Bachelor Project

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Application for ordering and management of
waste pickup

Ruzena Bednarova

Supervisor: Ing. Martin Klima, Ph.D.
May 2024

ii

EvuT ZADANI BAKALARSKE PRACE

CESKE VYSOKE
UCENIi TECHNICKE
V PRAZE

I. OSOBNI A STUDIJNi UDAJE

(R
Pfijmeni: Bednarova Jméno: Rizena Osobni &islo: 483553
Fakulta/ustav: Fakulta elektrotechnicka
Zadavajici katedra/ustav: Katedra pocitactl
Studijni program: Softwarové inzenyrstvi a technologie
Specializace: Enterprise systémy

k J

Il. UDAJE K BAKALARSKE PRACI

\
Nazev bakalarské prace:
Aplikace pro objednani a spravu svozu odpadu
Nazev bakalafské prace anglicky:
Application for ordering and management of waste pickup
Pokyny pro vypracovani:
Navrhnéte a implementujte aplikaci pro zakazniky dosud neexistujici sluzby, pomoci které si budou moci objednavat a
spravovat odvoz rliznych typa odpadu z jimi uréenych mist.
Aplikace bude mit klient-server architekturu, pro klientskou ¢ast pouzijte vue.js framework, pro serverovou ¢ast pouzijte
Node.js technologii. Databazi vyberte podle svého uvazeni.
Aplikace umozni urcit typ odpadu, potfebné nadoby, lokace, asovy rozvrh. Uvazujte i firemni klientelu. Ovéfte pouzitelnost
a funkénost aplikace pomoci testovani s uzivateli formou zjednoduSenych testl pouzitelnosti.
Zjednodus$eni bude ve vybéru cilové skupiny a to proto, Ze nabor a vybér skute¢né relevantnich testerti nebude z €asovych
a organiza¢nich davodd mozny.
Seznam doporucené literatury:
Vue.js online documentaiton
Node.js online sources
Nuxt framework https://nuxt.com/
Jméno a pracovisté vedouci(ho) bakalarské prace:
Ing. Martin Klima, Ph.D. Katedra poéitacové grafiky a interakce
Jméno a pracovisté druhé(ho) vedouci(ho) nebo konzultanta(ky) bakalarské prace:
Datum zadani bakalafské prace: 07.02.2024 Termin odevzdani bakalarské prace: 24.05.2024
Platnost zadani bakalarské prace: 21.09.2025
Ing. Martin Klima, Ph.D. podpis vedouci(ho) ustavu/katedry prof. Mgr. Petr Pata, Ph.D.
k podpis vedouci(ho) prace podpis dékana(ky))

Ill. PREVZETIi ZADANI

Studentka bere na védomi, Ze je povinna vypracovat bakalarskou praci samostatné, bez cizi pomoci, s vyjimkou poskytnutych konzultaci.
Seznam pouZzité literatury, jinych prament a jmen konzultantd je tfeba uvést v bakalarské praci.

Datum prevzeti zadani Podpis studentky

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

iv

Acknowledgements

I would like to thank my supervisor Mar-
tin Klima for the guidance and patience.
Special thanks to my supportive family
and partner. Finally, I would like to thank
the people who are developing the other
applications that together with mine ap-
plication make the whole waste manage-
ment system, namely Damir Abdullayev
and Egor Ulyanov, for their collaboration.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

I declare that I used AI tool Write-
fully to assist with rephrasing my work
in a style more suitable for academic work.

Prohlasuji, ze jsem predlozenou praci
vypracovala samostatné a ze jsem uvedla
veskeré pouzité informacni zdroje v
souladu s Metodickym pokynem o
dodrzovani etickych principt pii priprave
vysokoskolskych praci.

Prohlasuji, Ze jsem pouzila Al nastroj
Writefully k preformulovani mé prace do

stylu vhodnéjsiho pro akademickou praci.

V Praze dne 24. kvétna 2024

. . Ruzena Bednarova

Abstract

The goal of this thesis is to design and
develop a waste management tool. This
project is part of multiple applications
that together form a system for the entire
waste disposal chain from the producer to
the waste processor. This project focuses
on the waste producer and creating a way
for them to dispose of the waste. The
main requirement for this tool is that the
pickup time possibilities are flexible. This
was achieved by analyzing the state-of-
the-art requirements of a typical customer
and partially developing an application in
which the customer creates the order for
the pickup of sorted waste. The project
will likely be further developed after this
thesis and will possibly be deployed to
real customers. The result of this thesis
is an analysis, the design, and the front-
end part of the application that utilizes
back-end services as well. The application
was tested by multiple people for usability
feedback.

Keywords: Waste management, Waste
sorting, Environment, Ecology,
Application, Pickup, Producer, Order,
Schedule, Software, Frontend, Javascript,
Typescript, Vue, Node

Supervisor:
E-321,

Resslova 9,
12000 Praha 2

Ing. Martin Klima, Ph.D.

vi

Abstrakt

Cilem této bakalarské prace je navrhnout
a vyvinout ndastroj pro spravu odpadu.
Tento projekt je soucasti nékolika apli-
kaci, které spolecné propojuji producenta
odpadu se zpracovatelem odpadu. Projekt
této bakalarské prace se zaméruje na pro-
ducenta odpadu a na vytvoreni zpusobu,
kterym muze producent odpad odvézt ke
zpracovateli. Hlavnim pozadavkem tohoto
nastroje bylo, aby moznosti ¢asu svozu
byly flexibilni. Tohoto bylo dosazeno ana-
lyzou existujicih reseni, pozadavka typic-
kého zdkaznika a vyvojem c¢asti aplikace
ve které si zdkaznik muze objednat od-
voz tFidéného odpadu. Tento projekt bude
pravdépodobné dal vyvijen i po této ba-
kalarské praci a bude nasazen pro realné
zakazniky. Vysledkem této prace je ana-
lyza, design a front-endova ¢ast aplikace
kterd vyuziva servis na back-endu. Apli-
kace byla otestovana nékolika lidmi, abych
ziskala zpétnou vazbu k jeji uzivatelské
privétivosti.

Klicova slova: Sprava odpadu, Ttidéni
odpadu, Zivotni prostiedi, Ekologie,
Aplikace, Svoz, Producent, Objednévka,
Rozvrh, Software, Frontend, Javascript,
Typescript, Vue, Node

Preklad nazvu: Aplikace pro objednani
a spravu svozu odpadu

Contents

1 Introduction 1
1.1 Motivation
1.2Goals ..o 1l
2 Analysis 3
2.1 State of the Art 3
2.1.1 Seenons. ..., 3
212Cyrkl...... ... ool
213reKédva 4
2.1.4 Waste Management - My WM
2.1.5 Summary
22 USET © ot 5l
2.2.1 User persona
222 Userroles 5l
2.2.3 User benefits 6l
2.2.4 Actions needed on the user side [7]
2.3 Requirements
2.3.1 Functional requirements
2.3.2 Qualitative requirements
2.4 Technology stack
2.4.1 Typescript
242 Frontend
243 Vuejs ..o
244 Backend
2.4.5 Database 23|
2.4.6 Validation.................
2.4.7 Security
2.4.8 State management
2.4.9 Documentation 25
2.4.10 Deployment
2.4.11 Development environment . .
2.5 Summary
3 Design 27|
3.1 Prototype.
311 Figma
3.1.2 First prototype
3.1.3 Final prototype
3.2 Architecture 130)
3.3 Deployment diagram
3.4 Sequential diagram
3.5 Class diagram
3.6 Summary
4 Implementation 35
4.1 Code structure 35l
4.2 External APIs................ 37
421 Map. ...l

vii

4.2.2 Logr back-end
4.3 Calendar
4.4 Color-customizable icons.
4.5 Localization
4.6 Deployment
4.7 Summary

5 Testing

5.1 User testing
5.1.1 Tests execution
512 Results

5.2 Summary

6 Conclusion
6.1 Summary
6.2 Future development

Bibliography
A List of links
B List of attached files

BEEEES HEEEE HEEEEE

Figures
2.1 Users hierarchy 7
2.2 Business use cases)
2.3 Manager use cases
2.4 Accountant use cases 12|
2.5 Employee use cases

3.1 First prototype - Login and

Pickups pages
3.2 First prototype - Order place page
3.3 Final prototype - Login and

Pickups pages
3.4 Final prototype - Order place

PACE « vt 30|
3.5 Deployment diagram
3.6 Sequence diagram.............
3.7 Class diagram
4.1 Folders in project

viii

Tables

2.1 User’s rights depending on their

role ...
2.2 Comparison of ORMs and query

builders based on our criteria

Chapter 1

Introduction

. 1.1 Motivation

In this age, it is important to try to preserve our planet and the environment
in which we live as much as possible. This can be achieved, for example, by
using sustainable resources, buying mindfully from ethical companies that
follow ecological practices, and managing our own waste efficiently. However,
waste management can be time-consuming and expensive. The motivation
behind this project is to make this task easier for users to sort their waste
and dispose of it correctly. We aim to develop an application that allows
users to order waste pickups according to their specific needs. Existing waste
management companies often operate on a fixed non-customizable schedule.
However, this system can cause nearly empty containers to be picked up.
Therefore, waste pickup cars consume an unnecessary amount of fuel, and
their carbon footprint increases.

