
Czech
Technical University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Named Entity Recognition in Czech

Bachelor's Thesis of

Radek Štulc

Supervisor: Ing. Herbert Ullrich
Study program: Open Informatics
Specialization: Artificial Intelligence and Computer Science
May 2024

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

507413 Personal ID number: Štulc Radek Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Open Informatics Study program:

Artificial Intelligence and Computer Science Specialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Named Entity Recognition in Czech

Bachelor’s thesis title in Czech:

Rozpoznávání pojmenovaných entit v českém jazyce

Guidelines:

The overall task of this thesis is to research the Natural-Language-Processing challenge of Named Entity Recognition, its
solutions based on Language Models with Transformer architecture and their application to Czech training data to obtain
and publish a re-useable solver for the task.
1) Explore state-of-the-art machine learning methods dealing with the task of Named Entity Recognition and other related
NLP tasks in Czech language and in English (with the focus on their reproducibility in Czech and other Slavonic languages).
2) Perform a comparatory analysis of the availabe data and solution architectures.
3) Based on the findings, train multiple classifiers for the task and compare their performance.
4) Perform an empirical analysis of how your best-performing solution performs on general real-world data (such as news
articles), describe your findings, and propose how to address possible issues.
5) Release the model publicly for a streamlined open usage.

Bibliography / sources:

[1] Jana Straková, Milan Straka, and Jan Hajic: “Neural Architectures for Nested NER through Linearization“. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics
[2] Ikuyi Yamada et al.: “LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention” (2020).
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
[3] Besnik Fetahu, Sudipta Kar, Zhiyu Chen, Oleg Rokhlenko, and Shervin Malmasi. 2023. “SemEval-2023 Task 2:
Fine-grained Multilingual Named Entity Recognition (MultiCoNER 2)“. In Proceedings of the 17th International Workshop
on Semantic Evaluation (SemEval-2023)

Name and workplace of bachelor’s thesis supervisor:

Ing. Herbert Ullrich Department of Computer Science FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 24.05.2024 Date of bachelor’s thesis assignment: 19.01.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Dr. Ing. Jan Kybic

Head of department’s signature
Ing. Herbert Ullrich

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

Acknowledgements
I would like to thank my supervisor Her-
bert Ullrich for his kind guidance, valu-
able feedback, and assistance during my
work. I also thank Dr. Jana Straková for
her helpful e-mail correspondence regard-
ing the used dataset.

The access to the computational infras-
tructure of the OP VVV funded project
CZ.02.1.01/0.0/0.0/16_019/0000765
“Research Center for Informatics” is also
gratefully acknowledged.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the method-
ical instructions for observing the ethical
principles in the preparation of university
theses.

In Prague, 24. May 2024
Radek Štulc

v

Abstract
Named Entity Recognition (NER) is a
subtask of information extraction that
seeks to locate and classify named enti-
ties mentioned in unstructured text into
pre-defined categories, such as person
names, ages, dates, organizations, etc. It
is one of the main techniques in Natu-
ral Language Processing (NLP), and a
strong entity classifier is an inseparable
part of every research, where the cor-
rect representation of entities is essen-
tial. In Czech, the biggest publicly avail-
able corpus is the Czech Named Entity
Corpus. This corpus contains nested en-
tities and therefore all state-of-the-art
models trained on this corpus solve the
problem of nested NER. In this thesis,
I modified this corpus to contain only
flat entities to solve the NER problem
using the Hugging Face libraries with
a focus on the replicability of training
and creating a simple yet strong classi-
fier. The classifier is based on a Czech
monolingual version of RoBERTa, a ro-
bustly optimized BERT pre-training ap-
proach, named RobeCzech. The solution
proposed in the thesis exceeds the known
state-of-the-art results and seems to scale
well with real-world data.

Keywords: Named Entity Recognition,
NER, nested NER, Transformers, Czech
Named Entity Corpus, CNEC

Supervisor: Ing. Herbert Ullrich

Abstrakt
Rozpoznávání pojmenovaných entit
(NER) je dílčím úkolem “information
extraction”, který se snaží najít a klasi-
fikovat pojmenované entity uvedené v
nestrukturovaném textu do předem defi-
novaných kategorií, jako jsou jména osob,
věk, data, organizace ard. Je to jedna
z hlavních technik “Natural Language
Processing” (NLP) a silný klasifikátor
entit je nedílnou součástí každého vý-
zkumu, kde je správná reprezentace
entit zásadní. V češtině je největším
veřejně dostupným korpusem “Czech
Named Entity Corpus”. Tento korpus
obsahuje vnořené entity, a proto všechny
nejmodernější modely natrénované na
tomto korpusu řeší problém vnořeného
NER. V této práci jsem tento korpus
upravil tak, aby obsahoval pouze nevno-
řené entity pro řešení problému NER
pomocí knihoven “Hugging Face” se
zaměřením na replikovatelnost trénování
a vytvoření jednoduchého, ale silného
klasifikátoru. Klasifikátor je založen
na české jednojazyčné verzi RoBERTa,
robustně optimalizovaném tréniku zalo-
ženém na architektuře “BERT”, jménem
RobeCzech. Řešení navržené v této práci
překračuje známé state-of-the-art vý-
sledky a zdá se, že je dobře škálovatelné
s reálnými daty.

Klíčová slova: Rozpoznávání
pojmenovaných entit, NER, nested
NER, Transformers, Czech Named
Entity Corpus, CNEC

vi

Contents
1 Introduction 1
1.1 Motivations 2
1.2 Main Challenges 2
1.3 Introduction to Transformers 2
1.4 Thesis outline 3
2 State-of-the-Art Overview 5
2.1 Named Entity Recognition in
English . 5

2.2 Named Entity Recognition in
Czech . 5
2.2.1 NameTag 2 6
2.2.2 Czert . 6
2.2.3 SlavicBERT 7
2.2.4 RobeCzech 7
2.2.5 XLM-RoBERTa 8

2.3 Metrics . 8
3 Dataset 11
3.1 Overview . 11
3.1.1 CNEC 1.0 11
3.1.2 CNEC 1.1 11
3.1.3 CNEC 2.0 12
3.1.4 CoNLL-based extended 14

3.2 Representation 14
3.2.1 Conversion 14
3.2.2 Labeling 15

4 Model training 19
4.1 Data Preprocessing 19
4.1.1 Conversion 19
4.1.2 Loading Scripts 20
4.1.3 Tokenize and Align 21

4.2 Training Loop 22
4.2.1 Flat NER 22
4.2.2 Nested NER 24

4.3 Evaluation 25
5 Empirical Analysis 29
5.1 CoNLL-based extended 29
5.2 CNEC 2.0 Supertypes 29
5.3 CNEC 2.0 Types 30
5.4 Nested NER 30
5.5 Results of analysis 30
6 Conclusion 35
6.1 Main Contributions 36
6.2 Future Works 36
Bibliography 37

A Acronyms 41

B Repository Structure 43

vii

Figures
1.1 A simple example of raw input . . 1
1.2 A simple example of classified
input . 1

1.3 A simple example of classified
input with nested entities, P stands
for person, P-f for first name, P-s for
surname, N for number, and G for
geographical location 1

1.4 An architecture of the
Transformer model (reprinted
from [Vaswani et al., 2017]) 4

3.1 CNEC 1.1 named entities type
hierarchy . 12

3.2 CNEC 2.0 named entities type
hierarchy . 13

3.3 CNEC 1.1 named entities type
hierarchy excluding unused entities 17

4.1 A Heaviside step function 25

5.1 A screenshot of an example of
RobeCzech fine-tuned on CNEC 2.0
CoNLL extended. 30

5.2 A screenshot of an example of
XLM-RoBERTa fine-tuned on
CNEC 2.0 CoNLL extended 31

5.3 A screenshot of an example of
RobeCzech fine-tuned on CNEC 2.0
Supertypes . 32

5.4 A screenshot of an example of
XLM-RoBERta fine-tuned on CNEC
2.0 only supertypes 32

5.5 A screenshot of an example of
RobeCzech fine-tuned on CNEC 2.0
only types . 33

5.6 A screenshot of an example of
XLM-RoBERTa fine-tuned on
CNEC 2.0 only types 33

5.7 A screenshot of an example of
XLM-RoBERTa fine-tuned on
CNEC 2.0 all nested types 34

6.1 An example of ChatGPT answer
on NER problem 36

Tables
4.1 Pre-tokenized labeled input 21
4.2 Tokenized and aligned input . . . 21
4.3 An example of one-hot encoded
label for one token 22

4.4 F score comparison of models
trained to solve the NER problem. 26

4.5 F score comparison of trained
models to solve the nested NER
problem . 26

viii

Chapter 1
Introduction

The human ability to communicate through natural language has fascinated scientists for
many years. After all, only because of this ability can humans understand each other,
convey their feelings and information, and this was the main reason for our ever-growing
evolution [MacWhinney, 2005,Mithen, 1997]. With the invention of computing devices, a
new challenge arose including this topic; making machines able to understand language
the same way humans do. Natural Language Processing (NLP) is an interdisciplinary
subfield of computer science and information retrieval primarily concerned with solving
this challenge using the most recent machine learning approaches. The goal is a computer
capable of understanding human language, including the contextual nuances that language
brings.

For machines to understand the language, we created many tasks to help the computer
understand the context. One of these tasks is information extraction (IE), which auto-
matically extracts structured information from unstructured or semi-structured machine-
readable inputs.

IE is made up of various subtasks depending on the problem these tasks solve, one
being the topic of this thesis Named Entity Recognition (NER). NER is a task that
seeks to locate named entities and classify them in unstructured text into pre-defined
categories such as person names, organization, numbers, dates, etc. A simple example of
this classification can be seen in Figure 1.1 and in Figure 1.2. In Czech NER the current
state-of-the-art solution is called NameTag 2, introduced in [Straková et al., 2019] paper,
fine-tuned on a dataset named Czech Named Entity Corpus (CNEC) [Ševčíková et al.,
2007a] (explained in Chapter 3), but this solution solves a closely related problem called
Nested Named Entity Recognition, where named entities can now be embedded inside
each other creating nested entities, the example for this problem is shown in Figure 1.3.

