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Abstract

In recent years, many advancements have
been made in object detection, yet there is
still no complete solution as the problem
is deeply ingrained in the "understand-
ing" of what makes an object an object.
The scope of this work lies in examining
instance-level object detection as opposed
to semantic or category-level object de-
tection. We also built a detector of such
objects based on an existing method that
uses a geometric alignment module by re-
moving that module in favor of a simpler
technique.

Keywords: instance level object
detection, one shot, feature matching
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Abstrakt

V poslednich letech bylo dosazeno mnoha
pokroki v detekci objekt, ale stale neexis-
tuje tplné reseni, protoze problém je hlu-
boce zakorenén v ,pochopeni®, co déla ob-
jekt objektem. Rozsah této prace spociva
ve zkouméani detekce objektii na trovni
instanci, na rozdil od sémantické nebo ka-
tegorické detekce objektu. Také jsme sesta-
vili detektor takovych objekt na zakladé
existujici metody, ktera vyuziva modul ge-
ometrického zarovnani, tim, ze jsme tento
modul odstranili ve prospéch jednodussi
techniky.

Kli¢ova slova: instance level object
detection, one shot, korela¢ni parovani

Preklad nazvu: Detekce konkrétnich
objektt v obréazcich
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Chapter 1

Introduction

Object detection is a fundamental task in computer vision. The goal is to
find all objects of interest in an image and to classify them. It is efficiently
solved by deep Convolutional Neural Networks (CNNs), due to their ability
to learn relevant features from images. The success of CNNs, however, relies
heavily on a huge amount of training data with accurate annotations.

Figure 1.1: Object detection example, picture by Josef Redmon

B 1.1 Problem definition

Instance-level object detection extends this task by recognizing a particular
instance of an object, instead of just the category to which it belongs. As
an example, instead of labeling a building as a “tower”, instance-level la-
bel would be “ The Fiffel Tower”, or “ Fender Frankenstrat” instead of “guitar”.



1. Introduction

Basic level Building Musical instrument
Fine grained Tower Electric guitar
Instance level | The Eiffel Tower Frankenstrat

This context is especially relevant for practical applications encountered
in real-world scenarios. Examples include robotic manipulation in factories,
distinguishing between various traffic signs and lights for self-driving cars, or
identifying individual groceries on supermarket shelves. In these environments,
the objects involved are typically individual instances rather than broad
categories.

Instance-level labels within the same category (my cup, your cup, their cup)
sometimes show little variation, challenging the human eye to differentiate
between them. Additionally, it is hard to come across a dataset appropriate
for a certain environment, because each new environment with new instances
requires expensive data collection and annotation. In contrast, one of the most
widely used state-of-the-art datasets for general object detection, COCO|2],
contains 1.5 million object instances and 80 object categories, which on
average equals 18 750 objects per category.

The problem essentially boils down to the fact that there are many instances,
and it is hard to differentiate between them. They might look dissimilar
when they are actually the same due to factors like illumination, viewpoint,
deformation, etc., or they might look very similar when they are, in fact, not
the same. Furthermore, there is often little data about them.

The rest of the paper is organized as follows: Ch. [2| discusses topics related
to one-shot object detection, we examine the work by Osokin et al. in Ch. ,
and lastly propose a method that gets rid of the spatial transformer network
in the said work in Ch. 4.

. 1.2 Related work

The field of instance-level object detection is not studied as thoroughly as
regular object detection. The work by Ammirato et al.[4] focuses on instance-
level object detection by performing feature comparisons between the target



1.2. Related work

Figure 1.2: Instance-level detection example. The task is to detect my cup
among other cups

and input feature maps to focus on the specific classes targeted in the image.

The work by Hsieh et al. tackles the problem of one-shot object detection
in a two-stage manner, using an attention mechanism to influence the proposed
regions by the Regional Proposal Network (RPN). Their model not only
demonstrates strong performance on the PASCAL Visual Object Classes
(VOC)[6] and COCO|2] datasets but also achieves decent results when trained
on instance-level datasets.

Dwibedi et al. approach the problem of sparse data directly. They intro-
duce a simple yet effective method for generating annotated instance datasets
for object detection by "cutting" and "pasting" objects on random backgrounds.

This newly generated data improves performance when combined with real
images.






Chapter 2

Theoretical Background for One-Shot
Object Detection

One-shot object detection is a method for detecting an object within an image
with as little as one example. By combining it with metric learning, it has
the potential to better generalize to new, unseen data. These qualities make
them beneficial for the task we are dealing with.