. 1.2 Goals

Popelka, as this application is named, is one of the multiple web applications
that serve as an intermediary between waste producers and waste processors.
The set of applications consists of:

® User application for waste producers

® Waste collector application for users who transport waste from waste
producers to waste processors

® Application to collect and simplify all information from the two mentioned
applications and that plans the upcoming pickup schedules

This work focuses on the user application. In this application, users can
order waste pickups according to their needs. Users can set the time and
place for waste collection and specify the type of waste that is reffered to as
stream. The application then shares the data with the other applications,
which manage all the orders and scheduling for the waste collectors. When
the waste collection is completed, the application provides the user with the

1. Introduction

confirmation of the waste disposal required by law. The user can also follow
the guidelines provided by the application on how to sort and store waste
accordingly. Waste collectors provide feedback on how well waste was sorted
and whether the bin was empty, full, or overflowing. This feedback determines
the cost of the user’s future pickups.

Chapter 2
Analysis

. 2.1 State of the Art

We spoke with the general public spokesperson of Prazské technické sluzby to
gather the information that helped us determine the features of the application.
However, Prazské technické sluzby do not provide an application through
which the customer can order a waste pickup. We explored existing solutions.
Not many applications are focused on the same functionality, but there are
several that are oriented towards similar topic, which is waste management
and the circular economy. They include some functionalities present in our
design. The applications are arranged according to their relevance to this
project.

B 2.1.1 Seenons

Seenons is a Dutch company that facilitates connections between its customers
and waste processors. Waste is not necessarily collected regularly, but rather
on demand, depending on when the customer needs it. Different types of
waste are classified as streams, for which customers can order containers from
Seenons [I].

B Features

® Tips & Tricks section on how to reduce and sort waste.

® Option of waste containers delivered within five days of the order.

B8 24 hour call center available for customers to change scheduled pickup.
However, a successful pickup is not guaranteed if the request was made
less than two days before the pickup.

8 The mobile application is implemented by adding a browser shortcut.
Therefore, it is not available on Google Play or Apple Store. The desktop

application has the same layout as the mobile application.

3

2. Analysis

B 212 Cyrkl

The so-called “waste dating application” is a Czech start-up that operates as
a waste marketplace. This start-up connects waste producers and potential
buyers of this waste through machine learning and data analysis. This allows
customers to save money on waste disposal as their waste will be utilized by
another company, often without fees for removal [2].

B Features
B Free and paid accounts with additional features.

® Initial scan during which Cyrkl visits a company and identifies different
waste streams. They then calculate the optimal way to dispose of this
waste, including estimating potential emissions and financial savings.

B They showcase examples of savings which their customers achieve by
using their application. These examples are displayed on their website.

® Advisory services on new waste and disposal laws.

® A price comparison based on their trends, similar to commodities on the
stock exchange.

Verification of sellers.

B 213 reKava

The company collects coffee grounds which are then used, for example, as
compost in community gardens. The customer places the coffee grounds in the
Smart Bin. When the bin is full, it automatically notifies the collectors. The
collectors then come to empty the bin. They also offer Growkits. Growkits
are flower pots that customers can use to grow oyster mushrooms by adding
coffee grounds [3].

Bl Features

® They transport the coffee grounds on electric bicycles that have a large
bin attached to them.

® This service is currently only available in Prague.

® The ordering process is not automatic: The customer completes a form.
The company then contacts the customer to make arrangements.

B 2.1.4 Waste Management - My WM

Pickups are not ordered through this application. However, it helps the
user keep track of the waste they produce and how much waste pickup costs
them [4].

2.2. User

B Features

® Calculation of the user’s next monthly payment according to their pick-
ups.

® Alerts that inform the user about pickups.

B International advisory providing information on local laws related to
waste.

Bl 215 Summary

There are applications that provide services on the topic of recycling and
circular economy. A popular feature of applications seems to be some kind of
advisory service, often powered by AI. The inspiration for this project comes
from the Seenons application.

. 2.2 User

B 2.2.1 User persona

The typical user is a company or entrepreneur that produces various waste
streams. They aim to lead their company in an environmentally and financially
efficient manner, willing to sort waste. They are able to plan pickup schedules
and estimate the quantity of waste. They have an overview of their company’s
waste production. They seek quality feedback, provided by the application
in the form of a calculated carbon footprint and detailed statistics on how
effectively they mediate waste. Their waste production is not uniform. They
generate significantly more waste in some periods than in others.

B 2.2.2 User roles

B Business - Global administrator

The registration for this role is the most comprehensive and requires agreement
with contractual conditions. This role typically belongs to a user who needs
an overview of all waste pickups in their subsidiaries and who needs to manage
employee accounts.

B Manager - Local administrator

This role is usually held by a subsidiary manager or someone responsible for
its operation. The user may be responsible for the ordering of materials and
pickups. They have all rights except for viewing data from other subsidiaries.
They cannot cancel or modify a Business account.

2. Analysis

B Employee

This role is reserved for a typical subsidiary employee who does not plan
pickups. However, they ensure that waste is sorted and collected by waste
collectors. They have limited rights. They cannot create or modify pickups
in any way. They cannot modify the Manager and the Business accounts.

B Accountant

A person with an accountant role cannot change or create pickup orders.
They can see all data for the registered subsidiaries of the company.

B Primary contact - Global administrator

An account with this role cannot be deleted by anyone. They have all rights
related to their company.

B Administrator

The administrator role is reserved for the administrators and developers of
the application.

B Roles

Whitelist - User can whitelists new employees.

Pickups - User can order and edit pickups.

Status - User can see detail and status of a pickup order.

Statistics - User can see the statistics of the subsidiary they work in.
Sub - User can see data from multiple subsidiaries.

Business - User can see and manage data from multiple businesses.

B 2.2.3 User benefits

The user gains a better ecological image, making their business more attractive
to environmentally conscious customers. The user has the option to view
detailed records of pickups. The application allows them to connect to other
aspects of their company, such as how much waste they produce and in which
areas they can save money. Price optimization is implemented because waste
is collected only when necessary, and not on a regular basis for almost empty
bins. If the customer adheres to the proper waste disposal practices, they
receive a discount on future pickup orders. With adequately filled bins and
employees paying more attention to waste, the customer’s premises become
more hygienic. The customer can set the pickup time and adjust or cancel it
two days prior to the pickup. They receive automatic confirmation of waste
disposal according to legislative requirements. The customer does not have to
adapt to the waste collector’s schedule. Instead, they can customize pickup,

6

uc User hierarchy

r Y / Y
[\ [A\
! / ! i
A N
N N\
VAN AN
F) N r AY
Business Not registered user
!
\
Pq
|l/ \1 |’/ \1
L__ /'l t\q_ /'l
A " L
;r.f _\. _,r'f \\.
Manager Accountant

I/‘_ -H\'l

S
;"f: \\

£ \.
Employee

2.2. User

Figure 2.1: Users hierarchy

including access to the premises, communication with waste collectors, and

more.

B 2.2.4 Actions needed on the user side

These actions should be taken by the user to ensure that the application
works most effectively for them: The company should train its employees
about waste sorting and using the application. Instead of one container, the

7

2. Analysis

Role Whitelist Pickups Status Statistics Sub Business
Business v’ v’ v’ v’ v’ X
Manager v’ v’ v’ X v X
Employee X X v’ X X X
Accountant X X v’ v v X
Primary v’ v’ v’ v’ v’ X
contact

Administrator v~ v’ v’ v’ v’ v’

Table 2.1: User’s rights depending on their role

company will have multiple containers, requiring more space. The customer
needs to invest financially in these containers.

B 23 Requirements

B 2.3.1 Functional requirements

B Business requirements

® BRQ 001 - User Personalization
As a user, I need to have my settings and data in the application that
no one else can access without my permission because I want to be able
to customize the application to my needs.

® BRQ 002 - Waste Pickup Schedule and Place
As a user, I need to be able to easily schedule pickup because I need my
waste collected at a specific time and place.

BRQ 003 - Waste Pickup Records
As a user, I need information about my pickups to be recorded and
accessible, as I want to monitor them and deduce important ecological
data about my company’s waste.

8

2.3. Requirements

s BRQ 004 - Existence of Waste Streams
As a user, there I need to choose from streams in the application, as I
sort my waste.

® BRQ 005 - Waste Disposal Confirmation
As a user, I need to obtain the confirmation of waste disposal because it
is required by law.

uc Business /

Account

Manage accounts
with role Manager

Manage accounts
with role Accountant

Manage accounts
with role Employee

Add emails to the
registration whitelist

Edit business
information

A\

N

|

|

|

|
-

-
=

opose a new stream

@ormation from

<-_

<te:-:‘.end>:-“f/

Y4

SVAND,

|

Y4

Logi ———"= theircompany's
il ! wextends subsidiaries
- \
“wextend» . g
| Pay for the services e
Ed
;
e

wextends

Receive emails with

Manage pickups

—_— invoices and

Qﬁrmations

p

|

Business

Figure 2.2: Business use cases

® BRQ 006 - User Awareness of Pickup state
As a user, I need to know where the waste collector is, if the pickup was

9

2. Analysis

successful, and the waste collector’s feedback on my waste so that I can
optimize these steps in the future.