Figure 1.1: A simple example of raw input

Figure 1.2: A simple example of classified input, P stands for person, N stands for number,
and G is for geographical location

Figure 1.3: A simple example of classified input with nested entities, P stands for person, P-f
for first name, P-s for surname, N for number, and G for geographical location

1

1. Introduction ..
1.1 Motivations

In today’s world, almost everyone is connected through the Internet and uses it daily to
gather information. No one would be surprised that not all this information is factually
correct, creating misinformation and the danger of spreading such misinformation. To
combat this, many journalists began to fact-check claims, newspaper articles, or videos.
The NLP team at the Artificial Intelligence Center1 led by Jan Drchal decided to help
them by creating an automated fact-checking platform [Drchal et al., 2023]. This platform
requires several strong classifiers to understand the context of information, including the
named entity classifier. NameTag 2 offers such a classifier, but as stated above, this model
is trained using nested entities. This may seem like a trivial problem, but it can cause
major obstacles, as the embedding can grow quickly and some entities may prove to be
more confusing than helpful, for example, in the name of town “Ústí nad Labem” the river
entity “Labem” may not be that important for the understanding of the entire sentence.
As the models for Czech NER were either not publicly available or solved nested NER,
I was tasked with creating a dataset that contains the same data as the CNEC dataset
but does not contain nested entities, and creating a machine learning model that produces
near-human results fine-tuned in this dataset.

1.2 Main Challenges

The main challenges of this thesis are the already mentioned creation of a dataset con-
taining only flat entities and the creation of a machine learning model solving NER. All
available solutions as of now for Czech are complex architectures combining the Trans-
former architecture with other neural networks. I focused on creating a publicly available
model using Hugging Face libraries2 using their training API and solving the NER prob-
lem in a way that is easily replicable and using a single model based on the Transformers
architecture.

Hugging Face is a large machine learning and data science collaboration platform that
helps users build, deploy, and train machine learning models. The creation of a complex
training loop for NER could be a topic for a whole thesis, and we could still not be as
efficient and effective as using a training loop offered by the Hugging Face community that
is configured and optimized for the best results. To achieve the best results, I decided to
use this platform and all models and datasets were made publicly available.

The offered solution should surpass the available state-of-the-art results, and the model
should translate well into real-world situations, as testified by an empirical analysis.

In addition to the NER classifier, I also decided to train a model capable of compre-
hending nested entities to acquire a deeper understanding of the NER problem.

1.3 Introduction to Transformers

In the past, dominant models solving NLP tasks were based on complex recurrent or
convolutional neural networks in an encoder-decoder configuration. The best-performing
models would also connect the encoder and decoder through an attention mechanism. In
the [Vaswani et al., 2017] paper, a new simple network architecture was introduced, able

1https://www.aic.fel.cvut.cz/
2https://huggingface.co/

2

https://www.aic.fel.cvut.cz/
https://huggingface.co/

... 1.4. Thesis outline

to solve sequence-to-sequence problems based solely on attention mechanisms, dispensing
the recurrent and convolutional networks completely; the Transformers. This has been a
major breakthrough in the field and gave birth to famous models such as BERT [Devlin
et al., 2019], ELMO [Peters et al., 2018] or GPT-3 [Brown et al., 2020], which quickly
outperformed other models, and recent research built on these models pushed current
state-of-the-art near or even outperforming human results, and this research will use the
Transformer architecture as well, so I find appropriate to describe this architecture.

The attention mechanism is a method that simulates how human attention works by
assigning varying levels of importance to different words in a sentence. Attention assigns
importance to each word by calculating weights for the word’s embeddings within a specific
sentence section called the context window to determine its significance. These weights
can adapt and change with each training.

This architecture offers many advantages over other solutions. The biggest is the in-
crease in performance in many NLP tasks including NER. Another big advantage is the
available use of parallelism, as the solution does not treat the input step by step, and this
architecture battles one of the biggest disadvantages of recurrent neural networks, which
prioritize more recent information over the old.

Masked Language Modeling (MLM) is a method that trains attention by masking some
parts of a sentence and forcing the model to depend on other words to predict the masked
one and making the model using attention better understand sentences based on the
context.

The Transformer architecture is depicted in Figure 1.4.

1.4 Thesis outline

My thesis is divided into 6 chapters. A succinct description of each chapter can be seen
below:. Chapter 1 introduces the thesis, its motivation, main goals, and challenges. Chapter 2 explores state-of-the-art methods for NER and describes the pre-trained

models to be used.. Chapter 3 explains the CNEC dataset used for fine-tuning and the problem named
nested NER which will also be researched.. Chapter 4 contains details on the training and evaluation of the pre-trained models.. Chapter 5 offers an empirical analysis of the two best performing models. Chapter 6 concludes the thesis.

3

1. Introduction ..

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Figure 1.4: An architecture of the Transformer model (reprinted from [Vaswani et al., 2017])

4

Chapter 2
State-of-the-Art Overview

This chapter explores current state-of-the-art methods used in Named Entity Recognition
in English and Czech. It introduces and describes pre-trained models used in this thesis
for fine-tuning in Czech. Lastly, I explain the metrics used for the observation of the model
performance.

2.1 Named Entity Recognition in English

Named Entity Recognition in English is already a well-researched topic with many fine-
tuned models exceeding 90% F1 score. The application of deep learning methods in NLP
was made possible by the introduction of word embeddings [Mikolov et al., 2013], which
represent words as vectors in a low-dimensional continuous space, capturing their seman-
tical relations. However, a problem occurred: depending on the context, one word could
have more meanings. This word would have the same embedding for all homonyms. Deep
neural models based on Long Short-Term Memory (LSTM) [Hochreiter and Schmidhuber,
1997] and Transformer [Vaswani et al., 2017] architecture, such as ELMo [Peters et al.,
2018] and BERT [Devlin et al., 2019] have introduced contextualized word representa-
tion (CWR)(also known as contextualized embeddings), making word vectors sensitive to
context. This allowed the creation of many language models trained using a task equiv-
alent to or similar to MLM, which could be used for a wide range of downstream NLP
tasks, namely, the NER task, where these models achieve the F1 scores mentioned. The
Transformer architecture is briefly explained in Section 1.3.

Many models use different methods to boost the F1 score as high as possible and beat
other models. An interesting model is LUKE [Yamada et al., 2020], which treats not only
words (similar to existing CWR models) but also entities as independent tokens so that
the entities would have two embeddings, one a token embedding and the other an entity
embedding.

Recent works also found better word representations by concatenating different types
of embeddings. [Wang et al., 2021] proposed an Automated Concatenation of Embeddings
(ACE) to automate the process of finding a better concatenation of embeddings.

2.2 Named Entity Recognition in Czech

In Czech, Named Entity Recognition is a less researched task than in English, and the
models do not reach such high F1 scores. In 2024, the state-of-the-art is NameTag
2 [Straková et al., 2019], which will be my benchmark for my fine-tuned models, and its
scores can be seen in Table 4.5. Furthermore, [Sido et al., 2021] trained the first Czech

5

2. State-of-the-Art Overview
monolingual language model Czert based on the architectures of BERT [Devlin et al.,
2019] and ALBERT [Lan et al., 2020] (86.7 F1 score on the [Konkol et al., 2014] version
of CNEC 1.1 dataset). [Sido et al., 2021] also compared their model with mBERT [Devlin
et al., 2019] and SlavicBERT [Arkhipov et al., 2019]. The last model, I have found, that
achieves state-of-the-art results is RobeCzech [Straka et al., 2021](87.82 F1 score on
CNEC 1.1).

Moreover, a recent large bert-like model, which includes Czech, is XLM-RoBERTa [Con-
neau et al., 2020]. XLM-RoBERTa is a large multilingual language model based on
RoBERTa [Liu et al., 2019] architecture. This model can be trained using a downstream
dataset described in Chapter 3.

A detailed description of each model I will fine-tune and evaluate can be seen in the
following subsections.

2.2.1 NameTag 2

NameTag 2 [Straková et al., 2019] is a neural network architecture for nested NER.
Nametag 2 is divided into two different neural models:. The first model uses a standard LSTM-CRF [Lample et al., 2016] architecture, where

the input, which is a concatenation of multiple labels of a nested entity, is sent into
an LSTM neural network and then decoded by a conditional random field (CRF).
Although this approach is simple and effective, the obvious disadvantage is the fast-
increasing number of named entities, which makes this model less effective for the
problem of nested NER.. In the second model, the nested entities are represented as a sequence, viewing the
task as a sequence-to-sequence (seq2seq) [Sutskever et al., 2014] task. The most
popular architecture used for this task is the encoder-decoder architecture, where the
encoder is a bidirectional LSTM [Cui et al., 2019] and the decoder is an LSTM. The
tokens are viewed as the input sequence and the encoded labels are predicted one by
one by the decoder until the decoder outputs the “<eow>” (end of word) label and
moves to the next token.

The network was trained using a variant of Adam optimizer [Kingma and Ba, 2014], which
only updates the accumulators for the variables that appear in a current batch1, with pa-
rameters β1 = 0.9 and β2 = 0.98. They used mini-batches of size 8. For regularization,
they applied a dropout rate of 0.5 and the word dropout replaces 20% of words by the un-
known token to force the network to rely more on context. They also add contextual word
embeddings from ELMo [Peters et al., 2018], BERT [Devlin et al., 2019], and Flair [Akbik
et al., 2018] to word- and character-level embeddings to reach even further improvements.

2.2.2 Czert

As mentioned, Czert [Sido et al., 2021] is the first Czech monolingual language rep-
resentation model based on the BERT [Devlin et al., 2019] and ALBERT [Lan et al.,
2020] architectures. As stated in Section 2.1, BERT is a model based on Transformer
architecture with two pre-training tasks: Masked Language Modeling (MLM) and Next
Sentence Prediction (NSP). In the original paper [Devlin et al., 2019] the author pub-
lished BERTBASE and BERTLARGE where BERTLARGE contains 3 times the parameters

1https://www.tensorflow.org/addons/tutorials/optimizers_lazyadam

6

................................ 2.2. Named Entity Recognition in Czech

of BERTBASE. Later, ALBERT [Lan et al., 2020] proposed a way to use the parameters
more effectively and reduce their number while maintaining a similar performance, while
also dividing into ALBERTBASE, ALBERTLARGE, ALBERTXLARGE, ALBERTXXLARGE.
Czert also followed this convention and created two models:. Czert-A is very similar to the standard ALBERTBASE.. Czert-B is configured exactly as BERTBASE.

