
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Wireless smart cube for time tracking with application Clockify

David Sobíšek

Ing. Pavel Kubalík, Ph.D.

Informatics

Computer engineering

Department of Digital Design

until the end of summer semester 2024/2025

Instructions

1) Research existing solutions for wireless smart objects for easier time-tracking.

2) Design your solution based on the ESP8266 platform.

3) The designed solution will meet these requirements:

  - It will be tracking a project assigned by the user to a side tilted upwards.

  - The user will be able to communicate with the device using WiFi.

  - The tracked data will be sent to the application Clockify using their public REST API 

interface or stored on a microSD card when WiFi is not reachable.

  - LEDs inside the device will light up to indicate the actions and states of the device.

  - Its batteries will be charged wirelessly.

4) Implement your proposed solution and adequately test it.

Electronically approved by prof. Ing. Hana Kubátová, CSc. on 30 January 2024 in Prague.



Bachelor’s thesis

WIRELESS SMART CUBE
FOR TIME TRACKING
WITH APPLICATION
CLOCKIFY

David Sobíšek

Faculty of Information Technology
Department of Digital Design
Supervisor: Ing. Pavel Kubalík, Ph.D.
May 16, 2024



Czech Technical University in Prague
Faculty of Information Technology
© 2024 David Sobíšek. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It
has been submitted at Czech Technical University in Prague, Faculty of Information
Technology. The thesis is protected by the Copyright Act and its usage without author’s
permission is prohibited (with exceptions defined by the Copyright Act).

Citation of this thesis: Sobíšek David. Wireless Smart Cube for Time Tracking with
Application Clockify. Bachelor’s thesis. Czech Technical University in Prague, Faculty
of Information Technology, 2024.



Contents

Acknowledgments vii

Declaration viii

Abstract ix

List of abbreviations xi

1 Introduction 1

2 Objectives 3

3 Existing Solutions 4
3.1 TIMEFLIP2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Timeular Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Adafruit IO Time Tracking Cube . . . . . . . . . . . . . . . . . 6
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Analysis 9
4.1 The Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1.1 Wemos D1 R2 . . . . . . . . . . . . . . . . . . . . . . . 10
4.1.1.1 MCU Pinout . . . . . . . . . . . . . . . . . . . 11
4.1.1.2 Deep Sleep Problematic . . . . . . . . . . . . . 11

4.2 Orientation In Space . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.1 GY-521 with MPU6050 Gyroscope and Accelerometer

Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3.1 Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3.2 Wireless Charging Module . . . . . . . . . . . . . . . . . 14

4.3.2.1 Testing . . . . . . . . . . . . . . . . . . . . . . 15
4.3.3 TP4056 Charging Module . . . . . . . . . . . . . . . . . 15
4.3.4 LaskaKit Fuel Gauge MAX17048 . . . . . . . . . . . . . 16
4.3.5 Step-up Voltage Regulator . . . . . . . . . . . . . . . . . 16

4.4 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4.1 Micro SD Card Module . . . . . . . . . . . . . . . . . . 17

4.5 Real-Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5.1 Waveshare PCF8563 . . . . . . . . . . . . . . . . . . . . 18

ii



Contents iii

4.6 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.6.1 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.6.2 UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.6.3 I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.7 Programming and Testing . . . . . . . . . . . . . . . . . . . . . 22
4.7.1 Arduino IDE . . . . . . . . . . . . . . . . . . . . . . . . 22
4.7.2 PlatformIO . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Suggestion of the Solution 23
5.1 Suggestion of the Modules Connection . . . . . . . . . . . . . . 23
5.2 Program Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2.1 Used IDEs . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2.2 Control Program . . . . . . . . . . . . . . . . . . . . . . 24

5.2.2.1 Program Phases . . . . . . . . . . . . . . . . . 24
5.2.3 Server design . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2.3.1 Ktor Framework . . . . . . . . . . . . . . . . . 26
5.2.3.2 User Configuration and Project Assignment . . 26
5.2.3.3 Handling Cube Requests . . . . . . . . . . . . 26

6 Implementation of the Hardware 27
6.1 Wiring Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Microcontroller Module . . . . . . . . . . . . . . . . . . . . . . 28
6.3 Gyroscope and Accelerometer Module . . . . . . . . . . . . . . 29
6.4 Micro SD Card Module . . . . . . . . . . . . . . . . . . . . . . 30
6.5 Charging Meter Module . . . . . . . . . . . . . . . . . . . . . . 30
6.6 Charging Module . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.7 Wireless Charging Module . . . . . . . . . . . . . . . . . . . . . 31
6.8 PCF8563 Real-Time Clock . . . . . . . . . . . . . . . . . . . . 32
6.9 RGB LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.10 Button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.11 Additional Extensions . . . . . . . . . . . . . . . . . . . . . . . 33

6.11.1 Wemos D1 Mini Pro . . . . . . . . . . . . . . . . . . . . 33
6.11.2 Extra Buttons . . . . . . . . . . . . . . . . . . . . . . . 33
6.11.3 Qi Standard Wireless Charging . . . . . . . . . . . . . . 34

6.12 Prototype Price . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7 Implementation of the Program 35
7.1 Control Program . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.2 User Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.3 Orientation Detection . . . . . . . . . . . . . . . . . . . . . . . 37

7.3.1 Computation Method . . . . . . . . . . . . . . . . . . . 37
7.3.2 Orientation of the Cube . . . . . . . . . . . . . . . . . . 40

7.4 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.4.1 Offline Mode . . . . . . . . . . . . . . . . . . . . . . . . 41



Contents iv

7.4.2 Online Mode . . . . . . . . . . . . . . . . . . . . . . . . 42
7.4.2.1 Server . . . . . . . . . . . . . . . . . . . . . . . 42

7.5 Cube Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8 Testing 45
8.1 Module Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8.1.1 Device Orientation Testing . . . . . . . . . . . . . . . . 46
8.1.2 Wireless Charging Testing . . . . . . . . . . . . . . . . . 47

8.2 Program Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.2.1 Used IDEs . . . . . . . . . . . . . . . . . . . . . . . . . 48

9 Conclusion 49

A Schematic 50

Contents of the Attached Media 55



List of Figures

3.1 TIMEFLIP2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Timeular Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Adafruit IO Time Tracking Cube . . . . . . . . . . . . . . . . . 7

4.1 Wemos D1 R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 GY-521 with MPU6050 Gyroscope and Accelerometer Module . 12
4.3 Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Wireless Charging Module . . . . . . . . . . . . . . . . . . . . . 14
4.5 TP4056 Charging Module . . . . . . . . . . . . . . . . . . . . . 15
4.6 LaskaKit Fuel Gauge MAX17048 . . . . . . . . . . . . . . . . . 17
4.7 Micro SD Card Module . . . . . . . . . . . . . . . . . . . . . . 18
4.8 PCG8563 RTC Module . . . . . . . . . . . . . . . . . . . . . . 19
4.9 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.10 UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.11 I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1 Block Schematic of the Modules Connection . . . . . . . . . . . 23
5.2 Block Schematic of the Software Design . . . . . . . . . . . . . 25

6.1 MCU Module Wiring Schematic . . . . . . . . . . . . . . . . . 28
6.2 Gyroscope and Accelerometer Module Wiring Schematic . . . . 29
6.3 Micro SD Card Module Wiring Schematic . . . . . . . . . . . . 30
6.4 Charging Schematic . . . . . . . . . . . . . . . . . . . . . . . . 32

7.1 Roll, Pitch and Yaw . . . . . . . . . . . . . . . . . . . . . . . . 38
7.2 Demonstration of the Acceleration Forces . . . . . . . . . . . . 39

8.1 Prototype Testing Using a Breadboard . . . . . . . . . . . . . . 45
8.2 Module Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.1 Wiring Schematic for the Whole Device . . . . . . . . . . . . . 51

v



List of Tables vi

List of Tables

3.1 Summary of Existing Time Tracking Devices . . . . . . . . . . 8

4.1 I2C Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.1 Prices of Used Components . . . . . . . . . . . . . . . . . . . . 34



I want to thank my supervisor, Ing. Pavel Kubalík,
Ph.D., for his time, effort and guidance. My gratitude
goes to my family, close friends and colleagues for their
consistent support throughout my academic journey.

vii



Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. I
further declare that I have concluded an agreement with the Czech Technical
University in Prague, on the basis of which the Czech Technical University in
Prague has waived the right to conclude a licence agreement on the utilization
of this thesis as a school work pursuant to Section 60(1) of the Copyright Act.
This fact does not affect the provisions of Section 47b of the Act No. 111/1998
Coll., on Higher Education Act, as amended.

In Prague on May 16, 2024

viii



Abstract

The bachelor thesis focuses on designing and implementing a smart cube for
time tracking using the application Clockify. The physical cube serves as a
visual aid for the user to start, switch, or terminate time tracking for projects
set in the Clockify web application and assigned to each side of the cube.
After researching existing solutions on the internet, a custom implementation
was designed based on the ESP8266 development platform combined with
the GY-521 (MPU6050) gyroscope and accelerometer module. The device is
completely wireless thanks to the support of wireless charging and can work
for a limited time without a WiFi connection. In that case, the project records
are stored on a micro SD card and sent to the web application when the cube
is reconnected to WiFi.

Keywords time-tracking smart cube, visual aid for employees, web appli-
cation Clockify, ESP8266, GY-521 with MPU6050, wireless charging, WiFi,
micro SD card

Abstrakt

Bakalářská práce se zaměřuje na návrh a implementaci chytré kostky pro sle-
dování času s aplikací Clockify. Fyzická kostka slouží jako vizuální pomůcka
pro uživatele, který díky ní spouští, přepíná nebo vypíná sledování času u
projektů, které má uložené ve webové aplikaci Clockify a které přiřadil k jed-
notlivým stranám kostky. Po prozkoumání existujících řešení na internetu
byla navržena vlastní implementace založená na vývojové platformě ESP8266
v kombinaci s modulem gyroskopu a akcelerometru GY-521 (MPU6050). Za-
řízení je kompletně bezdrátové díky podpoře bezdrátového nabíjení a je schopné
pracovat omezený čas bez připojení k WiFi, kdy se záznamy o jednotlivých
projektech ukládají na micro SD kartu a do webové aplikace se odešlou po
připojení kostky k WiFi.

ix



x

Klíčová slova chytrá kostka pro sledování času, vizuální pomůcka pro za-
městnance, webová aplikace Clockify, ESP8266, GY-521 s MPU6050, bezdrá-
tové nabíjení, WiFi, micro SD karta



xi



xii

List of abbreviations

ACK Acknowledge
API Application Programming Interface

CC/CV Constant-Current/Constant-Voltage
CPU Central Processing Unit
CLI Command Line Interface
CS Chip Select

EEPROM Electrically Erasable Programmable Read-Only Memory
FAT File Allocation Table

FS File System
GND Ground

GPIO General Purpose Input/Output
HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure
IDE Integrated Development Environment
I2C Inter-Integrated Circuit
I/O Input/Output
IoT Internet of Things
LE Low Energy

LED Light-Emitting Diode
LiPol Lithium Polymer
MCU Microcontroller Unit
MISO Master Input/Slave Output
MOSI Master Output/SlaveInput
PCB Protection Circuit Board

PWM Pulse Width Modulation
RFID Radio Frequency Identification
RGB Red, Green, Blue
SCL Serial Clock

SCLK Serial Clock
SD Secure Digital

SDA Serial Data
SoC State of Charge
SPI Serial Peripheral Interface

SS/CS Slave Select/Chip Select
SSID Service Set Identifier
TWI Two Wire Interface

UART Universal Asynchronous Receiver/Transmitter
USB Universal Serial Bus



Chapter 1

Introduction

In today’s fast-paced work environments, professionals paid by the hour often
face challenges in accurately monitoring their time across diverse projects and
tasks. Amid juggling multiple responsibilities, it’s common to overlook initiat-
ing the time-tracking software or switching tasks correctly while multitasking
throughout the day. These issues can lead to billing inaccuracies, project
management inefficiencies, and difficulties in maintaining comprehensive work
records.

