
Bachelor Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Execution of Multi-Agent Path Finding
Schedules

Jakub Pícha

Supervisor: RNDr. Miroslav Kulich Ph.D.
Study program: Open Informatics
Specialisation: Artificial Intelligence and Computer Science
May 2024

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

498817 Personal ID number: Pícha Jakub Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Open Informatics Study program:

Artificial Intelligence and Computer Science Specialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Execution of Multi-Agent Path Finding Schedules

Bachelor’s thesis title in Czech:

Realizace plánů multi-agentního plánování hledání cest

Guidelines:

The task of Multi-Agent Path Finding (MAPF) consists in finding an optimal collision-free trajectory for a group of mobile
agents (robots) from their starting positions to specified destinations. However, when executing the plan, there are
inaccuracies in the control of the robots that make it impossible to execute the plan as it was designed. The aim of the
work will be to experimentally verify how the execution of the plan corresponds to the proposed plan. The student performs
this verification in the following steps:
1. Get acquainted with current versions of multi-agent planning algorithms, their robust versions and freely available
implementations.
2. Get acquainted with the environment (simulator) for performing multi-robotic experiments developed by the IMR group,
CIIRC.
3. Create utilities to run schedules generated by selected freely available planners in the IMR simulator.
4. Compare experimentally properties of execution of plans generated by selected planners with different control accuracy
settings.
5. Describe and comment on the knowledge gained.

Bibliography / sources:

[1] https://ieeexplore.ieee.org/abstract/document/8620328
[2] https://ieeexplore.ieee.org/abstract/document/5980306
[3] https://arxiv.o- https://www.ijcai.org/proceedings/2021/0568.pdf
[4] https://ojs.aaai.org/index.php/AAAI/article/view/21266/21015r
[5] https://www.ijcai.org/proceedings/2021/0568.pdf
[6] https://github.com/kei18/mapf-IR
[7] https://github.com/Jiaoyang-Li/MAPF-LNS2

Name and workplace of bachelor’s thesis supervisor:

RNDr. Miroslav Kulich, Ph.D. Intelligent and Mobile Robotics CIIRC

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 24.05.2024 Date of bachelor’s thesis assignment: 01.02.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Dr. Ing. Jan Kybic

Head of department’s signature
RNDr. Miroslav Kulich, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

Acknowledgements

I would like to thank RNDr. Miroslav
Kulich, Ph.D. for his patience, willingness
to help, compassionate guidance and over-
all being, at least in my eyes, image of
ideal supervisor.

Another person that I would like to
extend my gratitude to is Ing. David
Zahrádka, for his tireless help with work
on the simulator, willingness to answer my,
undoubtedly at times tedious, questions
and overall being great support through-
out the entire time spent with the thesis.

Declaration

I declare that the presented work was writ-
ten independently and that I have listed
all sources of information used within it in
accordance with the methodical instruc-
tions for observing the ethical principles
in the preparation of university theses.

Pícha Jakub

...................................
In Prague, 24. May 2024

v

Abstract

The Goal of this thesis was to test the
robustness of Multi-Agent Pathfinding al-
gorithms on a simulator. For this task, it
was necessary to extend the already ex-
isting simulator of logistical robots to be
able to simulate parameterised imprecise
movement. This is achieved through the
implementation of motion models. Fur-
ther in the thesis can be found a descrip-
tion of the used planning algorithms and
experiments done on the simulator. By
the end are presented the results and find-
ings from these tests, primarily concerning
the relation between real and theoretical
cost of the plans, and what affects them.

Keywords: Multi-Agent Pathfinding,
simulation of robots, motion models

Supervisor: RNDr. Miroslav Kulich
Ph.D.
CIIRC, CTU in Prague,
Jugoslávských partyzánů 1580/3,
Praha 6

Abstrakt

Cílem této práce bylo testovat robustnost
plánů multi-agentních plánovačů na simu-
látoru. Za tímto účelem bylo potřeba roz-
šířit již existující simulátor robotů o im-
plementaci pohybových modelů, tak aby
mohl simulovat parametricky nepřesný po-
hyb. Po čáasti o simulátoru v práci násle-
duje popis testovaných algoritmů a prove-
dených experimentů. Ke konci jsou prezen-
továný proznátky z těchto testů, primárně
o vztahu teoretické a reálné ceny plánu a
jeké jevy tento vztah ovlivňují.

Klíčová slova: multi-agentní plánování,
simulace robotů, pohybové modely

Překlad názvu: Realizace plánů
multi-agentního plánování hledání cest

vi

Contents

1 Introduction 1

2 Problem Specification 3

2.1 Introduction to Multi-Agent
Pathfinding . 3

2.1.1 Collisions and k-robustness . . . 4

2.1.2 Metrics of MAPF plans 4

2.2 Hypothesis . 5

2.3 Means of experimentation 6

3 Simulator 7

3.1 State . 7

3.1.1 Server . 8

3.1.2 Robots and their movement in
simulator . 11

3.2 Motion Models 13

3.2.1 Velocity model 14

3.2.2 Odometric model 16

3.3 Configuration of simulator 19

4 MAPF planners 21

4.1 Enhanced Conflict based Search 21

4.2 Large Neighbourhood Search . . . 23

5 Experimentation 25

5.1 Initial tests 25

5.2 Main tests 28

5.3 Findings . 32

6 Conclusion 35

A Attachments 37

B Bibliography 39

vii

Figures

2.1 Visualization of MAPF graphs . . 4

3.1 Black lines are the dependencies in
paths of the agents, red ones are
inter-agent dependencies 9

3.2 Representations of simple small
map. 10

3.3 Representation of plan without
rotations . 11

3.4 Sampling of 500 moves with
velocity model, with different
parameters taken from [8], page 125,
Figure 5.4 . 15

3.5 Visualisation of rotations and
translations . 17

3.6 Results of odometric movement
with different types of error 18

4.1 Psedocode of CBS, taken from [6]
(Section 4.2.6, Algorithm 2) 22

5.1 Visualisation of testing 10x1 path 26

5.2 Results of odometric movement
with different types of error 27

5.3 Probability graph of arrival time
with differently parameterised error 28

5.4 Originally promising results, with
the difference between solvers. 30

5.5 The maps used for tests 30

5.6 Results for 30 agents on 32x32
map. 31

5.7 Results for 20 agents on 16x24
map. 32

5.8 Example of a crossroad in a plan 33

viii

Chapter 1

Introduction

With a drive for efficiency, there is currently rising interest in robotic-based
automation in logistics, such as robot fleets servicing warehouses. This
motivated and still does not only developments of robots themselves but
also how they will be coordinated. One way to handle the navigation and
coordination of robots is to formulate it into a Multi-Agent Pathfinding
(MAPF) problem, which was developed to ideally suit this task.

Although studies of Multi-Agent Pathfinding is a relatively new field,
there already exists a plethora of algorithms that have been developed to
solve it, and there are many solvers applying these algorithms to specific
incarnations of MAPF problems. The potential problem lies in the fact that
these algorithms presume that agents will follow instructions in solution
with absolute precision and no delays, but this is unlikely to be the case in
real-world applications.

This thesis aims to test how the solutions provided by different MAPF
algorithms perform under imperfect conditions. For this goal simulator,
provided by CIIRC (Czech Institute of Informatics, Robotics and Cybernetics),
had to be extended to provide these conditions and a testing pipeline had to
be established.

