
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Development of MusicMates Web Application

Kirill Alekhnovich

Ing. Marek Suchánek, Ph.D.

Informatics

Web and Software Engineering, specialization Software

Engineering

Department of Software Engineering

until the end of summer semester 2024/2025

Instructions

Spotify is a widely used and popular music and streaming service; however, it does not

provide direct user/library metrics and comparisons useful for friends. On the other hand

it provides an API so it is possible to build such applications externally. The goal of this

thesis is to design and implement a web application that will take advantage of Spotify

API and provide various metrics tracking for users, sharing them, and comparing them

among users.

- Analyse Spotify features and API, identify useful resources for retrieving information for

metrics and statistics.

- Research existing solutions that use Spotify API for the same or similar goals.

- Set requirements for your own solution and prepare use cases.

- Design the solution with respect to best practices of software engineering. Focus on

sustainability and extensibility of the application.

- Implement as a client-server web application with Spring Boot / Kotlin for backend and

Vue.js / TypeScript for frontend.

- Test the application based on the design.

- Evaluate the solution and outline potential future improvements.

Electronically approved by Ing. Michal Valenta, Ph.D. on 18 May 2023 in Prague.

Bachelor’s thesis

DEVELOPMENT OF
MUSICMATES WEB
APPLICATION

Kirill Alekhnovich

Faculty of Information Technology
Department of Software Engineering
Supervisor: Ing. Marek Suchánek, Ph.D.
February 14, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Kirill Alekhnovich. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Alekhnovich Kirill. Development of MusicMates Web Application. Bachelor’s
thesis. Czech Technical University in Prague, Faculty of Information Technology, 2024.

Contents

Acknowledgments vi

Declaration vii

Abstract viii

List of abbreviations ix

Introduction 1

Goals 2

1 Analysis 3
1.1 Spotify Web API . 3

1.1.1 Endpoints . 3
1.2 Analysis of existing solutions . 5

1.2.1 Last.fm . 5
1.2.2 stats.fm . 7
1.2.3 Stats for Spotify . 9
1.2.4 Obscurify . 9
1.2.5 musictaste.space . 10
1.2.6 Summary of existing solutions . 11

1.3 Requirements analysis . 12
1.3.1 Functional requirements . 13
1.3.2 Non-functional requirements . 13

2 Design 15
2.1 Technologies . 15

2.1.1 Frontend . 15
2.1.2 Backend . 16
2.1.3 Database . 17

2.2 Architecture . 18
2.2.1 Presentation tier . 18
2.2.2 Application tier . 19
2.2.3 Data tier . 19

2.3 API . 19
2.3.1 Endpoints . 21

2.4 Graphical User Interface . 23
2.4.1 Main page . 23
2.4.2 User profile . 24
2.4.3 Album page . 26
2.4.4 Artist page . 26
2.4.5 Track page . 27

ii

Contents iii

3 Implementation 28
3.1 Backend implementation . 28

3.1.1 Computing statistics . 28
3.1.2 Updating playbacks . 28
3.1.3 Mapping platform objects . 29
3.1.4 Calculating compatibility . 30
3.1.5 Security . 30
3.1.6 Lyrics fetching . 30

3.2 Frontend implementation . 31
3.2.1 Composables . 31
3.2.2 TanStack Query . 31

4 Testing 33
4.1 Types of tests . 33

4.1.1 Unit testing . 33
4.1.2 Manual testing . 33

4.2 Results of tests . 34

5 Evaluation 35
5.1 Usability . 35
5.2 Comparison with existing solutions . 35
5.3 Future improvements . 35

5.3.1 Extended statistics . 35
5.3.2 Profound preferences comparison . 36
5.3.3 Support more music services . 36
5.3.4 Responsive design . 36
5.3.5 Custom profile images . 36
5.3.6 Complete album fetching . 36
5.3.7 Mobile applications . 36

6 Conclusion 37

Contents of the attachment 42

List of Figures

1.1 Last.fm user page [17] . 6
1.2 Last.fm report’s most listened artists, albums and tracks [17] 6
1.3 Last.fm report’s charts and diagrams [17] . 7
1.4 stats.fm user profile [22] . 8
1.5 stats.fm friends comparison [22] . 8
1.6 Obscurify rating [27] . 9
1.7 Obscurify tracks’ analysis [27] . 10
1.8 musictaste.space’s compatibility report [29] . 11
1.9 MoSCoW prioritization [31] . 12

2.1 Three tier architecture [52] . 18
2.2 Database model . 20
2.3 Main page . 23
2.4 Overview tab . 24
2.5 Stats tab . 25
2.6 Friends tab . 25
2.7 Album page . 26
2.8 Artist page . 26
2.9 Track page . 27

List of Tables

1.1 Implemented functionality in existing applications 12
1.2 Functional requirements . 13
1.3 Non-functional requirements . 14

2.1 REST principles [53] . 21

iv

List of code listings

1 Updating playbacks . 29
2 Mapping objects . 30
3 Lyrics fetching . 30
4 Date to string composable . 31
5 Duration to string composable . 31
6 Tanstack Query wrapping . 32
7 Get playbacks function . 32

v

I would like to thank my supervisor Ing. Marek Suchánek, Ph.D.
for his guidance and insightful suggestions on writing this thesis. A
big thanks also belongs to my family and friends for their consistent
support throughout my studies.

vi

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact
that the Czech Technical University in Prague has the right to conclude a licence agreement on
the utilization of this thesis as a school work pursuant of Section 60 (1) of the Act.

In Prague on February 14, 2024

vii

Abstract

The subject of this bachelor’s thesis is the design and implementation of a web application, that
provides its users with statistics of their listening activity on different music streaming services.
It uses Spotify Web API for user data fetching and conducts an analysis based on the user’s
playback history. The resulting software consists of a Kotlin Spring backend application and
a web client implemented using TypeScript and the Vue.js framework. It allows its users to
review their preferences in music by providing corresponding statistics, and to compare musical
preferences with their friends.

Keywords web application, music, statistics, Spotify, Kotlin, Spring, Vue, TypeScript

Abstrakt

Předmětem této bakalářské práce je návrh a implementace webové aplikace která umožńı svým
uživatel̊um sledovat statistiky jejich aktivity na r̊uzných hudebńıch streamovaćıch službách. Tato
aplikace použ́ıvá Spotify Web API pro nač́ıtáńı uživatelských dat a provád́ı analýzu založenou
na historii přehráváńı uživatele. Výsledný software se skládá z backendové Kotlin Spring ap-
likace a webového klienta implementovaného pomoćı TypeScript a frameworku Vue.js. Ap-
likace umožňuje svým uživatel̊um sledovat své preference poskytnut́ım odpov́ıdaj́ıćıch statistik,
a porovnávat hudebńı preference se svými kamarády.

Kĺıčová slova webová aplikace, hudba, statistika, Spotify, Kotlin, Spring, Vue, TypeScript

viii

List of abbreviations

ACID Atomicity, Consistency, Isolation, Durability
API Application Programming Interface
CSS Cascading Style Sheets

DI Dependency Injection
GUI Graphical User Interface

HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment
IOC Inversion of Control

ISRC International Standard Recording Code
JS JavaScript

JSON JavaScript Object Notation
JVM Java Virtual Machine
JWT JSON Web Token

REST Representational State Transfer
TS TypeScript
UI User Interface

URL Uniform Resource Locator
UX User Experience

ix

Introduction

We live in a time when music streaming services have become an essential part of people’s lives.
Every day millions of people listen to their favorite songs on various music platforms, constantly
find new ones, and create playlists based on their musical preferences. Moreover, these streaming
services provide artists with an opportunity to share songs they create with large numbers of
people and significantly expand their audience.

Despite all this, modern streaming services do not provide any social interactions across their
user base. They don’t give their users a way to view listening statistics, share their listening
history, or compare it with friends. Lack of such functionality makes it more difficult for users
to analyze their musical preferences as well as to find new songs and artists they may like.

Based on this, the result of this thesis will be useful for active users of music services who
want to better understand what songs they and their friends like. Thanks to the final application,
users will be able to enrich their library with new songs, easily share their musical preferences
with other people, and find new friends among music lovers.

I chose this topic because this issue has not yet been resolved sufficiently enough, and also
because implementation of such a service will help me apply the skills acquired during my studies
at the university in practice.

The objective of this thesis is to conduct an analysis of existing solutions, define functional
and non-functional requirements for the application, and implement software based on the set
requirements. The resulting application will allow users to interact with one another, see playback
history and most-listened artists of other people, and compare musical preferences with them.

This thesis is divided into six chapters. The first chapter focuses on analyzing existing
solutions and identifying functional and non-functional requirements for the application. The
second chapter discusses the design and architecture of the future application. The third chapter
contains a description of the development of all parts of the application, describes problems
that arose during implementation, as well as their solutions. The fourth chapter focuses on
how different parts of the application were tested. The fifth chapter describes the usability of
the resulting application, compares it with existing solutions, and presents ideas for possible
improvements of the application in the future. The last chapter summarizes the work done and
verifies that all stated goals are fulfilled.

1

Goals

The main goal of this thesis is to develop a web application that will allow its users to better
understand their musical preferences by showing statistics on their listening activity, as well as
provide users with an opportunity to follow their friends and compare musical preferences with
each other.

To achieve this goal, a set of subgoals has to be done. It includes analysis, design, implemen-
tation, testing, and evaluation of the application.

During the analysis stage, research on the Spotify API will be conducted. In addition, similar
existing solutions will also be examined. This analysis will be summed up by corresponding
functional and non-functional requirements set based on the MoSCoW principle.

Other subgoals are to design the application with a focus on its sustainability and extensibility,
and then implement and test the application based on the set requirements and the design.