While existing software solutions attempt to tackle these challenges, phys-
ical time-tracking tools offer distinct advantages to overcome them by lever-
aging visual and muscle memory. Unlike software interfaces, physical tools
provide tangible reminders and intuitive interactions that engage users on a
tactile level.

However, existing physical time-tracking devices have notable limitations.
Many require users to adopt unfamiliar proprietary software, disrupting es-
tablished workflows and potentially causing frustration due to lacking unique
features found in preferred applications. Moreover, maintenance and support
for these devices can be costly, leading to a user experience spoiled by sub-
scription fees, software obsolescence, or loss of support over time, rendering
the device obsolete.

This thesis endeavours to address these issues by proposing the design and
future implementation of a time-tracking device that integrates seamlessly
with Clockify, an activity-tracking platform widely used by professionals. The
envisioned solution seeks to overcome the identified problems and offer an
alternative to existing activity-tracking products. Leveraging Clockify’s pop-
ularity in office environments, this device intends to simplify its integration
into daily work life. Additionally, the thesis explores the potential to support
other tracking applications, leveraging the flexibility of an underlying backend
architecture.

1



2

The proposed solution incorporates light signals as visual reminders for
ongoing activity tracking. When users become accustomed to seeing a lit-up
cube while working, they should quickly notice when they forget to activate
tracking, reinforcing consistent time management practices. Similarly, the
cube’s consistent colour after switching activities serves as an intuitive cue to
support task-switching and project management, ultimately aiming to enhance
efficiency and accuracy in time tracking.



Chapter 2

Objectives

The primary aim of this thesis is to design, develop, and test a functional pro-
totype of a wireless smart cube designed to simplify activity tracking using the
Clockify API. This device will be based on the ESP8266 platform, integrating
a GY-521 gyroscope module. Its primary functionality will involve initiating
and terminating task time tracking in Clockify based on the cube’s tilt. Users
will assign tasks to the cube’s sides in a form shown to them after connecting
to a WiFi access point created by the cube. The currently tracked project
will be indicated by illuminating the cube with the corresponding colour. The
smart cube will be configured via WiFi and will support wireless charging for
added convenience.

The ”Existing Solutions” chapter will research and analyze the existing
physical time-tracking devices, assessing their strengths and weaknesses. The
results will guide the component selection outlined in the following ”Analysis”
chapter.

Subsequent chapters including ”Suggestion of the Solution,” ”Implementa-
tion of the Hardware,” and ”Implementation of the Program” will detail the
assembly of suggested components and the necessary software development to
realize the smart cube prototype. These sections will delve into the control
program’s and hardware design intricacies, highlighting the libraries used for
various functionalities and the implemented features.

Lastly, the ”Testing” chapter will describe and evaluate the prototype’s
testing process, evaluating its functionality and accuracy.

3



Chapter 3

Existing Solutions

The objective of this chapter is to analyze existing activity-tracking devices
available for online purchase. Three devices were selected for comparison,
each demonstrating both distinct and similar advantages and disadvantages,
including variations in shape, functionality, and user experience.

3.1 TIMEFLIP2
The twelve-sided tracker TIMEFLIP2 lets users track time spent on projects
via Bluetooth 4.0 LE using the company’s web, iOS, or Android app. The
device runs on 2 alkaline AA batteries with a claimed average of 40 hours of
tracking. It works offline, too, and tracks up to 1066 flips without connection.
The device weighs 90 grams, and it supports tap-on to start or pause activi-
ties, signalling to the user with a blink from the embedded LED light shining
through translucent walls, which project they are currently tracking. [1]

Figure 3.1 TIMEFLIP2 [1]

4



Timeular Tracker 5

Relying on alkaline batteries presents challenges due to maintenance re-
quirements and potential leakage. To address this, the author decided to use
a more modern LiPol battery. This will also let the proposed solution offer a
convenient added feature, thanks to the compatibility of the wireless charging
module with the battery.

The second drawback the author has found with TIMEFLIP2 is that it
provides a custom software solution for the user. One of the goals for the
proposed device is so that the user is able to seamlessly add the device into
their workflow without having to transition to new software and sacrifice some
of their favourite features unique to that software.

The author took inspiration from the way this device communicates with
the user. The lights inside the tracker can be seen as a visual cue for the
user to remember to start tracking and can be used as a means of all the
communication needed as well. However, additional sounds or haptics could
be disruptive in the office environment for the user’s colleagues, so only light
signals will be used.

3.2 Timeular Tracker
Timeular Tracker has eight sides but claims to let the user track 1000 activities.
That is possible because it connects to a desktop app and one side of the device
can be used as a shortcut to open a menu with various activities they can
preset. The app is available for all major platforms, such as Windows, Linux,
and macOS, but it is possible to use the tracker without the menu shortcut
with a web, Android, or iOS app too. There is not much information about
the physical device on the website, only that it weighs 85 grams, should last 6
months per charge, and is charged using the included dock. There is a single
small LED on the edge of the device, but the purpose is not mentioned on the
website, it only seems to serve as an indicator to show if the device is turned
on or if the battery is low, not to show the selected project. [2]

The shape of the device seems less practical than a regular cube since it
is not balanced, and it can charge only standing upright with the use of the
included dock, which doesn’t seem very stable from the photos. Also, since
it doesn’t light up in the colour of the project, the user has to label the sides
with a marker or stickers to recognize which side task is being tracked. This
goes against the goal of triggering the user’s visual memory with the cube not
being lit up when they arrive at work.

The biggest advantage comes with the use of proprietary software and the
preset menu action, but that requires the user to transfer from currently used
software, which brings the same problem as explained with the TIMEFLIP2
device.



Adafruit IO Time Tracking Cube 6

Figure 3.2 Timeular Tracker [2]

One of the most compelling features of this device is its battery life. The
Timeular Tracker can remain active for extended periods due to its utiliza-
tion of Bluetooth LE (Low Energy), which is significantly more power-efficient
compared to WiFi. Additionally, the absence of LED lighting contributes to
its longevity.

In contrast, the proposed solution may exhibit a relatively shorter battery
life because it relies on WiFi for communication with the tracking application’s
API. However, if Bluetooth LE were adopted, similar to the Timeular Tracker,
it would enhance power efficiency but require the use of a smartphone or laptop
to transmit data to the tracking application.

3.3 Adafruit IO Time Tracking Cube
The Adafruit IO Time Tracking Cube is not a commercially available product
but rather an instructional guide utilizing Adafruit products. To assemble this
project, users are instructed to buy an Adafruit Feather HUZZAH, an LED
light strip, and encase them within a 3D-printed housing. This setup enables
users to track time and recommends using Microsoft Excel tables for data
management. The cube provides audio-visual cues by illuminating its translu-
cent walls with LED lights corresponding to the currently tracked project and
emitting a sound via a piezo buzzer upon recognizing tilt movements. [3]

The use of a piezo buzzer for tracking notifications presents a disruptive
drawback, as its audible alerts could disturb others sharing the same office
space. Another limitation is relying on Excel for tracking, which lacks au-
tomation, real-time capabilities and any possibility to add unique features to
the tracking experience.



Summary 7

Figure 3.3 Adafruit IO Time Tracking Cube [3]

This project revolves around leveraging an ESP8266-based Adafruit plat-
form for WiFi communication with tracking software, which inspired the adop-
tion of a similar ESP8266-based platform in this thesis design. The cube’s
multi-sided design is ideal for accommodating various functions and project-
tracking capabilities within the proposed solution. Drawing inspiration from
this design, it serves as a foundational reference for developing the smart cube
prototype, incorporating valuable insights to enhance its design and function-
ality.

3.4 Summary
The Table 3.1 shows the summary of the advantages and disadvantages of each
of the devices:

After looking at the disadvantages in the table, it becomes evident that
one common drawback across these devices is their reliance on proprietary
software, which limits user flexibility and integration with existing workflows.
Given this common challenge, this thesis will focus on addressing this limita-
tion by developing a smart cube prototype that seamlessly integrates with a
widely used productivity application without requiring users to transition to
proprietary software. By prioritizing open-source and adaptable design prin-
ciples, this thesis aims to provide a user-friendly solution that enhances user
experience and productivity in various office environments.



Summary 8

Table 3.1 Summary of Existing Time Tracking Devices

Device Advantages Disadvantages
TIMEFLIP2

Bluetooth connectivity for
seamless integration with
web and mobile apps

offline tracking capability
with a large flip capacity

user-friendly tap-on fea-
ture to start or pause ac-
tivities

reliance on alkaline AA
batteries

custom software solution
may not integrate well
with existing workflows

Timeular Tracker

integration with desktop
and mobile apps for versa-
tile usage

long battery life using
Bluetooth LE

proprietary software with
preset menu actions for
quick activity selection

imbalanced shape and
docking requirement for
charging

requires a transition to
proprietary software

lack of visual project indi-
cation without additional
labelling

Adafruit IO Time
Tracking Cube DIY project using accessi-

ble components

offers audio-visual cues for
project tracking

utilizes open-source in-
structions for customiza-
tion

requires assembly and cus-
tomization

relies on manual data
management using Excel

user possibly has to switch
from tracking software to
Excel

buzzer sounds could be
disturbing in offices



Chapter 4

Analysis

This chapter delves into the selection and analysis of key components, modules,
and communication methods for the implementation of the time-tracking de-
vice. The options are chosen to fit the device’s purpose best while maintaining
the low cost.

