
Bachelor Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

A LiDAR Data Annotation Tool with the
Ability to Learn

Adam Pyszko

Supervisor: RNDr. Petr Štěpán, Ph.D.
May 2024

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

510661 Personal ID number: Pyszko Adam Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Open Informatics Study program:

Artificial Intelligence and Computer Science Specialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

A Lidar Data Annotation Tool with the Ability to Learn

Bachelor’s thesis title in Czech:

Nástroj pro anotování lidarových dat se schopností se učit

Guidelines:

1) Learn about lidar data format and existing lidar data annotation tools.
2) Design and implement your own program for data annotation.
3) For the data annotation program, design and implement several types of neural networks for learning user labeled
classes of data. Integrate these neural networks into the annotation program so that the user can pre-label new data
according to the output of the selected neural network.
4) Test the annotation program on the provided dataset and evaluate the detection success of each neural network.

Bibliography / sources:

[1] Pan, X., Gao, L., Marinoni, A., Zhang, B., Yang, F., & Gamba, P. (2018). Semantic labeling of high resolution aerial
imagery and LiDAR data with fine segmentation network. Remote Sensing, 10(5), 743
[2] Axelsson, M., Holmberg, M., Serra, S., Ovren, H., & Tulldahl, M. (2021). Semantic labeling of lidar point clouds for UAV
applications. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4314-4321)
[3] B. Wang, V. Wu, B. Wu and K. Keutzer, "LATTE: Accelerating LiDAR Point Cloud Annotation via Sensor Fusion,
One-Click Annotation, and Tracking," 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New
Zealand, 2019, pp. 265-272, doi: 10.1109/ITSC.2019.8916980.
[4] Sager, C., Zschech, P., & Kühl, N. (2021). labelcloud: A lightweight domain-independent labeling tool for 3d object
detection in point clouds. arXiv preprint arXiv:2103.04970.
[5] Andersson, R., & Andersson, E. (2019). LiDAR Pedestrian Detector and Semi-Automatic Annotation Tool for Labeling
of 3D Data. Master's Theses in Mathematical Sciences.

Name and workplace of bachelor’s thesis supervisor:

RNDr. Petr Štěpán, Ph.D. Multi-robot Systems FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 24.05.2024 Date of bachelor’s thesis assignment: 02.02.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Dr. Ing. Jan Kybic

Head of department’s signature
RNDr. Petr Štěpán, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

Acknowledgements
I would like to dedicate this thesis to my
family and friends, whose support has
been invaluable. I am deeply grateful
to my supervisor, RNDr. Petr Štěpán,
Ph.D., for his guidance, insightful cri-
tique, flexibility and unwavering support
throughout the duration of this thesis. His
expertise and attention to detail have sig-
nificantly shaped this thesis and his en-
couragement has been crucial in overcom-
ing the challenges I have faced during my
work.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

The following artificial intelligence (AI)
tools were used during the completion of
this thesis: Deepl.com and ChatGPT-4
were utilised for stylistic text editing pur-
poses. Github Copilot was integrated into
the PyCharm Integrated Development En-
vironment (IDE).

Prague, May 15, 2024

iii

Abstract
This thesis addresses the challenge of ef-
ficiently annotating LiDAR data to im-
prove the navigation capabilities of drones
in forested environments. The primary
objective is the development of an annota-
tion tool that leverages the capabilities of
Convolutional Neural Networks (CNNs)
to assist the user in segmenting and iden-
tifying tree trunks from LiDAR-generated
data more effectively and efficiently. The
project’s core technique is the conversion
of high-dimensional LiDAR data into a
two-dimensional grayscale image format
that is optimal for convolutional neural
networks, specifically an adapted U-Net
model. This approach not only simplifies
the data’s complexity but also enhances
the model’s performance in recognising
and segmenting crucial environmental fea-
tures.

Keywords: Annotation tool,
Convolutional neural network, LiDAR

Supervisor: RNDr. Petr Štěpán, Ph.D.

Abstrakt
Tato práce se zabývá problematikou efek-
tivní anotace dat z LiDARu pro zlepšení
navigačních schopností dronů v lesním
prostředí. Hlavním cílem je vývoj anotač-
ního nástroje, který využívá schopnosti
konvolučních neuronových sítí (CNN) a
pomáhá uživateli efektivněji a účinněji seg-
mentovat a identifikovat kmeny stromů z
dat generovaných pomocí LiDARu. Zá-
kladní technikou projektu je převod vy-
sokorozměrných dat LiDAR do dvouroz-
měrného obrazového formátu ve stupních
šedi, který je optimální pro konvoluční
sítě, konkrétně pro přizpůsobený model
U-Net. Tento přístup nejen zjednodušuje
složitost dat, ale také zvyšuje výkonnost
modelu při rozpoznávání a segmentaci klí-
čových prvků prostředí.

Klíčová slova: Anotační nástroj,
Konvoluční síť, LiDAR

Překlad názvu: Nástroj pro anotování
lidarových dat se schopností se učit

iv

Contents
1 Introduction 1
1.1 State of the Art of Annotating

tools . 2
1.2 Decision to create our annotation

tool . 2
1.3 Chapter Summaries 3
2 LiDAR 5
2.1 Introduction to LiDAR technology 5
2.2 LiDAR Specifications 5
2.3 Utilization of Point Cloud Library 6
2.4 Creating a 2D representation for

Convolutional Neural Networks 6
3 Convolutional Neural Network 9
3.1 State of the Art of CNNs for

LiDAR data . 9
3.2 Neural Network Implementation -

PyTorch . 10
3.3 The Fundamentals of

Convolutional Neural Networks . . . 10
3.4 U-Net . 12

3.4.1 Key Components of the U-Net
Model: . 12

3.5 Development of Neural Network 12
3.6 Utilization of PyTorch’s Dataset

and DataLoader 13
3.7 Training Process and Results on

Generated Data 14
4 Annotation Tool 17
4.1 Labeler . 17
4.2 Functionalities 18
5 Goals and results 23
5.1 Defining our evaluation metrics . 23
5.2 Data selection and split 25
5.3 Results on selected images 25
5.4 Complete results 28

5.4.1 Reduction of time
requirements 30

6 Future improvements and work 33
6.1 Multiclass labeling 33
6.2 Exploring the Integration of

Multiple Neural Network Models . 33
6.3 The long-term objective of enabling

autonomous drone navigation 34

7 Conclusion 35
Bibliography 37

v

Figures
2.1 Picture with unshifted data 6
2.2 Picture after shift 6

3.1 Computation of convolutional
layer, taken from[17] 11

3.2 U-Net, taken from[12] 13
3.3 Loss function during training . . . 15
3.4 Testing Process Results 15

4.1 Descriptive picture of the
application . 18

4.2 Main display area while
zoomed-in . 19

5.1 Jaccard Index (IoU), taken
from[26] . 24

5.2 Data with easy to recognize
trunks . 26

5.3 Data with a high density of trees 27
5.4 Data with trees in the distance . 28
5.5 Comparison of time spent labeling

images with and without neural
network assistance. 30

5.6 The visualisation of the speedup
gained from neural network
assistance for each image,
accompanied by an average speedup
factor. 31

Tables
5.1 Results achieved on images from

testing set . 29

vi

Chapter 1
Introduction

The integration of LiDAR (Light Detection and Ranging) technology and
modern artificial intelligence methods, especially neural networks, is the basis
of current recognition methods for autonomous robots. In this work, we
address the problem of tree detection and recognition when a drone is flying
in a forest. This technological synergy enhances the ability of vehicles to
better interpret and interact with their environment. In the context of drone
navigation in dense forest areas, accurate annotation of LiDAR data becomes
critical to understanding complex environments.