Similarly to general object detectors based on deep Neural Networks (NNs),
one-shot detectors fall into one of two categories: one-stage and two-stage. A
common practice in one-shot detection is using weights from a model trained
on a larger dataset and incorporating them into a backbone network for
extracting features from images. Consequently, the weights of the transferred
model can be unfrozen and further fine-tuned during training.

B 2.1 Transfer learning

Transfer learning is a machine learning technique in which a model created
for one job is used in another job as the foundation for a new model.

Given the vast resources required to develop and train NN models for
these problems and the enormous jumps in skill that they provide, it is not
uncommon to use pre-trained models as the starting point in deep learning.

The authors of describe three common measures by which transfer might
improve learning:

® The initial skill of the model.
® The time it takes to train the model.

® The converged performance of the model.
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Figure 2.1: Three ways in which transfer might improve learning, picture taken

from

B 22 Metric learning

Contrary to classification, which primarily learns to distinguish between
classes, metric learning focuses on understanding the relationships and simi-
larities between different classes. It does so by learning the distance between
them in the feature space as shown in Fig.

As a result, it moves similar classes closer together and pushes others
further apart. This makes it handy for open-set problems, where the testing
sets involve unseen data during training.

e00 o 00 o
Vs wirs W
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000°00 009°90

e ©@ O @ .0
(a) Original Data. (b) Classification. (c) Metric Learning.

Figure 2.2: Difference between classification and metric learning approaches@l]

N 23 Two-stage detectors

Two-stage detectors operate in two stages. The first one, often referred to as
the region proposal stage, narrows down the potential space where an object
could be located in an image, and the second stage is a CNN that classifies
each proposed region. These detectors achieve high accuracy at the cost of
speed due to the sequential nature of the architecture.

In 2014, Girshick et al.[10] introduced R-CNN (Regions with CNNs) at that
time, achieving mean Average Precision (mAP) of 58.5% on the PASCAL VOC
2007 dataset, which was a 24.8% increase from the previous best method.
For proposing regions, it uses a selective search algorithm. After that, a CNN
extracts feature vectors from the proposed regions. Then, each feature vector

6



2.4. One-stage detectors

. classifier

feature maps

Figure 2.3: Faster R-CNN]|13] architecture

is fed into a support vector machine for classification. Since the selective
search algorithm generates approximately 2 000 region proposals, R-CNN is
quite slow and unsuitable for real-time object detection.

Following R-CNN, Fast R-CNNJ[12] improves upon R-CNN by using a
shared convolutional layer to process the entire image and all regions of
interest rather than processing each region independently.

Faster R-CNN|13| further increased both the speed and the accuracy,
achieving 73.2% mAP on the Pascal VOC 2007 dataset. The main idea of
Faster R-CNN is to use Regional Proposal Network (RPN) instead of the
selective search algorithm in previous ones. The architecture of Faster R-CNN
can be seen in Figure2.3. Other relevant methods include Mask-RCNN|14],
useful for instance segmentation.

B 24 One-stage detectors

One-stage detectors combine the previous two steps into one, they require
only a single pass through the NN and predict all the bounding boxes in one
go.

Redmon et al.[15] presented the YOLO (You Only Look Once) algorithm in
2016. It could process images in real-time at 45 frames per second and score
52.7% mAP on Pascal, which was more than twice as accurate as prior work
in real-time detection[15]. These detectors have a reputation for achieving
higher inference speeds at the expense of accuracy. Despite this, a newer
version of YOLO released recently in 2022 outperformed most of the existing
object detectors in terms of both accuracy and speed[16].

The key idea here is the use of a grid with anchor boxes. The input image
is divided into smaller parts called grid cells. Anchor boxes are multiples of
grid cells’ widths and heights. Typically, a grid cell contains several anchor
boxes of different proportions. The grid puts a constraint on where an object

7
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Figure 2.4: YOLO model

could be, and anchor boxes help the cell predict the shape of an object.
After extracting a feature map F € R? from an image I € R3, each grid
cell (z,y) € F with A anchor boxes is responsible for detecting:

® N numbers for N classes ranged in between [0, 1] such that their sum is

N
Znizl,nEN

i=1
It is used as a conditional class probability, P(Class;|Object).

®m A * 1 confidence score in range [0, 1]. They indicate how confident the

detector is about the presence of an object at that position for each
anchor box, P(Object).

® A * 4 bounding box offsets Az, Ay, Aw, Ah.
Class-specific confidence scores are then calculated for each predicted box.

P(Class;|Object) x P(Object) * IOU;ﬁZéh
where 10U stands for Intersection Over Union of the predicted box and the
ground truth box.