In conclusion, there will be an evaluation of the solution and a list of potential future im-
provements.

2

Chapter 1

Analysis

This chapter is dedicated to identifying useful resources for retrieving data for metrics and
statistics from the Spotify Web API, analyzing other existing solutions that provide functionality
similar to the goals stated in the previous section, and defining functional and non-functional
requirements for the application.

1.1 Spotify Web API
Spotify Web API enables the creation of applications that can interact with Spotify’s streaming
service, such as retrieving content metadata, getting recommendations, creating and managing
playlists, or controlling playback. [1]

1.1.1 Endpoints
To understand how to leverage the full potential of the Spotify Web API, it is necessary to
examine the endpoints it provides.

Spotify Web API is a RESTful API with different endpoints that return JSON metadata
about music artists, albums, and tracks, directly from the Spotify Data Catalogue. Web API
returns JSON in the response body, however, some endpoints return just the HTTP status code
instead. [2]

During the research stage, endpoints were examined and the following ones were marked as
potentially useful in the future application:

1.1.1.1 Get Album
Get Album endpoint returns an album with its metadata. The request must include the Spotify
ID of the album. The response to the request is an album object. It contains fields such as type,
images, name, release date, artists, tracks, etc. [3]

1.1.1.2 Get Several Albums
Get Several Albums endpoint returns a list of albums with their metadata. The request must
include comma-separated Spotify IDs of the albums in order to return a correct list of albums. [4]

3

Spotify Web API 4

1.1.1.3 Get Artist
Get Artist endpoint returns an artist with its metadata. The request must include the Spotify
ID of the artist. The response to the request is an artist object. It contains fields like genres,
images, name, etc. [5]

1.1.1.4 Get Several Artists
Get Several Artists endpoint returns a list of artists with their metadata. The request must
include comma-separated Spotify IDs of the artists in order to return a correct list of artists. [6]

1.1.1.5 Get Track
Get Track endpoint returns a track with its metadata. The request must include the Spotify ID
of the track. The response to the request is a track object. It contains fields like album, artists,
images, name, duration, etc. [7]

More importantly, track object has a field called ISRC. The International Standard Recording
Code (ISRC) is a code used to uniquely identify sound recordings and music video recordings,
therefore different recordings, edits, and remixes of the same work each have their own ISRC. [8]

It is worth noting that Spotify is not the only streaming service that provides this code for
the tracks. For example, Apple Music also exposes tracks’ ISRCs, and allows to search tracks
by them as well [9, 10]. Therefore, tracks between different music streaming services can be
mapped, and the application can support a variety of music platforms.

1.1.1.6 Get Several Tracks
Get Several Tracks endpoint returns a list of tracks with their metadata. The request must
include comma-separated Spotify IDs of the tracks in order to return a correct list of tracks. [11]

1.1.1.7 Search for Item
This endpoint gets information from the Spotify catalog that matches the search query. It has
two required attributes: a query and a type.

The query attribute has a set of available filters: album, artist, track, year, upc, tag, isrc,
and genre. Each field filter only applies to certain result types.

The type is another required parameter. It is a comma-separated list of item types to search
across. The admissible values are album, artist, playlist, track, show, episode, and audiobook.

The response of this API call is a list of objects of the corresponding types specified in the
type field of the initial request. [12]

1.1.1.8 Get User’s Top Items
This endpoint returns current user’s top artists or tracks based on calculated affinity. It can
provide top items for three different time ranges: short-term (last 4 weeks), medium-term (last
6 months), and long-term (last several years).

This endpoint requires a user to be authorized with user-top-read scope. [13]

Analysis of existing solutions 5

1.1.1.9 Get Recently Played Tracks
As the name suggests, this endpoint is used for fetching user’s playback history. It returns a list
of tracks alongside with their timestamps and playing context. It is important to note that this
endpoint can only return last 50 playbacks.

This endpoint requires a user to be authorized with user-read-recently-played scope. [14]

1.1.1.10 Get Currently Playing Track
This endpoint returns an object currently being played on user’s Spotify account. It can be
either a track or an episode. The endpoint also provides data about the context and device on
which this object is being played.

This endpoint requires a user to be authorized with user-read-currently-playing scope. [15]

1.1.1.11 Get Track’s Audio Features
Track’s Audio Features endpoint is used for track analysis. It expects the Spotify ID of the track
and returns different metrics about the track. These metrics include loudness, danceability,
instrumentalness, and other rates. It also provides modality of the track and its tempo in Beats
Per Minute (BPM). [16]

It is worth noting that some of the endpoints above have not been used in the application.
However, they are used in several existing solutions and therefore are mentioned here.

1.2 Analysis of existing solutions
To set functional and non-functional requirements correctly, research on other similar solutions
must be conducted. This section contains an overview of existing applications that process data
from music streaming services and provide statistics. Based on responses from search engines
for queries related to this topic, the following applications have been chosen for the analysis:
Last.fm, stats.fm, Stats for Spotify, Obscurify, and musictaste.space.

1.2.1 Last.fm
One of the most well-known applications that is capable of analyzing user’s musical preferences
is Last.fm [17]. Its pages state that it has been around for nearly 20 years, it is used by millions
of users, and its database contains more than a billion unique tracks [18, 19]. Last.fm has a
website, iOS and Android applications in App Store and Google Play respectively.

The way this application works is by examining user’s listening history. It introduces so-called
scrobbles and scrobbling. Scrobble is a record in the Last.fm database that stores what track
user has listened to and when, and scrobbling is the process of sending this information from
music players, devices, and services to Last.fm. Apps and plugins that do scrobbling are called
scrobblers. Based on scrobbles, Last.fm generates weekly, monthly, and yearly statistics for its
users and recommends new music. [19]

It is worth noting that Last.fm supports scrobbling from a large set of music players. However,
due to different APIs of these players, Last.fm cannot have one versatile solution for accessing
user’s listening history on all platforms. For example, to start scrobbling from Spotify it’s enough
just to link a Spotify account to Last.fm, but for other popular services like Apple Music, YouTube
Music, SoundCloud, and others, it is mandatory to use one of the available scrobblers. [20, 21]

Speaking of the functionality, Last.fm allows to follow other users, see their reports, and what
they are listening to. It also shows a compatibility between friends, which, however, does not

Analysis of existing solutions 6

contain a detailed comparison of musical preferences, but only a few common artists (if there are
any) and a level of compatibility.

Figure 1.1 Last.fm user page [17]

Each week Last.fm updates reports for all users. Reports consist of lists of the most-listened
artists, albums, and tracks for a given period, as well as different charts and diagrams representing
trends in user activity.

Figure 1.2 Last.fm report’s most listened artists, albums and tracks [17]

Analysis of existing solutions 7

Figure 1.3 Last.fm report’s charts and diagrams [17]

Any engineering solution comes with its own advantages and disadvantages, and Last.fm is
not an exception.

Pros:

Supports import of listening history from different streaming services and applications.
Stores a record for each playback, therefore can generate more precise statistics.
Provides detailed reports for different time periods.
Allows to check friends’ listening history and reports.
Recommends new music based on what the user listens to.

Cons:

Has plenty of extra features that cause the application to look more complex.
Starts analyzing user’s preferences only after registration (so it becomes impossible to
compare them with someone who does not have an account on Last.fm).

1.2.2 stats.fm
One more platform providing similar functionality is stats.fm. Despite being targeted at Spotify
users only, it still has millions of users and hundreds of millions of tracks in its database. Like
Last.fm it also has a web version, as well as iOS and Android applications. [22]

This application has two types of users: free and plus [23]. To acquire a plus status, a one-
time purchase must be made. It is important because the application behaves differently for
these users.

For free users, top artists and tracks are fetched directly from the Spotify API’s top items
endpoint described in Section 1.1.1.8. Having that said, users can only view their top 50 tracks
and artists for 3 predefined time ranges (4 weeks, 6 months, several years). In addition, only
50 recently played tracks can be viewed due to the limitations of Spotify API described in
Section 1.1.1.9. On the other hand, plus users can enable the history synchronization option,
which automatically keeps user’s streaming history up to date every 60 minutes. Moreover, plus

Analysis of existing solutions 8

users can request a lifetime listening history from Spotify and export it to stats.fm in a JSON
format. This way, stats.fm can provide more diverse and accurate statistics as it calculates them
based on the playback count instead of relying on Spotify algorithms. [24, 25]

In addition to this functionality, stats.fm also has an option of adding friends. Unlike Last.fm,
it allows to compare top artists, tracks, and genres between users, but it does not show the
compatibility score. Friends can also send messages to each other.

Figure 1.4 stats.fm user profile [22] Figure 1.5 stats.fm friends comparison [22]

Pros:

Allows importing a lifetime playback history (has to be requested from Spotify).
Offers a detailed comparison of musical preferences.
Can compare musical preferences right after the registration.

Cons:

Targeted only at Spotify users.
Free users can only view 50 recently played songs, and top 50 tracks and songs (therefore
no metrics are provided).

Analysis of existing solutions 9

1.2.3 Stats for Spotify
One of the first websites that pop up in search engines for the query ”Spotify stats” is Stats for
Spotify [26]. Despite being so high in the search, it does not provide any statistics. It shows
recently played tracks, top artists, tracks, and genres just by querying the Spotify endpoints
mentioned in Section 1.1.1.8 and Section 1.1.1.9, and then represents results within its UI.

Pros:

Displays instant statistics.
Good for those who want to see their stats just once.

Cons:

Targeted only at Spotify users.
Does not provide any profound statistics.
Does not provide a way to compare stats with friends.

