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Instructions

The task of Semantic Textual Similarity (STS) is to determine how semantically similar 

two pieces of text are. One usually compares two sentences, paragraphs, or even whole 

documents. Recently, there have been two main approaches to solving this problem 

using deep neural networks. The first approach is the cross-encoder. Its input is the 

concatenation of two sentences to compare and it predicts their similarity. The second is 

the bi-encoder, which encodes each sentence into a vector space such that the vectors of 

two semantically similar sentences are close to each other. The advantage of the second 

approach is that it can be used for fast semantic search, where we only need to compare 

vectors. Cross-encoder, on the other hand, tends to be more accurate. There are plenty of 

known methods to train such models, but they usually need a lot of labeled data. Such 

data is not always available, for example, in the Czech language, and could be very 

expensive to annotate.

The aim of the thesis is to review the state-of-the-art methods that can encode a Czech 

sentence into a vector space such that the vectors of two semantically similar sentences 

are close to each other, i.e., they can be used as bi-encoders in the STS task. Due to the 

small amount of annotated data in the Czech language, the work should mainly focus on 

unsupervised learning methods.

The specific points of the assignment are:

1. Show that standard methods like Masked Language Modeling do not work well for the 

STS task.
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2. Research the current sentence embedding methods suitable to be used as bi-

encoders for the STS task.

3. Use these methods to train several Czech STS models. Build a validation dataset and 

evaluate them.

4. Compare the results of STS models with other pre-trained models on downstream 

tasks such as sentiment analysis, retrieval, or relevance and observe their behavior on 

different amounts of available labeled data.

5. Explore methods for fine-tuning STS models and evaluate their benefits.
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Abstract

Recent significant advancements in semantic textual similarity (STS) have primarily been driven
by the availability of annotated data for English, a luxury that Czech and other low-resource
languages often lack. In this thesis, we investigate the challenges and potential improvements in
solving the STS problem for the Czech language. Our research explores advancements in neural
networks, including the Transformer architecture and pre-trained language models such as BERT,
RoBERTa, and ELECTRA. We provide an extensive study of techniques and models for STS, as
well as methods for generating sentence embeddings. Additionally, we discuss Cross-encoder and
Bi-encoder architectures, along with advanced training methods like SimCSE, TSDAE, Trans-
Encoder, and Multilingual distillation. We present our STS models trained using these techniques
and evaluate their performance on STS and two downstream tasks. Through our analysis, we
highlight our best STS model, which sets multiple state-of-the-art results, demonstrating the
potential for future advancements in STS for low-resource languages.

Keywords Czech, Semantic Textual Similarity, Neural Networks, Transformer, Pre-trained
Language Models, BERT, RoBERTa, ELECTRA, sentence embedding, Cross-encoder, Bi-encoder,
SimCSE, TSDAE, Trans-Encoder, Multilingual distillation, state-of-the-art, low-resource lan-
guages

Abstrakt

Nedávné pokroky v problému sémantické textové podobnosti známé jako STS se uskutečnili
předevš́ım d́ıky dostupnosti velkého množstv́ı anglických anotovaných dat, což je luxus, který
čeština a daľśı méně rozsáhlé jazyky často postrádaj́ı. V této práci se zabýváme výzvami a
možnými zlepšeńımi při řešeńı problému STS pro češtinu. Zkoumáme pokroky v oblasti neu-
ronových śıt́ı, včetně architektury Transformeru a předtrénovaných jazykových model̊u, jako
jsou BERT, RoBERTa a ELECTRA. Poskytujeme rozsáhlou studii technik, model̊u pro STS, a
také metod pro generováńı embedding̊u vět. Dále se zabýváme architekturami Cross-encoder a
Bi-encoder spolu s pokročilými metodami trénováńı, jako jsou SimCSE, TSDAE, Trans-Encoder
a v́ıcejazyčná destilace. Představujeme naše STS modely natrénované pomoćı těchto technik a
vyhodnocujeme je na STS a dvou daľśıch úlohách. Analyzujeme náš nejlepš́ı STS model, který
stanovuje několik state-of-the-art výsledk̊u, což ukazuje potenciál pro budoućı pokrok v oblasti
STS pro jazyky s menš́ı dostupnost́ı dat.

Kĺıčová slova čeština, sémantická textová podobnost, neuronové śıtě, Transformer, předtrénované
jazykové modely, BERT, RoBERTa, ELECTRA, větný embedding, Cross-encoder, Bi-encoder,
SimCSE, TSDAE, Trans-Encoder, v́ıcejazyčná destilace, state-of-the-art
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Introduction

This introductory chapter sets the stage for the thesis, which investigates the task of semantic
textual similarity (STS) in the context of natural language processing. It outlines the impor-
tance and challenges of STS, as well as its applications. It highlights the difficulties faced by
low-resource languages like Czech and the need for alternative training methods.

Natural Language Processing (NLP) is a rapidly evolving field of computer science that focuses
on developing algorithms and models to enable machines to understand human language. One
fundamental task in NLP is determining the degree of semantic similarity between two pieces
of text, a challenge known as Semantic Textual Similarity (STS). STS plays a crucial role in
various applications, including information retrieval, text classification, question answering, and
machine translation. In the context of information retrieval, STS can be applied to tasks such
as document clustering or search result ranking, where the goal is to identify and retrieve the
most relevant documents based on semantic similarity to a given query. Examples of STS in
information retrieval include Latent Semantic Analysis (LSA) [1] and its variants, as well as
more recent methods based on deep learning, such as BERT and other transformer-based models
which we present in this work.

STS is a difficult problem due to several reasons, such as the inherent ambiguity of natural
language, the presence of synonyms, and the complexity of linguistic structures. For example,
an easy STS case might involve comparing the sentences:

The cat is on the mat.
The feline is on the rug.

where the semantic similarity is apparent due to the use of synonymous words. In contrast, a
more challenging example could be comparing the sentences:

The coastal city was left in ruins after the tempest.
The storm’s aftermath led to devastation in the seaside metropolis.

where the similarity is less obvious due to the different linguistic structures.
Despite these difficulties, significant advancements have been made in STS for English,

mainly due to the availability of annotated data. This has facilitated the development of high-
performance supervised models, which typically outperform other methods. However, the same
progress cannot be observed for Czech or other low-resource languages, which lack comparable
amounts of labeled data or already trained public models. This necessitates alternative meth-
ods for training STS models in Czech, especially those that do not require expensive manual
annotation.

The aim of this thesis is to investigate and compare various deep learning methods for training
STS models in Czech, primarily focusing on unsupervised and semi-supervised techniques. We

1



2 Introduction

specifically examine STS models that generate meaningful sentence embeddings, enabling them
to map each sentence to a vector space where semantically similar sentences are close, as depicted
in Figure 1. By utilizing available resources such as monolingual and bilingual corpora, we train
these models without the need for large amounts of annotated data. Additionally, we explore
the effectiveness of STS models in fine-tuning various downstream tasks and compare them with
other techniques.

Chapter 1 delves into the complexities of the STS task, outlines the steps for addressing it,
and discusses related challenges. We utilize Neural Networks (NNs) to tackle this task, explaining
why they are well-suited for the problem. We provide a historical overview of deep NN-based
approaches for STS is Section 1.1, describing various NN models and their architectures, with
a focus on transformer and transformer-based models. Our investigation in Chapter 2 includes
training techniques for both labeled and unlabeled data for solving STS, with a focus on Bi-
encoder models.

We present state-of-the-art English models in Section 1.3 and discuss the transfer of knowledge
from these models to develop new models capable of understanding the Czech language. In
Chapter 3, we introduce the training and test datasets, including a new STS test dataset and
its creation process. Additionally, two other NLP tasks are presented as downstream tasks in
Section 3.2, along with their respective test datasets, where we also explain the metrics used to
evaluate the models.

The subsequent Chapter 4 details our experiments with the training of STS models using
the aforementioned methods, discussing hyperparameter search and the practical challenges of
training. Finally, in Chapter 5, we report the evaluation results, compare the models based on
the methods employed, and provide an in-depth discussion of these results. A summary of all
findings is presented at the end of the work.

x

y

The cat is on the mat.

A cat is sitting on a mat.

The sky is blue today.

A
B

C

Figure 1 A 2D visualization of the sentence embedding space for an STS model. Semantically similar
sentences are positioned closely together (A, B), while semantically dissimilar sentences are farther apart
(A, C). This representation illustrates the model’s ability to capture the semantic similarity of sentences.



Chapter 1

From STS to Neural Networks

In this chapter, we explore the various techniques and models for solving the STS problem,
focusing on the advancements in neural networks for NLP and their application to sentence
embeddings. We delve into the different types of pre-trained language models including the
state-of-the-art sentence embedding models. We introduce the Hugging Face Model Hub as a
platform where these models can be found. Additionally, we examine strategies for converting
word embeddings to sentence embeddings. We then investigate the limited availability of Czech
pre-trained models. Through this comprehensive overview, we provide a solid foundation for
understanding the development and application of neural networks and PLMs in solving the
STS problem.

Semantic textual similarity is a complex problem involving the comparison of two pieces of text,
referred to as sentences, and predicting their semantic similarity. Formally, our goal is to find
a similarity score s(A, B), where s is a similarity function that takes A and B as inputs and
returns a similarity score in the range of ⟨0, 1⟩1, with 0 representing no similarity and 1 meaning
identical in meaning.

One of the main challenges is transforming sentences into a format that computers can un-
derstand. Several approaches involve mapping each word to a fixed-length vector representation
known as a word embedding, which captures the semantic meaning of the word. The embedding
vectors must be trained based on the location of each corresponding word in a text. Typically,
the number of word embeddings is restricted by a pre-selected vocabulary. Pre-trained word em-
beddings like Word2Vec [2] and GloVe [3] have limitations in handling out-of-vocabulary (OOV)
words, as they assign the same vector to all unfamiliar words. FastText [4] embeddings address
this limitation by viewing words as n-grams, allowing it to handle OOV words. However, these
approaches assign identical vectors for the same word in different contexts, leading to confusion.
For example:

The construction workers used a crane to lift the steel beams into place on the skyscraper.

We spotted a beautiful crane wading in the pond, gracefully extending its long neck to catch
fish.

Converting word embeddings into sentence embeddings, which are fixed-size vectors for sen-
tences, is crucial. It enables the representation of an entire sentence’s meaning in a fixed-size
vector, facilitating the comparison of sentences with varying lengths and capturing the semantic
relationships between them. This conversion is essential for effectively solving STS and other

1The similarity score range may vary (for example ⟨0, 10⟩), but it can always be normalized to ⟨0, 1⟩.