An important note here is that since there are 4 offset parameters for
each anchor box for a given grid cell, the model makes predictions about the
bounding box relative to its anchor box. If the cell is offset from the top left
corner of the image by c,, ¢, and the anchor box has width and height a,,, as,
then the predictions correspond to

x=o0(Azx) + ¢,

y =o(Ay) + ¢y
W = Qe
h = a,edh

8



2.4. One-stage detectors

Where o(z) =
range [0, 1]

This procedure is relevant for the older YOLO detectors, which viewed
object detection as a multi-class problem instead of a multi-label one. It
figuratively resembles how other successful one-stage methods such as SSD[17],
Retina Net[18], and the newer versions of YOLO work.

H% is a logistic function, which maps all real numbers to
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Chapter 3

One-Stage One-Shot Object Detection by
Matching Anchor Features

0S2D|3| is a one-shot, one-stage object detector based on using a CNN for
geometric matching that will be referred to as TransformNet by Rocco et
al.. Its components are differentiable, which allows for end-to-end
training. It uses two distinct models with pre-trained weights, as described
earlier in Sect. 2.1l

The architecture consists of the following steps: 1) feature extraction, 2)
correlation matching, 3) spatial alignment by using transformNet and 4)
computing the recognition scores and bounding boxes based on the successful
matches.

This chapter will provide an overview of the pipeline and emphasize some
important aspects where the original paper’s description was rather shallow,
namely the alignment and resampling.

. 3.1 Feature extraction

Given an input image and a class image, Residual Network[21] (ResNet) pre-
trained on ImageNet classification dataset with shared weights extracts
dense feature maps from both of them. I € R¥i*hixd gnd C' € RWexhexd gre
extracted feature maps for input and class images respectively.

Due to the architecture of transformNet, one of the feature maps has to be
fixed to a certain size. The input feature maps are of high resolution, and
rescaling them would result in a major loss of details and aspect ratio, thus,
class feature maps C are rescaled to a fixed size of 15 x 15 x d instead. This
is done through bilinear resampling.

Bilinear resampling is a simple, fast, and differentiable method for trans-
forming images using repeated linear interpolations in two dimensions. It can
also be applied to feature maps.

It uses the 4 nearest pixel values located in diagonal directions from a given
position to interpolate the intensity values of a pixel at that position. For
example, when stretching an image, new pixels appear as a result. The values

11
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input image A class image ¢ input features p4 Xl,'i,A xd class features ht x]q,_“;C xd
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[ 3. spatial alignment

C A A

[ 4. computing outputs

sampling grids h* = w » (2h7w

resampling correlations
L

[ selecting boxes ] [ pooling ]
g
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Figure 3.1: OS2D model architecture, picture borrowed from the paper ||

of these new pixels are "guessed" by using bilinear interpolation.

B 3.2 Correlation matching

After extracting both feature maps, the correlation tensor ¢ € R ixwixhexwe

is computed, which is a product of two feature maps divided by their lo norm
along the feature dimension so that their length is equal to 1:

- I;;,Cay)
— <Z yTY
cli 2,91 = [ e,

The higher the score, the more similar the two positions of the feature
maps are. The maximum length is 1, hence the values are in the range [-1, 1].

N 33 Alignment

TransformNet is a Spatial Transformer Network(STN)[23], which acts as a
differentiable visual attention mechanism. It is employed as follows:

The correlation tensor is passed through a Rectified Linear Unit (ReLU),
discarding all the negative matches and fed into transformNet in the form of
¢ € Rhixwix(hexwe) in 5 fully-convolutional way. TransformNet then outputs
Tij € RFixwix0 parameters for transformations at each location of the input
feature map I. The number of predicted parameters 6 can be either 4 or
GH Those parameters are entries of a transformation matrix Ty, that is
responsible for all kinds of affine transformations such as translation, scaling,
rotation and shearing.

14 for simple affine transformations, meaning only translation and scaling are applied. In
this case, 012 and 021 responsible for rotation are set to 0. 6 for full affine transformations

12



3.4. Resampling process

Image A Aligned A (affine) Image B

Figure 3.2: An example of how transformNet works. Ground truth matching
keypoints are depicted as crosses and circles for images A and B, respectively.
Keypoints of the same color are supposed to match after image A is aligned to
image B. Picture source

Ty = 011 b2 013
021 G2z 023

The weights released by Rocco et al. define the direction of transformations
in the opposite direction, i.e., they align input I to class C. In order to use
the weights, each transformation Ty needs to be inverted. This is done by
augmenting the matrix into 3 x 3 form and calculating its inverse:

/ / /
n 11 12 13
-1 _ / / /
T9 - 21 922 923
0 0 1

. 3.4 Resampling process

XheXweX2

First, a parameterized sampling gri g € Rhixwi is created by
applying the transformations 7;; to a meshgridﬂ of size w, X h., the same size
as C. The values in the meshgrid represent normalized coordinates of the
class feature maps C ranging from -1 to 1. The values in the parameterized
sampling grid then consist of those coordinates transformed, where each pair
denotes the location of a pixel to sample from.

https:/ /pytorch.org/docs/stable/generated /torch.nn.functional.affine_ grid.html
3Meshgrid is a matrix of coordinates.