Both of the models are trained on a text corpus consisting of:. SYN v4 [Křen et al., 2016], a large corpus of contemporary written Czech, 4,188M
tokens.. Czes [Anonymous, 2011], a collection of Czech newspaper and magazine articles, 432M
tokens.. Plain texts extracted from the Czech Wikipedia dump using WikiExtractor [Attardi,
2015], 123M tokens.

Both models are trained with a learning rate of 1 · 10−4 and linear decay using the Adam
optimizer [Kingma and Ba, 2014].

For my experiments, I fine-tuned only Czert-B and SlavicBERT on a downstream
dataset from Chapter 3, as they perform the best as shown in the paper [Sido et al.,
2021].

2.2.3 SlavicBERT

SlavicBERT [Arkhipov et al., 2019] is based on a multilingual version of the mBERT [De-
vlin et al., 2019] model focused on four Slavic languages: Russian, Bulgarian, Polish, and
Czech. The original BERT embedder is already trained on 104 languages. However, for
the four languages, they did not need the entire inventory of multilingual subtokens, and
the original WordPiece tokenization may lack Slavic-specific ngrams, which could result
in a longer input sequence. Hence, they retrained BERT in the stratified Wikipedia for
Czech, Polish, and Bulgarian, and News data for Russian. They initialize the model with
the multilingual BERT, as training from scratch would be extremely computationally ex-
pensive.

After pre-training and fine-tuning on a downstream dataset, their model outperforms
multilingual BERT, and by adding a CRF layer, the model is achieving even better per-
formance.

2.2.4 RobeCzech

RobeCzech [Straka et al., 2021] is a Czech contextualized language representation model
based on the Transformer architecture trained solely on Czech data. RobeCzech is more
accurately a Czech monolingual version of RoBERTa [Liu et al., 2019], a robustly optimized
BERT pre-training approach. RobeCzech was trained on four publicly available texts.
Three of them are the same as for Czert described in Section 2.2.2 and one added:. Documents with at least 400 tokens from the Czech part of the W2C web corpus [Ma-

jliš, 2011,Majliš and Žabokrtský, 2012], 16M tokens

7

2. State-of-the-Art Overview
Using the concatenated corpus, RoBERTa was trained from scratch using the official code
released in the Fairseq library2. Adam was used as an optimizer with β1 = 0.9 and
β2 = 0.98, the batch size is 8,192 and the learning rate is adapted using the polynomial
decay schema with 10,000 warm-up updates and the maximum learning rate set to 7 ·10−4.
The training took approximately three months.

They stated that for the NER problem, they reproduced the current state-of-the-art
architecture [Straková et al., 2019] described in Section 2.2.1, but did not share code
repository or trained weights.

2.2.5 XLM-RoBERTa

XLM-RoBERTa is a cross-lingual language model (XLM) [Lample and Conneau, 2019]
based on RoBERTa [Liu et al., 2019], which is, as said in Section 2.2.4, a BERT-based
model with an optimized training procedure3. XLM-RoBERTa was trained in one hundred
languages, using 2.5 terabytes of filtered CommonCrawl data. In [Conneau et al., 2020]
paper, they discuss the curse of multilinguality: More languages lead to better cross-lingual
performance in low-resource languages up to a point, after which the overall performance
on monolingual and cross-lingual benchmarks degrades. This curse can be alleviated by
increasing the model capacity, that is why the authors made two models, which are very
large; XLM-RoBERtaBASE with 270M parameters and XLM-RoBERTaLARGE with 550M
parameters, which is, for example, over 4 times the size of RobeCzech from Section 2.2.4.

XLM-RoBERTaLARGE significantly outperforms other multilingual models and performs
well compared to other Czech monolingual models, as shown in the papers [Straka et al.,
2021,Sido et al., 2021] and for this reason, I will also experiment with this model.

2.3 Metrics

In this Section, I will explain all primary metrics used to evaluate the models.. Accuracy is the base metric used for model evaluation, which describes the number
of correct predictions over all predictions:

Number of Correct Predictions
Number of all Predictions. Precision is a measure of how many of the positive predictions are correct (true

positives):
True positives

True Positives + False Positives. Recall is a measure of how many of the positive cases the classifier correctly predicted
over all the positive cases in the data:

True Positives
True Positives + False Negatives. F1 score is a measure combining precision and recall. It is generally described as the

harmonic mean [Ferger, 1931] of the two:

2 · Precision · Recall
Precision + Recall

2https://github.com/facebookresearch/fairseq/tree/main/examples/roberta
3For example, RoBERTa uses only MLM.

8

https://github.com/facebookresearch/fairseq/tree/main/examples/roberta

.. 2.3. Metrics

The F1 score is a special case of the Fβ score, where β is a positive real factor, chosen
so that recall is considered β times as important as precision is:

(1 + β2) · Precision · Recall
(β2 · Precision) + Recall

9

10

Chapter 3
Dataset

This chapter describes the dataset used for fine-tuning and how the dataset is divided into
different versions, introduces a problem related closely to NER, and how I represent the
problem for the pre-trained models.

3.1 Overview

For the Czech NER, the largest public dataset is the Czech Named Entity Cor-
pus [Ševčíková et al., 2007]. This dataset contains nested entities, which introduces the
problem of nested NER. Although the main problem of this thesis is the solution to the
NER problem, I decided to fine-tune models on this dataset and create models that solve
the nested NER. Nested NER is described in Section 3.1.3. All versions are available for
download from their official website [Ševčíková et al., 2007b].

The CNEC dataset is divided into different versions:

3.1.1 CNEC 1.0

This is the original version of the corpus. This version is outdated, as stated on the official
website of the corpus version [Ševčíková et al., 2007a], and it is highly recommended to
use the version described in Section 3.1.2, which contains the same data but offers fixes.

3.1.2 CNEC 1.1

The CNEC 1.1 is a corpus of 5868 Czech sentences with 33662 Czech named entities
manually annotated, classified according to a two-level hierarchy (explained in Section
3.1.3) of 62 two-letter named entities and 10 one-letter supertypes shown in Figure 3.1.
This is a minor update to its previous version.

The difference between CNEC 1.0 and CNEC 1.1 are the following:. fixed some misannotated entities and typos. make all formats contain the same data. replaced tmt format by treex format. split all formats into train, dtest, and etest

All data were created and annotated as stated in [Ševčíková et al., 2007] by this proce-
dure:

11

3. Dataset ..

Types of NE

a - Numbers in addresses

c - Bibliographic items

g - Geographical names

i - Institutions

m - Media names

n - Specific number usages

o - Artifact names

p - Personal names

q - Quantitative expressions

t - Time expressions

ah - street numbers
at - phone/fax numbers

az - zip codes
cb - volume numbers

cn - chapt./sect./fig. numbers
cp - page numbers

cr - legisl. act numbers
cs - article titles

gc - states
gh - hydronyms

gl - nature areas / objects
gp - planets, cosmic objects

gq - urban parts
gr - territorial names

gs - streets, squares
gt - continents

gu - cities/towns
g_ - underspecified

ia - conferences/contests
ic - cult./educ./scient. inst.

if - companies, concerns...
io - government/political inst.

i_ - underspecified
mi - internet links

mn - periodical
mr - radio stations

mt - TV stations
na - age

nc - sport score
ni - itemizer

nm - in formula
np - part of personal name

nq - town quarter
nr - ratio

nw - flat size n_ - underspecified

oa - cultural artifacts (books, movies) oc - chemical

oe - measure units
om - currency units

op - products
or - directives, norms

o_ - underspecified pb - animal names

pc - inhabitant names pd - (academic) titles

pf - first names pm - second names

pp - relig./myth persons ps - surnames

p_ - underspecified
qc - cardinal numbers

qo - ordinal numbers
tc - centuries

td - days tf - feasts

th - hours tm - months

tn - minutes
tp - epochs

ts - seconds ty - years

Figure 3.1: CNEC 1.1 named entities type hierarchy (reprinted from [Ševčíková et al., 2007]

. Sentences were randomly selected from the Czech National Corpus1.. The data have been manually annotated by two annotators in parallel and differently
annotated instances have been checked and decided by a third person2.. The data have been divided into training, development test, and evaluation test parts
in the 8:1:1 ratio.

3.1.3 CNEC 2.0

This is the most recent version of the corpus. It contains 8993 Czech sentences with 35220
Czech named entities manually annotated. It is a major expansion of the previous version.

1https://ucnk.ff.cuni.cz/cs/
2Magda Ševčíková, Zdeněk Žabokrtský, and Oldřich Krůza

12

https://ucnk.ff.cuni.cz/cs/

... 3.1. Overview

The corpus uses 46 two-letter named entity types, which can be embedded creating the
nested NER problem; e.g., the river name can be a part of the name of a city as in:

<gu Ústí nad <gh Labem>>
There are also 4 named entity containers: two or more named entities are parts of a

named entity container, such as in:
<P <pf Jan><ps Novák>>

Containers are marked with a capital one-letter tag. All types of named entity can be
seen in Figure 3.2, there can also be seen one-letter tags, which are not capital, these are
called supertypes and are much more general, as opposed to the fine-grained two-letter
types.