4.1 The Control Unit
The control unit functions as the central processing unit of the device, oversee-
ing all its operational tasks. Its primary responsibilities include time tracking
for various tasks and communicating the collected data to designated track-
ing software. While the control unit handles the tracking logic for offline and
online functionality of the device, other duties are streamlined and managed
by the server, as detailed in subsection 5.2.3. This setup offers the distinct
advantage of flexibility, offering to allow users the switch between different
tracking software options seamlessly without requiring firmware updates or
disassembly. To leverage server capabilities, the device must connect to WiFi,
emphasizing the advantage of utilizing a development board equipped with
integrated WiFi capabilities.

Initially, various Arduino boards were considered for this project; how-
ever, mainly due to cost considerations, the decision was made to employ an
ESP8266-based development kit. The ESP8266 platform, developed by Espres-
sif Systems along with its successor ESP32, offers a cost-effective solution with
built-in WiFi and Bluetooth capabilities, making it highly suitable for IoT ap-
plications [4]. Utilizing bare ESP32 or ESP8266 chips directly is impractical
for most developers, as it lacks essential circuitry for power management, com-
puter connectivity, code uploading, and peripheral integration. Development
boards based on these platforms provide a user-friendly interface, simplifying
the development process by offering essential features and connectivity options
via accessible pins. [5]

9



The Control Unit 10

4.1.1 Wemos D1 R2
The Wemos D1 R2 development board is built around the affordable and highly
capable ESP8266 MCU (microcontroller unit) developed by Espressif Systems.
Featuring a micro USB connector for programming and Arduino compatibility,
the board offers seamless integration with existing development environments.
One of its standout features is its built-in WiFi module, providing wireless
connectivity essential for IoT applications. It has 11 digital inputs/outputs,
10 channels of PWM, 1 analogue input, as well as popular communication
interfaces, all working on a voltage of 3.3V. The module also provides a 3.3V
output pin that can be used to charge other devices. [6].

The decision to use the Wemos D1 R2 was primarily driven by its low cost
and integrated WiFi capabilities, aligning perfectly with the project’s require-
ments. Additionally, the board’s pinout closely resembles that of the popular
Arduino Uno, facilitating ease of use and compatibility with a wide range of
existing Arduino-based projects and peripherals. This familiarity streamlines
the development process, enabling rapid prototyping and efficient integration
of the ESP8266 platform into the time-tracking device. The combination of
affordability, wireless connectivity, and Arduino compatibility makes the We-
mos D1 R2 an ideal choice for this project, enhancing both functionality and
development flexibility.

Figure 4.1 Wemos D1 R2 [6]



The Control Unit 11

4.1.1.1 MCU Pinout
The board provides a total of 11 usable GPIO (General Purpose Input/Output)
pins; however, not all of these pins can be used without certain limitations.
GPIO0 (corresponding to D3 on the Wemos D1 R2) is pulled up by a 10kΩ
resistor and is connected to the FLASH button. During boot, pulling GPIO0
LOW can cause the boot process to fail. Similarly, GPIO2 (D4) is pulled up
by a 10kΩ resistor and is linked to the on-board LED, which is active when the
pin is LOW. These pins are typically used for I2C communication, alongside
D14 and D15.

GPIO1 and GPIO3 (D0 and D1) serve as Rx and Tx connections for serial
communication. If serial communication is not utilized, they can function as
general GPIO pins. It’s crucial to set these pins to HIGH during boot, as
pulling GPIO1 LOW can disrupt the boot process.

GPIO15 (D8) is equipped with a fixed 10kΩ pull-down resistor, and pulling
this pin HIGH during boot can lead to boot failure.

GPIO16 (D0) is specifically used to wake the ESP8266 from deep sleep
mode. [7] [8]

4.1.1.2 Deep Sleep Problematic
The ESP8266 microcontroller offers three sleep options to conserve battery
life when running on a limited power source, such as a battery. Sleep modes
deactivate power-intensive activities like WiFi and the system clock to reduce
power consumption. [9]

Among the available sleep modes on ESP8266, deep sleep mode is the
most power-efficient. In this mode, WiFi, the system clock, and the CPU are
powered down, leaving only the RTC operational. This results in an average
of approximately 1000 times lower current consumption than in modem sleep
mode, where only WiFi is disabled. However, achieving consumption this low
is impossible with full-featured development boards like the Wemos D1 R2. [9]

Deep sleep mode is ideally suited for applications where the microcontroller
needs to wake up periodically to perform a specific task and can remain in sleep
mode for predefined intervals between operations. [9] However, deep sleep mode
can be triggered for an unspecified period, and the wake-up signal can come
from a reset or an external button. This capability can be leveraged in the
proposed device during the charging process, enabling the microcontroller to
remain inactive while being charged until it is woken up to resume tracking.

Furthermore, this feature holds potential for future extensions of the solu-
tion. For example, powering the gyroscope and accelerometer modules from
a separate power source would allow these components to remain operational
even when the MCU enters deep sleep mode. This setup could enable the de-
vice to remain in a low-power state while continuously monitoring orientation,
waking up only briefly to track activity upon flipping the cube.



Orientation In Space 12

4.2 Orientation In Space
The control unit requires additional components to enable orientation detec-
tion in space, specifically an accelerometer and gyroscope module. After con-
sidering various options, the GY-521 with the MPU6050 module was selected
based on the author’s familiarity and positive experience with its performance.

4.2.1 GY-521 with MPU6050 Gyroscope and Ac-
celerometer Module

The GY-521 is a three-axis gyroscope and a three-axis accelerometer MPU6050
module operating on 3.3V, making it well-suited for the selected control unit.
This module excels in detecting both static gravitational effects and dynamic
sensor movements, providing comprehensive orientation-sensing capabilities
crucial for the time-tracking device’s functionality. Additionally, the mod-
ule communicates using the I2C (Inter-Integrated Circuit) standard, ensuring
efficient and reliable data transmission between the module and the control
unit. [10]

Figure 4.2 GY-521 with MPU6050 Gyroscope and Accelerometer Module [10]



Charging 13

By incorporating the GY-521 module into the device design, the control
unit gains the ability to accurately detect orientation changes and dynamic
movements, essential for precise time-tracking based on the cube’s orientation.
This module’s compatibility with the control unit’s voltage levels and com-
munication standards ensures seamless integration and reliable performance
within the overall system.

4.3 Charging
Given that the device will primarily be situated on an office desk, which is
often already filled with a multitude of cables, especially in technology-oriented
environments, the integration of wireless charging is a logical choice. This
approach eliminates the need for additional cables cluttering the workspace
and avoids the inconvenience of a permanent cable protruding from the device.

4.3.1 Batteries
To ensure the device maintains uninterrupted operation throughout a full
workday without requiring charging, a rechargeable LiPol battery 104050 with
a capacity of 2500mAh and a nominal voltage of 3.7V will be integrated. This
battery configuration consists of a single prismatic cell in a 1-series, 1-parallel
setup, offering sufficient capacity for extended use. [11]

Figure 4.3 Used Battery [11]



Charging 14

Despite the presence of an integrated battery PCB (protection circuit
board) designed to prevent issues such as over-charge, over-discharge, over-
current, and short-circuiting, an additional protective charging module will be
implemented for enhanced safety and longevity. [11] This supplemental mea-
sure ensures the reliable and safe operation of the battery within the device,
mitigating potential risks associated with battery management.

4.3.2 Wireless Charging Module
To enhance user convenience and maintain a tidy workspace, the device will
utilize a wireless charging module. The selected module is designed for various
electronic devices, offering a 5V output at 1A. Wireless charging operates ef-
fectively through non-conductive materials such as wood and plastic, ensuring
seamless integration into the device’s design and functionality. [12]

By integrating wireless charging technology, the device remains unobtru-
sive and user-friendly, facilitating effortless charging without the hassle of
traditional cables. This feature aligns with the device’s goal of providing a
streamlined and efficient solution for time-tracking in office environments.

Figure 4.4 Wireless Charging Module [12]



Charging 15

4.3.2.1 Testing
Prior to integration into the final design, the module was tested by the author.
The testing confirmed that for effective charging, the coils of the module need
to overlap with at least half of their area and remain less than 5mm apart.
During charging, significant energy loss occurs, which worsens with increased
distance and decreased coil overlap. Therefore, it is advisable to incorporate
a ridge into the design of the cube’s casing to ensure optimal alignment with
the charging pad. Nevertheless, the module has demonstrated sufficient per-
formance for the prototype, thus there should be no issues in its utilization.

4.3.3 TP4056 Charging Module
For safe battery charging, a TP4056 USB-C charging module will be used,
utilizing the CC/CV (constant-current/constant-voltage) charging method to
ensure efficient and safe charging of the batteries. [13] This charging approach
involves two phases: initially delivering a constant current for rapid charging,
followed by a transition to a constant voltage maintenance mode to slow down
charging as the battery reaches its capacity. [14]

Figure 4.5 TP4056 Charging Module [13]

The TP4056 module can be powered either via a USB-C cable or through
direct connections to the + and - pins. It necessitates a power source capable
of delivering at least 1A to effectively charge the battery. [13] This requirement
is well met by the wireless charger module used, which provides a sufficient 1A
output.



Charging 16

One crucial consideration with the TP4056 module is its lack of support
for ”power-load-sharing,” necessitating that any load be disconnected while the
battery is being charged. The reason for this is that the charging circuitry de-
tects when the charge current falls below 1/10 of the matter capacity (constant
current charge mode near the end of the charge cycle). When a load is con-
nected to the battery, this changes the detected current, allowing the TP4056
to continue charging, which may never end and damage the battery. [15] How-
ever, given the integrated protection of the battery against over-charging and
the device being in deep sleep mode during charging (thanks to the placement
of the charger and the orientation of the device while utilizing it), where the
power consumption is much lower, this limitation should not pose an issue for
the device’s operation and battery health.

An area of future work that extends beyond the scope of this thesis in-
volves implementing a mechanism to detect the charging status of the device
and subsequently enabling an automatic shutdown for enhanced safety. This
feature aims to enhance the overall safety and reliability of the device during
charging cycles, ensuring the user cannot damage the device.

4.3.4 LaskaKit Fuel Gauge MAX17048
Since the device will not be able to charge while using, to monitor battery sta-
tus and ensure timely user notification of low battery conditions, the LaskaKit
Fuel Gauge MAX17048 module will be integrated into the device.

This lithium-polymer battery meter communicates via the I2C bus, en-
abling measurement of battery voltage and state of charge (SoC) using the
ModelGauge proprietary algorithm. The module can generate interrupts based
on battery conditions such as low state of charge, under-voltage, or over-
voltage. [16] By leveraging these features, the device can effectively alert users
to critical battery levels, ensuring uninterrupted usage and timely recharging
when needed.