13



3. One-Stage One-Shot Object Detection by Matching Anchor Features

In other words, g does not contain the actual values. The values for each
individual pixel are then taken from and interpolated from the correlation
tensor c in accordance with g.

A transformation Te_l of a coordinate pair (z,, Ym) from the meshgrid can
be written as:

/ / / Im
11 12 13

0. 0 / Ym
21 22 23 1

1 is added to the coordinate pair to make it homogeneous. The last column
of the transformation is responsible for the translation.

Each transformation is defined with respect to the local coordinate system.
Operations below convert them to normal, with respect to input feature map
I

_ w
Zglobal = Tlocal * 5 + Tcenterpoint

h
Yglobal = Ylocal * 70 + Ycenterpoint

The translation factors are the center points of the anchor boxes with
respect to I.

Then, bilinear sampling is performed at each channel layer (h. X w,) in
¢ € Rhixwix(hexwe) — Thig procedure can be thought of as aligning each
position of C' to I. The resulting tensor of matches is summed across its last
dimension to get the recognition scores s € R"*%: indicating how likely the
location has a detection.

And lastly, the bounding box coordinates are obtained by taking the
maximum and minimum of the grid tensor g € RXWiXheXwex2 glong its
third and fourth dimensions. This results in two points, the leftmost-topmost
corner (Zmin, Ymin) and the rightmost-bottommost corner (42, Ymaz) of the
bounding boxes.

B 35 Training

For training, the input images are divided into several smaller parts by
randomly cropping an area to avoid downsampling. Otherwise, scaling them
down to a fixed size would result in a loss of aspect ratio and the smallest
objects would be represented by too few pixels. For augmentation, a small
amount of scale jitter is applied to the cropped parts. For each image, a batch
of class images is collected from those present and annotated in the image.

14



3.5. Training

TransformNet specifically was trained only on positives, because when
training it on negatives the network started to move the transformations in
random directions. This can be explained in the following way:

When transformNet encounters a hard negative example (one that is
difficult to distinguish from a positive one), it tries to align it.

What makes a hard negative example "hard" is that it is very similar to a
positive example - they are hard to tell apart and share many similarities,
like color, shape, text, etc., and only differ from positives slightly in some
parts, not entirely.

The job of transformNet is to align the areas that are the same. Therefore,
when it aligns a hard negative example, it is actually doing its job correctly
by aligning the parts in C' to parts in I that match. By getting penalized for
this, it gets confused. That is why a copy of its output gets detached from
the computational graph when training.

B 3.5.1 Loss function for localization scores

The localization loss used here is smooth L1 loss. It acts as L1 loss for values
outside of [-1, 1]. If the absolute element-wise error falls below 1, it uses a
squared term. For one object, the loss can be described as:

1 ~A\2 . ~
4 5We =) iflye — vl <1,
lloc(ya y) Zc:l {|yc _ yAc’ _ % otherwise.

where y,7 € R* are the predicted and ground truth boxes in the format
of Tinin, Ymins Tmaz, Ymaz- 1t 1S less sensitive to outliers than mean squared
error and in some cases prevents exploding gradients|12].

B 3.5.2 Loss function for recognition scores

Object detection often faces the difficulty of a non-balanced number of
positives and negatives. To overcome this, Ranked List Loss(RLL) by Wang
et al.[24] is used. It is a margin-based loss for metric learning, which aims
to learn the relative distances between inputs, instead of simply classifying
them. It is defined as:

225 (s) = max(mpos — ,0), 1159

rec (S) = max(s — Mneg; 0)7

RLL __ 1 neg
Lyes = Zi:tizl Tipos ll;gg(sl) + Zi:tiZO w; l:}sg(si)v

w;™ o< exp(Tlrec(si, 0))[17ed (si) > 0].

Tipos is the number of non-trivial positives, positives such that l;g‘;(si) > 0.
For negatives, the weights w;“’ are normalized so that they sum to 1 over

all the negatives for each image-class pair. T is a temperature parameter that

indicates how peaky the weights are.