The changes from the previous version are stated on the official website of the ver-
sion [Ševčíková et al., 2014b]:. overhaul the number entities, some entities were merged, moved, or removed. a new entity me for email was added. other entities that showed similarities or were too fine-grained were merged. new data was annotated and added, mainly for the corpus to better represent the

density of named entities, so a lot of sentences with no named entities were added

Types of NE

a - Numbers in addresses

g - Geographical names

i - Institutions

m - Media names

n - Number expressions

o - Artifact names

p - Personal names

t - Time expressions

ah - street numbers
at - phone/fax numbers

az - zip codes
gc - states

gh - hydronyms
gl - nature areas / objects

gq - urban parts
gr - territorial names

gs - streets, squares
gt - continents

gu - cities/towns
g_ - underspecified

ia - conferences/contests
ic - cult./educ./scient. inst.

if - companies, concerns...
io - government/political inst.

i_ - underspecified
me - email address

mi - internet links
mn - periodical

ms - radio and TV stations
na - age

nb - vol./page/chap./sec./fig. numbers
nc - cardinal numbers

ni - itemizer
no - ordinal numbers

ns - sport score
n_ - underspecified

oa - cultural artifacts (books, movies)
oe - measure units

om - currency units
op - products

or - directives, norms
o_ - underspecified

pc - inhabitant names
pd - (academic) titles

pf - first names pm - second names

pp - relig./myth persons ps - surnames

p_ - underspecified td - days

tf - feasts th - hours

tm - months
ty - years

NE containers

P - complex person names

T - complex time expressions

A - complex address expressions

C - complex bibliographic expressions

Figure 3.2: CNEC 2.0 named entities type hierarchy (reprinted from [Ševčíková et al., 2014a])

13

3. Dataset ..
3.1.4 CoNLL-based extended

In the [Konkol and Konopík, 2013] paper, the authors introduced the CoNLL-based version
of CNEC. Konkol and Konopík have taken both versions, removed the nested entities, and
labeled all entities to only 7 supertypes3. This has transformed the problem of a nested
NER into the problem of a flat NER.

3.2 Representation

The dataset, as explained in Section 3.1.3, can be embedded. This leads to the problem
of a nested NER. However, we can also transform the data into that of a NER problem,
as shown, for example, in Section 3.1.4. Both problems must be represented for the model
to understand the dataset and train itself on it. As the main challenge of this thesis is
the NER problem, I decided to convert even the version from Sections 3.1.2 and 3.1.3
from nested NER to flat NER and create a modified dataset containing the same data to
achieve even stronger and diverse classifiers, which could help in future work.

3.2.1 Conversion

First, we need to look at how the dataset is represented and how we can work with it.
The dataset is saved in Treex format. We would like to transform this format into a more
readable ConLL format. To achieve this, I modified a Perl script from [Straková et al.,
2016] paper.

A Treex format file is an XML file with specific rules, making it possible to use a script
and convert this file to other formats. Treex format can be seen in the following example:

1 ...
2 <bundles>
3 <LM id="s1">
4 ... other tags and rules
5 <LM id="a_tree...">
6 <form>Asii</form>
7 <lemma>Asie_;G</lemma>
8 <tag>NNFS6-----A----</tag>
9 <ord>19</ord>
10 </LM>
11 ...
12 <n_tree id="...">
13 ...
14 <LM id="...">
15 <ne_type>gt</ne_type>
16 <normalized_name>Asii</normalized_name>
17 <a.rf>a_tree...</a.rf>
18 </LM>
19 ...
20 </LM>
21 ...

Listing 3.1: An example of the data represented in Treex format

3Which are the supertypes shown in Figure 3.3

14

... 3.2. Representation

The script transforms the file into the CoNLL format, which is more human-readable. The
example is shown below:

1 ...
2 Jihovýchodní jihovýchodní AAFS6----1A---- O
3 Asii Asie_;G NNFS6-----A---- B-gt
4 a a-1 J^------------- O
5 you ten PDFS7---------- O
6 ...

Listing 3.2: An example of the data in CoNLL format for flat entities

The first column contains words, including punctuation, the second column contains lem-
mas of these words, the third column contains morphological tags, and the last fourth
column contains NEs.

For the nested entities, it has the same structure with an added entity:
1 ...
2 jmenuje jmenovat_:T_:W VB-S---3P-AA--- O
3 see se_^(zvr._zájmeno|'částice') P7-X4---------- O
4 Ann Ann_;Y NNFSX-----A---- B-P|B-pf
5 Suba Suba X@------------- I-P|B-ps
6 . . Z:------------- O
7 ...

Listing 3.3: An example of the data in CoNLL format for nested entities

We can observe the usage of the Inside-outside-beginning (IOB) tag. In this instance, the
usage of the IOB2 tagging is shown. This format of tagging was presented in the [Ramshaw
and Marcus, 1995] paper and is commonly used for tagging tokens. The format can be
described as:. I- prefix indicates that the token is inside an entity. B- prefix indicates that the token is the beginning of an entity. O indicates that this token is not part of any entity

The difference between IOB and IOB2 is, in IOB, the B- prefix is used only after another
token that is not tagged as O

3.2.2 Labeling

Only having the file transformed into the CoNLL format will not be enough for the model
to understand the input. Hugging Face models must have each entity labeled according
to its corresponding ID number. Example given: An entity labeled ‘O’ will have an ID
of 0. Thanks to the Hugging Face library, I was able to create a simple loading script,
following a template from Hugging Face4, in which I can prepare all the features that the
dataset should have; I will explain this script more in detail in Section 4.1.2. The loading
script loads the dataset into DatasetDict; this DatasetDict consists of three datasets, each
representing the train, validation, and test split.

Each split has features, which are 'tokens' and 'ner_tags'. 'Tokens' are words, from
each sentence, and 'ner_tags' are tags, for each token in the ID form. Simple example:

4https://huggingface.co/docs/datasets/dataset_script

15

https://huggingface.co/docs/datasets/dataset_script

3. Dataset ..
1 {'tokens': ['Vede', 'ji', 'žena', ',', 'jmenuje', 'se', 'Ann', 'Suba', '.

↪→ '],
2 'ner_tags': [0, 0, 0, 0, 0, 0, 75, 81, 0]}
3 '''
4 75: 'B-pf' (person's first name)
5 81: 'B-ps' (person's surname)
6 '''

Listing 3.4: An example of the labeling for flat entities

This example is for the flat NER problem, for nested NER, 'ner_tags' look slightly
different, as the token ‘Ann’, has two labels.

1 {'tokens': ['Vede', 'ji', 'žena', ',', 'jmenuje', 'se', 'Ann', 'Suba', '.
↪→ '],

2 'ner_tags': [[0], [0], [0], [0], [0], [0], [1, 83], [2, 89], [0]]}
3 '''
4 1: 'B-P',
5 2: 'I-P',
6 83: 'B-pf',
7 89: 'B-ps'
8 '''

Listing 3.5: An example of the labeling for nested entities

We can see that for the nested NER, I have to put all labels in an array because features
expect all variables to be the same type.

The number of entities represented in the code for the model differs depending on the
version used for fine-tuning and the type of problem we are trying to solve. It must be
now noted that the number of 'ner_tags' used for fine-tuning and the number of named
entities for the same version, as stated in Section 3.1.2 differs. After a short correspondence
with Dr. Straková5, I was informed that the evaluation results from the [Ševčíková et al.,
2007] paper onward were achieved on only 42 named entities, not 62 (shown in Figure 3.3),
and due to backward compatibility, all results for this version were reported on these
entities. It should now be explained what number of entities I used for each version:. For the version from the Section 3.1.4, [Konkol and Konopík, 2013] used 7 supertypes,

from the original supertypes, they excluded: ‘c’, ‘n’, and ‘q’.. For the version from Section 3.1.2, which solved the NER problem, I fine-tuned the
model on 42 types, which can be seen in Figure 3.3. Furthermore, I fine-tuned and
evaluated the model only on supertypes, which now used all supertypes, even from
the excluded entities, as excluding supertypes now would make the corpus into the
version from Section 3.1.4. When solving the nested NER problem, 4 containers are
added, as shown in Figure 3.2, making the total number of entities 46.. For the version from Section 3.1.3, the number of types and supertypes matches the
one used for fine-tuning, which is 46 types and 8 supertypes. Again, for nested NER,
4 containers are added, making the total 50.

5Straková, personal communication, March 12, 2024

16

... 3.2. Representation

Figure 3.3: CNEC 1.1 named entities type hierarchy excluding unused entities (reprinted and
edited from [Ševčíková et al., 2007])

17

18

Chapter 4
Model training

This chapter contains all the details on the training and evaluation of different models
used for fine-tuning on the CNEC dataset described in Chapter 3. In this chapter, I also
describe the data preprocessing required before every training. Training methods and data
preprocessing may vary depending on whether the solution is for NER or nested NER. So,
I will explain both solutions that I used separately. All notebooks, scripts, and data are
in the enclosed repository explained in Appendix B.

4.1 Data Preprocessing

Just having a dataset is not enough to fine-tune the selected model on it. Different models
have different tokenizers that expect the data to be in a suitable form to be passed to the
model. In Section 3.2 I touched on this topic, but in this Section, I will explain all the
steps more thoroughly.

4.1.1 Conversion

In Section 3.2.1 I showed how the raw data is represented in Listing 3.1. I also mentioned
Perl scripts from [Straková et al., 2016] paper, which I modified to better suit my solution.
There are in total four Perl scripts for conversion and one bash script. Each script converts
the raw data into the resulting CoNLL formatted file and different versions depending on
the arguments received for the bash script.

. treex2conll2003.pl converts the file with all types and flat entities, the result can
be seen in Listing 3.2.

. treex2conllsuper.pl converts the file, but only with supertypes and flat entities.

. treex2conll2003_nested.pl converts the file again with all types, but for nested
entities, the result can be seen in Listing 3.3.

. treex2conllsuper_nested.pl converts the file to supertypes and nested entities.

Each script has a hashmap for all the labels for both versions, and the hashmap used
depends on the arguments passed into the script, so each script can handle both version
CNEC 1.1 and 2.0. All versions were organized in their files for easier access and separated
as raw data into train, test, and validation splits.

19

4. Model training ...
4.1.2 Loading Scripts

The data must be tagged and split into tokens to take advantage of the benefits the
Hugging Face libraries offer. I mentioned this in Section 3.2.2, where the tagged data can
be seen in Listing 3.4 for flat entities and Listing 3.5 for nested entities. To achieve this,
I created loading scripts following the template1 from Hugging Face and created the logic
for the generation of samples, where each sample has features that were already mentioned
'ner_tags' and 'tokens'.

Thanks to the CoNLL format of the data, I can split each row into four columns, the
first column is used as a token, the next two columns are ignored, as they are not needed
for solving the NER problem, and the last column, which is the labeled entity, is used to
tag the token. This tag has to be converted from the label to the assigned ID number.
Keeping in mind that the data use IOB tagging, the number of labels is doubled, since we
now have a label for the beginning of an entity and inside of an entity and one more for
the nonentity type.