The main achieved results were an extension of the simulator by the
addition of motion models and features related to them, identifying and fixing
of plethora of issues from prior development. Also of note are scripts that
form a testing pipeline alongside the simulator, which makes it far simpler
than it was initially, to go from the scenario for a planner to the results of

1

1. Introduction
multiple runs in a graph or table.

Concerning tests themselves, experiments done so far do not seem to point
favourably to the main hypothesis, But from the gathered data, useful insights
were made into the relation between the theoretical cost of the plan and its
real cost measured in experiments.

2

Chapter 2

Problem Specification

2.1 Introduction to Multi-Agent Pathfinding

In general, Multi-Agent Pathfinding (MAPF) is the problem of planning paths
for multiple agents in a shared environment, in such a way that collisions
between agents or agents and obstacles are preempted. This problem of finding
collision free paths quickly becomes very complex with higher densities of
agents in the environment. For that reason, specialised algorithms are needed.

MAPF is quite a broad problem and there are many versions and case
specific variants, but in this thesis, we will be dealing with what is defined
as the classical MAPF problem (defined in [7]). Classical MAPF problem
with n agents has a tuple ⟨G, s, t⟩ as input. G is the representation of an
undirected graph and contains a list of all vertices V and a second list of edges
E connecting them, with obstacles represented by the absence of the previous
two, visualisation in Figure 2.1a. Both s = [s1, s2, ..., sn] and t = [t1, t2, ..., tn]
are lists of vertices from graph, where si represent starting position of i-th
agent and ti its destination. When an agent moves between two nodes via
a connecting edge, the action takes up one discreet timestep. One quite
significant deviation from the classical MAPF problem is that turning in
place is an independent action that takes time to complete, and rotations
have their vertices, as visualised in 2.1b.

3

2. Problem Specification

(a) : Graph of classical MAPF problem (b) : Graph with rotations

Figure 2.1: Visualization of MAPF graphs

2.1.1 Collisions and k-robustness

The collisions MAPF solvers are trying to prevent are forbidden or impossible
interactions between two or more agents, and they depend on the capabilities
of what the agents are abstractions for. Depending on the configurations
of the MAPF problem, multiple types of conflicts can be present. Conflicts
recognised by our planner were node conflict which happens when multiple
agents occupy the same spot at the same timestep, or swap conflict where
the problem is that agents swap positions across the same edge (more exist
and can be seen in [7]). Plan is a valid solution if it has none of the defined
collisions for the task.

In addition to having different definitions of collisions, solutions to the
MAPF problem can also be k-robust. As defined, a k-robust plan has
enough reserves and buffers for agents in such a way that each agent can be
delayed by at least k timesteps without causing a collision. Where k can be
any natural number or a zero. Every valid solution is at least 0-robust. A
term that is closely connected to k-robustness is collisions in time t. It is an
interaction between two agents, that would result in conflict if one of them
were delayed by t timesteps. In a k-robust plan, no t-collisions would happen
for t ∈ ⟨0, k⟩.

2.1.2 Metrics of MAPF plans

To measure solutions to MAPF task, there are two main metrics, sum of
costs (SOC) and makespan. Solution for n agents contains a set of paths

4

..................................... 2.2. Hypothesis

p1, p2, ..., pn where each path pi is a sequence of coordinates i-th agent held
each timestep from start in si until it definitely reached (meaning that it will
not move from it within the scope of the plan) its destination ti. Path of an
agent also contains timesteps where it waits, except those after reaching the
target. Sum of costs is calculated as SOC = ∑n

i=1 |pi|, whereas makespan is
makespan = max |pi|

Every solvable classical MAPF task has an optimal solution, where each
agent travels the fastest possible route while avoiding colliding with others
(this is most likely different from to fastest path if it was alone in the plan).
But finding this optimal solution is proven to be NP-hard (ref. [10]) and
potentially very computationally expensive. To lower the solving time to an
acceptable amount, several algorithms (such as ECBS and LNS used in this
thesis) instead provide a sub-optimal solution.

Conected to sub-optimal solutions is another metric, suboptimality. Sub-
optimality is the cost of the current plan, can be both SOC or makespan,
divided by the cost, in the same metric, of the optimal plan. Here it will
be used mostly in theory, since we rarely have optimal plans to compare to
Some algorithms can guarantee bounded suboptimality. This means that the
algorithm will produce a plan, the actual suboptimality of which is in the
worst case same as the one it was bounded with.

2.2 Hypothesis

The initial motivation for work done in this thesis was to investigate how
would MAPF plans, generated under a presumption of ideal circumstances,
perform in an environment with errors and imprecisions in movement. These
imprecisions, although of small impact individually, could in theory, cascade
and compound to create larger issues and start interfering with synchronicity
of plan. Main hypothesis was that optimal plans or ones close to them would
be most vulnerable, which could cause slightly suboptimal plans to outperform
them in such conditions. Reason for this thinking is an assumption that very
slightly imperfect plans will have some gaps between moving agents, some
organic waiting and that these slight imperfections would cushion execution
errors of agents, instead of letting them cascade.

5

2. Problem Specification
2.3 Means of experimentation

To test the hypothesis, a large number of experiments would be needed would.
Also, although it is desirable that the error in movement of agents is realistic,
it needs to be controllable, and while random, to some extent predictable.
For this reason simulated environment was chosen instead of a laboratory
with physical robots.

The environment that the simulation is emulating is that of warehouse
robots. These robots have as few sensors as possible and minimal processing
power to keep them cheap and deployable in large numbers. Individually
they cannot perceive the outside world and instead rely on some localisation
system to tell them where they are and some control system to tell them
what to do. This makes these robots an ideal match for agents in MAPF.
The simulated location system is a set of location marks placed in a grid (in
the case of the simulated environment, with a distance of one meter), where
robots can get the coordinates of the mark they reach plus visible offset and
their heading. Although in most generated plans, movement is quite arbitrary,
a requirement was placed that robots must reach their final destination very
precisely (with a very small error margin). This is to represent that robots
have to be in place to pick up specific packet or enter correctly a charging
station.

The simulator as it was initially, lacked the option to simulate errors in
movement. This needed to be added via

6

Chapter 3

Simulator

3.1 State

Simulator was developed from a program for controlling physical robots, by the
Intelligent and Mobile Robotics Group at the Czech Institute of Informatics,
Robotics, and Cybernetics, under CTU in Prague. Later, an option to run
simulated robots within a completely simulated environment was added. The
initial motivation was to run scenarios with the software of robots remote from
the laboratory. This also made it possible to run scenarios in more complex
environments and with more robots than was possible in the laboratory. At the
current date, the simulator can run simulated scenarios with multiple robots
executing continuous imprecise movement. The transition from real to virtual
was necessary to enable running scenarios whose complexity would allow us
to properly test the capabilities of MAPF planners, and to completely control
how errors in movement happen, instead of having to rely on unpredictable
real-world ones to occur.

Input given to the simulator consists of a map file, detailing the environment
of the simulation, a plan file, in which it is described what moves robots should
perform, and configuration files, where we define constants and parameters.
Output is a file containing analytical data of a run. The simulator is at its
core a multi-thread program with master-slave architecture. The role of the
"master" is fulfilled by the server which oversees and coordinates robots, which
are in the role of the "slave". The software of each simulated robot has two
parts, controller and simulated movement, where the controller receives a
target to reach from the server and gives out inputs to motors, which are

7

3. Simulator
then used by simulated movement to move the robot in the environment.
The movement itself is handled by motion models, whose parameters allow
to specify what imprecisions can happen and what causes them during the
robot’s attempt to move.