4.3.5 Step-up Voltage Regulator
Step-up voltage regulators raise the input voltage to a higher output level.
They temporarily store energy and release it at a higher voltage. It is vi-
tal to use them in battery-powered devices to provide stable voltage to the
microcontroller. [17]

The SX1308 step-up converter is selected for this purpose due to its effi-
ciency and output voltage range. With an efficiency rating of 95% and the
ability to output voltages between 3V to 28V, the SX1308 is an ideal choice
to provide a stable 5V supply to the microcontroller circuit. This efficient
conversion ensures optimal performance and reliability in the device’s power
management system. [18]



Memory 17

Figure 4.6 LaskaKit Fuel Gauge MAX17048 [16]

4.4 Memory
The ESP8266 microcontroller emulates Arduino’s EEPROM functionality us-
ing a designated area within its Flash memory. This nonvolatile memory
retains data even when the board is powered off, offering persistent storage.
However, it comes with limitations such as a finite size and lifespan. While
the Flash memory on ESP8266 boards typically boasts a capacity of 4MB,
the emulated EEPROM segment is limited to 4kB and has a maximum write
endurance of 100,000 cycles. [19] Given the potential high frequency of write
operations in our time-tracking cube, relying solely on EEPROM is impractical
and may lead to premature wear.

4.4.1 Micro SD Card Module
To address this challenge, a micro SD card module will be incorporated into
the design. This module serves as a reliable backup offline storage solution,
enabling the cube to store tracking data locally in situations where a WiFi
connection is unavailable. The micro SD card communicates with the control
unit via SPI (Serial Peripheral Interface), a widely used protocol for data
exchange between microcontrollers and peripheral devices. Operating at 3.3V,
the micro SD card module is compatible with the ESP8266 microcontroller,
ensuring seamless integration within the smart cube system. [20]



Real-Time Clock 18

Figure 4.7 Micro SD Card Module [20]

4.5 Real-Time Clock
Given the critical requirement of accurate timekeeping for the device, integrat-
ing a dedicated RTC (real-time clock) module is highly advantageous. While
the ESP8266 includes an onboard RTC, it primarily functions as a timer and is
prone to significant time drift over extended periods of operation. The internal
RTC’s accuracy may not suffice for precise timekeeping needs.

Obtaining the current time and date from network synchronization on each
power-up is a viable option; however, this approach necessitates an internet
connection for each time initialization. This dependency poses a challenge, as
the device would be unable to track time accurately during the initialization
phase without internet access.

To address this issue effectively, an external RTC module is employed.
These RTC modules are purpose-built for accurate timekeeping, offering reli-
able clock functions independent of the internet or device power cycles. By
integrating an RTC module with the ESP8266, the device ensures consistent
and precise timekeeping, crucial for its operational reliability and functionality.

4.5.1 Waveshare PCF8563
The Waveshare PCF8563 real-time clock (RTC) module is designed for op-
timal low power consumption, making it an ideal choice for energy-efficient
applications. It communicates via the I2C bus at a maximum speed of 400
kbit/s. The timekeeping accuracy of the PCF8563 is derived from a high-
precision 32.768 kHz quartz crystal oscillator, providing stable and reliable
clock signals. This oscillator serves as the foundation for tracking essential
time parameters, including year, month, day, weekday, hours, minutes, and
seconds. [21]



Communication 19

Figure 4.8 PCG8563 RTC Module [21]

One of the standout features of the PCF8563 module is its ability to main-
tain accurate time even during power-down periods. This is made possible
by an onboard 3.3V battery that powers the RTC independently of the main
device. As a result, the module retains the correct time and date information,
ensuring continuous operation without relying on external power sources. [21]

Additionally, the PCF8563’s calendar system includes support for leap
years, ensuring accurate date calculations even in leap year scenarios. This
feature enhances the module’s versatility and compatibility with a wide range
of time-sensitive applications. [21]

4.6 Communication
To enable communication between the various modules and the control unit
within the time-tracking cube, multiple protocols will be employed. Each
protocol serves specific purposes and offers unique advantages for efficient data
exchange and control. The protocols will be UART, SPI and I2C.

4.6.1 SPI
The SPI, or Serial Peripheral Interface, protocol is very common among various
devices; for example, SD card reader modules, RFID card reader modules, and
2.4GHz wireless transmitters/receivers all use it. Its unique benefit is that the
data is sent continuously in a stream without interruptions. [22]



Communication 20

The devices using SPI for communication are in a master-slave relationship,
where the master is the controlling device (usually the microcontroller) and
the slave takes instructions from it. The most basic system is one master and
one slave, but multiple slaves can be controlled by one master too. [22]

There are four lines connecting the master and the slave. MOSI, or Master
Output/Slave Input, is the line for the master to send the data to the slave,
MISO, or Master Input/Slave Output, on the other hand, is for the slave to
send the data to the master. SCLK is the clock signal line and finally, SS/CS
is the Slave Select/Chip Select line to choose which slave to send the data
to. [22]

In the implementation, SPI will be needed for the communication between
the microcontroller and the micro SD card module.

Figure 4.9 SPI [22]

4.6.2 UART
UART stands for Universal Asynchronous Receiver/Transmitter. It is not a
protocol like SPI or I2C but a physical circuit in a microcontroller instead to
transmit and receive serial data. It only uses two wires for communication. [23]

The transmitting UART communicates directly with the other UART. It
converts parallel data from a controlling device into serial form and transmits
it to the receiving UART, which then converts the serial data back to parallel
for the receiving device. Data flows from the Tx pin to the other UART’s Rx
pin. The data is transmitted asynchronously, which means there is no clock
signal, and it is sent in packets bordered by the starting and the ending bits.
The incoming bits are read at a frequency known as the baud rate, a measure
of the speed of data transfer, expressed in bits per second. Both of the UARTs
have to operate at almost the same baud rate, it can differ by about 10%. [23]

UART will be used in the communication between the microcontroller and
the computer for testing purposes and a baud rate of 115200 bps will be used.



Communication 21

Figure 4.10 UART [23]

4.6.3 I2C
I2C is a protocol that combines the best features of SPI and UART. You can
connect multiple slaves to a single master like SPI and you can also have one
or multiple slaves controlled by multiple masters. It only uses two wires to
communicate between devices, such as UART. The lines are called SDA (or
serial data) for sending and receiving data and SCL (or serial clock), which
is the line that carries the clock signal. The data is transferred bit by bit
along a single wire (SDA). The master always controls the SCL signal and
thanks to the clock signal being shared between the master and the slave, I2C
is synchronous. [24]

The data is transferred in messages containing an address frame (7 to 10
bits) because I2C doesn’t have a slave select line like SPI. This address frame
is sent to all the slaves connected to the master, then it is compared to the
address that the slaves address and if it matches, the slave sends an ACK
(acknowledge) bit back to the master. The last bit of the address frame also
includes information about whether the master wants to read the data from
the slave or write it to it. The data frame is always 8 bits long. [24] The used
I2C addresses are shown in the Table 4.1.

Figure 4.11 I2C [24]



Programming and Testing 22

Table 4.1 I2C Addresses

Component Address
GY-521 0x68
PCF8563 0x51
MAX17048 0x36

4.7 Programming and Testing
For programming and testing the device, the micro USB port on the MCU
serves as the primary interface. This port enables direct communication be-
tween the development environments (Arduino IDE and PlatformIO) and the
MCU using a UART serial connection.

4.7.1 Arduino IDE
The Arduino IDE is a popular choice for programming microcontrollers, in-
cluding the ESP8266. To use Arduino IDE with the ESP8266, the IDE has to
be configured appropriately. Once set up, writing, compiling, and uploading
code to the ESP8266 through the Arduino IDE interface is possible. The IDE
includes a Serial Monitor feature that allows to monitor the device’s output
and debug messages over the UART serial bus. Arduino IDE is user-friendly
and widely used, making it suitable for beginners and experienced developers
alike. [25]

4.7.2 PlatformIO
PlatformIO is an open-source plugin built on top of Microsoft Visual Studio
Code, intended for IoT development, supporting multiple platforms, including
the ESP8266. It offers a more advanced and flexible development environ-
ment compared to Arduino IDE. With PlatformIO, it is possible to manage
libraries, dependencies, and project configurations more efficiently. The inte-
gration within Visual Studio Code provides a seamless development experience
with features such as IntelliSense, debugging, and project management. [26]



Chapter 5

Suggestion of the Solution

This chapter proposes the design of the program and the backend, along with
the module connections. The suggested solution should meet the thesis goals,
such as user configuration via WiFi, accurate Clockify app integration or saving
the tracking data on the micro SD card.

5.1 Suggestion of the Modules Connection
The control unit is connected directly to most modules, as depicted in the
Figure 5.1.

Figure 5.1 Block Schematic of the Hardware Modules Connection

23



Program Design 24

The gyroscope and accelerometer, charging meter module, power button,
and RGB LED must communicate with the control unit using I2C. The micro
SD card module communicates via the SPI bus. The charging module pro-
vides power to the batteries and from the batteries to the MCU through the
stabilizing step-up regulator.

5.2 Program Design
This section suggests how the control program is developed and implemented
and explains why a backend is needed.

5.2.1 Used IDEs
There are two major IDE options that can be used to write the control program
for the ESP microcontroller.

The first one is Arduino IDE, an open-source software designed for pro-
gramming Arduino boards. The IDE supports all the major operating systems
(Windows, macOS and Linux). [25]

However, an add-on is necessary to enable programming for the ESP8266
microcontroller. A community-developed add-on brings the support for the
ESP8266 chip to the Arduino environment and lets the users leverage all Ar-
duino functions and libraries and run them directly on ESP8266. The package
should be added as an Additional Board Manager in the Preferences of the
IDE and then the ESP8266 platform should be installed. [27]

The second option is PlatformIO. It is an IDE solution for Microsoft Visual
Studio Code intended for the creation and delivery of embedded products. It
offers smart code completions based on variable types, function definitions and
library dependencies. The users can use the built-in Terminal with PlatformIO
Core (CLI) and a Serial Port Monitor. [26]

5.2.2 Control Program
The control program is structured into smaller files with the implementation
of the individual classes to keep it clean and simple. Each will handle specific
functionality and phase of the program lifecycle. The basic software design
schematic can be seen in the Figure 5.2.

5.2.2.1 Program Phases
The user configuration phase is triggered after the initial press of the button
on top of the cube or after the cube is turned to the opposite side dedicated
to the user configuration. This phase sets up a WiFi access point for the
user interaction. The user connects to it using a WiFi-capable device (e.g.,
smartphone, laptop) to access a simple configuration form on a webpage.



Program Design 25

Figure 5.2 Block Schematic of the Software Design

For the initial setup, the user completes the form, providing essential in-
formation, such as the personal API key generated in the Clockify application
or the WiFi network name (SSID) and password for the control unit to con-
nect to the internet. This configuration is then saved to the device memory
for subsequent usage to gather data about the user’s projects, which they can
assign to the sides of the cube.

For the reconfiguration of the set values, another form is shown, where the
projects can be assigned to the cube sides, the WiFi network can be changed
to a new one and the device can be completely reset.