There is a small difference in the loading scripts for nested and flat entities. For flat
entities, all 'ner_tags' are in a single array, but for nested entities, I need to split the last
column using ‘|’ and all the tags belonging to one token add to one array, so all 'ner_tags'
are an array. This behavior is needed, as the Hugging Face library for datasets requires
a feature to be of one predetermined type; here, the feature 'ner_tag' is a sequence of
sequences that hold integers.

The whole purpose of the loading script is to load the dataset into the Hugging Face
DatasetDict, where each split is represented as the Hugging Face Dataset type and can
be used and easily accessed by other methods from Hugging Face libraries. An example
of the loaded dataset can be seen below:

1 DatasetDict({
2 train: Dataset({
3 features: ['tokens', 'ner_tags'],
4 num_rows: 4695
5 })
6 validation: Dataset({
7 features: ['tokens', 'ner_tags'],
8 num_rows: 587
9 })
10 test: Dataset({
11 features: ['tokens', 'ner_tags'],
12 num_rows: 586
13 })
14 })

Listing 4.1: An example of the Hugging Face DatasetDict. The example is CNEC 1.1.

I pushed all datasets created from these scripts to Hugging Face Hub2 to be accessible,
with credit to the original authors, in the standard form most Hugging Face datasets for
NER are and for easy loading with the Hugging Face load_dataset("stulcrad/dsName")
function.

1https://huggingface.co/docs/datasets/dataset_script
2https://huggingface.co/stulcrad

20

https://huggingface.co/docs/datasets/dataset_script
https://huggingface.co/stulcrad

....................................... 4.1. Data Preprocessing

4.1.3 Tokenize and Align

For the models to make sense of the input, the tokens must be converted to token IDs. All
models have their tokenizer API, which does this job so that the model can recognize each
token ID based on a predefined vocabulary. We have the tokens already pre-tokenized and
let the tokenizer further tokenize the input, as shown in the example below:

1 ['I', 's', 'Dubenkou', ',', 'na', 'kterou', 'U', 'tygra', 'ted', '
↪→ myslím', '.', '.', '.']

2 ['[CLS]', 'I', 's', 'Dub', '##enko', '##u', ',', 'na', 'kterou', 'U',
↪→ 'tyg', '##ra', 'ted', 'myslím', '.', '.', '.', '[SEP]']

3 [2, 45, 87, 13829, 22930, 1025, 16, 1939, 2897, 57, 28258, 1931,
↪→ 3460, 5747, 18, 18, 18, 3]

Listing 4.2: An example of pre-tokenized inputs, tokenized inputs and their ids model accepts

As we can see, the tokenizer adds special tokens used by models at the beginning [CLS]
and at the end [SEP], and words that were not tokenized to the desired form are further
tokenized into subwords as we can see in word Dubenkou for example. This introduces a
mismatch between our input and the labels (ner_tags), where the list of labels has 13
elements, whereas our new input has 18 tokens. We now need to align the labels correctly
with the tokenized input. The tokenizers can easily map each token to the original word
with word_ids, and it can be seen how they work in Table 4.2. The way in which I align
the labels differs here, depending on whether we align to flat NER or nested NER.

Flat NER

For flat NER, the main challenge of this thesis, this process is more straightforward, as
each token will have exactly one label. The first rule I applied is to label special tokens
with -100. That is because, by default, -100 is an index ignored by cross-entropy loss,
which the training uses. Then, each token gets the same label as the token that started
the word since they are part of the same entity, I just changed B- to I- for these tokens.
This process shows how the pre-tokenized input in Table 4.1 is converted into the tokenized
and aligned input in Table 4.2.

Tokens I s Dubenkou
NER tags O O B-P

Table 4.1: Pre-tokenized labeled input

Tokens [CLS] I s Dub ##enko ##u [SEP]
Word
ids

None 0 1 2 2 2 3

NER
tags

None O O B-P I-P I-P None

Labels -100 0 0 15 16 16 -100

Table 4.2: Tokenized and aligned input

21

4. Model training ...
Nested NER

For nested NER, aligning labels with tokens is a bit more complicated. The problem
is that one token can have more than one label. My first thought was to follow the
solution for flat NER, but again, put all labels into arrays so that they would be of one
type. However, this created inconsistencies, as the Hugging Face trainer API required
labels to be a sequence of integers, which was now an impossible task. This required a
different approach to solving the nested NER, where I will explain the training loop more
in Section 4.2.2. The cross-entropy loss was replaced with BCEWithLogitsLoss3 and to fit
this loss, I need to one-hot encode my labels.

One-hot encoding is a technique used to represent categorical variables as numerical
values. In our case, each token is treated separately, and the labels are recognized with 0 or
1. A very simple example of one token “Labe”, with only three tags (person, geographical
location, and institution), can be seen in Table 4.3, where it is a river, but in an entity
“Hostinec u Labe” it is a part of an institution.

O B-P I-P B-G I-G B-I I-I
0 0 0 1 0 0 1

Table 4.3: An example of one-hot encoded label for one token

Special tokens will have at all indexes -100, so they can be ignored.

4.2 Training Loop

After our data is properly prepared, the next step is the actual training of the models on
the data. Here, the methods used to solve each problem again differ and will be explained
in their respective sections.

4.2.1 Flat NER

The Hugging Face community created a Trainer4 class that goes hand in hand with
TrainingArguments5 class and together they provide a complete training API, which I
use to train the models for flat NER.

The Trainer class is an already prepared training loop, which is optimized to work
correctly and efficiently with Hugging Face Transformers models and its use is justified
in Section 1.2. Using the TrainingArguments class, I can further tweak different meta-
parameters, such as batch size, learning rate, weight decay, number of epochs, etc. For
each model, I decided to find the best metaparameters using the trial-and-error method
that maximizes the F1 score. I mostly played with batch sizes, trying the sizes 64, 32, 16,
8, 4, and 2. The starting learning rate remained the same for all models as 2 · 10−5; for
weight decay, I chose between 0.01 and 0.001, and the number of epochs varied between
8 and 20 epochs. The reasoning behind this is that even though one model can perform
well with certain metaparameters, the other model can perform better with different ar-
guments. Trainer uses an AdamW [Loshchilov and Hutter, 2019] optimizer, which is an

3https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
4https://huggingface.co/docs/transformers/main_classes/trainer
5https://huggingface.co/docs/transformers/v4.40.2/en/main_classes/trainer#transformers.

TrainingArguments

22

https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
https://huggingface.co/docs/transformers/main_classes/trainer
https://huggingface.co/docs/transformers/v4.40.2/en/main_classes/trainer#transformers.TrainingArguments
https://huggingface.co/docs/transformers/v4.40.2/en/main_classes/trainer#transformers.TrainingArguments

... 4.2. Training Loop

Adam optimizer with a weight decay fix with β1 = 0.9 and β2 = 0.999 and the dropout
rate for the model again varies depending on the model and the version of the dataset. I
choose dropout rates from values between 0.3 and the default 0.1.

It should be noted that for the Trainer to accept data in a batch, I must first form the
batches with a DataCollator6. This class pads the inputs including the labels to be of
the same length, which can be seen in the Listing 4.3.

1 [-100, 3, 0, 7, 0, 0, 0, 7, 0, 0, 0, -100]
2 [-100, 1, 2, -100]
3 tensor([
4 [-100, 3, 0, 7 , 0, 0, 0, 7, 0, 0, 0, -100],
5 [-100, 1, 2, -100, -100, -100, -100, -100, -100, -100, -100, -100]])

Listing 4.3: An example of padding, first two arrays are unpadded labels and the tensor is the
padded labels

To observe how the model performs, metrics are computed after an epoch or a given number
of steps. For this purpose, Trainer accepts a function that computes the desired metrics
and outputs them to us to see. The metrics are evaluated with seqeval [Nakayama, 2018],
which is a framework for sequence labeling evaluation. The framework needs predictions
and references, which must be converted back into the string form, and I added optional
arguments to force the framework to compute the metrics with a strict mode, which will
ensure that one entity is correctly predicted if all the tokens have the correct reference
labels. An example for better clarification is shown in Listing 4.4, where it can be seen
that the model must correctly predict not only labels but also the span of the entity.

1 >>> from seqeval.metrics import classification_report
2 >>> from seqeval.scheme import IOB2
3 >>> y_true = [['B-NP', 'I-NP', 'O']]
4 >>> y_pred = [['I-NP', 'I-NP', 'O']]
5 >>> classification_report(y_true, y_pred)
6 precision recall f1-score support
7 NP 1.00 1.00 1.00 1
8 micro avg 1.00 1.00 1.00 1
9 macro avg 1.00 1.00 1.00 1
10 weighted avg 1.00 1.00 1.00 1
11 >>> classification_report(y_true, y_pred, mode='strict', scheme=IOB2)
12 precision recall f1-score support
13 NP 0.00 0.00 0.00 1
14 micro avg 0.00 0.00 0.00 1
15 macro avg 0.00 0.00 0.00 1
16 weighted avg 0.00 0.00 0.00 1

Listing 4.4: A difference between using seqeval with strict mode or with default mode

The use of strict mode is required as all benchmarks report the scores based on correct
entity prediction, not token prediction. The framework, by default, ignores non-entity
labels.

With this, we can start the training with a simple function call Trainer.train() and
I uploaded the best performing models that can be seen in Section 4.3 in Table 4.4 to the
Hugging Face Hub for easy access and simple showcase of the application.

6https://huggingface.co/docs/transformers/main_classes/data_collator#
datacollatorfortokenclassification

23

https://huggingface.co/docs/transformers/main_classes/data_collator#datacollatorfortokenclassification
https://huggingface.co/docs/transformers/main_classes/data_collator#datacollatorfortokenclassification

4. Model training ...
4.2.2 Nested NER

Encouraged by the state-of-the-art results of my flat NER solutions shown in Section 4.3
I have further experimented with nested NER. The training for nested NER posed more
of a challenge because this problem is much less researched than flat NER. From the
beginning, I thought of reusing the same training method as for flat NER, but I was
quickly stopped by the Hugging Face trainer API requiring the labels to be a sequence of
integers. After doing some research7, I found out that nested NER requires the use of a
different loss function, namely the BCEWithLogitsLoss.