1.2.4 Obscurify
Obscurify [27] is the application that uses Spotify Web API to display listening history, deter-
mine top genres, and recommend songs users might like [28]. It uses endpoints mentioned in
Section 1.1.1.8 and Section 1.1.1.11 to fetch data and display happiness, energy, danceability,
and acousticness of the songs user listens to. Obscurify also shows an obscurity rating, which
measures the uniqueness of user’s musical preferences. It saves snapshots of top tracks and artists
each time user requests them. This way user can review his older stats.

Figure 1.6 Obscurify rating [27]

Analysis of existing solutions 10

Figure 1.7 Obscurify tracks’ analysis [27]

Pros:

Displays instant statistics.
Provides additional features such as obscurity rating, happiness, energy, danceability, and
acousticness.
Allows to share personal stats.

Cons:

Targeted only at Spotify users.
Does not provide a way to compare stats between users.

1.2.5 musictaste.space
One more option for musical preferences analysis is musictaste.space [29]. This application helps
users gain insights into their Spotify listening habits and compare their musical preferences
with their friends. It shows top artists, tracks, and genres as a part of the statistics and also
generates a link that allows other people to check their compatibility with the user. Compatibility
calculations are mainly based on common genres and artists, but also rely on common tracks as
well. Matches in less popular genres give more points to the total compatibility score. [30]

After logging in with Spotify, musictaste.space offers to view insights, compare musical pref-
erences with others, and make a playlist.

Insights contain the same data as Obscurify (see Section 1.2.4), including the obscurity rating
(it is mentioned that this rating is actually calculated using Obscurify’s algorithm).

The compatibility tab contains a link for sharing calculated insights and comparing them with
other users. This link can include a Spotify username and image or be completely anonymous.
Another user can open this link to generate a compatibility report. It contains a percentage

Analysis of existing solutions 11

score of the compatibility and a complete breakdown on what makes that user compatible. This
breakdown includes top common genres, as well as top common artists and tracks for different
time periods.

Figure 1.8 musictaste.space’s compatibility report [29]

Pros:

Displays instant statistics.
Offers detailed comparison of musical preferences.
Can compare musical preferences anonymously.

Cons:

Targeted only at Spotify users.

1.2.6 Summary of existing solutions
For comparing the solutions mentioned above Table 1.1 has been made. According to it, only
Last.fm can fetch user’s listening history from different music streaming services, however, it
can not provide statistics right away as user has to be registered for a while in order to gain
more playbacks. Other popular applications have this option, but they rely on the data from the
Spotify API, and do not provide support for other music platforms. These data are also limited
by predefined time ranges (4 weeks, 6 months, several years), which deprives the opportunity to
show statistics for manually chosen time ranges. Several applications can calculate compatibility
between users, however, while Last.fm shows just the rate, stats.fm and musictaste.space provide
a breakdown that specifies compatibility more precisely.

Requirements analysis 12

Application
Functionality Su

pp
or

t
of

m
ul

ti
pl

e
pl

at
fo

rm
s

In
st

an
t

st
at

is
ti

cs

O
w

n
w

ay
of

st
at

s
co

m
pu

ti
ng

C
om

pa
ti

bi
lit

y
ca

lc
ul

at
io

n

L
ife

ti
m

e
pl

ay
ba

ck
s

im
po

rt

Last.fm + – + + –
stats.fm – + + + +
Stats for Spotify – + – – –
Obscurify – + – – –
musictaste.space – + – + –
+ – option available
– – option is missing

Table 1.1 Implemented functionality in existing applications

1.3 Requirements analysis
Based on the thesis assignment and the analysis in Section 1.2, requirements for the application
will be set. These requirements will be divided into functional and non-functional ones, and also
split into four categories according to the MoSCoW prioritization method [31]: must have, should
have, could have, and will not have (see Figure 1.9). Each requirement number will be annotated
either with F if it’s a functional requirement, or with NF if it’s a non-functional requirement.

Figure 1.9 MoSCoW prioritization [31]

Requirements analysis 13

1.3.1 Functional requirements
Functional requirements define the features that particular software must provide to the end
users of the application [32]. Requirements F1, F2, and F3 are based on the thesis assignment,
and therefore are in the ”must have” category. Table 1.2 sums up the content of this section.

[F1] Statistics compute – M
The application must compute statistics based on user’s listening history and represent them

within its UI.

[F2] Compatibility calculation – M
The application must be able to calculate the compatibility between each two users using

computed statistics.

[F3] Adding friends – M
The functionality of adding and removing friends must be implemented. Adding a friend will

help to navigate to his page more quickly.

[F4] Own stats generating mechanism – S
Own stats generation mechanism will help to compute unified statistics for multiple music

streaming services in the future. It is better than relying on external statistics fetched from
corresponding music platforms as each platform computes statistics differently and some of the
streaming services may not expose user’s top items data.

[F5] Support of different music services – C
The application should be designed in a way that would allow support of multiple music

streaming services. It is not mandatory to support them in the current state, but it should be
easy to add new platforms in the future.

[F6] Lifetime listening history import – W
Despite importing a lifetime listening history from the music service being a useful feature,

the majority of users most likely will not use it due to its complexity and necessity to request
listening history from music platforms. This option may be considered in the future, but it is
surely not a priority.

No. Functional requirement Priority
F1 Statistics compute M
F2 Compatibility calculation M
F3 Adding friends M
F4 Own stats generating mechanism S
F5 Support of different music services C
F6 Lifetime listening history import W

Table 1.2 Functional requirements

1.3.2 Non-functional requirements
Non-functional requirements define a set of constraints on the design of the system. They also
help to verify the performance of the software [32]. Requirements NF1, NF2, NF3, and NF4 are
based on the assignment of the thesis, and therefore are in the ”must have” category. Table 1.3
sums up the content of this section.

Requirements analysis 14

[NF1] Implementation of the backend using Spring Boot and Kotlin – M
The server part must be implemented in Kotlin programming language using Spring Boot

framework.

[NF2] Implementation of the frontend using Vue.js and TypeScript – M
The client part must be a web application implemented in TypeScript using Vue.js library.

[NF3] Extensibility – M
The resulting application must be extensible in order to make future updates and development

easier.

[NF4] Testing – M
The application must be properly tested. The server part must be covered with unit tests

and the client must be manually tested.

[NF5] User interface and experience – S
The design of the application should be user-friendly. The user interface should be designed

in a way that makes user interactions with the application as simple and as intuitive as possible.

[NF6] Multiple themes – C
The application may support light and dark themes in the future. It makes the use of the

application more pleasant and enjoyable for users.

[NF7] Localization – C
Localization is another nice feature to have in the application that can broaden its audience.

It is not required in the current iteration of the project, but could be added in the future.

[NF8] Mobile application – W
For now, the development of the mobile application is not a priority as it requires significant

resources and does not help to identify whether the application works as intended.

No. Non-functional requirement Priority
NF1 Implementation of the backend using Spring Boot and Kotlin M
NF2 Implementation of the frontend using Vue.js and TypeScript M
NF3 Extensibility M
NF4 Testing M
NF5 User interface and experience S
NF6 Multiple themes C
NF7 Localization C
NF8 Mobile application W

Table 1.3 Non-functional requirements

Chapter 2

Design

This chapter is dedicated to the design of the application. It describes the architecture and
technologies used on the client part, the server part, and the database. This chapter also contains
a description of the implemented API and its most-used endpoints. This description is followed
by a presentation of the graphical user interface (GUI) of the application.

2.1 Technologies
The whole application is split into 3 parts – the frontend part, the backend part, and the database.
This section describes the technologies used in each of these 3 parts.

2.1.1 Frontend
Frontend refers to the User Interface (UI) and the User Experience (UX) of a web application.
It involves visual elements of the application, including layout, design, and their interactivity.

Most commonly used technologies to build the frontend part of the application are HTML,
CSS, and JavaScript. HTML is used to define the content of pages of the web application,
CSS adds styling to the elements on these pages, and JavaScript is used to define the logic of
interactions with these elements. Nowadays, different frontend frameworks are also widespread
in the process of building web applications. They improve the overall performance of a website
and offer a set of features that make frontend development easier. [33]

This section describes technologies used on the frontend side of the application.

2.1.1.1 TypeScript
TypeScript is an open-source strongly typed programming language developed by Microsoft. It
extends JavaScript by bringing types, which makes it easier for the developer to catch type-related
errors on the spot. By adding additional syntax to JS, TypeScript offers tighter integration with
code editors. TypeScript code can also be converted into JavaScript so that it can be run
anywhere JavaScript runs. [34]

2.1.1.2 Vue.js
Vue is an approachable, performant, and versatile framework for building user interfaces. It
is implemented in TypeScript and provides first-class TypeScript support. Vue also builds on

15

Technologies 16

top of HTML, CSS, and JS/TS and provides a declarative and component-based programming
model. [35, 36]

Despite the fact that individual preference plays a crucial role in a comparison of different
frontend frameworks, Vue has a set of acknowledged advantages over other popular frameworks
like React or Angular, which include its simplicity, flexibility, and a shallower learning curve. [37]

2.1.2 Backend
Backend is responsible for processing and managing data, performing calculations, and facilitat-
ing communication between different components of the system.

This section describes technologies used on the backend side of the application.

2.1.2.1 Kotlin
Kotlin is a cross-platform, statically typed, high-level programming language developed by Jet-
Brains. It is designed to fully interoperate with Java, and mainly targets the JVM, but also
compiles to JavaScript and native code. [38, 39]

Besides, Kotlin has a set of advantages over Java, which include:

More concise syntax.

Null safety and type inference.

Better support for functional programming.

Having that said, Kotlin can be considered as a legitimate option for the server side of the
application.