The tracking phase encompasses a key function: it manages task tracking
by determining whether data should be sent to the web application or stored
locally. This decision is crucial for ensuring flexibility and data security based
on user preferences and connectivity status.

Additionally, the cube’s power level is monitored while running. If the
device is running low on battery, the cube signals it to the user.



Program Design 26

5.2.3 Server design
For the suggested design to support various future tracking software options,
a server is essential to handle simplified HTTP requests containing user infor-
mation, cube orientation data and tracking details. The server’s role involves
receiving HTTP requests from the cube, processing the data, and transforming
it into requests sent to the Clockify API.

5.2.3.1 Ktor Framework
To implement this server-side functionality, Ktor is utilized. It is a lightweight
asynchronous web framework providing extensibility through plugins. It is
built from the ground up using Kotlin, a concise, multiplatform language
brought by JetBrains, the creators of Ktor. [28]

5.2.3.2 User Configuration and Project Assignment
The suggested solution also uses the server for user configuration; the user fills
out their API key, which is used to access the user’s workspaces and projects.
The server retrieves the user’s projects and sends them to the device, where the
user can assign specific projects to each side of the cube. Once the configuration
is complete, the cube saves the user configuration to the database or the device
memory and waits to be turned to one of its sides.

5.2.3.3 Handling Cube Requests
When the cube is turned to a side with an assigned project, it sends a request
to the server. The server then initiates another request to the Clockify API,
passing the tracking data along with user details retrieved from the database.
The server handles the API response and relays any errors back to the device
for display.



Chapter 6

Implementation of the
Hardware

This chapter details the practical implementation of the smart cube device,
focusing on the integration of hardware components and the wiring of modules
necessary for its functionality.

6.1 Wiring Constraints
During the implementation of the smart cube prototype, several key wiring
constraints must be considered to ensure proper functionality and protection
of electronic components. It is important to keep in mind that the controller
unit is based on the ESP8266 microcontroller, not Arduino.

To safeguard the electronic modules and maintain stable voltage levels
within the circuit, the implementation incorporates blocking capacitors at the
input of each module. They help stabilize the voltage by filtering out noise and
fluctuations, protecting sensitive components from potential damage. They
also provide decoupling capacitance, minimizing voltage spikes and ensuring
consistent power delivery to the connected modules.

Then, pull-up resistors are integrated into the wiring design to maintain
a consistent high voltage level for specific signal lines, such as those used for
button inputs. They prevent floating inputs, ensuring that the input signal is
reliably interpreted as either high or low. They also help reduce electrical noise
and interference, enhancing the overall stability of the signal transmission.

In addition to the above-mentioned constraints, it’s essential to comply
with standard wiring practices to optimize performance and reliability, such
as proper grounding and component placement.

27



Microcontroller Module 28

The schematic is designed using the KiCAD program, requiring the cre-
ation of custom symbols for most of the specialized modules utilized in the
project. Standard symbols from the program’s library are employed for basic
components like capacitors and resistors. The complete schematic diagram
detailing the wiring configuration is provided in Attachment A.

6.2 Microcontroller Module
The schematic detailing the MCU setup can be seen in Figure 6.1.

Figure 6.1 MCU Module Wiring Schematic



Gyroscope and Accelerometer Module 29

All of the microcontroller’s I/O operates at a standard 3.3V logic level.
Notably, the 3V3 pin functions solely as an output, supplying power to con-
nected modules, while the MCU itself is powered via the 5V pin. The I2C bus
is configured programmatically, with the SCL clock signal assigned to pin D3
and the SDA data signal to pin D4. This bus allows the MCU to act as a
master device for communication with all connected modules, except for the
micro SD card module, which utilizes the SPI bus. The SPI bus is set up with
MOSI on pin D11, MISO on pin D12, SCK on pin D13, and the CS line on
pin D10.

Furthermore, all ground (GND) and unused pins within the MCU setup
are appropriately connected to the ground to ensure stable electrical connec-
tions and mitigate potential noise or interference issues. Proper grounding
is fundamental to maintaining signal integrity and optimizing overall system
performance. The RGB LED is interfaced with pins D5 to D7, while the pow-
er/user configuration button is linked to the RST pin for user interaction and
device control.

6.3 Gyroscope and Accelerometer Module
The schematic for configuring the GY-521 module can be found in Figure 6.2.
This module is powered by a 3.3V supply derived from the MCU, ensuring
compliance with the microcontroller’s voltage specifications. Communication
with the GY-521 module occurs over the I2C bus, where the module acts as a
slave device utilizing the SDA and SCL connections.

Figure 6.2 Gyroscope and Accelerometer Module Wiring Schematic



Micro SD Card Module 30

To stabilize the power input, a 10nF block capacitor is integrated into the
power supply lines of the module. This capacitor aids in filtering and smooth-
ing the voltage supply to minimize noise and ensure reliable operation. Addi-
tionally, all GND and unused pins on the GY-521 module are appropriately
connected to the ground for effective grounding and signal stability.

6.4 Micro SD Card Module
The schematic of the micro SD card module setup can be seen in Figure 6.3.
This module operates at a 3.3V voltage level supplied by the MCU, ensuring
compatibility with the microcontroller’s specifications. To stabilize the power
input and minimize voltage fluctuations, a 10nF block capacitor is strategically
placed in the power supply lines of the module.

Figure 6.3 Micro SD Card Module Wiring Schematic

Communication between the MCU and the micro SD card module is facil-
itated through the SPI bus. The module acts as a slave device and utilizes the
MISO, MOSI, CS and CLK connections for data exchange.

6.5 Charging Meter Module
The schematic for the charging, including the MAX17048 module is detailed
in Figure 6.4. This module operates at a 3.3V voltage level supplied directly
from the battery. Communication with the MAX17048 module is facilitated
through the I2C bus, with the module configured as a slave device and utilizing
the SDA and SCL wires for data transmission.



Charging Module 31

The MAX17048 module includes two JST-PH-2 connectors and one of them
is used to establish the battery connection with the module. Instead of using
one of the JST-SH-4 connectors, direct pins on the module board are employed
due to the problem with obtaining the cable with the JST-PH-4 connections.
The SDA and SCL pins are connected to the I2C bus and the ALERT pin is
properly grounded since it is not used.

To ensure stable operation and minimize power supply noise, a 10nF block
capacitor is strategically integrated into the power supply lines of the MAX17048
module and a separate ground from the rest of the device.

6.6 Charging Module
The schematic for the charging setup, containing the TP4056 module connec-
tion, is detailed in Figure 6.4. The B+ and B- pins of the TP4056 module are
directly linked to the battery pins. It’s crucial not to connect the B- pin to
the ground signal used in the rest of the setup to ensure proper operation of
the charger’s safety circuitry.

The OUT+ and OUT- pins of the TP4056 module are interconnected with a
step-up voltage regulator, stabilizing the voltage output to 5V before supplying
power to the MCU. A 100nF blocking capacitor is integrated into the circuit
to manage voltage stability and filter out potential noise.

Additionally, the IN+ and IN- pins of the TP4056 module interface with
the wireless charging module, accompanied by a 10Ω resistor. This resistor is
strategically placed to optimize the charging process.

6.7 Wireless Charging Module
The schematic for the wireless charging module setup is included in the Fig-
ure 6.4. The outputs are connected to the IN+ and IN- pins of the TP4056
charging module. The output uses a 10Ω resistor to optimize the charging
process.



PCF8563 Real-Time Clock 32

Figure 6.4 Charging Schematic

6.8 PCF8563 Real-Time Clock
The PCF8563 module operates at a 3.3V voltage level and communicates over
the I2C bus. It functions as a slave device using the SDA and SCL wires
for data transmission. Additionally, the module features a separate battery
backup to maintain timekeeping even when the main MCU is powered down.

The board includes a pin jumper that allows to select the power supply for
the PCF8563 module. By setting the jumper to the BAT position, the module
is powered by its own dedicated battery, ensuring continuous operation and
accurate timekeeping even when the main MCU is inactive.

6.9 RGB LED
A single RGB LED is interfaced with the MCU, with the R signal pin protected
by a 220Ω resistor and the G and B pins by a 150Ω resistor. This resistor value
is chosen to limit the current flowing through the LED and protect both the
LED and the microcontroller from excessive current draw.

The RGB LED typically consists of four pins: one common cathode (or an-
ode) pin and three individual pins for red (R), green (G), and blue (B) colours.
Each of these colour pins is connected through a resistor to the corresponding
output pins of the MCU (D5, D6, D7 and GND).



Button 33

6.10 Button
A simple momentary push-button is connected to the RST pin of the MCU.
This button serves as a power button and when clicked on a device that has
not been set up yet, it triggers the user configuration.

The button is connected in a pull-down configuration, meaning one side
of the button is connected to the RST pin to wake the device up from deep
sleep mode, and the other side is connected to the ground (GND) through a
pull-down resistor (typically 10kΩ). When the button is pressed, it connects
the RST pin to the ground, registering a logic LOW state.

6.11 Additional Extensions
There are several potential extensions and enhancements that could be con-
sidered to further improve the user experience and functionality of the device.

6.11.1 Wemos D1 Mini Pro
One possible enhancement involves replacing the Wemos D1 R2 development
kit with the Wemos D1 Mini Pro. This substitution would not only save space
but also enable the creation of a more compact cube design. However, due to
the limited number of available I/O pins on the Mini board, the implementa-
tion would require integrating an I/O expander into the design to accommodate
additional functionalities. Thanks to that the space saved wouldn’t be as big,
so it was deemed unnecessary for the prototype.

6.11.2 Extra Buttons
Furthermore, the addition of extra buttons presents an opportunity to expand
the features and capabilities of the smart cube. For instance, integrating a ded-
icated button could facilitate Pomodoro timing functionality, allowing users
to track and manage work intervals effectively. Another button could be uti-
lized for pausing and resuming time-tracking activities, enhancing flexibility
and user control. There could also be a low power mode button to switch the
device to low power mode. The MCU would be in deep sleep mode most of
the time and would only wake up when it has been turned to a new side. One
of the reasons why there is only one button in the prototype design is that the
buttons need to be specifically placed on the cube for the user to be able to
press them when they are visible and reachable to them.



Prototype Price 34

6.11.3 Qi Standard Wireless Charging
Finally, integrating a wireless charging module that supports the Qi standard
would provide added convenience by enabling the cube to be charged on the
same Qi-compatible charger used for the user’s phone or other devices. This
enhancement would significantly benefit the overall user experience. Although
this type of module was not used in the prototype, given that the existing
charging module was already the most expensive component and the Qi module
one would cost even more, incorporating a Qi module could be considered in
future iterations once other costs are optimized.