3



4 From STS to Neural Networks

NLP tasks that require a comprehensive understanding of textual context. One common tech-
nique to create sentence embeddings is to simply average all word embeddings from the sentence.
However, it lacks information about word positions within the sentence, which can be a critical
factor, as demonstrated in the following example:

At first, the film was terrible, but it turned out to be amazing.

At first, the film was amazing, but it turned out to be terrible.

BERT embeddings [5] address these issues by effectively managing OOV words and attribut-
ing unique vectors to identical words depending on their contextual relevance. Its embeddings
are contextualized and incorporate surrounding word and positional information. Using BERT
embeddings has been demonstrated to be highly efficient and remains in use today [6, 7]. We
delve into BERT embeddings in detail later in this chapter.

By using sentence embeddings, we can view the STS task as determining the similarity
s(A, B) = f(concat(eA, eB)), where eA and eB represent the sentence embeddings of A and
B, respectively. Neural networks have been shown to be more adept at handling complex data,
and we explore various approaches for utilizing sentence embeddings and neural networks to
effectively solve STS.

1.1 Evolution of Neural Networks in NLP
For many years, neural networks have been essential tools in NLP, boasting a rich history of
development and advancement. Early neural networks used for NLP were typically shallow and
relied on hand-engineered features [8]. However, with the advent of deep learning techniques and
the availability of large datasets, neural networks have become increasingly powerful and widely
used in NLP applications.

One of the earliest types of neural networks used for NLP was the Recurrent Neural Network
(RNN) [9]. Initially used for speech recognition tasks, RNNs were quickly adopted for language
modeling tasks, where they showed significant improvements over traditional n-gram models
[10]. RNNs were particularly well-suited for modeling sequences of data, such as sentences or
documents, and were able to capture short-term dependencies in text.

A significant issue with RNNs was the difficulty in training them to learn long-term de-
pendencies. To address this, researchers developed more advanced architectures, such as Long
Short-Term Memory (LSTM) [11] and Gated Recurrent Units (GRUs) [12], which are better at
capturing them.

In recent years, a new type of neural network called Transformers [13] has emerged, becoming
the state-of-the-art approach for many NLP tasks. Introduced in 2017, Transformers gained
popularity due to their ability to capture long-term dependencies and process input sequences
in parallel, making them much faster than RNN-based models. The Transformer architecture is
still widely used in almost every state-of-the-art NLP model today [5, 14].

1.1.1 Transformer
The Transformer is designed to process sequential input data. In contrast with RNNs, it can
process the whole input sequence at once with its attention mechanism, which is the key compo-
nent for its architecture. The attention mechanism allows for contextual understanding of any
position within the input sequence. This means that if the input is a natural language sentence,
the Transformer does not need to process each word individually.

A Transformer model consists of an encoder and a decoder. The encoder takes the input
sequence and applies a series of self-attention and feed-forward layers to produce a sequence
of hidden representations, which can be seen as contextualized representations of input words.
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Figure 1.1 A detailed illustration of the Transformer architecture [13], with the encoder on the left
and the decoder on the right.

The decoder then takes the hidden representations from the encoder and generates an output
sequence by applying masked self-attention and encoder-decoder attention layers. The self-
attention layer can access all previous states and weigh them according to a learned measure
of relevance, providing relevant information about far-away tokens. The entire architecture is
depicted in Figure 1.1. For detailed information about the architecture, please refer to [13].

1.1.2 Pre-trained Language Models
The Transformer architecture was quickly adopted, leading to the development of two new lan-
guage model architectures. The first was an Encoder-based model, which involved stacking
multiple encoder layers from Transformers to extract features from text and leveraging them
for classification or regression tasks. The second category comprised Decoder-based models that
used stacked decoders from Transformers primarily for tasks such as text generation or summa-
rization. However, the original Transformer architecture remained focused on tackling machine
translation. The main focus of our work is on Encoder-based models.

1.1.2.1 BERT
BERT, which stands for Bidirectional Encoder Representations from Transformers [5], is one of
the most widely used Encoder-based models. Introduced in 2018, BERT can handle single or
multiple natural sentences as input sequences with up to 512 tokens, effectively addressing a
diverse set of downstream tasks. To convert sentences into tokens, BERT employs WordPiece
embeddings[15] with a vocabulary size of 30,000 tokens. On average, English text consists of
approximately 2-3 tokens per word. This process, called tokenization, uses a tokenizer, which
also stores the vocabulary. The first token of each input sequence is always a special classification
token (CLS), whose final hidden representation is used for classification tasks. To distinguish
between two sentences, a SEP token is inserted between them. Each token’s embedding is
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subsequently enriched with positional embedding and passed through the 12 encoder layers, the
default configuration for BERT’s base architecture. Another important constant for BERT base is
the hidden size of 768, indicating the embedding size of each token and its hidden representations.
There are various sizes of pre-trained language models, such as small, base, and large, which differ
mainly in their model complexity, number of layers, and hidden size. The base size is commonly
used and has proven to be very effective in numerous applications. While larger models often
outperform smaller ones, they can require significant computational resources and take longer to
train, especially on a single GPU.

BERT pre-trains deep bidirectional representations from unlabeled text by jointly condition-
ing on both left and right context in all layers. Two unsupervised tasks were proposed for this
purpose: Masked Language Modeling (MLM) and Next Sentence Prediction (NSP). In MLM,
15% of input tokens are masked i.e. they are replaced with MASK token, and the model is
trained to predict these tokens. In NSP, the model is provided with two sentences, with the sec-
ond sentence being either the following sentence or a random sentence from the training corpus
in 50% of instances. The model is then tasked with predicting whether the two sentences are
consecutive or not.

Pre-trained language models (PLMs) offer the key benefit of efficient fine-tuning after com-
putationally expensive pre-training. Using the pre-trained BERT encoder to encode input sen-
tences, training efforts can focus solely on the classifier or regressor that takes the specialized
CLS representation generated by BERT. Moreover, training the entire pre-trained model often
yields better performance than using a newly initialized model without pre-training.

1.1.2.2 RoBERTa
RoBERTa: A Robustly Optimized BERT Pretraining Approach [16] is another highly popular
pre-trained model. This replication study of BERT pretraining measured the impact of key
hyperparameters and training data size, revealing that BERT was significantly undertrained and
could be greatly improved. RoBERTa is trained with longer sequences, larger batches, and more
data than BERT, and it completely removes the NSP objective. In contrast to BERT’s sentence
pairs, RoBERTa uses doc-sentences as input. Each input consists of full sentences sampled
contiguously from a single document, with a maximum length of 512 tokens. The input sequence
begins with the CLS token, and each full sentence is separated by the SEP token. These inputs
are typically longer and provide more contextualized text representation than the sentence pairs
used in BERT. By eliminating the need for sentence pairs, RoBERTa can focus on extracting
richer contextual information from single, continuous text segments. The authors of RoBERTa
have demonstrated that eliminating the NSP objective, when combined with doc-sentences as
input, can either match or slightly enhance the performance of language models.

Other modifications in RoBERTa include dynamically changing the masking pattern every
epoch, enhancing robustness, and using a variant of Byte-Pair Encoding (BPE) [17] that employs
a smart implementation [18] of BPE with bytes instead of Unicode characters as subword units,
resulting in a vocabulary of only 50k units that can still effectively encode large amounts of text.

1.1.2.3 ELECTRA
The authors of ELECTRA [19], which stands for Efficiently Learning an Encoder that Classifies
Token Replacements Accurately, aimed to enhance the classic MLM learning objective to be
more efficient when given the same amount of data and computation. They proposed a new
pre-training approach called Replaced Token Detection, in which the model learns to distinguish
”real” input tokens from plausible but synthetically generated ”fake” replacements. Therefore,
instead of masking the tokens with MASK, they are replaced with high-quality negative samples
generated by a smaller generative network.

The key advantage of this task is that the model learns from all input tokens instead of just
the small masked-out subset, making it more computationally efficient. Additionally, there is no
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discrepancy between the pre-training and fine-tuning like in MLM. The ELECTRA architecture
is similar to BERT, but it has one extra fully connected layer between the input embeddings and
the first attention layer. This allows for smaller word embeddings than the hidden size, making
it more efficient in terms of parameters while still performing just as well. Take ELECTRA
Small, for instance, which employs a hidden size of 256 and an embedding size of 128. The
fully connected layer, which enables the projection from embedding to hidden representations,
requires an additional 128 x 256 parameters. However, it saves 30,000 x 128 parameters in the
word embedding space.

1.2 Obtaining Sentence Embeddings from PLMs
There are various methods to extract sentence embeddings from pre-trained language models.
The most straightforward approach is to average all word embeddings, which, in the case of
PLMs, are the last hidden representations of words. To obtain the sentence embedding, we
perform an element-wise MEAN operation on all word embeddings. Alternatively, we can use
the MAX operation to generate a sentence embedding that contains only the most significant
features across all words. Another method is to use the last hidden representation of the CLS
token, similar to the NSP objective. The process of converting word embeddings to sentence
embeddings is known as pooling. Strategies such as CLS, MEAN, and MAX pooling have
proven to be highly effective and continue to be widely used. In this study, we experiment with
these pooling strategies and assess their effectiveness in STS tasks.

If one prefers not to train an encoder model from scratch, the Hugging Face Model Hub [20]
offers an opportunity to utilize existing public PLMs. This open-source platform provides a wide
range of pre-trained models for natural language processing tasks, streamlining research and
application development. Numerous pre-trained English models can be found on the platform,
such as bert-base-uncased [5] and xlm-roberta-base [21], the latter of which was trained on up to
100 languages.

While these PLMs generate high-quality sentence embeddings, there is room for improvement.
Several techniques can be employed to further enhance the quality of the embeddings. We will
describe these techniques in detail in Section 2.

1.3 State-of-the-Art Sentence Embeddings
In this section, we examine state-of-the-art English models for generating high-quality sentence
embeddings, the methods employed for their training, and their comparative performance. We
also explore the popular open-source framework Sentence Transformers [22], which is utilized in
most of the experiments discussed later in this work.

First, let us consider the Sentence Transformers framework. This framework offers a straight-
forward interface for generating state-of-the-art sentence, text, and image embeddings. It in-
cludes several pre-trained transformer models and supports fine-tuning on custom datasets. The
performance of these models’ sentence embeddings and semantic search is evaluated across 20
diverse datasets (see [22]). The top-performing model for these tasks is all-mpnet-base-v2 [23].
As its name implies, it is a base-sized model fine-tuned from the microsoft/mpnet-base model
[24]. The model was fine-tuned using a contrastive objective: given one sentence from a pair, the
model should predict which of a set of randomly sampled sentences was actually paired with it in
the dataset. Formally, the model computes the cosine similarity for each possible sentence pair
in the batch and then applies cross-entropy loss by comparing it to the true pairs. Further details
on contrastive learning will be discussed in the upcoming chapters. The model was fine-tuned
using concatenated data from multiple datasets, with a total of over 1 billion sentence pairs.