2.1.2.2 Spring
Spring is the most popular Java framework. It can be used in a variety of ways: in microservice
architectures, in cloud, reactive, and serverless solutions. It is based on the Inversion Of Control
(IOC) and Dependency Injection (DI) principles. Spring Framework provides a comprehensive
programming and configuration model for modern Java-based enterprise applications. It is de-
signed in a way that teams can focus on application-level business logic, without unnecessary
ties to specific deployment environments. [40, 41]

In 2017, Spring team introduced Kotlin support starting with version 5.0 [42, 43]. Having
that said, it is now possible to create Spring applications with Kotlin, and this opportunity is
leveraged in the application.

2.1.2.3 Spring Boot
Spring Boot simplifies the process of creating production-grade Spring based applications. It
allows to create stand-alone applications by automatically configuring Spring and other 3rd
party libraries. It also provides production-ready features such as metrics, health checks, and
externalized configuration. [44]

Technologies 17

2.1.2.4 Spring Security
Spring Security is a powerful and highly customizable authentication and access-control frame-
work. It is the de-facto standard for securing Spring-based applications. [45]

Spring Security is a framework that focuses on providing both authentication and authoriza-
tion to Java applications. One of the main advantages of Spring Security is that it helps to easily
extend the application to meet custom security requirements. [45]

It also provides a set of different features. The most vital ones are:

Comprehensive and extensible support for both authentication and authorization.

Protection against attacks like session fixation, clickjacking, cross-site request forgery, etc.

Optional integration with Spring Web MVC.

2.1.2.5 Gradle
Gradle is an open-source build tool that makes it easier to build, automate, and deploy applica-
tions. It is trusted by millions of developers around the world and has first-class support in all
major IDEs. [46]

Compared to Maven (which is another commonly used build tool), Gradle offers better per-
formance by implementing mechanisms of work avoidance and incrementality. [47]

Top 3 features that make Gradle a more suitable option than Maven are:

Incrementality. Gradle avoids redundant work by tracking input and output of tasks and
only running what is necessary.

Build Cache. Gradle reuses the build outputs of any other Gradle build with the same
inputs.

Gradle Daemon. Gradle runs a long-lived background process that keeps build information
in memory.

Moreover, Gradle provides a Kotlin DSL, that brings the elegance and type-safety of Kotlin
to automation. [48]

2.1.3 Database
A database is a collection of organized stored data. Its purpose is to ease the process of managing,
retrieving, and updating stored data.

There are 2 main types of databases – relational (or SQL) databases, and non-relational (or
NoSQL) databases. The key difference between these types is the way how the data is stored.
Relational databases store data in tables, while non-relational databases use other structures
such as documents, key-value pairs, or any other proper way of storing data. [49]

Due to the reliability achieved by compliance with the ACID properties, as well as data accu-
racy and simplicity of relational databases, an SQL database has been chosen for the application.

2.1.3.1 PostgreSQL
PostgreSQL is a powerful, open-source object-relational database system that uses and extends
the SQL language combined with many features that safely store and scale the most complicated
data workloads. PostgreSQL has earned a strong reputation for its proven architecture, reliability,
data integrity, robust feature set, and extensibility. PostgreSQL runs on all major operating
systems and has been ACID-compliant since 2001. [50]

Architecture 18

2.2 Architecture
Application’s architecture refers to the high-level structure of the components, their arrangement,
and the way they communicate.

There are several different types of architectures. One of the most commonly used architec-
ture styles is a three-tier client-server architecture, and this kind of architecture is used in the
application.

The three-tier architecture is a software application architecture that organizes applications
into three logical and physical computing tiers: the presentation tier (or user interface), the
application tier (where data is processed), and the data tier, where the data associated with the
application are stored and managed. [51]

This kind of architecture has a set of benefits, which include:

Logical and physical separation of functionality. Each tier can run on a separate
operating system and server platform, so the services of each tier can be customized and
optimized without impacting the other tiers.

Better scalability. Any tier can be scaled independently of the others as needed.

Better reliability. An outage in one tier is less likely to impact the availability or perfor-
mance of the other tiers.

Faster development. Because each tier can be developed simultaneously by different peo-
ple, an application can be developed faster, and programmers can use the latest and most
suitable technologies for each tier.

Having that said, this section is split into 3 parts: presentation tier, application tier, and
data tier.

Figure 2.1 Three tier architecture [52]

2.2.1 Presentation tier
The presentation tier is the user interface of the application, where the end user interacts with
the application. Its main purpose is to display information and collect information from the
user. [51]

The application is designed to support different clients. They can communicate with the
server via HTTP requests. In the current scope, only the web client is implemented.

API 19

2.2.2 Application tier
The application tier contains the business logic of the application. This tier is responsible for
performing computations, data transformations, and other processing tasks. It communicates
with the presentation tier, receives and processes requests from it, and sends back the appropriate
responses. The application tier also interacts with the data tier, so it can add, delete, or modify
data in the data tier. [51]

In case of this application, the application tier is capable of doing the following things:

Collect users’ playbacks.

Compute users’ statistics based on playbacks.

Compare statistics of different users (e.g. compute their compatibility).

Other common interactions with the data tier.

It is also designed in a way that new music streaming services can be easily added. Having
that said, the resulting application is extensible and sustainable.

2.2.3 Data tier
The data tier is where the information processed by the application is stored and managed. In
a three-tier application, all communication goes through the application tier. The presentation
tier and the data tier cannot communicate directly with each other. [51]

The database model of the application is presented in Figure 2.2, however, some tables of the
database require additional comments:

Stats table represents statistics computed between its start date and end date.

Stats record contains all computed statistics for a particular user. It includes all-time
statistics and a list of temporary statistics (e.g. all weekly, monthly, and yearly records).

Stats record recorded stats is a list of temporary statistics of Stats record.

Album featuring is a list of artists that appear on the album in addition to the main artists
on the album.

Artist appears on is a list of albums in which the artist features one or more tracks.

2.3 API
An API, or Application Programming Interface, is a set of rules that define how applications or
devices can connect to and communicate with each other. A REST API is an API that conforms
to the design principles of the REST, or REpresentational State Transfer architectural style. [53]

In total, there are 6 most basic REST design principles. They include a uniform interface,
client-server decoupling, statelessness, cacheability, layered system architecture, and code on
demand. These principles are outlined in Table 2.1. [53]

API 20

Figure 2.2 Database model

API 21

Principle Description
Uniform interface All API requests for the same resource should look the

same, no matter where the request comes from. The REST
API should ensure that the same piece of data belongs to
a single uniform resource identifier (URI).

Client-server decoupling Client and server applications must be completely indepen-
dent of each other. The only information that the client
application should know is the URI of the requested re-
source.

Statelessness REST APIs are stateless, meaning that each request needs
to include all the information necessary for processing it.

Cacheability When possible, resources should be cacheable on the client
or server side. Server responses also need to contain infor-
mation about whether caching is allowed for the delivered
resource.

Layered system architecture REST APIs need to be designed so that neither the client
nor the server can tell whether it communicates directly
with the end application or with an intermediary.

Code on demand Optionally, responses can contain executable code on-
demand.

Table 2.1 REST principles [53]

The application is designed in a way to comply with these guidelines, therefore it is a RESTful
application.

2.3.1 Endpoints
This section describes the most used API endpoints of the application, as well as some specific
ones. These endpoints are divided into the following categories: basic entities, compatibility,
music services, playbacks, stats, lyrics, authentication, and exceptions.

2.3.1.1 Basic Entities
This section combines common endpoints that just return the required object based on a given
identifier.

/api/albums?id={id} – returns an album with the requested id.

/api/artists?id={id} – returns an artist with the requested id.

/api/tracks?id={id} – returns a track with the requested id.

/api/user?username={username} – returns a user with the requested username.

2.3.1.2 Compatibility
Compatibility controller provides only one endpoint for getting compatibility between 2 users.

/api/compatibility?userId={userId} – returns compatibility between a currently autho-
rized user and a user with the specified userId.

API 22

2.3.1.3 Music Services
This category describes endpoints that are used to connect music streaming platform accounts.

/api/music-services/auth/connect?platform={platform} – connects specified music
streaming service to authenticated user’s known services.

/api/music-services/auth/callback?platform={p}&code={c} – used for exchanging
user authorization code for access and refresh token on a given platform.

It is worth noting that platform can only obtain values listed in MusicPlatformEnum.
As for now, it includes the following values: ”SPOTIFY”, ”APPLE MUSIC”. However, Apple
Music support is not yet implemented.

2.3.1.4 Playbacks
The playback controller operates with user’s listening activity on streaming platforms. It provides
2 endpoints: get recently played tracks endpoint and get currently playing track endpoint.

/api/playback/user-recently-played?userId={userId}&limit={limit} – returns a list
of recently played tracks for a user with the specified id. An optional limit parameter can be
applied and its default value is set to 10.

/api/playback/currently-playing?userId={userId} – returns currently played track for
a user with the specified id.

2.3.1.5 Stats
The stats controller has only one endpoint for getting stats in a specified time range.

/api/stats?type={type}&userId={id}&objectsLimit={limit} – returns the most fre-
quent statistics for a user with the specified id. Type parameter defines a time range for requested
statistics, and optional parameter objectsLimit sets a number of top albums, artists, and tracks
to be returned (default is 5).

Type can only obtain values listed in StatsTypeEnum. This enum contains the following
values: ”WEEKLY”, ”MONTHLY”, ”YEARLY”, ”ALL TIME”.

2.3.1.6 Lyrics
This category is dedicated to the get lyrics endpoint. It requires an ISRC code to be executed
and then queries Musixmatch API to fetch track’s lyrics [54]. Its free plan allows 2000 API calls
per day and returns 30% of the track’s lyrics, which should be enough for the showcase of this
functionality [55].