This thesis focuses on the development of an application that uses neural
networks to efficiently annotate LiDAR data, which is essential for generating
high-quality annotated training images. These annotated images are funda-
mental for training CNNs to accurately detect and classify environmental
elements, thereby improving the operational efficiency and safety of drone
navigation systems in challenging forest landscapes.

Segmenting tree trunks using LiDAR data is a complex problem. It requires
the processing of high-dimensional data to accurately identify tree trunks
amidst the varied elements of a forest. This task gains complexity due to the
diverse shapes, sizes, and densities of trees. Convolutional neural networks,
known for their effectiveness in image recognition and processing tasks, offer
a promising approach to addressing these challenges.

This project deviates from conventional methods by transforming the range
values captured by LiDAR – representing the distance from the sensor to
different objects – into a grayscale image. In this format, the intensity of each
pixel correlates directly with the distance measured, providing intuitive way
to process and analyse LiDAR data through CNNs. This method not only
simplifies the visualisation of spatial data but also enhances the ability of
our neural networks to learn and recognise the relevant features for accurate
object segmentation.

1

1. Introduction
1.1 State of the Art of Annotating tools

In recent years, researchers have started to apply deep neural networks
to LiDAR data for simple understanding tasks such as classification and
semantic segmentation[1]. As a result, the need for efficient annotation tools
has become paramount to unlock the full potential of these neural networks.

Currently, there are numerous commercial annotation tools which integrate
advanced algorithms capable of handling high-resolution, 3D point cloud data
efficiently. In this domain, tools such as Supervisely1, Pointly2, and Labelbox3

have emerged as leaders, offering features such as automated object detection
and semantic segmentation. These tools leverage machine learning techniques
to enhance the accuracy and speed of data annotation, significantly reducing
manual labour and improving the quality of annotations made.

Additionally, there are free alternatives, such as 3D-LiDAR-annotator[2],
which facilitate labeling through the use of bounding boxes within the 3D
environment. LabelCloud[3] works very similarly, also using the technique of
bounding boxes in 3D. However, it should be noted that these tools do not
possess the same capabilities for assisting users with annotation as their paid
counterparts.

1.2 Decision to create our annotation tool

While the existing LiDAR annotation tools mentioned above offer valuable
features and capabilities, they are primarily designed to annotate point cloud
data directly in 3D. However, our approach of converting LiDAR range values
into grayscale images necessitated the development of a bespoke annotation
tool tailored to this specific methodology.

The conventional annotation tools may lack the flexibility and customisa-
tion required to fully exploit the advantages of our approach. Our method
employs Convolutional Neural Networks (CNNs) for object segmentation from
grayscale images generated by transforming LiDAR data. Consequently, our
annotation tool incorporates features designed to facilitate the training and
validation of CNN models on grayscale LiDAR images, including intuitive
labeling interfaces and seamless integration with deep learning frameworks.

1https://supervisely.com/labeling-toolbox/3d-lidar-sensor-fusion
2https://pointly.ai/
3https://labelbox.com/product/annotate/

2

https://supervisely.com/labeling-toolbox/3d-lidar-sensor-fusion
https://pointly.ai/
https://labelbox.com/product/annotate/

..................................1.3. Chapter Summaries

1.3 Chapter Summaries

This thesis is organized into several chapters, each focusing on different
aspects of developing our LiDAR data annotation tool that leverages the
power of Convolutional Neural Networks (CNNs). Below is a brief overview
of each chapter:

Chapter 1: Introduction - This chapter introduces the motivation
behind the thesis, the importance of efficient LiDAR data annotation, and the
role of CNNs in enhancing the interpretability of LiDAR data for autonomous
drone navigation in forested environments.

Here we can also find the State of the Art which provides a comprehensive
review of existing LiDAR annotation tools and methods. It discusses both
commercial and open-source solutions, highlighting their capabilities and
limitations.

Chapter 2: LiDAR Technology - Details the technical aspects of
LiDAR technology, including its operational principles and applications. The
chapter focuses on how LiDAR data is utilized in this project, emphasizing
the conversion of LiDAR measurements into a format suitable for CNN
processing.

Chapter 3: Convolutional Neural Networks - This chapter presents
the State of the Art of the application of convolutional neural networks
(CNNs) to LiDAR data. It describes the architecture of the CNN used in this
project, with a particular focus on the U-Net model, which has been adapted
for the analysis of LiDAR-generated 2D images.

Chapter 5: Annotation Tool - Discusses the development of the ’Labeler’
tool, designed to facilitate the annotation of LiDAR data. It covers the
tool’s functionalities, user interface, and the integration of machine learning
techniques to automate the annotation process.

Chapter 6: Goals and Results - Summarizes the objectives of the
thesis and the results achieved. It evaluates the performance of the developed
annotation tool and the CNN model in processing and annotating LiDAR
data.

Chapter 7: Future Improvements - Outlines potential future enhance-
ments for the annotation tool and CNN model. This includes exploring
multi-class labeling and integrating additional neural network models to
improve annotation accuracy and versatility.

Chapter 8: Conclusion - Concludes the thesis by reflecting on the
research conducted, its implications for the field of LiDAR data annotation,
and the future of autonomous navigation systems in complex environments.

3

4

Chapter 2
LiDAR

2.1 Introduction to LiDAR technology

LiDAR, an acronym for Light Detection and Ranging, is a robot sensing
technique employed in geology, forestry, urban planning etc. It emits laser
light pulse towards objects and measures the time it takes for the light to
reflect back. LiDAR uses reflected light, which enables faster and more
accurate distance measurements with higher resolution than either radar or
sonar[13]. It provides precise distance measurements and create accurate 3D
representations of the target area or object.

2.2 LiDAR Specifications

This thesis uses the OS0-128 LiDAR system[14], a high resolution sensor
known for its exceptional data acquisition capabilities. The OS0-128 has 128
rows, providing a detailed 90-degree vertical field of view (vFoV), making it
ideal for topographic surveys and 3D mapping in a variety of environments.
The LiDAR system is configured in a top-mounted position on the drone,
offering an unobstructed view that allows for comprehensive data collection
from an elevated vantage point.

In contrast to common LiDAR data processing practices, which predomi-
nantly use XYZ coordinates, this research takes an unconventional approach
by focusing primarily on the ’distance’ parameter from the LiDAR data.
This shift in the approach is driven by the hypothesis that analysing the
raw distance measurements can provide sufficient information and streamline
certain calculations, particularly in the context of our project.