Another notable model is all-MiniLM-L6-v2 [25], a small-sized model with just 6 layers and
an embedding size of 384. It is five times faster than the all-mpnet-base-v2 model while still
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Figure 1.2 Performance, speed, and size of produced embeddings (size of the circles) of different
embedding models. Embedding sizes range from 1.2 kB (Glove / Komninos) to 16.4 kB (SGPT-5.8B)
per example. Speed was benchmarked on STS15 using 1x Nvidia A100 80GB with CUDA 11.6. [27]

providing high-quality embeddings. The process of creating this model was rather intricate.
First, the BERT base model was distilled using a specialized technique [26]. The resulting
model, MiniLM-L12xH384, has nearly identical performance to the original BERT base but with
3 times fewer parameters. Subsequently, MiniLM-L6xH384 was created by retaining only every
second layer from the previous model. Finally, MiniLM-L6xH384 was fine-tuned using the same
contrastive objective and data as all-mpnet-base-v2.

A recent paper, ”MTEB: Massive Text Embedding Benchmark” [27], provides another com-
parison of the best sentence embedding models. MTEB is a benchmark that covers 8 embedding
tasks, spanning a total of 56 datasets and 112 languages. The model comparison includes those
we have already discussed and others, some of which are considerably larger. For instance, the
SGPT-5.8B-msmarco model is 50 times larger than the microsoft/mpnet-base. The model com-
parison is illustrated in Figure 1.2, which apart for model performance shows its relation to
actual inference speed.

I would like to reiterate that these models were trained using vast amounts of supervised or
self-supervised data, which is not available for the Czech language. Consequently, we cannot
employ these techniques directly for Czech.

1.4 Czech Pre-trained Models
While there is an abundance of pre-trained English models, the availability of pre-trained Czech
models is limited. Some of the publicly accessible Czech models include RobeCzech [28], FER-
NET [29], Czert [30], and Small-e-czech [31]. These models are trained using BERT, RoBERTa,
and ELECTRA architectures without any additional enhancements specifically for sentence em-
beddings. Our aim is to improve these models’ sentence embeddings, thereby enhancing their
performance for the STS task. We utilize these models for reference, evaluation, and training
purposes.
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For training, our primary choice is the Small-e-czech model, due to its smaller size and reduced
computational requirements. Employing a small-sized model enables more efficient research while
still yielding meaningful results. With 10 times fewer parameters than other base-sized Czech
PLMs, Small-e-czech is better suited for environments with limited computational resources.

An alternative to using Czech pre-trained models is to employ pre-trained multilingual mod-
els. Examples of such models include BERT-Base, Multilingual Cased [32], LaBSE [33], and
xlm-roberta-base [21]. These models exhibit strong performance not only in English but also in
other languages they were trained on (for example Czech). However, their performance across
languages varies, depending on the distribution of languages in the training corpus. As a con-
sequence, multilingual models may not achieve optimal performance for languages with lower
representation in the training data, compared to models specifically trained on those languages.
We do not fine-tune any multilingual models in this study. Instead, we compare them with our
Czech models, specifically focusing on the LaBSE model, which has already been fine-tuned for
STS tasks.
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Chapter 2

Advanced Training Methods for
STS Models

This chapter introduces bi-encoder and cross-encoder architectures, presenting state-of-the-art
methods for training bi-encoders for STS tasks. It covers both supervised and unsupervised
techniques and delves into knowledge distillation and transfer approaches between languages.

Neural networks are a powerful tool for solving a variety of tasks, including those involving
sentence pairs. In this chapter, we present two approaches to tackle sentence pair problems,
following notation of [34]: Cross-encoders and Bi-encoders. While the Cross-encoder approach
is robust, it has limitations. The Bi-encoder method addresses these limitations.

2.1 Cross-encoders

Cross-encoder (CE) models are designed to jointly encode sentence pairs into a fixed-length
representation, then use a method to generate the desired output, such as a similarity score in
the case of STS. The task of determining the similarity between two input sequences using a CE
can be expressed as s(A, B) = M(A, B), where M represents a pre-trained encoder model. This
model takes the concatenated input sequences A and B and produces a direct output of their
similarity score. A notable example of a task solved as CE is the NSP task in BERT, which
is a binary classification problem. CE technique involves passing a sentence pair, separated by
a SEP token and preceded by a CLS token. The final CLS hidden representation is passed
to a classification head, which consists of a single fully connected layer that predicts the most
probable class. MAX or MEAN operation can be used in place of CLS to obtain the hidden
representations. However, the CE model fails to generate sentence embeddings, limiting its
practical application. The CE architecture is depicted in Figure 2.1.

2.2 Bi-encoders

An alternative approach to resolving STS is to utilize Bi-encoders (BE). BE consists of two
encoders that independently transform input sentences A and B into fixed-length sentence
embeddings, which are then used in a function to generate the desired output. In the context of
STS, the degree of similarity can be defined as s(A, B) = fsim(eA, eB) = fsim(M1(A), M2(B)).
Here, eA and eB refer to the sentence embeddings of input sentences A and B, respectively,
which are produced by models M1 and M2. These models are frequently identical, and when

11
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Figure 2.1 The difference between the cross-encoder and bi-encoder architecture, taken from [22].

this is the case, the BE model is typically referred to as a Siamese model. For the purposes of
this project, we will solely utilize Siamese BE models, as they are generally easier to train and
still have the potential to result in superior performance. Therefore, it is assumed that all BE
models discussed from this point onwards are Siamese, unless otherwise stated explicitly. The
similarity function fsim is responsible for assessing the degree of similarity between the encoded
sentence representations. Interestingly, the cosine similarity function is often sufficient for this
purpose, however there are many other sophisticated methods, some of which we explore later.
The BE architecture is depicted in Figure 2.1.

2.3 Which One to Use?

The choice between BE and CE models depends on the specific requirements of the given task.
BE models are often simpler and faster to train, making them a good choice for tasks where
efficiency is important. The primary advantage of using BE models, and the reason for their
design, is their effectiveness in efficient semantic search. By representing each input sentence as a
vector, the sentences can be encoded beforehand using BE. The similarity can then be computed
by merely comparing their respective vectors. This comparison is typically very fast, allowing
for scalable and efficient search for the most similar sentences. As a result, bi-encoder models
are well-suited for tasks such as information retrieval, recommendation systems, and clustering.

Cross-encoder models, on the other hand, are not suitable for efficient semantic search. This
is because, to find the most similar sentences, the entire model must be run for each sentence pair,
making the process significantly slower than computing the similarity function directly, as done
with BE models. However, CE models, which have access to both input sentences simultaneously,
can capture more complex interactions between them than bi-encoder models. For tasks that
require a deeper understanding of the relationship between the input sentences, cross-encoder
models are often more effective and outperform BE models.

In this study, both approaches will be utilized and compared, but the primary focus will be
on training the best-performing Bi-encoder model.
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2.4 Train a Bi-encoder
This section reviews some of the latest techniques used to train optimal Bi-encoder models
for STS and other related tasks, with a particular emphasis on unsupervised methods. The
experimental section of this work offers in-depth testing and evaluation of every method discussed.

2.4.1 SBERT
The issue of CE and their infeasibility in tasks such as semantic search was initially examined
in the publication ”Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks” in
2019 [34]. This paper introduced various networks and objective functions to train the Sentence-
BERT (SBERT) model, one of the earliest BE used in NLP. The choice of network and target
function depends on the availability of training data. Our focus will be on two configurations:
unsupervised and supervised. SBERT’s performance was evaluated on common STS datasets1

using the Spearman rank correlation metric. As the authors mention, the Pearson correlation is
poorly suited for STS [35] (see Figure 2.2).

Figure 2.2 Despite all four systems having the same Pearson correlation coefficient of 0.816, they
produce different outputs when compared to the gold standard derived from human judgment. The
Pearson correlation coefficient is sensitive to non-linear relationships and outliers, and is not always a
reliable measure of the quality of STS systems. The paper [35] emphasizes that humans would judge
the quality of the four STS systems differently, even though they achieve the same Pearson correlation
coefficient.

The unsupervised2 SBERT is trained as follows. A pre-trained encoder model3 is fine-tuned
on the SNLI [36] dataset using the BE setup. SNLI is a collection of 570,000 sentence pairs labeled
with contradiction, entailment, and neutral categories. By default, SBERT uses MEAN pooling
to generate sentence embeddings, and for training purposes, it employs a 3-way classification
objective function, defined as:

o = softmax(Wt × (u, v, |u − v|))
where the (u, v, |u − v|) is the concatenation of the sentence embeddings for the input pair

u, v, along with their element-wise absolute difference. This concatenation is then multiplied by
1These are not available in Czech.
2By ”unsupervised,” we mean the absence of utilizing train data from the STS task. It cannot be considered

entirely unsupervised, as it incorporates train data from a different yet similar task, namely natural language
inference.

3Such as BERT, RoBERTa, ELECTRA, or others.
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trainable weights Wt ∈ R3n×k, with n being the dimension of the sentence embeddings and k
denoting the number of labels. The cross-entropy loss is optimized during training. The entire
structure is depicted in Figure 2.3.

Figure 2.3 SBERT architecture with
classification objective function, e.g., for
fine-tuning on SNLI dataset. The two net-
works have tied weights (siamese network
structure). [34].

Figure 2.4 SBERT architecture at in-
ference, which is used with the regression
objective function. [34].

The supervised SBERT is trained similarly but on the STS training dataset using a regression
objective function. The cosine similarity between the two sentence embeddings, u and v, is
computed, and the mean squared error (MSE) is applied as the loss. This is depicted in Figure
2.4. The best performance was achieved by combining both approaches, i.e., pre-training SBERT
on NLI using the classification objective and then training on STS using the regression objective.
It is important to note that in both cases, the cosine similarity function was used to compare
the similarity of the two sentence embeddings. Other best-performing methods use complex
regression functions to map sentence embeddings to a similarity score, but because this function
works pair-wise, they are not scalable if the collection of sentences reaches a certain size.

In unsupervised STS, BERT sentence embedding performs poorly, even worse than average
GloVe embeddings. However, after fine-tuning with SBERT, it successfully outperforms even the
best model on almost all STS datasets. In supervised STS, BERT used as a cross-encoder sets
a new state-of-the-art performance by using a simple regression method for the output. This
confirms our previous claim that CE is more powerful than BE. As with the supervised SBERT,
we can see a significant boost in performance if we first pre-train the CE on the NLI dataset.
For a full comparison of models, please refer to the SBERT paper [34].