/api/tracks/lyrics?isrc={isrc} – returns lyrics for a track with the specified ISRC code.

2.3.1.7 Authentication
This section provides an overview of the endpoints that are used for user authentication. They
include the register endpoint, the log in endpoint, and the refresh access token endpoint.

Graphical User Interface 23

/api/auth/register – returns an AuthenticationResponse object that contains a user id,
username, access and refresh tokens. To be executed, this endpoint requires RegisterRequest
object with the following fields: email, password, name, and username.

/api/auth/login – returns an AuthenticationResponse object. To be executed, this
endpoint requires AuthenticationRequest object that should contain an email and a password
of a registered user.

/api/auth/refresh-access-token – returns a TokenResponse object that contains an
updated access token and a refresh token. To be executed, it requires a RefreshRequest object
that must have a refresh token field.

2.3.1.8 Exceptions
All endpoints may, in some cases, return an exception. These exceptions have a generalized
structure and have the following fields: status, error, message, and timestamp. Status is the
exception’s status code number, the error field describes the reason for the exception, the message
field is shown to the user, and a timestamp indicates when this exception has occurred.

2.4 Graphical User Interface
Graphical User Interface is an important part of every web application. It is a visual interface that
allows users to interact with the application through graphical elements such as icons, buttons,
tabs, etc. This section contains hi-fi prototypes of the design of the application’s pages [56].

2.4.1 Main page
Main page is the first thing users see when they enter a website. In case of this application, the
main page briefly describes the functionality and contains a form to log in and sign up.

Figure 2.3 Main page

Graphical User Interface 24

2.4.2 User profile
User profile contains data about the user. This is the page user sees after logging in. It has 3
tabs that are used for switching between displayed components: an overview, stats, and friends.
Profile header with user’s name, username, and profile picture remains unchanged for each of
these tabs, however, the majority of the content changes depending on the currently active tab.
Header also includes buttons to follow or unfollow a user, edit a profile, and share user’s page
(by copying its URL to the clipboard).

2.4.2.1 Overview tab
Overview is the main tab in the user’s profile. It contains a list of recently played tracks, some
basic information about the user, and computed compatibility with the user (if it’s applicable).
Compatibility includes a score in the 0-100 range and top 3 common artists.

Figure 2.4 Overview tab

2.4.2.2 Stats tab
Statistics tab contains data on the user’s listening activity. It stores information about user’s
most listened albums, artists, and tracks. Clicking the ”view all” button opens a modal window
that contains a larger list of top entities of the corresponding type, as well as the number of
times user has listened to it. Besides that, this page also contains the overall number of tracks
listened in the current time period, amount of tracks listened daily, and a total amount of time
spent listening to music.

Graphical User Interface 25

Figure 2.5 Stats tab

2.4.2.3 Friends tab
Friends tab contains a list of users that the current user follows and a list of users that follow
the current user. Compatibility of musical preferences is also shown for each displayed user, and
they are sorted based on their compatiblity.

Figure 2.6 Friends tab

Graphical User Interface 26

2.4.3 Album page
Album page displays the information about the album. It shows the name of the album, its
image, artists and metadata, a list of tracks on this album, and links to this album on supported
music platforms.

Figure 2.7 Album page

2.4.4 Artist page
Artist page contains basic data about the artist. It includes artist’s name and image, a list of
artist’s albums, and a list of albums this artist appears on. Also, this page has links to the artist
page on music platforms.

Figure 2.8 Artist page

Graphical User Interface 27

2.4.5 Track page
Track page presents data about the track. This data includes track’s name and artists, its
metadata, its number on the album, and album’s image. It also contains a part of lyrics fetched
from Musixmatch API (described in Section 2.3.1.6). Additionally, it has links to this track on
corresponding music streaming services.

Figure 2.9 Track page

Chapter 3

Implementation

This chapter is devoted to the implementation details of the application. It includes code snippets
of the most noteworthy parts on both the server and the client side of the application. Apart
from that, it contains their explanations and reasonings behind the decisions made.

3.1 Backend implementation
This section describes some of the features implemented on the backend side of the application. It
includes computing statistics, updating playbacks, mapping albums, artists, and tracks between
different music streaming services, calculating compatibility between users, fetching lyrics, and
the security of the application.

3.1.1 Computing statistics
Computing statistics is one of the ”must have” requirements set in Section 1.3.1. There are 4
types of statistics in the application: weekly, monthly, yearly, and all-time. All-time statistics
are updated after each recorded playback to ensure that presented statistics are accurate and
up to date. However, other types of statistics are calculated differently. Weekly statistics are
generated each Friday using a scheduled method. Friday was deliberately chosen because most of
the tracks are released on Friday [57]. Monthly statistics are generated at the beginning of each
month, and yearly statistics are generated on the 1st of January. Monthly and yearly statistics
reuse already computed data by weekly and monthly statistics, respectively.

3.1.2 Updating playbacks
The application generates statistics based on users’ listening activity. It fetches recently played
tracks and stores them in the database. Doing that allows to compute statistics in any desired
way without relying on statistics calculated by music platforms (moreover not all of them expose
user statistics). However, endpoints that allow to get recently played tracks return a limited
amount of tracks. In case of Spotify, it can return only the last 50 tracks. So to make statistics
precise it is necessary to periodically update users’ playback history to ensure that all listened
tracks are recorded in the database.

To accomplish this, a scheduled method with a fixed delay was implemented. It fetches
playbacks for all users once an hour from the streaming services they have linked. It can be done
in the background, and no actions are required from the users because their access and refresh
tokens for music platforms are stored in the database.

28

Backend implementation 29

@Transactional
@Scheduled(fixedDelay = 1000 * 60 * 60)
override fun updateUsersPlaybacks() {

userRepository.findAll().forEach { user ->
fetchNewPlaybacks(user)

}
}

override fun fetchNewPlaybacks(user: User) {
val newPlaybacks = mutableListOf<PlaybackDTO>()
musicPlatformApiServices.forEach { (platform, platformApiService) ->

if (musicPlatformAccountService.userHasAccount(user, platform)) {
newPlaybacks.addAll(platformApiService

.getNewPlaybacks(user, calcFetchAfter(user)))
}

}
newPlaybacks.sortedBy { it.timestamp }.forEach {

playbackService.createPlayback(user, it)
}

}

private fun calcFetchAfter(user: User) = user.playbackHistory
.maxByOrNull { it.timestamp }?.timestamp

Code listing 1 Updating playbacks

Listing 1 presents 3 functions: updateUsersPlaybacks, fetchNewPlaybacks, and calcFetchAfter.
The first function triggers fetching new playbacks for each registered user once an hour. The
second function retrieves playbacks for a given user from all music streaming services that are
linked to the user’s account. After retrieving, it calls the createPlayback function that saves all
listened track records to the database. The third function returns the timestamp of the last
listened track. It is used to fetch only new tracks from music platforms.

3.1.3 Mapping platform objects
As was previously stated in Section 1.3.1, it is important for the application to support multiple
music streaming services. Doing that will increase the amount of potential users and allow to
fetch data about the albums, artists, and tracks from multiple sources. Despite the fact that in
the current state only Spotify is supported, the application is designed to support more streaming
services.

In order to map albums, artists, and tracks between different music platforms, a set of actions
have been done. It was already mentioned in Section 1.1.1.5 that Spotify exposes ISRC codes
of the tracks. This code is a unique identifier of a record, and other popular streaming services
like Apple Music and Tidal allow to query tracks by their ISRC [10, 58]. That said, tracks
can be mapped between these platforms. When the track is created, the application queries all
supported platforms to get a track by its ISRC. Track entity also includes an album of the track
and artists track belongs to. Their presence in the track entity solves the problem of mapping
albums and artists as they do not have unique identifiers exposed by music streaming services.

Listing 2 demonstrates how album, artists, and track identifiers are fetched from all supported
music platforms by track’s ISRC.

Backend implementation 30

override fun fillPlatformIds(track: TrackDTO): TrackDTO {
musicPlatformApiServices.forEach { (platform, platformApiService) ->

// Skip if track already contains platform-specific ids
if (track.externalIds.containsKey(platform)) return@forEach

// Object with album, artists, and track platform-specific ids
val idsDto = platformApiService.getPlatformIdsByIsrc(track.isrc)
track.externalIds[platform] = idsDto.trackId
track.artists.forEachIndexed { index, artist ->

artist.externalIds[platform] = idsDto.trackArtistIds[index]
}
track.album.externalIds[platform] = idsDto.albumId
track.album.artists.forEachIndexed { index, artist ->

artist.externalIds[platform] = idsDto.albumArtistIds[index]
}

}
return track

}

Code listing 2 Mapping objects

3.1.4 Calculating compatibility
Compatibility calculation is one of the required features of the application. At this moment, it
is possible to calculate compatibility between 2 users based on their all-time top artists.

3.1.5 Security
This application uses JWT tokens for authorizing requests. To act on behalf of a user, a request
must include a JWT token in its authorization header. When the server receives the request, it
checks the validity of the JWT token and then grants access to desired resource.

3.1.6 Lyrics fetching
As was already mentioned in Section 2.3.1.6 and Section 2.4.5, the application uses Musixmatch
to fetch tracks’ lyrics. Initially, it fetches the track by its ISRC code to obtain the track’s
Musixmatch identifier, and once it is acquired, it becomes possible to fetch lyrics [59, 60].

override fun getLyrics(isrc: String): LyricsDTO {
val trackJson = getMusixmatchTrackByIsrc(isrc)
if (!trackHasLyrics(trackJson)) return LyricsDTO()
val trackId = extractTrackId(trackJson)
val lyricsJson = getLyricsByMusicmatchTrackId(trackId)

?: return LyricsDTO()
return LyricsDTO(extractLanguage(lyricsJson), extractText(lyricsJson))

}

Code listing 3 Lyrics fetching

Frontend implementation 31

3.2 Frontend implementation
This section presents code snippets of the frontend part of the application. Apart from that, it
contains a brief description of composable functions in Vue and the Tanstack Query library that
is used in the application.