6.12 Prototype Price
The total cost of the prototype amounts to CZK 1113. The breakdown of com-
ponent prices is detailed in Table 6.1. While it’s possible to procure compo-
nents at lower prices from international e-commerce platforms, all components
for this prototype are purchased from local Czech stores. The price listed in-
cludes various miscellaneous components categorized as ”Other Components,”
encompassing smaller and more affordable items such as step-up regulators,
capacitors, resistors, LEDs, and buttons. Please note that the delivery charges
for these components are not factored into the total cost.

Table 6.1 Prices of Used Components

Component Price in CZK
Wemos D1 R2 179
GY-521 68
TP4056 19
Wireless Charging Module 339
LiPol Battery 104050 188
MAX17048 98
Micro SD Card Module 22
PCF8563 RTC Module 100
Other Components 100
Total price 1113



Chapter 7

Implementation of the
Program

This chapter describes the implementation of the device’s control program,
separated into sections describing the classes dealing with various phases of
the device and the libraries used.

7.1 Control Program
The control program for the smart cube is implemented in the main.cpp file,
which contains the setup and loop functions necessary for initializing and con-
tinuously operating the device. Serial communication is also configured in this
file for testing purposes.

The MAX17048 library is utilized to manage the battery charge gauge.
This library provides a function to retrieve the current, accurate battery per-
centage. When the battery charge state drops below 5%, the cube blinks three
times in periodical intervals to alert the user. When the battery charge state
falls below 1%, the cube turns red, saves the currently tracked data to either
the server or the micro SD card, and then enters deep sleep mode.

The Wire library is used to configure the I2C bus. Default communication
pins are used, but the setup is required for interfacing with the MAX17048.

The MCU’s deep sleep mode is triggered from the loop function (when
the cube is turned to the non-tracking side) or from the CConfig class (when
the device data is deleted by the user) with a parameter of 0 to initiate an
indefinite sleep period.

35



User Configuration 36

7.2 User Configuration
This section covers functionalities related to setting up and managing user-
specific settings for the smart cube. It involves handling data storage and
communication with the user interface through a dedicated CConfig class,
which implements the following methods:

start initializes user configuration in the device’s Flash memory

loadUserConfig loads data from the user configuration

saveUserConfig saves data to the user configuration

onlineSetup handles the initial user setup of online features for the device
and the subsequent user configuration

deleteData deletes saved user configuration

Using the ESPAsyncWebServer and DNSServer libraries, the CConfig class
generates and presents a configuration form to users via a WiFi access point
created by the ESP8266. Upon the initial connection, the user provides essen-
tial details such as WiFi SSID, password, and Clockify API key to establish
connectivity. They can also assign Clockify projects to specific cube sides.
Subsequent connections serve for configuration adjustments, such as provid-
ing new WiFi information or disconnecting the cube from their account and
resetting its data.

For managing the web server shown to the user these functions from the
library are used:

on shows the website

addHandler adds a handler to the website to capture requests

To manage WiFi connections, the ESP8266WiFi library provides the fol-
lowing functions:

begin to connect the device to the WiFi network with the configured name
and password

setTimeout sets a timeout in case of network connection failures to prevent
blocking the main thread

resetSettings deletes all previously configured WiFi network information



Orientation Detection 37

To preserve user configuration data across device restarts, the Preferences
library is utilized. This library offers ESP8266-compatible API functions to
store and retrieve key-value pairs in the MCU’s Flash memory, ensuring per-
sistent storage of essential settings such as WiFi credentials, Clockify API key,
and assigned project IDs. It also holds the value if the cube has already been
configured. From the library, the functions used are:

getString retrieves a String value stored against a given key

putString saves a String value against a given key

7.3 Orientation Detection
This section focuses on the specific functionalities related to orientation de-
tection using the gyroscope and accelerometer modules. The COrientation
class facilitates orientation detection by utilizing data from the gyroscope and
accelerometer module. The class is responsible for calculating the pitch and
roll of the cube based on sensor readings, ultimately determining the upward-
facing side of the cube.

For the readings from the sensor, a Adafruit_MPU6050 library was used.
From the library, the getEvent function is used to obtain values of accelerom-
eter, gyroscope and temperature of type sensor_event_t. Those values are
further used to compute the pitch and roll of the cube, to calculate the upward-
facing side.

7.3.1 Computation Method
To calculate the orientation of a device using the accelerometer and gyroscope,
a common approach involves using a mathematical filter to merge the signals
from these sensors. While the Kalman filter offers the most accurate results
by minimizing calculation errors, it can be complex to understand and im-
plement. An alternative, simpler method is the complementary filter, which
effectively manages both high-pass and low-pass filters simultaneously. This
means it filters out high-frequency signals (like accelerometer vibration) and
low-frequency signals (such as gyroscope drift). [29]

However, for the smart cube application, neither of these methods has
proven to be necessary. The accelerometer alone provides reliable data, with
the main issue arising from vibrations that can mimic device movement. [29]
Testing conducted by the author showed that significant shaking, equivalent
to a major earthquake, would be needed to affect the accelerometer readings
noticeably. Moreover, there is a built-in delay before task tracking switches
with a cube flip that helps prevent accidental mistracking and cancels out this
error.



Orientation Detection 38

So the method employed to determine the upward-facing side of the cube
relies on straightforward calculations involving rotational forces known also
as moment forces, specifically roll and pitch. To define pitch, roll and yaw in
linear systems, it is necessary to establish the three primary axes: X, Y, and Z.
Since only roll and pitch are utilized for the computations, only the horizontal
axes X and Y are focused on. [30]

A roll moment refers to a force that endeavours to rotate a system around
its X-axis. Conversely, a pitch moment seeks to rotate a system around its
Y-axis. To provide visual clarity, the moments are illustrated in the Fig-
ure 7.1. [30]

Figure 7.1 Roll, Pitch and Yaw[30]

The MPU6050 module used in the device does not provide the roll or pitch,
but it does provide the values for acceleration along each axis, which can be
used to calculate both. For the calculation, the gravitational force g is used,
since it always acts perpendicular to the Earth’s surface. So when an object
is tilted at a theta angle, part of the force acts along the X-axis, and part acts
along the Y-axis, as can be seen in Figure 7.2. [31]



Orientation Detection 39

Figure 7.2 Demonstration of the Acceleration Forces [31]

Then the X-axis acceleration ax and Y-axis acceleration ay can be deter-
mined using trigonometry in the equations in Equation 7.1. [31]

ax = g sin(θ), ay = g cos(θ) (7.1)

To go from the acceleration values to angles (in radians), more trigonometry
is used, with the caution not to divide by zero, using an approximate answer.
The results of this transformation can be seen in Equation 7.2 for pitch and
Equation 7.3 for roll. [31]

pitch = arctan

 ax√
a2y + a2z

 (7.2)

roll = arctan

(
ay√

a2x + a2z

)
(7.3)



Tracking 40

7.3.2 Orientation of the Cube
The following methods are implemented in the class COrientation:

start initializes the COrientation class, setting up necessary configurations
for interfacing with the gyroscope and accelerometer modules

getAngle calculates the pitch and roll of the cube using the accelerometer
and gyroscope values and saves it to the class variables

chooseUpwardSide determines the upward-facing side of the cube consid-
ering the cube’s orientation in 3D space and returns it

checkOrientation utilizes the other functions to figure out whether the flip
of the cube was accidental or real

checkSwitchDelay checks if the cube has been flipped to the new side for
long enough to start tracking a new task

resetSwitchDelay resets the switch delay after a new flip of the cube

chooseColor chooses which colour the cube LED should be switched to

checkEntryType checks if the flip should trigger new entry or finish the
running entry and signal the device to turn off

blinkSideColor blinks the colour of the upward-facing side to signal that a
new entry could be triggered

7.4 Tracking
The tracking functionalities are encapsulated within the CTracking class, which
serves as the core component for managing time tracking in both offline and
online modes.

In offline mode, CTracking handles the local storage of tracked activities
when an internet connection is unavailable. It efficiently manages the storage
and retrieval of tracked data from the micro SD card, ensuring that all logged
activities are securely stored until synchronization with the online platform is
possible.

For online mode, CTracking interfaces with the server to seamlessly trans-
mit tracked activities to Clockify’s API and show it to the user during the us-
age of the device. This involves establishing a secure connection to the server,
enabling real-time synchronization of tracked data with the user’s account.



Tracking 41

For the work with the PCF8563 RTC module, an RTClib class is utilized.
From the library, the now function is used to retrieve the current date and
time.

Independent of the current tracking mode, these methods are implemented:

start initializes the RTC and micro SD card modules and prepares the file for
the tracking data, if the file contains logs from the last session, it triggers
the upload to the server

newEntry checks the internet status of the device and decides if the tracking
data should be uploaded or saved

7.4.1 Offline Mode
Since the cube is designed to be used in the office environment, it is presumed
that a reliable internet connection will be available for the most part, but
the cube should be able to operate offline too. This capability is managed
through the CTracking class, which handles the storage and synchronization
of tracking data when offline. The main difference from the online operation
is that the tracking data is not sent to Clockify but saved on a micro SD card
instead.

To allow that, libraries SdFat and sdios were used. The originally planned
SD library is not working properly with the chosen hardware module for an
unknown reason, so these were utilized instead. From the SdFat library, the
function begin is used to initialize the library and card, setting the CS pin (D10
or pin 15 on Wemos D1 R2). A file with the tracking data is created or opened
using the open function with the O_WRITE or O_READ, O_CREAT and
O_AT_END flags to open the file for write or read, appending the new text
at the end and creating the file if it does not exist yet. Then it can be used
to write or read the tracking data. Only one file can be opened at the same
time, and it needs to be closed after the operation is finished.

Once a connection to WiFi is established, the cube starts automatically
syncing unsent data to the server, ensuring data integrity and preventing du-
plicate records.

saveEntry saves tracking data for a new time entry

endRunningEntry save tracking data for the termination of a running entry

startMicroSD starts the micro SD card communication

createFile creates a new file on the micro SD card

writeFile writes data to the file on the micro SD card

readFile reads data from a file on the micro SD card



Tracking 42

7.4.2 Online Mode
The online functionality of the smart cube, managed through the CTracking
class using HTTP requests, enables real-time tracking and communication with
Clockify’s server when connected to a WiFi network, which should be possible
after the user configuration. This capability ensures immediate updates to
project tracking information and seamless interaction with the Clockify plat-
form.

For the WiFi communication, the same functions from the ESP8266WiFi
library were used as described in section 7.2.

The HTTP requests are managed using the ESP8266HTTPClient library.
The following functions from the library are used:

begin initiates a new HTTP request

addHeader includes a header in the HTTP request

POST sends the request to the server

end terminates the request

The smart cube initiates HTTP requests to the backend server to switch
to the currently tracked side, a process further explained in the subsequent
subsubsection 7.4.2.1. During user configuration, all user data is stored in a
database linked to a unique cube ID. This approach allows the cube to transmit
only its ID, tracked side, and tracking start time to the backend, delegating the
rest of the handling to it. Additionally, to prevent accidental switches when
the cube is handled, the switch request is delayed to verify the time spent on
the new side before execution. Any API request errors returned by the server
are communicated back to the cube and indicated to the user through specific
light signals, ensuring seamless interaction and user feedback throughout the
operation.

