoding methods in the directory encodings inherit from
encodings..........a directory containing all the encoding algorithms

basis.py......a Python module with the basis encoding algorithm
angle.py ..... a Python module with the angle encoding algorithm
amplitude.py .......................... a Python module with the
amplitude encoding algorithm
divide_and_conquer.py................a Python module with the
divide-and-conquer encoding algorithm
__init__.py...........a Python file importing the parent abstract
class to make it available at the level of this directory

__init__.py...a Python file importing the modules implementing the
encoding algorithms to make them available at the package root level

notebooks..............a root directory containing all Jupyter notebooks
showcasing the implemented encoding methods from the qsp package
encoding_demonstration..............a directory containing Jupyter

notebooks demonstrating the encoding methods from the qsp package
basis.ipynb............a notebook showcasing the basis encoding
angle.ipynb............a notebook showcasing the angle encoding
amplitude.ipynb..a notebook showcasing the amplitude encoding
divide_and_conquer.ipynb............a notebook showcasing the
divide-and-conquer encoding
helpers.py.....................a Python file containing code used
by the notebooks in this directory

circuit_complexity.ipynb.......a Jupyter notebook comparing the
complexity of the encoding methods
readme_libraries.ipynb........a short Jupyter notebook containing
a list of libraries used in the code, along with their versions
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