5

2. LiDAR..
2.3 Utilization of Point Cloud Library

The LiDAR sensor data is processed using the Point Cloud Library (PCL)[15],
which is an open-source library commonly used for 3D point cloud data
processing. PCL provides essential tools and functionalities that are crucial
for the manipulation and analysis of point cloud data. This project focuses on
the .pcd (Point Cloud Data) file format, which is commonly used for storing
point cloud data. This format is highly efficient for handling large datasets,
which is typical in LiDAR applications.

The data in this paper comes from a data forest that was created by the
mrs group and is available on GitHub[14]. The data from the experiment are
stored in rosbag format, from which they are converted to pcd files using the
pcl_ros bag_to_pcd tool.

2.4 Creating a 2D representation for Convolutional
Neural Networks

Our approach involves the translation of the distance measurements into a
two-dimensional representation. This transformation is a strategic decision
made to prepare the data for use in convolutional neural networks (CNNs).
CNNs have demonstrated remarkable proficiency in processing and inter-
preting visual data. By converting the three-dimensional LiDAR data into
a two-dimensional format, we aim to utilise the robust pattern recognition
and feature extraction capabilities of CNNs. During the course of our ex-
perimentation, we encountered an unforeseen issue: the pixels in each row
must be shifted by a specific amount in order to accurately represent the
spatial information. The offset of each row of data points in the pcd file is
determined by the internal configuration of the sensor, which is stored by the
ROS system in the sensor configuration file. Figure 2.1 depicts the unshifted
data, which fails to accurately represent the spatial relationships. Figure 2.2
illustrates the necessary adjustments for proper interpretation.

Figure 2.1: Picture with unshifted data

Figure 2.2: Picture after shift

6

.............. 2.4. Creating a 2D representation for Convolutional Neural Networks

This method could be effective for several reasons. Firstly, CNNs are
inherently designed to detect spatial hierarchies in images by recognising
patterns at various levels of abstraction[16]. Presenting LiDAR data as a 2D
image translates the spatial relationships of the physical world into a format
that CNNs can process more naturally. Additionally, focusing on distance
as a primary feature simplifies the data, reducing noise and highlighting key
features crucial for analysis. This approach can potentially lead to more
accurate and efficient processing of LiDAR data in applications where pattern
recognition and feature extraction are critical.

7

8

Chapter 3
Convolutional Neural Network

3.1 State of the Art of CNNs for LiDAR data

The study[4] by researchers at Mississippi State University presents a detailed
examination of using CNNs for segmenting LiDAR data in off-road environ-
ments. Their work demonstrates the application of the SqueezeSeg CNN
model, particularly emphasizing its effectiveness in accurately identifying
various objects and obstacles, including trees. They also compared the per-
formance of LiDAR sensors with different beam counts, observing a marginal
increase in accuracy with higher beam sensors. This research is vital for
understanding the potential of CNNs in processing complex LiDAR datasets
for navigation and obstacle detection in off-road or natural enviroment.

PointNet[5] and MultiView[6] CNNs are two prominent architectures in
the field of 3D point cloud processing and analysis. PointNet revolutionized
the field by providing a novel approach to directly process unordered point
clouds without requiring complex pre-processing steps. It employs a symmetric
function to extract features from individual points and capture global patterns,
making it highly efficient for tasks like object classification and segmentation.
On the other hand, MultiView CNNs leverage multiple views or perspectives
of the same 3D scene to enhance the understanding and representation of
complex spatial structures. By fusing information from multiple viewpoints,
MultiView CNNs achieve robustness and resilience to occlusions and viewpoint
variations, making them well-suited for tasks such as 3D reconstruction and
scene understanding.

In the paper[7], the authors compared their results with both PointNet
and MultiView CNNs. Their main objective was to correctly classify and
then remove phantom effects caused by objects moving in parallel with the
scanning platform. They also developed their own 3D point cloud annotation
tool, which they used to create their dataset called SZTAKI CityMLS[8]. On
this dataset they achieved better results than both PointNet and MultiView
CNNs.

The researchers from Tokyo Institute of Technology do something very sim-
ilar to our work in their paper[9]. They used different neural network models
to correctly segment human bodies and managed to create an automatic
annotator for LiDAR data containing humans. Their results showed that

9

3. Convolutional Neural Network
Fully Convolutional Network (FCN) performed better than both PointNet
and U-Net. Only Fully Convolutional DenseNets (FCDN) outperformed FCN
in terms of recall.

The paper[10] presents an innovative method to automatically label 3D
LiDAR data to generate training data for LiDAR-based Moving Object
Segmentation (MOS). By processing data offline in batches, dynamic objects
are identified using occupancy-based dynamic object removal, followed by
instance segmentation and tracking using a Kalman filter1. The method
labels moving objects such as pedestrians and cars, and static objects such
as parked cars and buildings. Unfortunately, the offline labeling meant that
it was not possible to segment real-time data while the vehicle was moving.
Performance evaluations of multiple neural networks conducted on of the
most well-known datasets, KITTI[11], show that the automatically labeled
data achieves comparable and in some cases superior performance to manually
labeled data.

All of these different results may suggest that there isn’t a single best
neural network model for all of the tasks associated with the processing of
LiDAR data.

3.2 Neural Network Implementation - PyTorch

PyTorch is a widely used deep learning framework that is known for its
flexibility, ease of use, and strong community support. It was developed by
Facebook’s AI Research lab and provides an intuitive interface for building
and training deep learning models. Its dynamic computational graph is a
particularly popular feature, as it allows for easier debugging and experi-
mentation with models.[18] Therefore, it is ideal for rapid prototyping and
experimentation in research, making it a valuable tool for this project.

3.3 The Fundamentals of Convolutional Neural
Networks

Convolutional Neural Networks (CNNs) are specifically designed to recognise
patterns in multidimensional data, making them highly effective for image
analysis. The convolutional layer is the core component of a CNN, where
most of the computation takes place. This layer utilises a filter, or kernel, to
scan the input image, which usually has three dimensions corresponding to
RGB colour channels. The convolution operation is executed by the kernel as
it traverses the image, computing the dot product between the filter weights
and the input pixels to generate a feature map.

This process highlights local dependencies in the image, such as edges and
textures. The size of the kernel, typically a 3x3 matrix, and the stride, which

1Kalman filtering is an algorithm that uses a series of measurements observed over
time, including statistical noise and other inaccuracies, and produces estimates of unknown
variables

10

................... 3.3. The Fundamentals of Convolutional Neural Networks

Figure 3.1: Computation of convolutional layer, taken from[17]

is the step size with which the kernel moves across the image, are crucial
hyperparameters that impact the output volume.

After each convolution operation, the CNN applies a Rectified Linear Unit
(ReLU) transformation to introduce nonlinearity. This enables the network
to learn more complex patterns.[17]

The equation 3.1 demonstrates how to calculate convolution with a stride
of 1 and no padding. Figure 3.1 provides an example of this operation.