Additionally, the authors evaluated the embeddings produced by SBERT in SentEval [37], a
popular toolkit for evaluating the quality of sentence embeddings. These embeddings are used as
features for a logistic regression classifier. Although the purpose of SBERT sentence embeddings
is not to be used for transfer learning for other tasks, they still managed to achieve the best
performance on 5 out of 7 SentEval tasks. This suggests that SBERT can effectively capture
semantic information through sentence embeddings. However, as the training datasets are not
available in Czech, it is necessary to explore unsupervised techniques that utilize raw sentences
without any explicit relationships or labels further.
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Figure 2.5 Unsupervised SimCSE [38] predicts the input sentence itself from in-batch negatives, with
different hidden dropout masks applied.

2.4.2 Unsupervised SimCSE
In the paper ”Simple Contrastive Learning of Sentence Embeddings” (SimCSE) [38], an unsuper-
vised method for training STS models was proposed. This method takes an input sentence and
predicts itself in a contrastive objective, with only standard dropout used as noise. Surprisingly,
this simple method works quite well.

Contrastive learning is a technique used to learn representations by bringing together similar
examples and pushing apart dissimilar ones. It assumes a set of paired examples (x, x+), where
the pairs are semantically related. The approach in their work uses a contrastive framework [39]
with a cross-entropy objective and in-batch negatives [40] to train the model. The objective is
calculated for each pair of examples in a mini-batch. The training objective for positive pair
(xi, x+

i ) with a mini-batch of N pairs is calculated as:

li = − log esim(hi, h+
i

)/τ∑N
j=1 esim(hi, h+

j
)/τ

(2.1)

Here, hi and h+
i are the encoded representations of xi and x+

i , sim() represents the cosine
similarity, and τ is the temperature hyperparameter. The entire training process consists of
encoding the sentences using a PLM and then fine-tuning all the parameters using the contrastive
learning objective. The main idea of SimCSE is that it uses the same sentence for both xi and
x+

i . Therefore, the only difference between hi and h+
i is the influence of independently sampled

dropout masks for xi and x+
i . They achieve this by feeding the same sentence to the model

twice and obtaining a different result due to the dropout (see Figure 2.5). Other strategies
for generating positive pairs were examined, but none of them performed as well as the one
mentioned. The results are depicted in Table 2.1. Additionally, different training objectives were
evaluated (such as randomly sampling one sentence from the two or three next sentences), and
as shown in Table 2.2, the contrastive objective performed the best.

Apart for the unsupervised SimCSE, a supervised version of SimCSE was proposed, which
uses STS training data and a slightly modified training objective. The supervised version even
outperforms SBERT on STS tasks [38]. However, we will focus on unsupervised methods.
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Table 2.1 Comparison of data aug-
mentations for SimCSE on STS-B [41] de-
velopment set (Spearman’s correlation).
The results were taken from [38] Table 2.2 Comparison of different

unsupervised objectives (STS-B develop-
ment set [41], Spearman’s correlation).
The two columns denote whether one en-
coder or two independent encoders are
used. The results were taken from [38].

Figure 2.6 Architecture of TSDAE. [42]

2.4.3 TSDAE
The TSDAE paper [42] introduces an unsupervised approach for learning sentence embeddings
using a Transformer-based Sequential Denoising Auto-Encoder (TSDAE). The training process
involves adding specific noise (e.g., deleting or swapping words) to input sentences, encoding
them into sentence embeddings, and attempting to reconstruct the original sentences without
the noise, using only sentence embeddings as a reference. This approach differs from the classical
transformer encoder-decoder setup, where the decoder has access to all contextualized word
embeddings. This modification creates a bottleneck that should force the encoder to produce
high-quality sentence representations.

After experimenting with different configurations on the STS benchmark dataset, the authors
discovered the best setup. They used word deletion with a ratio of 0.6 as input noise, the CLS
token as the sentence representation, and tied the encoder and decoder parameters during train-
ing, which not only increased performance but also lowered memory requirements. The authors
emphasized that performance on STS does not always correlate with performance on other down-
stream tasks. Other unsupervised approaches were often evaluated only on the STS dataset, and
their performance on downstream tasks or domain-specific tasks remained unknown. To address
this, they evaluated and compared TSDAE with other unsupervised methods on three differ-
ent tasks (Information Retrieval, Re-Ranking, and Paraphrase Identification) for heterogeneous
domains and various text styles. The results can be seen in Table 2.3. TSDAE works well as
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pretraining for specific tasks and exhibits superior STS capabilities compared to MLM. As noted
in previous chapters, MLM pretraining performs poorly for STS tasks but is very effective in
downstream tasks and domain adaptation. While SimCSE or CT [43] may outperform TSDAE
on STS, they are often unsuitable for fine-tuning a specific task.

Table 2.3 Performance (Spearman’s rank correlation ×100) on the STS benchmark test [41] set and
average performance on multiple specific tasks. We can see that some methods are better on STS,
although Refer to [42] for details.

2.4.4 Knowledge Distillation
Knowledge distillation [44] is technique aimed at improving model performance by transferring
knowledge from larger, more complex models (teacher models) to smaller, simpler ones (student
models). The primary goal is to reduce computational costs while maintaining accuracy. The
fundamental concept of knowledge distillation involves training a more powerful teacher model
for a given task and then using its predictions to train a weaker student model. One method to
train the student model is to have it learn to mimic the teacher model’s behavior by minimizing
the difference between their respective predictions.

In the context of training an STS BE, this approach can be applied by first training a superior
CE and then using it as the teacher model for knowledge distillation. There are several techniques
available for transferring knowledge from the CE to the BE. The most straightforward method
teaches the bi-encoder to predict the cross-encoder’s output using simple regression and a MSE
objective (used in [31]). However, it is worth noting that training a robust cross-encoder in an
unsupervised manner can be challenging.

2.4.5 Trans-Encoder

Figure 2.7 A graphical illustration of the self-distillation learning scheme in TRANS-ENCODER.
[45]
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A more sophisticated method for training unsupervised STS Bi-encoders through knowledge
distillation was introduced in the paper ”Trans-Encoder: Unsupervised sentence-pair modelling
through self- and mutual-distillations” [45]. The training process involves transforming a PLM
into a robust bi-encoder, which serves as an initialization point. This bi-encoder generates
pseudo-labels for given unlabeled sentence pairs. A CE is then trained on these sentences,
capturing deeper and more complex interactions while iteratively re-labeling the sentences with
more accurate labels. Finally, the re-labeled sentences are used to train a more powerful bi-
encoder model than the initial one. This process is called self-distillation because the BE labels
the sentence pairs for itself with its CE form. The entire training process is illustrated in Figure
2.7. Notably, the final distilled BE can be used as the initial BE model in another iteration,
making the entire process iterative.

In terms of training specifics, a BERT model pre-trained with the SimCSE objective on the
target corpus (the STS train dataset) is used as the bi-encoder’s initial model. Any technique
that transforms BERT into an effective bi-encoder could be employed, but the authors choose
SimCSE as the default method. The cross-encoder’s learning objective in the next step is to
minimize the KL-divergence [46] between its predictions and the self-labeled scores from the
bi-encoder. This is equivalent to optimizing the (soft) binary cross-entropy (BCE) loss:

LBCE = − 1
N

N∑
n=1

(yn · log(σ(xn)) + (1 − yn) · log(1 − σ(xn))) (2.2)

where N is the data-batch size; σ(·) is the sigmoid activation; xn is the prediction of the cross-
encoder; yn is the self-labeled ground-truth score from the bi-encoder.

Interestingly, the trained CE often outperforms the initial model even though it learned from
labels produced by itself. The authors explain that this is likely because the CE directly discovers
the similarity between two sentences through its attention heads, finding more accurate cues to
justify the relevance score, and is thus able to better generalize the problem. From a knowledge
distillation perspective, we can view the BE and CE as the teacher and student, respectively. In
this case, the student outperforms the teacher, not due to greater model capacity, but smarter
task formulation. The objective for sequential BE training is MSE. The authors specifically use a
different loss function than in the CE training because breaking the student-teacher discrepancy
can harm generalization ability. They examine different combinations of training objectives, but
find that the BCE-MSE method is the most effective, as shown in Figure 2.8. To further improve
performance, the authors propose an enhancement called mutual distillation. The only difference
is that they train not one but multiple BEs or CEs in each step and use averaged pseudo-labels
for the next step. This approach achieves a performance boost in most experiments and makes
training more stable, but it is more computationally intensive.

Figure 2.8 Comparison of different loss function configurations in TRANS-ENCODER. [45]

The main issue with the Trans-Encoder method is that it relies on unlabeled training pairs
from the target domain, i.e., the STS training dataset sentence pairs. Later in this work, it will
be demonstrated that this technique does not perform well with random sentence pairs sampled
from the target domain.
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2.4.6 Multilingual distillation

Figure 2.9 Given parallel data (e.g. English and German), train the student model such that the
produced vectors for the English and German sentences are close to the teacher English sentence vector.
[47]

Multilingual distillation is a technique that enables the extension of existing sentence embed-
ding models to new languages. While multilingual models like LaBSE [33] can directly handle
multiple languages, including Czech, their performance is often suboptimal compared to models
specifically trained for Czech language. This work demonstrates that the multilingual distillation
method outperforms LaBSE in the specific language. The method, proposed in the paper ”Mak-
ing Monolingual Sentence Embeddings Multilingual using Knowledge Distillation” [47], leverages
the expertise of a strong teacher model trained in one language to train a student model in the
target language.

The process begins by selecting a teacher model that has been appropriately trained in a
source language (e.g., English) and initializing a student model to be trained on the teacher’s
output. A bilingual dataset containing sentences in both the source language and their transla-
tions in the target language (e.g., Czech) is required for this purpose. The teacher model encodes
sentences in the source language, while the student model encodes sentences in both languages.
The training objective is to minimize the output loss, calculated as follows:

1
|B|

∑
j∈B

[(M(sj) − M̂(sj))2 + (M(sj) − M̂(tj))2] (2.3)

Where the M and M̂ is the teacher and the student respectively. The sj is the English
sentence and tj the Czech one, both from mini-batch B.

During training, the student model attempts to mimic the teacher model’s behavior in both
languages simultaneously. As a result, the student model should produce embeddings for the
target language sentences similar to the embeddings produced by the teacher model for the source
language translations. Upon completion of the training, the student model becomes bilingual,
capable of generating high-quality embeddings for both the source and target languages. The
entire training procedure is depicted in Figure 2.7.

The main advantage of this method is that it allows for the transfer of knowledge from
high-performing models to other languages, effectively creating multilingual models capable of
producing high-quality sentence embeddings. The primary limitation, however, is the need for a
sufficiently large and diverse bilingual dataset, which may not be readily available for all language
pairs. It is also important to note that the performance of the student model may be influenced
by the quality of the translations in the bilingual dataset and the choice of teacher model.
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Chapter 3

Data and metrics

In this chapter, we introduce the train datasets for our STS models and present the test data
for model evaluation. We provide a brief overview of the evaluation tasks and metrics used
for assessing model performance on both STS and downstream tasks.