® BRQ 007 - Distribution of Role Rights
As a user, I need different employees of my company to have differ-
ent rights so that certain actions are not performed by unauthorized
employees.

® BRQ 008 - Service Feedback
As an application administrator, I need to facilitate the ability for
customers to rate waste collector’s services so that I can optimize services
for customers and prevent potential future issues.

® BRQ 009 - Application Rating
As an application administrator, I need to facilitate the ability of cus-
tomers to rate the application so that any issues can be documented and
subsequently addressed.

®# BRQ 010 - Overview of the Funds Invested in Pickup
As a user, I need to have an overview of the finances invested in pickup
because it will help me understand my finances and whether my employees
manage waste efficiently.

® BRQ 011 - Pickup customization
As a user, I need the option to customize the pickup because, for example,
access to the location of the company’s containers is complicated.

® BRQ 012 - Carbon Footprint
As a user, I need an indicator of the carbon footprint so that I can improve
the ecological performance of my company and that I can display it to
my customers.

®# BRQ 013 - User Awareness of the Application
As an application administrator, I need my customers to be informed
about the updates and features of the application so that they can use it
consistently.

® BRQ 014 - Application Security
As an application administrator, I need the application to be secure
because it processes sensitive user data.

® BRQ 015 - Legal Framework for the Application
As an application administrator, I need the customer to agree to the

contractual terms because I need legal protection and clear rules need to
be established.

10

2.3. Requirements

uc Manager -

Account

@tatistics of their / f Mody

(| Edit their account | accounts of their

\subsidiary \ ‘Qbsidiaw

N N A S

/ Register (if they are \)
| on the email) \ ! ﬂdd emails to
egistration whitelist \ I | whitelist for Employee

Read
|* recommendations on

\ waste sorting and
storing

.

/
/
i
'
5
jat
s
.3
4

wextend» and Manager
T ~a A / accounts
—‘ s \\ ! - "_’7 _____
wextend») el
SN / g -7
f .
{ Login
Manager \,__7)_
’ .
7 N
J/ \A
1{,/ Pickup

Feedhack

- B Report issues with
éthe app9 @aste collector

e —

N\
\

O\
4}

{ See all pickups of the

Order containers I
subsidiary

I
|

\
|
J

Rate the waste ‘f Report issues with
collector \\the pickup

N [

N

[See estimated time of
\ waste collector arrival

Receive notifications
about pickups

——

Manage pickups
nder their subsidiary

\

[=

(o /1

I
|

/

\
|
\

Order a pickup

/D

(
t

Figure 2.3: Manager use cases

8 BRQ 016 - User Payment
As an application administrator, I need users to have a way to pay for
my services because I need to generate revenue.

8 BRQ 017 - User Penalization
As an application administrator, I need the user to be penalized for
violating the terms and conditions (e.g., changing the scheduled pickup
too late) because it leads to a complication on our side.

® BRQ 018 - Communication Customization with Waste Collector
As an application administrator, I need the option for the customer to
choose the method of communication with the waste collector because
I am trying to customize the application as much as possible to the
customer’s preferences.

11

2. Analysis

uc Accountant /
— \
rKegister (if theyb-\ /§/e statistics of e@ See waste disposal laws

(on the email) subsidiary under | for all the countries the {

‘Kgistration whits@;J ‘ business / ‘busmess has subsidiary in /
= - N “~~__,__ [\ /
‘ “ AN

“
L= il [y T B b
extend» _ extend ,uex.encl:.

f/ \ rﬁa ceive invoi ces%

B Login — — — — == confirmations for the |

\ A .
\ aextends \ business /
- B \""-\..

/ -
Accountant E— ~.
b

.
ccex:encl_::-_}-

-
r//See all contain&

| rented byeach |

‘\ subsidiary /

_—

Figure 2.4: Accountant use cases

® BRQ 019 - Updating Stream Selection
As an application administrator, I need to keep the stream selection
up-to-date and tailored to my customers needs because the customers
would choose a different waste management company otherwise.

® BRQ 020 - Container Selection
As a user of the application, I need the company to provide a container
for the waste because I do not know the requirements for the specific
waste, nor do I have a container to put the waste into.

12

2.3. Requirements

Pickup Feedback

/Rate the waste

/ . Report issues with
|f Seeall pickups of a collector he pickup
\\subsidiar\r \

uc Employee ./

N

f

/.

\

—— ——

([Receive notification ;eep\?v:sltf:zﬁ;?tt:r Rate the application
\ on pickup state \ \

N

p

Read
Edit their account el - - — - —— Login Jo——————— -3 recommendatmll'ns
wextends wextends about waste sorting
and storing
—

— ——— g S

’,
”

.
wextend»
s

s

egistrate (if they are’
on the email
registration whitelist]

—

Employee

Figure 2.5: Employee use cases

B System requirements

= SRQ 001 - User Registration (BRQ 001, priority: high)

The system will allow the user to register. Users can register as a com-
pany via contacting the application’s company. Subsequently, they can
register their employees within the company account. When registering
a company, all details must be filled in. When registering employees,
only their name, surname, and identifier are required. Employees register
with a maintainer who already has an account in the company. In the
case of SSO login, missing information will be required after login.

Attributes for business registration:

Company name

Business ID

13

2. Analysis

Company address

Contact email

Phone number

Password

Password confirmation
Responsible person

Name

Surname

Identifier within the company

"Register the responsible person as the Manager" column - in case
the company has only one employee who is also the manager

Checkbox - subscribe to the newsletter
Attributes for the registration of subsidiary managers:

Name

Surname

Password

Password confirmation

Email

Phone number

Address of the pickup point for which they are responsible
Typical streams produced by the branch (optional)

Attributes for employee registration:

Name

Surname

Password

Password confirmation

Phone number

= SRQ 002 - User Login (BRQ 001, priority: high)
The system will allow the user to log into their account. Employee login
does not require the Manager to be logged in. The application allows for
the SSO log-in, such as through a Gmail account.

B SRQ 003 - Selection of Streams Produced by the Company
(BRQ 004, priority: high)
The system will allow the manager to select and save streams that are
typically produced by their subsidiary. The manager can add a new
stream from the menu or propose a new stream at any time. When
creating a pickup, only the streams previously added by the manager
are displayed using a dropdown.

14

2.3. Requirements

= SRQ 005 - Selection of Pickup Point Address (BRQ 002, priority:
high)
The system will allow the manager to select a pickup point. The manager
enters this location during registration. The manager can change the
location. The manager enters the address into the input fields, and the
system checks if the address exists. In case of an error, it warns the
manager.

® SRQ 006 - Selection of the Time Window for Pickup (BRQ 002,
priority: high)
The system will allow the manager to select a pickup time window. The
time window can be changed via the application no later than 48 hours
prior to scheduled pickup.

= SRQ 007 - Regularity of Pickup (BRQ 002, priority: high)
The system will allow the manager to set the regularity of the pickup.

Such a regularity can be:

Once only
Weekly
Every two weeks

Every three weeks

® SRQ 008 - Estimated Time of Arrival of the Waste Collector
(BRQ 006, priority: medium)
The system will allow the user to have an estimate of the waste collector’s
arrival time. This estimate will be taken from the waste collector’s
application and automatically updated in the user’s application. The
estimate will be in minutes to an hour.

® SRQ 009 - User Notification of Approaching Waste Collector
(BRQ 006, priority: medium)
The system will allow the user to be notified of the arrival of the waste
collector. There are three types of notifications:

The waste collector is on the way
The waste collector is few minutes from you
The waste collector is on-site
® SRQ 010 - User Notification of Successful/Unsuccessful Pickup
(BRQ 006, priority: high)
The system will allow the user to be notified of the pickup result. Both

the manager and the currently logged-in employees of the subsidiary will
be automatically notified about the success of the waste pickup.

® SRQ 011 - Communication between Waste Collector and User
in Case of a Complication (BRQ 018, priority: medium)

15

2. Analysis

The system will allow the user to communicate with the waste collector
in case of a complication. This will be achieved through either a central
application, an intermediary between the waste collector’s and user’s ap-
plications, or through direct communication between the user’s and waste
collector’s applications. Chat functionality will not be implemented.

® SRQ 012 - Summary of the Quality of Waste After Pickup
(BRQ 006, priority: high)
The system will allow the user to be informed about the quality of the
pickup. This will be found in the Pickups section, which will be sorted
by the most recent pickups. The pickup that occurred a maximum of 20
minutes ago will be visually highlighted.

= SRQ 013 - Rating of the Waste Collector’s Service (BRQ 008,
priority: medium)
The system will allow the user to rate the waste collector’s service. The
rating will include the following information:

The behavior of the waste collector.
The speed of service.

(Optional) a text field for comments.

Rating is not mandatory. The user will be alerted that they can rate the
waste collector, but the rating window will not be opened by default.

® SRQ 014 - Pickup Creation (BRQ 002, priority: high)
The system will allow the user to schedule a pickup no later than 24
hours before the pickup.