3.2.1 Composables
In the context of Vue applications, a ”composable” is a function that leverages Vue’s Composition
API to encapsulate and reuse stateful logic. These functions take some input and immediately
return the expected output. [61]

Composable functions solve a variety of problems. In this application, they convert a date
to a string, calculate how much time has passed since some specified moment, transform track’s
duration from milliseconds to a string, etc.

export function toDateString(date: Date): string {
const dateString = date.toString().split("T")[0];
const [year, month, day] = dateString.split("-");
return `${monthConverter(month)} ${day}, ${year}`;

}

Code listing 4 Date to string composable

export function durationToString(durationMs: number): string {
const minutes = Math.floor(durationMs / 60000);
const seconds = +(((durationMs % 60000) / 1000).toFixed(0));
return `${minutes}:${seconds < 10 ? "0" : ""}${seconds}`;

}

Code listing 5 Duration to string composable

Listing 4 and Listing 5 show some composable functions that are implemented in the appli-
cation.

3.2.2 TanStack Query
TanStack Query is a library that provides asynchronous state management for TS/JS, and for
frontend frameworks like React, Solid, Vue, Svelte, and Angular. This library simplifies the
process of fetching, caching, synchronizing, and updating server state in web applications. [62,
63]

The implemented application leverages some features of the TanStack Query library, such as
setting an amount of retries on request sending, refetching data on window focus after a specified
period of time, and so on.

Frontend implementation 32

export const useRequest = <T extends any>(params: QueryParams<T>):
UseQueryReturnType<T, any> => {

return useQuery({
queryKey: params.queryKey,
queryFn: async () => {

const response = await callAPI('GET', params.url)
if (response.status === 204) return null
return await response.json() as T

},
retry: params.retry ?? 3,
refetchOnWindowFocus: params.refetch,
refetchOnReconnect: params.refetch,
staleTime: params.refetch ? 1000 * 60 : 1000 * 60 * 60,
enabled: params.enabled

})
}

export const callAPI = async (method: string, url: string, data?: any) => {
return fetch(`${BaseURL}${url}`, {

method: method,
headers: getHeaders(),
body: JSON.stringify(data)

})
}

Code listing 6 Tanstack Query wrapping

Listing 6 demonstrates how TanStack’s useQuery method is wrapped in the application’s
codebase. It presents a useRequest function that takes the QueryParams object as its parameter.
Based on these query parameters, corresponding fields of the useQuery method are set. This
snippet also shows an asynchronous method callAPI whose purpose is to send a request to a
given URL.

export function getPlaybacks(userId: number, limit: number):
UseQueryReturnType<Playback[], any> {

return useRequest<Playback[]>({
url: `/playback/user-recently-played?userId=${userId}&limit=${limit}`,
queryKey: ['playback', userId.toString(), limit.toString()],
refetch: true,

})
}

Code listing 7 Get playbacks function

Listing 7 demonstrates how recently played tracks are fetched. The presented getPlaybacks
method calls the useRequest function with the refetch parameter set to true. This way, recently
played tracks are periodically refetched from the server, but only when a user is viewing the
window of the application.

Chapter 4

Testing

In order to make further development of the application easier and to maintain its sustainability
and reliability, it is necessary to cover the application with proper tests. This chapter describes
tests that were performed on the application and outlines their results.

4.1 Types of tests
There are numerous types of tests that are used in applications development nowadays. They
include unit tests, integration tests, end-to-end tests, smoke tests, etc. In the current scope, the
application was tested with unit tests and manual tests performed by invited testers.

4.1.1 Unit testing
Unit tests are used to test small components of the application. The purpose of unit testing is
to validate that each unit of the software code performs as expected. Unit tests isolate a section
of code and verify its correctness. [64]

In this application, unit tests cover individual methods of services on the backend side. They
check whether these methods work as intended in isolation by mocking external dependencies.
This application uses the MockK library [65] for this purpose.

4.1.2 Manual testing
Manual testing is a type of software testing that is performed by users who test the application
according to predefined scenarios without using any automated tools. These tests are meant to
simulate the usage of the application, and their purpose is to identify bugs, issues, and defects
in the software application. [66]

Manual testing of the application was performed by 5 users. Since the application is still in
development mode and access to Spotify API in this mode is restricted, these 5 users were added
to the list of authorized users in the Spotify Developer Dashboard [67]. To make manual testing
by other users possible, the application had to be deployed. That said, the frontend part was
deployed on Vercel [68] while the database and the server part were deployed to Railway [69].
These solutions were chosen due to their speed, reliability, and straightforwardness.

33

Results of tests 34

4.2 Results of tests
Unit tests increased the reliability of the application. They check the correctness of code changes
and assist with spotting potential bugs.

As for the manual tests carried out by other users, they went according to expectations.
There were no complaints regarding the core functionality of the application. Minor spotted
bugs were fixed, and user experience was improved in accordance with the feedback from the
testers. In addition, some ideas on further application improvement were considered valuable
and were added to Section 5.3.

Chapter 5

Evaluation

This chapter contains an overall evaluation of the resulting application. It covers the usability
of the application, compares it with already existing solutions examined in the analysis chapter,
and outlines possible future improvements.

5.1 Usability
Despite the fact that this is the first version of the application, all necessary features for conduct-
ing an analysis of musical preferences and comparing them with other users are implemented.
In the current state, the application fulfills all the ”must have” and ”should have” requirements
set in Section 1.3. That said, it can be considered usable, and the feedback gained from testers
confirms it.

5.2 Comparison with existing solutions
As mentioned in Section 1.2, currently only one solution supports multiple music streaming
services. Even though the current version of the application only supports Spotify, it is designed
in a way that allows to easily connect other streaming services to it. Additionally, the application
has its own way of computing statistics based on the listening history and supports comparing
musical preferences. These points make the resulting application a viable competitor to already
existing solutions.

5.3 Future improvements
Although the resulting application meets all set requirements, it is important to set goals for
further development. This section outlines potential features for future implementation that
emerged while working on the project, as well as ideas gained from testers’ feedback.

5.3.1 Extended statistics
One of the possible improvements is to provide users with more statistics on their listening
activity. Enough statistics are being collected and stored even now, however, not all of them are
yet shown to the end user. Also, storing weekly, monthly, and yearly statistics snapshots allows
to display trends in the listening activity of the user.

35

Future improvements 36

5.3.2 Profound preferences comparison
Similarly to statistics, more profound preferences comparison can be shown to the user. Cur-
rently, only a score and a top 3 common artists are presented to the user, despite the fact that
more data are collected and used for computing users’ compatibility rate. Apart from that, the
compatibility score can depend not only on the number of users’ common artists but also on
their ordering and other parameters like top albums, tracks, and genres.

5.3.3 Support more music services
The application is designed in a way to support multiple music streaming services. This oppor-
tunity should be leveraged in the future as it will allow to gain more data about albums, artists,
and tracks, and potentially will bring more users to the application.

5.3.4 Responsive design
As users have different resolutions and aspect ratios of their displays, it is necessary to make the
client part of the application responsive. It means that the application should be able to adapt
to different devices, resolutions, and screen sizes to ensure a good user experience.

5.3.5 Custom profile images
In the current state, the application does not support uploading custom profile and cover images.
It was not a necessity in the current scope of development, however, it should be implemented
in the future.

5.3.6 Complete album fetching
Right now, when a user listens to a track that does not exist in the application’s database, this
track is added to the database. Moreover, if the album of this track does not exist, it is created
as well. However, with this approach, albums are incomplete until all their tracks have been
listened to by application’s users. One possible solution can be to fetch all album’s tracks when
the album has to be created.

5.3.7 Mobile applications
A lot of people use smartphones on a daily basis, therefore implementing mobile applications for
iOS and Android may greatly broaden the audience of the application. Moreover, it will provide
a more pleasant experience to already registered users.

Chapter 6

Conclusion

The goal of this thesis was to design, implement, and test a web application that would allow its
users to examine their musical preferences and compare them with other users.

The first chapter of the thesis was dedicated to the research of the Spotify Web API, analysis
of already existing solutions, and setting functional and non-functional requirements for the
application following the MoSCoW principle.

The second chapter provided an overview of the design of the desired software. It briefly
described technologies that are used in the application and the overall architecture of the ap-
plication, including its API. This chapter also provided a showcase of the application’s user
interface.

The implementation chapter presented code snippets of the most noteworthy parts of the
application, accompanied by the corresponding descriptions of their functionality.

The fourth chapter was dedicated to the testing of the application. It described the types of
tests that were performed during development and recapped their results.

The evaluation chapter proved the usability of the application, compared the resulting soft-
ware with already existing solutions, and outlined possible future improvements. These im-
provements include more profound statistics generation and preferences comparison, supporting
other music streaming services, making the UI more responsive, supporting custom profile im-
ages, complete album fetching, and developing mobile applications to broaden the application’s
audience.

Having that said, the thesis successfully fulfilled all stated goals. Research on the Spotify
API and existing similar solutions was conducted, application was designed and implemented
following set functional and non-functional requirements and according to best practices of soft-
ware engineering. It was properly tested and evaluated, and potential future improvements were
presented.

37

Bibliography

1. Web API [online]. Spotify, 2023 [visited on 2023-12-09]. Available from: https://developer.
spotify.com/documentation/web-api.