3.1.1 Server

The main job of the server is to handle input and output and to coordinate
individual robots. The coordination is achieved by the server sending only
simple and short movement tasks to robots and waiting for their report of
completion. The simple movement tasks should be move by just one grid
square and/or rotation in place. Since robots can not coordinate themself,
sending longer tasks would mean losing coordination. In case the robot cannot
proceed in its path, because another robot is blocking it, the server will simply
not issue further orders to that robot, making it wait until its path is clear.

To decide which actions of individual robots need to be completed in exact
order and when robots can go at their own pace, the server makes use of an
Action Dependency Graph (ADG). ADG is a directed graph created at the
start of each run from the input plan, where each node represents a move
command that should be issued to a specific robot. These commands should
not skip positions. The edges between them represent dependencies between
commands, and they play a critical role in the functioning of ADG. When
in graph one action depends on another one, it means that the depended
on action needs to be reported as finished before the orders to execute the
dependee can be issued. Edges are added to the graph in two waves at the
time of its creation. First are added edges connecting the paths of individual
agents, these are directed from start to finish, connecting each node to the
next one. Second are edges representing dependencies between agents.

Dependencies between agents arise whenever two paths of two agents
contain an order to enter the same position, regardless of the expected time
of entry. When this happens, a connection will be drawn between the paths
of the agents, with regard to the k-robustness of ADG, with the edge leading
to the node that is supposed to be reached second, according to plan. The
current simulator has 1-robust ADG, which means that when drawing edges
between paths of agents, it leads from the first command that makes the
first robot leave the contested position to the one in which the second robot
enters the position, visualised in the Figure 3.1. If a node has edges leading
to it, its corresponding command cannot be issued, and if it is currently
the first node in the agent’s path, said agent must wait. When any robot
reports it has finished a command, its corresponding node in ADG is removed,

8

.. 3.1. State

together with all connections leading from it, so if there was a dependency on
this action, it can proceed. ADG, as implemented in the simulator, has no
predictions or checks and simply assumes that the plan is 1-robust and valid.
If a plan does not fulfil that, ADG can enter into a deadlock, where a group
of two or more forms a cycle in the graph, which leads to the problem that
no node belonging to this group can be removed, leaving them stuck forever.

Figure 3.1: Black lines are the dependencies in paths of the agents, red ones are
inter-agent dependencies

The server communicates with robots only using buffered messages. It
sends commands containing information that the robot with the target ID
should move from A to B. In return, the server receives acknowledgments of
completion of tasks. These messages contain the ID of the robot the message
was relevant to, the coordinates of the goal, and the distance traveled in
reaching it, which is accumulated in the robot’s overall travelled distance.
Acknowledgements can also be used to report critical errors from agents, via
sending large negative travelled distance. In addition, the server also tracks
the execution and wait times of robots, both in individual sections and their
sums throughout a run. Execution time is time sever logged between sending
a command and receiving acknowledgement back and wait time is between
receiving and sending (if a message gets delayed in a buffer of the server, the
delay is counted to wait).

Finally, the server takes responsibility for writing outputs. In the current
build, output can have three forms, either error output, one for a multi-
agent run, or one for only one agent. All of them take the form of a JSON
file. Error output contains info only on α parameters (more about them
in Section 3.2 of movement and number of agents. Single and multi-agent
output files both contain information based on execution, wait time, and

9

3. Simulator
distance traveled, together with information on α-s. The output for a single
agent contains detailed information on individual moves the agent has done,
together with their sums for the entire run. On the other hand for multi-agent
run, information is more focused on finding averages and extremes in values.

Plans and maps

To understand the workings of the simulator, and to run it successfully, it
is important to understand the main inputs. These are the plan that the
simulator should execute and the map that describes the environment in
which the plan plays out.

(a) : Map in a text file (b) : Map in the simulator

Figure 3.2: Representations of simple small map

The map is supplied in a text file, a simple example of which can be seen
above in 3.2a. The first four lines are parameters, with the only relevant ones
being height and width. These are followed by a block of text where each
symbol expresses the status of a field, "." is used for free spaces and "T" for
obstacles, important to note is that the simulator flips it upside down, as
can be seen by comparing map in file to how simulator renders it in 3.2b.
The environment in the map represents a usable area, on loading, edges of
obstacles are automatically added around it. By default, the shape of the
map is rectangular, but any other shape can be created using obstacles.

10

.. 3.1. State

Figure 3.3: Representation of plan without rotations

The plan contains the output of a MAPF solver in a specific format. It
stores information on what map the plan was made, how many agents are in
it, and what are the SOC and Makespan metrics. It also contains a table,
which specifies coordinates, where each agent should be, by time-step (for
clarification, lines are for time-steps, columns for agents). Coordinates are
positions on the x and y axis, with an option of specifying rotation at the end
of move. Although rotations are optional, based on experience, it is strongly
recommended to include them, since they help with smoother running for
higher agent counts (The project folder includes a python script that can add
rotations, though it is recommended that the plan contains free timesteps for
turning in place)

3.1.2 Robots and their movement in simulator

Even though plans for robots are discrete and the environment they operate in
is a grid, robots move continuously. Real, physical robots simply had to, and
since the main intent of simulation is to create realistic real scenarios, robots
in simulation also move continuously Hardware wise, robots are thought of
as having only one, centered axle, with independently powered wheels, which
allows them to turn in place.

When it comes to how robots move, this is the part that has undergone
probably the largest development in the time scope of this thesis. At the
start, simulated robots moved precisely as instructed. The movement was
closer to spread out deterministic move, where just instead of a single jump
and then waiting, the robot would move between its initial and goal position.
The only thing that was not exact was the time it would take for the robot to
act out the action (for example if it needed to turn, move would take longer).

11

3. Simulator
But for the current task of testing how deterministic plans translate to a

realistic environment, the previous approach would be insufficient. Outside of
some minor, in the end predictable, delays due to turning, no imprecisions or
errors in movement, on which we could see the robustness of the algorithm,
would happen. This led to the implementation of motion models (see more in
Section 3.2), which create imprecision based on current movement and given
parameters. This led to the introduction of the perceived position of the
robot, alongside the real position of the robot in the environment and that of
the current goal, which was already present. The robot decides how it will
move based on perceived coordinates, instead of real ones. This is because
if the robot was looking at the real coordinates if moved off course due to
inaccurate movement, it would simply correct and in large part mitigate the
introduced error. Instead robot believes it is moving in an ideal way and
the motion model introduces noise to this movement and then applies it to
change real positions.

While simulating completely ideal conditions, perceived and real coordi-
nates would not diverge from each other, but in reality, robots would start
accumulating error. Without correction, the positional error could spiral to
such an extent, that the robot will not be able to follow given instructions,
within a relatively small amount of moves (depends on the motion model
settings, but with current test parameters, it would be around 3-10 moves).
To prevent this, in our simulated environment, there are correction points.
These are located at the center of each grid-square and when the robot reaches
within a certain radius around the marker, the robot will correct its perceived
position. How exactly this happens can change in some minor details, but
in general, this correction means overwriting perceived coordinates with real
ones. This is an abstraction to a system that exists in the laboratory for
physical robots, where there is a grid of markers that robots can read and
find their position.

The currently up-to-date robot software is split into two parts running in
independent threads. There is the controller, which decides how the robot
want to act, then the simulated movement, which acts out the decisions of
the controller using one of the motion models. When the robot has target
coordinates, it has three movement options to reach them. It can either go
in a straight line, turn in place, or travel along a curve. When the robot
controller has a new target, it first calculates the angle between its current
perceived heading and that needed to reach the target. It then compares the
angle to turn threshold, a constant, if the angle is less than the threshold, it
will use the curved movement, if not, the robot controller will issue commands
to stop, turn in place, and then move in direct line. A very situational move is
reversing, which is allowed for only very short adjusting moves. The controller
runs in cycles with a set frequency (to give an example, the current default
is 100Hz). During each iteration, it gives out current instructions and then

12

....................................3.2. Motion Models

waits for its period, so instructions can be carried out.