= SRQ 015 - Application Feedback Section (BRQ 009, priority:
medium)
The system allows the user to provide feedback on the application. If
there is an issue with the application, the user will complete a form on

how to properly report the bug. If it is just a suggestion, the user will
fill in a text field.

® SRQ 016 - Overview of Pickups (BRQ 003, priority: medium)
The system allows the user to view all completed or scheduled pickups.
Pickups can be filtered by:

Time when they were performed
Type of streams

Completed vs. scheduled
Pickups are sorted from the most recent.

® SRQ 017 - Billing Sent by Email (BRQ 010, priority: high)
The system allows the manager and the business to obtain the billing
information for pickups for the month. This billing will be sent to the
manager and the business by email every month.

16

2.3. Requirements

SRQ 018 - Stream Proposal (BRQ 019, priority: low) The system
allows the user to suggest a stream to the application. The user proposes
a stream not included in the application, but one they produce. The
user describes the stream and adds a photo example of the stream.

SRQ 019 - Generation of Waste Disposal Confirmation (BRQ
005, priority: high)

The system allows the business to receive an automatic confirmation of
waste disposal.

SRQ 020 - Financial Overview (BRQ 010, priority: medium)
The system enables the user to display a financial overview of investments
in pickups for a specific period through statistics.

SRQ 021 - Special Requests for Pickup (BRQ 011, priority:
high)

The system allows the manager to customize the execution of a pickup
during its creation. Customizations may include special entry into the
company’s premises.

SRQ 022 - Calculation and Presentation of Carbon Footprint
(BRQ 012, priority: medium)

The system allows users to view the carbon footprint of their branch
and the overall carbon footprint of the business. The system updates
the carbon footprint calculation after each pickup.

SRQ 023 - Container Ordering (BRQ 020, priority: high)

The system allows the manager to order containers. The manager can
choose containers according to the type and volume of the stream if
needed. The company invests financially in containers. Containers are
delivered within 5 business days.

SRQ 024 - Generation of Pickup Reports (BRQ 003, priority:
low)

The system allows the user to generate a report on all pickups for a given
month or year in PDF format.

SRQ 025 - Sending Invoices by Email (BRQ 010, priority: high)
The system allows the system administrator to send the user an invoice
by email.

SRQ 026 - Overview of Local Waste Laws (BRQ 015, priority:
medium)

The system allows the user to view local waste laws that change in the
application based on the country in which they are currently in.

SRQ 027 - Email Confirmation (BRQ 001, priority: high)
The system allows the user to confirm their email by sending and, if
necessary, resending a six-digit confirmation code to the provided email.

17

2. Analysis

The code is automatically inserted into the application field after being
copied to the clipboard.

= SRQ 028 - Roles in the application (BRQ 007, priority: high)
The system has different roles implemented for the potential users. The
different roles have different rights depending on what are the users
responsibilities in the company. They follow the rules that are defined
in the section User roles. The roles are:

Business
Accountant
Manager
Employee

Primary contact

= SRQ 029 - Application Updates and Notifications (BRQ 013,
priority: low)
The system will notify the user every time the application is updated.
This is so that the user’s security within the application is maintained
and that the user does not miss out on new features and fixes. This will
be achieved through mobile phone notifications and emails.

® SRQ 030 - Securing user interactions (BRQ 014, priority: high)
The system will ensure that each user action is authorized and that the
unauthorized users do not have the permission to do such action. The
user must be authorized at all times otherwise they need to log in. The
application will be tested to minimize the unpredictable behavior and
thus a space for mistakes or attacks.

= SRQ 031 - Payment interface (BRQ 016, priority: medium)
The system will display monthly fees to the user and will provide a
payment interface through which the user can pay for the services.
Multiple payment methods will be available, and the payment process
will follow standard online payment practices.

® SRQ 032 - User penalization for late changes in pickup order
(BRQ 017, priority: high)
The system will penalize users if they need to change the pickup order
later than two days prior to the scheduled pickup. The penalty will be a
change fee added to the upcoming monthly fee. If the user chooses to do
this often, it will affect future prices for their pickups. The user will be
able to see this in the application along with the reason for the fee.

B 2.3.2 Qualitative requirements

® NFR 001 - Browser support
The application needs to be able to run on the two most recent versions
of the Chrome and Firefox browsers.

18

2.4. Technology stack

® NFR 002 - Application security
The application must authorize every user with every action so that all
user data is protected.

= NFR 003 - UI/UX
We need the application to have an effective Ul so that users continue
using our application. The risk of not achieving this can be minimized
by designing and reviewing the UI design. The design must then be
tested by potential users.

® NFR 004 - Mean Time to System Recovery - 12 hours
The system must recover within 12 hours from a failure.

® NFR 005 - Mean Time to System Failure - 30 days
The system must not fail more than once every 30 days.

8 NFR 006 - Logging
The logging system needs to be implemented so that important events
and errors can be captured.

NFR 007 - Monitoring
The monitoring system needs to be integrated so that we have a tool to
monitor the health of the application.

B 24 Technology stack

One of the first steps in the realization of this project was to choose the frame-
works and tools that would provide the features we needed. We researched
the available tools, compared them, and chose the ones that seemed the best
according to our criteria.

B 2.4.1 Typescript

Typescript is a programming language that extends JavaScript. Typescript
has static typing, which allows developers to define the types of variables.
This ensures type security in programs. In some Vue components we use
Javascript and in the others we use Typescript as a programming language
in the script tags and on the back-end side of the application. The reason is
that type security contributes to the debugging process because the variable
origin is clearer than without it. Static typing also prevents developers from
passing incorrect-type variables to functions [5].

B 2.4.2 Frontend

B 243 Vuejs

Vue.js is a framework based on Javascript that was first released in 2014. Vue
is based on a component-like structure. Developers implement components

19

2. Analysis

from which they can build larger components or pages. Vue component has
three types of root tags [6]:

B <script> A section for Javascript/Typescript code and for Vue specific
features such as defineProps. defineProps is an entry point for all input
variables of the component.

® <template> A section for HTML code. Dynamic variables can be
refferenced with ’:” (e.g. :mameOfVariable). Then those variables are
defined in the script tag section.

B <style> A section for CSS. This tag supports different variations of CSS
(e.g. SCSS). The tag has an attribute which defines if the style should be
loaded generally or only if the component is present on the current page.

Hl Vue API

Vue developers implemented two types of API. They provide developers with
different programming paradigms and features. When creating a component,
developers choose the API in which they would like to program it. The
two APIs are compatible with each other, meaning that the project can
contain options API components and composition API components at the
same time. A component can also consist of both APIs. However, this is
only recommended when the project consists mostly of options API and some
features that are not available in options API need to be used. APIs follow
standard programming paradigms with some customizations [7 [§].

® Options API

Options API was introduced in 2014 with the first Vue releases. Compo-
nents that use the options API follow an object-oriented programming
paradigm. This programming paradigm may be more familiar to some
developers. However, the options API has limitations. The logic cannot
be shared between multiple components. As a result, the code may
repeat. This leads to a phenomenon where it is difficult to navigate
through the code due to its complexity and volume.

Composition API
The composition API was released with Vue 3.0. The composition API
is based on the functional programming paradigm.

It addresses the issues of the options API. The logic can be shared
between different components. Therefore, the code repetition is less
common. Multiple features can be used with composition API such
as: async/await, promises, third-party libraries, hooks, and dependency
injection. Composition API provides a Reactivity API to make compo-
nents reactive to changes. There is full support for Typescript in the
composition API.

The production bundle also tends to be smaller in composition API. The
property access in options API uses "this", an instance proxy. However,

20

2.4. Technology stack

in composition API, the property access is direct. This makes the
application more efficient.

In order to use composition API, developers need to use <script setup>
tag instead of <script> tag.

B Vue and React comparison

Vue and React are JavaScript-based frameworks. Both use reactivity with
their components. These are some of the differences in React and Vue [9]:

® React useState and Vue ref

Both of these features allow the variables to which they are attached
to adapt automatically with change. When defining a variable with
useState hook, we use three attributes: state variable, initial state, and
a function through which we can update the state of the variable. When
the function is called, React compares its virtual DOM with the previous
version and re-renders only what has changed. On the other hand, in
Vue we use the ref hook, which only needs the initial value. Vue ref
then uses an observer pattern which re-renders the changed part when
explicitly the value of the variable is changed.

8 React JSX and Vue template
HTML code is written differently in these two frameworks. React uses
JSX, which allows the developer to write HTML-like code inside their
Javascript code. Vue uses templates, which allow developers to write
HTML-like code separately and provides ways to use dynamic variables,
directives, and so on through different syntax.

® Rendering
Both Vue and React use virtual DOM. Both use server-side and client-
side rendering. To enable server-side rendering on Vue, we can use either
an additional package or a framework, for example, Nuxt.js. React needs
to use the Next.js library for server-side rendering.

B css

An important part of the front-end is the language in which we style the
components. We considered multiple options.

B Bootstrap

Bootstrap is a CSS library with predefined classes and styled components.
Instead of programming the styling ourselves, we can simply use some of the
prepared styling on our components. However, this might not be the best
option because it might be difficult to achieve a custom style we designed [10].