2. API calls [online]. Spotify, 2023 [visited on 2023-12-09]. Available from: https://developer.
spotify.com/documentation/web-api/concepts/api-calls.

3. Get Album [online]. Spotify, 2023 [visited on 2023-12-09]. Available from: https://developer.
spotify.com/documentation/web-api/reference/get-an-album.

4. Get Several Albums [online]. Spotify, 2023 [visited on 2023-12-09]. Available from: https://
developer.spotify.com/documentation/web-api/reference/get-multiple-albums.

5. Get Artist [online]. Spotify, 2023 [visited on 2023-12-09]. Available from: https://developer.
spotify.com/documentation/web-api/reference/get-an-artist.

6. Get Several Artists [online]. Spotify, 2023 [visited on 2023-12-09]. Available from: https://
developer.spotify.com/documentation/web-api/reference/get-multiple-artists.

7. Get Track [online]. Spotify, 2023 [visited on 2023-12-09]. Available from: https://developer.
spotify.com/documentation/web-api/reference/get-track.

8. International Standard Recording Code [online]. Wikipedia, 2023 [visited on 2023-12-09].
Available from: https://en.wikipedia.org/wiki/International_Standard_Recording_
Code.

9. Songs Attributes [online]. Apple Inc., 2023 [visited on 2023-12-09]. Available from: https:
//developer.apple.com/documentation/applemusicapi/songs/attributes.

10. Get Multiple Catalog Songs by ISRC [online]. Apple Inc., 2023 [visited on 2023-12-09].
Available from: https://developer.apple.com/documentation/applemusicapi/get_
multiple_catalog_songs_by_isrc.

11. Get Several Tracks [online]. Spotify, 2023 [visited on 2023-12-09]. Available from: https:
//developer.spotify.com/documentation/web-api/reference/get-several-tracks.

12. Search for Item [online]. Spotify, 2023 [visited on 2023-12-09]. Available from: https://
developer.spotify.com/documentation/web-api/reference/search.

13. Get User’s Top Items [online]. Spotify, 2023 [visited on 2023-12-09]. Available from: https:
//developer.spotify.com/documentation/web- api/reference/get- users- top-
artists-and-tracks.

14. Get Recently Played Tracks [online]. Spotify, 2023 [visited on 2023-12-09]. Available from:
https://developer.spotify.com/documentation/web-api/reference/get-recently-
played.

38

https://developer.spotify.com/documentation/web-api
https://developer.spotify.com/documentation/web-api
https://developer.spotify.com/documentation/web-api/concepts/api-calls
https://developer.spotify.com/documentation/web-api/concepts/api-calls
https://developer.spotify.com/documentation/web-api/reference/get-an-album
https://developer.spotify.com/documentation/web-api/reference/get-an-album
https://developer.spotify.com/documentation/web-api/reference/get-multiple-albums
https://developer.spotify.com/documentation/web-api/reference/get-multiple-albums
https://developer.spotify.com/documentation/web-api/reference/get-an-artist
https://developer.spotify.com/documentation/web-api/reference/get-an-artist
https://developer.spotify.com/documentation/web-api/reference/get-multiple-artists
https://developer.spotify.com/documentation/web-api/reference/get-multiple-artists
https://developer.spotify.com/documentation/web-api/reference/get-track
https://developer.spotify.com/documentation/web-api/reference/get-track
https://en.wikipedia.org/wiki/International_Standard_Recording_Code
https://en.wikipedia.org/wiki/International_Standard_Recording_Code
https://developer.apple.com/documentation/applemusicapi/songs/attributes
https://developer.apple.com/documentation/applemusicapi/songs/attributes
https://developer.apple.com/documentation/applemusicapi/get_multiple_catalog_songs_by_isrc
https://developer.apple.com/documentation/applemusicapi/get_multiple_catalog_songs_by_isrc
https://developer.spotify.com/documentation/web-api/reference/get-several-tracks
https://developer.spotify.com/documentation/web-api/reference/get-several-tracks
https://developer.spotify.com/documentation/web-api/reference/search
https://developer.spotify.com/documentation/web-api/reference/search
https://developer.spotify.com/documentation/web-api/reference/get-users-top-artists-and-tracks
https://developer.spotify.com/documentation/web-api/reference/get-users-top-artists-and-tracks
https://developer.spotify.com/documentation/web-api/reference/get-users-top-artists-and-tracks
https://developer.spotify.com/documentation/web-api/reference/get-recently-played
https://developer.spotify.com/documentation/web-api/reference/get-recently-played

Bibliography 39

15. Get Currently Playing Track [online]. Spotify, 2023 [visited on 2023-12-09]. Available from:
https://developer.spotify.com/documentation/web- api/reference/get- the-
users-currently-playing-track.

16. Get Track’s Audio Features [online]. Spotify, 2023 [visited on 2023-12-09]. Available from:
https://developer.spotify.com/documentation/web-api/reference/get-audio-
features.

17. Last.fm [online]. Last.fm, 2023 [visited on 2023-12-09]. Available from: https://last.fm.
18. About Last.fm [online]. Last.fm, 2023 [visited on 2023-12-09]. Available from: https://

last.fm/about.
19. What is a Scrobble and what is Scrobbling? [online]. Last.fm, 2015 [visited on 2023-12-09].

Available from: https://cbsi.my.salesforce-sites.com/lastfm/articles/en_US/
Knowledge/What-is-scrobbling?template=template_lastfm&referer=lastfm.com.

20. Track My Music [online]. Last.fm, 2023 [visited on 2023-12-09]. Available from: https:
//www.last.fm/about/trackmymusic.

21. More ways to Scrobble [online]. Last.fm, 2019 [visited on 2023-12-09]. Available from: https:
//support.last.fm/t/more-ways-to-scrobble/192.

22. stats.fm [online]. stats.fm, 2023 [visited on 2023-12-09]. Available from: https://stats.fm.
23. stats.fm Plus [online]. stats.fm, 2023 [visited on 2023-12-09]. Available from: https://

stats.fm/plus.
24. Differences between calculation methods [online]. stats.fm, 2023 [visited on 2023-12-09].

Available from: https://support.stats.fm/docs/import/faq/calculation-methods.
25. Streaming history synchronisation [online]. stats.fm, 2023 [visited on 2023-12-09]. Available

from: https://support.stats.fm/docs/streams/sync.
26. Stats for Spotify [online]. Stats for Spotify, 2023 [visited on 2023-12-09]. Available from:

https://www.statsforspotify.com/.
27. Obscurify [online]. Obscurify, 2023 [visited on 2023-12-09]. Available from: https://www.

obscurifymusic.com/.
28. About Obscurify [online]. Obscurify, 2023 [visited on 2023-12-09]. Available from: https:

//www.obscurifymusic.com/about.
29. musictaste.space [online]. musictaste.space, 2023 [visited on 2023-12-09]. Available from:

https://musictaste.space/.
30. About musictaste.space [online]. musictaste.space, 2023 [visited on 2023-12-09]. Available

from: https://musictaste.space/about.
31. MoSCoW method [online]. TechTarget, 2023 [visited on 2023-12-09]. Available from: https:

//www.techtarget.com/searchsoftwarequality/definition/MoSCoW-method.
32. Functional vs Non Functional Requirements [online]. Guru99, 2023 [visited on 2023-12-

09]. Available from: https : / / www . guru99 . com / functional - vs - non - functional -
requirements.html.

33. Frontend vs Backend [online]. GeeksforGeeks, 2023 [visited on 2024-01-30]. Available from:
https://www.geeksforgeeks.org/frontend-vs-backend/.

34. TypeScript [online]. Microsoft, 2024 [visited on 2024-01-25]. Available from: https://www.
typescriptlang.org/.

35. The Progressive JavaScript Framework [online]. Evan You, 2024 [visited on 2024-01-25].
Available from: https://vuejs.org/.

36. Introduction [online]. Evan You, 2024 [visited on 2024-01-25]. Available from: https://
vuejs.org/guide/introduction.html.

https://developer.spotify.com/documentation/web-api/reference/get-the-users-currently-playing-track
https://developer.spotify.com/documentation/web-api/reference/get-the-users-currently-playing-track
https://developer.spotify.com/documentation/web-api/reference/get-audio-features
https://developer.spotify.com/documentation/web-api/reference/get-audio-features
https://last.fm
https://last.fm/about
https://last.fm/about
https://cbsi.my.salesforce-sites.com/lastfm/articles/en_US/Knowledge/What-is-scrobbling?template=template_lastfm&referer=lastfm.com
https://cbsi.my.salesforce-sites.com/lastfm/articles/en_US/Knowledge/What-is-scrobbling?template=template_lastfm&referer=lastfm.com
https://www.last.fm/about/trackmymusic
https://www.last.fm/about/trackmymusic
https://support.last.fm/t/more-ways-to-scrobble/192
https://support.last.fm/t/more-ways-to-scrobble/192
https://stats.fm
https://stats.fm/plus
https://stats.fm/plus
https://support.stats.fm/docs/import/faq/calculation-methods
https://support.stats.fm/docs/streams/sync
https://www.statsforspotify.com/
https://www.obscurifymusic.com/
https://www.obscurifymusic.com/
https://www.obscurifymusic.com/about
https://www.obscurifymusic.com/about
https://musictaste.space/
https://musictaste.space/about
https://www.techtarget.com/searchsoftwarequality/definition/MoSCoW-method
https://www.techtarget.com/searchsoftwarequality/definition/MoSCoW-method
https://www.guru99.com/functional-vs-non-functional-requirements.html
https://www.guru99.com/functional-vs-non-functional-requirements.html
https://www.geeksforgeeks.org/frontend-vs-backend/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://vuejs.org/
https://vuejs.org/guide/introduction.html
https://vuejs.org/guide/introduction.html

Bibliography 40

37. Comparison with Other Frameworks [online]. Evan You, 2024 [visited on 2024-01-25]. Avail-
able from: https://v2.vuejs.org/v2/guide/comparison.html.