The online mode of the device is implemented in the following class meth-
ods:

postNewEntry sends a post request with a new running time entry

postOldEntry sends a post request with a finished time entry

7.4.2.1 Server
The server component of the smart cube project is implemented using Kotlin
and Ktor, incorporating essential plugins such as Serialization and PostgreSQL
to enable robust functionality. This section details the server initialization pro-
cess, configuration of dependencies, and routing setup to handle time tracking
and user configuration functionalities.



Tracking 43

The server is initialized as a Kotlin application using Ktor’s application
factory. The necessary plugins, e.g. Serialization (to handle data serialization)
and PostgreSQL (for database connectivity) are added to facilitate efficient
data processing and storage. Configuration, including the HTTP port and
host, is done to ensure seamless communication with connected devices like
the smart cube.

The server was initialized following the instructions within a Kotlin applica-
tion using Ktor’s application factory and the plugins, such as Serialization and
PostgreSQL, were added. The configuration was done, including the HTTP
port and host setup.

The server’s routing system is designed to handle distinct functionalities
related to time tracking and user configuration. All control unit requests are
of the POST or GET type because the cube only requires the response code
to display any potential errors or get the data itself. The server subsequently
transforms these requests into the required format.

post(”/cubeRotation/cubeId/side/start”) initiates a new activity-tracking
session without specifying the termination time

post(”/stopTimeEntry/end”) marks the end of a running activity track-
ing session, specifying the termination time

post(”/cubeRotation/cubeId/side/start/end”) adds a completed activ-
ity session with start and end times

get(”/getAllTasks/cubeId”) retrieves detailed task information associated
with all of the user’s projects

post(”/stopTimeEntry/cubeId/end”) ends the currently running task,
this request is transformed to a PATCH request internally by the server

For the prototype, certain server functions, such as saving user informa-
tion to the database, were omitted because they were not within the scope of
this thesis’s objectives. The focus was primarily on implementing core func-
tionalities related to time tracking and integration with Clockify rather than
extensive server-side operations involving user data management and storage.



Cube Behaviour 44

7.5 Cube Behaviour
The behaviour of the cube is implemented in the CCube class. This class
contains information about the current state of the cube and its attributes,
such as the ID of the cube used for identification on the side of the server and
the current and last upward-facing sides of the cube. The following methods
are implemented:

setColor sets the color of the RGB LED

loadingBlink blinks the white light from the LED to signal loading

warningBlink blinks the red light three times to signal error

successBlink blinks the green light three times to signal success



Chapter 8

Testing

This chapter provides a comprehensive overview of the testing performed on
the prototype and its individual components. The testing process encom-
passed both individual module testing and integrated system testing using a
breadboard setup, as depicted in Figure 8.2. The testing environment utilized
a breadboard configuration, facilitating flexible and systematic evaluation of
each module’s functionality and the overall system performance. This setup
allowed for controlled testing of individual components before integrating them
into the complete prototype.

Figure 8.1 Prototype Testing Using a Breadboard

45



Module Testing 46

8.1 Module Testing
Each module selected for integration into the prototype underwent adequate
testing to evaluate its functionality and compatibility with the MCU. The
testing process was performed on a breadboard configuration where the MCU
and relevant modules were interconnected and assessed for proper operation.ss

The gyroscope and accelerometer module was initially tested by interfac-
ing with the MCU, which transmitted sensor data and computed results over
UART communication to the IDE Serial Monitor tool. Subsequently, a dif-
fusing RGB LED was incorporated into the setup to verify accurate colour
switching based on device orientation changes.

The micro SD card module underwent testing by creating a file on the con-
nected micro SD card and writing data from the control program to it. UART
communication was employed for this testing phase. Additionally, the micro
SD card required formatting in FAT32 format before use to ensure compati-
bility.

Separately, the functionality of waking from deep sleep using an external
button was validated through dedicated testing to confirm its responsiveness
and reliability.

The charging system, including the charging circuit, charging meter, and
battery, was tested comprehensively as a whole unit. Initially, the batteries
were charged using a safety charger connected via a USB Type-C cable, fol-
lowed by testing with a wireless charging module. Throughout the testing, the
charging meter module transmitted battery data over UART communication
for monitoring and analysis.

Finally, the fully integrated setup was tested as a whole to ensure seamless
interaction and comprehensive functionality across all integrated components.
This final testing phase validated the successful operation and interaction of all
modules within the prototype, ensuring readiness for subsequent development
stages and real-world applications.

8.1.1 Device Orientation Testing
The accelerometer and gyroscope module proved to be sensitive to both slow
and fast movements. The switching threshold for each side is set to approx-
imately 45 degrees, making it easy for the tracking to switch as expected by
the user. Vigorous shaking of the prototype did result in LED indications of
inaccurate tracking changes, but those were successfully mitigated by imple-
menting a delay before finalizing the tracked task switch.



Program Testing 47

Figure 8.2 Module Testing

8.1.2 Wireless Charging Testing
The wireless charging feature of the prototype was tested to verify its efficiency
and reliability. While the charging speed was not very rapid, the testing con-
firmed that it provides sufficient power for the planned operational cycle when
the cube is charged overnight, outside of working hours.

8.2 Program Testing
The implemented program was tested using the Serial Monitor feature within
the Arduino IDE over the UART serial bus, with the baud rate set to 115200.
The tested features printed test sequences to the IDE.

During the testing, a Ktor server running on a local WiFi network was
utilized to communicate with the API. The device communicated as expected
via the WiFi network.



Program Testing 48

8.2.1 Used IDEs
Initially, the development of the time-tracking device prototype began with the
Arduino IDE due to its simplicity and familiarity. It provided a straightforward
platform for writing and uploading code to the ESP8266 microcontroller used
in the prototype.

However, as the complexity of the project increased and more function-
alities were added, managing the project within the Arduino IDE became
challenging. The project required efficient library management, dependency
tracking, and integrated debugging tools, which were not fully supported by
the Arduino IDE.

To address these limitations and streamline the development process, the
author transitioned from the Arduino IDE to PlatformIO. This transition en-
abled the author to manage project dependencies efficiently, integrate addi-
tional functionalities using external libraries, and leverage advanced debug-
ging tools for troubleshooting and optimizing the code. This shift significantly
improved the development workflow and allowed for more flexibility and scal-
ability in the implementation of the time-tracking device prototype.



Chapter 9

Conclusion

The primary goal of this thesis was to develop, implement, and validate a
functional prototype of a wireless smart cube designed to simplify time tracking
using Clockify’s API. The device was constructed on the ESP8266 platform,
integrating an MPU6050 gyroscope and accelerometer module to detect tilt
and trigger time-tracking actions in Clockify.

Through successful implementation, the device effectively starts, switches
and stops task time tracking based on its orientation, providing visual cues
for the active project. Furthermore, the cube’s setup and configuration utilize
WiFi connectivity, while wireless charging capabilities ensure convenient and
cable-free operation.

This prototype can be further refined and adapted to suit specific of-
fice environments, offering a foundation for future enhancements and student
projects. Potential improvements could include enhanced user interfaces, ex-
panded functionality with additional sensors, or integration with other pro-
ductivity tools thanks to the versatility of the backend.

49



Appendix A

Schematic

50



51

Figure A.1 Wiring Schematic for the Whole Device



Bibliography

1. TIMEFLIP2: time tracking you’ll love! — timeflip.io [online] [Accessible
from https://timeflip.io]. [Accessed 11-02-2024].

2. Time Tracking Cube: The 8-Sided Time Tracker Dice — Timeular —
timeular.com [online] [Accessible from https://timeular.com/tracker
/]. [Accessed 11-02-2024].

3. Adafruit IO Time Tracking Cube — learn.adafruit.com [online] [Accessi-
ble from https://learn.adafruit.com/time-tracking-cube/overvi
ew]. [Accessed 11-02-2024].

4. RAŠIĆ, Ivana Majić. Why is ESP the most used IoT connectivity MCU
— Byte Lab • IoT Development & Production — byte-lab.com [online]
[Accessible from https://www.byte-lab.com/why-is-esp-the-most-
used-iot-connectivity-mcu/]. [Accessed 07-04-2024].

5. SANTOS, Sara. ESP32 vs ESP8266 — Pros and Cons - Maker Advisor
— makeradvisor.com [online] [Accessible from https://makeradvisor
.com/esp32-vs-esp8266/]. [Accessed 07-04-2024].

6. D1 R2WiFi ESP8266 — compatible WeMos and Arduino* — botland.store
[online] [Accessible from https://botland.store/withdrawn-product
s/6953-d1-r2-wifi-esp8266-compatible-wemos-and-arduino-5904
422335298.html]. [Accessed 03-04-2024].

7. dratek.cz [online] [Accessible from https://dratek.cz/docs/produkty
/1/1226/1478466175.pdf]. [Accessed 03-05-2024].

8. ESP8266 Pinout Reference: Which GPIO pins should you use? | Random
Nerd Tutorials — randomnerdtutorials.com [online] [Accessible from htt
ps://randomnerdtutorials.com/esp8266-pinout-reference-gpios
/]. [Accessed 03-05-2024].

52

https://timeflip.io
https://timeular.com/tracker/
https://timeular.com/tracker/
https://learn.adafruit.com/time-tracking-cube/overview
https://learn.adafruit.com/time-tracking-cube/overview
https://www.byte-lab.com/why-is-esp-the-most-used-iot-connectivity-mcu/
https://www.byte-lab.com/why-is-esp-the-most-used-iot-connectivity-mcu/
https://makeradvisor.com/esp32-vs-esp8266/
https://makeradvisor.com/esp32-vs-esp8266/
https://botland.store/withdrawn-products/6953-d1-r2-wifi-esp8266-compatible-wemos-and-arduino-5904422335298.html
https://botland.store/withdrawn-products/6953-d1-r2-wifi-esp8266-compatible-wemos-and-arduino-5904422335298.html
https://botland.store/withdrawn-products/6953-d1-r2-wifi-esp8266-compatible-wemos-and-arduino-5904422335298.html
https://dratek.cz/docs/produkty/1/1226/1478466175.pdf
https://dratek.cz/docs/produkty/1/1226/1478466175.pdf
https://randomnerdtutorials.com/esp8266-pinout-reference-gpios/
https://randomnerdtutorials.com/esp8266-pinout-reference-gpios/
https://randomnerdtutorials.com/esp8266-pinout-reference-gpios/


Bibliography 53

9. ESP8266 Deep Sleep with Arduino IDE (NodeMCU) | Random Nerd Tu-
torials — randomnerdtutorials.com [online] [Accessible from https://ra
ndomnerdtutorials.com/esp8266-deep-sleep-with-arduino-ide/].
[Accessed 07-05-2024].