In the initial version of the simulator, the robot had to reach each goal
exactly with minuscule tolerance, for a move to be considered completed.
When there were no imprecisions in movement, this worked without problem,
since the robot would reach it exactly without corrections. However motion
models were introduced and with them imprecise movement, this requirement
began to slow robots down considerably. This was because now it was rare
for a robot to reach the goal on the first try and once it reached within the
correction radius and realised it was heading even slightly of the goal, it had
to adjust. Adjusting would mean it had to stop, turn towards goal, often at
angles close to 90°, do small adjusting move and only then could the goal be
marked as done. But still, the robot once again needed to turn, since the
move it made to adjust, almost certainly did not put it in the heading, it
desired to continue in.

This was the motivation for the introduction of the "align" feature. With
this feature, aligning as described above can be switched on or off for each
robot. If disabled, robots will mark moves as completed when it has reached
within correction radius around their goal. This means that at the same
time aligning robot would realise that it must adjust, non-aligning one would
be already marking the move as complete. The reason for making aligning
switchable instead of disabling it altogether was that one of the formulated
requirements for the plan to be successfully executed is to reach its final
destination on the path precisely. Aligning can be switched by specifying it
in an extended command form server, the goal for that command will already
be affected. In the current state, when the server issues the last order to any
robot, it will specify in the message that this robot should reach that goal
with aligning enabled.

3.2 Motion Models

To test the robustness of plans, and how they would handle if something
interfered with ideal acting out of a plan, it was at first needed to have
something that could "go wrong" in a controlled and to some extent reliable,
but random way. The way to do that was to introduce noise to the movement
of robots. This noise can be viewed as an abstraction of minor problems, such
as a robot driving over a wet floor, having one motor low on battery and so
on. One way to get this noise into movement is by using motion models. In
general, motion models are algorithms that take in the current position of the
agent, movement instructions, and parameters and output a new position.

13

3. Simulator
Currently, the simulator implements two motion models, velocity and odo-

metric. When they move robots in the environment, they do not move or
rotate them continuously, but in small jumps, though these jumps are so
small and done in such high frequency, that they very well imitate contin-
uous movement (default period is set to 5 milliseconds). Both models are
parameterised by α parameters. The parameters modify what movement
causes what error and to what extent. How many parameters a model has
and what each individual does differs but for both implemented models, if all
parameters were set to zero, it would disable the noise.

3.2.1 Velocity model

The Premise of the velocity model is quite simple, it takes the speeds at
which the agent wants to move to reach the target and slightly modifies them
[8]. To visualise this, one can imagine a car doing a curved movement and
ending up slightly off target, because the driver turned the steering wheel
a few degrees more than he intended or travelled at a bit lower speed. The
velocity model as implemented takes input from the robot’s controller in the
form of desired rotation speed for left and right wheels respectively, marked
vl and vr. Output is in the form of an updated position of a robot by the
enacted movement. In the case of implementation in the simulator, this
means updating both real and perceived coordinates of a robot, though the
update to perceived does not have any noise or errors in it.

Since the inputs are in the form of rotational speeds, vl and vr for the left
and right wheels respectively, they need to be converted to the forward and
rotational speeds the robot’s controller wanted to achieve with them. This is
done in following formulas:

v̂ = (vr + vl)
2 (3.1)

ω̂ = (vr − vl)
lenaxle

(3.2)

The x̂ version of variables indicates that it contains value of x as perceived
by robot, in this case how fast it wanted to go in v̂ and ω̂ marks the turning
rate of a robot in radians. Variable lenaxle is the distance between the wheels
of our robot.

Once these are calculated, noise can be introduced into the speeds that
will be used for real movement, though the ideal values still need to be
preserved to update perceived coordinates. To get random noise, samples
from a normal distribution are used. The sample function returns a random

14

....................................3.2. Motion Models

value based on its probability in a normal distribution. In this case, the
normal distributions have a mean equal to zero and deviation set in bracket
by multiplying intended speeds by relevant α parameters.

v = v̂ + sample(α1 ∗ |v̂| + α2 ∗ |ω̂|)/
√

dt

ω = ω̂ + sample(α3 ∗ |v̂| + α4 ∗ |ω̂|)/
√

dt

γ = sample(α5 ∗ |v̂| + α6 ∗ |ω̂|)/
√

dt

The α-s that appear in the pseudocode above are parameters of the model. To
explain them further, each type of error can be caused by both translational or
rotational movement, even α-s determine the influence of rotation on the error
and odd ones determine error caused by translation. During experimentation,
relatively low even α-s were used and instead focus was on the odd ones.
With the imprecision created by α1 and/or α2, the robot would precisely
head at its target, but the error will be in how far it travels to it, ending up
either short of the desired position. To beware, if we have significant α2 and
the robot wants to only turn in place, it will cause him to slide, which can
cause problems. Error from α3 and/or α4, will result in robots travelling a
precise distance, but with an imprecise heading, causing the robot to land
in a semicircle centred around its target. Finally, the last two α parameters
would not at all interfere with the robot until it reaches its target, but after
that, they will modify the heading it ends up with, whereas without them
the robot would be looking exactly in the direction of movement it acted
out. In Figure 3.4, we can see the effect of the velocity model on the curved
movement of the agent. In the first subfigure, α-s are moderate [8], in the
second α1 and α2 are higher at the expense of α3 and α4 and in the third
subfigure it is reversed.

Figure 3.4: Sampling of 500 moves with velocity model, with different parameters
taken from [8], page 125, Figure 5.4

Once modified speeds are calculated, they can be used to calculate new
positions. Positions need to be calculated separately, so the following code
will be run twice, once with real values and once with perceived ones. By
default any move with a velocity model is on a curve, but the formula for
calculating the curve is undefined for ω equal to zero and is unstable near
zero, so if ω is below turning threshold ϵ, it will be ignored and the robot will

15

3. Simulator
move in a straight line (default value of ϵ is 0.0001). Straight movement is
simply travelled distance in the initial heading, but with the curved move,
the radius of the curve needs to be calculated first rc and coordinates of its
centre, xc and yc.

Algorithm 1 Resulting destination
if (|w| < ϵ) then

xnew = x + v ∗ cos(θ) ∗ dt
ynew = y + v ∗ sin(θ) ∗ dt
θnew = θ

else
rc = v/ω
xc = x − rc ∗ sin(θ)
yc = y + rc ∗ cos(θ)
xnew = (cos(ω ∗ dt) ∗ (x − xc) − sin(ω ∗ dt) ∗ (y − yc)) + xc

ynew = (sin(ω ∗ dt) ∗ (x − xc) + cos(ω ∗ dt) ∗ (y − yc)) + yc

θnew = θ + ω ∗ dt + γ ∗ dt
end if

At current state velocity model is usable but there are concerns if it performs
exactly as it should. In an earlier implementation of the velocity model, the
size of the error was dependent on the period of movement. Although that
problem has been corrected, the current implementation of the velocity model
is not considered altogether reliable.

3.2.2 Odometric model

The odometric model works by calculating where the agent will end up with
perfect move, and then retroactively modifying that destination. Compared
to the velocity model, this type of error is more abstract, but also more
predictable. It needs both old and ideal new positions, then it takes the
difference between them and splits it into simple three moves, two rotations
and one translation. Then the imprecisions are introduced to these three
moves and they are then put back together to get a new position.