15
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T is chosen in a way that puts 10® times larger emphasis on losses that
are further away from the negative margin m,., than those closest to the
negative margin 7,.4. This makes RLL work in a way, that would be similar
to combining a classical margin-based loss function, like contrastive loss, with
mining hard negative examples.

B 3.5.3 Total loss

The total loss is a combination of those two:

_ 7T RLL
Ltotal - L'rec + Lloc * lOCscalea

where locgqqie indicates the scaling factor for localization loss.

. 3.6 Datasets

The main dataset, GroZi-3.2k|25](grozi), comprises all kinds of groceries from
Swiss supermarket shelves. In total, there are 680 images, 8 921 objects
for 1 063 classes. There are two splits of this dataset. The first consists
of 622 objects of 185 classes in 84 images, with classes that were ignored
during training. For the second split, those same 84 images were used, but
with 518 objects of classes that were seen during training. The first split is
used as the main validation split and the second as the secondary validation
split, named grozi-val-new and grozi-val-old respectively. Additional test sets
were collected named dairy, paste-f, and paste-v, with the latter consisting of
unusual rotations. The setting is similar to grozi - supermarket shelves with
groceries as classes.

Other datasets include Instance-level visual object Retrieval and Recog-
nition[26] (INSTRE). The dataset is made up of 28 543 images and 200
object classes. These classes are split into two: INSTRE-S1, representing 100
classes of objects found in the lab of the dataset creators, and INSTRE-S2,
representing 100 classes of buildings, logos and common objects gathered
online.

. 3.7 Performance

Overall, OS2D proved to work well, with their best model achieving a high
mAP of 90.6 on the main validation subset grozi-val-new, beating the two-
stage detector baselines and outperforming the work by Hsieh et al.[5]. Tt
also works well in domains found in the INSTRE dataset, given additional
rotations are applied to the class images during evaluation, since features

16



3.8. Reproduction of experiments

extracted by CNNs are not rotation invariant and INSTRE contains such
rotations.

B 3.7.1 The metric

Mean average precision(mAP) is a metric for evaluating the performance of
object detection models. In this case, mAP at the IoU threshold of 0.5 is used.
It incorporates the trade-off between precision and recall, which considers
false positives and false negatives. Precision and recall are defined as:

c o _ TruePositives
Precision = TruePositives+ FalsePositives
Recall = TruePositives

TruePositives+ FalseNegatives

Precision and recall are needed to calculate the Average Precision (AP), by
plotting precision against recall at different thresholds, where thresholds are
the confidence scores sorted in descending order. The AP is then calculated
as the area under the curve. AP is calculated for each class separately.

Mean average precision is the mean of the AP over all classes:

mAP = L3 AP,

B 38 Reproduction of experiments

Experiments were conducted by training models with various methods and
evaluating them on different datasets. The results can be seen in Table 3.1] for
models trained on grozi dataset and Table |3.2| for models trained on INSTRE
dataset. The hard patch-mining that the first table refers to is a method that
chooses hard negative and hard positive regions from the input images I for
the model to train on, while the RLL loss mentioned previously does hard
negative mining on class images, based on the predictions/*

The models were trained using the Stochastic Gradient Descent (SGD)
optimizer for 200 000 iterations. The initial learning rate was set at 0.0001,
with a weight decay of 0.0001 and a momentum of 0.9. The rate of learning
slowed down by a factor of 10 after 100 000 and 150 000 iterations. As in the
original study, the input was groups of 4 pictures, each cropped to a size of
600x600 pixels. Each group could at most contain 15 different class images.

There are three main differences between the V1 and V2 models:

1. V1 uses simplified affine transformations with P = 4, whereas V2 uses P
= 6 with rotations.

4offline vs online, input image crops vs class images
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3. One-Stage One-Shot Object Detection by Matching Anchor Features

H H grozi-val-new grozi-val-old dairy paste-f paste-v H

V1 88.5 89.3 71.7 488  61.4

V2imit 86.0 80.0 66.0 485  68.5
V24 /o hard—pateh 88.9 83.8 69.0 513  7L.1
V2uwith—hard—pateh 90.3 84.9 717 545 739

Table 3.1: The results of different versions of OS2D trained on grozi dataset.
Training with hard-patch mining is slow, but it does slightly improve the perfor-
mance

I [ INSTRE-S1 INSTRE-S2 ||

V2initresnet50 71.9 64.5
V2im’tresnet101 69.7 63.2

V2w o hard—patchresnet50 88.5 7.4
V2w o hard—patchresnet101 88.2 79.1
Vl’/‘esnet50 83.6 73.7
Vlresnetl()l 87.0 75.8

Table 3.2: Models’ performance on the INSTRE dataset(also trained on it)
initialized with a different feature extractor for each version. Resnet101 worked
slightly better for the V1 model while having little to no effect on V2

2. TransformNet is initialized from scratch in V1, which incidentally allows
for naturally training the transformation directions without having to
invert them. Moreover, since V2 is not initialized from scratch, it is
applicable without any training and produces decent results.