Output[i][j] =
H−1∑
u=0

W −1∑
v=0

Input[i + u][j + v] × Filter[u][v] (3.1)

where:. i, j are the row and column indices of the output feature map,.H, W are the height and width of the filter,. Input[i + u][j + v] is the value of the input image at the position that
corresponds to the filter’s current location,. Filter[u][v] is the value of the filter at position u, v.

11

3. Convolutional Neural Network
3.4 U-Net

To analyze 2D LiDAR data representations we used a U-Net model designed
with PyTorch. The U-Net architecture, a convolutional network originally
designed for biomedical image segmentation. Developed by Olaf Ronneberger,
Philipp Fischer, and Thomas Brox[12], U-Net is known for its effectiveness
in training with a limited number of annotated samples. The architecture
is characterised by a contraction path for context capture and a symmetric
expansion path for precise localisation. While this structure is tailored to
biomedical images, it has similarities to the SqueezeSeg[4] model, particularly
in how it handles complex segmentation tasks.

The U-Net model architecture, consisting of downscaling and upscaling
blocks, is well-suited for tasks that require precise localization.

3.4.1 Key Components of the U-Net Model:.Double Convolution Block (DoubleConv)
This fundamental component of the model comprises two consecutive
convolution operations, each followed by batch normalization and a ReLU
activation function. This design is crucial for enhancing the model’s
ability to learn complex features from the input data..Downscaling Blocks (Down)
These blocks are responsible for reducing the spatial dimensions of
the input data. Each downscaling block uses max pooling followed by
a double convolution process, progressively increasing the number of
features while decreasing the size of the feature maps..Upscaling Blocks (Up)
For upscaling, the model uses transposed convolutions[19]. This method
effectively increases the spatial resolution of the feature maps, ensuring
that the network learns from both detailed and broader spatial features.

3.5 Development of Neural Network

Prior to the selection of the convolutional U-net model, we explored a variety of
neural network architectures. This exploration was crucial in comprehending
the strengths and limitations of different approaches when applied to our
task. These preliminary experiments ranged from basic feedforward neural
networks to more complex architectures. The knowledge acquired from these
trials was essential in guiding us towards the adoption of CNNs, in particular
U-Net.

During this stage of development, we focused on working with randomly
generated ’images’ representing distance measurements from the LiDAR
sensor. This approach was selected for its simplicity and ease of annotation.

12

..................... 3.6. Utilization of PyTorch’s Dataset and DataLoader

Figure 3.2: U-Net, taken from[12]

Starting with synthetic data allowed us to better control and comprehend the
variables involved, making it easier to develop and refine our data processing
and analysis methods. These artificially created images encode distance
information and provide a straightforward and effective medium for testing
and calibrating our deep learning models before applying them to more
complex real-world LiDAR data.

3.6 Utilization of PyTorch’s Dataset and
DataLoader

To handle this data efficiently, we utilized PyTorch’s Dataset and DataLoader
classes. The Dataset class allowed us to access our data in a standardized way,
integrating with PyTorch’s deep learning models. We defined how the data
was loaded and transformed through a custom Dataset subclass, ensuring
that the ’pictures’ were correctly formatted and pre-processed for input into
our U-Net model.

Each image in our dataset is treated as an individual sample and contains
distance values as pixel intensities. The custom Dataset class handles the
loading of these images, applies necessary transformations, and converts them
into tensor[20] format suitable for PyTorch models.

The DataLoader class is essential for improving the efficiency of the training
process by providing batching, shuffling, and parallel loading of data. The
U-Net model was trained using batches of distance images fed through the
DataLoader. This optimized resource utilization and enhanced the model’s
training effectiveness.

13

3. Convolutional Neural Network
3.7 Training Process and Results on Generated
Data

During the training phase of our customised U-Net model, we utilised the
Binary Cross-Entropy with Logits Loss[22] (BCEWithLogitsLoss) as our
criterion. This loss function is particularly effective for binary classification
tasks as it combines a sigmoid layer with the BCE loss in a single step, which
is computationally more stable. For the optimization of the model parameters,
we chose the Adam optimizer[21] (Adaptive Moment Estimation), with a
learning rate set to 0.001. Adam optimizer is known for its efficiency in
handling sparse gradients and adapting the learning rate during training,
making it a suitable choice for our application.

The training results on the randomly generated distance images were
highly encouraging. The model demonstrated significant ability to accurately
interpret and classify the data, as evidenced by its performance metrics. The
model’s robustness was further validated when random noise was introduced
to the images. Despite the added complexity and potential for confusion,
the U-Net model maintained a high level of accuracy in its predictions. The
effectiveness of our neural network architecture is highlighted by its resilience
to noise in the data. This suggests that the model could perform reliably even
under less-than-ideal real-world conditions where noise and data irregularities
are common.

These results on the synthetic data provide a strong foundation for the
next phase of our research, which involves applying the model to real-world
LiDAR data. The model’s ability to handle noise and its high accuracy
in classification tasks give us confidence in its potential applicability and
effectiveness in more complex and realistic scenarios. In figure 3.3 we can see
the training process over 10 epochs, the vertical axis represents validation
and training loss. Figure 3.4 shows the model’s performance on one of the
testing images after training.

14

..................... 3.7. Training Process and Results on Generated Data

Figure 3.3: Loss function during training

Figure 3.4: Testing Process Results

15

16

Chapter 4
Annotation Tool

One of the major hurdles in processing LiDAR data is the challenge of
manual annotation of huge datasets. LiDAR data, characterised by its high-
dimensional nature, presents a complex array of information that is often
dense and intricate. Each data point in a LiDAR dataset represents not
only spatial coordinates, but also distance and additional attributes such
as light intensity, reflectivity, etc., which together create a highly detailed
representation of the physical environment. Manually annotating this data
to train machine learning models is a difficult task, largely due to the volume
itself and complexity of the data.

The necessity for precise labeling of each data point or segment adds to
the difficulty of the task. In real-world environments, LiDAR sensors capture
a quantity of objects, ranging from simple structures to complex natural
forms. The level of precision required demands a significant amount of time
and effort, making manual annotation impractical and nearly impossible to
accomplish with the required accuracy and efficiency.

To address this challenge, we have developed an application, called Labeler,
designed to facilitate and expedite the annotation process for LiDAR data.
This software employs machine learning and computer vision methodologies
to enhance the efficiency and accuracy of data annotation. By automating
key aspects of the annotation workflow, our application aims to optimise the
processing of LiDAR data, enabling users to annotate datasets with increased
speed and precision.

4.1 Labeler

The Labeler application offers a comprehensive set of instruments for the
precise and fast labeling of LiDAR images. Written using Python and
leveraging the powerful PyQt5 framework[23], this software enables users to
draw, delete, and modify annotations directly on the visual representation of
LiDAR data. This allows for the detailed and exact labeling of a wide range of
environmental characteristics. Enhanced by features such as smart selection,
which utilizes color similarity algorithms to automatically identify and label
contiguous regions with similar characteristics, the application provides a
robust toolkit for efficient data processing.