To ensure proper evaluation of STS models, we use appropriate test datasets for accurate per-
formance comparison. Following the approach in [42], we assess models on both STS datasets
and downstream tasks. We conduct two types of evaluations: intrinsic evaluation using two STS
test datasets and extrinsic evaluation using two downstream test datasets. Thanks to previous
research, we have access to labeled Czech sentence pairs suitable for both evaluation types.

3.1 STS Test Dataset

We incorporate data from [48] and [49]. The former is a large dataset containing 138,556 human-
annotated sentence pairs from Czech journalistic sources. The sentence pairs were chosen by
the annotators who were instructed to select three sentences (most similar, least similar, and
something in between) from reports for each summary sentence, with the goal of creating a
balanced dataset. The dataset includes a test set of 1100 sentence pairs labeled by an average
of 9 annotators, ensuring high reliability. We use this test set for STS evaluation and refer to
it as the CNA dataset. The latter consists of 1425 sentence pairs, translated into Czech from
the English STS SentEval dataset [37] and manually annotated. These sentences fall into two
categories: image descriptions (SVOB-IMG dataset) and headlines (SVOB-HL dataset). Table
3.1 shows examples from the CNA, SVOB-IMG, and SVOB-HL datasets.

For evaluation, we use the Spearman’s correlation metric averaged across all three STS tests.
As discussed in Section 2.4.1, this metric is better suited than Pearson correlation for the STS
task. Pearson correlation (r) measures the linear relationship between two continuous variables,
with values ranging from -1 (perfect negative correlation) to 1 (perfect positive correlation). A
value of 0 indicates no correlation. Spearman correlation (ρ) assesses the strength and direction
of the monotonic relationship between two continuous or ordinal variables, also ranging from -1
(perfect negative monotonic correlation) to 1 (perfect positive monotonic correlation). Unlike
Pearson correlation, Spearman correlation is robust to non-linearities and outliers, as it is based
on the ranks of the data values. See Figure 3.1 for a visual comparison of the two correlation
metrics.
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Figure 3.1 The scatter plot displays both Pearson and Spearman correlation coefficients. The Spear-
man coefficient is better suited for measuring non-linear monotonic relationships.

Table 3.1 Samples from the CNA, SVOB-HL and SVOB-IMG datasets [48, 49]. The similarity scores
are from range ⟨0, 5⟩.

Dataset Sentence 1 Sentence 2 Similarity
CNA S Klausem se Van Rompuy setká

dnes odpoledne.
Van Rompuy, který dnes
návštěvou Prahy uzavřel
dvouměśıčńı cestu po evropských
metropoĺıch, se rovněž setkal s
prezidentem Václavem Klausem.

2.7

CNA Ruské diplomaty vypov́ı mimo
jiné i Spojené státy.

Proti ruským diplomat̊um vys-
toupily i Spojené státy, které jich
vyhostily 60.

3.5

SVOB-HL Muž byl obviněn poté co byl MP
zraněn při útoku

Muž obviněn z vraždy v bytě 1.4

SVOB-HL Ehud Olmert, bývalý izraelský
premiér, byl odsouzen k šesti
let̊um vězeńı za korupci

Ehud Olmert byl odsouzen k
šesti let̊um v Izraeli

3.8

SVOB-IMG Muž v černém obleku surfuje sám
po ničivých vlnách.

Surfař v černém potápěčském
obleku jede na b́ılé vlně v oceánu.

4.3

SVOB-IMG Muž na brusĺıch sj́ıžd́ı řadu
schod̊u.

Muž na lyž́ıch sj́ıžd́ı zasněžený
kopec.

0.8

3.2 Downstream Test Datasets

Following [42], we investigate STS model behavior on other NLP tasks, namely sentiment analysis
and relevance ranking, in addition to STS. We select these tasks due to the availability of Czech
language datasets for each.

3.2.1 Sentiment Analysis
Sentiment analysis classifies the sentiment expressed in text data (reviews, social media posts,
customer feedback) as positive, negative, or neutral (see Figure 3.2). We use the Czech Facebook
dataset (CFD) [50] for evaluation, containing 2,587 positive, 5,174 neutral, and 1,991 negative
posts. We follow the approach used in [28] and employ 10-fold cross-validation for evaluation,
measuring performance using macro-averaged F1 scores to report both mean and standard de-
viation across the folds.

Macro-averaged F1 score, a performance metric for multi-class classification tasks like senti-
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Table 3.2 Samples from the Czech Facebook dataset (CFD) [50].

Comment Label
v̊ubec o tom nepochybuji...budu
př́ımo nadšená!!!!..už se těš́ı́ı́ı́ı́ım

positive

sṕı̌s by mě zaj́ımalo kolik lid́ı už
stoj́ı ve frontě, nemá někdo infor-
mace z předńıch liníı?

neutral

Jestli to neńı podvod...mě ještě
nic nepřǐslo a platba je zapla-
cena...

negative

ment analysis, computes the F1 score for each class individually and then calculates the average
across all classes, equally weighting each class. The F1 score is the harmonic mean of precision
and recall, offering a balanced measure of a model’s performance1.

Precision quantifies the proportion of true positive predictions over the total number of
positive predictions made by the classifier, measuring how many positively labeled instances
identified by the classifier are actually true positives. Recall, on the other hand, quantifies the
proportion of true positive predictions over the total number of actual positive instances in the
data, measuring how many actual positive instances the classifier correctly identifies. The F1
metric is then calculated as:

F1 = 2 precision · recall
precision + recall

where precision and recall are calculated as:

precision = true positives
true positives + false positives

recall = true positives
true positives + false negatives .

3.2.2 Relevance Ranking
Ranking sorts documents by relevance to a query, a fundamental problem in Information Retrieval
with applications in search engines and recommender systems. We use the DaReCzech dataset
[31] containing 1.6 million Czech user query-document pairs with manually assigned relevance
levels (Figure 3.3). The dataset is divided into three sets: training, development, and testing.
Each document in the dataset consists of the concatenation of its title, URL, and Body Text
Extract (BTE). The BTE is generated by filtering the HTML body of a webpage using an internal
model of the Seznam.cz search engine, meaning it excludes headers, menus, and other content
without any information. We replicate their rankings for comparison, using the Precision at 10
(P@10) metric on test dataset.

P@10 measures the proportion of relevant documents among the top 10 retrieved documents
for a query. It is commonly used in information retrieval to assess the effectiveness of ranking
algorithms. For example, consider a ranking system that retrieves the following 10 top-ranking
documents for a query, where ”R” denotes a relevant document and ”N” denotes a non-relevant
document:

R, R, N, R, N, R, R, N, R, N

1A good classifier should have both high precision and high recall.
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There are 6 relevant documents (R) among the top 10. Thus, the P@10 for this query would
be 0.6 (i.e. 6/10). This metric provides a simple way to evaluate the performance of ranking
systems by focusing on the top results, which are typically the most important for users.

Table 3.3 Examples from the DaReCzech test dataset [31]. The documents shown are created by
concatenating the title, URL, and BTE, and are shortened to 128 tokens to reflect what the model can
observe during training.

Query Document Label
karamel recept title: karamel recepty url: labuznik.cz/ingredience/karamel bte:

Recepty - karamel Karamel je lepkavá, tahavá hmota zlatohnědé
barvy, kterou vyráb́ıme z cukru neustálým mı́cháńım, nejlépe met-
lou, na středńım stupni teploty. Hustotu poté upravujeme horkou
vodou a tukem, který muśı být pokojové teploty. Použ́ıváme ho v
gastronomii do teplé i studené kuchyně. Dı́ky...

1.00

kdy se otevřou
obchody

title: ve čtvrtek se otevřou obchody služby konč́ı zákaz nočńıho
vycházeńı url: kurzy.cz/zpravy/568356 ve ctvrtek se otevrou ob-
chody sluzby konci zakaz nocniho vychazeni bte: Ve čtvrtek se
otevřou obchody, služby, konč́ı zákaz nočńıho vycházeńı Od čtvrtka
3. prosince 2020 se přesune Česká republika z režimu 4 do režimu
3 protiepidemického...

0.00

3.3 Training datasets
We primarily employ pre-trained models for STS, fine-tuning them in an unsupervised manner.
For this purpose, we leverage a portion of a large non-public corpus acquired by Seznam.cz, called
the Czech corpus. It contains post-processed texts from Czech webpages of varying quality. These
diverse, cleaned sentences lack a specific domain, making them suitable for testing unsupervised
methods.

For our experiments with multilingual distillation from English to Czech, we need a high-
quality bilingual dataset to train the model. We choose the czeng20-csmono dataset within
Czeng 2.0 [51], which contains 50 million bilingual sentence pairs. Additionally, we experiment
with the czeng20-enmono dataset, comprising 70 million English sentences with corresponding
Czech synthetic translations.

To further optimize the STS model, we utilize training data from the CNA dataset.



Chapter 4

An Experimental Study of STS

In this chapter, we discuss the experimental work related to training STS models. The methods
used, implementation details, hyperparameters, and practical considerations are covered. We
provide a detailed procedure for training the most optimal STS model using these techniques.
It is important to note that the primary results are not presented in this chapter but are
reserved for the next chapter.

We initiate the training of STS models one by one, evaluating the results to determine the
subsequent steps. By the end of this chapter, we aim to have trained a few of STS models for
evaluation and discussion. The process begins with unsupervised training using SimCSE. Before
diving into the training, we examine the general implementation details.

4.1 Implementation
Experiments were conducted using Python and various machine learning libraries, including
PyTorch, Hugging Face Transformers, and Sentence Transformers [52, 20, 34]. PyTorch is an
open-source machine learning library that efficiently handles tensor computing with strong GPU
acceleration. Hugging Face Transformers is a Python library for state-of-the-art natural language
processing (NLP), offering easy-to-use interfaces to pre-trained language models and facilitating
fine-tuning on custom datasets. Sentence Transformers is a Python library that provides pre-
trained models for generating high-quality embedded sentences and offers several methods for
training bi-encoders or cross-encoders. The FAISS (Facebook AI Similarity Search) [53] library
was also used for efficient similarity search and clustering of high-dimensional vectors.

All models were trained on a single NVIDIA RTX A4000 GPU with 16 GB RAM capacity.

4.2 SimCSE
For training SimCSE, the Sentence Transformers library was utilized. Different configurations
of hyperparameters were tested, such as pooling function, learning rate, batch size, objective
function, and sequence length. However, due to computational demands, a comprehensive grid
search was not performed. Instead, an incremental tuning strategy [54] was employed to find
optimal hyperparameters. Initially, the small-e-czech model was trained with CLS pooling and
a multiple negative ranking loss (MNRL) objective on a portion of the Czech corpus sentences.
MNRL is a contrastive objective used in SimCSE, often referred to as the InfoNCE loss [55].