16

....................................3.2. Motion Models

Figure 3.5: Visualisation of rotations and translations

Firstly, ideal destination needs to be calculated. For that, some functions
shown in the velocity model will be used. Equations 3.1 and 3.2 to obtain
v̂ and ω̂. These values are then input into Algorithm 1, to obtain both new
perceived location, but more importantly to the odometric model results of
ideal move, when perceived speeds are used to update real positions. From
difference between old real coordinates, xold, yold and θold, and newly obtained
ideal ones x̂new, ŷnew and ω̂new, the three moves can be calculated as shown
bellow.

δ̂rot1 = atan2
(

ŷnew − yold

x̂new − xold

)
− θold

δ̂trans =
√

(ŷnew − yold)2 + (x̂new − xold)2

δ̂rot2 = θ̂new − θold − δrot1

atan2 that can be seen above is special variant of arcus-tangens, defined:

atan2(y, x) =



arctan y
x if x > 0

arctan y
x + π if x < 0 and y ≥ 0

arctan y
x − π if x < 0 and y < 0

+π
2 if x = 0 and y > 0

−π
2 if x = 0 and y < 0

undefined if x = 0 and y = 0

Now with the three moves obtained, noise will be introduced to them in 2
bellow. Similar to how we introduced error in the velocity model, the sample
of normal distribution but only four α parameters.

17

3. Simulator
Algorithm 2 New v, ω, γ

δrot1 = δ̂rot1 + sample(α1 ∗ |δ̂rot1| + α2 ∗ |δ̂trans|)
δtrans = δ̂trans + sample(α3 ∗ |δ̂trans| + α4 ∗ (|δ̂rot1| + |δ̂rot2|))
δrot2 = δ̂rot1 + sample(α1 ∗ |δ̂rot2| + α2 ∗ |δ̂trans|)

(a) : Dominant translational error (b) : Dominant rotational error

(c) : Even error

Figure 3.6: Results of odometric movement with different types of error

The parameter α1 represents rotational error caused by rotation and α2 is
rotational error caused by translation. Together they both introduce noise
to the direction of a move and to final heading, causing robots to fall in a
semi-circle centred on the target. On the same note, α3 and α4 represent error
in translative movement caused by moving or turning respectively. Error in
translation means the robot does not travel exactly the travelled distance,
either too far or back. It is advised to set α4 very low in comparison to others
or to zero, since if set high, it will cause the robot to rock back and forth
as it is turning in place, making it very difficult for the robot’s controller to
hit targets or even stay in a radius of precision point. In Figure 3.6, can be
seen results of move from green point, where agent is oriented to the right, to
the red point where he is oriented up. Blue points represent results of 1000
moves with different parameters, 3.6a has high α3 at the expense of α1 and
α2, 3.6b is reverse and 3.6c has all values rougly even.

Once modified moves are completed, new real coordinates can be recon-
structed from them, as shown in Algorithm 3. Even though odometric model

18

............................... 3.3. Configuration of simulator

could act out entire move of robot in one action, it is still being used in very
small bits to create continuous movement.

Algorithm 3 assembling final position
xnew = x + δtrans ∗ cos(θ + δrot1)
ynew = y + δtrans ∗ sin(θ + δrot1)
θnew = θ + δrot1 + δrot2

At present time, the odometric model is the default motion model of the
simulator, though this can be quite changed by simply replacing the used
sub-class of robots. The decision to switch to the odometric model was made
after issues with the velocity model and because its configuration has more
predictable results on tests.

3.3 Configuration of simulator

Large parts of the simulator’s behaviour can be changed. While more com-
plex changes, like switching motion models or switching how aligning is
handled need to be done in source code, a plethora of constants and con-
figurations are defined in an easily modifiable file. File robot.json, located
warehouse_demo/config, makes it possible to change the physical properties
of robots, precision it needs to achieve, α parameters of motion models (see
Section 3.2) and so on. Here is a complete list of available options:

. dt: Period of movement cycle, how long in seconds does one movement
segment take. needs to be low if robots are to move continuously.. precise_loc_radius: Radius of correction area for robots in meters.. axle_length: Distance between robot’s wheels..wheel_radius: Radius of robot’s wheels, affects forward and turning
speed .. omega_max: Maximum rotation speed of wheel axle.. steering_authority: What percent of omega_max can be used for
steering. Affects movement error and if high it may cause robots to
swing from side to side.. control_frequency: Frequency of robot’s control cycle, how often can
robot’s controller change orders.

19

3. Simulator
. realign_turn_thresh: When the radian difference between the per-

ceived heading and that needed to reach the destination is greater than
this constant, the robot will stop and turn instead of driving on a curve
(see at 3.2.1).. precision_trans: At what distance from target is robot’s move consid-
ered reached exactly-. precision_ang: Turn is considered done when perceived heading is less
than this value in radians from desired one.. α parameters: These are α1, α2, α3, α4, α5, α6, and they are used by
velocity models, but they do not have the same effect in both. Values in
them are usually really small, they should never go to whole numbers,
or even above 0.001.

20

Chapter 4

MAPF planners

The MAPF planners are programs implementing algorithms for solving MAPF
problems by creating solutions (= plans) that can be then used by the
simulator. Since the main goal of this thesis is to examine robustness, it is
important to at least briefly look into how these algorithms work, how they
are implemented and what changes were made to them.

Two algorithms were used, Enhanced Conflict Based Search (ECBS) and
Large Neighbourhood Search (LNS). Both were chosen because they fulfilled
the criteria of having publicly available implementations and both could
be modified to produce 1-robust plans with actions as independent turns.
Furthermore, each had their own added benefit. ECBS can provide a guarantee
of subotimalty or even optimality, and while LNS can not do that, it is due
to a good combination of single agent pathfinding and heuristics [2] much
faster at finding solutions.

4.1 Enhanced Conflict based Search

ECBS (Enhanced Conflict Based Search) is a variant of CBS (Conflict Based
Search). CBS itself is a two-level algorithm. On the upper level, it performs
a best-first search over a binary tree, where each node N contains a set of
constraints, and the value of a node is the SOC of a solution that was created
with these constraints. Solutions are created on the lower level using A*
algorithm for a specific node N and its constraints. Each agent is planned

21

4. MAPF planners....................................

Figure 4.1: Psedocode of CBS, taken from [6] (Section 4.2.6, Algorithm 2)

individually, and cannot see or avoid paths of other agents directly, however,
in addition to avoiding obstacles on the map, it is subject to constraints
related to it, taken from node N. Due to the properties of the A* algorithm,
any solution produced on the lower level is optimal under placed constraints,
though it is in most cases not a valid solution in terms of a MAPF problem.

CBS starts with only a single node in the upper tree that has no constraints.
In every iteration of the upper level, a node with the lowest value of SOC
is selected and its solution is checked on the lower level, if it contains no
collisions, that solution is valid and a goal so the algorithm terminates. But
once the first collision is discovered, checking stops and the node branches
into two new nodes, where each of the two branches resolves the new collision
by introducing a constraint blocking one of the agents from entering the
conflicted point. Then SOCs of the new nodes are calculated (without dealing
with collisions) and they are put into the upper tree as followers of the node
that caused them (ref.: [6]. The whole run of the CBS algorithm can be
seen in pseudocode in Figure 4.1. Because of the optimal paths on the lower
level with a combination of the best first search on the upper level, CBS is
guaranteed to find the optimal solution [3].