21

2. Analysis

B Tailwind CSS

Tailwind CSS is a library that contains predefined classes at the lower level.
Instead of programming the style, we can use multiple classes to achieve the
desired style. However, this might also not be the best option. The desired
style is usually achieved with multiple classes, resulting in an unnecessary
large amount of code in defining the class for one tag. The same style can be
achieved with one class in the core CSS. However, it prevents the user from
programming the same style multiple times and repeating the code [11].

B SASS and SCSS

SASS and SCSS are CSS preprocessor scripting languages. In addition to
the core CSS, they provide features such as functions, variables, and cycles.
In this project, we used SCSS because of its flexibility in defining styles,
the ability to provide some generalization, and because of the additional
features [12].

B Nuxt

Nuxt is a framework based on Vue.js. It provides server-side rendering,
simplified project routing, and performance enhancements. The simplified
routing is based on predefined names of directories in which developers place
the corresponding files.

We can enhance the performance by server-side rendering, static site
generation, asynchronous loading, and other configurations tailored to our
application [13].

B 2.4.4 Backend

Bl Vite

Vite is a build tool that aims to create a more efficient development environ-
ment by optimizing the build of the application and thus making it faster. It
was created by the creator of Vue.js, Evan You. Another widely used tool
among developers is Webpack [14].

B Using Node.js as API framework

The API in this application is programmed with Node.js. We call the API
endpoints with a Nuxt feature /server/routes. This exposes the paths in
the file as endpoints. Each route then defines the controller as its event
handler. When the endpoint is called, it uses the controller. The controller
then utilizes authorization middleware and executes the desired action by
calling the repository. The repository is programmed for each entity. It uses
a query builder to work with the database.

22

2.4. Technology stack

B 2.4.5 Database

We decided to use a relational database. We know the structure of the data we
plan to work with. The relational structure provides sufficient organization
of the data. It is also horizontally scalable, which is important for this
application [15].

B PostgreSQL

The database we decided to use is PostgreSQL. PostgreSQL is an open
source object relational database that has a wide variety of functions and
a long history of releases. PostgreSQL has a large community of users and
is continuously supported. It also supports transactions, so unsuccessful
database attempts can be safely rolled back [16].

B ORMs and query builders

ORM is an object-relational mapping tool. It provides developers with
predefined database queries, making the development process easier. However,
the performance may not be optimal and the predefined environment might
be limiting for custom queries. Popular ORMs are, for example, TypeORM
and Prisma.

Query builders provide lower-level predefined queries than ORMs which is
useful for building custom queries. This might be more difficult for developers.

Both of these types of tools usually provide security features such as
automatic parameterized queries, escaping, sanitization, validation, and type-
checking. We decided to choose a query builder due to its flexibility.

We selected a tool based on these criteria which we conducted after searching
on forums and in their respective documentations. The completion of these
criteria was based on personal judgement [I7]. These criteria are:

8 ORM - Whether the tool is an ORM or a query builder. The latter may
provide more flexibility for developers, whilst ORM may provide more
comfortable coding.

8 Support - Whether tool is regularly updated by its developers and
the developers community is large and active. This can predict its
survivability in the future.

®8 Paid - Whether the tool is a paid service.

® Reliable - Whether the tool is known for an unannounced update or a
lot of bugs. If not, the tool is more reliable.

®8 Popular - Whether the tool is widely used amongst the general developer’s
community. This can predict the scale of difficulty of hiring a new
developer to join the team.

® Typescript - Whether the tool has good support for Typescript.

23

2. Analysis

® We also aimed for a tool that supports most types of databases in case
we need to change the database in the future.

Tool ORM Support Paid Reliable Popular Typescript
Kysely X Ve X Ve Rising v/
TypeORM v’ X X X v’ X
Prisma v’ v’ v’ X v v’
Sequelize v’ v’ X v’ Declining v
Knex.js X X X v’ v X

Table 2.2: Comparison of ORMs and query builders based on our criteria

B Kysely

Kysely is a query builder with support for Typescript. It is well maintained.
It was created by a creator of Knex, another query builder. The developer
defines tables for each entity and also the operations that can be performed
on that entity. We can then ban some CRUD operations from an entity if we
want to do so. The permission of operation is achieved by defining the table
type with Kysely’s generics such as Selectable<NameOfTable> which can be
selected [18].

B 2.4.6 Validation

It is crucial to validate data on both the front-end and back-end. The key
features which we were looking for in a validation framework are localization
and cross-field validation. Localization allows us to validate data for different
countries, which might also have different formats, such as the date of pickup.
Cross-field validation allows us to validate multiple fields and their relation,
for example, password and password confirmation, or whether the street
number exists on a street.

B VeeValidate

VeeValidate is a front-end validation framework for Vue.js. The reason we
chose this framework is that it has continuous support and is compatible with

24

2.4. Technology stack

field validation frameworks. It has a feature through which we can validate
whole forms and also emit values from nested components. VeeValidate has
built-in support for localization validation [19].

B Yu

Yup is a field validation framework. It provides simple functions for single
fields such as max() or email(). It is possible to define a custom validation
function, which is how we satisfy the cross-field validation requirement [20)].

B 2.4.7 Security

B Keycloak

Keycloack is an open source identity management tool. Keycloak is based on
standard protocols and supports OpenID Connect, OAuth 2.0, and SAML. It
provides GUI through which the administrator can set up authorization and
different users, roles, and their rights. The application and Keycloak then
exchange the Keycloak-created tokens to authorize users [21].

B 2.4.8 State management
B Pinia

Pinia is a Vue-based state management framework to handle the state and
general information available throughout the application. Pinia uses stores to
store information. The developer can then get the store inside a component
and use its data [22].

B 2.49 Documentation
B API documentation

B Swagger

Swagger is API documentation tool. It accepts a file defining all endpoints
and data types. Then it generates an HTML page based on the data in that
file. The user can try calling the endpoints through that page [23].

Bl 2.4.10 Deployment

B Docker

Docker provides a suite of development tools, services, trusted content, and
automations, used individually or together, to accelerate the delivery of secure
applications. It enhances the ability for developers to easily share and deploy
their applications. Through a Docker file, we specify all technologies, libraries,
versions, and actions needed. On execution, everything needed is installed

25

2. Analysis

and ready for the application to run. The usage of Docker in this app can be
seen on a deployment diagram [24].

B Nginx

Nginx is a reverse proxy. It manages the traffic to our server and redirects
requests to the correct docker instances. Nginx also works as a load balancer
and provides our application with performance enhancement and security

features [25].

Bl 2.4.11 Development environment

Bl Github

We use GitHub for version control and project coordination. We plan to
use GitLab CI/CD instead of Github Actions for testing and deployment
purposes.

B Intelli) IDEA

IntelliJ IDEA is an IDE. The support for Vue and Node.js applications is
sufficient. Since I am familiar with Java and usually use this IDE, therefore,
I am the most familiar with it and that is why I chose it.

B 25 Summary

We did an extensive analysis by which we determined the customers’ require-
ments and the frameworks and languages needed to execute our goal. The
analysis included speaking with a few people in the fields of waste manage-
ment and logistics to obtain the latest information. In this way, we discovered
new features that we did not know about before and which are needed to
achieve our goal. The decisions we made were made so that it fits the other
applications’ needs as well.

26

Chapter 3
Design

B 31 Prototype

M 3.1.1 Figma

Figma is a design and prototyping tool that supports the creation of interaction
points and the presentation of the designed prototype. Figma has support for
real-time collaboration with other colleagues. The Figma community creates
free designs that other users can use in their designs. Figma also provides
templates for various management tools and techniques, such as the Gantt
diagram or brainstorming sessions. This tool is one of the most popular tools
among UI/UX designers, competing with AdobeXD.

B 3.1.2 First prototype

We started with a low-fidelity prototype drawn on a piece of paper. The
high-fidelity prototype was made in Figma. This prototype was created and
then changed multiple times in regular sessions. The application will be used
by various people and is not age-specific, so there is no need to adapt the
design accordingly. The color scheme of this prototype is mainly green. This
is because green is usually associated with nature, ecology, and sustainability,
which matches the purpose of this application. We used the Coolors.co [26]
tool to help balance the color palette. We chose some colors that are different
from the color scheme. These colors are minimally used and are meant to
allow users to easily distinguish between the different streams. However, these
colors will vary depending on the country in which the user is, because the
colors that indicate the stream also vary depending on the country.

The main goal was not to make the design skeuomorphic. A skeuomorphic
design utilizes many shapes, shadows, and colors, which can be overwhelm-
ing to the user. Then it is more difficult for the user to see important
information [27].