In the first set of experiments, only one hyperparameter was changed at a time, with others
remaining constant. Results indicated that MEAN pooling outperformed other pooling functions,
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as shown in Figure 4.1 A. Adjusting hyperparameters like sequence length, batch size, or learning
rate did not yield significant improvements, as depicted in 4.1 B.

Another set of experiments involved cleaning the sentences and changing the training objec-
tive. The sentences were preprocessed by filtering out those that were too short (< 5 words) or
too long (> 30 words), as well as those containing excessive symbol characters. Additionally, the
sentences were split using the Python NLTK library [56]. Using cleaned sentences significantly
benefited SimCSE. Interestingly, CLS pooling performed better than MEAN pooling when us-
ing cleaned sentences, as illustrated in Figure 4.1 C. We experimented with alternative objective
functions and similarity measures, including MegaBatchMarginLoss, OnlineContrastiveLoss, and
MultipleNegativesSymmetricRankingLoss as objectives1, and Euclidean distance as the similarity
function. However, none of these alternatives resulted in significant improvements.

In the final experiment, a learning rate of 2e-5, a batch size of 256, CLS pooling, the AdamW
optimizer [57], a sequence length of 128, and pre-processed sentences were used. The MNRL and
cosine similarity remained unchanged.

Figure 4.1 The performance of various experiments was evaluated on CNA, SVOB-IMG and SVOB-
HL datasets, and their average performance was measured using Spearman’s correlation coefficient and
the Euclidean similarity function: the similarity score was obtained by calculating the Euclidean distance
between two sentence embeddings, and the metric was calculated as Spearman’s correlation with true
labels. Plot A compares the pooling functions. Plot B compares different batch sizes and sequence
lengths, where ”CLS” have sequence length of 128 and batch size 256. Plot C shows the influence of the
sentence preprocessing on the SimCSE training. The training with preprocessed sentences are marked
as ”clean”.

4.3 TSDAE
The Sentence Transformers library, which contains the original TSDAE implementation, was
used in this experiment. The small-e-czech was used as an initial PLM. The focus was on
optimizing the learning rate and pooling function during hyperparameter search. A maximum
sequence length of 512 tokens and a batch size of 16 were set as the default configuration. Due
to the memory-intensive nature of TSDAE, this batch size was the largest possible for a 16 GB
RAM system with a sequence length of 512. The model was trained using the AdamW optimizer
with a learning rate of 5e-5. In comparison to SimCSE, TSDAE training proceeded at a much
slower pace, which restricted the exploration of various configurations. Nevertheless, limited
experimentation revealed that the CLS pooling method was vastly superior to other pooling
techniques, and adjusting the learning rate did not yield further improvements in performance.

1All of these can be found in Sentence Transformer Library [22].
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Experiments were conducted on the ELECTRA small model without pre-training (i.e., ran-
domly initialized). The results showed that using TSDAE as pre-training led to poor performance
during subsequent fine-tuning on downstream tasks. In fact, the performance was worse than
that of a randomly initialized ELECTRA model without pre-training. We speculate that the
trained embeddings from a separate TSDAE are too complex to be used as features for general
NLP tasks. While it is sufficient for the TSDAE objective, it requires a complex decoder (the
model itself, since the weights are tied) to decode these features. However, this is not the case
in usual fine-tuning scenarios, where we only have a simple classifier or regressor at hand. This
problem addresses recent auto-encoders models with shallow decoder, for example SimLM [58]
or RetroMAE [59].

4.4 Multilingual distillation
The objective of this experiment was to distill an English model into a Czech model using
Multilingual Distillation. The mpnet 2 model served as the teacher, while a newly initialized
BERT small model acted as the student. Since the student model is multilingual and should be
capable of encoding both English and Czech sentences, the Czech tokenizer was unsuitable. To
address this issue, we employ the union of English BERT and small-e-czech vocabularies.

To tackle the discrepancy in embedding size between mpnet (768) and BERT small (256), a
Principal Component Analysis (PCA) projection was implemented to reduce mpnet’s embedding
size while maintaining high quality. PCA was trained on the NLI dataset corpus. An alternative
approach was tested to train a student with a different embedding size. Specifically, a linear
projection without an activation function was appended to the smaller student model, increasing
its embedding size to 768, and then training was initiated. After training, the projection was
removed, resulting in a trained student model with the desired 256 embedding size. The PCA
and linear projection are depicted in Figure 4.2. While the FFN approach performed slightly
better on downstream tasks, it was somewhat weaker on the STS task. Therefore, we ultimately
opted for the PCA approach as our final setup.

A bilingual dataset was necessary for training the model. Various datasets, including czeng20-
csmono and czeng20-enmono were experimented with, both independently and in combination.
We found that the quality of translations significantly affected the effectiveness of the training
process. Additionally, the synthetic Czech language in the second dataset was unsuitable for
training. The best results were achieved using only the czeng20-csmono dataset.

During the hyperparameter search, a smaller batch size surprisingly worked well. For the final
experiment, a batch size of 32, a larger learning rate of 1e4, a cosine scheduler, and a warmup
of 10% of training steps were used. The model was trained for five epochs on the czeng20-
csmono dataset. The resulting model is called czen-bert-small, as it is a bilingual BERT model.
Although attempts were made to follow up with SimCSE and TSDAE training, we discovered that
these techniques did not provide any additional performance improvement for an already robust
BE; in fact, they could diminish it. While SimCSE with czen-bert-small occasionally showed
slight improvements in STS performance, it consistently undermined performance in downstream
tasks, making it an unworthy trade-off. TSDAE was even more detrimental, negatively affecting
both STS and downstream performance.

4.5 Trans-encoder
We implemented the iterative training process in the Trans-Encoder using the authors’ source
code [45]. Initially, we found that using a new model (PLM) during each iteration was more
effective than initializing the CE with a BE, and vice versa. This indicated that the BE might

2Specifically, the all-mpnet-base-v2 [23] model.
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Figure 4.2 The difference in multilingual distillation using PCA and one layer of Feed-Forward
Neural network (FFN). The PCA trains students on embedding size of 256, meanwhile the FFN trains
the student on embedding size of 768.

not be a suitable match for CE training. As a result, the small-e-czech model could be initialized
as the CE for each iteration, however to further leverage knowledge distillation, RobeCzech was
chosen as the CE. This approach distilled a stronger CE to BE and a larger model to a smaller
one.

The CNA train dataset was first used to train a robust RobeCzech CE, referred to as
RobeCzech-1. After the Trans-encoder process, a strong BE, czen-bert-small, was trained on
the CNA train sentences’ silver labels produced by RobeCzech-1. This led to a significant perfor-
mance improvement on the CNA test dataset, showcasing the power of knowledge distillation.
The trained czen-bert-small using labels produced by RobeCzech-1 is called czen-bert-small-1.
This entire process was the first iteration of the Trans-Encoder as depicted in Figure 4.3.

The distillation of czen-bert-small-1 into a newly initialized RobeCzech CE resulted in an
improved RobeCzech-2, further proving the effectiveness of the Trans-encoder concept. The
czen-bert-small-2 was then trained as the final Trans-encoder BE model. Additional iterations
did not yield further improvements.

Although the resulting czen-bert-small-2 model performed well on the CNA test dataset, its
performance on the SVOB-IMG and the SVOB-HL declined. To address this, more unlabeled
sentence pairs were needed to improve the model’s generalization capabilities. The first approach,
randomly selecting two sentences from the Czech corpus, did not produce significant results. It
was hypothesized that these sentence pairs were unlikely to be semantically similar, leading to
an excess of low probability labels.

An alternative approach involved paraphrase mining. Sentences were shortened and cleaned,
reducing symbols and extraneous information. Sentence embeddings were calculated and stored
in a FAISS index. From this index, 50 closest sentences were randomly sampled for each anchor
sentence. Five pairs were then randomly selected from these, forming a new dataset with approx-
imately one million unlabeled sentence pairs. This dataset was labeled with czen-bert-base and
combined with the CNA train pairs, which retained their original labels. The resulting model,
paraphrase-czen-bert-small, maintained the same performance level as czen-bert-small-2 while
also enhancing its performance on the other datasets.

The Trans-Encoder pipeline is highly complex, and it was not possible to execute all possible
experiments. Further research is necessary, particularly concerning the strategy for creating
unlabeled pairs for Trans-Encoder training. However, we believe that this technique holds great
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potential.

Figure 4.3 Visualization of the first iteration of the Trans-encoder pipeline. The RobeCzech model
is trained as a CE on CNA training dataset [50] gold labels (CNA-gold). The model is then used to
re-label the CNA dataset, resulting in CNA-silver, which is used to train the czen-bert-small model as a
BE. The trained BE czen-bert-small-1 model is then used to re-label the CNA dataset again, resulting
in CNA-brone, which is utilized in subsequent iterations.
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Chapter 5

Evaluation

This chapter will cover the primary findings on STS and downstream tasks for STS model
and other PLMs, and provide a detailed discussion of the results.

5.1 Evaluation of Existing Pre-trained Language Models

Table 5.1 Evaluation of the PLMs on the STS datasets [48, 49]. The final score is measured as
average Speraman correlation ×100 on all the datasets. ∗Random models are randomly initialized (with
random weights, without additional training) ELECTRA models with corresponding size. First two
models are small, other are base sized. LaBSE, as supervised model trained as BE, sets the upper bound
for BEs. Czert-B-sts-CNA (CE) [48] is a CE model trained on CNA training dataset.

Spearman
Model SVOB-IMG SVOB-HL CNA Average
Random small model∗ 60.0 56.3 66.4 60.9
Small-e-czech 28.3 31.6 57.0 38.9
Random base model∗ 64.3 55.0 68.3 62.5
RobeCzech-base 67.9 58.2 75.7 67.2
Czert-B-base-cased 77.4 64.3 84.3 75.3
Czert-B-sts-CNA (BE) 71.5 58.5 73.1 67.7
LaBSE 85.1 77.3 85.7 82.7
Czert-B-sts-CNA (CE) 81.1 74.0 88.8 81.3

First, we analyze the performance of existing PLMs on STS (see Figure 5.1). The scores
are calculated as the best Spearman rank correlation coefficient, considering all combinations of
similarity and pooling functions1. This chart highlights the maximum potential of each model
in the BE setup. The performance of a CE model trained on the CNA training dataset is also
included in the chart for comparison. It’s worth mentioning that most trained models perform
the best with Euclidean or Cosine similarity and CLS pooling.

The chart indicates that small-e-czech, or ELECTRA pre-training, is not well-suited for STS,
as it shows the lowest performance among all models. Surprisingly, even a randomly initialized
ELECTRA model strongly outperforms small-e-czech. The random model, with no pre-training,
performs exceptionally well on STS, setting a strong baseline.