3. V1 is trained under full supervision while V2 is trained under weak
supervision due to rotations.

The input images in the grozi dataset were fixed to a size of 1 280, paste-v
and dairy to 3 500, and paste-f to 2 000 with additional class image rotations
at 90, 180, and 270 degrees for the latter. The evaluation was done at 7 scales
of the input image: [0.5, 0.625, 0.8, 1, 1.2, 1.4, 1.6]. Overall, the results were
very close to the ones reported on all datasets.
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3.8. Reproduction of experiments

Figure 3.4: The images above portray a couple of simple examples from the
training subset of grozi. On the left are the results with anchor boxes depicted
in light blue, parallelograms constructed from the corners of transformations in
red, and predicted boxes in yellow. Images in the center depict correlation tensor
¢ € Rhixwix(hexwe) pooled along the last dimension. The rightmost image is a
heatmap of recognition scores, i.e., the results after resampling the correlation
tensor.

AP for every class in paste-v dataset

EANL0TA

Classes

Figure 3.3: Average Precision per class in the paste-v dataset, evaluated on the
best V2 model
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3. One-Stage One-Shot Object Detection by Matching Anchor Features

Figure 3.5: The same setting as previously, but with anchor boxes excluded,
and instead, the annotated boxes are drawn in a dark green color. The glass jars
of asparagus that stand in front of the others partially cover their labels, but
not entirely, making it difficult to distinguish between them.

. 3.9 Conclusion

By observing the pictures and the tables, we can conclude that OS2D behaves
as intended and excels when the objects of interest are clearly recognizable
from their class images but not when they are rotated in 3D space or somehow
overlapped. And differently from two-stage object detectors, it can recognize
objects that consist of two distinct parts as one instead of splitting the
detection as shown in a qualitative example in Fig

Aside from the sensitivity to rotations, another issue noticed when con-
ducting experiments, namely on dairy and paste datasets that are of higher
resolution, is the drastic drop in inference time compared to grozi and IN-
STRE datasets. As the number of classes to detect increases and the input
images get higher in resolution, OS2D becomes unfit for real-time detectionﬂ

®The detector is actively employed by mirum.io in Russia, the website suggests that
detections occur in minutes
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Figure 3.6: This example demonstrates a difficult case when objects are rotated
in 3D space. Since the method matches the whole jar to the labels, the more the
jars are rotated around their own axis, the more difficult it is to match them
correctly.

0 20 40 60 80

Figure 3.7: Recognition scores for class 1 shown in Fig. Note how the
highest scoring region corresponds to an object turned with its front facing
forward, identical to its class image in the top-left corner.
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3. One-Stage One-Shot Object Detection by Matching Anchor Features

Figure 3.8: A qualitative comparison of OS2D model with a baseline similar to
two-stage detectors(region detector + retrieval), for objects comprised of two
parts and not seen during training. The baseline system has to finalize the object
bounding box without knowing the classes of objects it is supposed to detect.
Thus, if the object detector fails to detect two parts as one, the retrieval system
cannot fix the boxes and recognize them correctly. On the other hand, the OS2D
model is aware of the fact that the objects consist of two parts and detects them
correctly. This image is borrowed from the paper H
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Chapter 4
Model

Based on the available implementation of OS2D, we aim to remove the
transformNet due to its computational and design complexity. To achieve
this and maintain a one-stage detection framework, we propose the following
changes:

8 We borrow the idea of coordinate regression layers from one-stage detec-
tors like YOLO and SSD described in Sect. [2.4. These layers directly
predict bounding box coordinates from feature maps, omitting the need
for transformNet.

® To address the problem of CNNs not being inherently scale-invariant,
we apply a fixed number of rescalings to the class images whilst keeping
their aspect ratio intact. The scales were chosen based on empirical
observations of the dataset.

® [n an attempt to make the network learn the specific features of a
given class, we employ a simple method used in Target Driven Instance
Detection (TDID) by Ammirato et al.|4].

B 41 Class image augmentation

After normalizing the images by subtracting the mean and dividing by the
standard deviation, N number of rescalings are applied to the class images,
approximately corresponding to the common sizes of objects found in the input
images of the grozi dataset. By experimenting with different numbers of N,
we stopped at 3 to not overload the memory and slow down the computations
too much.