The prototype was initially made in flat design, which means that the color
palette is limited and that both the colors, shades, and shapes are minimalist.
Eventually, some of the features were highlighted using shadows and different
colors. The minimalist yet highlighting design can be seen in the Material

27

3. Design

Streams a

Glass II
Volume 40l Containers 20

Pickup periodicity 3 weeks
12/23/2023f 12am - 4pm

Q Address 7 Howto I ‘

Plastic
Volume 401 Containers 20

Pickup periodicity 3 weeks
12/23/2023 [12am - 4pm

@ Address 7 Howto

Popelka

Password

Paper II
Volume 401 Containers 20
Pickup periodicity 3 weeks

12/23/2023E 12 + Order pickup

¥ Address

@ M

Support Streams Calendar Profiles

Figure 3.1: First prototype - Login and Pickups pages

How exactly can we get to the

&« Place b4 containers? -
<] —
¢
D€ E) : Q
a8 ot]
‘g L]
Name Olfen Cametery
(Su|]
Describe the place of the container
Subsidiary in Brno The left corner of the building under
Brno-stfed, Leitnerova 1 the small roof

602 00

Subsidiary in Liberec
Liberec, 1. maje 757/29

460 07
Do you have some requirements
for our courier?
City ’
Please ring the bell when you're at
the entrance.
Street I | S.n. \

v]

Figure 3.2: First prototype - Order place page

Design by Google.

28

3.1. Prototype

We used the Iconify [28] plugin as a source for all icons. It is important
to read what license the icons have, since it might be a paid license. We
were focusing on using icons with the MIT license, which is free. As we were
learning to use the tool, we started to design the pages right away. Later, we
learned that it is best to design the individual components and make pages
from those components since everything is unified.

B 3.1.3 Final prototype

We later decided that the application needs a clean design by a professional Ul
designer. This designer created a design that will eventually be used similarly
across all applications in our system, making them look unified. The design
features were taken from our first prototype and styled differently. Most of
the development was done with the first design. We then implemented the
front-end again according to the new design, which resulted in a time delay.
Compared to the first design, the second one was made in a more flat design
way, and its front-end effects were more simple; therefore, it was also easier
to code.

Both of these prototypes can be found in the Attached files section as well
as their links to Figma in the List of links section.

POPELKA = POPELKA =

ORDERED PICKUPS

Login
»

Please sign in to continue

) Glass

b popelka@example.com

Volume: 501
Containers: 50

3 week pickup schedule

Forgot password? Next pick up due Tue, 26th March 2024
Torgot passwardc

= paper

Volume: 501

Containers: 50

) 3 week pickup schedule
Sign up pickup
Next pick up due Tue, 26th March 2024

Plastic

Figure 3.3: Final prototype - Login and Pickups pages

29

3. Design

POPELKA

*e—0—0—0

Stream Time Containers Address

Please choose the address for delivery.

v
Aparthotel Rimska 14
Top rated #

Delivery address

Figure 3.4: Final prototype - Order place page

. 3.2 Architecture

At the beginning of this project, the application was coded as a thick client - it
contained both front-end and back-end components and it connected directly
to a database. We managed to acquire a server on which our applications
will run.

Later, it was decided to rewrite my application as a thin client. The
back-end logic is then split between the services that run on the server,
including the database. The thin client then authorizes with keycloak that
runs separately on our server. The thin client sends a request to the server
to get data from the database. Keycloak decides whether this client has
the rights to do so. If it does, then the request proceeds to a service whose
purpose is to retrieve those data from the server. The service retrieves those
data and sends them back to the client. The distribution of requests that
address different services is managed by a reverse proxy.

This division into the thin client and the services allows us to better
distribute the workload between the services. It also provides better response
time in case of heavy traffic, scalability, and separation of concerns.

The architecture and communication between the application and services
are displayed in the deployment diagram and in the sequential diagram below.

30

3.3. Deployment diagram

B 33 Deployment diagram

deployment diagram /

udevicen
Client device

wexecutionEnvironment»
Internet Browser

Web page

HTTPS Intermet

udevicen
Server

wexecutionEnvironment»
Linux

<< container ==
Nginx
HTTP HTTP 1DBC HTTP
<< container >» << container >> << container >» Keycloak
Courier app Customer app PostgreSQL
Database

Figure 3.5: Deployment diagram

31

3. Design

B 34 Sequential diagram

This diagram shows the communication between components when a user
clicks on something that needs data from the database.

GETURL

402 REDIRECT TO LOGIN

POET AUTHENTICATION CODE
- -
D, AOCESS, REFRESH TOKEN
GET DATA, AUHT: ACCESS TOKEN

GET PUELIC KEY
-

Figure 3.6: Sequence diagram

B 35 Class diagram

We designed the database that holds all the needed data. The design was
changed many times as we gradually discovered different needs for desired
features and possibilities of future feature development.

Enum tables are tables whose data will not change or be added to very
often. It is important to keep records of changes to users’ data in case there
is a complication or miscommunication. That is why some entities also have
a history version of their table. The history tables keep a deep copy of the
original entity record, and the committed data in them cannot be changed.
Whenever there is a change in the original entity data entry, the previous
entry version is copied to the history table and is therefore no longer valid.

The email whitelist item contains emails that have been whitelisted for po-
tential registration under the chosen company. The company has subsidiaries
that have users that are called producers because they produce waste. The
producer creates a pickup order that is connected to the order plan and
place. Together, these three entities contain general order information. The

32

3.5. Class diagram

order plan then provides a template for the order implementation which is
an instance of a pickup. For example, the customer orders a pickup for each
Monday for the next month. The order implementation then copies this
information and generates the record for each separate Monday in that month.

class db_diagram /

Role

0.*

Email whitelist item

role_id: uvid
role_name: varchar

‘ 1.

Producer role

- producer: uid
- producer_role_id: uid
- role: uuid

- company: uuid
- created_by: uuid

email: varchar

- email_whitelist_item_id: uuid

.

Producer

- created_at: datetime

Producer history

- company: uuid
- created_at: datetime
email: varchar

Container type

- container_type_id: uuid
- container_type_name: varchar

- max_stack: int

- stack_height_ratio: float
- stack_length_ratio: int

- stack_width_ratio: int

- weight:int

- width: int

- image_path:varchar
- order_implementation: uuid
- rating_image_id: uvid

order_plan_implementation_id: uid

pickup_order_id:

order_state: uuid
rateable: boolean
rating_comment; varchar

rating_quality: int
rating_quantity: int
rating_time: datetime

Order plan history

Order state

description: varchar
order_state_id: uuid
order_state_name: varchar

deleted_at: datetime
deleted_by: uuid
order_plan_history._id: uuid
order_plan_id: uuid
period: int
periodicity_type: uuid
pickup_order: uuid
preffered_from: time
preffered_to: time
updated_at: datetime
updated_by: uvid
valid_from: datetime
weekdays_active: bytea

- is_valid: boolean - email: varchar
- role: uuid - enabled: boolean - enabled: boolean
i - first_name: varchar streasl A
0 Subsidiary - last_name: varchar 1 0.%|- last_name:varchar nd
1 - phone: varchar - phone: varchar container_id: uuid
- address: uuid D oo - producer_history_id: uuid deleted_at: datetime
Company. - company: uuid 1 1] - producer_| stream_container_id: uid
- description: varchar - updated at: datetime - updated_a stream_d: uuid
- cin:char - is_main: boolean - updated_by: uuid volume_capacity: float
- company_id: uuid 1 1%~ subsidiary_id: uuid - valid_from: datetime weight_capacity: float
- company_name: varchar - subsidiary_name: varchar
- created_at: datetime 151 0
- description: varchar 0.*
- enabledt: boolean
- phone:varchar Order type Stream type
- updated_at: datetime
- vat:varchar description: varchar stream_type_id: uuid
order_type_id: uuid stream_type_name: varchar
order_type_name: varcter
1 1
0.*
0.* 0.*
1 Place
Pickup order
- address: uuid
=5 - container_placement_description: varchar = deleicdEEEIEEE
- address_id: uuid - created_by: uuid - deleted by uuid
- city:varchar - latitude: varchar n ol °’“E'E‘V:’E:|““‘“
- country: varchar N ~|- longitude: varchar & periodicity_ty,
- street: varchar L2 place_id: uuid P
- street_number: varchar - place_name: varchar R - produceri
- zip: varchar - requirements: varchar ity typ ST
= St o periodicity_type_id: uuid 1 1
= EliEEa i periodicity_type_name: vardar
1 1
0% Invoice
Pt - invoice._id: uuid
- pickup_order: uid
Legend address: uuid]
container_placement_description: varchar
[enum tavle created_by: uuid N
latitude: varchar
[Reguartavie longitude: varchar N
[] History table place_history_id: uuid L.
place_id: uuid L
requirements: varchar Invoice item
updated_at: datetime
updated_by: uuid
valid_from: datetime
1* 1
Order implementation Order plan Order container
- created_at: datetime - date_time_collection_from: date - amount; int
- datei date - date_time_collection_to: date - order_container_id: uuid
. - deleted_at: datetime 1.- L[- has implemented: boolean - order_plan: uuid
Rating image - deleted_by: uuid - is_valid: boolean . o.+|- stream_container: uuid
- order_plan: uuid - order_plan_i -

Figure 3.7: Class diagram

33

3. Design

B 36 Summary

We met in numerous sessions to discuss the design of the application. We
tried to follow the general guidelines for prototypes and eventually decided to
change the prototype to a version made by a professional Ul designer who used
the original prototype as a list of features. The result of the prototype was a
responsive design. The design theme will be used in all other applications.We
designed the architecture always considering all the other applications and
future potential extensions both to the project and to the developers’ team
that will continue to develop them. We created database on our server and
populated it with mock data.