ECBS builds upon CBS with the introduction of suboptimality variable
w. Suboptimality is specified by a number greater or equal to one (if w = 0,
ECBS behaves exactly as CBS did). In general, works like CBS, except both

22

..............................4.2. Large Neighbourhood Search

lower and upper layers use focal search to achieve bounded relaxation. On a
lower level, it works by first using A* to find each agent n, an optimal path
with cost f(bestn), where f is a function that returns a cost of a path in length.
Then, using relaxed A* (in detail explained in Section 3.2 of [3]) it finds all
paths p for this agent which fulfil f(p) ≤ w ∗ f(bestn), and selects the one
minimising the amount of collisions. This does not improve the lower part, but
drastically helps the upper one with branching. Concerning the upper part,
nodes now contain also the lower bound of their cost, lb. The lower bound of
node N is calculated lb(N) = ∑

f(bestn) across all agents. Similar to how
this is done in the lower level, all nodes that fulfil cost(N) ≤ w ∗ lb(Nbest, are
considered for expansion and are instead compared based on the number of
collisions they contain.

Since the selected nodes are selected based on lower bound instead of cost,
ECBS can guarantee that overall SOC will not be worse than suboptimality
times the cost of the optimal solution. Main problem of baseline CBS is
that its number of nodes to examine can spiral quickly out of control when
confronted with a higher density of agents, which can lead it to unbearable
long computational times. ECBS drastically improves upon it in this regard,
even though as mentioned in Section 5, long computational times are still a
problem.

For this thesis, solver MAPF-IR [4] was used. First, it was modified to pro-
duce k+1 robust plans, by simply modifying collision detection. Modification
to get rotations as independent actions was much more complex and so was
provided to me by Ing. David Zahrádka from CIIRC.

4.2 Large Neighbourhood Search

In this project we made use of Large Neighbourhood Search (LNS) with Safe
Interval Path Planning (SIPP) as a single agent path-finding algorithm. LNS
is a metaheuristic algorithm that works by finding an initial solution and
gradually improving upon it, by the repeating cycle of destroying and repairing
[2]. In each iteration we have an input solution, LNS finds, based on the
destroy operator, a suitable part of it, called a neighbourhood, destroys it and
then tries to repair it while keeping the rest of the solution unchanged. If the
new repaired solution is better than the previous one, it is accepted, otherwise,
all changes are reverted. There are many ways to define a neighbourhood,
but in used implementation, they are a combination of paths of agents, in
most plans 2. There are several ways to determine what neighbourhood gets
destroyed and rebuilt, but when generating plans, a method which does this

23

4. MAPF planners....................................
on random was chosen. With LNS there are no optimality guarantees, instead,
it simply runs for a certain amount of iterations, each one ending up with a
solution that is better or in the worst case same as the previous one, so in
high enough time, the local minimum will be reached.

A large part of LNS is the algorithm used to build the initial solution and
reconstruct destroyed segments. That is in our case MAPF algorithm called
SIPP. SIPP is an algorithm that tries to bypass the space-time approach to
dealing with dynamic obstacles (ref.:[5]).n Space-time in this context means
that we add another, time dimension to the environment (in this case we
extend 2D environment to 3D). With this approach, agents can see each
other and so they are theoretically able to avoid collisions even with single-
agent pathfinding. This extra time dimension, however, can add a lot of
computational complexity, and SIPP tries to work around adding an extra
dimension while keeping the benefits. Each node in SIPP contains, in addition
to normal information, a table of safe intervals. Initially, all nodes are entirely
free, but when an agent enters into a node, the entire time it spent in it will
be subtracted from the safe interval, to create a collision interval. No agent
can enter a node that will be at the time of entry in collision interval, so it
must either go elsewhere or wait in current node until collision interval in
the desired node ends. For planning itself, SIPP uses modified A* [5], which
checks if the neighbouring node is reachable (the agent can wait in current
one long enough to enter the neighbour) and the waiting is counted into the
travel cost. Individual agents are planned in sequence, which means that
SIPP only finds the optimal solution for the first sequence that gave one,
but it does not check if it is the most optimal across all possible sequences
of planning robots. SIPP can easily be made to produce k-robust plans by
simply extending all collision intervals by k timesteps into free intervals.

The implementation of LNS used in thesis was on by [1]. This imple-
mentation already had a selectable level of k-robustnest, so no modification
was needed with that. However, independent rotations needed to be added,
although this was much easier to do here than with ECBS. Each agent had a
direction in which it was travelling last and if it wished to perform a move
that would require turning, it that move would be made to take artificially
longer in terms of timesteps to allow for a turn to take place. The problem
was, that this program used a different input format, than the one from
movingAI for scenarios and the output did not contain rotations (they were
part of the plan, just not written into the output file). So converter between
inputs and script that would add rotation to output were needed.

24

Chapter 5

Experimentation

Running tests with MAPF plans in a simulated environment is a critical part
of the work done in this thesis. After all, almost every change to the simulator
was motivated by tests. The following sections details the work that was done
with the simulator in chronological order, together with reached conclusions.

5.1 Initial tests

During the early stages of work, the simulator was undergoing quite significant
changes and new features were being added. So first test experiments focused
on testing new features and overall assessing the capabilities of the simulator.
Most noteworthy were the ones focused on how large maps with how many
agents the simulator can run. This would inevitably guide further development
of the simulator. It was found that simulators, both at the time of testing and
now, can run extensive maps, but simulating robots is quite computationally
demanding. This means that the number of robots that can be run by
simulator is limited by hardware. As an example, on a notebook with a more
or less average processor with 6 real cores, 25 agents were the maximum that
ran truly smoothly, and 50 agents were around the limit that could be run
without serious problems appearing, either due to the server being unable to
keep up, or threads not synchronising well.

After the earliest tests on the simulator were done, the focus was shifted
to finding what effect motion model parameters have on a run of a simulated

25

5. Experimentation
robot. That means how much would different settings slow the robot down,
is the slow down evenly distributed throughout the run and how high can we
push the α-s before robots start getting lost. Because a large number of tests
would be needed, a special plan was handmade, which contained all examples
of basic movement while being very compact and taking around 20-30 seconds
for its single robot to finish. In this one plan robot drove around a path in
the shape of a rectangle ten meters wide and one meter tall. This shape was
chosen because it contains a long drive straight, two turns quickly after each
other at the short sides and a long straight drive after a turn, as can be seen
in Figure 5.1.

Figure 5.1: Visualisation of testing 10x1 path

This plan offered a good opportunity for studying how one robot moves,
and results from experiments run on it, lead us to valuable findings, especially
with finding error in our initial implementation of velocity model (for more see
Section 3.2.1) and inspiring align feature. However, obtaining large volumes
of data proved problematic, so 20 of these paths were combined into one plan,
where they would run parallel, greatly speeding up testing.

By this time, a switch was made in the used motion model from velocity to
odometric model. With that, the simulator was ready to start looking for the
best motion model parameters for main tests. Firstly, from the necessity of
both simulation and premise of imitating a warehouse, arose the constraint
that the robot must hit the align area with every move to keep reliably on
track, which limits significantly the size of α parameters. In the simulator
this is enforced by aligning, Secondly, we found out that imprecise movement
has a lesser effect than anticipated. As a result of these two points, the
idea of having three sets of parameters, with different degrees of impact,
was abandoned, since these sets would not provide a meaningful difference
between them. Instead, It was decided to find three sets of parameters, with
each set as high as possible while still being reliable (There was not any
clearly defined cut-off point, but sets were discarded if they either failed more
than 10% of experiments or if plotting individual moves, agent did not hit
within precision radius every out of 10 000 moves). Results were three sets,
one with predominant translational error, a second with strong rotational
error and a third where they are roughly even.