Then, ResNetb0 extracts the weights from all the class and input images
at its fourth residual block. The feature maps are then I € R¥* X% and
C = {c,c2,...,cn | ¢ € R%¥he; *Weil|C| = N, for input and class
respectively.
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4. Model

B 42 Feature comparison

Following Ammirato et al.[4] constructed a joint embedding that combines
feature correlation and feature differencing between the class images and
input images.

First, global max pooling is applied to all class feature maps C, yielding
feature vectors with the most dominant features for every feature map across
every channel, V € RVxdx1x1,

Next, each of these vectors are subtracted from the input images at every
pixel to make an embedding DIFF € RNxdxhixwi

DIFF; = I —wvj, for every v; € V

Then, input feature maps I are multiplied by each one of the vectors in V as
if applying convolutional filters to I. This results in a correlation embedding
CORR € RN*dxhixwi - Contrarily to computing cosine similarity in OS2D in
Sect. [3.2], the feature maps are not normalized and the multiplication is done
element-wise.

CORR; = I xvj, for every v; € V

These embeddings were tested together and separately. In the end, simple
feature differencing performed better on its own. So we omit the correlation
tensor.

B a3 Multilayer Perceptron

After obtaining the embedding, it is reshaped into the form DIFF €
R(Nxd)xhixwi and passed through a Multilayer Perceptron(MLP) in a fully-
convolutional way using point-wise convolution.

In a point-wise (1x1) convolution, each output channel of a pixel is computed
as a weighted sum of its input channels. If we consider each pixel as a separate
instance and the channels as features of these instances, then a point-wise
convolution is equivalent to applying a dense layer on the channels for each
pixel.

Convolutions with a 1x1 kernel are compact, requiring much fewer parame-
ters than convolutions with a bigger kernel', the spatial dimensions stay intact
without any padding. They are often used in lightweight object detectors,
such as MobileNetV2[27] and SqueezeNet|28].

In total, there are three layers of point-wise convolutions with leaky
ReLU[29] activation functions between them. The output is then of size
5 x h; x w;. These 5 parameters predict the box width, height, center location

'For instance, when a 3x3 kernel is applied to N input channels producing M channels,
3x3xNxM has 9 times more parameters than 1x1xNxM
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4.4. Loss

Layer (type) Output Shape Param #
conv2d-1 [-1, 3072, 40, 40] 9,440,256
LeakyRelU-2 [-1, 3072, 40, 40] ]
Conv2d-3 [-1, 614, 40, 48] 1,886,822
LeakyRelU-4 [-1, 614, 40, 48] 0
conv2d-5 [-1, 5, 408, 40] 3,075

Total params: 11,330,153
Trainable params: 11,330,153
Mon-trainable params: @

Input size (MB): 18.75
Forward/backward pass size (MB): 90.85
Params size (MB): 43.22

Estimated Total Size (MB): 152.82

Figure 4.1: A summary of the MLP, given an input of size (1024 * 3, 40, 40)

on the x-axis, the center location on the y-axis, and the confidence scores.
They are denoted as Aw, Ah, Acx, Acy and Aconf.
The predictions are then processed as follows:

boxy = aye?

box), = ane>h

box., = ReLU (sigmoid(Acz) — 0.5+ ¢;)
boxey = ReLU (sigmoid(Acy) — 0.5 + ¢y)
boT cons = sigmoid(Aconf)

where c;, ¢, are the grid cell’s center coordinates, and a,,, aj, are the anchor
box’s width, and height.

There are 5 predictions for every pixel in I. Since we do not use a softmax
layer, the entire process is approached as a multi-label problem instead of
a multi-class one. In the context of object detection, it means that each
predicted bounding box can have multiple classes.

To convert the localization predictions to global coordinates, box.,,, boxy, box s,
and box., are multiplied by the receptive field of the feature extractor.

. 4.4 Loss

The loss functions used were available in the OS2D implementation. They
are smooth L1 loss described in Sect. |3.5.1/ for localization and contrastive
loss|30] with hard-negative mining for confidence scores. Contrastive loss is
another margin-based loss used for metric learning, defined like this:

[Fec(s) = maw(mpos — s,0), 11ed(s) = maz(s — mneg, 0),

cL _ 1 2 1 2
Lyci= D i1 lhee (8i)° + Diti—0 bred (i)

Npos Npos
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4. Model

During training, since some instances within a category (toothpastes of
different flavors) may look quite similar, the classifier can easily overlook hard
negative examples and output lots of false positive detections. The classical
hard negative mining approach is to take those false positives, explicitly create
negative examples out of them, and add those examples to the training set.