34

Chapter 4

Implementation

. 4.1 Code structure

The code structure utilizes the routing and organization of Vue and Nuxt.
With these frameworks, we could simply name the folders the correct names
and the routing would automatically work.

This is the code structure of the project. All folders except the language
folder are recognized by Vue and Nuxt. Then these frameworks provide
automatic routing for the files inside those directories. The following is an
explanation of the contents of each folder.

v Mg popelka_customer_app

plugins

public

>
>
>
>
&
&
>
>

Figure 4.1: Folders in project

35

4. Implementation

® components
The components folder contains Vue files that define all components. We
can then take multiple components and make a page with them. This
allows us to have clean code that does not repeat as the components are
reusable.

® language
The language folder contains json files in which are the translations for
each text string in the application.

B layouts
The layout is a template for a page. We can define what some pages
have in common and place it in the layout file. We can then use the
layout in our page by adding it to the page’s meta. The default layout
is refferenced to as default.vue and it does not need to be specified in
page’s meta.

B pages
This is the directory that you place the websites pages into. The main
page is index.vue. Nuxt allows developers to define a template page
for an entity with a general id by defining a [id].vue. This page looks
the same for entities with different id, but displays content specific to
that id. Pages can be nested in directories, and the path follows as
/directory /nestedDirectory.

® plugins
This directory is used for storing plugin files, which are often from
third-party libraries, for example, a localization library.

® middleware
Middleware serves as a place for action or functions which occur between
two actions. This is, for example, user authorization when we navigate
from one page to another.

® public
This directory usually contains style sheets, images, favicons and icons,
these can be accessed from the browser. However, the icons in this
project are in the components folder as stated above.

B server
The server folder contains anything regarding database, entity types
declarations and endpoints. This project will not need it as the back-end
is being developed elsewhere right now. However, it was crucial at the
beginning of this project to learn all the tools and also at the beginning
there was no back-end outside of this application.

® stores We use Pinia for state management. Stores directory contains
files that define files in which we can temporalily store values, e.g. values
from creating order progress. These can be accessed everywhere in the
application, but the values are not persistent.

36

4.2. External APls

The only files that are not coded by me are the files regarding Keycloak
authorization which I received from a colleague who is working on his own
application. I had to edit these files so that they work in my project.

The files in the root folder usually provide some kind of configuration. We
used .env file to store global variables. The file is not pushed to Git, only
its example without values as it would not be safe to do so. We wanted to
use .gitlab-ci.yml for automatic testing and deployment; however, we decided
that for now it will be done manually. The .yaml file describes the API and
provides the necessary data for Swagger. However, the back-end was moved
to the server so it is not needed anymore. Typescript allows developers to
define a specific directive, a description of event, and what to do when that
event occurs, e.g. clickOutsideDirective.ts file.

B 4.2 External APIs

Some of the parts that this application uses that are not standard libraries
were developed by different developers. The following is a list of those projects.

B 421 Map

This plugin was used in the description of the place as part of the order
creation process. The customer can select the exact coordinates of an entrance
to the waste containers. On selection a marker shows up and the plugin
emits a message event which contains the coordinate values. This event is
then caught by the application, which displays this plugin in an iframe and
validates these values separately from the rest of the form as the plugin is
not a literal input.

Bl 4.2.2 Logr back-end

Logr back-end is a project to which the back end part of the thick client
was transferred. It now acts as an API for the thin clients’ front-end. The
validation of requests in that project is still in progress. The project will
likely be divided later to multiple services.

Links to these Github repositories are in the list of links in the appendix
section.

. 4.3 Calendar

During the creation of the order, the customer must pick the date of pickup
and the date of delivery of the containers. We used an existing component
for this purpose. Its name is Vuedatepicker. It provides configuration as well
as style options. It can also disable some dates and format them in a way
the developer chooses [29].

37

4. Implementation

. 4.4 Color-customizable icons

We needed a way to customize the color of the icons dynamically as there
will be multiple themes in the future. The icons are usually imported as
svg files and used in an img tag, however, this does not let us change the
color dynamically. After different tries, we ended up creating each icon as
a component which lets the user customize its attributes through the props
field. There is still room for improvement as we did not find a way to program
this without the code being repeated in each of these components. These
icon components can be found in the components/icons folder.

. 4.5 Localization

The localization in this application is achieved with the i18n plugin. It lets the
user define text in the application in many languages as well as format them
in the usual language’s format, e.g. date. The developer defines values in a
separate file and then writes its key in the respective place in the component.

This goes hand in hand with the VeeValidate framework, which can display
the validation warnings in different languages that were translated by their
team. We can also create a specific validation rule that validates if the value
is written in the correct format for each country [19, 30].

B a6 Deployment

The application is deployed on logr.dcgi.fel.cvut.cz. As of the time of this
thesis submission, the application is deployed by cloning the code to the
server and then executing the docker file. In the future, this process should
be automated.

B a7 Summary

During implementation, we used the Vue and Nuxt tools to create the project.
We ensured separation of concerns by changing the thick client to thin
client and migrating the back-end to server as a separate application. That
application was further developed by a different developer, and the application
from this thesis retrieves the data using this back-end. The application also
leverages two components that were created by either official vue developers
and a fellow developer. Localization was implemented in the application. The
application is deployed on a server provided by the supervisor’s faculty.

38

Chapter 5
Testing

B 51 User testing

B 5.1.1 Tests execution

We needed to test the functionality and usability of our application. We chose
user testing for this. Due to the nature of the application, we decided to create
test tasks that the testers would have to complete without our guidance. The
target group was people of all ages who work in some company and who are
preferably not familiar with designing or implementing web applications. Such
users would give us better feedback because using the application might be
more difficult for them than for professional designers or developers. However,
the tester’s age might matter because certain generations might be more
used to using applications. We tested the application with six testers. Each
was asked several questions about the application. The following are their
comments.

B 5.1.2 Results

B Aesthetics

All testers said they liked the look of the design. The phrase they used the
most was "clean design'. The layout of the application was clear enough for
them to understand it. One tester said that given the application’s name
"Popelka", they would expect a design with almost caricature images to
imitate the fairy tale nature of the name.

B Intuitiveness

The testers had no problem moving through the application. The main objec-
tive was to create an order and the testers did that without any complications.
One tester expected that clicking on the order progress bar would take her to
the respective page but it does not.

39

5. Testing

Comprehensibility

The comprehensibility of this design could be improved. The testers said they
would like much more explanation in text regarding the different features and
inputs. These are the ones they mentioned:

Most testers thought that the place marker on the map in the order
process locates the place where they live, however, it should locate the
entrance to the containers.

The monthly and weekly pickup periodicity should have an explanation
text. Some testers were not sure how to properly pick the days for the
monthly periodicity and what it would mean. The calendar should also
start next month when it comes to the monthly subscription, or there
can be just thirty days without naming the month.

Some testers did not know what they should write in the additional
requirements and description of the place. An example would be infor-
mative.

According to two testers, the Thank you button at the end of the order
creation does not clearly suggest that the order will be confirmed after
clicking this button.

There is no note on which units are the containers dimensions.

One tester did not understand the difference between the start of the
cycle and the date of the first pickup.

The testers understood how the rating from the courier works in the order
detail. One tester mentioned that it looks like something for the user to click
on and change. He suggested that the icons used for the rating are not the
best option as they look too interactive.

Feature suggestions

The testers mentioned some features that could be implemented in the future
and to which they are used to in most applications. These are the features:

Automatic form values suggestions for palce based on where they put
the marker.

The country in place form should have predefined values from which
customers can pick from.

If the validation is not successful, the page should scroll to the input
with the incorrect value.

40

5.2. Summary

B 52 Summary

We can conclude from the test results that the design of the application is
aesthetically pleasing. However, there must be more explanation on what
certain inputs mean in each of them. The users were confused when picking
the parameters of the order. The navigation in the application is intuitive.
The testers suggested many features that will improve the application and
user experience.

41

42

Chapter 6

Conclusion

N 61 Summary

The assignment of this thesis was to design and implement an application
through which users can order sorted waste pickup. The analysis and design
were extensive and often were discussed with the team of developers who work
on their own applications, so that the common parts, such as the database,
would fit all needs. We decided on most of the frameworks used except for
Vue.js. The application was first implemented as a thick client, discovering
how all of these frameworks work together and what their possibilities are.
The thick client was then divided into the thin client and the back-end on
the server. The front end was first implemented following the first prototype,
then reimplemented following the different prototype, and was deployed to
the server. The applications function is not complete; however, this project
defined core principles regarding analysis, requirements, technology stack,
and design, which the other applications will follow and integrate into.

B 6.2 Future development

The goal of future development is to complete the application to make it a
fully functional application. Then, this application will be exchanging data
with other applications. We will add features to improve user experience and
we will add application monitoring to better handle future errors and busy
periods.

43

44

Bibliography

[1] “With your business towards zero waste? | How it works | Seenons —
seenons.com,” https://seenons.com/en /how-it-works/, [Accessed 23-05-
2024].