17

4. Annotation Tool
The tool is designed with a focus on user interaction, allowing users to

easily review and adjust the suggested annotations. This interaction is not
only crucial for ensuring the accuracy of the data but also serves as a feedback
mechanism for the models to learn and adapt. As users correct and refine
the annotations, the models will use this input to fine-tune their algorithms,
leading to a continuous improvement in the tool’s annotation capabilities.

The complete code is available on GitHub[24].

4.2 Functionalities

In this section we present detailed discussion of the application’s functionality.

Figure 4.1: Descriptive picture of the application..1. The "Open" button allows users to open a PCD file for editing within
the application. Upon clicking the button, a file dialog is triggered,
prompting the user to select a file. Once the file has been chosen, the
PCD file is transformed into a grayscale image with correctly shifted
pixels, which is then displayed...2. The "Save" button enables users to save their work, including combined
images of the background image and mask data. Clicking the button
initiates the save process for the currently opened project in the labeler.
The mask is saved as a NumPy binary file, and the values of each pixel
of the background image are saved as well.

18

.................................... 4.2. Functionalities..3. The "Load Mask from File" button enables the user to import a previously
saved mask into the current labeling session. This eliminates the need
to start from scratch, allowing the user to fix previously saved masks
without the need to start over...4. The main display area is a large area that displays the image currently
being worked on. The user is able to draw and erase the mask within
this area. The image can be zoomed in and out using the scrolling wheel.
While holding the right mouse button pressed, the user is able to move
and drag the image. In order to guarantee a smooth and proportional
transition across varying zoom levels, the delta of mouse movement is
adjusted in accordance with the current zoom scale. While annotating
users will, for the most part, employ a zoomed-in perspective, Figure4.2
illustrates the zoomed-in picture.

Figure 4.2: Main display area while zoomed-in..5. Upon pressing the "Draw" button, the application enters drawing mode,
capturing the user’s mouse movements over the main display area to
draw lines. The slider located below the button allows the user to change
the thickness of the line...6. The "Rectangle Select" tool is employed to delineate areas of the image in
a rectangular configuration. A provisional mask is generated to illustrate
the outlines of the rectangle, assisting the user in the accurate creation
of the desired object...7. "Erase" button sets the application into erase mode, basically doing the
opposite of drawing. Slider to change the size of eraser is also present.

19

4. Annotation Tool8. The "Smart Select" tool enables users to select contiguous areas within
an image based on colour similarity around a specified point (x, y). This
tool is particularly useful for isolating regions with consistent colour
patterns in complex visual data. The depth-first search (DFS) approach
is employed for selecting the region, where a stack is initiated with the
starting point. The function then iterates over the stack until it is empty:.The coordinates of each pixel are validated against the image bound-

aries and the visited array in order to avoid redundant checks.. If the colour of the current pixel is similar to the target colour, the
pixel is added to the mask.. Subsequently, neighbouring pixels (up, down, left, right) are added
to the stack for further exploration...9. The "Mask Opacity" slider enables the user to adjust the opacity of

the masked areas, thus allowing them to view the underlying image to
varying degrees. This is of particular utility when correcting the mask
generated by a neural network....10. The "Learn" button initiates a machine learning process. All previously
labeled images are used to train the neural network. If this is the first
time the user is training the model, a new dictionary with weights will be
created. Otherwise, the dictionary is loaded and the relearning process
begins with a slightly lowered learning rate. This is done on a new thread
to allow users to continue labeling while the neural network is learning....11. The "Predict Mask" button utilises the trained model to predict the mask
of the currently selected PCD file....12. The "Use Predicted Mask" button is used to apply the generated mask
to the image.

In addition, the software incorporates a series of hotkeys:.The "Save" (Ctrl+S) shortcut enables users to quickly save their current
work without the necessity of clicking on the GUI’s save button. When the
Ctrl+S keys are pressed simultaneously, the save procedure is initiated.. Undo (Ctrl+Z) and Redo (Ctrl+Y):
The class HistoryQueue serves as a management system for undo and
redo operations within our application. This is a particularly useful
feature because it is anticipated that users will commonly make mistakes.
It works by utilising two stacks: the undoStack and the redoStack. Upon
initialization, the class sets a default capacity to limit memory usage,
allowing it to store a specified number of states. When a new state is
generated, it is pushed onto the undoStack. If this stack reaches its
capacity, the oldest state is removed to make room for new entries. This
addition prompts the clearing of the redoStack to maintain the integrity

20

.................................... 4.2. Functionalities

of the action sequence, preventing users from redoing actions that no
longer align with the latest state. When the user performs an undo
operation, the most recent state is transferred to the redoStack and the
previous state is reinstated. Conversely, a redo operation moves the
state from the redoStack back to the undoStack, effectively reapplying
an action that was undone. This dual-stack approach allows for a clear
and logical sequence of user actions, providing a robust mechanism for
navigating through changes within the application.

21

22

Chapter 5
Goals and results

This chapter sets out the primary objectives of this thesis and presents
the results achieved towards these objectives. The overall objective was
to improve the efficiency and effectiveness of LiDAR data annotation for
tree trunk segmentation, which is critical for improving autonomous drone
navigation in forested environments. In particular, this project aimed to
develop a user-friendly annotation tool that reduces the time and effort
required for manual annotation. This meant that we aimed to train a robust
convolutional neural network (CNN) capable of accurately detecting tree
trunks from LiDAR data to assist the user while annotating. We hope that
the trained model could be then used for drone navigation in real-world
settings.

The successful achievement of these goals would not only streamline the an-
notation process, but also allow us to improve the performance of autonomous
navigation systems by enabling more accurate and reliable environmental
perception that could be performed while flying.

5.1 Defining our evaluation metrics

In this thesis, we employed several evaluation metrics to assess the performance
of our neural network model in detecting tree trunks from LiDAR data.
Accuracy5.1 was used to measure the overall correctness of the model, defined
as the ratio of correctly predicted observations to the total observations.
Precision5.2 was employed to evaluate the model’s performance in terms of
the proportion of positive identifications that were actually correct, indicating
the model’s ability to avoid false positives.

23

5. Goals and results
Accuracy = TP + TN

TP + TN + FP + FN
(5.1)

Precision = TP

TP + FP
(5.2)

where:. TP (True Positives) is the number of positive instances correctly identi-
fied by the classifier,. TN (True Negatives) is the number of negative instances correctly
identified by the classifier,. FP (False Positives) is the number of negative instances incorrectly
identified as positive by the classifier,. FN (False Negatives) is the number of positive instances incorrectly
identified as negative by the classifier.

However, due to the nature of our data, the accuracy numbers were consis-
tently high and to some extent the precision as well, even if the prediction was
not optimal. Therefore, we employed the Jaccard Index (see fig.5.1), which
is commonly referred to as the Intersection over Union (IoU). This metric
measures the similarity of samples[25]. The IoU is calculated by dividing the
area of overlap between the predicted segmentation and the ground truth
by the area of their union. This metric is particularly valuable for rating
the quality of object segmentation tasks in computer vision, as it provides a
robust indication of the model’s ability to correctly mark out the target. From
this point onwards, we will use the IoU as the primary metric for evaluating
the models’ performance.