In our case, though, they are not added to the training set, but rather
a fixed number of them is mined for each positive in a batch, and other
negatives are discarded. This is essentially done to control the imbalance
between negative and positive examples, which can lead to a model that is
biased towards predicting negatives, as it might find the task of minimizing
the error on the negative examples easier.

B 45 Other methods

The initial proposed method was different. Its main focus was making more
transformations of the class images, such as scaling and rotation, to make
the MLP learn the box positions and confidence scores from them. The
correlation was computed differently too:

vgap = GAP(&-), € RPN

2
I c Rwixhixd

Inorm = iy

COSsim = Lnorm X Ugap, € RwixhixN

Where I stands for image feature maps, and vgq, stands for feature vectors
of classes. v4qp is obtained by performing global average pooling on normalized
class feature maps. Normalization is performed along the feature dimension
d. Then, cosg;,, would have been further passed into an MLP to get the same
format of predictions, w; X h; x 5.

Unfortunately, this did not work. The reason why it did not work in my
opinion is because of all the information getting lost when reducing the feature
dimension to 1 for each transformation N. All it had was the intensities for
each position of the image feature map I times N. A scenario where it might
excel is instance segmentation, but not detection.

. 4.6 Performance

Performance-wise, the method was not so successful. Scoring 26.0 mAP
on grozi-val-new and 44.7 mAP on grozi-val-old sets. The main issue was
the lack of accuracy, that is to say, the number of false positive predictions
outnumbered true positives.
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4.6. Performance

Cl0: 0.795C7 0- 0.8614|CI 0: 0.7248 Cl2: 0.5237
Er:. 1 L
Nlister Rice Ci1-0 3677

Mister R

B4 Shary

sl

lllf':vili-
—

v '-.T-::II-:|.
#13 = i
~— .

Figure 4.2: An example with rice boxes that were seen during the training. The
class labels are correct, but the boxes are a little off and confidence scores are
low for the 3 pink boxes in the middle.

An experiment with N = 1 (meaning the class images are rescaled to one
fixed size) showed, that the number of rescalings matters as the performance
dropped to 14.4 mAP on the grozi-val-new set. However, naively increasing
N is not a solution, as it takes a toll on the inference time and memory
consumption.
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Figure 4.3: Detections for a class unseen in training. While the model has a
general understanding of where the cans of lentils are located, the results are
not quite accurate. The confidence scores are low too.
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Figure 4.4: Mean average precision over iterations on grozi-val-new subset. After
it enters the area between 20 to 25, it would oscillate in that area without any
significant improvement.
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Chapter 5

Conclusion and further improvements

A thorough study of the work by Osokin et al.[3] was conducted, and their
experiments on the instance-level datasets were successfully replicated. The
method proposed by Ammirato et al.[4] was adopted to deal with the same
task, and we observed that this method resulted in a decrease in performance
when compared to OS2D. However, there is room for further improvement,
with several possible paths:

The first is to minimize the size of the network, as it is overparametrized at
this stage. Alas, this was noticed too late, and no further experiments were
conducted. Reducing the number of parameters would allow for more class
image augmentations, and with that, the MLP might be able to "choose" the
appropriate transformation. This has the potential to work, as reducing the
number of rescalings correlates negatively with performance.

The second is to address the problem of low accuracy. The loss function
emphasizes hard negatives. In spite of that, the model still learned mostly
from easy examples, resulting in high recall and low accuracy. This is likely
due to the suboptimal ratio of positives to negatives, where there were too
many negatives. The reason for such a ratio is that when we tried reducing
the number of negatives per batch, the model could not learn from those few
negatives.

Last but not least is to follow the progress of regular one-stage object
detectors. That is, to predict not one but many anchor boxes of varying
proportions and do detections at multiple grid levels by utilizing several
blocks of the feature extractor at once. This will further aid the MLP in
handling differently shaped objects.
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Appendix A
The use of Al

List of Al tools used:

® Microsoft Copilot for machine translation, literature search, and consult-
ing problems. Outputs were double-checked.

® QuillBot for grammar and flow.

® Grammarly for grammar and flow.
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Appendix B

Contents of attachment

data
os2d
demo.ipynb
readme. txt
INSTALL.md
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Appendix C

Glossary

grozi GroZi-3.2k dataset comprised of groceries on supermarket shelves. 16

pixel A pixel is referred to as an element of a feature map, not necessarily
an image. 13

TransformNet Spatial transformer network used in OS2D. 11
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