26

..................................... 5.1. Initial tests

(a) : Dominant translational error (b) : Dominant rotational error

(c) : Even error

Figure 5.2: Results of odometric movement with different types of error

In Figure 5.2 we can see the result of plotting odometric movement with
selected parameters. In each of the three cases, the robot started in the
green point at point (0, 0), facing up (in direction of y-axis, towards high
values) and with the ideal move, it would transition to (1, 1) and once there,
turn again upwards. The red point represents where the agent would end
up with the ideal movement. Blue points are each result of one out of
10 000 moves with simulated movement. The orange circle has the same
radius as precision point in the simulator. Parameters of all three are α1 =
0.0001α2 = 0.0001α3 = 0.0012 for , α1 = 0.0007α2 = 0.0008α3 = 0.0003 for
and α1 = 0.0007α2 = 0.0007α3 = 0.0007 for . The parameter α4 was for all
equal to zero, for reasons explained in Section 3.2.2. Together with these
three sets, it was planned to have a fourth comparison set, where all four α-s
relevant to the odometric model would be set to zero.

While these tests were being done, most of the work done on the simulator
went on behind the scenes. While the development itself is described in Section
??, It is important to mention here the effect it had on the experimentation
process. Tests often had to wait for certain features to come online and there
were large batches of measured data that had to be discarded, because they
were affected by some previously undiscovered problem or untreated edge
cases (often revealed by the problems they caused to the data). Many of the
newly implemented features also took longer to fine-tune than expected.

27

5. Experimentation
5.2 Main tests

The first of the full-on tests was focused on the effect of different error
configurations on plans for the robots, first the tracks, then the real plans.
After several confirmation tries, it was found out that to a large extent type
of error that is happening to robots has very little impact. As can be seen
from Figure 5.3, while there are slight differences in probability distribution,
but overall difference in maximum time cost or its average is negligible. Of
course, in straight drive only transnational error would be relevant, and
in reverse for turning, but in most plans these are more or less in balance.
Important is only the average delay set of parameters causes, which was
for all three selected sets of α parameters roughly equal. So decision was
made to keep the set that had more or less even distribution of rotational
and translational error, to prevent from discriminating against plans that for
any reason ended up having a lot of turns or straight drives. The one with
parameters α1 = 0.0007α2 = 0.0007α3 = 0.0007.

(a) : Dominant translational error (b) : Dominant rotational error

(c) : Even error

Figure 5.3: Probability graph of arrival time with differently parameterised error

Once testing parameters were narrowed down to one, tests specialising in
run time cost of plans could begin. The run-time cost of a plan is the sum of the
times it took each robot to complete its path, so for n robots, runtimesum =

28

......................................5.2. Main tests

∑n
i=1 runtimei. With these tests, the focus is on how suboptimality and

SOC affect runtime. The prototype experiments were performed with just
plans from ECBS. Scenarios used were already included in repository of
ECBS solver [4], and these are base on benchmarks from moving AI. There,
five scenarios, with the same map and the same number of agents, would
be selected such that for each, the ECBS algorithm could find at least 5
suboptimality values, that produced 5 unique plans. Each of the 25-30 plans
would then be run several times (in general 5) in the simulator to get at
least a bit of statistically relevant results. This is especially important for
plans heavily affected by errors in movement, which are the most important
ones, where the results of individual runs tend to have quite a large deviation.
The whole process was done for 15, 25 and 50 agents. In the end, these
served mainly to test getting from scenario to measured results, with the only
established result being that running scenarios with 50 robots is not the best
idea, with issues both for the ECBS solver and the simulator.

With the introduction of LNS plans, came the regular tests, again each
with a set map and a number of robots. Since the testing uncovered a few
deficiencies in planning software, they often had to be repeated throughout
the process. Both plans for ECBS and LNS are based on the same five
scenarios. The scenarios used were selected manually while making ECBS
plans, using the same criteria as in the previous paragraph. This is because
due to how ECBS behaves on a relatively small map, only on a few scenarios
it was able to find a solution with low enough suboptimality to provide the
"over-optimised" solution from the hypothesis and together with it to find
four other distinct plans with a differentiable value of SOC. All of these five
plans needed to be found manually. Once five valid scenarios and ECBS plans
for them are found, scenarios need to be converted to the format used by
LNS. The advantage of LNS is that, unlike ECBS, it can produce very high
number of plans for any scenario, so finding five with a diverse number of
iterations and values of SOC is not difficult.

Once these plans, now around 50 of them, have gone several times through
the simulator, we start to arrive at quite a substantial dataset. The problem
is that values can’t be compared directly between scenarios, since some
scenarios simply need longer paths than others to complete, so in the end
low suboptimality plan in one might end up with a higher SOC than a high
suboptimality plan for another scenario. To combine them, instead of real
values of runtime cost and SOC, we will use gap values within each scenario.
The gap of values is calculated from a set of values, it this case results from a
scenario, where gapi = valuei−valuelowest

valuelowest

29

5. Experimentation

Figure 5.4: Originally promising results, with the difference between solvers.

(a) : Map 32x32 (b) : Small 16x24 map

Figure 5.5: The maps used for tests

The first set of results, on a random 32x32 map (Figure 5.5a) with 30
agents, looked at first look very promising. When plotted onto a graph, with
few outliers, data points formed into a curve reminiscent of a hyperbole, with
the bottom close to the point where it was plausible for the best suboptimality
would be. But upon closer inspection, this turned out to be caused by a
combination of lucky data hiding mismatch between planers, as can be seen
in Figure 5.4. To describe Figure 5.4, each point has gap of runtime cost on
the y-axis and SOC of plan it used on the x-axis, colour of points represents
the solver that made them, the black line points from (0, 0) to average of
points. The problem was caused by what different plans included in SOC
calculation and primarily, as it was discovered, plans made by LNS suffered
massive delays because its plans did not write desired rotation on coordinates

30

......................................5.2. Main tests

Figure 5.6: Results for 30 agents on 32x32 map

(which is not handled well when the simulator works with a larger amount of
robots).

Once the problems mentioned in the previous paragraph were conclusively
fixed, the graph settled into, on average, a linear relation between runtime
and SOC, as can be seen on Figure 5.6. After that, some other maps and
numbers of agents were tried. Most notable was with custom small map
16x24 (Figure 5.5b), with 20 robots (for perspective, that is 37,5%, with 66%
robots from the previous experiment). There, it was hoped that the increased
density of robots and number of interactions would produce more varied data.
This materialised only to some extent, with data remaining on average linear,
but it increased the amount of interesting anomalies to norm, results can be
seen in 5.7.

31

5. Experimentation

Figure 5.7: Results for 20 agents on 16x24 map.

Ond both Figure 5.7 and ¨5.6, Low/Mid/High LNS refers to numbers of
iterations that were used to create plans that lead to these results, with
values in brackets shoving intervals. The same goes for ECBS, just with
suboptimality instead of the number of iterations.

5.3 Findings

As mentioned in the previous section, with currently measured data, so far
gathered data does not point to the initial hypothesis that there is optimal
suboptimality that is better than absolute optimum. Although data might
be insufficient to downright disprove it. One reason for that is that ECBS
did not manage to produce a truly optimal solution or one with very low
suboptimality (below 1.03). Although there were LNS plans with SOC and
runtime cost lower than the best ECBS produced, it is impossible to say to
what extent these were suboptimal. The second reason is that obtained data
have a quite high deviation and there can be questions, if enough data has
been gathered, to make current results really statistically relevant.