Figure 5.1: Jaccard Index (IoU), taken from[26]

24

................................ 5.2. Data selection and split

5.2 Data selection and split

A total of 50 pcd files were selected from the CTU-MRS dataset, which cap-
tures various forest scenarios via LiDAR. These files were manually annotated
using our labeling application for the purposes of testing the neural networks’
capabilities. Given the constraints in data volume, the images were divided
into two subsets: 40 for training and 10 for testing. This split was designed
to optimise the learning process while ensuring a sufficient level of model
evaluation.

The dataset can be divided into three distinct groups based on the complex-
ity and characteristics of the tree trunks depicted. The first group comprises
images with easily recognisable trunks, where the tree trunks are clearly
defined and distinguishable. The second group features images with a high
density of trees, presenting a challenging clutter of overlapping signals. The
third group captures trees at a distance, where the trunks are less distinct
and more difficult to discern. This diversity ensures comprehensive learn-
ing and testing, thereby forcing the model to adapt to the various levels of
segmentation challenges inherent in forested environments.

In the testing phase, the objective was to simulate realistic user interactions
with the annotation tool, thereby providing the neural network with incre-
mental learning opportunities. The model was systematically trained using
different training set sizes to evaluate its learning capabilities and adaptability.
Specifically, we conducted training sessions with sets consisting of 10, 20,
30, and finally, all 40 training images, with each stage using the same set
of 10 images for testing. This approach allowed us to assess the model’s
performance and improvements at each level of training exposure. It was
crucial to maintain a consistent test set across all training levels to ensure that
the performance metrics were comparable, thereby providing clear insights
into the gains achieved through incremental learning. This methodology not
only tested the robustness of the model under varying degrees of training
data but also mirrored potential real-world usage scenarios where the model
progressively receives more data as it is used over time.

5.3 Results on selected images

This section presents a comparative analysis of the labels generated by the
neural network when trained with varying sizes of training sets. Additionally,
it contrasts these results with those obtained from human annotators. For a
more nuanced assessment, we included two scenarios for human annotation:
one in which the annotator was assisted by the neural network’s predictions,
and one where the annotator worked without such assistance. In order to
ensure a comprehensive evaluation across different types of data, one image
from each of the defined categories – easily recognisable trunks, high-density
tree areas, and trees in the distance – was selected for this comparison. This
approach allows us to observe the effectiveness of the neural network against

25

5. Goals and results
the precision and insight provided by human annotators, under both assisted
and unassisted conditions. The repository at GitHub[27] contains exemplary
data.

True Label

NN - 10 pictures training set (IoU: 0.54)

NN - 20 pictures training set (IoU: 0.21)

NN - 30 pictures training set (IoU: 0.78)

NN - 40 pictures training set (IoU: 0.88)

Human without NN assistance (IoU: 0.60)

Huamn with NN assistance (IoU: 0.84)

Figure 5.2: Data with easy to recognize trunks

26

...............................5.3. Results on selected images

True Label

NN - 10 pictures training set (IoU: 0.38)

NN - 20 pictures training set (IoU: 0.02)

NN - 30 pictures training set (IoU: 0.47)

NN - 40 pictures training set (IoU: 0.53)

Human without NN assistance (IoU: 0.41)

Human with NN assistance (IoU: 0.49)

Figure 5.3: Data with a high density of trees

27

5. Goals and results

True Label

NN - 10 pictures training set (IoU: 0.14)

NN - 20 pictures training set (IoU: 0.00)

NN - 30 pictures training set (IoU: 0.33)

NN - 40 pictures training set (IoU: 0.48)

Human without NN assistance (IoU: 0.22)

Human with NN assistance (IoU: 0.38)

Figure 5.4: Data with trees in the distance

5.4 Complete results

The table5.1 below presents the average results achieved by each of our neural
network models, trained on varying sizes of training data, on the testing set,
along with their respective standard deviation values (σ) 1. This data provides

1https://www.dummies.com/article/academics-the-arts/math/statistics/why-
standard-deviation-is-an-important-statistic-169731/

28

................................... 5.4. Complete results

insight into how the quantity of training data impacts the model’s ability to
accurately segment and annotate tree trunks. Alongside these metrics, we
also compare these results with those achieved by human annotators, both
with and without the assistance of the neural network. By incrementally
increasing the training set size, we can observe the corresponding changes in
performance metrics across the models and how they stack up against human
accuracy under varying conditions. This analysis highlights the evolution of
the neural network’s proficiency as it processes more data and offers a clear
depiction of the benefits of neural network assistance in manual annotation
tasks.

Table 5.1: Results achieved on images from testing set

Results IoU σIoU max IoU Prec σPrec Acc σAcc

10 images NN 0.37 0.11 0.54 0.75 0.19 0.97 0.02

20 images NN 0.08 0.09 0.25 0.80 0.33 0.96 0.02

30 images NN 0.55 0.15 0.78 0.84 0.09 0.98 0.01

40 images NN 0.61 0.16 0.89 0.79 0.11 0.98 0.01

Human 0.42 0.15 0.65 0.55 0.17 0.97 0.02

Human + NN 0.55 0.17 0.84 0.80 0.14 0.98 0.02

The data suggest that the neural network, when used as an assisting tool,
can effectively guide the user towards achieving labels that closely match the
true labels. Notably, the average IoU scores achieved by human annotators
with neural network assistance are consistently higher compared to those
achieved without it. Nevertheless, the relatively high standard deviation
values indicate that the neural network is still experiencing difficulties in
identifying tree trunks that are more challenging to recognize. However, it
is able to accurately recognise tree trunks in the simpler data, as evidenced
by the maximum IoU, which explains the significant difference in standard
deviation.

This improvement underscores the practical benefits of integrating ad-
vanced machine learning models into traditional annotation workflows. It not
only enhances the accuracy of the annotations but also aids in maintaining
consistency across different sets of data and especially between different an-
notators. These findings reinforce the value of neural network assistance in
significantly boosting the precision of human-driven data labeling efforts.

29

5. Goals and results
5.4.1 Reduction of time requirements

As a key objective of our project was to reduce the time and effort required
for annotating images, the following graphs provide a clear illustration of the
time needed to annotate one picture. Figure5.5 compares the duration of
annotation sessions with and without neural network assistance. Figure5.6
displays the speedup factor for each individual image and the average speedup
across all images.

By quantifying the time saved when annotators are assisted by the neural
network, it is possible to evaluate the practical impact of integrating AI tools
in the annotation process. This analysis is crucial for understanding how
much our tool not only improves accuracy but also enhances efficiency in
real-world annotation tasks.

Figure 5.5: Comparison of time spent labeling images with and without neural
network assistance.

30

................................... 5.4. Complete results

Figure 5.6: The visualisation of the speedup gained from neural network assis-
tance for each image, accompanied by an average speedup factor.