Using this loss, I created a custom training loop with the help of different guides to fine-
tuning8 and other similar solutions9. This training loop uses the AdamW optimizer again
with a starting learning rate of 2 · 10−5, the number of training epochs differs between 10
and 40 epochs, depending on the models to maximize the scores. Unfortunately, the batch
size is set to 1, as I could not make the training loop work with a larger batch size. The
weight decay is fixed to 0.01 and the dropout rate of the model is chosen from values of
0.25 and the default 0.1.

For model performance observations, the metrics were now calculated with a scikit-learn
classification report function10 instead of seqeval, due to the use of one-hot encoded labels,
which seqeval would not be able to recognize, of course again on the validation split of
the dataset. However, this evaluation calculates the metrics with non-entity types and
with token prediction. For that reason the reported metrics are only indicative, and the
final results shown in Table 4.5 are evaluated using the same script as my benchmark
NameTag2 was evaluated from paper [Straková et al., 2019]11 to make sure the scores can
be compared correctly on the entity prediction level.

The training of the models for the nested NER took more time than for flat NER and
especially the training of XLM-RoBERTaLARGE lasted the longest, mainly because the
model had often faced problems with overfitting and learning to predict only empty labels
for each token, this forced me to restart the training every time such thing happened as the
model would get stuck and could not learn anymore. Interestingly, no other model suffered
from this issue, the reason behind that can be discussed, maybe XLM-RoBERTaLARGE is
too large, or maybe because the model is less focused on Czech than other used models,
which can cause some irregularities.

Activation function

I mentioned that seqeval would not be able to recognize one-hot encoded labels and I had
to use a different classification function. It should now be noted that I had to use even
a different activation function. It is known that the output of a trained model for any
classification task must be used in an activation function. The most widely used function
today is the Softmax function12, which converts a vector of numbers into a probability
distribution. For nested NER this function would not work, since now we could have more
correct predictions, because of that I suggest the use of Heaviside step function [Baowan
et al., 2017]. It is a function whose value is zero for negative arguments and one for positive

7https://discuss.huggingface.co/t/multi-label-token-classification/16509/5
8https://huggingface.co/docs/transformers/training
9https://github.com/lsickert/seq2seq-slr/blob/main/model_trainers/classifier/model.py

10https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_
report.html

11https://github.com/ufal/acl2019_nested_ner
12https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html

24

https://discuss.huggingface.co/t/multi-label-token-classification/16509/5
https://huggingface.co/docs/transformers/training
https://github.com/lsickert/seq2seq-slr/blob/main/model_trainers/classifier/model.py
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
https://github.com/ufal/acl2019_nested_ner
https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html

... 4.3. Evaluation

Figure 4.1: A Heaviside step function (reprinted from [Baowan et al., 2017])

arguments, as illustrated in Figure 4.1. There is a special case where an argument is zero
and the value is 0.5, but this case can also be modified to equal zero.

4.3 Evaluation

After the successful training, all models must be evaluated and compared on the test split
of the CNEC dataset. The benchmark used for both the flat and nested NER problem
will be NameTag 2 from Section 2.2.1, but for flat NER the scores are not reported apart
from the version described in Section 3.1.4 and for other models, I collected all results I
could find from their attached papers.

As an evaluation method, I used entity-level evaluation. This method is commonly used
on all different models that report their F scores. The model will predict labels and the
span of an entity, the prediction is then correct only if both the span and the labels are
correct. For flat entities, I showed the evaluation method in Listing 4.4. For nested entities,
I used the same scripts for evaluation from the NameTag 2 paper [Straková et al., 2019]
GitHub repository13. For the input word Michaela Talirova, the golden data, which the
script requires, would have the form shown in Listing 4.5 and the prediction should look
the same.

1 178,179 P Michaela Talirova
2 178 pf Michaela
3 179 ps Talirova

Listing 4.5: An example of golden data for nested entities

However, the model does not output the predictions in this form, but after the activation
function in the one-hot encoded labels, which I explained in Section 4.1.3. The conversion
from one-hot encoding to an array of labels is a trivial task, I just iterate through one label,
and for each 1 I add into an array the index in which the 1 stands. After this conversion,
I created a simple Python script that takes predictions and true labels and saves them
in a CoNLL format in a new file. The new file is then converted using a script from the
NameTag2 paper, and as a last step, a different script compares the gold data and the
prediction and reports the final F score.

After ensuring all the evaluation methods are the same, I can start reporting all F scores.
The F score is an F1 score explained in Section 2.3 and is a metric that is most used to
explore the performance of the NER models. In Table 4.4 are the F scores of the models

13https://github.com/ufal/acl2019_nested_ner

25

https://github.com/ufal/acl2019_nested_ner

4. Model training ...
Model CNEC

1.1
CoNLL

CNEC
2.0

CoNLL

CNEC
1.1

Super-
types

CNEC
2.0

Super-
types

CNEC
1.1

Types

CNEC
2.0

Types

NameTag2 83.27* 86.39* - - - -
Czert-B 86.27* - - - - -

SlavicBert 86.57* - - - - -
RobeCzech 87.47* - - - - -

XLM-RoBERTa 86.86* - - - - -
Czert-B 83.95 83.72 82.39 82.78 82.84 82.22

SlavicBert 86.95 86.44 85.31 85.45 84.53 83.32
RobeCzech 87.78 88.19 86.20 86.85 86.81 85.17

XLM-RoBERTa 87.41 88.10 86.64 85.91 86.20 85.26

Table 4.4: F score comparison of models trained to solve the NER problem. All scores are
reported on the test set. The scores indexed with * are reprinted from their papers and websites.
NameTag2 is from the official CNEC website [Ševčíková et al., 2007b], Czert-B and SlavicBert
are from [Sido et al., 2021] and RobeCzech with XLM-RoBERTa are from [Straka et al., 2021].
The best scores are highlighted with bold text.

Model CNEC 1.1
Supertypes

CNEC 2.0
Supertypes

CNEC 1.1
Types

CNEC 2.0
Types

NameTag2 89.91* 88.02* 86.88* 84.66*
Czert-B 81.83 83.10 80.28 78.96

SlavicBert 82.21 82.74 81.21 79.49
RobeCzech 83.62 83.86 82.52 81.70

XLM-RoBERTa 82.59 83.69 81.12 80.92

Table 4.5: F score comparison of trained models to solve the nested NER problem. All scores
are reported on the test set. Scores for NameTag are reprinted from the official CNEC web-
site [Ševčíková et al., 2007b] and are indexed with *. The best scores are highlighted with bold
text aside from NameTag.

trained on flat entities and in Table 4.5 are the F scores for nested entities. For clarification,
when I am writing XLM-RoBERTa, I am actually using the XLM-RoBERTaLARGE version,
and all other models are used in their “BASE” size. The best scores are highlighted with
bold text and the scores indexed with * are reprinted, not my results.

From Table 4.4 I can see that RobeCzech and XLM-RoBERTa are very close to each
other in terms of performance and both models surpass the current state-of-the-art results
for the version of the dataset from Section 3.1.4 and for the unreported version, the models
achieve very good results. For empirical analysis, I will use and compare both models and
discuss if there are differences in classification, and I will recommend one model for use
afterwards.

The scope of this thesis was the training and creation of a model that solves the NER
problem and the later application of this solution would be used in the fact-checking
platform. For this reason and after consultation with the supervisor, I focused on the
strong and reliable solution of NER, and in this challenge, I have achieved state-of-the-art
using a model of reasonable size using only trainable parameters and the efficient and
effective Hugging Face trainer API. Furthermore, for a deeper understanding of the NER
problem, I decided to train a model that solves the nested NER. From Table 4.5 I can see

26

... 4.3. Evaluation

that my scores do not reach the state-of-the-art solutions, but are coming close to it. In
the NameTag 2 paper [Straková et al., 2019], the proposed solution is a complex and well-
made training combining state-of-the-art methods and creating a very strong classifier for
nested entities. However, I would like to emphasize that Transformers can learn to solve
this problem with a simple training loop and, with more thorough research, can achieve
strong results.

We can see that the RobeCzech model outperforms other models, and for this model, I
wrote a very simple demo notebook in my GitLab repository to showcase the functionality.

27

28

Chapter 5
Empirical Analysis

In this chapter, I will perform an empirical analysis of general real-world data from a
random news article. This chapter will contain screenshots of the RobeCzech and XLM-
RoBERTa fine-tuned models on CNEC 2.0 with flat entities divided by the number of
entities used and discussions of issues and positives. I decided to use only models fine-
tuned on CNEC 2.0 as it contains more data and better represents the density of named
entities in different sentences as stated on their website [Ševčíková et al., 2014b]. For
nested NER I created a small example.

5.1 CoNLL-based extended

The screenshots for the CoNLL-based version from Section 3.1.4 can be seen in Figure 5.1
for RobeCzech and for XLM-RoBERTa in Figure 5.2. The predicted entities are the
one-letter supertypes shown in Figure 3.3.

From the screenshots, we can see that both models predict correctly all entities. There
are no visible differences in the classifications in this given example. This version of the
dataset trains the models very well, but it lacks the number entities, which I find important
because they appear often in real-world data, not just in dates. The solution to this would
be adding this entity to the corpus, but that would transform this version of the dataset
into the version of the dataset described in Section 3.1.3 with only supertypes.

5.2 CNEC 2.0 Supertypes

The screenshots for the CNEC 2.0 with only supertypes are shown in Figure 5.3 for
RobeCzech and in Figure 5.4 for XLM-RoBERTa. The predicted entities are the one-
letter supertypes shown in Figure 3.2.

Again, the predicted entities are almost identical for both models. Still, we can now
notice that for the e-mail entity, XLM-RoBERTa has a problem with recognizing it com-
pletely, as it leaves out the dot in between the e-mail and the region recognizer. The reason
for that may be that XLM-RoBERTa, being much larger than RobeCzech, is overfitting
to memorizing that the dot should always be a non-entity type in longer texts. Maybe the
enlargement of the learning dataset might solve this issue, or better choice of metaparam-
eters could help, but in both cases, RobeCzech seems to perform better, both in the test
split of the dataset, as shown in Table 4.4, and on real-world data as shown here.