[2] “Cyrkl - Digitélni odpadové trzisté — cyrkl.com,” https://www.cyrkl|

[Accessed 23-05-2024].

[3] “O NAS | reKéva — rekava.cz,” https://www.rekava.cz/o-nas, [Accessed
93-05-2024)].

[4] “My WM - Apps on Google Play — play.google.com,” https://play.google|
lcom /store /apps/details?id=com.eBusiness&hl=en__US| [Accessed 23-05-
2024].

[5] “JavaScript With Syntax For Types. — typescriptlang.org,” https://
www.typescriptlang.org/, [Accessed 23-05-2024].

[6] “Vue.js — vuejs.org,” https://vuejs.org/guide/essentials/application|
[Accessed 23-05-2024].

[7] “Getting started — vee-validate.logaretm.com,” |https://vee-validate|
logaretm.com/v4 /guide/composition-api/getting-started/, [Accessed 23-
05-2024].

[8] “Options API vs Composition API - Vue School Articles
— vueschool.io,” https://vueschool.io/articles /vuejs-tutorials
loptions-api-vs-composition-api/, [Accessed 23-05-2024].

[9] “Comparison with Other Frameworks — Vue.js — v2.vuejs.org,” https://
v2.vuejs.org/v2/guide/comparison.html?redirect=true#React, [Accessed

23-05-2024)].

[10] S. D. Smedt, “Bootstrap: Should I wuse it as a Devel-
oper? — simply_stef,” |https://medium.com/@simply _stef/
bootstrap-should-i-use-it-as-a-developer-e7c¢7d0d 260 [Accessed
93-05-2024].

45

https://seenons.com/en/how-it-works/
https://www.cyrkl.com/cs
https://www.cyrkl.com/cs
https://www.rekava.cz/o-nas
https://play.google.com/store/apps/details?id=com.eBusiness&hl=en_US
https://play.google.com/store/apps/details?id=com.eBusiness&hl=en_US
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://vuejs.org/guide/essentials/application.html
https://vuejs.org/guide/essentials/application.html
https://vee-validate.logaretm.com/v4/guide/composition-api/getting-started/
https://vee-validate.logaretm.com/v4/guide/composition-api/getting-started/
https://vueschool.io/articles/vuejs-tutorials/options-api-vs-composition-api/
https://vueschool.io/articles/vuejs-tutorials/options-api-vs-composition-api/
https://v2.vuejs.org/v2/guide/comparison.html?redirect=true#React
https://v2.vuejs.org/v2/guide/comparison.html?redirect=true#React
https://medium.com/@simply_stef/bootstrap-should-i-use-it-as-a-developer-e7c7d0d26ff0
https://medium.com/@simply_stef/bootstrap-should-i-use-it-as-a-developer-e7c7d0d26ff0

6. Conclusion

[11] T. Ryu, “Should You Use Tailwind CSS? — thomas.ryu,” [https://
medium.com/@thomas.ryu/should-you-use-tailwind-css-83d519a29448,
[Accessed 23-05-2024].

[12] “What’s the difference between CSS, SASS,
and SCSS? — dev.to,” https://dev.to/mathlete/
what-s-the-difference-between-css-sass-and-scss-g2b, [Accessed
93-05-2024].

[13] “Pages - Nuxt Kit — nuxt.com,” https://nuxt.com/docs/api/kit/pages,
[Accessed 23-05-2024].

[14] “Vite — vitejs.dev,” https://vitejs.dev/guide/, [Accessed 23-05-2024].

[15] “Relational vs. Non-relational Database: The Difference Ex-
plained — coursera.org,” |https://www.coursera.org/articles/
relational-vs-non-relational-database, [Accessed 23-05-2024].

[16] “PostgreSQL 16.3 Documentation — postgresql.org,” |https://www|
postgresql.org/docs/16/index.html, [Accessed 23-05-2024].

[17] “SQL vs ORMs vs Query Builders | Compare | Prisma’s Data
Guide — prisma.io,” |https: //www.prisma.io/dataguide/types/relational |
ccomparing-sql-query-builders-and-orms, [Accessed 23-05-2024].

[18] “Introduction | Kysely — kysely.dev,” |https://kysely.dev/docs/introl,
[Accessed 23-05-2024].

[19] “Overview — vee-validate.logaretm.com,” https://vee-validate.logaretm|
ccom/v4/guide/overview /| [Accessed 23-05-2024].

[20] “GitHub - jquense/yup: Dead simple Object schema validation —
github.com,” https://github.com/jquense/yup, [Accessed 23-05-2024].

[21] K. Team, “Keycloak — keycloak.org,” https://www.keycloak.org/| [Ac-
cessed 23-05-2024].

[22] “State | Pinia — pinia.vuejs.org,” https://pinia.vuejs.org/core-concepts,

state.html, [Accessed 23-05-2024].

[23] “API Documentation & Design Tools for Teams | Swagger — swag-
ger.io,” |https://swagger.io/, [Accessed 23-05-2024].

[24] “Home — docker.com,” https://www.docker.com/, [Accessed 23-05-
2024).

[25] “NGINX Documentation — docs.nginx.com,” https://docs.nginx.com /|
[Accessed 23-05-2024].

[26] “Coolors - The super fast color palettes generator! — coolors.co,”
[Accessed 23-05-2024].

46

https://medium.com/@thomas.ryu/should-you-use-tailwind-css-83d519a29448
https://medium.com/@thomas.ryu/should-you-use-tailwind-css-83d519a29448
https://dev.to/mathlete/what-s-the-difference-between-css-sass-and-scss-g2b
https://dev.to/mathlete/what-s-the-difference-between-css-sass-and-scss-g2b
https://nuxt.com/docs/api/kit/pages
https://vitejs.dev/guide/
https://www.coursera.org/articles/relational-vs-non-relational-database
https://www.coursera.org/articles/relational-vs-non-relational-database
https://www.postgresql.org/docs/16/index.html
https://www.postgresql.org/docs/16/index.html
https://www.prisma.io/dataguide/types/relational/comparing-sql-query-builders-and-orms
https://www.prisma.io/dataguide/types/relational/comparing-sql-query-builders-and-orms
https://kysely.dev/docs/intro
https://vee-validate.logaretm.com/v4/guide/overview/
https://vee-validate.logaretm.com/v4/guide/overview/
https://github.com/jquense/yup
https://www.keycloak.org/
https://pinia.vuejs.org/core-concepts/state.html
https://pinia.vuejs.org/core-concepts/state.html
https://swagger.io/
https://www.docker.com/
https://docs.nginx.com/
coolors.co
coolors.co

6.2. Future development

[27] “Skeuomorphism — nngroup.com,” https://www.nngroup.com/articles,
sskeuomorphism/, [Accessed 23-05-2024].

[28] 1. OU, “Iconify — iconify.design,” https://iconify.design/, [Accessed
93-05-2024].

[29] “Props - General configuration | Vue Datepicker — vue3datepicker.com,”
lhttps: / /vue3datepicker.com /props/general-configuration /, [Accessed 24-
05-2024].

[30] “Getting started | Vue I18n — vue-il8n.intlify.dev,” |https://vue-i18n|
intlify.dev/guide/essentials/started.html, [Accessed 24-05-2024].

47

https://www.nngroup.com/articles/skeuomorphism/
https://www.nngroup.com/articles/skeuomorphism/
https://iconify.design/
https://vue3datepicker.com/props/general-configuration/
https://vue-i18n.intlify.dev/guide/essentials/started.html
https://vue-i18n.intlify.dev/guide/essentials/started.html

48

Appendix A
List of links

® [First prototype)

® [Final prototype

= [Map]

® [[Logr back-end]

49

https://www.figma.com/design/YFSbTWhAYHOQl4pV7N264u/Popelka---u%C5%BEivatelsk%C3%A1-aplikace?node-id=0%3A1&t=EFdYsQv1jzJe17YL-1
https://www.figma.com/design/mJaBOJ3PUKxWMn3PH5gVHc/Popelka?node-id=0-1&t=uXVBS4A2oy44hv9m-0
https://github.com/Vitalik-ctrl/Map
https://gitlab.com/Damiresz/logr_backend

50

Appendix B
List of attached files

® psaslnterview.pdf
® firstPrototype.pdf

® finalPrototype.pdf

® Source code

o1

	Introduction
	Motivation
	Goals

	Analysis
	State of the Art
	Seenons
	Cyrkl
	reKáva
	Waste Management - My WM
	Summary

	User
	User persona
	User roles
	User benefits
	Actions needed on the user side

	Requirements
	Functional requirements
	Qualitative requirements

	Technology stack
	Typescript
	Frontend
	Vue.js
	Backend
	Database
	Validation
	Security
	State management
	Documentation
	Deployment
	Development environment

	Summary

	Design
	Prototype
	Figma
	First prototype
	Final prototype

	Architecture
	Deployment diagram
	Sequential diagram
	Class diagram
	Summary

	Implementation
	Code structure
	External APIs
	Map
	Logr back-end

	Calendar
	Color-customizable icons
	Localization
	Deployment
	Summary

	Testing
	User testing
	Tests execution
	Results

	Summary

	Conclusion
	Summary
	Future development

	Bibliography
	List of links
	List of attached files