31

32

Chapter 6
Future improvements and work

6.1 Multiclass labeling

In the current scope of our project, the focus was on segmenting tree trunks,
which required only single-class labeling to meet our specific research ob-
jectives. However, the expansion to multiclass labeling could substantially
enhance the tool’s applicability and utility for a broader range of users. Such
an enhancement would permit the annotation tool to identify and categorise
multiple types of objects within a single image, such as different kinds of
vegetation, wildlife, or artificial structures. This would provide a more com-
prehensive understanding of forested or other environments. This capability
would permit the creation of more complex autonomous navigation systems
that operate in diverse settings. Implementing multiclass labeling would
transform the tool into a more versatile resource, adapting to a wider variety
of research needs and operational scenarios.

6.2 Exploring the Integration of Multiple Neural
Network Models

In addition to U-Net, we plan to investigate the potential of integrating other
neural network architectures into the annotation tool. This will allow us to
leverage the strengths of different models to handle various aspects of LiDAR
data. For instance, some models may excel at identifying natural landscapes,
while others may perform better in urban environments.

To enhance the reliability of the annotations, we might implement a model
voting system. Multiple neural network models will independently analyse
the LiDAR data and provide annotations. The annotations will then be
aggregated and presented to the user, who will be able to select the most
suitable one. This model voting approach is designed to reduce the likelihood
of errors and biases associated with a single model, thereby improving the
overall accuracy of the automated annotations.

33

6. Future improvements and work
6.3 The long-term objective of enabling
autonomous drone navigation

The long-term objective of integrating our trained neural network into au-
tonomous flight systems represents a significant advance in enhancing the
operational capabilities of drones, particularly in complex environments such
as forests. This integration is intended to empower drones with the ability to
dynamically recognise and navigate around tree trunks, thereby optimising
their pathfinding capabilities and reducing the risk of collisions. Such an
advancement would not only allow drones to adhere to pre-set flight paths but
also to make informed, real-time decisions based on the surrounding terrain.
The expected applications include environmental monitoring, search-and-
rescue missions, and forest management, which demonstrate the potential
for more autonomous, effective, and safe aerial operations in challenging
landscapes. This goal drives our continued development and refinement of
the neural network to meet the demands of real-world autonomous flight.

34

Chapter 7
Conclusion

This thesis explores LiDAR data analysis, combining LiDAR technology with
convolutional neural networks (CNNs) to segment tree trunks from LiDAR
data. The primary objective of this work is the development of specialised
annotation tool with the ability to learn – "Labeler" – which will allow for
faster and better creation of annotated datasets used for the training and
testing of our neural networks.

The fundamental divergence of this project from standard methods lies in
the transformation of LiDAR data into a two-dimensional format suitable for
CNN processing. This methodological shift not only simplifies the visualisation
of spatial data and makes them easier to work with in general, but also
maximises the pattern recognition capabilities of CNNs, particularly the
adapted U-Net model.

The U-Net model, which is known for its effectiveness in biomedical image
segmentation, has been adapted for LiDAR data analysis. This adaptation of
U-Net for the segmentation of tree trunks represents an advancement in the
use of CNNs for environmental applications. It demonstrates the versatility
and adaptability of these networks. The success of the project in accurately
segmenting tree trunks, highlights the potential of CNNs in interpreting and
analysing complex spatial data gathered from LiDAR.

The use of PyTorch as the framework for this project was crucial, partic-
ularly in the adaptation and refinement of the neural network architecture.
PyTorch’s dynamic and flexible environment enabled the experimentation and
iterative development of the neural network, allowing for a tailored approach
to handle the LiDAR data. PyTorch’s Dataset and DataLoader classes greatly
improved the efficiency of data management and model training. These tools
simplified the handling of large datasets and optimized the training process,
ensuring effective training of the neural network on the prepared datasets.

The integration of the U-Net model into our developed annotation tool
represents a significant advance in the automation of the data annotation
process. By reducing the time and effort required for manual annotation,
this tool has proven to be a valuable asset in streamlining the workflow of
LiDAR data handling. The integration of machine learning techniques has
not only enhanced the precision of annotations but has also facilitated a more
user-friendly interface that aids in the tedious act of manual labeling. This

35

7. Conclusion......................................
has led to more effective and efficient training and validation of our CNN
models.

Looking ahead, the project has laid a solid foundation for future advance-
ments. The potential expansion to multiclass labeling and the integration of
various neural network models could address a broader spectrum of environ-
mental features, thereby enhancing the tool’s utility across different research
and operational contexts. Furthermore, the long-term goal of integrating this
technology into autonomous drone systems highlights its potential impact on
the field of self-navigating drones.

In conclusion, this work has created a tool that will hopefully be used for
improving the functionality and safety of autonomous systems in different
environments. It has also contributed valuable insights into the processing
of LiDAR data using CNNs. The methodologies and tools developed in this
thesis provide a scalable solution that could be adapted for various other
applications, potentially revolutionising the way we interact with LiDAR
data.

36

Bibliography

[1] SuperAnnotate. What is LiDAR Annotation. Available at: https:
//www.superannotate.com/blog/what-is-lidar-annotation#
uses-of-deep-learning-with-lidar-data [Accessed 29 April,
2024].

[2] Songan Zhang. 3D LiDAR Annotator. Available at: https://github.
com/songanz/3D-LiDAR-annotator [Accessed April 29, 2024].

[3] Sager, Christoph, et al. “labelCloud: A Lightweight Labeling Tool for
Domain-Agnostic 3D Object Detection in Point Clouds.” Computer-Aided
Design and Applications, vol. 19, no. 6, Mar. 2022, pp. 1191–206. DOI.org
(Crossref), https://doi.org/10.14733/cadaps.2022.1191-1206.

[4] X. Zhou, Y. Feng, X. Li, Z. Zhu, and Y. Hu. Off-Road Environment
Semantic Segmentation for Autonomous Vehicles Based on Multi-Scale
Feature Fusion. World Electric Vehicle Journal, 14, 291, 2023. https:
//doi.org/10.3390/wevj14100291

[5] C. R. Qi, H. Su, K. Mo, L. J. Guibas. PointNet: Deep Learning on Point
Sets for 3D Classification and Segmentation. arXiv:1612.00593 [cs.CV]
https://arxiv.org/abs/1612.00593.

[6] H. Su, S. Maji, E. Kalogerakis, E. Learned-Miller. Multi-view Convo-
lutional Neural Networks for 3D Shape Recognition. arXiv:1505.00880
[cs.CV] https://arxiv.org/abs/1505.00880.

[7] Nagy, Balazs, and Csaba Benedek. “3D CNN-Based Semantic Labeling
Approach for Mobile Laser Scanning Data.” IEEE Sensors Journal, vol.
19, no. 21, Nov. 2019, pp. 10034–45. DOI.org (Crossref), https://doi.
org/10.1109/JSEN.2019.2927269.

[8] SZTAKI CityMLS dataset. Available at: http://mplab.sztaki.hu/
geocomp/SZTAKI-CityMLS-DB.html.

[9] Kim, Wonjik, et al. “Automatic Labeled LiDAR Data Generation Based
on Precise Human Model.” 2019 International Conference on Robotics
and Automation (ICRA), IEEE, 2019, pp. 43–49. DOI.org (Crossref),
https://doi.org/10.1109/ICRA.2019.8793916.