10. GY-521 With MPU6050 Gyrocope And Accelerometer Module — pa-
jenicko.cz [online] [Accessible from https://pajenicko.cz/gyrosko
p-akcelerometr-gy-521-s-mpu6050-i2c?search=gy-521]. [Accessed
03-04-2024].

11. HTTPS://WWW.FACEBOOK.COM/VATSBATTERY. 104050 2500mAh
3.7v MSDS battery — VATS BATTERY — vatsbattery.com [online] [Ac-
cessible from https://www.vatsbattery.com/product/104050-2500m
ah-3-7v-msds-battery/]. [Accessed 10-04-2024].

12. R.O., CzechProject spol. s. Modul pro bezdrátové nabíjení s výstupem 5V
1.5A | dratek.cz | dratek.cz — dratek.cz [online] [Accessible from https:
//dratek.cz/arduino/5010-modul-pro-bezdratove-nabijeni-s-vy
stupem-5v-1.5a.html]. [Accessed 03-04-2024].

13. R.O., CzechProject spol. s. Nabíjecí deska Li-Ion baterií USB-C | dratek.cz
| dratek.cz — dratek.cz [online] [Accessible from https://dratek.cz/a
rduino/34679-nabijeci-deska-li-ion-baterii-usb-c.html]. [Ac-
cessed 03-04-2024].

14. Metody nabíjení baterií, co je CCCV — velofiala.cz [online] [Accessible
from https://www.velofiala.cz/n/metody- nabijeni- baterii].
[Accessed 11-04-2024].

15. GitHub — DoImant/TP4056-Power-Path-PCB: TP4056 Power Sharing
PCB. Charge battery despite connected load. — github.com [online] [Ac-
cessible from https://github.com/DoImant/TP4056-Power-Path-PCB].
[Accessed 11-04-2024].

16. GitHub - LaskaKit/MAX17048-Fuel-Gauge — github.com [online] [Ac-
cessible from https://github.com/LaskaKit/MAX17048-Fuel-Gauge].
[Accessed 10-04-2024].

17. Step-Up Voltage Regulator | How it works, Application & Advantages —
electricity-magnetism.org [online] [Accessible from https://www.elec
tricity- magnetism.org/step- up- voltage- regulator/]. [Accessed
03-05-2024].

18. LASKAKIT. Step-up boost měnič s SX1308 2A | LaskaKit — laskakit.cz
[online] [Accessible from https://www.laskakit.cz/step-up-boost-m
enic-s-sx1308-2a/]. [Accessed 03-05-2024].

19. XUKYO. Using the EEPROM with the ESP8266 • AranaCorp — arana-
corp.com [online] [Accessible from https://www.aranacorp.com/en/us
ing-the-eeprom-with-the-esp8266/]. [Accessed 10-04-2024].

https://randomnerdtutorials.com/esp8266-deep-sleep-with-arduino-ide/
https://randomnerdtutorials.com/esp8266-deep-sleep-with-arduino-ide/
https://pajenicko.cz/gyroskop-akcelerometr-gy-521-s-mpu6050-i2c?search=gy-521
https://pajenicko.cz/gyroskop-akcelerometr-gy-521-s-mpu6050-i2c?search=gy-521
https://www.vatsbattery.com/product/104050-2500mah-3-7v-msds-battery/
https://www.vatsbattery.com/product/104050-2500mah-3-7v-msds-battery/
https://dratek.cz/arduino/5010-modul-pro-bezdratove-nabijeni-s-vystupem-5v-1.5a.html
https://dratek.cz/arduino/5010-modul-pro-bezdratove-nabijeni-s-vystupem-5v-1.5a.html
https://dratek.cz/arduino/5010-modul-pro-bezdratove-nabijeni-s-vystupem-5v-1.5a.html
https://dratek.cz/arduino/34679-nabijeci-deska-li-ion-baterii-usb-c.html
https://dratek.cz/arduino/34679-nabijeci-deska-li-ion-baterii-usb-c.html
https://www.velofiala.cz/n/metody-nabijeni-baterii
https://github.com/DoImant/TP4056-Power-Path-PCB
https://github.com/LaskaKit/MAX17048-Fuel-Gauge
https://www.electricity-magnetism.org/step-up-voltage-regulator/
https://www.electricity-magnetism.org/step-up-voltage-regulator/
https://www.laskakit.cz/step-up-boost-menic-s-sx1308-2a/
https://www.laskakit.cz/step-up-boost-menic-s-sx1308-2a/
https://www.aranacorp.com/en/using-the-eeprom-with-the-esp8266/
https://www.aranacorp.com/en/using-the-eeprom-with-the-esp8266/


Bibliography 54

20. Modul čtečka Micro SD karet — SPI modul : H A D E X , spol. s r.o. —
hadex.cz [online] [Accessible from https://www.hadex.cz/m533-modul
-ctecka-micro-sd-karet---spi-modul/]. [Accessed 24-04-2024].

21. PCF8563 RTC Board - Waveshare Wiki — waveshare.com [online] [Ac-
cessible from https://www.waveshare.com/wiki/PCF8563_RTC_Board].
[Accessed 16-05-2024].

22. CAMPBELL, Scott. Basics of the SPI Communication Protocol — cir-
cuitbasics.com [online] [Accessible from https://www.circuitbasics.c
om/basics-of-the-spi-communication-protocol/]. [Accessed 15-04-
2024].

23. CAMPBELL, Scott. Basics of UART Communication — circuitbasics.com
[online] [Accessible from https://www.circuitbasics.com/basics-ua
rt-communication/]. [Accessed 15-04-2024].

24. CAMPBELL, Scott. Basics of the I2C Communication Protocol — cir-
cuitbasics.com [online] [Accessible from https://www.circuitbasics.c
om/basics-of-the-i2c-communication-protocol/]. [Accessed 15-04-
2024].

25. Software — arduino.cc [online] [Accessible from https://www.arduino
.cc/en/software]. [Accessed 18-04-2024].

26. PLATFORMIO. PlatformIO: Your Gateway to Embedded Software De-
velopment Excellence — platformio.org [online] [Accessible from https:
//platformio.org]. [Accessed 03-05-2024].

27. GitHub — esp8266/Arduino: ESP8266 core for Arduino — github.com
[online] [Accessible from https://github.com/esp8266/Arduino]. [Ac-
cessed 19-04-2024].

28. Ktor: Build Asynchronous Servers and Clients in Kotlin — ktor.io [online]
[Accessible from https://ktor.io]. [Accessed 22-04-2024].

29. Kalman filter vs Complementary filter | Robottini — robottini.altervista.org
[online] [Accessible from https://robottini.altervista.org/kalman
-filter-vs-complementary-filter]. [Accessed 12-05-2024].

30. COLLINS, Danielle. Motion basics: How to define roll, pitch, and yaw
for linear systems — linearmotiontips.com [online] [Accessible from htt
ps://www.linearmotiontips.com/motion-basics-how-to-define-r
oll-pitch-and-yaw-for-linear-systems/]. [Accessed 11-05-2024].

31. aatishb.com [online] [Accessible from https://aatishb.com/materials
/srr/workshop3.pdf]. [Accessed 11-05-2024].

https://www.hadex.cz/m533-modul-ctecka-micro-sd-karet---spi-modul/
https://www.hadex.cz/m533-modul-ctecka-micro-sd-karet---spi-modul/
https://www.waveshare.com/wiki/PCF8563_RTC_Board
https://www.circuitbasics.com/basics-of-the-spi-communication-protocol/
https://www.circuitbasics.com/basics-of-the-spi-communication-protocol/
https://www.circuitbasics.com/basics-uart-communication/
https://www.circuitbasics.com/basics-uart-communication/
https://www.circuitbasics.com/basics-of-the-i2c-communication-protocol/
https://www.circuitbasics.com/basics-of-the-i2c-communication-protocol/
https://www.arduino.cc/en/software
https://www.arduino.cc/en/software
https://platformio.org
https://platformio.org
https://github.com/esp8266/Arduino
https://ktor.io
https://robottini.altervista.org/kalman-filter-vs-complementary-filter
https://robottini.altervista.org/kalman-filter-vs-complementary-filter
https://www.linearmotiontips.com/motion-basics-how-to-define-roll-pitch-and-yaw-for-linear-systems/
https://www.linearmotiontips.com/motion-basics-how-to-define-roll-pitch-and-yaw-for-linear-systems/
https://www.linearmotiontips.com/motion-basics-how-to-define-roll-pitch-and-yaw-for-linear-systems/
https://aatishb.com/materials/srr/workshop3.pdf
https://aatishb.com/materials/srr/workshop3.pdf


Contents of the Attached
Media

readme.txt............................description of the medium content
src

app......................................implementation source codes
server............................................server source codes
thesis...........................thesis source code in LATEX format

text.......................................................... thesis text
thesis.pdf ................................ thesis text in PDF format

55


	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Objectives
	Existing Solutions
	TIMEFLIP2
	Timeular Tracker
	Adafruit IO Time Tracking Cube
	Summary

	Analysis
	The Control Unit
	Wemos D1 R2
	MCU Pinout
	Deep Sleep Problematic


	Orientation In Space
	GY-521 with MPU6050 Gyroscope and Accelerometer Module

	Charging
	Batteries
	Wireless Charging Module
	Testing

	TP4056 Charging Module
	LaskaKit Fuel Gauge MAX17048
	Step-up Voltage Regulator

	Memory
	Micro SD Card Module

	Real-Time Clock
	Waveshare PCF8563

	Communication
	SPI
	UART
	I2C

	Programming and Testing
	Arduino IDE
	PlatformIO


	Suggestion of the Solution
	Suggestion of the Modules Connection
	Program Design
	Used IDEs
	Control Program
	Program Phases

	Server design
	Ktor Framework
	User Configuration and Project Assignment
	Handling Cube Requests



	Implementation of the Hardware
	Wiring Constraints
	Microcontroller Module
	Gyroscope and Accelerometer Module
	Micro SD Card Module
	Charging Meter Module
	Charging Module
	Wireless Charging Module
	PCF8563 Real-Time Clock
	RGB LED
	Button
	Additional Extensions
	Wemos D1 Mini Pro
	Extra Buttons
	Qi Standard Wireless Charging

	Prototype Price

	Implementation of the Program
	Control Program
	User Configuration
	Orientation Detection
	Computation Method
	Orientation of the Cube

	Tracking
	Offline Mode
	Online Mode
	Server


	Cube Behaviour

	Testing
	Module Testing
	Device Orientation Testing
	Wireless Charging Testing

	Program Testing
	Used IDEs


	Conclusion
	Schematic
	Contents of the Attached Media