38. Kotlin [online]. Kotlin, 2024 [visited on 2024-01-25]. Available from: https://kotlinlang.
org/.

39. Kotlin (programming language) [online]. Wikipedia, 2024 [visited on 2024-01-25]. Available
from: https://en.wikipedia.org/wiki/Kotlin_(programming_language).

40. Spring Framework [online]. Broadcom, 2024 [visited on 2024-01-25]. Available from: https:
//spring.io/projects/spring-framework/.

41. Why Spring? [online]. Broadcom, 2024 [visited on 2024-01-25]. Available from: https :
//spring.io/why-spring/.

42. Introducing Kotlin support in Spring Framework 5.0 [online]. Broadcom, 2017 [visited on
2024-01-25]. Available from: https : / / spring . io / blog / 2017 / 01 / 04 / introducing -
kotlin-support-in-spring-framework-5-0/.

43. Kotlin for server side [online]. Kotlin, 2023 [visited on 2024-01-25]. Available from: https:
//kotlinlang.org/docs/server-overview.html.

44. Spring Boot [online]. Broadcom, 2024 [visited on 2024-01-25]. Available from: https://
spring.io/projects/spring-boot/.

45. Spring Security [online]. Broadcom, 2024 [visited on 2024-01-25]. Available from: https:
//spring.io/projects/spring-security/.

46. Gradle [online]. Gradle Inc., 2024 [visited on 2024-01-25]. Available from: https://gradle.
org/.

47. Gradle vs Maven Comparison [online]. Gradle Inc., 2024 [visited on 2024-01-25]. Available
from: https://gradle.org/maven-vs-gradle/.

48. Gradle + Kotlin [online]. Gradle Inc., 2024 [visited on 2024-01-25]. Available from: https:
//gradle.org/kotlin/.

49. Relational vs. Non-Relational Databases [online]. MongoDB, Inc., 2023 [visited on 2024-
01-25]. Available from: https : / / www . mongodb . com / compare / relational - vs - non -
relational-databases.

50. About [online]. The PostgreSQL Global Development Group, 2024 [visited on 2024-01-25].
Available from: https://www.postgresql.org/about/.

51. What is three-tier architecture? [online]. IBM, 2024 [visited on 2024-01-25]. Available from:
https://www.ibm.com/topics/three-tier-architecture.

52. Three-Tier Client Server Architecture in Distributed System [online]. GeeksforGeeks, 2023
[visited on 2024-01-30]. Available from: https://www.geeksforgeeks.org/three-tier-
client-server-architecture-in-distributed-system/.

53. What is a REST API? [online]. IBM, 2024 [visited on 2024-01-25]. Available from: https:
//www.ibm.com/topics/rest-apis.

54. Build with Lyrics [online]. Musixmatch, 2024 [visited on 2024-01-25]. Available from: https:
//developer.musixmatch.com/.

55. Pricing & Plans [online]. Musixmatch, 2024 [visited on 2024-01-25]. Available from: https:
//developer.musixmatch.com/plans.

56. What is high-fidelity prototyping—and how can it help? [online]. Figma, 2024 [visited on
2024-01-30]. Available from: https://www.figma.com/resource-library/high-fidelity-
prototyping/.

57. International Standard Recording Code [online]. Wikipedia, 2024 [visited on 2024-02-08].
Available from: https://en.wikipedia.org/wiki/Global_Release_Day.

https://v2.vuejs.org/v2/guide/comparison.html
https://kotlinlang.org/
https://kotlinlang.org/
https://en.wikipedia.org/wiki/Kotlin_(programming_language)
https://spring.io/projects/spring-framework/
https://spring.io/projects/spring-framework/
https://spring.io/why-spring/
https://spring.io/why-spring/
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0/
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0/
https://kotlinlang.org/docs/server-overview.html
https://kotlinlang.org/docs/server-overview.html
https://spring.io/projects/spring-boot/
https://spring.io/projects/spring-boot/
https://spring.io/projects/spring-security/
https://spring.io/projects/spring-security/
https://gradle.org/
https://gradle.org/
https://gradle.org/maven-vs-gradle/
https://gradle.org/kotlin/
https://gradle.org/kotlin/
https://www.mongodb.com/compare/relational-vs-non-relational-databases
https://www.mongodb.com/compare/relational-vs-non-relational-databases
https://www.postgresql.org/about/
https://www.ibm.com/topics/three-tier-architecture
https://www.geeksforgeeks.org/three-tier-client-server-architecture-in-distributed-system/
https://www.geeksforgeeks.org/three-tier-client-server-architecture-in-distributed-system/
https://www.ibm.com/topics/rest-apis
https://www.ibm.com/topics/rest-apis
https://developer.musixmatch.com/
https://developer.musixmatch.com/
https://developer.musixmatch.com/plans
https://developer.musixmatch.com/plans
https://www.figma.com/resource-library/high-fidelity-prototyping/
https://www.figma.com/resource-library/high-fidelity-prototyping/
https://en.wikipedia.org/wiki/Global_Release_Day

Bibliography 41

58. Get tracks by ISRC [online]. TIDAL Music AS, 2024 [visited on 2024-02-08]. Available from:
https://apiref.developer.tidal.com/apiref?spec=catalogue&ref=get-tracks-by-
isrc.

59. track.get [online]. Musixmatch, 2024 [visited on 2024-02-08]. Available from: https : / /
developer.musixmatch.com/documentation/api-reference/track-get.

60. track.lyrics.get [online]. Musixmatch, 2024 [visited on 2024-02-08]. Available from: https:
//developer.musixmatch.com/documentation/api-reference/track-lyrics-get.

61. Composables [online]. Evan You, 2024 [visited on 2024-02-10]. Available from: https://
vuejs.org/guide/reusability/composables.

62. TanStack Query [online]. Tanner Linsley, 2024 [visited on 2024-02-10]. Available from:
https://tanstack.com/query/latest.

63. Overview [online]. Tanner Linsley, 2024 [visited on 2024-02-10]. Available from: https:
//tanstack.com/query/latest/docs/framework/vue/overview.

64. What is Unit Testing? [online]. Guru99, 2023 [visited on 2024-01-30]. Available from: https:
//www.guru99.com/unit-testing-guide.html.

65. MockK [online]. Tanner Linsley, 2024 [visited on 2024-02-10]. Available from: https://
mockk.io/.

66. Manual Testing Tutorial [online]. Guru99, 2023 [visited on 2024-01-30]. Available from:
https://www.guru99.com/manual-testing.html.

67. Quota modes [online]. Spotify, 2024 [visited on 2024-01-30]. Available from: https : / /
developer.spotify.com/documentation/web-api/concepts/quota-modes.

68. Vercel is the Frontend Cloud. [online]. Vercel, 2024 [visited on 2024-02-04]. Available from:
https://vercel.com/.

69. Instant Deployments, Effortless Scale [online]. Railway Corp., 2024 [visited on 2024-02-04].
Available from: https://railway.app/.

https://apiref.developer.tidal.com/apiref?spec=catalogue&ref=get-tracks-by-isrc
https://apiref.developer.tidal.com/apiref?spec=catalogue&ref=get-tracks-by-isrc
https://developer.musixmatch.com/documentation/api-reference/track-get
https://developer.musixmatch.com/documentation/api-reference/track-get
https://developer.musixmatch.com/documentation/api-reference/track-lyrics-get
https://developer.musixmatch.com/documentation/api-reference/track-lyrics-get
https://vuejs.org/guide/reusability/composables
https://vuejs.org/guide/reusability/composables
https://tanstack.com/query/latest
https://tanstack.com/query/latest/docs/framework/vue/overview
https://tanstack.com/query/latest/docs/framework/vue/overview
https://www.guru99.com/unit-testing-guide.html
https://www.guru99.com/unit-testing-guide.html
https://mockk.io/
https://mockk.io/
https://www.guru99.com/manual-testing.html
https://developer.spotify.com/documentation/web-api/concepts/quota-modes
https://developer.spotify.com/documentation/web-api/concepts/quota-modes
https://vercel.com/
https://railway.app/

Contents of the attachment

readme.txt..contents of the attachment description
examples

screenshots....................................images demonstrating the application
videos..videos demonstrating the application

text
thesis.pdf..thesis text in PDF format
thesis.zip...............................archive with LATEX source code of the thesis

42

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Goals
	Analysis
	Spotify Web API
	Endpoints

	Analysis of existing solutions
	Last.fm
	stats.fm
	Stats for Spotify
	Obscurify
	musictaste.space
	Summary of existing solutions

	Requirements analysis
	Functional requirements
	Non-functional requirements

	Design
	Technologies
	Frontend
	Backend
	Database

	Architecture
	Presentation tier
	Application tier
	Data tier

	API
	Endpoints

	Graphical User Interface
	Main page
	User profile
	Album page
	Artist page
	Track page

	Implementation
	Backend implementation
	Computing statistics
	Updating playbacks
	Mapping platform objects
	Calculating compatibility
	Security
	Lyrics fetching

	Frontend implementation
	Composables
	TanStack Query

	Testing
	Types of tests
	Unit testing
	Manual testing

	Results of tests

	Evaluation
	Usability
	Comparison with existing solutions
	Future improvements
	Extended statistics
	Profound preferences comparison
	Support more music services
	Responsive design
	Custom profile images
	Complete album fetching
	Mobile applications

	Conclusion
	Contents of the attachment