29

5. Empirical Analysis..

Figure 5.1: A screenshot of an example of RobeCzech fine-tuned on CNEC 2.0 CoNLL ex-
tended.

5.3 CNEC 2.0 Types

The screenshots for the CNEC 2.0 with all types are shown in Figure 5.5 for RobeCzech
and in Figure 5.6 for XLM-RoBERTa. The predicted entities are the two-letter types
shown in Figure 3.2.

For the examples, we can now notice a few changes. The RobeCzech did not classify the
name Putin in the part of a sentence ""Unie Putina démonizovala"", and incorrectly
classified the word serveru in the next sentence. XLM-RoBERTa again has a problem
with the e-mail entity, but aside from that, it classified everything else correctly.

5.4 Nested NER

For nested entities, a small demo notebook was created, to display the functionality of
the models on a small input. The notebook shows the classification of individual tokens
for RobeCzech and XLM-RoBERTa with supertypes and all types. The classification of
a sentence “Jmenuju se Radek Štulc a žiju v Praze. Narodil jsem se v Ústí nad Labem v
roce 2001.” can be seen in Figure 5.7

5.5 Results of analysis

The models fine-tuned from Section 5.1 seem to work correctly on this example, but the
absence of a number entity may become problematic, as a claim “Radkovi je 25 let” could

30

....................................... 5.5. Results of analysis

Figure 5.2: A screenshot of an example of XLM-RoBERTa fine-tuned on CNEC 2.0 CoNLL
extended

not be proven as factual or not, because the entity for age would not exist.
The models in Section 5.3 as expected from the F scores in Table 4.4 perform the worst

on real-world data. It seems that fine-tuning the models on fine-grained types poses more
of a challenge, as the model has a lot of labels to choose from and can get confused more
easily; because of that I would recommend using a less fine-grained version.

Section 5.2 offers the best results with real-world data, the example is classified correctly,
and the version contains all entities that we could encounter in everyday life. Between the
two models, I would recommend using RobeCzech as it performed slightly better both in
F scores as seen in Table 4.4 and adapts better to the NER problem.

31

5. Empirical Analysis..

Figure 5.3: A screenshot of an example of RobeCzech fine-tuned on CNEC 2.0 Supertypes

Figure 5.4: A screenshot of an example of XLM-RoBERta fine-tuned on CNEC 2.0 only
supertypes

32

....................................... 5.5. Results of analysis

Figure 5.5: A screenshot of an example of RobeCzech fine-tuned on CNEC 2.0 only types

Figure 5.6: A screenshot of an example of XLM-RoBERTa fine-tuned on CNEC 2.0 only types

33

5. Empirical Analysis..

Figure 5.7: A screenshot of an example of XLM-RoBERTa fine-tuned on CNEC 2.0 all nested
types

34

Chapter 6
Conclusion

In this Bachelor’s thesis, I explored the state-of-the-art methods used for Named Entity
Recognition (NER) in English and Czech, together with a description of all models used
for fine-tuning in this thesis and the metrics used for performance observation (Chapter 2).

I explained the dataset, used for fine-tuning, named the Czech Named Entity Corpus
(CNEC), how the dataset is divided into different versions CNEC 1.0, which is an outdated
version, CNEC 1.1, which includes corrections to 1.0, and CNEC 2.0, which is the most
recent version of the corpus, contains the most data, and new entities (Chapter 3). I also
explained how the dataset is represented for the model, converting from Treex format to
human-readable CoNLL format using scripts from [Straková et al., 2016], and labeling the
inputs.

In Chapter 4, I followed this with an explanation of the training and evaluation of the
different models used for fine-tuning on the CNEC dataset. This chapter also describes the
essential data preprocessing steps before training and the variations in preprocessing and
training depending on whether the solution is for flat NER or nested NER. For flat NER
training, I used the Hugging Face training API for its efficiency and effectiveness. The
metaparameters, such as batch size, number of epochs, dropout rate, and weight decay,
varied depending on the model to achieve the best performance, but the starting learning
rate for the AdamW optimizer remained constant at 2 · 10−5. Training for nested NER
required one-hot encoding of all labels and a change in the loss function for the training
loop. Again, the metaparameters varied while the learning rate remained at 2 · 10−5.
Lastly, using entity-level evaluation, I evaluated all models on all versions of CNEC for
both flat and nested NER, where the entity must have all tokens correctly labeled, not just
its subwords. I ensured that all solutions were correctly evaluated and then explored the
reported F scores. From the scores, it can be seen that XLM-RoBERTa and RobeCzech
are the two best-performing models for flat NER, surpassing the current state-of-the-art,
with RobeCzech also outperforming other models for nested NER.

Lastly, I conducted an empirical analysis of RobeCzech and XLM-RoBERTa on real-
world data from a media website (Chapter 5). The models used were fine-tuned on CNEC
2.0 as they reported the best F scores and the corpus was the largest and the most recent.
The analysis has shown us that using the RobeCzech model fine-tuned only on supertypes
captures the real-world situation the best, as the CoNLL version lacks the number entity
and the version with all types performs worse. In the case of nested NER RobeCzech
performed fairly well, but I did not conduct any complex training or analysis on real-world
data. Nevertheless, the results indicate that Transformers can build a strong solution for
this task and can reduce training time together with the complexity of the solution, and
future research could potentially surpass current state-of-the-art solutions.

35

6. Conclusion...
6.1 Main Contributions

As stated in Section 1.2 I succeeded in the main challenge of my thesis, which was the
creation of a strong classifier that solves the NER problem in Czech together with the
creation of a modified version of the CNEC dataset consisting solely of flat entities. The
proposed solution achieves near-human performance on the dataset and translates well to
a real-world situation, as demonstrated in the empirical analysis. I also created a model
capable of comprehending nested entities and able to solve easy examples, again shown in
empirical analysis.

6.2 Future Works

The CNEC dataset consists of 8,993 Czech sentences compared to CoNLL-2003 [Tjong
Kim Sang and De Meulder, 2003] contains 22,137 English sentences, which is almost 2.5
times more or OntoNotes dataset for NER that contains over 60 000 sentences, which
is more than 6.5 times more. We could discuss that in future works, the extension of a
publicly available dataset could help further improve classifiers for named entities, espe-
cially given the complexity of the Czech language. Additionally, with the recent rise of
the ChatGPT service based on GPT-3 [Brown et al., 2020] and the increasing emphasis
on Large Language Models, it is worth discussing whether these models could also report
state-of-the-art results. As shown in Figure 6.1 it could provide some interesting results.

Figure 6.1: An example of ChatGPT answer on NER problem

36

Bibliography

[Akbik et al., 2018] Akbik, A., Blythe, D., and Vollgraf, R. (2018). Contextual string
embeddings for sequence labeling. In Bender, E. M., Derczynski, L., and Isabelle, P.,
editors, Proceedings of the 27th International Conference on Computational Linguis-
tics, pages 1638–1649, Santa Fe, New Mexico, USA. Association for Computational
Linguistics.

[Anonymous, 2011] Anonymous (2011). czes. http://hdl.handle.net/11858/00-097C-
0000-0001-CCCF-C. LINDAT/CLARIAH-CZ digital library at the Institute of Formal
and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles Univer-
sity.

[Arkhipov et al., 2019] Arkhipov, M., Trofimova, M., Kuratov, Y., and Sorokin, A. (2019).
Tuning multilingual transformers for language-specific named entity recognition. In Er-
javec, T., Marcińczuk, M., Nakov, P., Piskorski, J., Pivovarova, L., Šnajder, J., Stein-
berger, J., and Yangarber, R., editors, Proceedings of the 7th Workshop on Balto-Slavic
Natural Language Processing, pages 89–93, Florence, Italy. Association for Computa-
tional Linguistics.

[Attardi, 2015] Attardi, G. (2015). Wikiextractor. https://github.com/attardi/
wikiextractor.

[Baowan et al., 2017] Baowan, D., Cox, B. J., Hilder, T. A., Hill, J. M., and Thamwattana,
N. (2017). Chapter 2 - mathematical preliminaries. In Baowan, D., Cox, B. J., Hilder,
T. A., Hill, J. M., and Thamwattana, N., editors, Modelling and Mechanics of Carbon-
Based Nanostructured Materials, Micro and Nano Technologies, pages 35–58. William
Andrew Publishing.

[Brown et al., 2020] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhari-
wal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss,
A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter,
C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C.,
McCandlish, S., Radford, A., Sutskever, I., and Amodei, D. (2020). Language models
are few-shot learners.

[Conneau et al., 2020] Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wen-
zek, G., Guzmán, F., Grave, E., Ott, M., Zettlemoyer, L., and Stoyanov, V. (2020).
Unsupervised cross-lingual representation learning at scale.

[Cui et al., 2019] Cui, Z., Ke, R., Pu, Z., and Wang, Y. (2019). Deep bidirectional and
unidirectional lstm recurrent neural network for network-wide traffic speed prediction.

37

http://hdl.handle.net/11858/00-097C-0000-0001-CCCF-C
http://hdl.handle.net/11858/00-097C-0000-0001-CCCF-C
https://github.com/attardi/wikiextractor
https://github.com/attardi/wikiextractor

6. Conclusion...
[Devlin et al., 2019] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). Bert:

Pre-training of deep bidirectional transformers for language understanding.

[Drchal et al., 2023] Drchal, J., Ullrich, H., Mlynář, T., and Moravec, V. (2023). Pipeline
and dataset generation for automated fact-checking in almost any language. arXiv
preprint arXiv:2312.10171.

[Ferger, 1931] Ferger, W. F. (1931). The nature and use of the harmonic mean. Journal
of the American Statistical Association, 26(173):36–40.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long
short-term memory. Neural computation, 9:1735–80.

[Kingma and Ba, 2014] Kingma, D. and Ba, J. (2014). Adam: A method for stochastic
optimization. International Conference on Learning Representations.

[Konkol and Konopík, 2013] Konkol, M. and Konopík, M. (2013). Crf-based czech named
entity recognizer and consolidation of czech ner research. In Habernal, I. and Matoušek,
V., editors, Text, Speech, and Dialogue, pages 153–160, Berlin, Heidelberg. Springer
Berlin Heidelberg.