1We used cosine similarity, Manhattan distance, Euclidean distance, and dot product as similarity functions,
and employed CLS, MEAN, and MAX for pooling.
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Before discussing other pre-trained models, it should be noted that the last six models have
a base size with an embedding size of 768. The RobeCzech-base (RobeCzech) model, which uses
RoBERTA pre-training, performs noticeably better than ELECTRA and the random model in
base size, however the Czert-B-base-cased (Czert) model, a BERT-like model, outperforms other
PLMs, making it the more suitable pre-training for STS. The Czert-B-sts-CNA model was trained
on the CNA training dataset as a CE. Although the CE training improves its performance on
STS when used as CE, it degrades the quality of sentence embedding.

Although RoBERTA and BERT show reasonable performance on STS, there is a significant
difference in performance compared to LaBSE, which was directly trained for strong sentence
embeddings, even though LaBSE is not specifically trained for the Czech language. This demon-
strates the power of labeled or a huge amount of semi-supervised data.

We also assess the performance of PLMs on the CFD dataset (Table 5.2) using the evaluation
methodology described in [28]. To obtain sentence embeddings, we apply the encoder with CLS
pooling, and a softmax-activated classification layer generates the sentiment prediction. Our
models are trained with AdamW, a batch size of 64, and a fixed learning rate of 5e-5, without
performing a search for the optimal learning rate. Initially, we train for one epoch with frozen
encoder weights, only updating the weights of the classification layer. Following this, we train
for an additional three epochs without freezing the encoder weights, simultaneously updating
both the encoder weights and classification layer weights. During training, we perform 10-fold
cross-validation, reserving random 10% of the training data in each iteration to form a develop-
ment set. We report the average performance and standard deviation across all folds. Table 5.2
demonstrates that the performance of the base models, which have more parameters, is indeed
clearly superior to that of the small models. Pre-training greatly improves the results of sub-
sequent fine-tuning, as evidenced by the significant differences between the randomly initialized
models and the pre-trained ones. Although the LaBSE model outperforms other models on STS
tasks, this advantage does not necessarily transfer to less similar tasks such as sentiment analysis,
resulting in comparable results to other pre-trained language models.

Table 5.2 The performance on the CFD [50] was evaluated using 10-fold macro F1, with the standard
deviation measured on 10 folds (following [28]). The table is divided into smaller models at the top and
base models at the bottom.

Model CFD
Random small model 55.3 ±2.7
Small-e-czech 75.5 ±1.2
Random base model 70.1 ±3.6
Czert-B-base-cased 78.8 ±1.2
RobeCzech-base 80.1 ±1.1
LaBSE 79.7 ±1.4

5.2 Evaluation of Unsupervised STS Bi-Encoders
We follow with an evaluation of models that underwent fully unsupervised fine-tuning using
SimCSE and TSDAE. The results of our experiment demonstrate that integrating SimCSE with
the small-e-czech model leads to a significant improvement in performance on the STS task, as
depicted in Table 5.3. Surprisingly, TSDAE outperforms SimCSE on STS, which contradicts the
findings on English reported in the TSDAE paper [42]. It’s important to note, however, that
we use smaller models in our study. We also trained SimCSE with Czert and RobeCzech for
comparison, but the gains on STS are not as substantial as with the small-e-czech models. As
before, all of these models fall short of the LaBSE model’s performance. We further evaluate the
models on the CFD and DaReCzech dataset, with the results shown in Table 5.4.



Evaluation of Unsupervised STS Bi-Encoders 33

Table 5.3 The STS models are evaluated on three datasets, namely SVOB-IMG, SVOB-HL, and
CNA [48, 49], with the average Spearman correlation ×100 used as the final score for each model.

Spearman
Model SVOB-IMG SVOB-HL CNA Average
Small-e-czech 28.3 31.6 57.0 38.9
SimCSE-small-e-czech 65.1 54.4 77.9 65.8
TSDAE-small-e-czech 76.5 65.1 80.6 74.0
Czert-B-base-cased 77.4 64.3 84.3 75.3
SimCSE-RobeCzech-base 80.7 68.1 85.9 78.2
SimCSE-Czert-B-base-cased 79.9 67.5 85.7 77.7
LaBSE 85.1 77.3 85.7 82.7

For evaluation on relevance ranking, we employ the code from the DaReCzech paper and
follow their exact setup. However, we do not use knowledge distillation for model training (but
include the results in Table 5.4). We only use the custom regression head, which combines
cosine similarity, Euclidean distance, and one FFN. This entire regression head can be seen as
an example of a more complex similarity function. We also apply the weighted CLS pooling,
which takes the weighted average of CLS hidden representations on all layers, with the weights
learned during training. We train the model on the DaReCzech training dataset and select the
checkpoint based on the evaluation of their development dataset. We train the model using a
learning rate of 5e-5 and a batch size of 64, and evaluate it on the test dataset.

We observe that although SimCSE and TSDAE significantly improve performance on STS,
they negatively affect performance on tasks dissimilar to STS, i.e., those not using sentence pairs
(CFD). However, in terms of performance on information retrieval, specifically relevance ranking,
this pre-training indeed helps with the performance. We even outperform the best model from
the DaReCzech paper, which uses knowledge distillation from CE on this task.

Table 5.4 The performance on the CFD [50] and DaReCzech [31] dataset is measured as F1 and
P@10 respectively (×100). aThe Siamese-Cosine model is the best performing model from [31] without
knowledge distillation. bThe Siamese-Cosine-distilled is the best model from their paper. c The Oracle
represents the highest attainable P@10 score for the DaReCzech dataset. This is due to the fact that
not all queries have at least 10 relevant documents associated with them.

Model CFD DaReCzech
Random small model 55.3 ± 2.7 37.9
Small-e-czech 75.5 ± 1.2 44.73
SimCSE-small-e-czech 73.9 ± 1.4 45.32
TSDAE-small-e-czech 74.6 ± 1.3 45.52
Siamese-Cosinea - 44.72
Siamese-Cosine-distilledb - 45.49
Oraclec - 59.3

5.2.1 The Best STS Models
In the previous sections, all models utilized only the Czech corpus, indicating they were entirely
unsupervised. The following models, however, leverage pre-trained supervised models, bilingual
corpora, and even the CNA training dataset to achieve the best possible performance. Figure 5.5
presents the evaluation results. The table includes the TSDAE-small-e-czech model, which is the
best-performing small model from previous section, as well as the LaBSE model, a multilingual
supervised base model that serves as our upper bound.
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Table 5.5 Evaluation of the best STS models on three datasets, namely SVOB-IMG, SVOB-HL, and
CNA [48, 49]. The performance is measured as Spearman’s correlation ×100.

Spearman
Model SVOB-IMG SVOB-HL CNA Average
TSDAE-small-e-czech 76.5 65.1 80.6 74.0
czen-bert-small 91.7 86.9 88.0 88.8
czen-bert-small-2 88.9 84.6 91.9 88.4
paraphrase-czen-bert-small 91.1 85.3 91.8 89.4
LaBSE 85.1 77.3 85.7 82.7

The czen-bert-small model, trained solely using multilingual distillation, exceeded our ex-
pectations in its effectiveness, even surpassing the performance of the base-sized LaBSE model.
This shows that multilingual distillation can effectively transfer knowledge between languages.
The czen-bert-small-2 and paraphrase-czen-bert-small models were developed by combining the
czen-bert-small model with Trans-Encoder, an advanced knowledge distillation technique. Al-
though this did not lead to a significant performance improvement, any minor enhancements
are valuable when the STS model is already strong. We assess the performance of these models
on downstream tasks in Table 5.6. We observe that the czen-bert-small model not only learned
powerful features for STS, but also for downstream tasks, outperforming all other models in both
sentiment analysis and relevance ranking. The Trans-Encoder training did not further contribute
to the performance on downstream tasks.

Table 5.6 This table presents the performance (F1 ×100 and P@10 ×100) of the top STS models
on downstream tasks [50, 31]. ∗The LaBSE-CE model, which is the LaBSE model trained as a CE on
DaReCzech, serves as the upper bound.

Model CFD DaReCzech
TSDAE-small-e-czech 74.6 ± 1.3 45.52
czen-bert-small 79.2 ± 0.9 46.15
paraphrase-czen-bert-small 78.7 ± 1.2 46.10
Siamese-Cosine-distilled - 45.49
LaBSE-CE∗ - 46.97

5.3 The Impact of Training Data Size
DaReCzech is a vast collection of annotated query-document pairs for relevance ranking. How-
ever, for other similar tasks, we may not always have access to such a large labeled dataset.
To address this, we conduct experiments using different amounts of labeled data, ranging from
1000 to all 1.4 million pairs, to fine-tune our model. We then observe the effect of our STS
pre-training on this task with varying amounts of data. Table 5.1 presents the results of our
experiments. The reported results are averaged over four runs with different random seeds for
model initialization and data subset. They include the P@10 metric and the standard deviation
across all runs.

We observe that when using too few annotated examples (1000), all models perform simi-
larly, unable to learn much from the limited data. However, when we increase the number of
annotations to at least 5000, the czen-bert-small model demonstrates a significant performance
boost. Although other methods such as SimCSE and TSDAE also show benefits, their impact
is not clear until annotations reach a larger scale (100,000). The initial hypothesis behind this
experiment is that pre-training with special methods would not improve performance with suf-
ficient fine-tuning data, but could be advantageous with a smaller number of annotations. Our
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results confirm that this approach is indeed beneficial, both for a smaller number of annotations
and for larger annotation datasets.

5.4 Exploring the Best STS Model
This section highlights specific examples from our top-performing STS model, paraphrase-czen-
bert-small. Figure 5.2 demonstrates the notable relative improvement when transitioning from
small-e-czech to paraphrase-czen-bert-small. The graph clearly indicates that ELECTRA pre-
training is not effective for STS, whereas TSDAE can lead to substantial improvement.

Figure 5.7 presents the largest prediction errors made by the paraphrase-czen-bert-small model
on our STS datasets. By examining these mistakes, we can identify areas for model improvement.
The model typically overestimates the similarity score and never underestimates it.