37

https://www.superannotate.com/blog/what-is-lidar-annotation#uses-of-deep-learning-with-lidar-data
https://www.superannotate.com/blog/what-is-lidar-annotation#uses-of-deep-learning-with-lidar-data
https://www.superannotate.com/blog/what-is-lidar-annotation#uses-of-deep-learning-with-lidar-data
https://github.com/songanz/3D-LiDAR-annotator
https://github.com/songanz/3D-LiDAR-annotator
https://doi.org/10.14733/cadaps.2022.1191-1206
https://doi.org/10.3390/wevj14100291
https://doi.org/10.3390/wevj14100291
https://arxiv.org/abs/1612.00593
https://arxiv.org/abs/1505.00880
https://doi.org/10.1109/JSEN.2019.2927269
https://doi.org/10.1109/JSEN.2019.2927269
http://mplab.sztaki.hu/geocomp/SZTAKI-CityMLS-DB.html
http://mplab.sztaki.hu/geocomp/SZTAKI-CityMLS-DB.html
https://doi.org/10.1109/ICRA.2019.8793916

7. Conclusion......................................
[10] X. Chen et al. Automatic Labeling to Generate Training Data for

Online LiDAR-Based Moving Object Segmentation. IEEE Robotics
and Automation Letters, vol. 7, no. 3, July 2022, pp. 6107–14. DOI:
https://doi.org/10.1109/LRA.2022.3166544.

[11] A. Geiger, P. Lenz, R. Urtasun. Are we ready for autonomous driving?
The KITTI Vision Benchmark Suite. Proceedings / CVPR, IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition,
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, May 2012, pp. 3354-3361. DOI: https://doi.org/10.1109/
CVPR.2012.6248074.

[12] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional Networks
for Biomedical Image Segmentation. ArXiv, 2015. https://arxiv.org/
abs/1505.04597

[13] IBM. LIDAR - Light Detection and Ranging. Available at: https://
www.ibm.com/topics/lidar [Accessed 10 January, 2024].

[14] CTU-MRS. Forest dataset in SLAM Datasets Repository. Avail-
able at: https://github.com/ctu-mrs/slam_datasets/tree/master/
forest [Accessed 10 January, 2024].

[15] Point Cloud Library (PCL). Home. Available at: https://pointclouds.
org/ [Accessed 10 January, 2024].

[16] R. Yamashita, M. Nishio, R.K.G. Do et al. Convolutional neural networks:
an overview and application in radiology. Insights Imaging, 9, 611-629,
2018. https://doi.org/10.1007/s13244-018-0639-9

[17] IBM. Convolutional Neural Networks. Available at: https://www.ibm.
com/topics/convolutional-neural-networks [Accessed 10 January,
2024].

[18] DAGsHub. PyTorch Glossary. Available at: https://dagshub.com/
glossary/pytorch/ [Accessed 10 January, 2024].

[19] Aqeel Anwar. What is Transposed Convolutional Layer? Towards
Data Science, 2024. Available at: https://towardsdatascience.com/
what-is-transposed-convolutional-layer-40e5e6e31c11 [Accessed
10 January, 2024].

[20] PyTorch. Tensors. PyTorch Documentation, 2024. Available at:
https://pytorch.org/docs/stable/tensors.html [Accessed 10 Jan-
uary, 2024].

[21] PyTorch. torch.optim.Adam. PyTorch Documentation, 2024. Avail-
able at: https://pytorch.org/docs/stable/generated/torch.optim.
Adam.html [Accessed 10 January, 2024].

38

https://doi.org/10.1109/LRA.2022.3166544
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1109/CVPR.2012.6248074
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
https://www.ibm.com/topics/lidar
https://www.ibm.com/topics/lidar
https://github.com/ctu-mrs/slam_datasets/tree/master/forest
https://github.com/ctu-mrs/slam_datasets/tree/master/forest
https://pointclouds.org/
https://pointclouds.org/
https://doi.org/10.1007/s13244-018-0639-9
https://www.ibm.com/topics/convolutional-neural-networks
https://www.ibm.com/topics/convolutional-neural-networks
https://dagshub.com/glossary/pytorch/
https://dagshub.com/glossary/pytorch/
https://towardsdatascience.com/what-is-transposed-convolutional-layer-40e5e6e31c11
https://towardsdatascience.com/what-is-transposed-convolutional-layer-40e5e6e31c11
https://pytorch.org/docs/stable/tensors.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html

...................................... 7. Conclusion

[22] PyTorch. torch.nn.CrossEntropyLoss. PyTorch Documentation, 2024.
Available at: https://pytorch.org/docs/stable/generated/torch.
nn.CrossEntropyLoss.html [Accessed 10 January, 2024].

[23] PyQt5. Available at: https://pypi.org/project/PyQt5/ [Accessed
April 29, 2024].

[24] Labeler application. Available at: https://github.com/pyszkad1/
lidar-tree-labeling/tree/main

[25] Adrian Rosebrock. Intersection over Union (IoU) for object de-
tection. Available at: https://pyimagesearch.com/2016/11/07/
intersection-over-union-iou-for-object-detection/, November
7, 2016.

[26] Ivan Popov. A Deep Dive into Semantic Segmentation
Evaluation Metrics. Available at: https://hackernoon.com/
a-deep-dive-into-semantic-segmentation-evaluation-metrics.

[27] Exemplary data. Available at: https://github.com/pyszkad1/
lidar-tree-labeling/tree/main/data

39

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pypi.org/project/PyQt5/
https://github.com/pyszkad1/lidar-tree-labeling/tree/main
https://github.com/pyszkad1/lidar-tree-labeling/tree/main
https://pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://hackernoon.com/a-deep-dive-into-semantic-segmentation-evaluation-metrics
https://hackernoon.com/a-deep-dive-into-semantic-segmentation-evaluation-metrics
https://github.com/pyszkad1/lidar-tree-labeling/tree/main/data
https://github.com/pyszkad1/lidar-tree-labeling/tree/main/data

	titletitle
	Untitled
	titletitle
	Introduction
	State of the Art of Annotating tools
	Decision to create our annotation tool
	Chapter Summaries

	LiDAR
	Introduction to LiDAR technology
	LiDAR Specifications
	Utilization of Point Cloud Library
	Creating a 2D representation for Convolutional Neural Networks

	Convolutional Neural Network
	State of the Art of CNNs for LiDAR data
	Neural Network Implementation - PyTorch
	The Fundamentals of Convolutional Neural Networks
	U-Net
	Key Components of the U-Net Model:

	Development of Neural Network
	Utilization of PyTorch's Dataset and DataLoader
	Training Process and Results on Generated Data

	Annotation Tool
	Labeler
	Functionalities

	Goals and results
	Defining our evaluation metrics
	Data selection and split
	Results on selected images
	Complete results
	Reduction of time requirements

	Future improvements and work
	Multiclass labeling
	Exploring the Integration of Multiple Neural Network Models
	The long-term objective of enabling autonomous drone navigation

	Conclusion
	Bibliography