[Konkol et al., 2014] Konkol, M., Konopík, M., Ševčíková, M., Žabokrtský, Z., Straková,
J., and Straka, M. (2014). CoNLL-based extended czech named entity corpus 2.0.
LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied Linguis-
tics (ÚFAL), Faculty of Mathematics and Physics, Charles University.

[Křen et al., 2016] Křen, M., Cvrček, V., Čapka, T., Čermáková, A., Hnátková, M.,
Chlumská, L., Jelínek, T., Kováříková, D., Petkevič, V., Procházka, P., Skoumalová,
H., Škrabal, M., Truneček, P., Vondřička, P., and Zasina, A. (2016). SYN v4: large
corpus of written czech. LINDAT/CLARIAH-CZ digital library at the Institute of
Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles
University.

[Lample et al., 2016] Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., and
Dyer, C. (2016). Neural architectures for named entity recognition.

[Lample and Conneau, 2019] Lample, G. and Conneau, A. (2019). Cross-lingual language
model pretraining.

[Lan et al., 2020] Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut,
R. (2020). Albert: A lite bert for self-supervised learning of language representations.
In International Conference on Learning Representations.

[Liu et al., 2019] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O.,
Lewis, M., Zettlemoyer, L., and Stoyanov, V. (2019). Roberta: A robustly optimized
bert pretraining approach.

[Loshchilov and Hutter, 2019] Loshchilov, I. and Hutter, F. (2019). Decoupled weight
decay regularization.

[MacWhinney, 2005] MacWhinney, B. (2005). Language evolution and human develop-
ment. Origins of the social mind: Evolutionary psychology and child development,
pages 383–410.

38

..6.2. Future Works

[Majliš, 2011] Majliš, M. (2011). W2C – web to corpus – corpora. LINDAT/CLARIAH-
CZ digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty
of Mathematics and Physics, Charles University.

[Majliš and Žabokrtský, 2012] Majliš, M. and Žabokrtský, Z. (2012). Language richness
of the web. In Calzolari, N., Choukri, K., Declerck, T., Doğan, M. U., Maegaard, B.,
Mariani, J., Moreno, A., Odijk, J., and Piperidis, S., editors, Proceedings of the Eighth
International Conference on Language Resources and Evaluation (LREC’12), pages
2927–2934, Istanbul, Turkey. European Language Resources Association (ELRA).

[Mikolov et al., 2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J.
(2013). Distributed representations of words and phrases and their compositionality.

[Mithen, 1997] Mithen, S. (1997). The prehistory of the mind. Cambridge Archaeological
Journal, 7:269–269.

[Nakayama, 2018] Nakayama, H. (2018). seqeval: A python framework for sequence la-
beling evaluation. Software available from https://github.com/chakki-works/seqeval.

[Peters et al., 2018] Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee,
K., and Zettlemoyer, L. (2018). Deep contextualized word representations.

[Ramshaw and Marcus, 1995] Ramshaw, L. A. and Marcus, M. P. (1995). Text chunking
using transformation-based learning.

[Ševčíková et al., 2007] Ševčíková, M., Žabokrtský, Z., and Krůza, O. (2007). Named
entities in czech: Annotating data and developing NE tagger. In Matoušek, V. and
Mautner, P., editors, Lecture Notes in Artificial Intelligence, Proceedings of the 10th
International Conference on Text, Speech and Dialogue, volume 4629 of Lecture Notes
in Computer Science, pages 188–195, Berlin / Heidelberg. Springer.

[Sido et al., 2021] Sido, J., Pražák, O., Přibáň, P., Pašek, J., Seják, M., and Konopík, M.
(2021). Czert – czech bert-like model for language representation.

[Straka et al., 2021] Straka, M., Náplava, J., Straková, J., and Samuel, D. (2021).
Robeczech: Czech roberta, a monolingual contextualized language representation model.
In Ekštein, K., Pártl, F., and Konopík, M., editors, Text, Speech, and Dialogue, pages
197–209, Cham. Springer International Publishing.

[Straková et al., 2016] Straková, J., Straka, M., and Hajič, J. (2016). Neural networks
for featureless named entity recognition in czech. In Sojka, P., Horák, A., Kopeček,
I., and Pala, K., editors, Text, Speech, and Dialogue: 19th International Conference,
TSD 2016, Brno , Czech Republic, September 12-16, 2016, Proceedings, pages 173–181,
Cham. Springer International Publishing.

[Straková et al., 2019] Straková, J., Straka, M., and Hajic, J. (2019). Neural architectures
for nested NER through linearization. In Korhonen, A., Traum, D., and Màrquez, L.,
editors, Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 5326–5331, Florence, Italy. Association for Computational Linguis-
tics.

[Sutskever et al., 2014] Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to
sequence learning with neural networks.

39

6. Conclusion...
[Tjong Kim Sang and De Meulder, 2003] Tjong Kim Sang, E. F. and De Meulder, F.

(2003). Introduction to the CoNLL-2003 shared task: Language-independent named
entity recognition. In Proceedings of the Seventh Conference on Natural Language
Learning at HLT-NAACL 2003, pages 142–147.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. arXiv:
Computation and Language.

[Wang et al., 2021] Wang, X., Jiang, Y., Bach, N., Wang, T., Huang, Z., Huang, F., and
Tu, K. (2021). Automated concatenation of embeddings for structured prediction.

[Yamada et al., 2020] Yamada, I., Asai, A., Shindo, H., Takeda, H., and Matsumoto,
Y. (2020). LUKE: Deep contextualized entity representations with entity-aware self-
attention. In Webber, B., Cohn, T., He, Y., and Liu, Y., editors, Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 6442–6454, Online. Association for Computational Linguistics.

[Ševčíková et al., 2007a] Ševčíková, M., Žabokrtský, Z., and Straková, J. (2007a). Czech
named entity corpus 1.0 | Úfal. https://ufal.mff.cuni.cz/cnec/cnec1.0. Accessed
04.04.2024.

[Ševčíková et al., 2007b] Ševčíková, M., Žabokrtský, Z., Straková, J., and Straka, M.
(2007b). Czech named entity corpus. https://ufal.mff.cuni.cz/cnec. Accessed:
05.10.2024.

[Ševčíková et al., 2014a] Ševčíková, M., Žabokrtský, Z., Straková, J., and Straka, M.
(2014a). Cnec 2.0 named entities type hierarchy. https://ufal.mff.cuni.cz/
~strakova/cnec2.0/ne-type-hierarchy.pdf. Accessed: 04.04.2024.

[Ševčíková et al., 2014b] Ševčíková, M., Žabokrtský, Z., Straková, J., and Straka, M.
(2014b). Czech named entity corpus 2.0. https://ufal.mff.cuni.cz/cnec/cnec2.0.
Accessed: 05.10.2024.

40

https://ufal.mff.cuni.cz/cnec/cnec1.0
https://ufal.mff.cuni.cz/cnec
https://ufal.mff.cuni.cz/~strakova/cnec2.0/ne-type-hierarchy.pdf
https://ufal.mff.cuni.cz/~strakova/cnec2.0/ne-type-hierarchy.pdf
https://ufal.mff.cuni.cz/cnec/cnec2.0

Appendix A
Acronyms

NER Named Entity Recognition

CNEC Czech Named Entity Corpus

NLP Natural Language Processing

LSTM Long Short-Term Memory

MLM Masked Language Modeling

CWR contextualized word representation

ACE Automated Concatenation of Embeddings

CRF conditional random field

NSP Next Sentence Prediction

XLM cross-lingual language model

IOB Inside-outside-beginning

seq2seq sequence-to-sequence

IE information extraction

41

42

Appendix B
Repository Structure

I created a git repository on GitLab https://gitlab.fel.cvut.cz/factchecking/ner-
radek-stulc. A snapshot of this repository is enclosed and described below:

Description of repository

ner-radek-stulc-main
CNECprepared CNEC data for fine-tuning and scripts

CNEC1_1version with all types nested and flat
CNEC1_1_Supertypes.............version with only supertypes nested and flat
CNEC1_1_ext.............................. [Konkol et al., 2014] version for 1.1
CNEC2_0..version with all types only flat
CNEC2_0_Supertypes.............version with only supertypes nested and flat
CNEC2_0_ext.............................. [Konkol et al., 2014] version for 2.0
CNEC2_0_nested...version for nested 2.0
eval_scriptsscripts used for evaluation

Czert_resultsresults for the Czert model
RobeCzech_results results for the RobeCzech model
SlavicBert_resultsresults for the SlavicBert model
utilsscripts for evaluation and results
Xlm-roberta_resultsresults for the XLM-RoBERTa model

treex2conll_scriptsscripts for the conversion and data
data .. raw data for all version

CNEC_1.0
CNEC_1.1
CNEC_1.1_konkol
CNEC_2.0
CNEC_2.0_konkol

data_taggeddata in the CoNLL format
CNEC_1.1contains different data dependant on the desired output
CNEC_2.0contains different data dependant on the desired output

utils .. sripts for the conversion
Notebooksall notebooks used for training
slurm ..slurm scripts for RCI cluster
utils ... helper python scripts

43

https://gitlab.fel.cvut.cz/factchecking/ner-radek-stulc
https://gitlab.fel.cvut.cz/factchecking/ner-radek-stulc

	Introduction
	Motivations
	Main Challenges
	Introduction to Transformers
	Thesis outline

	State-of-the-Art Overview
	Named Entity Recognition in English
	Named Entity Recognition in Czech
	NameTag 2
	Czert
	SlavicBERT
	RobeCzech
	XLM-RoBERTa

	Metrics

	Dataset
	Overview
	CNEC 1.0
	CNEC 1.1
	CNEC 2.0
	CoNLL-based extended

	Representation
	Conversion
	Labeling

	Model training
	Data Preprocessing
	Conversion
	Loading Scripts
	Tokenize and Align

	Training Loop
	Flat NER
	Nested NER

	Evaluation

	Empirical Analysis
	CoNLL-based extended
	CNEC 2.0 Supertypes
	CNEC 2.0 Types
	Nested NER
	Results of analysis

	Conclusion
	Main Contributions
	Future Works

	Bibliography
	Acronyms
	Repository Structure