On the other hand, the deviations in measured data provided a good
opportunity to study which phenomena, when present, affect the relation
between estimated and real cost. There was not enough time left at this
time to construct the exact mathematical model. But what seems to have

32

.......................................5.3. Findings

the greatest effect are, in k-robust plan (in our case they were 1-robust),
encounters that would cause k + 1 collisions. When these happen, due to
synchronisation to plan, the second robot will need to wait for the first one
to move past and if the first one is delayed, the second one will inherit this
delay by waiting. If the second robot is delayed nothing happens to the first
one at this point. The impact of these encounters is not even, it roughly
depends on the time since the two robots last encountered each other or if
they have not yet, the start of a run. The k + 1 collisions happen quite often
in probably every plan that was run during testing, but still frequency and
severity changes.

The example where this inheriting of delay starts to have very big influence,
is when plan contains what will be here called a crossroad.

Figure 5.8: Example of a crossroad in a plan

Crossroad is a part of the environment which is in one or more directions
surrounded by obstacles, so many robots will want to move through there.
Due to the high concentration of robots, anyone arriving with a delay or
getting slightly stuck inside the crossroad will cause a cascade of problems
for others. In this case, a plan that for whatever reason agents avoid this
point, even if it means in theory longer paths and higher SOC, can end up
with a lower runtime of robots.

This kind of behaviour was expected from robots by the initial thesis. One
reason why the beneficial suboptimality did not appear might be because the
crossroads and k + 1 collisions are less common than expected or that their
impact is not that dependent on suboptimality of plan.

33

5. Experimentation
Concerning algorithms, in a relatively small and agent dense environment,

ECBS performed poorly. It had a significantly higher computation cost
than LNS for plans of similar quality in terms of SOC. Further on, almost
universally, the best solution for a scenario, in terms of SOC, was provided
by LNS. This is because, in the scenarios used, there is a high probability
of collisions between agents, which will cause branching in ECBS. If these
are common, amount of possibilities and constraints can spiral to very high
numbers in such a way that it is not uncommon to find no solution even after
the planning program has been running for twenty minutes.

34

Chapter 6

Conclusion

Throughout the work on the thesis, the number of problems and bugs related
to mainly the simulator and other programs proved to be greater than initially
anticipated. This considerably slowed progress down, especially in the earlier
parts of the work on this thesis. Due to these delays, some more ambitious
initial goals were abandoned. However, all stated steps in the assignment, as
listed here:..1. Get acquainted with current versions of multi-agent planning algorithms,

their robust versions and freely available implementations...2. Get acquainted with the environment (simulator) for performing multi-
robotic experiments developed by the IMR group, CIIRC...3. Create utilities to run schedules generated by selected freely available
planners in the IMR simulator...4. Compare experimentally properties of execution of plans generated by
selected planners with different control accuracy settings...5. Describe and comment on the knowledge gained.

All of these have been successfully completed. Steps one and two were
necessary prerequisites for the work on extending the algorithms and simulator
respectively. The results of the third step can be seen throughout the work.
And the results of steps four and five are discussed in Section 5.

35

6. Conclusion......................................
In addition to just getting from existing plans to simulator results, the

testing pipeline can continue with processing script to evaluation software [9],
quite extensively modified, so it would work with data from the simulator,
which converts test data to SQL tables. Which in turn can be used to create
graphs or tables. So anyone who will use the current simulator should have
access to an already working and tested set of programs, which can get them
from scenarios for MAPF to graphs and tables for resulting data out of the
simulator. When it comes to the results of the performed tests, gathered data
does not support the initial hypothesis that in general, slightly suboptimal
plans will beat optimal ones, but there is not enough certainty to disprove it
either.

In terms of future directions, one of the options is to simply perform more
tests. Due to time and hardware limitations, current tests have by far not
exhausted the full range of possible tests. Further on, other MAPF algorithms
than just ECBS and LNS could be used. One option is to use a specific
planning algorithm that can create multiple plans with the same SOC, which
would present a perfect opportunity to study how different phenomena in
plans affect runtime cost.

Another option is to introduce unplanned agents to the environment. These
are agents not part of the plan but are included when creating ADG and
have priority in it.

36

Appendix A

Attachments

. Simulator - Contains current version of relevant branch of Simulator.
Contains its own README for installation.. LaTeX source - Contains source file of this exact document.Additional - Contains results, plans, maps and extra python scripts.
Has its own README.PichaJ_Robustness thesis.pdf - this document..README.txt - Explains in a bit more details what each folder.

37

38

Appendix B

Bibliography

[1] Podlucký Jan. MAPF_LNS+MAPF_SIPP. https://gitlab.ciirc.
cvut.cz/podlujan/mapf_lns-mapf_sipp.h, 2005.

[2] Jiaoyang Li, Zhe Chen, Daniel Harabor, Peter J. Stuckey, and Sven
Koenig. MAPF-LNS2: Fast repairing for multi-agent path finding via
large neighborhood search. Proceedings of the AAAI Conference on
Artificial Intelligence, 36(9):10256–10265, Jun. 2022.

[3] Jiaoyang Li, Wheeler Ruml, and Sven Koenig. EECBS: A bounded-
suboptimal search for multi-agent path finding. 2021.

[4] Keisuke Okumura, Yasumasa Tamura, and Xavier Défago. Iterative
refinement for real-time multi-robot path planning. In 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 9690–9697, 2021. Only used for solver, available at https://
github.com/Kei18/mapf-IR.

[5] M. Phillips and M. Likhachev. SIPP: Safe interval path planning for
dynamic environments. In Proceedings of The 2011 IEEE International
Conference on Robotics and Automation (ICRA 2011), pages 5628–5635,
2011.

[6] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant.
Conflict-based search for optimal multi-agent pathfinding. Artificial
Intelligence, 219:40–66, 2015.

[7] Roni Stern, Nathan Sturtevant, Ariel Felner, Sven Koenig, Hang Ma,
Thayne Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish
Kumar, Eli Boyarski, and Roman Bartak. Multi-agent pathfinding:
Definitions, variants, and benchmarks. 2019.

39

https://gitlab.ciirc.cvut.cz/podlujan/mapf_lns-mapf_sipp.h
https://gitlab.ciirc.cvut.cz/podlujan/mapf_lns-mapf_sipp.h
https://github.com/Kei18/mapf-IR
https://github.com/Kei18/mapf-IR

B. Bibliography.....................................
[8] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic

Robotics (Intelligent Robotics and Autonomous Agents). The MIT Press,
2005.

[9] Tomáš Verner. An environmnet for evaluation of robotic experiments,
May 2023. Available at https://dspace.cvut.cz/handle/10467/
109523, only resulting program was used.

[10] Jingjin Yu and Steven LaValle. Structure and intractability of opti-
mal multi-robot path planning on graphs. Proceedings of the AAAI
Conference on Artificial Intelligence, 27(1):1443–1449, Jun. 2013.

40

https://dspace.cvut.cz/handle/10467/109523
https://dspace.cvut.cz/handle/10467/109523

	Introduction
	Problem Specification
	Introduction to Multi-Agent Pathfinding
	Collisions and k-robustness
	Metrics of MAPF plans

	Hypothesis
	Means of experimentation

	Simulator
	State
	Server
	Robots and their movement in simulator

	Motion Models
	Velocity model
	Odometric model

	Configuration of simulator

	MAPF planners
	Enhanced Conflict based Search
	Large Neighbourhood Search

	Experimentation
	Initial tests
	Main tests
	Findings

	Conclusion
	Attachments
	Bibliography