In the final Table 5.8, we incorporate a large query dataset containing over 26 million real
user queries sourced from Seznam.cz. An FAISS index is created for these queries, enabling
the search for the most similar ones given specific query samples. The objective is to determine
whether the STS model can capture the query semantics and accurately retrieve the most similar
ones. Initially, the 30,000 most similar queries for a given query are identified and sorted. Then,
queries with different order numbers (ranging from 1 to 30,000) are examined. This approach
allows us to visualize even more distant examples.
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Figure 5.1 Evaluated performance of STS pre-trained models on the DaReCzech [31] relevance ranking
task using different amounts of labeled data for fine-tuning, ranging from 1,000 to 1.4 million (the
entire training dataset). The reported performance metrics represent the average P@10 score of four
experimental runs, along with the standard deviation across all runs. The y-axis displays the P@10
metric, while the x-axis represents the number of training steps.
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Figure 5.2 Correlation between labels and predictions on STS datasets [48, 49] for different models.
The red line visualizes the ideal predictions.
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Table 5.7 Biggest mistakes of the Paraphrase-czen-bert-small model on three STS datasets [48, 49].

Dataset Sentence 1 Sentence 2 Label Prediction

SVOB-IMG

• Dva černob́ıĺı psi si hraj́ı spolu
venku.

• Dvě děti a černý pes si hraj́ı
venku ve sněhu.

0.2 0.772

• Dı́tě skáče do bazénu. • Pes skákaj́ıćı do bazénu. 0.24 0.772
• Dva psi hraj́ıćı si ve sněhu. • Dvě děti hraj́ıćı si se psem. 0.24 0.764
• Černob́ılé foto staré vlakové
stanice.

• Černob́ılé foto motorky lež́ıćı
na zemi.

0.04 0.563

• Dva ptáci škádĺıćı se v trávě. • Dva psi si spolu venku hraj́ı. 0.04 0.557

SVOB-HL

• Č́ınské akcie při pátečńım
poledni uzavřely výše

Č́ınské akcie v pátek otevřely
ńıže

0.2 0.846

• Tokio bude hostit olympijské
hry 2020.

• Zápas přidán na olympijské hry
v Tokiu 2020.

0.279 0.907

• FAA pokračuje v zákazu amer-
ických let̊u do Tel Avivu

• FAA zpř́ısńı zákaz amerických
let̊u do Tel Avivu

0.36 0.946

• Útok NATO ”zab́ıj́ı civilisty” v
Afghánistánu

• Dva vojáci NATO byli zabiti v
Afghánistánu

0.16 0.718

• FAA pokračuje v zákazu US
let̊u do Tel Avivu.

• FAA ruš́ı zákaz U.S. let̊u do Tel
Avivu.

0.36 0.899

CNA

• Pr̊uměrná mzda v podniku se
pohybuje kolem 21.400 Kč, tedy
téměř 6000 Kč pod celostátńım
pr̊uměrem.

• Pr̊uměrná mzda v podniku se
pohybuje kolem 22.700 Kč a na
konci roku má být zhruba 23.000
Kč měśıčně, tedy v́ıce než 4000
Kč pod celostátńım pr̊uměrem.

0.240 0.817

• ”STAN ohlásil spolupráci s
Daliborem Dědkem, ta nadále
trvá.

• STAN zároveň oznámil odchod
Dalibora Dědka z čela Ústecké
kandidátky.

0.203 0.722

• U obchodu s ropou a zemńım
plynem, jehož výsledek kladně
ovlivnil bilanci zahraničńıho
obchodu, se meziročně sńıžil
schodek o 1,8 miliardy korun a u
obchodu s chemickými látkami
o 1,6 miliardy.

• O miliardu se pak prohloubil
deficit bilance obchodováńı s
koksem a rafinovanými ropnými
produkty.

0.222 0.704

• Přesné př́ıčiny smrti inženýra
má v Německu po převezeńı os-
tatk̊u určit pitva.

• Německá strana je o tom
přesvědčena, i když tělo oběti
bylo podle neoficiálńıch zdroj̊u
nalezeno s pr̊ustřelem v těle.

0.185 0.662

• Právě Schapiro byl velvys-
lancem USA v době, kdy byl
Nikulin zatčen.

• Zprávu o vydáńı Nikulina
uv́ıtal i bývalý americký velvys-
lanec v Praze Andrew Schapiro.

0.222 0.698



Exploring the Best STS Model 39

Table 5.8 Examples of most similar queries for a given anchor query retrieved using the Parahprase-
czen-bert-base model. The rank represents the query position in a sorted dataset based on the similarity
score, as labeled by the model. This non-public dataset of queries consists of 26 million user queries
obtained by Seznam.cz.

Anchor Query Most Similar Query Rank Similarity score

Co dělat v Brně o
v́ıkendu?

co o v́ıkendu v brně 1 0.936
tipy na v́ıkend brno 5 0.881
kam o v́ıkendu v brně 10 0.868
na co do města brna 50 0.821
kam o v́ıkendu s detmi domů brno a okoĺı 100 0.793
rozhoz brno 1 000 0.717
Vı́kend v praze 2 500 0.690
Hrazd́ıra Brno 10 000 0.654
masopust v brně 2023 20 000 0.633
Brno dolńı nadrazi 30 000 0.619

Jaký je nejlepš́ı zp̊usob,
jak odstranit skvrny z
oblečeńı?

jak odstranit skvrny od oblečeńı 1 0.964
jak vyčistit skvrny na oblečeńı 5 0.918
jak odstranit mastný flek z oblečeńı 10 0.902
odstranit mastné skvrny z prádla 50 0.823
jak odstranit skvrny od fixy 100 0.798
jak odstranit čokoládu z oblečeńı 1 000 0.667
odstraněńı nálepky z oděvu 2 500 0.621
Ručńı prášek na prańı. 10 000 0.556
blaklader oděvy 20 000 0.524
ODĚVNÍ KOŽENKA 30 000 0.505

What is the best way to
remove stains from
clothes?

jak odstranit skvrny od oblečeńı 1 0.930
jak vyčistit skvrny na oblečeńı 5 0.905
jak odstranit pĺısňové skvrny na oděvech 10 0.875
jak vyčistit krev rez z oblečeńı 50 0.811
jak vyprat tuž z oblečeńı 100 0.783
čisté b́ılé oblečeńı prańı 1 000 0.667
jak prát oblečeńı na motorku 2 500 0.621
jak vyprat kožene pracovńı rukavice 10 000 0.556
pohlcovac pachu na textil 20 000 0.523
SMOG dámské dž́ıny 30 000 0.504

boulder

Boulder 1 1.000
bouldery 5 0.975
co je Boulder 10 0.944
Boulder Boskovice 50 0.851
boulder v́ıtkovice 100 0.814
adam ondra ĺıstky bouldering 1 000 0.692
skála čsfd 2 500 0.658
kameny z údoĺı 10 000 0.601
lavinová lopata 20 000 0.566
den braven kamenny na koberec 30 000 0.544

matematika

MATEMATIKA 1 1.000
Matematiky 5 0.989
matematické 10 0.983
in matematika 50 0.935
matematicky celkem 100 0.902
Matematika - Úměrnosti 1 000 0.814
tabulky matematické 2 500 0.756
čssz kalkulacka 10 000 0.620
co je desetinné č́ıslo 20 000 0.512
výpočet mm2 30 000 0.466
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Conclusion

The primary aim of this thesis was to investigate STS, with a focus on the challenges faced by
low-resource languages, such as Czech. Our work aimed to evaluate the performance of various
pre-trained language models in solving the STS problem, demonstrate that common pre-training
methods are not ideal for this task, identify potential improvements to enhance the performance
of these models, and use these improvements to train new superior Czech STS models.

To achieve this, we conducted a comprehensive study of techniques and models for solving
the STS problem, focusing on the role of neural networks, the Transformer architecture, and pre-
trained language models such as BERT, RoBERTa, and ELECTRA. Our study also delved into
the different strategies for generating sentence embeddings and the limited availability of Czech
pre-trained models. We explored various language models and methods for obtaining sentence
embeddings, including state-of-the-art English models and their comparative performance. The
Cross-encoder and Bi-encoder architectures were presented, along with advanced methods for
training Bi-encoders for STS tasks such as SimCSE or TSDAE. We investigated techniques such
as knowledge distillation and transferring knowledge between languages.

Despite the challenges faced, such as limited resources for the Czech language and the com-
plexity of the problem, our research goals were accomplished. We collected data for evaluation
for both STS dataset downstream tasks. We evaluated PLMs on these tasks. We confirmed
that methods like MLM or Replaced Token Detection are not ideal as stand-alone unsupervised
methods for training models for the STS task or information retrieval without further fine-tuning.
However, they can very effectively improve the performance for models that are subsequently
fine-tuned using supervision on tasks like Sentiment Analysis.

We successfully trained various Czech STS models and confirmed that with unsupervised
techniques like SimCSE or TSDAE, we can effectively create Bi-encoders from PLMs, improving
performance on both STS and Information Retrieval, although these techniques negatively affect
performance while fine-tuning on tasks that do not leverage sentence pairs. We also assessed the
impact of multilingual distillation, revealing that our czen-bert-small model performed better
on the STS task than other models, including LaBSE, the multilingual base model trained on
a large supervised dataset. This finding indicated the potential benefits of using multilingual
distillation for solving STS tasks in low-resource languages.

We hope our research provides valuable insights into the challenges and potential improve-
ments for STS tasks in low-resource languages, paving the way for future advancements in natural
language processing for languages like Czech.
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WENZEK, Guillaume; GUZMÁN, Francisco; GRAVE, Edouard; OTT, Myle; ZETTLE-
MOYER, Luke; STOYANOV, Veselin. Unsupervised cross-lingual representation learning
at scale. arXiv preprint arXiv:1911.02116. 2019.

22. REIMERS. sbert.com website. 2019. Available also from: https://www.sbert.net/docs/
pretrained_cross-encoders.html.

23. all-mpnet-base-v2 model [https : / / huggingface . co / sentence - transformers / all -
mpnet-base-v2]. [N.d.]. Accessed: May 10, 2023.

24. SONG, Kaitao; TAN, Xu; QIN, Tao; LU, Jianfeng; LIU, Tie-Yan. Mpnet: Masked and per-
muted pre-training for language understanding. Advances in Neural Information Processing
Systems. 2020, vol. 33, pp. 16857–16867.

25. all-MiniLM-L6-v2 [https://huggingface.co/sentence-transformers/all-MiniLM-
L6-v2]. [N.d.]. Accessed: May 10, 2023.

26. WANG, Wenhui; WEI, Furu; DONG, Li; BAO, Hangbo; YANG, Nan; ZHOU, Ming. Minilm:
Deep self-attention distillation for task-agnostic compression of pre-trained transformers.
Advances in Neural Information Processing Systems. 2020, vol. 33, pp. 5776–5788.

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.sbert.net/docs/pretrained_cross-encoders.html
https://www.sbert.net/docs/pretrained_cross-encoders.html
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2


Bibliography 45

27. MUENNIGHOFF, Niklas; TAZI, Nouamane; MAGNE, Löıc; REIMERS, Nils. MTEB: Mas-
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Miloslav. Czert–Czech BERT-like Model for Language Representation. arXiv preprint arXiv:2103.13031.
2021.
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